WO2021111560A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021111560A1
WO2021111560A1 PCT/JP2019/047500 JP2019047500W WO2021111560A1 WO 2021111560 A1 WO2021111560 A1 WO 2021111560A1 JP 2019047500 W JP2019047500 W JP 2019047500W WO 2021111560 A1 WO2021111560 A1 WO 2021111560A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
evaporators
defrosting
control device
defrosting operation
Prior art date
Application number
PCT/JP2019/047500
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
野本 宗
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021562263A priority Critical patent/JP7304965B2/en
Priority to PCT/JP2019/047500 priority patent/WO2021111560A1/en
Publication of WO2021111560A1 publication Critical patent/WO2021111560A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • refrigeration cycle equipment may require defrosting operation.
  • frost is formed on the outdoor heat exchanger during the heating operation to block the ventilation passage of the fins, the frosted state is periodically determined, and the defrosting operation is performed if necessary.
  • Patent Document 1 discloses an air conditioning system having an air conditioning state supplementing device that supplements information on the appearance of the air conditioning device during operation.
  • the air conditioner has a control device that controls the operation of the outdoor unit based on the operation state information supplemented by the air conditioning state supplement device.
  • Patent Document 1 the operating state information supplemented by the air conditioning state supplement device is also used for determining defrosting.
  • the refrigeration cycle device configuration may have multiple evaporators. If the states of the plurality of evaporators are both states requiring defrosting, the defrosting operation may be executed for the plurality of evaporators at the same time. In such a case, it causes a significant decrease in refrigerating capacity.
  • An object of the present disclosure is to indicate a refrigeration cycle device in which an appropriate defrosting operation is performed in a refrigeration cycle device having a plurality of evaporators.
  • the refrigeration cycle device is based on a plurality of evaporators, at least one image pickup device for photographing the plurality of evaporators, and an image taken by the at least one image pickup device, and the amount of frost formed among the plurality of evaporators is determined. It is equipped with a control device that executes defrosting operation of the evaporator that exceeds the determination value.
  • the timing of starting and stopping the defrosting operation can be appropriately determined.
  • FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. It is a figure for demonstrating an example of the positional relationship between an evaporator and an image pickup apparatus. It is a figure for demonstrating the calculation of the blockage rate. It is a flowchart for demonstrating the determination of the defrosting operation start for a plurality of evaporators. It is a flowchart which shows the detail of the defrosting process A executed in step S4 of FIG. It is a flowchart which shows the detail of the defrosting process B executed in step S5 of FIG. It is a flowchart which shows the detail of the defrosting process C executed in step S6 of FIG.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment.
  • the refrigeration cycle apparatus 1 includes a compressor 10, a condenser 20, an expansion valve 30, a plurality of solenoid valves 41, 42, a plurality of evaporators 51, 52, and an image pickup apparatus 61, 62, heaters 71 and 72 for defrosting, and a control device 100 are provided.
  • the freezing cycle device 1 is used as a refrigerator for cooling a freezing warehouse.
  • the cold heat source unit including the compressor 10 and the condenser 20 is installed outdoors, and the load device including the evaporators 51 and 52 is installed in the freezer warehouse.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is sent to the condenser 20 to condense and change into a liquid refrigerant.
  • This liquid refrigerant adiabatically expands at the expansion valve 30 to become a two-phase refrigerant, and is distributed to the evaporators 51 and 52 via the solenoid valves 41 and 42.
  • the two-phase refrigerant evaporates to become a gas refrigerant, and the gas refrigerant merges again and is sucked into the compressor 10.
  • the evaporators 51 and 52 are configured to exchange heat between the refrigerant and the air in the refrigerating warehouse by blowing air from a fan (not shown).
  • the condenser 20 is configured to exchange heat between the refrigerant and the air outside the refrigerating warehouse. Therefore, the heat inside the freezer warehouse is discharged to the outside of the freezer warehouse, and the inside of the freezer warehouse is cooled.
  • the compressor 10 is configured so that the operating frequency can be changed by a control signal received from the control device 100.
  • the output of the compressor 10 is adjusted by changing the operating frequency of the compressor 10.
  • the control device 100 includes a CPU (Central Processing Unit) 101, a memory 102, an input / output buffer (not shown), and the like, and controls each device in the refrigeration cycle device. Note that this control is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
  • the solenoid valves 41 and 42 are configured to be able to block the flow path that sends the refrigerant to the evaporators 51 and 52.
  • the solenoid valves 41 and 42 may be replaced with electronic expansion valves, and the expansion valve 30 may be omitted.
  • the image pickup devices 61 and 62 are, for example, digital cameras that capture the image data of the evaporators 51 and 52, respectively.
  • the control device 100 is configured to detect the amount of frost on the evaporators 51 and 52 from the image data obtained by the image pickup devices 61 and 62, and determine the necessity and priority of the defrosting operation.
  • the image data obtained by the image pickup devices 61 and 62 may be color or black and white.
  • FIG. 2 is a diagram for explaining an example of the positional relationship between the evaporator and the imaging device.
  • the evaporator 51 and the image pickup device 61 will be described, but the positional relationship is the same for the evaporator 52 and the image pickup device 62. Moreover, the positional relationship is the same when more evaporators are provided.
  • the image pickup device 61 captures an image of a representative portion of the evaporator 51.
  • the control device 100 regards the whitened portion in the representative image as frost formation.
  • the whitened frost formation can be detected even in a black-and-white image.
  • the representative portion of the evaporator 51 photographed by the control device 100 is the fin front edge portion on the air suction side. This portion is the portion of the evaporator 51 where frost is most likely to form.
  • the control device 100 starts the defrosting operation when a certain area ratio (for example, 50%) or more is whitened (frosted) in the image of the representative portion. Then, after the defrosting operation is started, the control device 100 ends the defrosting operation when the frosted portion of the image becomes a certain area ratio (for example, 10%) or less.
  • a certain area ratio for example, 50%
  • frosted whitened
  • the blockage rate may be calculated to determine the necessity of defrosting.
  • FIG. 3 is a diagram for explaining the calculation of the blockage rate. If the evaporator 51 is a plate fin tube type, the control device 100 detects the blockage rate between the fins FF due to frost formation, and if the blockage rate exceeds a certain value (for example, 50%), the defrosting operation is performed. Is started, and if the blockage rate becomes equal to or less than a certain value (for example, 10%) during the defrosting operation, the defrosting operation is terminated.
  • a certain value for example, 50%
  • the blockage rate is indicated by the ratio of the height of frost formed (H1 + H2) to the fin pitch FP FP / (H1 + H2) ⁇ 100 (%).
  • the solenoid valve 41 is shut off and the frost attached to the fins of the evaporator 51 is melted by heating by the heater 71.
  • the refrigeration cycle device is an air conditioner capable of heating and cooling with a four-way valve, the evaporator may be switched to a condenser to defrost hot gas by dissipating heat from the refrigerant.
  • the control device 100 identifies the evaporator that requires the defrosting operation, and starts the defrosting operation. At that time, if at least one evaporator is defrosting, the other evaporators are not defrosted. Therefore, when it is determined that the defrosting operation is necessary for a plurality of evaporators, the control device 100 schedules the defrosting operation so that the defrosting operation is sequentially performed from the one having the largest amount of frost formation.
  • the defrosting operation in this case is performed by shutting off the solenoid valve upstream of the evaporator to be defrosted and heating the surface of the evaporator with a heater.
  • FIG. 4 is a flowchart for explaining the determination of starting the defrosting operation for a plurality of evaporators.
  • the control device 100 determines whether or not defrosting is necessary in the evaporator 51.
  • the evaporator 52 determines whether or not defrosting is necessary.
  • defrosting is performed when the portion (for example, white portion) indicating frost formation of the image data obtained from the image pickup devices 61 and 62 is a certain percentage (for example, 50%) or more of the area of the representative image. Judged necessary.
  • step S3 When it is determined that defrosting is necessary in both the evaporator 51 and the evaporator 52 (YES in S1 and YES in S2), in step S3, the frost formation amount M (51) of the evaporator 51 and the arrival of the evaporator 52 The amount of frost M (52) is compared. If M (51)> M52 (YES in S3), the defrosting process A is executed in step S4.
  • FIG. 5 is a flowchart showing details of the defrosting process A executed in step S4 of FIG.
  • the control device 100 starts the defrosting operation of the evaporator 51.
