WO2021114071A1 - 一种经颅超声成像方法、装置及计算机可读存储介质 - Google Patents

一种经颅超声成像方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2021114071A1
WO2021114071A1 PCT/CN2019/124245 CN2019124245W WO2021114071A1 WO 2021114071 A1 WO2021114071 A1 WO 2021114071A1 CN 2019124245 W CN2019124245 W CN 2019124245W WO 2021114071 A1 WO2021114071 A1 WO 2021114071A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo signal
imaging
delayed
calculation formula
coherence factor
Prior art date
Application number
PCT/CN2019/124245
Other languages
English (en)
French (fr)
Inventor
陆敏华
杜斌
郑浩腾
毛睿
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/124245 priority Critical patent/WO2021114071A1/zh
Publication of WO2021114071A1 publication Critical patent/WO2021114071A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the present invention relates to the technical field of ultrasound imaging, in particular to a transcranial ultrasound imaging method, device and computer readable storage medium.
  • Ultrasound imaging technology is widely used in the detection of clinical diseases because of its real-time, non-invasive, and low-cost advantages. Although ultrasound can image many tissues and organs of the human body for doctors to diagnose diseases, ultrasound imaging technology for intracranial tissue and intracranial blood vessels is still in its infancy.
  • the skull is a strong reflective surface for ultrasound and has a large attenuation coefficient for sound energy, it is difficult for the sound beam to pass through the skull effectively.
  • the temporal bone is the thinnest part of the skull with the smallest curvature, so the temporal bone is usually selected clinically. "Acoustic window" for transcranial ultrasound research.
  • the temporal bone still has a strong attenuation effect on sound waves, and due to the mismatch of the sound velocity of the skull and soft tissues, the waveform is distorted and the quality of transcranial imaging is reduced; on the other hand, the size of the skull acoustic window is relatively limited. Therefore, the imaging field of intracranial imaging through the skull acoustic window is also relatively limited.
  • the current transcranial imaging used in clinical practice is to use the focused line scan method for imaging. Due to the low frame rate of the focused line scan method (tens of frames per second), high-speed motion information cannot be detected, although some scholars have proposed the use of Plane wave imaging of mouse brain can get a higher imaging frame rate, but because the plane wave imaging field is limited by the size of the skull acoustic window and probe, it is not suitable for human brain imaging. It can be seen that the current transcranial imaging solution urgently needs to be further improved to better meet actual use requirements.
  • the main purpose of the embodiments of the present invention is to provide a transcranial ultrasound imaging method, device, and computer-readable storage medium, which can at least solve the problem of low imaging frame rate and low imaging field when performing intracranial imaging through a skull acoustic window in related technologies. More limited issues.
  • a transcranial ultrasound imaging method which includes:
  • a transcranial ultrasound imaging device which includes:
  • the control module is used to control the phased array probe to emit divergent waves into the skull through the skull acoustic window according to the preset divergent wave emission strategy;
  • the delay module is used to delay the echo signal received by each element of the phased array to obtain the delayed echo signal
  • a composite module configured to calculate adaptive weights according to the delayed echo signals, and use the adaptive weights to perform coherent composite of the echo signals;
  • the output module is used to perform beamforming post-processing on the echo signal after coherent combination, and output the final intracranial ultrasound image.
  • a third aspect of the embodiments of the present invention provides an electronic device, the electronic device including: a processor, a memory, and a communication bus;
  • the communication bus is used to implement connection and communication between the processor and the memory
  • the processor is configured to execute one or more programs stored in the memory to implement the steps of any of the above-mentioned transcranial ultrasound imaging methods.
  • a fourth aspect of the embodiments of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be processed by one or more To implement the steps of any of the above-mentioned transcranial ultrasound imaging methods.
  • the phased array probe is controlled to emit divergent waves into the skull through the skull acoustic window according to a preset divergent wave emission strategy;
  • the echo signal received by the array element is subjected to delay processing to obtain the delayed echo signal;
  • the adaptive weight is calculated according to the delayed echo signal, and the adaptive weight is used for the coherent composite of the echo signal;
  • the composite echo signal undergoes beamforming post-processing, and the final intracranial ultrasound image is output.
  • divergent wave imaging is used to fully ensure the imaging frame rate and imaging field of view, and adaptive beam synthesis algorithms are used to perform adaptive beam forming, which effectively improves the contrast and imaging resolution of ultrasound intracranial imaging.
  • FIG. 1 is a schematic diagram of the basic flow of the transcranial ultrasound imaging method provided by the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of divergent wave emission provided by the first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a transcranial ultrasound imaging device provided by a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by a third embodiment of the present invention.
  • this embodiment proposes a transcranial ultrasound imaging method, as shown in FIG. 1
  • the basic flow diagram of the transcranial ultrasound imaging method provided by the embodiment, the transcranial ultrasound imaging method proposed in this embodiment specifically includes the following steps:
  • Step 101 Control the phased array probe to emit divergent waves into the skull through the skull acoustic window according to a preset divergent wave emission strategy.
  • transcranial imaging is usually performed based on the focused line scan method, and the imaging frame rate is relatively limited, while the ultrafast plane wave imaging method is limited by the actual width of the probe and the size of the skull acoustic window (including but not limited to the temporal bone window).
