WO2021106385A1 - Power transaction system and power transaction method - Google Patents

Power transaction system and power transaction method Download PDF

Info

Publication number
WO2021106385A1
WO2021106385A1 PCT/JP2020/038263 JP2020038263W WO2021106385A1 WO 2021106385 A1 WO2021106385 A1 WO 2021106385A1 JP 2020038263 W JP2020038263 W JP 2020038263W WO 2021106385 A1 WO2021106385 A1 WO 2021106385A1
Authority
WO
WIPO (PCT)
Prior art keywords
blockchain
power
aggregator
electric power
consumer
Prior art date
Application number
PCT/JP2020/038263
Other languages
French (fr)
Japanese (ja)
Inventor
良佑 仲野
石井 圭
聡 舟橋
麗夏 牛嶋
安西 史圭
由起彦 井上
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019214247A external-priority patent/JP2021086361A/en
Priority claimed from JP2019214246A external-priority patent/JP2021086360A/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021106385A1 publication Critical patent/WO2021106385A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present disclosure relates to a power trading system and a power trading method.
  • the present application claims priority based on Japanese Patent Application No. 2019-214446 filed in Japan on November 27, 2019 and Japanese Patent Application No. 2019-214247 filed in Japan on November 27, 2019. The contents are used here.
  • a method using a blockchain is being studied as a highly secure distributed system. For example, it is considered to apply a blockchain to demand response, which is a function of electric power trading.
  • Demand response is a mechanism that changes the demand amount of consumers (companies, households, etc.) according to the supply amount of suppliers (power generation companies, etc.). For example, each of multiple consumers has a contract with an aggregator to save electricity under certain conditions in advance, and when the supplier requests a reduction in power demand through the aggregator, the power of the electrical equipment is turned off. To save electricity.
  • the aggregator collects the amount of power saved by the consumer and trades with the supplier, and pays the consumer an incentive according to the amount of power saved.
  • Patent Document 1 describes a system that records and stores the power consumption amount, power saving amount, power saving consideration (power saving point), etc. of each of a plurality of electric devices, which are data related to such demand response, as block data. There is.
  • the aggregator since the aggregator bundles multiple consumers and acts as an intermediary with the supplier, the supplier and the consumer will participate in the blockchain provided by the aggregator. In this case, since the aggregator needs to centrally manage the blockchain, the reliability of the system depends on the aggregator. Further, since only one blockchain provided by the aggregator manages a plurality of different data such as power generation receipt data, power billing data, and incentive data related to electric power transactions together, the blockchain management becomes complicated. Doing so can reduce the reliability of the system.
  • suppliers and consumers need to pay for modifying or developing their own system according to the data format of the blockchain of the aggregator.
  • This disclosure is made in view of such a problem, and provides an electric power trading system and an electric power trading method capable of performing highly reliable electric power trading by linking a plurality of blockchains.
  • It also provides an electric power trading system and an electric power trading method that can be purchased by selecting an electric power category.
  • the electric power trading system includes a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer, and the second blockchain. Can be connected to each of the first blockchain and the third blockchain.
  • the electric power trading method is an electric power trading method using a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer.
  • a first blockchain owned by a supplier
  • a second blockchain owned by an aggregator
  • a third blockchain owned by a consumer.
  • the aggregator based on the step of generating the supplier electric power information regarding the electric power that can be supplied by the supplier and registering the electric power in the first blockchain and the supplier electric power information acquired from the first blockchain.
  • At least one of the plurality of aggregators based on the step of generating the aggregator electric power information regarding the electric power that can be transmitted and registering the aggregator electric power information in the second blockchain and the aggregator electric power information acquired from the second blockchain.
  • a plurality of electric power trading methods are provided corresponding to each of a step of registering information related to a supplier's electric power transaction in the first blockchain and a category of electric power supplied by the supplier.
  • the step of registering the information related to the electric power transaction of the aggregator according to the category and the third blockchain correspond to the category preset by the consumer among the plurality of the second blockchains. It has a step of connecting to the second blockchain to register the information related to the electric power transaction of the consumer.
  • the reliability of electric power trading can be improved by linking a plurality of blockchains.
  • the electric power trading system and the electric power trading method according to the present disclosure it is possible to select an electric power category and purchase electric power.
  • FIG. 1 is a schematic view of an electric power trading system according to the first embodiment of the present disclosure.
  • the supplier and the consumer perform electric power trading via an aggregator.
  • Consumers are businesses, ordinary households, etc.
  • the suppliers are power generation companies, power transmission and distribution companies, and the like.
  • An aggregator is a business operator that adjusts the supply-demand balance between the electric power required by a consumer and the electric power supplied by the supplier.
  • the consumer according to the present embodiment selects one aggregator that satisfies the customer's desired conditions from the plurality of aggregators, and concludes a power transaction contract through the aggregator.
  • the electric power trading system 1 includes a supplier system 10, an aggregator system 20, a consumer system 30, a first blockchain BC1, a second blockchain BC2, and a third blockchain BC3. ..
  • the supplier system 10 is a system that performs various processes on the supplier side related to electric power transactions.
  • the first blockchain BC1 is a distributed network composed of a plurality of first nodes 11.
  • the first blockchain BC1 is connected to the supplier system 10 and records and accumulates various data on the supplier side related to electric power transactions.
  • FIG. 1 shows an example in which only one supplier exists for the sake of simplification of the explanation, but the present invention is not limited to this. In other embodiments, there may be multiple suppliers. In this case, each supplier has a supplier system 10 and a first blockchain BC1, respectively.
  • the aggregator system 20 is a system that performs various processes on the aggregator side related to electric power trading.
  • the second blockchain BC2 is a decentralized network composed of a plurality of second nodes 21.
  • the second blockchain BC2 is connected to the aggregator system 20 and records and accumulates various data on the aggregator side related to electric power transactions.
  • there are a plurality of aggregators each of which has aggregator systems 20a and 20b.
  • the aggregator systems 20a and 20b are connected to the second blockchain BC2a and BC2b, respectively.
  • the consumer system 30 is a system that performs various processes on the consumer side related to electric power transactions.
  • the third blockchain BC3 is a decentralized network composed of a plurality of third nodes 31.
  • the third blockchain BC3 is connected to the consumer system 30 and records and accumulates various data on the consumer side related to electric power transactions.
  • FIG. 1 shows an example in which only one consumer exists for the sake of simplification of the explanation, but the present invention is not limited to this. In other embodiments, there may be multiple consumers. In this case, each consumer has a consumer system 30 and a third blockchain BC3, respectively.
  • the format of the data registered in each of the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 is independently set by each of the supplier, aggregator, and consumer who manages these blockchains. In addition, this format may be changed according to the individual circumstances of the supplier, the aggregator, and the consumer.
  • first blockchain BC1 and the second blockchain BC2 are connected so as to be able to communicate using interleisure.
  • Interledger is a mechanism for exchanging values and conducting transactions between ledgers (data) with different standards.
  • each blockchain according to the present embodiment has nodes that serve as connectors to other blockchains, and necessary data is exchanged between these nodes. It should be noted that any one of the plurality of first nodes 11, any one of the plurality of second nodes 21, and any one of the plurality of third nodes are included in the respective blockchains. It may function as a connector.
  • FIG. 2 is a diagram showing a functional configuration of a supplier system and a first blockchain according to the first embodiment of the present disclosure.
  • the supplier system 10 includes a first processing unit 100 and a notification unit 101.
  • the first node 11 constituting the first blockchain BC1 includes a transaction generation unit 110, a block generation unit 111, a data registration unit 112, a contract processing unit 113, and a storage medium 114.
  • the first processing unit 100 of the supplier system 10 generates the supplier electric power information regarding the electric power that can be supplied by the supplier and registers it in the first blockchain BC1.
  • the supplier power information includes, for example, the power that can be supplied indicating the power that can be supplied in a certain period, the selling price per unit power in the period (hereinafter referred to as "wholesale price"), the start time of the period, and the start time of the period. Information such as end time (supplyable time) is included. Further, the supplier power information may include supplier identification information (supplier name, etc.).
  • the notification unit 101 of the supplier system 10 notifies each of the plurality of aggregators of the supplier power information generated by the first processing unit 100. Specifically, the notification unit 101 instructs the first blockchain BC1 to transmit the supplier power information registered in the first blockchain BC1 to the second blockchain BC2 of the aggregator via the interledger. I do.
  • the transaction generation unit 110 of the first node 11 generates a transaction related to the electric power transaction in the first blockchain BC1.
  • the transaction generation unit 110 registers the generated transaction in the transaction pool of the first blockchain BC1 by transmitting the generated transaction to another first node 11.
  • This transaction also includes supplier power information generated by the supplier system 10.
  • the transaction generation unit 110 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
  • the transaction generation unit 110 when the transaction generation unit 110 is instructed to notify the supplier power information from the supplier system 10, the transaction generation unit 110 transmits a transaction including the supplier power information to the second blockchain BC2 via the interledger. As a result, the transaction including the supplier power information is registered in the transaction pool of the second blockchain BC2.
  • the block generation unit 111 of the first node 11 generates block data including a predetermined number of transactions registered in the transaction pool. For example, in each first node 11, the block generation unit 111 calculates the nonce value to be included in the block data so that the block data including the plurality of transactions has a predetermined hash value. In this case, the first node 11 that has completed the calculation earliest generates the block data (Proof of Work). In another embodiment, the block generation unit 111 may generate block data by using the Proof of Stake method or the like.
  • the data registration unit 112 of the first node 11 registers the block data in the first blockchain BC1 by transmitting the block data generated by the block generation unit 111 to the other first node 11. Further, the data registration unit 112 verifies the block data received from the other first node 11 and stores it in the storage medium 114. At this time, the data registration unit 112 verifies the block by, for example, calculating the hash value of the block data received from the other first node 11 and determining whether or not the hash value satisfies a predetermined condition. To do.
  • the contract processing unit 113 of the first node 11 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 110.
  • the storage medium 114 of the first node 11 stores the data acquired and generated by each part.
  • the storage medium 114 stores transactions generated by the transaction generation unit 110, block data generated by the block generation unit 111, and the like.
  • FIG. 3 is a diagram showing a functional configuration of an aggregator system and a second blockchain according to the first embodiment of the present disclosure.
  • the aggregator system 20 includes a second processing unit 200 and a notification unit 201.
  • the second node 21 constituting the second blockchain BC2 includes a transaction generation unit 210, a block generation unit 211, a data registration unit 212, a contract processing unit 213, and a storage medium 214.
  • the second processing unit 200 of the aggregator system 20 generates aggregator power information regarding the power that can be transmitted via the aggregator based on the supplier power information acquired from the first blockchain BC1, and registers the aggregator power information in the second blockchain BC2.
  • the aggregator power information includes, for example, the power that can be transmitted by the aggregator in a certain period, the selling price per unit power (hereinafter referred to as "retail price"), the start time and the end time (transmission time) of the period, and the like. Information is included. Further, the aggregator power information may include aggregator identification information (aggregator name, etc.).
  • the second processing unit 200 when the second processing unit 200 receives an inquiry from a consumer about the period when he / she wants to purchase the electric charge, the desired amount of electric charge purchased in the period, and the like, the second processing unit 200 generates information indicating whether or not the electric charge can be sold to the consumer, and the second blockchain. Register with BC2.
  • the notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information generated by the second processing unit 200 and the information indicating whether or not the power can be sold. Specifically, the notification unit 201 transmits the aggregator power information registered in the second blockchain BC2 and the information indicating whether or not the power can be sold to the third blockchain BC3 of the consumer via the interledger. Instruct the second blockchain BC2.
  • the transaction generation unit 210 of the second node 21 generates a transaction related to the electric power transaction in the second blockchain BC2.
  • the transaction generation unit 210 registers the generated transaction in the transaction pool of the second blockchain BC2 by transmitting the generated transaction to another second node 21.
  • This transaction also includes aggregator power information generated by the aggregator system 20.
  • the transaction generation unit 210 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
  • the transaction generation unit 210 transmits the transaction including the information to the third blockchain BC3 via the interledger. Send.
  • the transaction including the aggregator power information is registered in the transaction pool of the third blockchain BC3.
  • the block generation unit 211 of the second node 21 generates block data including a predetermined number of transactions registered in the transaction pool.
  • the processing of the block generation unit 211 is the same as the processing of the block generation unit 111 of the first node 11 described above.
  • the data registration unit 212 of the second node 21 registers the block data in the second blockchain BC2 by transmitting the block data generated by the block generation unit 211 to another second node 21. Further, the data registration unit 212 verifies the block data received from the other second node 21 and stores it in the storage medium 214.
  • the processing of the data registration unit 212 is the same as the processing in the data registration unit 112 of the first node 11 described above.
  • the contract processing unit 213 of the second node 21 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 210.
  • the storage medium 214 of the second node 21 stores the data acquired and generated by each unit.
  • the storage medium 214 stores transactions generated by the transaction generation unit 210, block data generated by the block generation unit 211, and the like.
  • FIG. 4 is a diagram showing a functional configuration of a consumer system and a third blockchain according to the first embodiment of the present disclosure.
  • the consumer system 30 includes an acquisition unit 300 and a selection unit 301.
  • the third node 31 constituting the third blockchain BC3 includes a transaction generation unit 310, a block generation unit 311, a data registration unit 312, a contract processing unit 313, and a storage medium 314.
  • the acquisition unit 300 of the consumer system 30 acquires aggregator power information from each of the plurality of aggregators. For example, the acquisition unit 300 sets the desired purchase period (start time and end time) in which the consumer wants to purchase electric power, the desired purchase amount in the desired purchase period, the position information of the consumer (transmission destination), and the like, and sets the aggregator system. Make an inquiry to 20. The acquisition unit 300 acquires the information indicating whether or not the power can be sold and the aggregator power information, which are the responses from the aggregator system 20, through the second blockchain BC2 and the third blockchain BC3.
  • the selection unit 301 of the consumer system 30 selects at least one aggregator from a plurality of aggregators based on the aggregator power information acquired from the second blockchain BC2.
  • the selection unit 301 selects one aggregator that satisfies the conditions (desired power purchase amount and desired power purchase price) preset by the consumer.
  • the selection unit 301 instructs the third blockchain BC3 to place an order for power purchase from the selected aggregator.
  • the transaction generation unit 310 of the third node 31 generates a transaction related to the electric power transaction in the second blockchain BC2.
  • the transaction generation unit 310 registers the generated transaction in the transaction pool of the third blockchain BC3 by transmitting the generated transaction to another third node 31.
  • the transaction generation unit 310 receives an instruction to order an electric power purchase from the consumer system 30, it generates a transaction including a smart contract related to the purchase contract.
  • the block generation unit 311 of the third node 31 generates block data including a predetermined number of transactions registered in the transaction pool.
  • the processing of the block generation unit 311 is the same as the processing of the block generation unit 111 of the first node 11 described above.
  • the data registration unit 312 of the third node 31 registers the block data in the third blockchain BC3 by transmitting the block data generated by the block generation unit 311 to another third node 31. Further, the data registration unit 312 verifies the block data received from the other third node 31 and stores it in the storage medium 314.
  • the processing of the data registration unit 312 is the same as the processing in the data registration unit 112 of the first node 11 described above.
  • the contract processing unit 313 of the third node 31 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 310.
  • the storage medium 314 of the third node 31 stores the data acquired and generated by each unit.
  • the storage medium 314 stores transactions generated by the transaction generation unit 310, block data generated by the block generation unit 311 and the like.
  • FIG. 5 is a flowchart showing an example of processing of the electric power trading system according to the first embodiment of the present disclosure. Hereinafter, the processing flow in the electric power trading system 1 according to the present embodiment will be described with reference to FIG.
  • the first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies each of the plurality of aggregators of the supplier power information through the first blockchain BC1 and the second blockchain BC2 (step S100). Then, the supplier power information notified from the supplier system 10 is registered in the second blockchains BC2a and BC2b connected to the aggregator systems 20a and 20b (step S101).