  • the control device 100 closes the solenoid valve 41, stops the fan of the evaporator 51, and heats the frosted portion of the evaporator 51 by the heater 71.
  • the inside of the freezer warehouse is defrosted from the evaporator 51 while the cooling by the evaporator 52 is continued.
  • the fan of the evaporator 51 since the fan of the evaporator 51 is stopped, it is possible to prevent the heat of the heater 71 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
  • the refrigerant is shut off and the air inside the refrigerator is blown to the evaporator by a fan to melt the frost. You may perform the operation.
  • step S12 the control device 100 determines whether or not the defrosting of the evaporator 51 is completed.
  • a certain ratio for example, 10%
  • the defrosting operation is not simply terminated when the defrosting operation time reaches a certain time. Defrosting can be stopped at just the right time.
  • control device 100 If the defrosting of the evaporator 51 is not completed (NO in S12), the control device 100 returns the process to step S11 and continues the defrosting operation of the evaporator 51. On the other hand, when the defrosting of the evaporator 51 is completed (YES in S12), the control device 100 proceeds to the process in step S13.
  • step S13 the control device 100 starts the defrosting operation of the evaporator 52.
  • the control device 100 closes the solenoid valve 42, stops the fan of the evaporator 52, and heats the frosted portion of the evaporator 52 by the heater 72.
  • step S14 the control device 100 determines whether or not the defrosting of the evaporator 52 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed.
  • a certain ratio for example, 10%
  • control device 100 If the defrosting of the evaporator 52 is not completed (NO in S14), the control device 100 returns the process to step S13 and continues the defrosting operation of the evaporator 52. On the other hand, when the defrosting of the evaporator 52 is completed (YES in S14), the control device 100 ends the defrosting process A.
  • FIG. 6 is a flowchart showing details of the defrosting process B executed in step S5 of FIG.
  • the control device 100 starts the defrosting operation of the evaporator 52.
  • the control device 100 closes the solenoid valve 42, stops the fan of the evaporator 52, and heats the frosted portion of the evaporator 52 by the heater 72.
  • the inside of the freezer warehouse is defrosted by the evaporator 52 while the cooling by the evaporator 51 is continued.
  • the fan of the evaporator 52 is stopped, it is possible to prevent the heat of the heater 72 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
  • step S22 the control device 100 determines whether or not the defrosting of the evaporator 52 is completed.
  • the determination of the completion of defrosting can be determined when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting as described above.
  • control device 100 If the defrosting of the evaporator 52 is not completed (NO in S22), the control device 100 returns the process to step S21 and continues the defrosting operation of the evaporator 52. On the other hand, when the defrosting of the evaporator 52 is completed (YES in S22), the control device 100 proceeds to the process in step S23.
  • step S23 the control device 100 starts the defrosting operation of the evaporator 51.
  • the control device 100 closes the solenoid valve 41, stops the fan of the evaporator 51, and heats the frosted portion of the evaporator 51 by the heater 71.
  • step S24 the control device 100 determines whether or not the defrosting of the evaporator 51 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed.
  • a certain ratio for example, 10%
  • control device 100 If the defrosting of the evaporator 51 is not completed (NO in S24), the control device 100 returns the process to step S23 and continues the defrosting operation of the evaporator 51. On the other hand, when the defrosting of the evaporator 51 is completed (YES in S24), the control device 100 ends the defrosting process B.
  • the defrosting process C is executed in step S6. Will be done.
  • FIG. 7 is a flowchart showing details of the defrosting process C executed in step S6 of FIG.
  • the control device 100 starts the defrosting operation of the evaporator 51.
  • the control device 100 closes the solenoid valve 41, stops the fan of the evaporator 51, and heats the frosted portion of the evaporator 51 by the heater 71.
  • the inside of the freezer warehouse is defrosted from the evaporator 51 while the cooling by the evaporator 52 is continued.
  • the fan of the evaporator 51 since the fan of the evaporator 51 is stopped, it is possible to prevent the heat of the heater 71 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
  • step S32 the control device 100 determines whether or not the defrosting of the evaporator 51 is completed.
  • the determination of the completion of defrosting can be determined when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting as described above.
  • control device 100 If the defrosting of the evaporator 51 is not completed (NO in S32), the control device 100 returns the process to step S31 and continues the defrosting operation of the evaporator 51. On the other hand, when the defrosting of the evaporator 51 is completed (YES in S32), the control device 100 ends the defrosting process C.
  • step S8 when it is determined that defrosting is not necessary in the evaporator 51 and defrosting is necessary in the evaporator 52 (NO in S1 and YES in S7), the defrosting process D is executed in step S8. Will be done.
  • FIG. 8 is a flowchart showing details of the defrosting process D executed in step S8 of FIG.
  • the control device 100 starts the defrosting operation of the evaporator 52.
  • the control device 100 closes the solenoid valve 42, stops the fan of the evaporator 52, and heats the frosted portion of the evaporator 52 by the heater 72.
  • the inside of the freezer warehouse is defrosted by the evaporator 52 while the cooling by the evaporator 51 is continued.
  • the fan of the evaporator 52 is stopped, it is possible to prevent the heat of the heater 72 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
  • step S42 the control device 100 determines whether or not the defrosting of the evaporator 52 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed.
  • a certain ratio for example, 10%
  • control device 100 If the defrosting of the evaporator 52 is not completed (NO in S42), the control device 100 returns the process to step S41 and continues the defrosting operation of the evaporator 52. On the other hand, when the defrosting of the evaporator 52 is completed (YES in S42), the control device 100 ends the defrosting process D.
  • the defrosting operation time can be minimized, it is possible to prevent a decrease in the heating capacity of the air conditioner and a decrease in the refrigerating capacity of the freezer warehouse due to the defrosting operation, and an energy saving effect can be obtained.
  • Embodiment 2 the same number of image pickup devices are provided for the plurality of evaporators to monitor the frost formation state. However, even when a plurality of evaporators are installed, it is possible to reduce the number of image pickup devices.
  • FIG. 9 is a conceptual diagram in the case of monitoring a plurality of evaporators with one imaging device.
  • the refrigeration cycle device 201 includes an image pickup device 260 configured so that a plurality of evaporators 51 to 54 can be monitored.
  • FIG. 1 shows an example in which the number of evaporators 51 and 52 is two
  • FIG. 9 shows a case where the number of evaporators 51 to 54 is four.
  • the number of evaporators may be increased or decreased depending on the size of the freezer warehouse. Since the circulation of the refrigerant is the same as that in FIG. 1, the description will not be repeated here.
  • FIG. 10 is a diagram showing a first example of monitoring a plurality of evaporators with one imaging device.
  • the distance L between the image pickup device 260 and the evaporators 51 and 52 is determined so that both the evaporators 51 and 52 are within the imaging range of the image pickup device 260. In this case, it is necessary not to place a shield between the evaporators 51 and 52 and the image pickup apparatus 260. Further, it is preferable that the evaporators 51 and 52 are arranged so that the surface on the wind suction side described in FIG. 2 faces the image pickup apparatus 260.
  • FIG. 11 is a diagram showing a second example of monitoring a plurality of evaporators with one imaging device.
  • a mirror M1 that reflects the frosted surface of the evaporator 51 and a mirror M2 that reflects the frosted surface of the evaporator 52 are used.
  • the degree of freedom of arrangement of the evaporators 51 and 52 and the imaging device 260 in the refrigerator is increased.
  • FIG. 12 is a diagram showing a third example of monitoring a plurality of evaporators with one imaging device.
  • one imaging device 260 is moved to sequentially photograph the frosted surfaces of the evaporators 51 to 54.
  • a flying object such as a drone 300 is used for moving, but the method of moving is not limited to this.
  • a rail may be arranged on the ceiling or the like so that the image pickup apparatus 260 may be moved along the rail.
  • the mirror shown in FIG. 11 can be rotated so that the frosted surfaces of the evaporators 51 to 54 are sequentially included in the image pickup device 260 shooting range. You can do it.
  • a device identification code (bar code, QR code (registered trademark), etc.) for identifying the evaporator is placed in each evaporator so as to be within the shooting range, and the shot image is processed to identify the evaporator. You may.
  • the defrosting operation of each evaporator can be scheduled based on the amount of frost formation, and the occurrence of simultaneous defrosting can be prevented.
  • the number of image pickup devices can be reduced as compared with the first embodiment.