  • the imaging field of intracranial imaging through the skull acoustic window is also relatively limited. Therefore, since the divergent wave has an ultra-fast imaging frame rate and a divergent imaging field of view, in order to ensure the compatibility of high frame rate and large field of view in imaging, this embodiment proposes a divergent wave imaging method for transcranial imaging.
  • this embodiment can use a customized phased array probe, so that the size of the probe can better match the acoustic window of the temporal bone.
  • the launch strategy includes but is not limited to selecting the appropriate virtual focus position and number, the deflection angle of the diverging wave, and The divergence angle allows more sound energy to enter the skull and improves the signal-to-noise ratio of imaging.
  • the so-called divergent wave means that there are one or more virtual focus points behind the probe.
  • the entire transmission waveform is centered on this virtual focus point.
  • an arc-shaped wavefront is obtained.
  • the increasing depth of the waveform spreads out to obtain a larger field of view with a smaller aperture.
  • the distribution and movement of the virtual focus determine different divergent wave imaging strategies.
  • the virtual focus can be distributed behind the probe parallel to the probe, and the sub-aperture is smooth.
  • the composite imaging is performed. In the middle, the virtual focus can be distributed in an arc shape with the probe center as the center and the fixed length as the radius.
  • the ultrasonic probe is a phased array probe with 80 array elements, the distance between the array elements is 2.54 mm, the center frequency is 2.8 MHz, and the bandwidth is 70%.
  • the physical size of the probe in this embodiment can be set to 36.9*26.8 mm.
  • the research platform used in this example is the open ultrasound research platform Verasonics 256 system.
  • the entire skull is immersed in a sink filled with deionized water, and the probe is placed on one side of the temporal bone, and then used according to the virtual focus
  • Figure 2 shows a schematic diagram of divergent wave emission provided by this embodiment.
  • the divergent wave emission strategy is: the virtual focus of the divergent wave is distributed in an arc shape behind the probe, The distance from the virtual focus to the center of the probe is one-half of the aperture length and remains unchanged, the opening angle of the diverging wave is 90°, the maximum deflection angle of the diverging wave is ⁇ °, and the diverging wave is equally spaced from - ⁇ ° to ⁇ °
  • the value of ⁇ can be 30.
  • Step 102 Delay the echo signals received by each element of the phased array to obtain delayed echo signals.
  • the echo signal collected by the phased array is taken as a unit of a single element, and the delay of each pixel of the imaging area is calculated.
  • the delay is determined by the imaging area point and the probe
  • the position and the position of the virtual focus are determined together.
  • interpolation is performed on the acquired channel signal according to the obtained delay matrix, so that the signal value of the entire imaging area is obtained.
  • DAS delay and sum beamforming
  • n is the pixel index value
  • H represents the conjugate transpose
  • I j represents the output of the jth emission after DAS, where Represents the delayed array element signal
  • W is the weight vector
  • M represents the total number of array element channels.
  • Step 103 Calculate adaptive weights according to the delayed echo signals, and use the adaptive weights to perform coherent composite of the echo signals.
  • weighting processing is performed with the phase, that is, coherent composite processing.
  • the adaptive weight includes but is not limited to coherence factor and/or minimum variance.
  • the coherence factor is the ratio of the coherent sum to the incoherent sum between the array element signals after the delay.
  • the method for calculating the adaptive weight according to the delayed echo signal includes but is not limited to the following two:
  • Method 1 Combine the delayed echo signal and the preset first coherence factor calculation formula to calculate the first coherence factor, and determine the first coherence factor as the adaptive weight; the first coherence factor calculation formula is expressed as:
  • n is the pixel index value
  • M is the total number of array elements.
  • Method 2 Combine the delayed echo signal and the preset second coherence factor calculation formula to calculate the second coherence factor, and determine the second coherence factor as the adaptive weight; the second coherence factor calculation formula is expressed as:
  • Is the delayed echo signal received by the m-th array element, n and n+k are the pixel index values, M is the total number of array elements, L is the sub-aperture length, K is the time index value, and the value of k is The value range is [-K,K], a total of 2K+1 time index values.
  • the space-time smoothing coherence factor (STSCF) algorithm is relatively more robust and can significantly compress sidelobes to improve contrast.
  • the STSCF algorithm includes spatial smoothing, which is about The receiving array is divided into M-L+1 overlapping sub-arrays, each sub-array includes L array elements, and then the algorithm also includes time averaging processing, that is, between the connected 2K+1 time index values, several measurements The degree of coherence between the sub-array beam and a segment of pulse signal.
  • the use of adaptive weights to perform coherent composite of echo signals includes:
  • the first coherent composite calculation formula is expressed as:
  • Y DAS [n] is the echo signal output after delayed superimposed beamforming.
  • the use of adaptive weights to perform coherent composite of echo signals includes:
  • Y MV [n] is the echo signal output after minimum variance beamforming.
  • SINR is the signal-to-interference and noise ratio
  • R is the covariance matrix of the received signal of the array after the delay, Is the signal power.
  • the weight vector W is linearly constrained, so that the beamformer keeps the unit response in the signal direction (that is, keeps the desired signal unchanged) while keeping the output power at a minimum.
  • the linear constraint is expressed as follows:
  • a is the steering vector. Since the signal in this embodiment is delayed, so a is the unit vector. Then, by solving the aforementioned original version formula, the optimal weight can be obtained:
  • this embodiment uses sub-aperture smoothing and time smoothing to process the covariance matrix, and the calculation formula is expressed as follows:
  • L is the sub-aperture length
  • I the signal input vector of the delayed echo signal received by the l-th array element
  • T represents transpose
  • K is the index value in time, which can be smoothed in time.