  • the acquisition unit 300 of the consumer system 30 makes inquiries to each of the plurality of aggregators regarding the electric power that the consumer wants to purchase (step S102).
  • the inquiry includes, for example, a desired purchase period for which the consumer wants to purchase electric power, a desired amount of electric charge, the location information of the consumer, and the like.
  • the second processing unit 200 of the aggregator systems 20a and 20b When the second processing unit 200 of the aggregator systems 20a and 20b receives an inquiry from a consumer, it generates aggregator power information and determines whether or not to sell the power to the consumer (step S103). Specifically, the second processing unit 200 acquires the supplier power information corresponding to the desired purchase period of the consumer from the second blockchain BC2. The second processing unit 200 sets the transmittable power and the retail price based on the acquired supplier power information, and generates the aggregator power information.
  • the second processing unit 200 sets the power that can be supplied to the consumer (the power for which the power sale contract has not been established) as the power that can be transmitted, up to the power that can be supplied included in the power information of the supplier. Set. In addition, the second processing unit 200 sets the transmittable power so as not to exceed the maximum transmission capacity of the transmission network used by the aggregator. Further, when a predetermined power among the powers that can be supplied by the supplier is assigned to the aggregator, the second processing unit 200 may set the power that can be transmitted within the range of the assigned powers.
  • the second processing unit 200 identifies the power transmission route from the position information of the consumer, adds the power transmission cost according to the distance of the power transmission route, etc. to the wholesale price included in the supplier power information, and adds the retail price. Set.
  • the second processing unit 200 may set the retail price by further adding the power trading margin of the aggregator.
  • the second processing unit 200 may set the retail price in consideration of the planned power transmission amount or the usage rate of the power transmission path.
  • the planned transmission amount or usage rate of the transmission path may be calculated from the electric power for which the sales contract has already been completed, or may be calculated based on the demand forecast.
  • the second processing unit 200 may raise the retail price as the usage rate of the power transmission path approaches the upper limit value (maximum power transmission capacity).
  • the electricity transaction volume can be adjusted by raising the retail price and suppressing further demand.
  • the second processing unit 200 may set the retail price according to the time until the start of power supply to the consumer (the start time of the desired purchase period of the consumer).
  • the second processing unit 200 sets the retail price lower as the time until the start of power supply becomes longer. As a result, it is possible to encourage consumers to purchase electricity at an early stage, and it becomes easy to grasp the future electricity transaction volume from an early stage.
  • the second processing unit 200 may set the retail price for each power transmission path. Good.
  • a plurality of aggregator power information may be generated for each transmission path. For example, when the usage rate in one transmission path is close to the upper limit value, the second processing unit 200 sets the transmission cost of another transmission path having a lower usage rate lower than the transmission cost of the one transmission path. May be good. As a result, the aggregator can guide the consumer to a vacant power transmission path (supplier).
  • the second processing unit 200 determines that the power can be sold to the consumer.
  • the second processing unit 200 determines that it is impossible to sell power to the consumer when the desired power purchase amount exceeds the power that can be transmitted.
  • the second processing unit 200 may determine that it is impossible to sell power to the consumer when the power transmission capacity in the power transmission path to the consumer exceeds a predetermined value. This makes it possible to adjust the amount of electricity traded in the aggregator.
  • the notification unit 201 of the aggregator systems 20a and 20b notifies the consumer of the aggregator power information and the information indicating whether or not the power can be sold through the second blockchain BC2a, BC2b and the third blockchain BC3 (step S104). .. Then, the acquisition unit 300 of the consumer system 30 can acquire the aggregator power information notified from the aggregator systems 20a and 20b and the information indicating whether or not the power can be sold from the third blockchain BC3.
  • the selection unit 301 of the consumer system 30 selects one aggregator that satisfies the conditions preset by the consumer based on the aggregator power information and the information indicating whether or not the power can be sold (step S105).
  • the selection unit 301 is an aggregator capable of transmitting more than the desired power purchase amount preset by the consumer (notifying information indicating that the power can be sold), and the wholesale price is the consumer. Select an aggregator that is lower than the desired electricity purchase price. When a plurality of aggregators satisfy these conditions, the selection unit 301 selects the aggregator having the lowest wholesale price. In the example of FIG. 5, it is assumed that the selection unit 301 selects the aggregator 1.
  • the selection unit 301 may select an aggregator that responds to an inquiry from a consumer as soon as possible and satisfies the conditions set by the consumer.
  • the selection unit 301 of the consumer system 30 instructs the third blockchain BC3 to place an order for power purchase with the selected aggregator 1.
  • the transaction generation unit 310 of the third blockchain BC3 Upon receiving the instruction from the consumer system 30, the transaction generation unit 310 of the third blockchain BC3 generates a transaction including a smart contract related to the power purchase contract with the selected aggregator, and the second of the selected aggregator.
  • An order is placed to the aggregator 1 by transmitting to the blockchain BC2 (in the example of FIG. 5, the second blockchain BC2a) (step S106).
  • the contract processing unit 213 executes the smart contract included in the transaction received from the third blockchain BC3, and determines whether it is possible to receive an order (power sale) from the consumer (power sale). Step S107).
  • the contract processing unit 213 cannot accept the order (step S107: NO)
  • the contract processing unit 213 notifies the third blockchain BC3 of the consumer of the failure (step S108). For example, the contract processing unit 213 determines that the order cannot be received if the usage rate of the transmission path of the aggregator reaches the upper limit value before the order is placed from the consumer.
  • step S107: YES when the contract processing unit 213 can receive an order as desired by the consumer (step S107: YES), the contract processing unit 213 places an order with the supplier through the second blockchain BC2a for the electric power that the consumer wants to purchase (step S107: YES). S109).
  • the contract processing unit 113 determines whether the power can be sold to the consumer, and if the power can be sold (step S110: YES), the contract processing unit 113 executes the contract to the second blockchain BC2a of the aggregator 1. (Step S112), and if power sales are not possible (step S110: NO), the second blockchain BC2a of the aggregator 1 is notified of the failure (step S111). For example, the contract processing unit 113 determines that the electric power cannot be sold when the electric power that can be supplied changes before the order is placed by the consumer and the desired electric power purchase amount of the consumer cannot be supplied.
  • the third blockchain BC3 of the consumer receives a notification of failure (step S113) or a notification of execution (step S114) through the second blockchain BC2a.
  • steps S106 to S111 is predetermined by the smart contract included in the transaction. Therefore, it is automatically processed by the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 without each of the supplier, the aggregator, and the consumer performing processing such as confirmation and approval.
  • step S113 when the consumer receives the result of failure (step S113), he / she may return to step S105 and select an aggregator (for example, an aggregator 2) different from the previously selected aggregator 1 to place an order. ..
  • an aggregator for example, an aggregator 2
  • the electric power trading system 1 uses the interleisure to connect the first blockchain BC1 of the supplier, the second blockchain BC2 of the aggregator, and the third blockchain of the consumer to each of them. It is possible to transfer various data related to registered electric power transactions. As a result, the electric power trading system 1 connects and links the blockchains of each electric power trading participant (supplier, aggregator, consumer) without centralized management by a specific aggregator, and is reliable. Can carry out high power trading.
  • each participant since each participant only needs to have an interface with the existing system for the blockchain, the cost when the participant participates in the electric power trading system 1 can be reduced.
  • each blockchain since each blockchain is under the control of each participant, it is easy to modify it according to the circumstances of each participant.
  • the electric power trading system 1 can automatically make a contract for electric power trading by using a smart contract, it is possible to conclude a contract in a short time. As a result, the electric power trading system 1 can follow the fluctuating supply and demand situation in real time.
  • the aggregator system 20 sets a retail price obtained by adding the transmission cost of the aggregator to the wholesale price. For example, even if the wholesale price of a certain supplier 1 is low, the distance of the transmission path from the supplier 1 to the consumer may be long, and the transmission cost may be high. Then, although the wholesale price is set higher than this supplier 1, it is possible that the total amount will be cheaper if the power is sold from the supplier 2 which is in the vicinity of the consumer and whose transmission cost is lower than that of the supplier 1. is there. In the electric power trading system 1 according to the present embodiment, since the retail price presented to the consumer by the aggregator includes the transmission cost, the consumer can select a cheaper aggregator.
  • the aggregator system 20 may set a retail price in which the power trading margin of the aggregator is further added.
  • Transmission costs and power trading margins can vary from aggregator to aggregator. Further, even if the same aggregator is used, the power transmission cost and the power trading margin may change depending on the excessive demand on the date and time of power transmission. Therefore, the consumer can select an aggregator that offers a cheaper retail price during the period in which he / she desires to purchase electricity.
  • FIG. 6 is a schematic view of the electric power trading system according to the second embodiment of the present disclosure.
  • the second blockchain BC2 of a plurality of aggregators may be connected in series.
  • three aggregators 1 to 3 participate in the electric power trading system 1.
  • the second blockchain BC2a of the aggregator 1 and the second blockchain BC2b of the aggregator 2 are communicably connected via interledgers.
  • FIG. 7 is a diagram for explaining the electric power trading system according to the second embodiment of the present disclosure.
  • the aggregators 1 to 3 have different service ranges R1 to R3.
  • Aggregators 1 to 3 can transmit power to consumers located within the service range by means of transmission lines connecting the substations T1 to T9 and the substations.
  • the consumer can receive power from the supplier via the aggregator 3.
  • the service range R1 of the aggregator 1 does not include the consumer
  • the service range R2 of the aggregator 2 does not include the supplier. Therefore, the consumer cannot receive power from this supplier only through the aggregator 1 or the aggregator 2.
  • the power transmission path (supply) of the aggregator 1 is passed through the substation T5 located in the area where the service range R1 of the aggregator 1 and the service range R2 of the aggregator 2 overlap. It is possible to transmit power across the person-substation T1 to substation T5) and the power transmission path of the aggregator 2 (substation T5 to substation T6 to consumer). That is, in the example of FIG. 7, the consumer can receive power from the supplier via the aggregator 1 and the aggregator 2.
  • FIG. 8 is a flowchart showing an example of processing of the electric power trading system according to the second embodiment of the present disclosure.
  • steps S100 to S114 of FIG. 8 have the same parts as the processing flow (FIG. 5) in the first embodiment, and therefore duplicate description will be omitted.
  • the first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies each of the plurality of aggregators of the supplier power information (step S100).
  • the first processing unit 100 may notify the supplier power information only to the aggregators capable of transmitting power by the supplier, that is, only the aggregators 1 and 3 including the supplier in the service range. .. Then, the supplier power information is registered in the second blockchains BC2a and BC2c (step S101).
  • the second processing unit 200 of the aggregator system 20 can transmit power outside its own service range via another aggregator, the acquired supplier power information is further transmitted to the other aggregator (step S201). ..
  • the aggregator 1 can transmit power to the service range R2 of the aggregator 2 via the substation T5. Therefore, the second processing unit 200 of the aggregator 1 (aggregator system 20a) transmits the acquired supplier power information to the aggregator 2. Then, the supplier power information transmitted from the aggregator 1 is registered in the second blockchain BC2b of the aggregator 2 (step S202).
  • the acquisition unit 300 of the consumer system 30 makes inquiries to each of the plurality of aggregators regarding the electric power that the consumer wants to purchase (step S102). At this time, the acquisition unit 300 may make an inquiry only to the aggregator capable of transmitting power to the consumer, that is, the aggregators 2 and 3 including the consumer in the service range.
  • the second processing unit 200 of the aggregator system 20 When the second processing unit 200 of the aggregator system 20 receives an inquiry from a consumer, it generates aggregator power information including the retail price for the consumer (step S103), and the consumer together with information indicating whether or not the power can be sold. (Step S104).
  • the second processing unit 200 requests the other aggregator to provide the aggregator power information when the power can be transmitted outside the service range of the other aggregator via the other aggregator (step S203).
  • the second processing unit 200 of the aggregator 2 requests the aggregator 1 to provide the aggregator power information.
  • the second processing unit 200 of the aggregator 1 sets the retail price including the power transmission cost of the aggregator 1 (in the example of FIG. 7, the power transmission cost from the supplier to the substation T5), and sets the aggregator. Power information is generated and notified to the aggregator 2 (step S204).
  • the second processing unit 200 of the aggregator 2 adds the transmission cost of the aggregator 2 (in the example of FIG. 7, the substation) to the retail price (first retail price) of the aggregator power information acquired from the aggregator 1.
  • the retail price (second retail price) of the aggregator 2 is set by further adding (transmission cost from T or 5 to the consumer).
  • the aggregator 2 generates aggregator power information including the calculated second retail price (step S205), and notifies the consumer together with the information indicating whether or not the power can be sold (step S104).
  • steps S105 to S114 are the same as that of the first embodiment.
  • the selected aggregator 2 when an order is placed from the aggregator 2 selected by the consumer, the selected aggregator 2 first determines whether or not the order can be received (step S107). When the aggregator 2 cannot receive an order (step S107: NO), the consumer is notified of the failure (step S111), and when the order can be received (step S107: YES), the aggregator 2 further sends the aggregator 1 to the aggregator 1. The transaction related to the order is sent. The aggregator 1 determines whether or not to accept an order in the same manner as when receiving an order (step S107').
  • step S107': YES When the aggregator 1 can receive an order (step S107': YES), the aggregator 1 places an order with the supplier (step S109'). On the other hand, when the aggregator 1 cannot receive an order (step S107': NO), the aggregator 2 is notified of the failure (step S111'). The notification of failure is also notified from the aggregator 2 to the consumer (step S111). Further, if the supplier determines that the order cannot be received (step S110: NO), the aggregator 1 is notified of the failure (step S111'), and if it is determined that the order can be received (step S110: YES), The aggregator 1 is notified of the execution (step S112').
  • the notification of the contract or failure is also notified from the aggregator 1 to the aggregator 2 (steps S111 and S112). Therefore, if any of the supplier, the aggregator 1, and the aggregator 2 can receive an order, the consumer receives a notification of the contract (step S114), and one of these three cannot receive an order. If, the notification of failure is received (step S113). When the consumer receives the result of failure, he / she may return to step S105 and select another aggregator (for example, aggregator 3) to place an order, as in the first embodiment.
  • another aggregator for example, aggregator 3
  • the consumer can carry out electric power trading only with an aggregator (aggregator 3 in the example of FIG. 7) that includes both the supplier and the consumer in the service range.
  • the electric power trading system 1 since the electric power trading system 1 according to the present embodiment can connect a plurality of aggregators to transmit power, it is possible to increase the number of aggregators that can be selected by the consumer. Further, in the example of FIG. 7, since the aggregator 3 has a service range R3 wider than that of the aggregators 1 and 2, the power transmission cost may increase due to the management cost of the power grid and the like.
  • the retail price of the aggregator 2 (retail price including the transmission cost of the aggregators 1 and 2) may be lower than the retail price of the aggregator 3 (retail price including the transmission cost of the aggregator 3). Even in such a case, the consumer can select a cheaper aggregator by referring to the retail prices of the aggregators 2 and 3 respectively.
  • FIG. 9 is a flowchart showing an example of processing of the electric power trading system according to the third embodiment of the present disclosure.
  • the consumer system 30 places an order for electric power purchase from a plurality of aggregators.
  • the processing flow of the electric power trading system 1 according to the present embodiment will be described with reference to FIG.
  • the selection unit 301 executes steps S301 and S302 instead of steps S105 to S106 in FIG.
  • the selection unit 301 refers to the aggregator power information acquired from the plurality of aggregators, and selects a plurality of aggregators when there is no aggregator that satisfies the desired power purchase amount preset by the consumer (step S301). For example, when the desired power purchase amount is satisfied by summing up the transmittable powers of both aggregators 1 and 2, the selection unit 301 selects these two aggregators 1 and 2 (step S301).
  • the selection unit 301 instructs the third blockchain BC3 to place an order for power purchase to the selected aggregators 1 and 2.
  • the selection unit 301 also specifies the purchase amount from each aggregator.
  • the selection unit 301 instructs the aggregator 1 to purchase one-third of the desired power purchase amount and the aggregator 2 to purchase two-thirds of the desired power purchase amount.