  • the frosted evaporator can be identified only by the image, which makes it easier to manage the image data.
  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle device 1 shown in FIG. 1 and the refrigeration cycle device 201 shown in FIG. 9 include a plurality of evaporators 51, 52, and at least one imaging device 61, 62, 260 for photographing the plurality of evaporators 51, 52.
  • a control device 100 that executes a defrosting operation of an evaporator in which the amount of frost formation exceeds a determination value among a plurality of evaporators 51 and 52, based on images taken by at least one image pickup device 61, 62, 260. And.
  • the timing of starting and stopping the defrosting operation can be appropriately determined.
  • control device 100 determines the execution order of the defrosting operations of the plurality of evaporators based on the image. ..
  • At least one imaging device 260 is configured to capture a plurality of evaporators on one captured image.
  • the refrigeration cycle device 201 further includes a transport device such as a drone 300 that sequentially transports the image pickup device 260 to a plurality of imaging positions capable of capturing images of the plurality of evaporators 51 to 54, respectively.
  • the transport device is not limited to the drone 300, and may be a mobile trolley or the like that travels along the rails of the ceiling, floor, or wall.
  • Refrigeration cycle device 10 compressor, 20 condenser, 30 expansion valve, 41,42 solenoid valve, 51,52,54 evaporator, 61,62,260 imaging device, 71,72 heater, 100 control device, 101 CPU, 102 memory, 300 drone, F fin, M1, M2 mirror.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

This refrigeration cycle device (1) comprises: a plurality of evaporators (51, 52); at least one image-capturing device (61, 62) for capturing images of the plurality of evaporators (51, 52); and a control device (100) which executes, on the basis of the images captured by said at least one image-capturing device (61, 62), a defrosting operation of an evaporator, in which the frosting amount exceeds a determination value, among the plurality of evaporators (51, 52). Preferably, the control device (100) is configured to perform a defrosting operation of one evaporator among the plurality of evaporators (51, 52). The control device (100) determines the execution order of the defrosting operation of the plurality of evaporators, on the basis of the captured images.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 冷凍サイクル装置は、除霜運転が必要になる場合があることが知られている。たとえば、空気調和装置では、暖房運転時に室外熱交換器に着霜してフィンの通風路をふさぐため、定期的に着霜状態を判定して、必要があれば除霜運転が行なわれる。 It is known that refrigeration cycle equipment may require defrosting operation. For example, in an air conditioner, since frost is formed on the outdoor heat exchanger during the heating operation to block the ventilation passage of the fins, the frosted state is periodically determined, and the defrosting operation is performed if necessary.
 国際公開第2018/096608号(特許文献1)には、空気調和装置の運転時の外観に関する情報を補足する空調状態補足装置を有する空気調和システムが開示されている。空気調和装置は、空調状態補足装置によって補足された運転状態情報をもとに室外機の動作を制御する制御装置を有している。 International Publication No. 2018/096608 (Patent Document 1) discloses an air conditioning system having an air conditioning state supplementing device that supplements information on the appearance of the air conditioning device during operation. The air conditioner has a control device that controls the operation of the outdoor unit based on the operation state information supplemented by the air conditioning state supplement device.
国際公開第2018/096608号International Publication No. 2018/096608
 国際公開第2018/096608号(特許文献1)には、空調状態補足装置によって補足された運転状態情報を除霜の判定にも使用する。 In International Publication No. 2018/096608 (Patent Document 1), the operating state information supplemented by the air conditioning state supplement device is also used for determining defrosting.
 しかし、冷凍サイクル装置の構成が複数の蒸発器を有する場合もある。複数の蒸発器の状態が両方とも除霜が必要な状態であった場合、複数の蒸発器に対して同時に除霜運転が実行される可能性もある。このような場合、著しい冷凍能力の低下を引き起こす。 However, the refrigeration cycle device configuration may have multiple evaporators. If the states of the plurality of evaporators are both states requiring defrosting, the defrosting operation may be executed for the plurality of evaporators at the same time. In such a case, it causes a significant decrease in refrigerating capacity.
 本開示の目的は、複数の蒸発器を有する冷凍サイクル装置において、適切な除霜運転が実行される冷凍サイクル装置を示すことである。 An object of the present disclosure is to indicate a refrigeration cycle device in which an appropriate defrosting operation is performed in a refrigeration cycle device having a plurality of evaporators.
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、複数の蒸発器と、複数の蒸発器を撮影する少なくとも1つの撮像装置と、少なくとも1つの撮像装置で撮影された画像に基づいて、複数の蒸発器のうちの着霜量が判定値を超えた蒸発器の除霜運転を実行する制御装置とを備える。 This disclosure relates to a refrigeration cycle device. The refrigeration cycle device is based on a plurality of evaporators, at least one image pickup device for photographing the plurality of evaporators, and an image taken by the at least one image pickup device, and the amount of frost formed among the plurality of evaporators is determined. It is equipped with a control device that executes defrosting operation of the evaporator that exceeds the determination value.
 本開示の冷凍サイクル装置によれば、着霜量が正確に判定できるため、除霜運転の開始、停止のタイミングを適切に定めることができる。 According to the refrigeration cycle apparatus of the present disclosure, since the amount of frost formation can be accurately determined, the timing of starting and stopping the defrosting operation can be appropriately determined.
実施の形態1に従う冷凍サイクル装置の全体構成図である。FIG. 5 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. 蒸発器と撮像装置との間の位置関係の例を説明するための図である。It is a figure for demonstrating an example of the positional relationship between an evaporator and an image pickup apparatus. 閉塞率の計算について説明するための図である。It is a figure for demonstrating the calculation of the blockage rate. 複数の蒸発器に対する除霜運転開始の判断について説明するためのフローチャートである。It is a flowchart for demonstrating the determination of the defrosting operation start for a plurality of evaporators. 図4のステップS4で実行される除霜処理Aの詳細を示すフローチャートである。It is a flowchart which shows the detail of the defrosting process A executed in step S4 of FIG. 図4のステップS5で実行される除霜処理Bの詳細を示すフローチャートである。It is a flowchart which shows the detail of the defrosting process B executed in step S5 of FIG. 図4のステップS6で実行される除霜処理Cの詳細を示すフローチャートである。It is a flowchart which shows the detail of the defrosting process C executed in step S6 of FIG. 図4のステップS8で実行される除霜処理Dの詳細を示すフローチャートである。It is a flowchart which shows the detail of the defrosting process D executed in step S8 of FIG. 1台の撮像装置で複数台の蒸発器を監視する場合の概念図である。It is a conceptual diagram in the case of monitoring a plurality of evaporators by one image pickup apparatus. 撮像装置1台で複数台の蒸発器を監視する第1例を示す図である。It is a figure which shows the 1st example which monitors a plurality of evaporators by one image pickup apparatus. 撮像装置1台で複数台の蒸発器を監視する第2例を示す図である。It is a figure which shows the 2nd example which monitors a plurality of evaporators by one image pickup apparatus. 撮像装置1台で複数台の蒸発器を監視する第3例を示す図である。It is a figure which shows the 3rd example which monitors a plurality of evaporators by one image pickup apparatus.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application that the configurations described in the respective embodiments are appropriately combined. The same or corresponding parts in the figure are designated by the same reference numerals.
 実施の形態1.
 図1は、実施の形態1に従う冷凍サイクル装置の全体構成図である。図1を参照して、冷凍サイクル装置1は、圧縮機10と、凝縮器20と、膨張弁30と、複数の電磁弁41,42と、複数の蒸発器51,52と、撮像装置61,62と、除霜用のヒータ71,72と、制御装置100とを備える。
Embodiment 1.
FIG. 1 is an overall configuration diagram of a refrigeration cycle device according to the first embodiment. With reference to FIG. 1, the refrigeration cycle apparatus 1 includes a compressor 10, a condenser 20, an expansion valve 30, a plurality of solenoid valves 41, 42, a plurality of evaporators 51, 52, and an image pickup apparatus 61, 62, heaters 71 and 72 for defrosting, and a control device 100 are provided.
 たとえば、冷凍サイクル装置1は、冷凍倉庫を冷却する冷凍機として使用される。この場合、圧縮機10、凝縮器20を含む冷熱源ユニットが屋外に設置され、蒸発器51,52を含む負荷装置が冷凍倉庫内に設置される。 For example, the freezing cycle device 1 is used as a refrigerator for cooling a freezing warehouse. In this case, the cold heat source unit including the compressor 10 and the condenser 20 is installed outdoors, and the load device including the evaporators 51 and 52 is installed in the freezer warehouse.