  • this embodiment can also perform diagonal loading (DL) processing on the covariance matrix, and inject certain spatial white noise into the covariance matrix.
  • DL diagonal loading
  • represents the diagonal loading factor
  • ⁇ trace ⁇ R[n] ⁇ .
  • the minimum variance beamforming calculation formula is expressed as:
  • W is the weight vector
  • H is the conjugate transpose
  • Step 104 Perform beamforming post-processing on the echo signal after coherent composite, and output a final intracranial ultrasound image.
  • the respective beamforming output is obtained, and then the beamforming output is post-processed, including enveloping, normalization, logarithmic compression, etc., and then obtaining The final quality-enhanced intracranial ultrasound image.
  • the phased array probe is controlled to emit divergent waves into the skull through the skull acoustic window according to a preset divergent wave emission strategy; echo signals received by each element of the phased array Perform delay processing to obtain delayed echo signals; calculate adaptive weights based on the delayed echo signals, and use adaptive weights for coherent composite of the echo signals; beam the coherent composite echo signals Form post-processing and output the final intracranial ultrasound image.
  • divergent wave imaging is adopted, which fully guarantees high imaging frame rate and large imaging field of view, and adopts adaptive beam synthesis algorithm for adaptive beam forming, which effectively improves the contrast and imaging resolution of ultrasound intracranial imaging .
  • the transcranial ultrasound imaging device of the embodiment includes:
  • the control module 301 is used to control the phased array probe to emit divergent waves into the skull through the skull acoustic window according to a preset divergent wave emission strategy;
  • the delay module 302 is used to delay the echo signal received by each element of the phased array to obtain the delayed echo signal
  • the composite module 303 is configured to calculate adaptive weights according to the delayed echo signals, and use the adaptive weights to perform coherent composite of the echo signals;
  • the output module 304 is configured to perform beamforming post-processing on the echo signals after coherent combination, and output the final intracranial ultrasound image.
  • the divergent wave emission strategy includes: the virtual focus of the divergent wave is distributed in an arc shape behind the probe, and the distance from the virtual focus to the center of the probe is one-half the aperture length and remains constant, divergent The opening angle of the wave is 90°, the maximum deflection angle of the diverging wave is ⁇ °, and the diverging wave is distributed at equal intervals from - ⁇ ° to ⁇ °. Further, the value of ⁇ can be 30.
  • the composite module 303 when the composite module 303 calculates the adaptive weight based on the delayed echo signal, it is specifically used to combine the delayed echo signal with the preset first coherence factor calculation formula , The first coherence factor is calculated, and the first coherence factor is determined as the adaptive weight; the first coherence factor calculation formula is expressed as:
  • n is the pixel index value
  • M is the total number of array elements.
  • the composite module 303 when the composite module 303 calculates the adaptive weight based on the delayed echo signal, it is specifically configured to combine the delayed echo signal with the preset second coherence factor calculation Formula, the second coherence factor is calculated, and the second coherence factor is determined as the adaptive weight; the second coherence factor calculation formula is expressed as:
  • Is the delayed echo signal received by the m-th array element, n and n+k are the pixel index values, M is the total number of array elements, L is the sub-aperture length, K is the time index value, and the value of k is The value range is [-K,K], a total of 2K+1 time index values.
  • the composite module 303 when the composite module 303 uses adaptive weights to perform coherent composite of echo signals, it is specifically configured to perform a combination of the second coherence factor and the preset first coherent composite calculation formula.
  • Coherent recombination of echo signals; the first coherent recombination calculation formula is expressed as:
  • Y DAS [n] is the echo signal output after delayed superimposed beamforming.
  • the composite module 303 uses adaptive weights for coherent composite of echo signals, it is specifically configured to combine the second coherence factor and the preset second coherent composite calculation formula Perform coherent recombination of echo signals; the second coherent recombination calculation formula is expressed as:
  • Y MV [n] is the echo signal output after minimum variance beamforming.
  • the minimum variance beamforming calculation formula is expressed as:
  • W is the weight vector
  • H is the conjugate transpose
  • transcranial ultrasound imaging methods in the foregoing embodiments can be implemented based on the transcranial ultrasound imaging device provided in this embodiment, and those of ordinary skill in the art can clearly understand that for the convenience and conciseness of the description, this For the specific working process of the transcranial ultrasound imaging device described in the embodiment, reference may be made to the corresponding process in the foregoing method embodiment, which will not be repeated here.
  • the control module controls the phased array probe to emit divergent waves into the skull through the skull acoustic window according to a preset divergent wave emission strategy; the delay module receives each element of the phased array Delay processing of the echo signal to obtain the delayed echo signal; the composite module calculates the adaptive weight according to the delayed echo signal, and uses the adaptive weight to perform the coherent composite of the echo signal; the output module compares the coherent signal The composite echo signal undergoes beamforming post-processing, and the final intracranial ultrasound image is output.
  • divergent wave imaging is adopted to fully ensure the imaging frame rate and imaging field of view
  • the adaptive beam synthesis algorithm is adopted to perform adaptive beam forming, which effectively improves the contrast and imaging resolution of ultrasound intracranial imaging.