  • the transaction generation unit 310 of the third blockchain BC3 Upon receiving the instruction from the consumer system 30, the transaction generation unit 310 of the third blockchain BC3 generates and selects a transaction including a smart contract related to the power purchase contract with the selected aggregators 1 and 2, respectively.
  • An order is placed to the aggregator 1 by transmitting the power to the second blockchains BC2a and BC2b of the aggregator 1 and 2 (step S302).
  • steps S107 to S114 are the same as that of the first embodiment.
  • both the aggregator 1 and the aggregator 2 which are the ordering parties of the consumer, determine whether or not to accept the order (step S107).
  • the order is placed with the supplier. It is performed (step S109).
  • the supplier determines whether or not an order can be received for each of the aggregator 1 and aggregator 2 orders (step S110).
  • Each of the aggregator 1 and the aggregator 2 is notified of the failure (step S111) when the supplier is unable to receive an order (step S110: NO), and is notified of the contract when the supplier is able to receive an order (step S110: YES). To.
  • the notification of the failure or execution is also notified to the consumer (steps S113 and S114).
  • the consumer receives the notification of failure from one or more aggregators (step S113)
  • the consumer returns to step S301 and reselects another aggregator to replace the failed aggregator to place an order. You may.
  • the consumer may select only one alternative aggregator or may select a plurality of alternative aggregators.
  • the selection unit 301 of the consumer system 30 can select a plurality of aggregators and place an order for electric power purchase. As a result, even if the electric power that can be transmitted by each aggregator is insufficient, the consumer can secure the desired amount of electric power purchase.
  • FIG. 10 is a schematic view of the electric power trading system according to the fourth embodiment of the present disclosure.
  • the supplier and the consumer perform electric power trading via an aggregator.
  • Consumers are businesses, ordinary households, etc.
  • the suppliers are power generation companies, power transmission and distribution companies, and the like.
  • An aggregator is a business operator that adjusts the supply-demand balance between the electric power required by a consumer and the electric power supplied by the supplier.
  • the electric power trading system 1 includes a supplier system 10, an aggregator system 20, a consumer system 30, a first blockchain BC1, a second blockchain BC2, and a third blockchain BC3. ..
  • the supplier system 10 is a system that performs various processes on the supplier side related to electric power transactions. Further, the supplier system 10 is connected to the first blockchain BC1. In the first blockchain BC1, information related to the electric power transaction of the supplier is registered. For example, as shown in FIG. 10, each of the plurality of suppliers may have a supplier system 10a to 10c and a first blockchain BC1a to BC1c.
  • the aggregator system 20 is a system that performs various processes on the aggregator side related to electric power trading. Further, the aggregator system 20 is connected to the second blockchain BC2. A plurality of second blockchain BC2s are provided corresponding to each category of electric power supplied by the supplier, and information related to electric power transactions for each category of the aggregator is registered.
  • the electric power category includes the power generation method, supply area, power generation scale, and the like.
  • the aggregator when an aggregator mediates the transaction of electric power generated by solar power generation, wind power generation, and thermal power generation, the aggregator has a second blockchain BC2a corresponding to each of these power generation methods (categories). , BC2b, BC2d.
  • Each of the second blockchains BC2a to BC2c can be connected to the first blockchain BC1a to BC1c of the supplier that supplies the power of the corresponding category.
  • the aggregator may have a second blockchain BC2d corresponding to all categories for consumers who want to purchase electricity regardless of the category.
  • the second blockchain BC2d can be connected to all the first blockchains BC1a to BC1c of the supplier.
  • the aggregator may have a second blockchain BC2 corresponding to a plurality of categories satisfying a predetermined condition.
  • the aggregator may have a second blockchain BC2e corresponding to photovoltaic power generation and wind power generation capable of supplying electric power derived from natural energy.
  • the second blockchain BC2e can be connected to the supplier's first blockchains BC1a and BC1b.
  • each of the plurality of aggregators has the aggregator systems 20a to 20d and the second blockchain BC2a to BC2d will be described, but the present invention is not limited to this.
  • one aggregator may have one aggregator system 20 and a plurality of second blockchain BC2s. Further, there may be a plurality of second blockchain BC2s corresponding to the same category.
  • the consumer system 30 is a system that performs various processes on the consumer side related to electric power transactions. Further, the consumer system 30 is connected to the third blockchain BC3.
  • the third blockchain BC3 can be connected to the second blockchain BC2 corresponding to the category preset by the consumer among the plurality of second blockchain BC2, and the information related to the electric power transaction of the consumer is registered.
  • FIG. 10 shows an example in which only one consumer exists for the sake of simplification of the explanation, but the present invention is not limited to this. In other embodiments, there may be multiple consumers. In this case, each consumer has a consumer system 30 and a third blockchain BC3, respectively.
  • the format of the data (information) registered in each of the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 is set independently by each of the supplier, aggregator, and consumer who manages these blockchains. Will be done. In addition, this format may be changed according to the individual circumstances of the supplier, the aggregator, and the consumer.
  • first blockchain BC1 and the second blockchain BC2 are connected so as to be able to communicate using interleisure.
  • Interledger is a mechanism for exchanging values and conducting transactions between ledgers (data) with different standards.
  • each blockchain according to the present embodiment has nodes that serve as connectors to other blockchains, and necessary data is exchanged between these nodes.
  • FIG. 11 is a diagram showing a functional configuration of a supplier system and a first blockchain according to a fourth embodiment of the present disclosure.
  • the supplier system 10 includes a first processing unit 100 and a notification unit 101.
  • each of the plurality of first nodes 11 constituting the first blockchain BC1 includes a transaction generation unit 110, a block generation unit 111, a data registration unit 112, a contract processing unit 113, and a storage medium 114. There is.
  • the first processing unit 100 of the supplier system 10 generates the supplier electric power information regarding the electric power that can be supplied by the supplier and registers it in the first blockchain BC1.
  • the supplier power information includes, for example, the power that can be supplied indicating the power that can be supplied in a certain period, the selling price per unit power in the period (hereinafter referred to as "wholesale price"), the start time of the period, and the start time of the period. Information such as end time (supplyable time) and power category is included.
  • the electric power category is information indicating the power generation method, supply area, power generation scale, and the like. Further, the supplier power information may include supplier identification information (supplier name, etc.).
  • the notification unit 101 of the supplier system 10 transmits the supplier power information generated by the first processing unit 100 to the second blockchain BC2 corresponding to the category. Specifically, the notification unit 101 designates the second blockchain BC2 corresponding to the category included in the supplier power information as the connection destination, and the supplier to the second blockchain BC2 designated via the interledger. Instruct the first blockchain BC1 to transmit the power information.
  • the transaction generation unit 110 of the first node 11 generates a transaction related to the electric power transaction in the first blockchain BC1.
  • the transaction generation unit 110 registers the generated transaction in the transaction pool of the first blockchain BC1 by transmitting the generated transaction to another first node 11.
  • This transaction also includes supplier power information generated by the supplier system 10.
  • the transaction generation unit 110 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
  • the transaction generation unit 110 when the transaction generation unit 110 is instructed by the supplier system 10 to notify the supplier power information, the transaction generation unit 110 transmits a transaction including the supplier power information to the second blockchain BC2 designated via the interledger. .. As a result, the transaction including the supplier power information is registered in the transaction pool of the second blockchain BC2.
  • the block generation unit 111 of the first node 11 generates block data including a predetermined number of transactions registered in the transaction pool. For example, in each first node 11, the block generation unit 111 calculates the nonce value to be included in the block data so that the block data including the plurality of transactions has a predetermined hash value. In this case, the first node 11 that has completed the calculation earliest generates the block data (Proof of Work). In another embodiment, the block generation unit 111 may generate block data by using the Proof of Stake method or the like.
  • the data registration unit 112 of the first node 11 registers the block data in the first blockchain BC1 by transmitting the block data generated by the block generation unit 111 to the other first node 11. Further, the data registration unit 112 verifies the block data received from the other first node 11 and stores it in the storage medium 114. At this time, the data registration unit 112 verifies the block by, for example, calculating the hash value of the block data received from the other first node 11 and determining whether or not the hash value satisfies a predetermined condition. To do.
  • the contract processing unit 113 of the first node 11 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 110.
  • the data acquired and generated by each unit is stored in the storage medium 114 of the first node 11 as information related to the power transaction of the supplier.
  • the storage medium 114 stores transactions generated by the transaction generation unit 110, block data generated by the block generation unit 111, and the like.
  • FIG. 12 is a diagram showing a functional configuration of an aggregator system and a second blockchain according to a fourth embodiment of the present disclosure.
  • the aggregator system 20 includes a second processing unit 200 and a notification unit 201.
  • each of the plurality of second nodes 21 constituting the second blockchain BC2 includes a transaction generation unit 210, a block generation unit 211, a data registration unit 212, a contract processing unit 213, and a storage medium 214. There is.
  • the second processing unit 200 of the aggregator system 20 generates aggregator power information regarding the power that can be transmitted via the aggregator based on the supplier power information acquired from the first blockchain BC1, and registers the aggregator power information in the second blockchain BC2.
  • the aggregator power information includes, for example, the power that can be transmitted by the aggregator in a certain period, the selling price per unit power (hereinafter referred to as "retail price"), the start time and the end time (transmitable time) of the period, and so on. Contains information such as power categories. Further, the aggregator power information may include aggregator identification information (aggregator name, etc.).
  • the first blockchain BC1 transmits the supplier electric power information only to the second blockchain corresponding to the category included in the supplier electric power information.
  • the first blockchain BC1a of the supplier performing the photovoltaic power generation transmits the supplier power information only to the second blockchain BC2a corresponding to the photovoltaic power generation.
  • the first blockchain BC1a may also transmit the supplier power information to the second blockchain BC2d. By doing so, only the supplier power information and the aggregator power information of a specific category are registered in each of the plurality of second blockchain BC2s.
  • the second processing unit 200 when the second processing unit 200 receives an inquiry from a consumer about the period when he / she wants to purchase, the desired amount of electric charge purchased during the period, etc., the second processing unit 200 generates information indicating whether or not the electric charge can be sold to the consumer, and the second blockchain. Register with BC2.
  • the notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information generated by the second processing unit 200 and the information indicating whether or not the power can be sold. Specifically, the notification unit 201 transmits the aggregator power information registered in the second blockchain BC2 and the information indicating whether or not the power can be sold to the third blockchain BC3 of the consumer via the interledger. Instruct the second blockchain BC2.
  • the transaction generation unit 210 of the second node 21 generates a transaction related to the electric power transaction in the second blockchain BC2.
  • the transaction generation unit 210 registers the generated transaction in the transaction pool of the second blockchain BC2 by transmitting the generated transaction to another second node 21.
  • This transaction also includes aggregator power information generated by the aggregator system 20.
  • the transaction generation unit 210 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
  • the transaction generation unit 210 transmits the transaction including the information to the third blockchain BC3 via the interledger. Send.
  • the transaction including the aggregator power information is registered in the transaction pool of the third blockchain BC3.
  • the block generation unit 211 of the second node 21 generates block data including a predetermined number of transactions registered in the transaction pool.
  • the processing of the block generation unit 211 is the same as the processing of the block generation unit 111 of the first node 11 described above.
  • the data registration unit 212 of the second node 21 registers the block data in the second blockchain BC2 by transmitting the block data generated by the block generation unit 211 to another second node 21. Further, the data registration unit 212 verifies the block data received from the other second node 21 and stores it in the storage medium 214.
  • the processing of the data registration unit 212 is the same as the processing in the data registration unit 112 of the first node 11 described above.
  • the contract processing unit 213 of the second node 21 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 210.
  • the data acquired and generated by each part is stored in the storage medium 214 of the second node 21 as information related to the power transaction of the aggregator.
  • the storage medium 214 stores transactions generated by the transaction generation unit 210, block data generated by the block generation unit 211, and the like.
  • FIG. 13 is a diagram showing a functional configuration of the consumer system and the third blockchain according to the fourth embodiment of the present disclosure.
  • the consumer system 30 includes an acquisition unit 300 and a selection unit 301.
  • each of the plurality of third nodes 31 constituting the third blockchain BC3 includes a transaction generation unit 310, a block generation unit 311, a data registration unit 312, a contract processing unit 313, and a storage medium 314. There is.
  • the acquisition unit 300 of the consumer system 30 acquires the aggregator power information from the second blockchain BC2 corresponding to the category preset by the consumer. For example, suppose a consumer has set up to purchase only the electricity generated by solar power generation. In this case, the acquisition unit 300 makes an inquiry to the second blockchain BC2a corresponding to the photovoltaic power generation regarding the electric power required by the consumer. This inquiry includes, for example, information such as the category of electric power desired by the consumer, the desired purchase period (start time and end time), the desired purchase amount in the desired purchase period, and the location information of the consumer (transmission destination). Is done. When the consumer has set a plurality of categories, the acquisition unit 300 acquires the aggregator power information from each of the second blockchain BC2 corresponding to each category.
  • the acquisition unit 300 acquires the information indicating whether or not the power can be sold and the aggregator power information, which are the responses from the second blockchain BC2, through the third blockchain BC3.
  • the selection unit 301 of the consumer system 30 selects which category of power to purchase based on the aggregator power information corresponding to each category. For example, the selection unit 301 sets the first condition (at least one of the desired power purchase amount, the desired power purchase price, the response time until the power supply starts, and the priority of the category) set in advance by the consumer. Select one category to meet.
  • the first condition at least one of the desired power purchase amount, the desired power purchase price, the response time until the power supply starts, and the priority of the category
  • the selection unit 301 instructs the third blockchain BC3 to place an order for power purchase from the aggregator that provides the power of the selected category.
  • the transaction generation unit 310 of the third node 31 generates a transaction related to the electric power transaction in the second blockchain BC2.
  • the transaction generation unit 310 registers the generated transaction in the transaction pool of the third blockchain BC3 by transmitting the generated transaction to another third node 31.
  • the transaction generation unit 310 receives an instruction to order an electric power purchase from the consumer system 30, it generates a transaction including a smart contract related to the purchase contract.
  • the block generation unit 311 of the third node 31 generates block data including a predetermined number of transactions registered in the transaction pool.
  • the processing of the block generation unit 311 is the same as the processing of the block generation unit 111 of the first node 11 described above.
  • the data registration unit 312 of the third node 31 registers the block data in the third blockchain BC3 by transmitting the block data generated by the block generation unit 311 to another third node 31. Further, the data registration unit 312 verifies the block data received from the other third node 31 and stores it in the storage medium 314.
  • the processing of the data registration unit 312 is the same as the processing in the data registration unit 112 of the first node 11 described above.
  • the contract processing unit 313 of the third node 31 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 310.
  • the data acquired and generated by each unit is stored as information related to the electric power transaction of the consumer.
  • the storage medium 314 stores transactions generated by the transaction generation unit 310, block data generated by the block generation unit 311 and the like.
  • FIG. 14 is a flowchart showing an example of processing of the electric power trading system according to the fourth embodiment of the present disclosure.
  • the processing flow in the electric power trading system 1 according to the present embodiment will be described with reference to FIG.
  • the first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies the aggregator of the supplier power information through the first blockchain BC1 and the second blockchain BC2 (step S1000). At this time, the first processing unit 100 transmits the supplier electric power information to the second blockchain BC2 corresponding to the category included in the supplier electric power information. In the example of FIG. 10, in the supplier system 10 of the supplier that supplies the electric power by the photovoltaic power generation, the first processing unit 100 supplies the supplier electric power information to the second blockchains BC2a and BC2d corresponding to the category of the photovoltaic power generation. To send.
  • the first processing unit 100 transmits the supplier electric power information regarding wind power generation to the second blockchains BC2b and BC2d, and transmits the supplier electric power information regarding thermal power generation to the second blockchains BC2c and BC2d. Then, the supplier power information related to the corresponding category is registered in the second blockchain BC2a to BC2d of the aggregator (step S1010).