 圧縮機10から吐出された高温高圧のガス冷媒は、凝縮器20に送られて凝縮し、液冷媒に変化する。この液冷媒は、膨張弁30において断熱膨張し、二相冷媒となり、電磁弁41,42を介して蒸発器51,52に分配される。蒸発器51,52の各々では、二相冷媒が蒸発してガス冷媒となり、ガス冷媒は再び合流して圧縮機10に吸入される。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 is sent to the condenser 20 to condense and change into a liquid refrigerant. This liquid refrigerant adiabatically expands at the expansion valve 30 to become a two-phase refrigerant, and is distributed to the evaporators 51 and 52 via the solenoid valves 41 and 42. In each of the evaporators 51 and 52, the two-phase refrigerant evaporates to become a gas refrigerant, and the gas refrigerant merges again and is sucked into the compressor 10.
 蒸発器51,52は、図示しないファンの送風によって、冷媒と冷凍倉庫内の空気との間で熱交換を行なうように構成される。凝縮器20は、冷媒と冷凍倉庫外の空気との間で熱交換を行なうように構成される。したがって、冷凍倉庫内の熱は冷凍倉庫外に排出され、冷凍倉庫内が冷却される。 The evaporators 51 and 52 are configured to exchange heat between the refrigerant and the air in the refrigerating warehouse by blowing air from a fan (not shown). The condenser 20 is configured to exchange heat between the refrigerant and the air outside the refrigerating warehouse. Therefore, the heat inside the freezer warehouse is discharged to the outside of the freezer warehouse, and the inside of the freezer warehouse is cooled.
 圧縮機10は、制御装置100から受ける制御信号によって運転周波数を変更可能に構成される。圧縮機10の運転周波数を変更することにより圧縮機10の出力が調整される。 The compressor 10 is configured so that the operating frequency can be changed by a control signal received from the control device 100. The output of the compressor 10 is adjusted by changing the operating frequency of the compressor 10.
 制御装置100は、CPU(Central Processing Unit)101、メモリ102、入出力バッファ(図示せず)等を含み、冷凍サイクル装置における各機器の制御を行なう。なお、この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 101, a memory 102, an input / output buffer (not shown), and the like, and controls each device in the refrigeration cycle device. Note that this control is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
 電磁弁41,42は、蒸発器51,52に冷媒を送る流路を遮断可能に構成される。なお、電磁弁41,42を電子膨張弁に置き換え、膨張弁30を省略しても良い。 The solenoid valves 41 and 42 are configured to be able to block the flow path that sends the refrigerant to the evaporators 51 and 52. The solenoid valves 41 and 42 may be replaced with electronic expansion valves, and the expansion valve 30 may be omitted.
 撮像装置61,62は、たとえば、蒸発器51,52の画像データをそれぞれ取込むデジタルカメラである。制御装置100は、撮像装置61,62によって得られた画像データから蒸発器51,52の着霜量を検知し、除霜運転の要否および優先順を判断するように構成される。なお、撮像装置61,62によって得られた画像データはカラーでもよいが、白黒でもよい。 The image pickup devices 61 and 62 are, for example, digital cameras that capture the image data of the evaporators 51 and 52, respectively. The control device 100 is configured to detect the amount of frost on the evaporators 51 and 52 from the image data obtained by the image pickup devices 61 and 62, and determine the necessity and priority of the defrosting operation. The image data obtained by the image pickup devices 61 and 62 may be color or black and white.
 図2は、蒸発器と撮像装置との間の位置関係の例を説明するための図である。例として、蒸発器51、撮像装置61について説明するが、蒸発器52、撮像装置62についても位置関係は同様である。また、さらに多くの蒸発器を設けた場合についても位置関係は同様である。 FIG. 2 is a diagram for explaining an example of the positional relationship between the evaporator and the imaging device. As an example, the evaporator 51 and the image pickup device 61 will be described, but the positional relationship is the same for the evaporator 52 and the image pickup device 62. Moreover, the positional relationship is the same when more evaporators are provided.
 撮像装置61は、蒸発器51の代表部分の画像を撮影する。制御装置100は、代表画像において白色化した箇所を着霜と見なす。白色化した着霜は、白黒画像でも検知可能である。 The image pickup device 61 captures an image of a representative portion of the evaporator 51. The control device 100 regards the whitened portion in the representative image as frost formation. The whitened frost formation can be detected even in a black-and-white image.
 制御装置100が撮影する蒸発器51の代表部分は、図2に示すように、空気吸込み側のフィン前縁部分である。この部分が蒸発器51において最も着霜しやすい箇所である。 As shown in FIG. 2, the representative portion of the evaporator 51 photographed by the control device 100 is the fin front edge portion on the air suction side. This portion is the portion of the evaporator 51 where frost is most likely to form.
 制御装置100は、代表部分の画像において、ある面積割合(たとえば、50%)以上が白色化(着霜)したら除霜運転を開始する。そして、制御装置100は、除霜運転を開始してから、画像の着霜部分がある面積割合(たとえば、10%)以下となれば除霜運転終了する。 The control device 100 starts the defrosting operation when a certain area ratio (for example, 50%) or more is whitened (frosted) in the image of the representative portion. Then, after the defrosting operation is started, the control device 100 ends the defrosting operation when the frosted portion of the image becomes a certain area ratio (for example, 10%) or less.
 なお、閉塞率を計算して除霜の要否を判断しても良い。図3は、閉塞率の計算について説明するための図である。蒸発器51がプレートフィンチューブ型であれば、制御装置100は、着霜によるフィンF-F間の閉塞率を検知し、閉塞率がある値(たとえば、50%)以上となれば除霜運転を開始し、除霜運転中に、閉塞率がある値(たとえば10%)以下となれば除霜運転を終了する。 The blockage rate may be calculated to determine the necessity of defrosting. FIG. 3 is a diagram for explaining the calculation of the blockage rate. If the evaporator 51 is a plate fin tube type, the control device 100 detects the blockage rate between the fins FF due to frost formation, and if the blockage rate exceeds a certain value (for example, 50%), the defrosting operation is performed. Is started, and if the blockage rate becomes equal to or less than a certain value (for example, 10%) during the defrosting operation, the defrosting operation is terminated.
 ここで、閉塞率は、フィンピッチFPに対する着霜した霜の高さ(H1+H2)の割合FP/(H1+H2)×100(%)で示される。また、実行される除霜運転では、電磁弁41を遮断してヒータ71による加熱で蒸発器51のフィンに付いた霜を融解させる。なお、冷凍サイクル装置が、四方弁によって冷暖房可能な空調装置の場合には、蒸発器を凝縮器に切替えて冷媒の放熱によるホットガス除霜をしても良い。 Here, the blockage rate is indicated by the ratio of the height of frost formed (H1 + H2) to the fin pitch FP FP / (H1 + H2) × 100 (%). Further, in the defrosting operation to be executed, the solenoid valve 41 is shut off and the frost attached to the fins of the evaporator 51 is melted by heating by the heater 71. If the refrigeration cycle device is an air conditioner capable of heating and cooling with a four-way valve, the evaporator may be switched to a condenser to defrost hot gas by dissipating heat from the refrigerant.
 ここで、制御装置100は、除霜運転が必要な蒸発器を識別し、除霜運転を開始する。その際に、少なくとも一つの蒸発器が除霜中の場合、その他の蒸発器では除霜運転は行なわれない。そのために、複数の蒸発器で除霜運転が必要と判断された場合、制御装置100は、着霜量の多い方から順次除霜がされるように除霜運転をスケジューリングする。 Here, the control device 100 identifies the evaporator that requires the defrosting operation, and starts the defrosting operation. At that time, if at least one evaporator is defrosting, the other evaporators are not defrosted. Therefore, when it is determined that the defrosting operation is necessary for a plurality of evaporators, the control device 100 schedules the defrosting operation so that the defrosting operation is sequentially performed from the one having the largest amount of frost formation.
 この場合の除霜運転は、除霜対象の蒸発器の上流の電磁弁を遮断し、ヒータで蒸発器の表面を加熱することによって行なわれる。 The defrosting operation in this case is performed by shutting off the solenoid valve upstream of the evaporator to be defrosted and heating the surface of the evaporator with a heater.