  • This embodiment provides an electronic device, as shown in FIG. 4, which includes a processor 401, a memory 402, and a communication bus 403, where: the communication bus 403 is used to implement connection and communication between the processor 401 and the memory 402; processing The device 401 is configured to execute one or more computer programs stored in the memory 402 to implement at least one step in the transcranial ultrasound imaging method in the first embodiment.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and that can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement at least one step of the method in the first embodiment.
  • This embodiment also provides a computer program, which can be distributed on a computer-readable medium and executed by a computable device to implement at least one step of the method in the first embodiment; and in some cases At least one of the steps shown or described can be performed in a different order from that described in the foregoing embodiment.
  • This embodiment also provides a computer program product, including a computer-readable device, and the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种经颅超声成像方法、装置及计算机可读存储介质,控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;根据延时后的回波信号计算自适应权重,并采用自适应权重进行回波信号的相干复合;对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。通过本技术方案,采用发散波成像,充分保证了高成像帧率和大成像视野,并且采用自适应波束合成算法来进行自适应波束形成,有效提高了超声颅内成像的对比度和成像分辨率。

Description

一种经颅超声成像方法、装置及计算机可读存储介质 技术领域
本发明涉及超声成像技术领域,尤其涉及一种经颅超声成像方法、装置及计算机可读存储介质。
背景技术
超声成像技术因其具备实时、无创、价格低廉等优点而被广泛的应用于临床疾病的检测中。虽然超声可以对人体诸多组织和器官进行成像,以供医生诊断疾病,但是对于颅内组织和颅内血管的超声成像技术还处于起步阶段。
由于颅骨对超声而言属于强反射面并且对声能量的衰减系数极大,使得声束难以有效穿过颅骨,而颞骨是颅骨里面最薄,且曲率最小的部分,所以临床上通常选择颞骨作为“声窗”来进行经颅超声研究。但是,一方面,颞骨依然对声波有着很强的衰减作用,并且由于颅骨和软组织的声速的不匹配,导致波形的失真,经颅成像质量的下降;另一方面,颅骨声窗的大小较为有限,从而经过颅骨声窗进行颅内成像的成像视野也较为有限。此外,目前临床所用经颅成像都是采用聚焦线扫的方式进行成像,由于聚焦线扫的方式帧率低(每秒几十帧),无法检测到高速的运动信息,尽管有学者提出了用平面波的方式对小鼠脑部成像可以得到较高的成像帧率,但由于平面波成像视野会受到颅骨声窗和探头的大小限制,并不适用于人脑成像。由此可见,目前的经颅成像方案还亟需进一步改进,以更好的满足实际使用需求。
发明内容
本发明实施例的主要目的在于提供一种经颅超声成像方法、装置及计算机可读存储介质,至少能够解决相关技术中经过颅骨声窗进行颅内成像时,成像帧率不高、成像视野也较为有限的问题。
为实现上述目的,本发明实施例第一方面提供了一种经颅超声成像方法,该方法包括:
控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;
将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;
根据所述延时后的回波信号计算自适应权重,并采用所述自适应权重进行回波信号的相干复合;
对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。
为实现上述目的,本发明实施例第二方面提供了一种经颅超声成像装置,该装置包括:
控制模块,用于控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;
延时模块,用于将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;
复合模块,用于根据所述延时后的回波信号计算自适应权重,并采用所述自适应权重进行回波信号的相干复合;
输出模块,用于对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。
为实现上述目的,本发明实施例第三方面提供了一种电子装置,该电子装置包括:处理器、存储器和通信总线;
所述通信总线用于实现所述处理器和存储器之间的连接通信;
所述处理器用于执行所述存储器中存储的一个或者多个程序,以实现上述任意一种经颅超声成像方法的步骤。
为实现上述目的,本发明实施例第四方面提供了一种计算机可读存储介质,该计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述任意一种经颅超声成像方法的步骤。
根据本发明实施例提供的经颅超声成像方法、装置及计算机可读存储介质,控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;根据延时后的回波信号计算自适应权重,并采用自适应权重进行回波信号的相干复合;对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。通过本发明的实施,采用发散波成像,充分保证了成像帧率和成像视野,并且采用自适应波束合成算法来进行自适应波束形成,有效提高了超声颅内成 像的对比度和成像分辨率。
本发明其他特征和相应的效果在说明书的后面部分进行阐述说明,且应当理解,至少部分效果从本发明说明书中的记载变的显而易见。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例提供的经颅超声成像方法的基本流程示意图;
图2为本发明第一实施例提供的发散波发射示意图;