  • the acquisition unit 300 of the consumer system 30 makes an inquiry regarding the purchase of electric power to the aggregator that provides the electric power of the category preset by the consumer (step S1020). This inquiry is transmitted to the aggregator system 20 through the first blockchain BC1 and the second blockchain BC2 corresponding to the set category. For example, when the consumer wants to purchase electric power by solar power generation, the acquisition unit 300 transmits an inquiry to the second blockchain BC2a corresponding to the solar power generation.
  • the consumer may set a plurality of categories. For example, a consumer may set up two categories, solar power and wind power, if he wishes to purchase any of the electricity derived from renewable energy.
  • the acquisition unit 300 transmits an inquiry to the second blockchain BC2a corresponding to the solar power generation, and also inquires to the second blockchain BC2b corresponding to the wind power generation category as shown by the broken line in FIG. To send.
  • the consumer may set all categories if the electric power may be in any category.
  • the acquisition unit 300 may send an inquiry to each of the second blockchains BC2a to BC2c corresponding to each category, or may send an inquiry only to the second blockchain BC2d corresponding to all the categories. Good.
  • the second processing unit 200 of the aggregator system 20 When the second processing unit 200 of the aggregator system 20 receives an inquiry from a consumer, it generates aggregator power information and determines whether or not to sell the power to the consumer (step S1030). For example, when a consumer wants to purchase electric power generated by photovoltaic power generation, the second processing unit 200 can transmit electric power and retail price based on the supplier electric power information registered in the second blockchain BC2a. To generate aggregator power information.
  • the second processing unit 200 is capable of selling power to the consumer (power for which a power selling contract has not been concluded), up to the power that can be supplied included in the supplier power information. To set. In addition, the second processing unit 200 sets the transmittable power so as not to exceed the maximum transmission capacity of the transmission network used by the aggregator. Further, when a predetermined power among the powers that can be supplied by the supplier is assigned to the aggregator, the second processing unit 200 may set the power that can be transmitted within the range of the assigned powers.
  • the second processing unit 200 identifies the power transmission route from the position information of the consumer, adds the power transmission cost according to the distance of the power transmission route, etc. to the wholesale price included in the supplier power information, and adds the retail price. Set.
  • the second processing unit 200 may set the retail price by further adding the power trading margin of the aggregator.
  • the second processing unit 200 may set the retail price in consideration of the planned power transmission amount or the usage rate of the power transmission path.
  • the planned transmission amount or usage rate of the transmission path may be calculated from the electric power for which the sales contract has already been completed, or may be calculated based on the demand forecast.
  • the second processing unit 200 may raise the retail price as the usage rate of the power transmission path approaches the upper limit value (maximum power transmission capacity).
  • the electricity transaction volume can be adjusted by raising the retail price and suppressing further demand.
  • the second processing unit 200 may set the retail price according to the time until the start of power supply to the consumer (the start time of the desired purchase period of the consumer).
  • the second processing unit 200 sets the retail price lower as the time until the start of power supply becomes longer. As a result, it is possible to encourage consumers to purchase electricity at an early stage, and it becomes easy to grasp the future electricity transaction volume from an early stage.
  • the second processing unit 200 may set the retail price for each power transmission path. Good.
  • a plurality of aggregator power information may be generated for each transmission path. For example, when the usage rate in one transmission path is close to the upper limit value, the second processing unit 200 sets the transmission cost of another transmission path having a lower usage rate lower than the transmission cost of the one transmission path. May be good. As a result, the aggregator can guide the consumer to a vacant power transmission path (supplier).
  • the second processing unit 200 determines that the power can be sold to the consumer.
  • the second processing unit 200 determines that it is impossible to sell power to the consumer when the desired power purchase amount exceeds the power that can be transmitted.
  • the second processing unit 200 may determine that it is impossible to sell power to the consumer when the power transmission capacity in the power transmission path to the consumer exceeds a predetermined value. This makes it possible to adjust the amount of electricity traded in the aggregator.
  • the notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information and the information indicating whether or not the power can be received through the second blockchain BC2 and the third blockchain BC3 (step S1040). Then, the acquisition unit 300 of the consumer system 30 can acquire the aggregator power information notified from the aggregator system 20 and the information indicating whether or not the power can be sold through the third blockchain BC3.
  • the selection unit 301 of the consumer system 30 determines the power satisfying the first condition set by the consumer based on the aggregator power information and the information indicating whether or not the power can be sold. Select one category (step S1050).
  • the selection unit 301 selects a category based on the desired power purchase amount and the desired power purchase price preset by the consumer.
  • the selection unit 301 can transmit power in excess of the desired power purchase amount preset by the consumer among the plurality of categories (information indicating that power can be sold has been notified), and the retail price is demand. Select a category that is lower than the person's desired power purchase price. When a plurality of aggregators satisfy these first conditions, the selection unit 301 selects the category having the lowest retail price.
  • the selection unit 301 may select a category based on the response time until the power supply is started. In this case, the selection unit 301 selects the category having the earliest supply start time (response time) among the categories in which power can be sold. As a result, for example, when a consumer needs electric power urgently, the electric power can be purchased from the supplier who can supply the electric power earliest.
  • the selection unit 301 may select a category based on the priority of the category. In this case, the selection unit 301 selects the category having the highest priority among the categories in which power can be sold.
  • each condition (desired power purchase amount, desired power purchase price, response time, category priority) included in the above-mentioned first condition can be arbitrarily set by the consumer.
  • the consumer may be able to specify the priority of these plurality of conditions.
  • the selection unit 301 can select an appropriate category according to the wishes of the consumer.
  • the selection unit 301 of the consumer system 30 instructs the third blockchain BC3 to place an order for power purchase to the second blockchain BC2 corresponding to the selected category.
  • the transaction generation unit 310 of the third blockchain BC3 generates a transaction including a smart contract related to the power purchase contract of the selected category, and the second block of the selected aggregator.
  • the chain BC2 in the example of FIG. 14, the second blockchain BC2a
  • an order is placed with the aggregator (step S1060).
  • the contract processing unit 213 executes the smart contract included in the transaction received from the third blockchain BC3, and determines whether it is possible to receive an order (power sale) from the consumer (step). S1070).
  • the contract processing unit 213 cannot accept the order (step S1070: NO)
  • the contract processing unit 213 notifies the third blockchain BC3 of the consumer of the failure (step S1080). For example, the contract processing unit 213 determines that the order cannot be received if the usage rate of the transmission path of the aggregator reaches a predetermined upper limit value before the order is placed from the consumer.
  • step S1070 when the contract processing unit 213 can receive an order as desired by the consumer (step S1070: YES), the contract processing unit 213 places an order with the supplier through the second blockchain BC2a for the electric power that the consumer wants to purchase (step S1070: YES). S1090).
  • the contract processing unit 113 determines whether it is possible to sell power to the consumer, and if it is possible to sell power (step S1100: YES), makes a contract to the second blockchain BC2a of the aggregator. A notification is given (step S1120), and if power sales are not possible (step S1100: NO), a notification of failure is given to the second blockchain BC2a of the aggregator (step S1110). For example, the contract processing unit 113 determines that the electric power cannot be sold when the electric power that can be supplied changes before the order is placed by the consumer and the desired electric power purchase amount of the consumer cannot be supplied.
  • the third blockchain BC3 of the consumer receives a notification of failure (step S1130) or a notification of execution (step S1140) through the second blockchain BC2a.
  • steps S1060 to S1110 is predetermined by the smart contract included in the transaction. Therefore, it is automatically processed by the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 without each of the supplier, the aggregator, and the consumer performing processing such as confirmation and approval.
  • step S1130 when the consumer receives the result of failure (step S1130), the consumer may return to step S1050 and select another category to place an order.
  • the electric power trading system 1 includes a plurality of second blockchain BC2s corresponding to each of the electric power categories.
  • the electric power trading system 1 can divide the electric power market for each electric power category and selectively buy and sell only the electric power of the category desired by the consumer.
  • each of the supplier, aggregator, and consumer who is a participant of the electric power trading system 1 should track how much electric power of which category each participant bought and sold based on the information registered in each blockchain. Can be done.
  • each participant since each participant only needs to have an interface with the existing system for the blockchain, the cost when the participant participates in the electric power trading system 1 can be reduced.
  • each blockchain since each blockchain is under the control of each participant, it is easy to modify it according to the circumstances of each participant.
  • the selection unit 301 of the third blockchain BC3 is from an aggregator and a supplier that satisfy the first condition set by the consumer based on the aggregator electric power information acquired from the second blockchain BC2. Generate a transaction containing a smart contract to buy electricity.
  • the third blockchain BC3 can quickly proceed with the electric power transaction procedure without receiving an instruction to purchase electric power from the consumer.
  • the smart contract can automate the procedure of electric power transaction in the first blockchain BC1 and the second blockchain BC2, it is possible to realize the contract conclusion in a short time. As a result, the electric power trading system 1 can follow the fluctuating supply and demand situation in real time.
  • the first condition set by the consumer includes at least one of the desired power purchase amount, the desired power purchase price, the response time until the power supply starts, and the priority of the category.
  • the consumer may be able to specify the priority of each condition included in these first conditions.
  • the selection unit 301 of the third blockchain BC3 can select an appropriate category according to the wishes of the consumer.
  • FIG. 15 is a schematic view of the electric power trading system according to the fifth embodiment of the present disclosure.
  • the electric power trading system 1 according to the present embodiment further includes a storage battery system 40 owned by the storage battery owner and a fourth blockchain BC4.
  • the storage battery owner is a business operator that adjusts the supply and demand of electric power by controlling the charging (purchasing) and discharging (selling) of the storage battery. That is, the storage battery owner participates in the electric power transaction as a supplier or a consumer depending on the supply and demand situation of the electric power market.
  • the storage battery may be a storage battery of an electric vehicle.
  • the storage battery system 40 is a system that performs various processes related to discharging from the storage battery (selling power) and charging the storage battery (purchasing power). Further, the storage battery system 40 is connected to the fourth blockchain BC4.
  • the fourth blockchain BC4 can be connected to the second blockchain BC2 corresponding to the category preset by the storage battery owner. In the fourth blockchain BC4, information related to the owner's electric power transaction is registered.
  • FIG. 15 shows an example in which only one storage battery owner exists for the sake of simplification of the description, but the present invention is not limited to this. In other embodiments, there may be multiple battery owners. In this case, each storage battery owner has a storage battery system 40 and a fourth blockchain BC4, respectively.
  • FIG. 16 is a diagram showing a functional configuration of a storage battery system and a fourth blockchain according to a fifth embodiment of the present disclosure.
  • the storage battery system 40 includes a third processing unit 400, a notification unit 401, an acquisition unit 402, and a selection unit 403.
  • each of the plurality of fourth nodes 41 constituting the fourth blockchain BC34 includes a transaction generation unit 410, a block generation unit 411, a data registration unit 412, a contract processing unit 413, and a storage medium 414. There is.
  • the third processing unit 400 of the storage battery system 40 generates storage battery power information regarding the power that can be supplied from the storage battery, and registers it in the fourth blockchain BC4.
  • the storage battery power information includes, for example, the power that can be supplied from the storage battery in a certain period, the selling price per unit power in the period (hereinafter referred to as "wholesale price"), and the start time of the period. And information such as end time (supplyable time), power category, etc. is included.
  • the electric power category is information indicating the power generation method, supply area, power generation scale, etc. of the electric power charged in the storage battery. Further, the storage battery power information may include identification information (owner name, etc.) of the storage battery owner.
  • the notification unit 101 of the storage battery system 40 transmits the storage battery power information generated by the third processing unit 400 to the second blockchain BC2 corresponding to the category.
  • the notification unit 401 designates the second blockchain BC2 corresponding to the category included in the storage battery power information as the connection destination, and the storage battery power information is supplied to the second blockchain BC2 designated via the interledger. Is instructed to the fourth blockchain BC4 to transmit.
  • the acquisition unit 402 of the storage battery system 40 acquires the aggregator power information from the second blockchain BC2 corresponding to the category preset by the storage battery owner. For example, suppose that the storage battery owner has set the storage battery to be charged only with the electric power generated by solar power generation. In this case, the acquisition unit 402 makes an inquiry to the second blockchain BC2a corresponding to the photovoltaic power generation regarding the electric power required by the storage battery owner. This inquiry includes, for example, information such as the category of electric power desired by the storage battery owner, the desired purchase period (start time and end time), the desired purchase amount during the desired purchase period, and the location information of the storage battery (transmission destination). Is done. When the storage battery owner has set a plurality of categories, the acquisition unit 402 acquires the aggregator power information from each of the second blockchain BC2 corresponding to each category.
  • the acquisition unit 402 acquires the information indicating whether or not the power can be sold and the aggregator power information, which are the responses from the second blockchain BC2, through the fourth blockchain BC4.
  • the selection unit 403 of the storage battery system 40 selects which category of power to purchase based on the aggregator power information corresponding to each category. For example, the selection unit 403 selects one category that satisfies the second condition (desired power purchase amount, desired power purchase price, and category priority) preset by the storage battery owner.
  • the selection unit 403 instructs the fourth blockchain BC4 to place an order for power purchase from the aggregator that provides the power of the selected category.
  • the transaction generation unit 410 of the fourth node 41 generates a transaction related to the electric power transaction in the fourth blockchain BC4.
  • the transaction generation unit 410 registers the generated transaction in the transaction pool of the fourth blockchain BC4 by transmitting the generated transaction to another fourth node 41.
  • This transaction also includes storage battery power information generated by the storage battery system 40. Further, in the present embodiment, when the transaction generation unit 410 receives an instruction to order the electric power purchase from the storage battery system 40, the transaction generation unit 410 generates a transaction including a smart contract related to the purchase contract.
  • the block generation unit 411 of the fourth node 41 generates block data including a predetermined number of transactions registered in the transaction pool.
  • the processing of the block generation unit 411 is the same as the processing of the block generation unit 111 of the first node 11 described above.
  • the data registration unit 412 of the fourth node 41 registers the block data in the fourth block chain BC4 by transmitting the block data generated by the block generation unit 411 to another fourth node 41. Further, the data registration unit 412 verifies the block data received from the other fourth node 41 and stores it in the storage medium 414.
  • the process of the data registration unit 412 is the same as the process of the data registration unit 112 of the first node 11 described above.
  • the contract processing unit 413 of the fourth node 41 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 410.
  • the storage medium 414 of the fourth node 41 stores the data acquired and generated by each unit.
  • the storage medium 414 stores transactions generated by the transaction generation unit 410, block data generated by the block generation unit 411, and the like.
  • FIG. 17 is a first flowchart showing an example of processing of the electric power trading system according to the fifth embodiment of the present disclosure.
  • the flow of processing when the storage battery owner purchases electric power for charging the storage battery from the supplier will be described with reference to FIG.
  • the first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies the aggregator of the supplier power information through the first blockchain BC1 and the second blockchain BC2 (step S2000). Then, the supplier power information related to the corresponding category is registered in the second blockchain BC2 of the aggregator (step S2010).
  • the acquisition unit 402 of the storage battery system 40 makes an inquiry regarding power purchase to the aggregator that provides the power of the category preset by the storage battery owner (step S2020).
  • This inquiry is transmitted to the aggregator system 20 through the fourth blockchain BC4 and the second blockchain BC2 corresponding to the set category (for example, the second blockchain BC2a corresponding to photovoltaic power generation).
  • the storage battery owner may set a plurality of categories. The process in this case is the same as in step S1020 (FIG. 14) of the fourth embodiment.
  • the second processing unit 200 of the aggregator system 20 When the second processing unit 200 of the aggregator system 20 receives an inquiry from the storage battery owner, it generates aggregator power information and determines whether or not to sell the power to the storage battery owner (step S2030). Further, the notification unit 201 of the aggregator system 20 notifies the storage battery owner of the aggregator power information and the information indicating whether or not the power can be received through the second blockchain BC2 and the fourth blockchain BC4 (step S2040). The processing of these steps S2030 to S2040 is the same as that of steps S1030 to S1040 (FIG. 14) of the fourth embodiment.