 図4は、複数の蒸発器に対する除霜運転開始の判断について説明するためのフローチャートである。図1および図4を参照して、まずステップS1において制御装置100は、蒸発器51において除霜が必要か否かを判断する。続いてステップS2またはステップS7において、蒸発器52において除霜が必要か否かを判断する。以上の処理において、撮像装置61,62から得られた画像データの着霜を示す部分(たとえば白色部分)が代表画像の面積のうちある割合(たとえば50%)以上である場合に、除霜が必要と判断される。 FIG. 4 is a flowchart for explaining the determination of starting the defrosting operation for a plurality of evaporators. With reference to FIGS. 1 and 4, first, in step S1, the control device 100 determines whether or not defrosting is necessary in the evaporator 51. Subsequently, in step S2 or step S7, the evaporator 52 determines whether or not defrosting is necessary. In the above processing, defrosting is performed when the portion (for example, white portion) indicating frost formation of the image data obtained from the image pickup devices 61 and 62 is a certain percentage (for example, 50%) or more of the area of the representative image. Judged necessary.
 蒸発器51および蒸発器52においてともに除霜が必要と判断された場合(S1でYESかつS2でYES)、ステップS3において、蒸発器51の着霜量M(51)と、蒸発器52の着霜量M(52)が比較される。M(51)>M52であった場合(S3でYES)、ステップS4において、除霜処理Aが実行される。 When it is determined that defrosting is necessary in both the evaporator 51 and the evaporator 52 (YES in S1 and YES in S2), in step S3, the frost formation amount M (51) of the evaporator 51 and the arrival of the evaporator 52 The amount of frost M (52) is compared. If M (51)> M52 (YES in S3), the defrosting process A is executed in step S4.
 図5は、図4のステップS4で実行される除霜処理Aの詳細を示すフローチャートである。図5を参照して、ステップS11において制御装置100は、蒸発器51の除霜運転を開始する。蒸発器51の除霜運転では、制御装置100は、電磁弁41を閉止し、蒸発器51のファンを停止し、ヒータ71によって蒸発器51の着霜部分を加熱する。このようにすることによって、冷凍倉庫内は、蒸発器52による冷却が継続された状態で蒸発器51の除霜が実行される。このときに蒸発器51のファンを停止しているので、ヒータ71の熱が庫内に拡散して庫内温度が上昇するのを避けることができる。 FIG. 5 is a flowchart showing details of the defrosting process A executed in step S4 of FIG. With reference to FIG. 5, in step S11, the control device 100 starts the defrosting operation of the evaporator 51. In the defrosting operation of the evaporator 51, the control device 100 closes the solenoid valve 41, stops the fan of the evaporator 51, and heats the frosted portion of the evaporator 51 by the heater 71. By doing so, the inside of the freezer warehouse is defrosted from the evaporator 51 while the cooling by the evaporator 52 is continued. At this time, since the fan of the evaporator 51 is stopped, it is possible to prevent the heat of the heater 71 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
 なお、庫内の温度が5℃前後である場合には、逆にヒータを使用せずに、冷媒を遮断して、ファンによって庫内空気を蒸発器に当てることによって、霜を融解させる除霜運転を実行しても良い。 When the temperature inside the refrigerator is around 5 ° C, on the contrary, without using a heater, the refrigerant is shut off and the air inside the refrigerator is blown to the evaporator by a fan to melt the frost. You may perform the operation.
 続いて、ステップS12において、制御装置100は、蒸発器51の除霜が完了したか否かを判断する。前述のように、除霜開始してから着霜部分の面積が或る割合(たとえば10%)まで減少した場合に、除霜完了と判断することができる。除霜運転時間が長すぎると、庫内温度が上昇すると共にヒータによる無駄な電力が消費される。逆に、除霜運転時間が短すぎると、蒸発器の熱交換効率が悪いまま運転が継続されてしまう。本実施の形態に示すように、実際の着霜状態をみながら除霜運転終了の判断をすることによって、単に除霜運転時間が一定時間に達した場合に除霜運転を終了させるよりも、丁度良い時点で除霜を停止させることができる。 Subsequently, in step S12, the control device 100 determines whether or not the defrosting of the evaporator 51 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed. If the defrosting operation time is too long, the temperature inside the refrigerator rises and wasteful power is consumed by the heater. On the contrary, if the defrosting operation time is too short, the operation is continued with the heat exchange efficiency of the evaporator being poor. As shown in the present embodiment, by determining the end of the defrosting operation while observing the actual frost formation state, the defrosting operation is not simply terminated when the defrosting operation time reaches a certain time. Defrosting can be stopped at just the right time.
 蒸発器51の除霜が完了していない場合(S12でNO)、制御装置100は、ステップS11に処理を戻し、蒸発器51の除霜運転を継続する。一方、蒸発器51の除霜が完了していた場合(S12でYES)、制御装置100は、ステップS13に処理を進める。 If the defrosting of the evaporator 51 is not completed (NO in S12), the control device 100 returns the process to step S11 and continues the defrosting operation of the evaporator 51. On the other hand, when the defrosting of the evaporator 51 is completed (YES in S12), the control device 100 proceeds to the process in step S13.
 ステップS13では、制御装置100は、蒸発器52の除霜運転を開始する。蒸発器52の除霜運転では、制御装置100は、電磁弁42を閉止し、蒸発器52のファンを停止し、ヒータ72によって蒸発器52の着霜部分を加熱する。 In step S13, the control device 100 starts the defrosting operation of the evaporator 52. In the defrosting operation of the evaporator 52, the control device 100 closes the solenoid valve 42, stops the fan of the evaporator 52, and heats the frosted portion of the evaporator 52 by the heater 72.
 続いて、ステップS14において、制御装置100は、蒸発器52の除霜が完了したか否かを判断する。前述のように、除霜開始してから着霜部分の面積が或る割合(たとえば10%)まで減少した場合に、除霜完了と判断することができる。 Subsequently, in step S14, the control device 100 determines whether or not the defrosting of the evaporator 52 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed.
 蒸発器52の除霜が完了していない場合(S14でNO)、制御装置100は、ステップS13に処理を戻し、蒸発器52の除霜運転を継続する。一方、蒸発器52の除霜が完了していた場合(S14でYES)、制御装置100は、除霜処理Aを終了させる。 If the defrosting of the evaporator 52 is not completed (NO in S14), the control device 100 returns the process to step S13 and continues the defrosting operation of the evaporator 52. On the other hand, when the defrosting of the evaporator 52 is completed (YES in S14), the control device 100 ends the defrosting process A.
 再び図4に戻って、M(51)>M52でなかった場合(S3でNO)、ステップS5において、除霜処理Bが実行される。 Returning to FIG. 4 again, when M (51)> M52 is not satisfied (NO in S3), the defrosting process B is executed in step S5.
 図6は、図4のステップS5で実行される除霜処理Bの詳細を示すフローチャートである。図6を参照して、ステップS21において制御装置100は、蒸発器52の除霜運転を開始する。蒸発器52の除霜運転では、制御装置100は、電磁弁42を閉止し、蒸発器52のファンを停止し、ヒータ72によって蒸発器52の着霜部分を加熱する。このようにすることによって、冷凍倉庫内は、蒸発器51による冷却が継続された状態で蒸発器52の除霜が実行される。このときに蒸発器52のファンを停止しているので、ヒータ72の熱が庫内に拡散して庫内温度が上昇するのを避けることができる。 FIG. 6 is a flowchart showing details of the defrosting process B executed in step S5 of FIG. With reference to FIG. 6, in step S21, the control device 100 starts the defrosting operation of the evaporator 52. In the defrosting operation of the evaporator 52, the control device 100 closes the solenoid valve 42, stops the fan of the evaporator 52, and heats the frosted portion of the evaporator 52 by the heater 72. By doing so, the inside of the freezer warehouse is defrosted by the evaporator 52 while the cooling by the evaporator 51 is continued. At this time, since the fan of the evaporator 52 is stopped, it is possible to prevent the heat of the heater 72 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
 続いて、ステップS22において、制御装置100は、蒸発器52の除霜が完了したか否かを判断する。除霜の完了の判断は、前述のように除霜開始してから着霜部分の面積が或る割合(たとえば10%)まで減少した場合に除霜完了と判断することができる。 Subsequently, in step S22, the control device 100 determines whether or not the defrosting of the evaporator 52 is completed. The determination of the completion of defrosting can be determined when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting as described above.