图3为本发明第二实施例提供的经颅超声成像装置的结构示意图;
图4为本发明第三实施例提供的电子装置的结构示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一实施例:
为了解决相关技术中经过颅骨声窗进行颅内成像时,成像帧率不高、成像视野也较为有限的技术问题,本实施例提出了一种经颅超声成像方法,如图1所示为本实施例提供的经颅超声成像方法的基本流程示意图,本实施例提出的经颅超声成像方法具体包括以下步骤:
步骤101、控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波。
具体的,目前通常基于聚焦线扫的方式来进行经颅成像,成像帧率较为有限,而超快平面波成像方式会受到探头实际宽度和颅骨声窗(包括但不限于颞骨窗)大小的限制,经过颅骨声窗进行颅内成像的成像视野也较为有限。由此,出于发散波具备超快的成像帧率和发散的成像视野,为了保证高帧率和大视野 在成像方面的兼容,本实施例提出发散波成像方式来进行经颅成像。并且,本实施例可以使用定制相控阵探头,使其探头大小能和颞骨声窗有着较好匹配,此外,发射策略包括但不限于选择合适虚拟焦点位置及个数,发散波的偏转角度和发散角度,使得更多的声能量能进入到颅内,提高成像的信噪比。
应当说明的是,所谓的发散波就是在探头的后方有一个或多个虚拟的聚焦点,整个发射波形以这个虚拟焦点为圆心,通过发射延时,得到一个圆弧状的波前,随着深度的增加波形扩散开,以较小的孔径获得一个较大的视场。其虚拟焦点的分布和移动方式决定了不同的发散波成像策略,在一种实施方式中,可以是虚拟焦点在探头后方与探头平行分布,子孔径平滑的方式复合成像,在另一种实施方式中,可以是让虚拟焦点以探头中心为圆心,固定长度为半径呈圆弧状分布。
在本实施例一种可选的实施方式中,超声探头为具有80个阵元的相控阵探头,阵元间距为2.54mm,其中心频率为2.8MHz,带宽为70%。为了更好的经颞骨成像,本实施例的探头的物理尺寸可以设置为36.9*26.8mm。
此外,本实施例所采用的研究平台为开放式超声研究平台Verasonics 256系统,首先将完整的颅骨浸于装有去离子水的水槽中,将探头放于颞骨的一侧,然后用根据虚拟焦点的属性计算好的发射延时,激励出发散波。
如图2所示为本实施例提供的一种发散波发射示意图,在本实施例一种优选的实施方式中,发散波发射策略为:发散波的虚拟焦点在探头后方呈圆弧状分布、虚拟焦点至探头中心的距离为二分之一孔径长度且保持不变、发散波的张角为90°、发散波的最大偏转角度为θ°、发散波从-θ°至θ°等间隔分布,优选的,θ的取值可以为30。
步骤102、将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号。
在本实施例一种可选的实施方式中,将相控阵采集到的回波信号以单个阵元为单位,计算每个成像区域像素点的延时,该延时由成像区域点与探头位置和虚拟焦点的位置共同决定。然后根据所得延时矩阵在采集到的通道信号上插值,这样就得到了整个成像区域的信号值。再把80个阵元通的值相加,得到一幅低质量的图像。上述执行过程所对应的算法称为延时叠加波束形成算法(delay and sum beamforming,DAS),算法表达式如下:
Figure PCTCN2019124245-appb-000001
其中,n为像素点索引值,H表示共轭转置,I j表示第j次发射经DAS后的输出,其中
Figure PCTCN2019124245-appb-000002
表示延时后的阵元信号,W为权重向量,M表示阵元通道总数。
步骤103、根据延时后的回波信号计算自适应权重,并采用自适应权重进行回波信号的相干复合。
具体的,本实施例在将各个角度回波信号进行波束形成后处理之前,还带着相位进行加权处理,也即相干复合处理。应当说明的是,自适应权重包括但不限于相干因子和/或最小方差。其中,相干因子为经过延时之后的阵元信号之间的相干和与非相干和的比值。通过本实施例的相干复合来增强轴向信号,抑制离轴信号,从而提高成像对比度。
在本实施例一种可选的实施方式中,根据延时后的回波信号计算自适应权重的方式包括但不限于以下两种:
方式一,结合延时后的回波信号以及预设的第一相干因子计算公式,计算得到第一相干因子,并将第一相干因子确定为自适应权重;第一相干因子计算公式表示为:
Figure PCTCN2019124245-appb-000003
其中,
Figure PCTCN2019124245-appb-000004
为第m个阵元接收的经过延时后的回波信号,n为像素点索引值,M为阵元总数。
方式二,结合延时后的回波信号以及预设的第二相干因子计算公式,计算得到第二相干因子,并将第二相干因子确定为自适应权重;第二相干因子计算公式表示为:
Figure PCTCN2019124245-appb-000005
其中,
Figure PCTCN2019124245-appb-000006
为第m个阵元接收的经过延时后的回波信号,n以及n+k均为像素点索引值,M为阵元总数,L为子孔径长度,K为时间索引值,k的取值区间为[-K,K],共计2K+1个时间索引值。
具体的,由于传统的相干因子(CF)算法对噪声较为敏感,空时平滑相干因子(STSCF)算法相对更为鲁棒可以较为明显的压缩旁瓣提高对比度,STSCF算法包括空间平滑处理,也即将接收阵列划分为M-L+1个重叠的子阵列,每个子阵列包括L个阵元,然后该算法还包括时间平均处理,也即在相连的2K+1 个时间索引值之间,测量若干子阵列波束和之间的一段脉冲信号的相干程度。
相对应的,在本实施例一种可选的实施方式中,采用自适应权重进行回波信号的相干复合包括:
结合第二相干因子以及预设的第一相干复合计算公式进行回波信号的相干复合;第一相干复合计算公式表示为:
Y STSCF[n]=STSCF[n]Y DAS[n],
其中,Y DAS[n]为经过延时叠加波束形成后输出的回波信号。
应当说明的是,在本实施例另一种可选的实施方式中,采用自适应权重进行回波信号的相干复合包括:
结合第二相干因子以及预设的第二相干复合计算公式进行回波信号的相干复合,也即利用基于最小方差(MV)波束合成算法所计算的最小方差作为自适应权重来进行相干复合,MV算法可以较为显著的压缩主瓣,提高成像的分辨率;第二相干复合计算公式表示为:
Y[n]=STSCF[n]Y MV[n],
其中,Y MV[n]为经过最小方差波束形成后输出的回波信号。
应当说明的是,最小方差(MV)波束形成算法的原始版本公式表示如下:
Figure PCTCN2019124245-appb-000007
其中,SINR为信号干扰噪声比,R为经过延时后的阵列接收信号的协方差矩阵,
Figure PCTCN2019124245-appb-000008
是信号功率。
进一步地,本实施例对权重向量W进行线性约束,使波束形成器在信号方向保持单位响应(也即保持期望信号不变)的同时,输出功率最小。线性约束表示如下:
Figure PCTCN2019124245-appb-000009
其中,a为导向矢量,由于本实施例的信号是经过延时后的,所以a为单位矢量,然后对前述原始版本公式进行求解,即可得到最优权重:
Figure PCTCN2019124245-appb-000010
此外,为了使算法更加现实可行和鲁棒,本实施例采用子孔径平滑和时间平滑来处理协方差矩阵,计算公式表示如下:
Figure PCTCN2019124245-appb-000011
其中,L是子孔径长度,
Figure PCTCN2019124245-appb-000012
是第l个阵元接收的延时后的回波信号的信号输入矢量,T表示转置。K为时间上的索引值,可以进行时间上的平滑。