  • the selection unit 403 of the storage battery system 40 satisfies the second condition set by the storage battery owner based on the aggregator power information and the information indicating whether or not the power can be sold. Select one of the categories (step S2050). The process is the same as in step S1050 (FIG. 14) of the fourth embodiment.
  • the selection unit 403 of the storage battery system 40 instructs the fourth blockchain BC4 to place an order for power purchase to the second blockchain BC2 corresponding to the selected category.
  • the transaction generation unit 410 of the fourth blockchain BC4 generates a transaction including a smart contract related to the power purchase contract of the selected category, and the second blockchain of the selected aggregator.
  • BC2 in the example of FIG. 17, the second blockchain BC2a
  • an order is placed with the aggregator (step S2060).
  • steps S2070 to S2120 in the supplier and the aggregator is the same as in steps S1070 to S1120 (FIG. 14) of the fourth embodiment.
  • the fourth blockchain BC4 receives the result of failure (step S2130) or the result of execution (step S2140) from the second blockchain BC2a.
  • the storage battery owner receives the result of failure (step S2130)
  • he / she may return to step S2050 and select another category to place an order.
  • FIG. 18 is a second flowchart showing an example of processing of the electric power trading system according to the fifth embodiment of the present disclosure.
  • the flow of processing when the consumer purchases the electric power charged in the storage battery will be described with reference to FIG.
  • the third processing unit 400 of the storage battery system 40 sets the selling price (wholesale price) of the power charged in the storage battery based on the purchase price (purchasing price) of the power charged in the storage battery. Further, the third processing unit 400 generates the storage battery power information including the category of the power charged to the storage battery and the set wholesale price, and registers it in the fourth blockchain BC4.
  • the notification unit 401 of the storage battery system 40 notifies the aggregator of the storage battery power information through the fourth blockchain BC4 and the second blockchain BC2 (step S2200). At this time, the third processing unit 400 transmits the storage battery power information to the second blockchain BC2 corresponding to the category included in the storage battery power information. Then, the storage battery power information related to the corresponding category is registered in the second blockchain BC2 of the aggregator (step S2210).
  • the acquisition unit 300 of the consumer system 30 makes an inquiry regarding the purchase of electric power to the aggregator that provides the electric power of the category preset by the consumer (step S2220).
  • the process is the same as in step S1020 (FIG. 14) of the fourth embodiment.
  • the second processing unit 200 of the aggregator system 20 When the second processing unit 200 of the aggregator system 20 receives an inquiry from a consumer, it generates aggregator power information and determines whether or not to sell the power to the consumer (step S2230). Further, the notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information and the information indicating whether or not the power can be received through the second blockchain BC2 and the third blockchain BC3 (step S2240). These processes are the same as in steps S1030 to S1040 (FIG. 14) of the fourth embodiment.
  • the selection unit 301 of the consumer system 30 determines the power satisfying the first condition set by the consumer based on the aggregator power information and the information indicating whether or not the power can be sold. Select one category (step S2250). The process is the same as in step S1050 (FIG. 14) of the fourth embodiment.
  • step S2260 the selection unit 301 of the consumer system 30 instructs the third blockchain BC3 to place an order for power purchase to the second blockchain BC2 corresponding to the selected category (step S2260).
  • the process is the same as in step S1060 (FIG. 14) of the fourth embodiment.
  • the contract processing unit 213 executes the smart contract included in the transaction received from the third blockchain BC3, and determines whether it is possible to receive an order (power sale) from the consumer (step). S2270).
  • the contract processing unit 213 cannot accept the order (step S2270: NO)
  • the contract processing unit 213 notifies the third blockchain BC3 of the consumer of the failure (step S2280).
  • the contract processing unit 213 orders the electric power that the consumer wants to purchase from the storage battery owner through the second blockchain BC2a (step S2270: YES). Step S2290).
  • the transaction including this smart contract is transmitted to the storage battery owner's fourth blockchain BC4, and the smart contract is further executed in the contract processing unit 413.
  • the contract processing unit 413 determines whether it is possible to sell power to the consumer, and if it is possible to sell power (step S2300: YES), makes a contract to the second blockchain BC2a of the aggregator. A notification is given (step S2320), and if power sales are not possible (step S2300: NO), a notification of failure is given to the second blockchain BC2a of the aggregator (step S2310).
  • the first blockchain BC1 of the consumer receives a notification of failure (step S2330) or a notification of execution (step S2340) through the second blockchain BC2a.
  • the consumer receives the result of failure (step S2330)
  • he / she may return to step S2250 and select another category to place an order.
  • FIGS. 17 to 18 an example in which a storage battery owner buys and sells electric power through one second blockchain BC2 (for example, a second blockchain BC2a corresponding to photovoltaic power generation) corresponding to a specific category will be described.
  • the storage battery owner may purchase and sell power through different second blockchain BC2s.
  • a storage battery owner purchases power from the second blockchain BC2a corresponding to solar power generation and sells power through the second blockchain BC2e corresponding to multiple categories derived from natural energy (solar power generation and wind power generation). You may try to do it.
  • the storage battery owner can sell the electric power not only to the consumer who desires only the electric power generated by solar power generation but also to the consumer who thinks that the electric power derived from natural energy may be used. That is, the storage battery owner can sell power to a plurality of consumers who have different hopes.
  • the electric power trading system 1 further includes the fourth blockchain BC4 in which the information related to the electric power transaction of the storage battery owner is registered.
  • the storage battery owner can buy and sell electricity by clarifying the origin of the electric power of the storage battery he owns. Also, regarding electric power transactions via storage batteries, it is possible to track how much electric power of which category each participant bought and sold based on the information registered in each blockchain.
  • the fourth blockchain BC4 can purchase electric power for charging the storage battery from the supplier through the second blockchain BC2, and can sell the electric power charged in the storage battery to the consumer.
  • the storage battery owner can purchase electric power according to the desired category from the supplier and store the electric power in the storage battery.
  • the consumer can purchase the electric power of the desired category from the storage battery owner even when the electric power supplied from the supplier is insufficient, for example.
  • the storage battery owner can quickly sell power to consumers who need immediate response by purchasing power from a supplier having a long response time until power supply and storing the power in the storage battery, for example. ..
  • the third processing unit 400 of the storage battery system 40 may set the wholesale price higher as the response time is earlier.
  • FIG. 19 is a schematic view of the electric power trading system according to the sixth embodiment of the present disclosure.
  • one aggregator has a plurality of second blockchains BC2a to BC2d.
  • the aggregator divides its service provision range into a plurality of regions (first regions A to D), and sets the first region as a category of electric power. That is, the second blockchains BC2a to BC2d correspond to the first regions A to D, respectively.
  • the aggregator presets the range of each first area according to, for example, administrative divisions (prefectures, municipalities, etc.), geographical conditions (mountains, plains, basins, etc.).
  • the aggregator system 20 further sets the second regions R1 and R2 in which a plurality of adjacent first regions are integrated. For example, in the aggregator system 20 according to the present embodiment, as shown in FIG. 19, a second region R1 in which two first regions A and B are integrated and a second region in which two first regions C and D are integrated are used. Set with R2.
  • the aggregator system 20 sets the mediation range of the electric power transaction to the second area when the predetermined third condition is satisfied, and sets the mediation range to the first area otherwise. Therefore, the aggregator system 20 normally mediates the electric power transaction of the supplier and the consumer of the first region A, but when the predetermined third condition is satisfied, the first regions A and B included in the second region R1. Mediate electricity transactions between both suppliers and consumers.
  • the second blockchain BD2s belonging to the same second area are connected to each other so that various information registered in each can be exchanged via interleisure.
  • the second blockchains BC2a and BC2b corresponding to the first regions A and B included in the second region R1 can be connected via the interledger.
  • the second blockchains BC2c and BC2d corresponding to the first regions C and D included in the second region R2 can be connected via the interledger. Therefore, the aggregator system 20 can mediate the electric power transaction with the supplier existing in the first area B to the consumer existing in the first area A through the second blockchain BC2a and BC2b.
  • FIG. 20 is a flowchart showing an example of processing of the electric power trading system according to the sixth embodiment of the present disclosure.
  • the processing flow of the aggregator system 20 according to the present embodiment will be described with reference to FIG. 20.
  • the second processing unit 200 of the aggregator system 20 determines whether or not the predetermined third condition is satisfied for each region (step S3000).
  • the predetermined third condition is set in advance according to, for example, a power generation method, a power generation scale, a number of suppliers, a number of consumers, a season, a past transaction history, etc. of a supplier existing in the first area.
  • the second processing unit 200 may set time, weather information, and the like as the third condition.
  • the second processing unit 200 is considered to have a larger demand than the supply in the first region A.
  • the mediation range of the electric power transaction is set in the second region R1 (step S3010).
  • step S3000: NO when the time to be traded is included in the time zone corresponding to the daytime and the weather condition is predicted to be good (step S3000: NO), the second processing unit 200 demands the amount in the first area A. Since it is considered that the supply amount commensurate with the above can be secured, the mediation range of the electric power transaction is set to the first region A.
  • the second processing unit 200 performs the processing of steps S3000 to S3020 in the same manner for the other areas (first areas B, C, D). In addition, the second processing unit 200 executes the processing of steps S3000 to S3020 for each area at predetermined intervals or every time the weather information or the like is updated.
  • the second processing unit 200 sets the intermediary range to the second area R1
  • the second processing unit 200 receives the inquiry from the second blockchain BC2a to the first area A.
  • the supplier power information of the first area B is acquired from the second blockchain BC2b through interleisure.
  • the second processing unit 200 generates the aggregator power information based on the supplier power information of the first areas A and B, and notifies the consumer of whether or not the power can be sold (step S1040).
  • the transaction generation unit 210 of the second blockchain BC2a executes a transaction including a smart contract related to the power purchase contract to the first blockchain BC1a via interledger.
  • a transaction including a smart contract related to a power purchase contract is transmitted to the first blockchain BC1b through the second blockchain BC2b to place an order with each supplier (step S1060).
  • the second blockchain BC2 is connected so that the registered information can be exchanged with another second blockchain BC2 when the predetermined third condition is satisfied.
  • the second blockchain BC2 corresponding to each of the multiple regions Information (transactions) can be exchanged between each other to exchange electric power.
  • a plurality of second blockchain BC2s possessed by one aggregator can be connected to each other, but the present invention is not limited to this.
  • different aggregators may have a second blockchain BC2 for each service provision range of their own.
  • the service provision range of each aggregator is set as the first region.
  • FIG. 21 is a diagram showing an example of hardware configurations of a supplier system, an aggregator system, a consumer system, and a node according to at least one embodiment of the present disclosure.
  • the hardware configuration of each part of the electric power trading system 1 according to the present embodiment will be described with reference to FIG. 21.
  • the computer 900 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and an interface 904.
  • the above-mentioned supplier system 10, aggregator system 20, consumer system 30, and first to third nodes 11, 21, and 31 are implemented in one or a plurality of computers 900, respectively.
  • the operation of each of the above-mentioned functional units is stored in the auxiliary storage device 903 in the form of a program.
  • the processor 901 reads a program from the auxiliary storage device 903, deploys it to the main storage device 902, and executes the above processing according to the program. Further, the processor 901 secures a storage area corresponding to each of the above-mentioned storage units in the main storage device 902 according to the program.
  • Examples of the processor 901 include a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), a microprocessor, and the like.
  • the program may be for realizing a part of the functions exerted on the computer 900.
  • the program may exert its function in combination with another program already stored in the auxiliary storage device 903, or in combination with another program mounted on the other device.
  • the computer 900 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • auxiliary storage device 903 examples include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), and DVD-ROM (Digital Versatile Disc Read Only). Memory), semiconductor memory, and the like.
  • the auxiliary storage device 903 may be an internal medium directly connected to the bus of the computer 900, or an external storage device 910 connected to the computer 900 via the interface 904 or a communication line. When this program is distributed to the computer 900 via a communication line, the distributed computer 900 may expand the program to the main storage device 902 and execute the above processing.
  • the auxiliary storage device 903 is a non-temporary tangible storage medium.
  • the program may be for realizing a part of the above-mentioned functions. Further, the program may be a so-called difference file (difference program) that realizes the above-mentioned function in combination with another program already stored in the auxiliary storage device 903.
  • difference file difference program
  • the aggregator power information according to the first to third embodiments may further include demand forecast information of the transmission path used by the aggregator (maximum transmission capacity of the transmission path, prediction of usage rate, etc.). ..
  • the selection unit 301 of the consumer system 30 may select an aggregator by referring to the demand forecast information. For example, the selection unit 301 may select an aggregator with a high possibility of execution (low usage rate of the transmission path) based on the usage rate. Further, the selection unit 301 may select the aggregator having the lowest retail price among the aggregators having a predetermined usage rate or less. In this way, the consumer can more flexibly select the aggregator based on the demand forecast information and the retail price. In addition, the supplier can select an aggregator in consideration of the usage rate, so that a stable supply of electric power becomes possible.
  • the selection unit 301 of the consumer system 30 selects a plurality of aggregators when the power that can be transmitted by the aggregator is less than the desired power purchase amount of the consumer has been described, but the present invention is limited to this. It will not be done.
  • the aggregator may order power purchases from a plurality of suppliers when the desired power purchase amount of the consumer exceeds the power that can be supplied from one supplier.
  • the second processing unit 200 of the aggregator system 20 may set the transmittable power that is the sum of the powers that can be supplied from the plurality of suppliers in step S103, and generate the aggregator power information.
  • the contract processing unit 213 of the aggregator orders the purchase of electric power from each of the plurality of suppliers in step S107. By doing so, the aggregator can provide the electric power desired by the consumer.
  • the second processing unit 200 of the aggregator system 20 responds to various states such as the planned power transmission amount or usage rate of the power transmission path, the time until the start of power supply to the consumer, and the like.
  • states such as the planned power transmission amount or usage rate of the power transmission path, the time until the start of power supply to the consumer, and the like.
  • An example of adjusting the retail price was explained.
  • the first processing unit 100 of the supplier system 10 may similarly adjust the wholesale price according to various states. For example, the first processing unit 100 sets the wholesale price higher as the power demand or the usage rate of the power transmission path increases. Further, the first processing unit 100 sets the wholesale price lower as the time until the start of power supply becomes longer.
  • the selection unit 301 of the consumer system 30 when the selection unit 301 of the consumer system 30 has selected a plurality of categories, the selection unit 301 selects one category satisfying the first condition (step of FIG. 14).
  • the S1050 aspect has been described, the present invention is not limited to this.
  • the selection unit 301 may select a plurality of categories satisfying the first condition. As a result, even when the electric power that can be purchased from one supplier is less than the desired electric charge purchase amount, it is possible to purchase electric power from each of a plurality of suppliers and secure the desired electric power purchase amount.
  • the second processing unit 200 of the aggregator system 20 responds to various states such as the planned power transmission amount or usage rate of the power transmission path, the time until the start of power supply to the consumer, and the like.
  • states such as the planned power transmission amount or usage rate of the power transmission path, the time until the start of power supply to the consumer, and the like.
  • An example of adjusting the retail price was explained.
  • the first processing unit 100 of the supplier system 10 may similarly adjust the wholesale price according to various states. For example, the first processing unit 100 sets the wholesale price higher as the power demand or the usage rate of the power transmission path increases. Further, the first processing unit 100 sets the wholesale price lower as the time until the start of power supply becomes longer.
  • the electric power trading system includes a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer.
  • the blockchain can be connected to each of the first blockchain and the third blockchain.
  • the electric power trading system generates the supplier electric power information regarding the electric power that can be supplied by the supplier, and registers the first process in the first blockchain.
  • a second processing unit that generates aggregator electric power information regarding electric power that can be transmitted via the aggregator based on the supplier electric power information acquired from the first blockchain and registers it in the second blockchain.
  • a selection unit that selects at least one aggregator from the plurality of aggregators based on the aggregator power information acquired from the second blockchain, the first blockchain, the second blockchain, and the third.
  • Each of the blockchains includes a contract processing unit that executes processing related to electric power transactions between the supplier, the consumer, and the selected aggregator.