 蒸発器52の除霜が完了していない場合(S22でNO)、制御装置100は、ステップS21に処理を戻し、蒸発器52の除霜運転を継続する。一方、蒸発器52の除霜が完了していた場合(S22でYES)、制御装置100は、ステップS23に処理を進める。 If the defrosting of the evaporator 52 is not completed (NO in S22), the control device 100 returns the process to step S21 and continues the defrosting operation of the evaporator 52. On the other hand, when the defrosting of the evaporator 52 is completed (YES in S22), the control device 100 proceeds to the process in step S23.
 ステップS23では、制御装置100は、蒸発器51の除霜運転を開始する。蒸発器51の除霜運転では、制御装置100は、電磁弁41を閉止し、蒸発器51のファンを停止し、ヒータ71によって蒸発器51の着霜部分を加熱する。 In step S23, the control device 100 starts the defrosting operation of the evaporator 51. In the defrosting operation of the evaporator 51, the control device 100 closes the solenoid valve 41, stops the fan of the evaporator 51, and heats the frosted portion of the evaporator 51 by the heater 71.
 続いて、ステップS24において、制御装置100は、蒸発器51の除霜が完了したか否かを判断する。前述のように、除霜開始してから着霜部分の面積が或る割合(たとえば10%)まで減少した場合に除霜完了と判断することができる。 Subsequently, in step S24, the control device 100 determines whether or not the defrosting of the evaporator 51 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed.
 蒸発器51の除霜が完了していない場合(S24でNO)、制御装置100は、ステップS23に処理を戻し、蒸発器51の除霜運転を継続する。一方、蒸発器51の除霜が完了していた場合(S24でYES)、制御装置100は、除霜処理Bを終了させる。 If the defrosting of the evaporator 51 is not completed (NO in S24), the control device 100 returns the process to step S23 and continues the defrosting operation of the evaporator 51. On the other hand, when the defrosting of the evaporator 51 is completed (YES in S24), the control device 100 ends the defrosting process B.
 再び図4に戻って、蒸発器51において除霜が必要、かつ蒸発器52において除霜が不要と判断された場合(S1でYESかつS2でNO)、ステップS6において、除霜処理Cが実行される。 Returning to FIG. 4 again, when it is determined that the evaporator 51 needs to be defrosted and the evaporator 52 does not need to be defrosted (YES in S1 and NO in S2), the defrosting process C is executed in step S6. Will be done.
 図7は、図4のステップS6で実行される除霜処理Cの詳細を示すフローチャートである。図7を参照して、ステップS31において制御装置100は、蒸発器51の除霜運転を開始する。蒸発器51の除霜運転では、制御装置100は、電磁弁41を閉止し、蒸発器51のファンを停止し、ヒータ71によって蒸発器51の着霜部分を加熱する。このようにすることによって、冷凍倉庫内は、蒸発器52による冷却が継続された状態で蒸発器51の除霜が実行される。このときに蒸発器51のファンを停止しているので、ヒータ71の熱が庫内に拡散して庫内温度が上昇するのを避けることができる。 FIG. 7 is a flowchart showing details of the defrosting process C executed in step S6 of FIG. With reference to FIG. 7, in step S31, the control device 100 starts the defrosting operation of the evaporator 51. In the defrosting operation of the evaporator 51, the control device 100 closes the solenoid valve 41, stops the fan of the evaporator 51, and heats the frosted portion of the evaporator 51 by the heater 71. By doing so, the inside of the freezer warehouse is defrosted from the evaporator 51 while the cooling by the evaporator 52 is continued. At this time, since the fan of the evaporator 51 is stopped, it is possible to prevent the heat of the heater 71 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
 続いて、ステップS32において、制御装置100は、蒸発器51の除霜が完了したか否かを判断する。除霜の完了の判断は、前述のように除霜開始してから着霜部分の面積が或る割合(たとえば10%)まで減少した場合に除霜完了と判断することができる。 Subsequently, in step S32, the control device 100 determines whether or not the defrosting of the evaporator 51 is completed. The determination of the completion of defrosting can be determined when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting as described above.
 蒸発器51の除霜が完了していない場合(S32でNO)、制御装置100は、ステップS31に処理を戻し、蒸発器51の除霜運転を継続する。一方、蒸発器51の除霜が完了していた場合(S32でYES)、制御装置100は、除霜処理Cを終了させる。 If the defrosting of the evaporator 51 is not completed (NO in S32), the control device 100 returns the process to step S31 and continues the defrosting operation of the evaporator 51. On the other hand, when the defrosting of the evaporator 51 is completed (YES in S32), the control device 100 ends the defrosting process C.
 再び図4に戻って、蒸発器51において除霜が不要、かつ蒸発器52において除霜が必要と判断された場合(S1でNOかつS7でYES)、ステップS8において、除霜処理Dが実行される。 Returning to FIG. 4 again, when it is determined that defrosting is not necessary in the evaporator 51 and defrosting is necessary in the evaporator 52 (NO in S1 and YES in S7), the defrosting process D is executed in step S8. Will be done.
 図8は、図4のステップS8で実行される除霜処理Dの詳細を示すフローチャートである。図8を参照して、ステップS41において制御装置100は、蒸発器52の除霜運転を開始する。蒸発器52の除霜運転では、制御装置100は、電磁弁42を閉止し、蒸発器52のファンを停止し、ヒータ72によって蒸発器52の着霜部分を加熱する。このようにすることによって、冷凍倉庫内は、蒸発器51による冷却が継続された状態で蒸発器52の除霜が実行される。このときに蒸発器52のファンを停止しているので、ヒータ72の熱が庫内に拡散して庫内温度が上昇するのを避けることができる。 FIG. 8 is a flowchart showing details of the defrosting process D executed in step S8 of FIG. With reference to FIG. 8, in step S41, the control device 100 starts the defrosting operation of the evaporator 52. In the defrosting operation of the evaporator 52, the control device 100 closes the solenoid valve 42, stops the fan of the evaporator 52, and heats the frosted portion of the evaporator 52 by the heater 72. By doing so, the inside of the freezer warehouse is defrosted by the evaporator 52 while the cooling by the evaporator 51 is continued. At this time, since the fan of the evaporator 52 is stopped, it is possible to prevent the heat of the heater 72 from diffusing into the refrigerator and raising the temperature inside the refrigerator.
 続いて、ステップS42において、制御装置100は、蒸発器52の除霜が完了したか否かを判断する。前述のように、除霜開始してから着霜部分の面積が或る割合(たとえば10%)まで減少した場合に、除霜完了と判断することができる。 Subsequently, in step S42, the control device 100 determines whether or not the defrosting of the evaporator 52 is completed. As described above, when the area of the frosted portion decreases to a certain ratio (for example, 10%) after the start of defrosting, it can be determined that the defrosting is completed.
 蒸発器52の除霜が完了していない場合(S42でNO)、制御装置100は、ステップS41に処理を戻し、蒸発器52の除霜運転を継続する。一方、蒸発器52の除霜が完了していた場合(S42でYES)、制御装置100は、除霜処理Dを終了させる。 If the defrosting of the evaporator 52 is not completed (NO in S42), the control device 100 returns the process to step S41 and continues the defrosting operation of the evaporator 52. On the other hand, when the defrosting of the evaporator 52 is completed (YES in S42), the control device 100 ends the defrosting process D.
 以上説明した実施の形態1の冷凍サイクル装置1では、画像による着霜量検知を行なうので、高精度に除霜の要否を判断でき、無駄な除霜運転を確実に防止できる。 In the refrigeration cycle device 1 of the first embodiment described above, since the amount of frost formation is detected by an image, the necessity of defrosting can be determined with high accuracy, and unnecessary defrosting operation can be reliably prevented.
 また、除霜運転時間を必要最小限の時間にできるため、除霜運転による空調の暖房能力低下、冷凍倉庫の冷凍能力低下を防ぎ、省エネ効果も得ることができる。 In addition, since the defrosting operation time can be minimized, it is possible to prevent a decrease in the heating capacity of the air conditioner and a decrease in the refrigerating capacity of the freezer warehouse due to the defrosting operation, and an energy saving effect can be obtained.
 さらに、画像を白黒とすれば、カメラコストの削減が可能となる。
 実施の形態2.