更进一步地,本实施例为了使算法更加鲁棒,还可以对协方差矩阵进行对角加载(DL)处理,来往协方差矩阵注入一定的空间白噪声,对角加载计算公式表示如下:
R DL=R+γI,
其中,γ表示对角加载因子,且γ=Δ·trace{R[n]}。
最后,基于上述计算得到的MV权重以及协方差矩阵即可得到经过最小方差波束形成后输出的回波信号,最小方差波束形成计算公式表示为:
Figure PCTCN2019124245-appb-000013
其中,
Figure PCTCN2019124245-appb-000014
为第l个阵元接收的经过延时后的回波信号的信号输入矢量,W为权重向量,H为共轭转置。
步骤104、对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。
具体的,本实施例在对通道接收信号完成相干和加权处理之后,得到各自的波束形成输出,随后对波束形成输出进行后处理,包括取包络、归一化、对数压缩等,然后得到最终质量增强的颅内超声图像。
根据本发明实施例提供的经颅超声成像方法,控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;根据延时后的回波信号计算自适应权重,并采用自适应权重进行回波信号的相干复合;对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。通过本发明的实施,采用发散波成像,充分保证了高成像帧率和大成像视野,并且采用自适应波束合成算法来进行自适应波束形成,有效提高了超声颅内成像的对比度和成像分辨率。
第二实施例:
为了解决相关技术中经过颅骨声窗进行颅内成像时,成像帧率不高、成像视野也较为有限的技术问题,本实施例示出了一种经颅超声成像装置,具体请 参见图3,本实施例的经颅超声成像装置包括:
控制模块301,用于控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;
延时模块302,用于将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;
复合模块303,用于根据延时后的回波信号计算自适应权重,并采用自适应权重进行回波信号的相干复合;
输出模块304,用于对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。
在本实施例的一些实施方式中,发散波发射策略包括:发散波的虚拟焦点在探头后方呈圆弧状分布、虚拟焦点至探头中心的距离为二分之一孔径长度且保持不变、发散波的张角为90°、发散波的最大偏转角度为θ°、发散波从-θ°至θ°等间隔分布。进一步地,θ的取值可以为30。
在本实施例的一种实施方式中,复合模块303在根据延时后的回波信号计算自适应权重时,具体用于结合延时后的回波信号以及预设的第一相干因子计算公式,计算得到第一相干因子,并将第一相干因子确定为自适应权重;第一相干因子计算公式表示为:
Figure PCTCN2019124245-appb-000015
其中,
Figure PCTCN2019124245-appb-000016
为第m个阵元接收的经过延时后的回波信号,n为像素点索引值,M为阵元总数。
在本实施例的另一种实施方式中,复合模块303在根据延时后的回波信号计算自适应权重时,具体用于结合延时后的回波信号以及预设的第二相干因子计算公式,计算得到第二相干因子,并将第二相干因子确定为自适应权重;第二相干因子计算公式表示为:
Figure PCTCN2019124245-appb-000017
其中,
Figure PCTCN2019124245-appb-000018
为第m个阵元接收的经过延时后的回波信号,n以及n+k均为像素点索引值,M为阵元总数,L为子孔径长度,K为时间索引值,k的取值区间为[-K,K],共计2K+1个时间索引值。
进一步地,在本实施例的一种实施方式中,复合模块303在采用自适应权重进行回波信号的相干复合时,具体用于结合第二相干因子以及预设的第一相干复合计算公式进行回波信号的相干复合;第一相干复合计算公式表示为:
Y STSCF[n]=STSCF[n]Y DAS[n],
其中,Y DAS[n]为经过延时叠加波束形成后输出的回波信号。
进一步地,在本实施例的另一种实施方式中,复合模块303在采用自适应权重进行回波信号的相干复合时,具体用于结合第二相干因子以及预设的第二相干复合计算公式进行回波信号的相干复合;第二相干复合计算公式表示为:
Y[n]=STSCF[n]Y MV[n],
其中,Y MV[n]为经过最小方差波束形成后输出的回波信号。
更进一步地,在本实施例的一些实施方式中,最小方差波束形成计算公式表示为:
Figure PCTCN2019124245-appb-000019
其中,
Figure PCTCN2019124245-appb-000020
为第l个阵元接收的经过延时后的回波信号的信号输入矢量,W为权重向量,H为共轭转置。
应当说明的是,前述实施例中的经颅超声成像方法均可基于本实施例提供的经颅超声成像装置实现,所属领域的普通技术人员可以清楚的了解到,为描述的方便和简洁,本实施例中所描述的经颅超声成像装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
采用本实施例提供的经颅超声成像装置,控制模块控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;延时模块将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;复合模块根据延时后的回波信号计算自适应权重,并采用自适应权重进行回波信号的相干复合;输出模块对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。通过本发明的实施,采用发散波成像,充分保证了成像帧率和成像视野,并且采用自适应波束合成算法来进行自适应波束形成,有效提高了超声颅内成像的对比度和成像分辨率。
第三实施例:
本实施例提供了一种电子装置,参见图4所示,其包括处理器401、存储 器402及通信总线403,其中:通信总线403用于实现处理器401和存储器402之间的连接通信;处理器401用于执行存储器402中存储的一个或者多个计算机程序,以实现上述实施例一中的经颅超声成像方法中的至少一个步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现上述实施例一中的方法的至少一个步骤。
本实施例还提供了一种计算机程序,该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现上述实施例一中的方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被 实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种经颅超声成像方法,其特征在于,包括:
    控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;
    将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;
    根据所述延时后的回波信号计算自适应权重,并采用所述自适应权重进行回波信号的相干复合;
    对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。