  • the electric power trading system can connect and link the blockchains of each electric power trading participant (supplier, aggregator, consumer) without centralized management by a specific aggregator, and is reliable. High power trading can be done.
  • the aggregator electric power information includes the transmittable electric power of the aggregator and the retail price per unit electric power
  • the selection unit comprises. Select an aggregator in which at least one of the transmittable power and the retail price meets the conditions preset by the consumer. By doing so, the consumer can easily select an aggregator that meets his / her desired conditions from a plurality of aggregators.
  • the second processing unit sets the transmission cost according to the transmission path between the supplier and the consumer.
  • the retail price is set in addition to the wholesale price per unit power of the supplier included in the supplier power information. Aggregator transmission costs vary depending on the transmission route used, so even if one supplier's wholesale price is cheaper than another, the actual amount paid is higher than purchasing from another. It can be expensive. However, in the electric power trading system according to the above aspect, since the retail price including the transmission cost is presented to the consumer, the consumer can select a cheaper aggregator.
  • the second processing unit is the planned power transmission amount of the power transmission path between the supplier and the consumer.
  • the retail price is set based on the usage rate.
  • the aggregator can raise the retail price to suppress further demand when it is predicted that the power demand is high (the planned transmission amount or usage rate of the transmission route is close to the upper limit).
  • Electricity trading volume can be adjusted.
  • the second processing unit sets the retail price for each power transmission path when there are a plurality of the power transmission paths. .. In this way, the aggregator can adjust the retail price to guide the consumer to a specific transmission path (for example, a vacant transmission path).
  • the second processing unit is said to respond to the time until the start of power supply to the consumer.
  • Set the retail price By doing so, the aggregator can set the retail price as the time until the start of power supply becomes longer, and encourage the consumer to purchase the power at an early stage. As a result, the aggregator can easily grasp the future electricity transaction volume from an early stage.
  • the second processing unit uses the electric power that can be supplied by the supplier as an upper limit, and the consumer.
  • the power that can be sold is set as the power that can be transmitted.
  • the aggregator can more accurately provide the amount of electric power that can be transmitted to the consumer.
  • the second processing unit is a plurality of the supply obtained from the plurality of first blockchains owned by the plurality of suppliers.
  • the transmittable power is set based on the total value of the powers that can be supplied from the plurality of suppliers.
  • the aggregator can add up the available power of a plurality of suppliers even if the available electric power of one supplier is less than the desired amount of electric charge of the consumer, and the aggregator can add the electric power of the consumer. It is possible to provide electric power according to the desired amount of electric power purchased.
  • the second processing unit is the planned power transmission amount or the usage rate in the power transmission path to the consumer. If exceeds a predetermined value, it is determined that the power cannot be sold to the consumer, and the information indicating that the power cannot be sold is notified to the consumer. By doing so, the aggregator can adjust the amount of electricity traded to the consumer.
  • the contract processing unit is the electric power desired by the consumer in the supplier and the aggregator. It is determined whether or not an order can be accepted, and the determination result is notified to the third blockchain through the first blockchain and the second blockchain, and the selection unit selects the last time when the determination result indicating that the order cannot be received is notified. Select an aggregator that is different from the aggregator. For example, from the time when a consumer acquires the aggregator power information to the time when an order is placed, a contract with another consumer may be concluded, the power that can be transmitted by the aggregator may change, and an order may not be accepted. Even in such a case, the consumer can increase the possibility of purchasing the desired electric power by reselecting another aggregator and placing an order.
  • the aggregator power information includes demand forecast information of a power transmission path used by the aggregator. ..
  • the consumer can more flexibly select the aggregator based on the demand forecast information.
  • the supplier can select an aggregator in consideration of the usage rate, so that a stable supply of electric power becomes possible.
  • the selection unit is the case where the power transmission possible amount is smaller than the desired power purchase amount preset by the consumer. , Select a plurality of said aggregators. As a result, even if the electric power that can be transmitted by each aggregator is insufficient, the consumer can secure the desired amount of electric power purchase.
  • the contract processing unit satisfies the desired power purchase amount preset by the consumer. , Perform the contract processing with the plurality of the suppliers. By doing so, the aggregator can provide the electric power desired by the consumer.
  • the second processing unit transmits power to the consumer among the plurality of aggregators.
  • the aggregator power information regarding the first aggregator is further generated based on the aggregator power information regarding the second aggregator capable of transmitting power to the first aggregator.
  • the consumer can trade electricity only with an aggregator that includes both the supplier and the consumer in the service range.
  • the electric power trading system according to the above aspect can connect a plurality of aggregators to transmit power, it is possible to increase the number of aggregators that can be selected by the consumer.
  • the electric power trading system in the electric power trading system according to any one of the second to fifteenth aspects, between the first blockchain and the second blockchain, and the second.
  • the blockchain and the third blockchain are connected to each other so as to be communicable using interledgers.
  • the supplier, the aggregator, and the consumer can use the interleisure to use the first blockchain BC1 of the supplier, the second blockchain BC2 of the aggregator, and the third blockchain of the consumer, respectively. It is possible to transfer various data related to electric power transactions registered in. Moreover, even if the specifications of the data registered in each blockchain are different, they can be exchanged by the interleisure mechanism. This makes it easy for suppliers, aggregators, and consumers to freely design and modify their own blockchains.
  • the electric power trading method is an electric power trading method using a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer.
  • the aggregator is based on a step of generating supplier electric power information regarding electric power that can be supplied by the supplier and registering the electric power in the first blockchain, and the supplier electric power information acquired from the first blockchain.
  • At least one of the plurality of the aggregators based on the step of generating the aggregator electric power information regarding the electric power that can be transmitted via the second blockchain and registering the aggregator electric power information in the second blockchain and the aggregator electric power information acquired from the second blockchain. Power between the supplier, the selected aggregator, and the consumer in each of the steps of selecting one aggregator and the first blockchain, the second blockchain, and the third blockchain. It has a step of executing contract processing related to supply.
  • the electric power trading system in the electric power trading system according to the first aspect, information relating to the electric power transaction of the supplier is registered in the first blockchain, and the second blockchain is the supplier.
  • a plurality of information relating to the power transaction of the aggregator according to the category are registered in each of the plurality of second blockchains, and the third blockchain is a plurality of the second blockchains.
  • the electric power trading system can divide the electric power market for each electric power category and selectively buy and sell only the electric power of the category desired by the consumer.
  • each of the suppliers, aggregators, and consumers who are participants in the electricity trading system can track how much electricity in which category each participant bought and sold based on the information registered in each blockchain. it can.
  • the information registered in the second blockchain includes the power that can be transmitted by the aggregator in a specific period, per unit electric power. At least one of the retail price, transmission available time, category, and identification information of the aggregator is included. As a result, the consumer can acquire various information about the electric power that the aggregator can provide through the blockchain.
  • the retail price is the transmission cost according to the transmission path between the supplier and the consumer. It is set in addition to the wholesale price per unit power of. Aggregator transmission costs vary depending on the transmission route used, so even if the wholesale price of one category is cheaper than that of another category, the actual amount paid will be higher than purchasing from another category. There is a possibility that it will end up.
  • the retail price including the transmission cost is presented to the consumer, the consumer can select a cheaper category.
  • the retail price is the planned transmission amount or the usage rate of the transmission path between the supplier and the consumer. It is set based on. By doing so, the aggregator can raise the retail price to suppress further demand when it is predicted that the power demand is high (the planned transmission amount or usage rate of the transmission route is close to the upper limit). , Electricity trading volume can be adjusted.
  • the retail price is set for each power transmission path when there are a plurality of the power transmission paths.
  • the aggregator can adjust the retail price to guide the consumer to a specific transmission path (for example, a vacant transmission path).
  • the retail price is set according to the time until the start of power supply to the consumer. ..
  • the aggregator can set the retail price as the time until the start of power supply becomes longer, and encourage the consumer to purchase the power at an early stage. As a result, the aggregator can easily grasp the future electricity transaction volume from an early stage.
  • the power that can be transmitted is supplied to the consumer up to the power that can be supplied by the supplier.
  • the power that can be sold is set. By doing so, the aggregator can more accurately provide the amount of electric power that can be transmitted to the consumer.
  • the second blockchain is the planned power transmission capacity or the usage rate in the power transmission path to the consumer. If exceeds a predetermined value, it is determined that the power cannot be sold to the consumer, and the first blockchain is notified of the information indicating that the power cannot be sold. By doing so, the aggregator can adjust the amount of electricity traded to the consumer.
  • the third blockchain is the electric power category desired by the consumer, the desired purchase period, and the like.
  • Inquiry information including the desired power purchase amount and the position information of the consumer is transmitted to the second blockchain, and the second blockchain is divided into the inquiry information and the information registered in the second blockchain. Based on this, a response including whether or not to sell the electric power to the consumer is transmitted to the third blockchain. By doing so, the consumer can know whether or not the electric power of the desired category can be purchased before placing an order.
  • the third blockchain is based on the information acquired from the connected second blockchain. Then, a category that satisfies the first condition set by the consumer is selected, and a transaction including a smart contract for purchasing power from the supplier is generated via an aggregator that provides power in the category.
  • the third blockchain can quickly proceed with the electric power transaction procedure without receiving an instruction to purchase electric power from the consumer.
  • the smart contract can automate the procedure of electric power transaction in the first blockchain and the second blockchain, it is possible to realize the contract conclusion in a short time. As a result, the electric power trading system can follow the fluctuating supply and demand situation in real time.
  • the first condition is the desired power purchase amount, the desired power purchase price, and the response until the power supply is started. Includes time and at least one of the priorities of the categories.
  • the electric power trading system can trade electric power by selecting an appropriate category according to the wishes of the consumer.
  • the third blockchain is a category in which the lowest retail price is set when there are a plurality of categories satisfying the first condition.
  • the consumer uses only the electricity generated in a specific area (for example, the location of the consumer), which is the policy regarding the purchase of electricity that he / she has set (for example, only the electricity derived from renewable energy is used). , Etc.), and cheaper electricity can be purchased.
  • the third blockchain is a category in which the earliest response time is set when there are a plurality of categories satisfying the first condition. To generate the transaction. By doing so, the consumer can purchase the necessary electric power while following the electric power purchase policy set by himself / herself even when the electric power is urgently required.
  • the third blockchain selects the category having the highest priority. Generates the transaction. By doing so, the consumer can increase the possibility of purchasing the necessary electric power while following the electric power purchasing policy set by the consumer.
  • the third blockchain selects a plurality of categories from the categories satisfying the first condition to generate the transaction. To do. By doing so, even if the amount of power that can be purchased from the consumer or one supplier is less than the desired amount of power purchased, power is purchased from each of a plurality of suppliers to secure the desired amount of power purchased. It becomes possible.
  • the first blockchain and the second blockchain are supplied based on the transaction.
  • the person and the aggregator determine whether or not the consumer desires to receive an order for electric power, notify the third blockchain of the determination result through the first blockchain and the second blockchain, and the third blockchain determines the decision result.
  • a category different from the previously selected category is selected and a new transaction is generated. For example, from the time a consumer obtains information from an aggregator to the time an order is placed, a contract with another consumer may be concluded, the power that can be transmitted by the aggregator may change, and an order may not be accepted. Even in such a case, the consumer can increase the possibility of purchasing the desired electric power by reselecting another category and placing an order.
  • the electric power trading system in the electric power trading system according to any one of the 18th to 33rd aspects, between the first blockchain and the second blockchain, and the second aspect.
  • the blockchain and the third blockchain are connected to each other so as to be communicable using interledgers.
  • the supplier, aggregator, and consumer can use interledger to register with the supplier's first blockchain, the aggregator's second blockchain, and the consumer's third blockchain, respectively. It is possible to transfer various data related to the completed electric power transaction. Moreover, even if the specifications of the data registered in each blockchain are different, they can be exchanged by the interleisure mechanism. This makes it easy for suppliers, aggregators, and consumers to freely design and modify their own blockchains.
  • the electric power trading system can be connected to the second blockchain corresponding to the category preset by the storage battery owner.
  • a fourth blockchain is further provided in which information relating to the electric power transaction by the storage battery owner is registered.
  • the storage battery owner can buy and sell electricity by clarifying the origin of the electric power of the storage battery he owns.
  • electric power transactions via storage batteries it is possible to track how much electric power of which category each participant bought and sold based on the information registered in each blockchain.
  • the 4th blockchain is connected by the storage battery owner based on the information acquired from the connected 2nd blockchain.
  • a category that satisfies the set second condition is selected, and a transaction including a smart contract for purchasing power from the supplier is generated via an aggregator that provides power in the category.
  • the storage battery owner can purchase electric power according to the desired category from the supplier and store the electric power in the storage battery.
  • the third blockchain is the demand based on the information acquired from the connected second blockchain. Select a category that satisfies the first condition set by the person, and generate a transaction including a smart contract for purchasing power from the storage battery owner via an aggregator that provides power in the category. As a result, the consumer can purchase the electric power of the desired category from the storage battery owner even when the electric power supplied from the supplier is insufficient, for example.
  • an interleisure is used between the second blockchain and the fourth blockchain. Connected to be communicable. By doing so, the aggregator and the storage battery owner can use the interleisure to transfer various data related to the electric power transaction registered in each of the aggregator's second blockchain and the storage battery owner's fourth blockchain. It can be performed. Moreover, even if the specifications of the data registered in each blockchain are different, they can be exchanged by the interleisure mechanism. This makes it easy for battery owners to freely design and modify their own blockchain.
  • the second blockchain is registered when the third condition set by the aggregator is satisfied.
  • the information provided is exchangeably connected to another second blockchain.
  • the third condition is the power generation method, the number of suppliers, the number of consumers, the season, and the power generation method of the supplier existing in the area. And set according to at least one of the past transaction history.
  • the aggregator exchanges information between the second blockchains corresponding to each of the plurality of categories according to the amount of power supply or demand in a certain season, time zone, region, etc., for example. And can interchange power.
  • the category includes the power generation method, the supply area, and the power generation scale of the electric power supplied by the supplier. It is set based on at least one of them.
  • the aggregator can correspond to various categories according to the electricity purchase policy of the consumer.
  • the category divides the service provision range of the aggregator into a plurality of regions, and corresponds to each of the regions. Set.
  • the aggregator exchanges information between the second blockchains corresponding to each region according to the amount of power supply or demand, for example, and exchanges power between these regions. be able to.
  • the category is set corresponding to each of the service provision ranges of the plurality of the aggregators.
  • the plurality of aggregators exchange information between the second blockchains corresponding to each aggregator according to, for example, the amount of power supply or demand, and the power is interchanged between these aggregators. You can meet each other. Further, by connecting the second blockchains to each other and exchanging information in this way, it is not necessary to make inquiries between the aggregator systems of each aggregator and confirm the ordering, etc., and the processing related to the electric power transaction can be expedited. It is possible to complete it.
  • each of the provided second blockchains has a step of registering information related to the electric power transaction of the aggregator according to the category
  • the third blockchain is a category preset by the consumer among the plurality of the second blockchains. It has a step of connecting to a second blockchain corresponding to the above and registering information related to the electric power transaction of the consumer.
  • the reliability of electric power transactions can be improved by linking a plurality of blockchains.
  • Power trading system 10 Supplier system 100 1st processing unit 101 Notification unit 11 1st node 110 Transaction generation unit 111 Block generation unit 112 Data registration unit 113 Contract processing unit 114 Storage media 20, 20a, 20b, 20c Aggregator system 200 2 Processing unit 201 Notification unit 21 Second node 210 Transaction generation unit 211 Block generation unit 212 Data registration unit 213 Contract processing unit 214 Storage medium 30 Consumer system 300 Acquisition unit 301 Selection unit 31 Third node 310 Transaction generation unit 311 Block generation Unit 312 Data registration unit 313 Contract processing unit 314 Storage medium

Abstract

This power transaction system is provided with a first block chain possessed by a supplier, a second block chain possessed by an aggregator, and a third block chain possessed by a customer, wherein the second block chain is connectable with each of the first block chain and the third block chain.