 実施の形態1では、複数の蒸発器に対して同数の撮像装置を設けて着霜状態を監視した。しかし、複数の蒸発器を設置する場合でも、撮像装置の台数を減らすことは可能である。
Furthermore, if the image is black and white, the camera cost can be reduced.
Embodiment 2.
In the first embodiment, the same number of image pickup devices are provided for the plurality of evaporators to monitor the frost formation state. However, even when a plurality of evaporators are installed, it is possible to reduce the number of image pickup devices.
 図9は、1台の撮像装置で複数台の蒸発器を監視する場合の概念図である。図9に示すように、冷凍サイクル装置201は、複数の蒸発器51~54を監視可能に構成された撮像装置260を備える。なお、図1では蒸発器51,52の数が2台である例を示したが、図9では蒸発器51~54の4台である場合が示されている。蒸発器の台数は冷凍倉庫の広さなどによって増減させても良い。なお、冷媒の循環などについては、図1と同様であるので、ここでは説明は繰り返さない。 FIG. 9 is a conceptual diagram in the case of monitoring a plurality of evaporators with one imaging device. As shown in FIG. 9, the refrigeration cycle device 201 includes an image pickup device 260 configured so that a plurality of evaporators 51 to 54 can be monitored. Although FIG. 1 shows an example in which the number of evaporators 51 and 52 is two, FIG. 9 shows a case where the number of evaporators 51 to 54 is four. The number of evaporators may be increased or decreased depending on the size of the freezer warehouse. Since the circulation of the refrigerant is the same as that in FIG. 1, the description will not be repeated here.
 図10は、撮像装置1台で複数台の蒸発器を監視する第1例を示す図である。図10に示す第1例では、蒸発器51,52の両方が撮像装置260の撮影範囲に入るように、撮像装置260と蒸発器51,52との距離Lを決定する。この場合、蒸発器51,52と撮像装置260との間に遮蔽物を置かないようにする必要がある。また、蒸発器51,52は、図2で説明した風吸い込み側の面が撮像装置260に向くように配置することが好ましい。 FIG. 10 is a diagram showing a first example of monitoring a plurality of evaporators with one imaging device. In the first example shown in FIG. 10, the distance L between the image pickup device 260 and the evaporators 51 and 52 is determined so that both the evaporators 51 and 52 are within the imaging range of the image pickup device 260. In this case, it is necessary not to place a shield between the evaporators 51 and 52 and the image pickup apparatus 260. Further, it is preferable that the evaporators 51 and 52 are arranged so that the surface on the wind suction side described in FIG. 2 faces the image pickup apparatus 260.
 図11は、撮像装置1台で複数台の蒸発器を監視する第2例を示す図である。図11では、蒸発器51の着霜面を映す鏡M1と蒸発器52の着霜面を映す鏡M2を用いる。鏡を使用することにより、蒸発器51,52および撮像装置260の庫内での配置の自由度が増す。 FIG. 11 is a diagram showing a second example of monitoring a plurality of evaporators with one imaging device. In FIG. 11, a mirror M1 that reflects the frosted surface of the evaporator 51 and a mirror M2 that reflects the frosted surface of the evaporator 52 are used. By using a mirror, the degree of freedom of arrangement of the evaporators 51 and 52 and the imaging device 260 in the refrigerator is increased.
 図12は、撮像装置1台で複数台の蒸発器を監視する第3例を示す図である。図12では、1台の撮像装置260を移動させて、蒸発器51~54の着霜面を順次に撮影させる。図12では、移動させるためにドローン300などの飛翔体を使用しているが、移動させる方法はこれには限定されない。たとえば、天井などにレールを配置し、撮像装置260をレールに沿って移動させるようにしても良い。また、撮像装置260を一カ所に固定している場合であっても、図11に示した鏡を回転可能にして、蒸発器51~54の着霜面が順次撮像装置260撮影範囲に入るようにしても良い。 FIG. 12 is a diagram showing a third example of monitoring a plurality of evaporators with one imaging device. In FIG. 12, one imaging device 260 is moved to sequentially photograph the frosted surfaces of the evaporators 51 to 54. In FIG. 12, a flying object such as a drone 300 is used for moving, but the method of moving is not limited to this. For example, a rail may be arranged on the ceiling or the like so that the image pickup apparatus 260 may be moved along the rail. Further, even when the image pickup device 260 is fixed in one place, the mirror shown in FIG. 11 can be rotated so that the frosted surfaces of the evaporators 51 to 54 are sequentially included in the image pickup device 260 shooting range. You can do it.
 また、蒸発器を識別するための機器識別コード(バーコード、QRコード(登録商標)など)を撮影範囲に入るように各蒸発器に配置しておき、撮影画像を処理して蒸発器を特定してもよい。 In addition, a device identification code (bar code, QR code (registered trademark), etc.) for identifying the evaporator is placed in each evaporator so as to be within the shooting range, and the shot image is processed to identify the evaporator. You may.
 実施の形態2においても、実施の形態1と同様な処理を行なうことによって、着霜量から各蒸発器の除霜運転をスケジューリングし、同時除霜の発生を防止できる。 Also in the second embodiment, by performing the same treatment as in the first embodiment, the defrosting operation of each evaporator can be scheduled based on the amount of frost formation, and the occurrence of simultaneous defrosting can be prevented.
 また、冷凍倉庫などに撮像装置を設置すれば、同時に複数の蒸発器を管理することも可能である。したがって、実施の形態2では実施の形態1よりも、撮像装置の台数の削減が可能となる。また、機器識別コードを読込めば着霜した蒸発器を画像だけで特定できるため、画像データの管理が楽になる。 It is also possible to manage multiple evaporators at the same time by installing an imaging device in a freezer warehouse or the like. Therefore, in the second embodiment, the number of image pickup devices can be reduced as compared with the first embodiment. In addition, if the device identification code is read, the frosted evaporator can be identified only by the image, which makes it easier to manage the image data.
 最後に、再び図面を参照して、本実施の形態について総括する。
 本開示は、冷凍サイクル装置に関する。図1に示す冷凍サイクル装置1および図9に示す冷凍サイクル装置201は、複数の蒸発器51,52と、複数の蒸発器51,52を撮影する少なくとも1つの撮像装置61,62,260と、少なくとも1つの撮像装置61,62,260で撮影された画像に基づいて、複数の蒸発器51,52のうちの着霜量が判定値を超えた蒸発器の除霜運転を実行する制御装置100とを備える。
Finally, the present embodiment will be summarized with reference to the drawings again.
The present disclosure relates to a refrigeration cycle device. The refrigeration cycle device 1 shown in FIG. 1 and the refrigeration cycle device 201 shown in FIG. 9 include a plurality of evaporators 51, 52, and at least one imaging device 61, 62, 260 for photographing the plurality of evaporators 51, 52. A control device 100 that executes a defrosting operation of an evaporator in which the amount of frost formation exceeds a determination value among a plurality of evaporators 51 and 52, based on images taken by at least one image pickup device 61, 62, 260. And.
 本開示の冷凍サイクル装置によれば、着霜量が正確に判定できるため、除霜運転の開始、停止のタイミングを適切に定めることができる。 According to the refrigeration cycle apparatus of the present disclosure, since the amount of frost formation can be accurately determined, the timing of starting and stopping the defrosting operation can be appropriately determined.
 好ましくは、図4~図8に示すように、除霜対象の蒸発器が複数ある場合には、制御装置100は、画像に基づいて、複数の蒸発器の除霜運転の実行順番を決定する。 Preferably, as shown in FIGS. 4 to 8, when there are a plurality of evaporators to be defrosted, the control device 100 determines the execution order of the defrosting operations of the plurality of evaporators based on the image. ..
 このように制御することによって、複数の蒸発器に同時に着霜した場合でも、複数の蒸発器に対して同時に除霜運転を実行しないので、著しい庫内温度の上昇を防ぐことができる。 By controlling in this way, even if frost is formed on a plurality of evaporators at the same time, the defrosting operation is not executed for the plurality of evaporators at the same time, so that a significant increase in the internal temperature can be prevented.
 好ましくは、図10、図11に示すように、少なくとも1つの撮像装置260は、1枚の撮影画像に複数の蒸発器を撮影するように構成される。 Preferably, as shown in FIGS. 10 and 11, at least one imaging device 260 is configured to capture a plurality of evaporators on one captured image.