  2. 如权利要求1所述的经颅超声成像方法,其特征在于,所述发散波发射策略包括:所述发散波的虚拟焦点在所述探头后方呈圆弧状分布、所述虚拟焦点至所述探头中心的距离保持不变、所述发散波的最大偏转角度为θ°、所述发散波从-θ°至θ°等间隔分布。
  3. 如权利要求1所述的经颅超声成像方法,其特征在于,所述根据所述延时后的回波信号计算自适应权重包括:
    结合所述延时后的回波信号以及预设的第一相干因子计算公式,计算得到第一相干因子,并将所述第一相干因子确定为自适应权重;所述第一相干因子计算公式表示为:
    Figure PCTCN2019124245-appb-100001
    其中,
    Figure PCTCN2019124245-appb-100002
    为第m个阵元接收的经过延时后的回波信号,n为像素点索引值,M为阵元总数。
  4. 如权利要求1所述的经颅超声成像方法,其特征在于,所述根据所述延时后的回波信号计算自适应权重包括:
    结合所述延时后的回波信号以及预设的第二相干因子计算公式,计算得到第二相干因子,并将所述第二相干因子确定为自适应权重;所述第二相干因子计算公式表示为:
    Figure PCTCN2019124245-appb-100003
    其中,
    Figure PCTCN2019124245-appb-100004
    为第m个阵元接收的经过延时后的回波信号,n以及n+k均 为像素点索引值,M为阵元总数,L为子孔径长度,K为时间索引值,k的取值区间为[-K,K],共计2K+1个时间索引值。
  5. 如权利要求4所述的经颅超声成像方法,其特征在于,所述采用所述自适应权重进行回波信号的相干复合包括:
    结合所述第二相干因子以及预设的第一相干复合计算公式进行回波信号的相干复合;所述第一相干复合计算公式表示为:
    Y STSCF[n]=STSCF[n]Y DAS[n],
    其中,Y DAS[n]为经过延时叠加波束形成后输出的回波信号。
  6. 如权利要求4所述的经颅超声成像方法,其特征在于,所述采用所述自适应权重进行回波信号的相干复合包括:
    结合所述第二相干因子以及预设的第二相干复合计算公式进行回波信号的相干复合;所述第二相干复合计算公式表示为:
    Y[n]=STSCF[n]Y MV[n],
    其中,Y MV[n]为经过最小方差波束形成后输出的回波信号。
  7. 如权利要求6所述的经颅超声成像方法,其特征在于,所述最小方差波束形成计算公式表示为:
    Figure PCTCN2019124245-appb-100005
    其中,
    Figure PCTCN2019124245-appb-100006
    为第l个阵元接收的经过延时后的回波信号的信号输入矢量,W为权重向量,H为共轭转置。
  8. 一种经颅超声成像装置,其特征在于,包括:
    控制模块,用于控制相控阵探头按照预设的发散波发射策略经过颅骨声窗向颅内发射发散波;
    延时模块,用于将相控阵各阵元接收到的回波信号进行延时处理,得到延时后的回波信号;
    复合模块,用于根据所述延时后的回波信号计算自适应权重,并采用所述自适应权重进行回波信号的相干复合;
    输出模块,用于对相干复合后的回波信号进行波束形成后处理,输出最终的颅内超声图像。
  9. 一种电子装置,其特征在于,包括:处理器、存储器和通信总线;
    所述通信总线用于实现所述处理器和存储器之间的连接通信;
    所述处理器用于执行所述存储器中存储的一个或者多个程序,以实现如权利要求1至7中任意一项所述的经颅超声成像方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至7中任意一项所述的经颅超声成像方法的步骤。
PCT/CN2019/124245 2019-12-10 2019-12-10 一种经颅超声成像方法、装置及计算机可读存储介质 WO2021114071A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124245 WO2021114071A1 (zh) 2019-12-10 2019-12-10 一种经颅超声成像方法、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124245 WO2021114071A1 (zh) 2019-12-10 2019-12-10 一种经颅超声成像方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021114071A1 true WO2021114071A1 (zh) 2021-06-17

Family

ID=76329320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124245 WO2021114071A1 (zh) 2019-12-10 2019-12-10 一种经颅超声成像方法、装置及计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2021114071A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180003811A1 (en) * 2016-06-30 2018-01-04 Esaote Spa Method and system for performing retrospective dynamic transmit focussing beamforming on ultrasound signals
US20180149734A1 (en) * 2016-11-29 2018-05-31 Siemens Medical Solutions Usa, Inc. Adaptive Post Beamformation Synthetic Aperture for Ultrasound Imaging
CN109044407A (zh) * 2013-07-23 2018-12-21 明尼苏达大学评议会 使用多频率波形的超声图像形成和/或重建
CN109363714A (zh) * 2018-09-17 2019-02-22 深圳迈瑞生物医疗电子股份有限公司 一种超声成像设备及其超声成像方法
CN110101409A (zh) * 2019-03-18 2019-08-09 深圳蓝韵医学影像有限公司 波束合成方法、超声成像方法、装置及设备
CN110477951A (zh) * 2019-08-30 2019-11-22 浙江大学 基于宽频带声学超材料的超快复合平面波成像方法
CN110507355A (zh) * 2019-09-20 2019-11-29 青岛海信医疗设备股份有限公司 一种超声成像系统、方法、设备及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109044407A (zh) * 2013-07-23 2018-12-21 明尼苏达大学评议会 使用多频率波形的超声图像形成和/或重建
US20180003811A1 (en) * 2016-06-30 2018-01-04 Esaote Spa Method and system for performing retrospective dynamic transmit focussing beamforming on ultrasound signals