Description

電力取引システム及び電力取引方法Electric power trading system and electric power trading method
 本開示は、電力取引システム及び電力取引方法に関する。
 本願は、2019年11月27日に日本に出願された特願2019-214246、及び、2019年11月27日に日本に出願された特願2019-214247号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a power trading system and a power trading method.
The present application claims priority based on Japanese Patent Application No. 2019-214446 filed in Japan on November 27, 2019 and Japanese Patent Application No. 2019-214247 filed in Japan on November 27, 2019. The contents are used here.
 電力取引システムでは、セキュリティの高い分散システムとしてブロックチェーンを用いた手法が検討されている。例えば、電力取引の一機能であるデマンドレスポンスにブロックチェーンを適用することが考えられている。 In the electric power trading system, a method using a blockchain is being studied as a highly secure distributed system. For example, it is considered to apply a blockchain to demand response, which is a function of electric power trading.
 デマンドレスポンスとは、供給者(発電事業者等)の供給量に合わせて、需要者(企業、家庭等)の需要量を変化させる仕組みである。例えば、複数の需要者それぞれは、所定の条件下で節電に応じる契約をアグリゲータと事前に結んでおり、アグリゲータを介して供給者による電力需要低減の要請を受け取ると、電気機器の電源をオフにする等の節電を行う。アグリゲータは、需要者による節電量をまとめて供給者と取引を行うとともに、需要者に節電量に応じたインセンティブを支払う。 Demand response is a mechanism that changes the demand amount of consumers (companies, households, etc.) according to the supply amount of suppliers (power generation companies, etc.). For example, each of multiple consumers has a contract with an aggregator to save electricity under certain conditions in advance, and when the supplier requests a reduction in power demand through the aggregator, the power of the electrical equipment is turned off. To save electricity. The aggregator collects the amount of power saved by the consumer and trades with the supplier, and pays the consumer an incentive according to the amount of power saved.
 特許文献1には、このようなデマンドレスポンスに関するデータである、複数の電気機器それぞれの消費電力量、節電量、節電の対価(節電ポイント)等をブロックデータとして記録、蓄積するシステムが記載されている。 Patent Document 1 describes a system that records and stores the power consumption amount, power saving amount, power saving consideration (power saving point), etc. of each of a plurality of electric devices, which are data related to such demand response, as block data. There is.
特開2018-166284号公報JP-A-2018-166284
 従来のシステムでは、アグリゲータが複数の需要者を束ねて供給者との仲介を行っているので、アグリゲータが提供するブロックチェーンに供給者及び需要者が参加することとなる。この場合、アグリゲータがブロックチェーンを集中管理する必要があるので、システムの信頼性はアグリゲータに依存することとなる。さらに、アグリゲータが提供する1つのブロックチェーンのみでは、電力取引に係る発電受給データ、電力課金データ、インセンティブデータ等の異なる複数のデータを一緒に管理するため、ブロックチェーンの管理が複雑となる。そうすると、システムの信頼性が低下する可能性がある。 In the conventional system, since the aggregator bundles multiple consumers and acts as an intermediary with the supplier, the supplier and the consumer will participate in the blockchain provided by the aggregator. In this case, since the aggregator needs to centrally manage the blockchain, the reliability of the system depends on the aggregator. Further, since only one blockchain provided by the aggregator manages a plurality of different data such as power generation receipt data, power billing data, and incentive data related to electric power transactions together, the blockchain management becomes complicated. Doing so can reduce the reliability of the system.
 また、供給者及び需要者は、アグリゲータのブロックチェーンのデータフォーマットに合わせて自身の持つシステムを修正、又は開発するためのコストが必要となる。 In addition, suppliers and consumers need to pay for modifying or developing their own system according to the data format of the blockchain of the aggregator.
 また、従来のシステムでは、発電方法、供給地域、発電規模のような供給元の情報が需要者に提供されていない。このため、需要者は、特定のカテゴリの電力(例えば、自然エネルギー由来の電力)のみを使用したい場合であっても、希望する電力のカテゴリを選択して買電することが困難であった。 Also, in the conventional system, information on the supply source such as the power generation method, supply area, and power generation scale is not provided to the consumer. Therefore, even if the consumer wants to use only a specific category of electric power (for example, electric power derived from natural energy), it is difficult for the consumer to select the desired electric power category and purchase the electric power.
 本開示は、このような課題に鑑みてなされたものであって、複数のブロックチェーンを連携させて信頼性の高い電力取引を行うことができる電力取引システム及び電力取引方法を提供する。 This disclosure is made in view of such a problem, and provides an electric power trading system and an electric power trading method capable of performing highly reliable electric power trading by linking a plurality of blockchains.
 また、電力のカテゴリを選択して買電することが可能な電力取引システム及び電力取引方法を提供する。 It also provides an electric power trading system and an electric power trading method that can be purchased by selecting an electric power category.
 本開示の一態様によれば、電力取引システムは、供給者が有する第1ブロックチェーンと、アグリゲータが有する第2ブロックチェーンと、需要者が有する第3ブロックチェーンとを備え、前記第2ブロックチェーンは、前記第1ブロックチェーン及び前記第3ブロックチェーンそれぞれと接続可能である。 According to one aspect of the present disclosure, the electric power trading system includes a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer, and the second blockchain. Can be connected to each of the first blockchain and the third blockchain.
 本開示の一態様によれば、電力取引方法は、供給者が有する第1ブロックチェーンと、アグリゲータが有する第2ブロックチェーンと、需要者が有する第3ブロックチェーンと用いた電力取引方法であって、前記供給者が供給可能な電力に関する供給者電力情報を生成し、前記第1ブロックチェーンに登録するステップと、前記第1ブロックチェーンから取得した前記供給者電力情報に基づいて、前記アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、前記第2ブロックチェーンに登録するステップと、前記第2ブロックチェーンから取得した前記アグリゲータ電力情報に基づいて、複数の前記アグリゲータのうち少なくとも一つのアグリゲータを選択するステップと、前記第1ブロックチェーン、前記第2ブロックチェーン、及び前記第3ブロックチェーンのそれぞれにおいて、前記供給者と、選択された前記アグリゲータと、前記需要者との間の電力供給に係る契約処理を実行するステップと、を有する。 According to one aspect of the present disclosure, the electric power trading method is an electric power trading method using a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer. Through the aggregator, based on the step of generating the supplier electric power information regarding the electric power that can be supplied by the supplier and registering the electric power in the first blockchain and the supplier electric power information acquired from the first blockchain. At least one of the plurality of aggregators based on the step of generating the aggregator electric power information regarding the electric power that can be transmitted and registering the aggregator electric power information in the second blockchain and the aggregator electric power information acquired from the second blockchain. To supply power between the supplier, the selected aggregator, and the consumer in each of the first blockchain, the second blockchain, and the third blockchain. It has a step of executing such contract processing.
 本開示の一態様によれば、電力取引方法は、第1ブロックチェーンに供給者の電力取引に係る情報を登録するステップと、前記供給者が供給する電力のカテゴリそれぞれに対応して複数設けられた第2ブロックチェーンそれぞれに、アグリゲータの前記カテゴリ別の電力取引に係る情報を登録するステップと、第3ブロックチェーンを複数の前記第2ブロックチェーンのうち、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続し、前記需要者の電力取引に係る情報を登録するステップと、を有する。 According to one aspect of the present disclosure, a plurality of electric power trading methods are provided corresponding to each of a step of registering information related to a supplier's electric power transaction in the first blockchain and a category of electric power supplied by the supplier. In each of the second blockchains, the step of registering the information related to the electric power transaction of the aggregator according to the category and the third blockchain correspond to the category preset by the consumer among the plurality of the second blockchains. It has a step of connecting to the second blockchain to register the information related to the electric power transaction of the consumer.
 本開示に係る電力取引システム及び電力取引方法によれば、複数のブロックチェーンを連携させることにより電力取引の信頼性を向上させることができる。 According to the electric power trading system and the electric power trading method according to the present disclosure, the reliability of electric power trading can be improved by linking a plurality of blockchains.
 本開示に係る電力取引システム及び電力取引方法によれば、電力のカテゴリを選択して買電することが可能である。 According to the electric power trading system and the electric power trading method according to the present disclosure, it is possible to select an electric power category and purchase electric power.
本開示の第1の実施形態に係る電力取引システムの概略図である。It is the schematic of the electric power trading system which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係る供給者システム及び第1ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the supplier system and 1st blockchain which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係るアグリゲータシステム及び第2ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the aggregator system and the 2nd blockchain which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係る需要者システム及び第3ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the consumer system and the 3rd blockchain which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。It is a flowchart which shows an example of the processing of the electric power trading system which concerns on 1st Embodiment of this disclosure. 本開示の第2の実施形態に係る電力取引システムの概略図である。It is the schematic of the electric power trading system which concerns on the 2nd Embodiment of this disclosure. 本開示の第2の実施形態に係る電力取引システムを説明するための図である。It is a figure for demonstrating the electric power trading system which concerns on the 2nd Embodiment of this disclosure. 本開示の第2の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。It is a flowchart which shows an example of the processing of the electric power trading system which concerns on the 2nd Embodiment of this disclosure. 本開示の第3の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。It is a flowchart which shows an example of the processing of the electric power trading system which concerns on 3rd Embodiment of this disclosure. 本開示の第4の実施形態に係る電力取引システムの概略図である。It is the schematic of the electric power trading system which concerns on 4th Embodiment of this disclosure. 本開示の第4の実施形態に係る供給者システム及び第1ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the supplier system and 1st blockchain which concerns on 4th Embodiment of this disclosure. 本開示の第4の実施形態に係るアグリゲータシステム及び第2ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the aggregator system and the 2nd blockchain which concerns on 4th Embodiment of this disclosure. 本開示の第4の実施形態に係る需要者システム及び第3ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the consumer system and the 3rd blockchain which concerns on 4th Embodiment of this disclosure. 本開示の第4の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。It is a flowchart which shows an example of the processing of the electric power trading system which concerns on 4th Embodiment of this disclosure. 本開示の第5の実施形態に係る電力取引システムの概略図である。It is the schematic of the electric power trading system which concerns on 5th Embodiment of this disclosure. 本開示の第5の実施形態に係る蓄電池システム及び第4ブロックチェーンの機能構成を示す図である。It is a figure which shows the functional structure of the storage battery system and the 4th blockchain which concerns on 5th Embodiment of this disclosure. 本開示の第5の実施形態に係る電力取引システムの処理の一例を示す第1のフローチャートである。It is a 1st flowchart which shows an example of the processing of the electric power trading system which concerns on 5th Embodiment of this disclosure. 本開示の第5の実施形態に係る電力取引システムの処理の一例を示す第2のフローチャートである。2 is a second flowchart showing an example of processing of the electric power trading system according to the fifth embodiment of the present disclosure. 本開示の第6の実施形態に係る電力取引システムの概略図である。It is the schematic of the electric power trading system which concerns on 6th Embodiment of this disclosure. 本開示の第6の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。It is a flowchart which shows an example of the processing of the electric power trading system which concerns on 6th Embodiment of this disclosure. 本開示の少なくとも一の実施形態に係る供給者システム、アグリゲータシステム、需要者システム、及びノードのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the supplier system, the aggregator system, the consumer system, and a node which concerns on at least one Embodiment of this disclosure.
<第1の実施形態>
 以下、本開示の第1の実施形態に係る電力取引システム1について、図を参照しながら説明する。
<First Embodiment>
Hereinafter, the electric power trading system 1 according to the first embodiment of the present disclosure will be described with reference to the drawings.
(全体構成)
 図1は、本開示の第1の実施形態に係る電力取引システムの概略図である。
 本実施形態に係る電力取引システム1において、供給者及び需要者は、アグリゲータを介して電力取引を行う。需要者は、企業、一般家庭等である。供給者は、発電事業者、送配電事業者等である。アグリゲータは、需要者が必要とする電力と、供給者より供給される電力との需給バランスを調整する事業者である。本実施形態に係る需要者は、複数のアグリゲータのうち、需要者の希望条件を満たすアグリゲータを一つ選択し、当該アグリゲータを介して電力取引の契約を結ぶ。
(overall structure)
FIG. 1 is a schematic view of an electric power trading system according to the first embodiment of the present disclosure.
In the electric power trading system 1 according to the present embodiment, the supplier and the consumer perform electric power trading via an aggregator. Consumers are businesses, ordinary households, etc. The suppliers are power generation companies, power transmission and distribution companies, and the like. An aggregator is a business operator that adjusts the supply-demand balance between the electric power required by a consumer and the electric power supplied by the supplier. The consumer according to the present embodiment selects one aggregator that satisfies the customer's desired conditions from the plurality of aggregators, and concludes a power transaction contract through the aggregator.
 図1に示すように、電力取引システム1は、供給者システム10、アグリゲータシステム20、需要者システム30、第1ブロックチェーンBC1、第2ブロックチェーンBC2、及び、第3ブロックチェーンBC3を備えている。 As shown in FIG. 1, the electric power trading system 1 includes a supplier system 10, an aggregator system 20, a consumer system 30, a first blockchain BC1, a second blockchain BC2, and a third blockchain BC3. ..
 供給者システム10は、電力取引に係る供給者側の各種処理を行うシステムである。 第1ブロックチェーンBC1は、複数の第1ノード11により構成される分散型ネットワークである。第1ブロックチェーンBC1は、供給者システム10と接続され、電力取引に係る供給者側の各種データを記録、蓄積する。
 なお、図1には、説明を簡略化するために供給者が一つのみ存在している例が示されているが、これに限られることはない。他の実施形態では、供給者は複数存在してもよい。この場合、各供給者は、それぞれ供給者システム10及び第1ブロックチェーンBC1を有している。
The supplier system 10 is a system that performs various processes on the supplier side related to electric power transactions. The first blockchain BC1 is a distributed network composed of a plurality of first nodes 11. The first blockchain BC1 is connected to the supplier system 10 and records and accumulates various data on the supplier side related to electric power transactions.
Note that FIG. 1 shows an example in which only one supplier exists for the sake of simplification of the explanation, but the present invention is not limited to this. In other embodiments, there may be multiple suppliers. In this case, each supplier has a supplier system 10 and a first blockchain BC1, respectively.
 アグリゲータシステム20は、電力取引に係るアグリゲータ側の各種処理を行うシステムである。
 第2ブロックチェーンBC2は、複数の第2ノード21により構成される分散型ネットワークである。第2ブロックチェーンBC2は、アグリゲータシステム20と接続され、電力取引に係るアグリゲータ側の各種データを記録、蓄積する。
 図1に例示するように、本実施形態では複数のアグリゲータが存在し、それぞれがアグリゲータシステム20a、20bを有している。また、アグリゲータシステム20a、20bは、それぞれ第2ブロックチェーンBC2a、BC2bと接続されている。なお、他の実施形態では、三つ以上のアグリゲータが存在し、それぞれがアグリゲータシステム及び第2ブロックチェーンBC2を有していてもよい。
The aggregator system 20 is a system that performs various processes on the aggregator side related to electric power trading.
The second blockchain BC2 is a decentralized network composed of a plurality of second nodes 21. The second blockchain BC2 is connected to the aggregator system 20 and records and accumulates various data on the aggregator side related to electric power transactions.
As illustrated in FIG. 1, in this embodiment, there are a plurality of aggregators, each of which has aggregator systems 20a and 20b. Further, the aggregator systems 20a and 20b are connected to the second blockchain BC2a and BC2b, respectively. In another embodiment, there may be three or more aggregators, each of which has an aggregator system and a second blockchain BC2.
 需要者システム30は、電力取引に係る需要者側の各種処理を行うシステムである。
 第3ブロックチェーンBC3は、複数の第3ノード31により構成される分散型ネットワークである。第3ブロックチェーンBC3は、需要者システム30と接続され、電力取引に係る需要者側の各種データを記録、蓄積する。
 なお、図1には、説明を簡略化するために需要者が一つのみ存在している例が示されているが、これに限られることはない。他の実施形態では、需要者は複数存在してもよい。この場合、各需要者は、それぞれ需要者システム30及び第3ブロックチェーンBC3を有している。
The consumer system 30 is a system that performs various processes on the consumer side related to electric power transactions.