 このような構成とすることによって、撮像装置の設置台数を減らすことができるので、冷凍サイクル装置の製造コストを低減することができる。 With such a configuration, the number of image pickup devices installed can be reduced, so that the manufacturing cost of the refrigeration cycle device can be reduced.
 好ましくは、図12に示すように、少なくとも1つの撮像装置260は、1台である。冷凍サイクル装置201は、複数の蒸発器51~54の画像をそれぞれ撮影可能な複数の撮影位置に撮像装置260を順次運搬するドローン300のような運搬装置をさらに備える。なお、運搬装置は、ドローン300に限らず、天井、床、または壁のレールに沿って走行する移動台車などであっても良い。 Preferably, as shown in FIG. 12, at least one imaging device 260 is one. The refrigeration cycle device 201 further includes a transport device such as a drone 300 that sequentially transports the image pickup device 260 to a plurality of imaging positions capable of capturing images of the plurality of evaporators 51 to 54, respectively. The transport device is not limited to the drone 300, and may be a mobile trolley or the like that travels along the rails of the ceiling, floor, or wall.
 このような構成とすることによって、撮像装置の設置台数を減らすことができるので、冷凍サイクル装置の製造コストを低減することができる。 With such a configuration, the number of image pickup devices installed can be reduced, so that the manufacturing cost of the refrigeration cycle device can be reduced.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1,201 冷凍サイクル装置、10 圧縮機、20 凝縮器、30 膨張弁、41,42 電磁弁、51,52,54 蒸発器、61,62,260 撮像装置、71,72 ヒータ、100 制御装置、101 CPU、102 メモリ、300 ドローン、F フィン、M1,M2 鏡。 1,201 Refrigeration cycle device, 10 compressor, 20 condenser, 30 expansion valve, 41,42 solenoid valve, 51,52,54 evaporator, 61,62,260 imaging device, 71,72 heater, 100 control device, 101 CPU, 102 memory, 300 drone, F fin, M1, M2 mirror.

Claims (4)

  1.  複数の蒸発器と、
     前記複数の蒸発器を撮影する少なくとも1つの撮像装置と、
     前記少なくとも1つの撮像装置で撮影された画像に基づいて、前記複数の蒸発器のうちの着霜量が判定値を超えた蒸発器の除霜運転を実行する制御装置とを備える、冷凍サイクル装置。
    With multiple evaporators,
    At least one image pickup device for photographing the plurality of evaporators, and
    A refrigeration cycle device including a control device for executing a defrosting operation of an evaporator in which the amount of frost formation among the plurality of evaporators exceeds a determination value based on an image taken by the at least one imaging device. ..
  2.  前記制御装置は、除霜対象の蒸発器が複数ある場合には、前記画像に基づいて、前記複数の蒸発器の除霜運転の実行順番を決定する、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the control device determines the execution order of the defrosting operation of the plurality of evaporators based on the image when there are a plurality of evaporators to be defrosted.
  3.  前記少なくとも1つの撮像装置は、1枚の撮影画像に前記複数の蒸発器を撮影するように構成される、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the at least one imaging device is configured to capture the plurality of evaporators on one captured image.
  4.  前記少なくとも1つの撮像装置は、1台であり、
     前記複数の蒸発器の画像をそれぞれ撮影可能な複数の撮影位置に前記撮像装置を順次運搬する運搬装置をさらに備える、請求項1に記載の冷凍サイクル装置。
    The at least one imaging device is one.
    The refrigeration cycle device according to claim 1, further comprising a transport device for sequentially transporting the image pickup device to a plurality of shooting positions capable of capturing images of the plurality of evaporators.
PCT/JP2019/047500 2019-12-04 2019-12-04 Refrigeration cycle device WO2021111560A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021562263A JP7304965B2 (en) 2019-12-04 2019-12-04 refrigeration cycle equipment
PCT/JP2019/047500 WO2021111560A1 (en) 2019-12-04 2019-12-04 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047500 WO2021111560A1 (en) 2019-12-04 2019-12-04 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021111560A1 true WO2021111560A1 (en) 2021-06-10

Family

ID=76221539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047500 WO2021111560A1 (en) 2019-12-04 2019-12-04 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7304965B2 (en)
WO (1) WO2021111560A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038118A (en) * 2021-11-17 2022-02-11 北京牧家科技有限公司 Intelligent vending system capable of remotely regulating and controlling temperature
CN114608145A (en) * 2022-02-24 2022-06-10 青岛海尔空调器有限总公司 Control method and control device for air conditioner, air conditioner and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287856A (en) * 1996-04-18 1997-11-04 Matsushita Refrig Co Ltd Defrosting method for air-conditioner
JPH1194441A (en) * 1997-09-18 1999-04-09 Mitsubishi Heavy Ind Ltd Freezing device
JP2005049022A (en) * 2003-07-29 2005-02-24 Hitachi Ltd Air conditioner
US20130042638A1 (en) * 2010-02-23 2013-02-21 Lg Electronics Inc. Refrigerator and controlling method thereof
US20150013354A1 (en) * 2013-07-15 2015-01-15 Luis Carlos Gabino Barrera Ramirez Hot liquid wash defrosting methods and systems
JP2018147139A (en) * 2017-03-03 2018-09-20 日本電気株式会社 Information processing system, information processing apparatus, information processing method, and information processing program
JP2019167177A (en) * 2018-03-22 2019-10-03 株式会社シーネット Inspection management system for storage state of article in warehouse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287856A (en) * 1996-04-18 1997-11-04 Matsushita Refrig Co Ltd Defrosting method for air-conditioner
JPH1194441A (en) * 1997-09-18 1999-04-09 Mitsubishi Heavy Ind Ltd Freezing device
JP2005049022A (en) * 2003-07-29 2005-02-24 Hitachi Ltd Air conditioner
US20130042638A1 (en) * 2010-02-23 2013-02-21 Lg Electronics Inc. Refrigerator and controlling method thereof
US20150013354A1 (en) * 2013-07-15 2015-01-15 Luis Carlos Gabino Barrera Ramirez Hot liquid wash defrosting methods and systems
JP2018147139A (en) * 2017-03-03 2018-09-20 日本電気株式会社 Information processing system, information processing apparatus, information processing method, and information processing program
JP2019167177A (en) * 2018-03-22 2019-10-03 株式会社シーネット Inspection management system for storage state of article in warehouse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038118A (en) * 2021-11-17 2022-02-11 北京牧家科技有限公司 Intelligent vending system capable of remotely regulating and controlling temperature
CN114608145A (en) * 2022-02-24 2022-06-10 青岛海尔空调器有限总公司 Control method and control device for air conditioner, air conditioner and storage medium
CN114608145B (en) * 2022-02-24 2024-02-20 青岛海尔空调器有限总公司 Control method and control device for air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
JPWO2021111560A1 (en) 2021-06-10
JP7304965B2 (en) 2023-07-07

Similar Documents

Publication Publication Date Title
US9945599B2 (en) Air conditioner and control method thereof
CN104246386B (en) Air conditioner
JP5007185B2 (en) Refrigeration apparatus, control method and control program for refrigeration apparatus
JP5053430B2 (en) Air conditioner
CN105526680B (en) The air-cooled cold wind unit defrosting control method of multisystem and device
WO2021111560A1 (en) Refrigeration cycle device
KR20110056180A (en) Refrigerating and freezing combine air conditioning system
US20140165628A1 (en) Air-conditioning apparatus and control method therefor
WO2022068281A1 (en) Air conditioning system and defrosting control method therefor, and storage medium and control apparatus
EP3385642B1 (en) Exhaust heat recovery system
US10480837B2 (en) Refrigeration apparatus
JP5247853B2 (en) Air conditioning system
JP2008309383A (en) Electricity/gas-type mixed air conditioning control system
JP2009162393A (en) Air conditioner
KR101844860B1 (en) Air conditioner and method for controlling the same
JP3785893B2 (en) Air conditioner
JP6148016B2 (en) Radiant air conditioner
JP2016133257A (en) Air-conditioner
KR20150009201A (en) A heat pump system and a control method the same
JP6945741B2 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
KR102041145B1 (en) System for defrosting evaporator
JP4409316B2 (en) Cooling system
CN114322219A (en) Air conditioner defrosting control method, air conditioner and computer storage medium
JP2523534B2 (en) Air conditioner
JP2014066420A (en) Freezer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954737

Country of ref document: EP

Kind code of ref document: A1