US20180149734A1 (en) * 2016-11-29 2018-05-31 Siemens Medical Solutions Usa, Inc. Adaptive Post Beamformation Synthetic Aperture for Ultrasound Imaging
CN109363714A (zh) * 2018-09-17 2019-02-22 深圳迈瑞生物医疗电子股份有限公司 一种超声成像设备及其超声成像方法
CN110101409A (zh) * 2019-03-18 2019-08-09 深圳蓝韵医学影像有限公司 波束合成方法、超声成像方法、装置及设备
CN110477951A (zh) * 2019-08-30 2019-11-22 浙江大学 基于宽频带声学超材料的超快复合平面波成像方法
CN110507355A (zh) * 2019-09-20 2019-11-29 青岛海信医疗设备股份有限公司 一种超声成像系统、方法、设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, MENGLING: "Research on Adaptive Beamforming Methods in Medical Ultrasound Imaging", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 31 December 2014 (2014-12-31), pages 1 - 120, XP055819641 *

Similar Documents

Publication Publication Date Title
US11116474B2 (en) Ultrasound image formation and/or reconstruction using multiple frequency waveforms
Mehdizadeh et al. Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues
Matrone et al. A comparison of coherence-based beamforming techniques in high-frame-rate ultrasound imaging with multi-line transmission
US11650300B2 (en) Ultrasound system and method for suppressing noise using per-channel weighting
Sharifzadeh et al. Phase aberration correction: A convolutional neural network approach
EP3278734B1 (en) Beamforming device, ultrasonic imaging device, and beamforming method allowing simple spatial smoothing operation
JP2021536276A (ja) 超音波画像による脂肪層の識別
Lu et al. Complex convolutional neural networks for ultrafast ultrasound imaging reconstruction from in-phase/quadrature signal
Brickson et al. Reverberation noise suppression in ultrasound channel signals using a 3D fully convolutional neural network
Wang et al. Coherent plane-wave compounding based on normalized autocorrelation factor
Zhang et al. Ultrafast ultrasound imaging using combined transmissions with cross-coherence-based reconstruction
Hashemseresht et al. High-resolution and high-contrast ultrafast ultrasound imaging using coherent plane wave adaptive compounding
Wang et al. Adaptive scaling Wiener postfilter using generalized coherence factor for coherent plane-wave compounding
Wang et al. Dynamic coherence factor based on the standard deviation for coherent plane-wave compounding
Zimbico et al. Eigenspace generalized sidelobe canceller combined with SNR dependent coherence factor for plane wave imaging
CN110897655A (zh) 一种经颅超声成像方法、装置及计算机可读存储介质
CN113454484A (zh) 具有基于深度学习的波束形成的超声成像和相关联的设备、系统及方法
Wang et al. Improved ultrafast power Doppler imaging using united spatial-angular adaptive scaling wiener postfilter
US11737734B2 (en) Ultrasound imaging device and system, and image enhancement method for contrast enhanced ultrasound imaging
Du et al. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach
Fatemi et al. Row–column-based coherence imaging using a 2-D array transducer: A row-based implementation
WO2021114071A1 (zh) 一种经颅超声成像方法、装置及计算机可读存储介质
CN110840484A (zh) 自适应匹配最优声速的超声成像方法、装置及超声设备
Goudarzi et al. A unifying approach to inverse problems of ultrasound beamforming and deconvolution
Ziksari et al. Fast beamforming method for plane wave compounding based on beamspace adaptive beamformer and delay-multiply-and-sum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19955702

Country of ref document: EP

Kind code of ref document: A1