The third blockchain BC3 is a decentralized network composed of a plurality of third nodes 31. The third blockchain BC3 is connected to the consumer system 30 and records and accumulates various data on the consumer side related to electric power transactions.
Note that FIG. 1 shows an example in which only one consumer exists for the sake of simplification of the explanation, but the present invention is not limited to this. In other embodiments, there may be multiple consumers. In this case, each consumer has a consumer system 30 and a third blockchain BC3, respectively.
 第1ブロックチェーンBC1、第2ブロックチェーンBC2、及び第3ブロックチェーンBC3それぞれに登録されるデータのフォーマットは、これらのブロックチェーンを管理する供給者、アグリゲータ、需要者それぞれにより独自に設定される。また、このフォーマットは、供給者、アグリゲータ、需要者個々の事情に応じて変更されてもよい。 The format of the data registered in each of the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 is independently set by each of the supplier, aggregator, and consumer who manages these blockchains. In addition, this format may be changed according to the individual circumstances of the supplier, the aggregator, and the consumer.
 また、第1ブロックチェーンBC1及び第2ブロックチェーンBC2は、インターレジャーを利用して通信可能に接続されている。第2ブロックチェーンBC2及び第3ブロックチェーンBC3についても同様である。インターレジャーは、規格の異なる台帳(データ)間で価値を交換し、取引を行うための仕組みである。例えば、本実施形態に係る各ブロックチェーンには、他のブロックチェーンとのコネクタとなるノードを有しており、これらノード間で必要なデータの交換を行う。なお、複数の第1ノード11のうち何れか一のノード、複数の第2ノード21のうち何れか一のノード、及び複数の第3ノードのうち何れか一のノードが、それぞれのブロックチェーンにおけるコネクタとして機能してもよい。 Further, the first blockchain BC1 and the second blockchain BC2 are connected so as to be able to communicate using interleisure. The same applies to the second blockchain BC2 and the third blockchain BC3. Interledger is a mechanism for exchanging values and conducting transactions between ledgers (data) with different standards. For example, each blockchain according to the present embodiment has nodes that serve as connectors to other blockchains, and necessary data is exchanged between these nodes. It should be noted that any one of the plurality of first nodes 11, any one of the plurality of second nodes 21, and any one of the plurality of third nodes are included in the respective blockchains. It may function as a connector.
(供給者システム及び第1ブロックチェーンの機能構成)
 図2は、本開示の第1の実施形態に係る供給者システム及び第1ブロックチェーンの機能構成を示す図である。
 図2に示すように、供給者システム10は、第1処理部100と、通知部101とを備えている。また、第1ブロックチェーンBC1を構成する第1ノード11は、トランザクション生成部110と、ブロック生成部111と、データ登録部112と、契約処理部113と、記憶媒体114とを備えている。
(Functional configuration of supplier system and first blockchain)
FIG. 2 is a diagram showing a functional configuration of a supplier system and a first blockchain according to the first embodiment of the present disclosure.
As shown in FIG. 2, the supplier system 10 includes a first processing unit 100 and a notification unit 101. Further, the first node 11 constituting the first blockchain BC1 includes a transaction generation unit 110, a block generation unit 111, a data registration unit 112, a contract processing unit 113, and a storage medium 114.
 供給者システム10の第1処理部100は、供給者が供給可能な電力に関する供給者電力情報を生成し、第1ブロックチェーンBC1に登録する。供給者電力情報には、例えば、ある期間に供給可能な電力を示す供給可能電力、当該期間における単位電力あたりの売電価格(以下、「卸売価格」と記載する)、当該期間の開始時間及び終了時間(供給可能時間)等の情報が含まれる。また、供給者電力情報には、供給者の識別情報(供給者名等)が含まれていてもよい。 The first processing unit 100 of the supplier system 10 generates the supplier electric power information regarding the electric power that can be supplied by the supplier and registers it in the first blockchain BC1. The supplier power information includes, for example, the power that can be supplied indicating the power that can be supplied in a certain period, the selling price per unit power in the period (hereinafter referred to as "wholesale price"), the start time of the period, and the start time of the period. Information such as end time (supplyable time) is included. Further, the supplier power information may include supplier identification information (supplier name, etc.).
 供給者システム10の通知部101は、第1処理部100が生成した供給者電力情報を、複数のアグリゲータそれぞれに通知する。具体的には、通知部101は、第1ブロックチェーンBC1に登録された供給者電力情報を、インターレジャーを介してアグリゲータの第2ブロックチェーンBC2に送信するように、第1ブロックチェーンBC1に指示を行う。 The notification unit 101 of the supplier system 10 notifies each of the plurality of aggregators of the supplier power information generated by the first processing unit 100. Specifically, the notification unit 101 instructs the first blockchain BC1 to transmit the supplier power information registered in the first blockchain BC1 to the second blockchain BC2 of the aggregator via the interledger. I do.
 第1ノード11のトランザクション生成部110は、第1ブロックチェーンBC1における電力取引に係るトランザクションを生成する。トランザクション生成部110は、生成したトランザクションを他の第1ノード11に送信することで、第1ブロックチェーンBC1のトランザクションプールに登録する。このトランザクションには、供給者システム10が生成した供給者電力情報も含まれる。トランザクション生成部110は、生成したトランザクションにスマートコントラクトを含めてもよい。スマートコントラクトは、例えば需要者による電力の購入契約に用いられる。 The transaction generation unit 110 of the first node 11 generates a transaction related to the electric power transaction in the first blockchain BC1. The transaction generation unit 110 registers the generated transaction in the transaction pool of the first blockchain BC1 by transmitting the generated transaction to another first node 11. This transaction also includes supplier power information generated by the supplier system 10. The transaction generation unit 110 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
 また、トランザクション生成部110は、供給者システム10から供給者電力情報の通知を指示されると、インターレジャーを介して第2ブロックチェーンBC2に当該供給者電力情報を含むトランザクションを送信する。これにより、第2ブロックチェーンBC2のトランザクションプールには、供給者電力情報を含むトランザクションが登録される。 Further, when the transaction generation unit 110 is instructed to notify the supplier power information from the supplier system 10, the transaction generation unit 110 transmits a transaction including the supplier power information to the second blockchain BC2 via the interledger. As a result, the transaction including the supplier power information is registered in the transaction pool of the second blockchain BC2.
 第1ノード11のブロック生成部111は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。例えば、各第1ノード11において、ブロック生成部111は、複数のトランザクションを含むブロックデータが所定のハッシュ値を持つように、ブロックデータに含めるナンス値を計算する。この場合、最も早く計算を終えた第1ノード11がブロックデータを生成する(Proof of Work)。なお、他の実施形態では、ブロック生成部111はProof of Stake方式等を用いてブロックデータを生成するようにしてもよい。 The block generation unit 111 of the first node 11 generates block data including a predetermined number of transactions registered in the transaction pool. For example, in each first node 11, the block generation unit 111 calculates the nonce value to be included in the block data so that the block data including the plurality of transactions has a predetermined hash value. In this case, the first node 11 that has completed the calculation earliest generates the block data (Proof of Work). In another embodiment, the block generation unit 111 may generate block data by using the Proof of Stake method or the like.
 第1ノード11のデータ登録部112は、ブロック生成部111が生成したブロックデータを他の第1ノード11に送信することで、ブロックデータを第1ブロックチェーンBC1に登録する。また、データ登録部112は、他の第1ノード11から受信したブロックデータを検証し、記憶媒体114に記憶する。このとき、データ登録部112は、例えば、他の第1ノード11から受信したブロックデータのハッシュ値を計算し、当該ハッシュ値が所定の条件を満たしているか否かを判定することでブロックを検証する。 The data registration unit 112 of the first node 11 registers the block data in the first blockchain BC1 by transmitting the block data generated by the block generation unit 111 to the other first node 11. Further, the data registration unit 112 verifies the block data received from the other first node 11 and stores it in the storage medium 114. At this time, the data registration unit 112 verifies the block by, for example, calculating the hash value of the block data received from the other first node 11 and determining whether or not the hash value satisfies a predetermined condition. To do.
 第1ノード11の契約処理部113は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者と、需要者と、アグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部110で新たなトランザクションが生成されてもよい。 The contract processing unit 113 of the first node 11 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 110.
 第1ノード11の記憶媒体114には、各部で取得、生成されたデータが記憶される。例えば、記憶媒体114には、トランザクション生成部110が生成したトランザクション、ブロック生成部111が生成したブロックデータ等が記憶される。 The storage medium 114 of the first node 11 stores the data acquired and generated by each part. For example, the storage medium 114 stores transactions generated by the transaction generation unit 110, block data generated by the block generation unit 111, and the like.
(アグリゲータシステム及び第2ブロックチェーンの機能構成)
 図3は、本開示の第1の実施形態に係るアグリゲータシステム及び第2ブロックチェーンの機能構成を示す図である。
 図3に示すように、アグリゲータシステム20は、第2処理部200と、通知部201とを備えている。また、第2ブロックチェーンBC2を構成する第2ノード21は、トランザクション生成部210と、ブロック生成部211と、データ登録部212と、契約処理部213と、記憶媒体214とを備えている。
(Functional configuration of aggregator system and 2nd blockchain)
FIG. 3 is a diagram showing a functional configuration of an aggregator system and a second blockchain according to the first embodiment of the present disclosure.
As shown in FIG. 3, the aggregator system 20 includes a second processing unit 200 and a notification unit 201. Further, the second node 21 constituting the second blockchain BC2 includes a transaction generation unit 210, a block generation unit 211, a data registration unit 212, a contract processing unit 213, and a storage medium 214.
 アグリゲータシステム20の第2処理部200は、第1ブロックチェーンBC1から取得した供給者電力情報に基づいて、アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、第2ブロックチェーンBC2に登録する。アグリゲータ電力情報には、例えば、ある期間におけるアグリゲータの送電可能電力、単位電力あたりの売電価格(以下、「小売価格」と記載する)、当該期間の開始時間及び終了時間(送電可能時間)等の情報が含まれる。また、アグリゲータ電力情報には、アグリゲータの識別情報(アグリゲータ名称等)が含まれていてもよい。 The second processing unit 200 of the aggregator system 20 generates aggregator power information regarding the power that can be transmitted via the aggregator based on the supplier power information acquired from the first blockchain BC1, and registers the aggregator power information in the second blockchain BC2. To do. The aggregator power information includes, for example, the power that can be transmitted by the aggregator in a certain period, the selling price per unit power (hereinafter referred to as "retail price"), the start time and the end time (transmission time) of the period, and the like. Information is included. Further, the aggregator power information may include aggregator identification information (aggregator name, etc.).
 また、第2処理部200は、需要者から購入を希望する期間、当該期間における希望買電量等の問い合わせを受け付けると、当該需要者に対する売電可否を示す情報を生成して、第2ブロックチェーンBC2に登録する。 Further, when the second processing unit 200 receives an inquiry from a consumer about the period when he / she wants to purchase the electric charge, the desired amount of electric charge purchased in the period, and the like, the second processing unit 200 generates information indicating whether or not the electric charge can be sold to the consumer, and the second blockchain. Register with BC2.
 アグリゲータシステム20の通知部201は、第2処理部200が生成したアグリゲータ電力情報、及び売電可否を示す情報を需要者に通知する。具体的には、通知部201は、第2ブロックチェーンBC2に登録されたアグリゲータ電力情報及び売電可否を示す情報を、インターレジャーを介して需要者の第3ブロックチェーンBC3に送信するように、第2ブロックチェーンBC2に指示を行う。 The notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information generated by the second processing unit 200 and the information indicating whether or not the power can be sold. Specifically, the notification unit 201 transmits the aggregator power information registered in the second blockchain BC2 and the information indicating whether or not the power can be sold to the third blockchain BC3 of the consumer via the interledger. Instruct the second blockchain BC2.
 第2ノード21のトランザクション生成部210は、第2ブロックチェーンBC2における電力取引に係るトランザクションを生成する。トランザクション生成部210は、生成したトランザクションを他の第2ノード21に送信することで、第2ブロックチェーンBC2のトランザクションプールに登録する。このトランザクションには、アグリゲータシステム20が生成したアグリゲータ電力情報も含まれる。トランザクション生成部210は、生成したトランザクションにスマートコントラクトを含めてもよい。スマートコントラクトは、例えば需要者による電力の購入契約に用いられる。 The transaction generation unit 210 of the second node 21 generates a transaction related to the electric power transaction in the second blockchain BC2. The transaction generation unit 210 registers the generated transaction in the transaction pool of the second blockchain BC2 by transmitting the generated transaction to another second node 21. This transaction also includes aggregator power information generated by the aggregator system 20. The transaction generation unit 210 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
 また、トランザクション生成部210は、アグリゲータシステム20からアグリゲータ電力情報、及び売電可否を示す情報の通知を指示されると、インターレジャーを介して第3ブロックチェーンBC3に、これらの情報を含むトランザクションを送信する。これにより、第3ブロックチェーンBC3のトランザクションプールには、アグリゲータ電力情報を含むトランザクションが登録される。 Further, when the transaction generation unit 210 is instructed by the aggregator system 20 to notify the aggregator power information and the information indicating whether or not the power can be sold, the transaction generation unit 210 transmits the transaction including the information to the third blockchain BC3 via the interledger. Send. As a result, the transaction including the aggregator power information is registered in the transaction pool of the third blockchain BC3.
 第2ノード21のブロック生成部211は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。ブロック生成部211の処理は、上述の第1ノード11のブロック生成部111における処理と同様である。 The block generation unit 211 of the second node 21 generates block data including a predetermined number of transactions registered in the transaction pool. The processing of the block generation unit 211 is the same as the processing of the block generation unit 111 of the first node 11 described above.
 第2ノード21のデータ登録部212は、ブロック生成部211が生成したブロックデータを他の第2ノード21に送信することで、ブロックデータを第2ブロックチェーンBC2に登録する。また、データ登録部212は、他の第2ノード21から受信したブロックデータを検証し、記憶媒体214に記憶する。データ登録部212の処理は、上述の第1ノード11のデータ登録部112における処理と同様である。 The data registration unit 212 of the second node 21 registers the block data in the second blockchain BC2 by transmitting the block data generated by the block generation unit 211 to another second node 21. Further, the data registration unit 212 verifies the block data received from the other second node 21 and stores it in the storage medium 214. The processing of the data registration unit 212 is the same as the processing in the data registration unit 112 of the first node 11 described above.
 第2ノード21の契約処理部213は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者と、需要者と、アグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部210で新たなトランザクションが生成されてもよい。 The contract processing unit 213 of the second node 21 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 210.
 第2ノード21の記憶媒体214には、各部で取得、生成されたデータが記憶される。例えば、記憶媒体214には、トランザクション生成部210が生成したトランザクション、ブロック生成部211が生成したブロックデータ等が記憶される。 The storage medium 214 of the second node 21 stores the data acquired and generated by each unit. For example, the storage medium 214 stores transactions generated by the transaction generation unit 210, block data generated by the block generation unit 211, and the like.
(需要者システム及び第3ブロックチェーンの機能構成)
 図4は、本開示の第1の実施形態に係る需要者システム及び第3ブロックチェーンの機能構成を示す図である。
 図4に示すように、需要者システム30は、取得部300と、選択部301とを備えている。また、第3ブロックチェーンBC3を構成する第3ノード31は、トランザクション生成部310と、ブロック生成部311と、データ登録部312と、契約処理部313と、記憶媒体314とを備えている。
(Functional configuration of consumer system and 3rd blockchain)
FIG. 4 is a diagram showing a functional configuration of a consumer system and a third blockchain according to the first embodiment of the present disclosure.
As shown in FIG. 4, the consumer system 30 includes an acquisition unit 300 and a selection unit 301. Further, the third node 31 constituting the third blockchain BC3 includes a transaction generation unit 310, a block generation unit 311, a data registration unit 312, a contract processing unit 313, and a storage medium 314.
 需要者システム30の取得部300は、複数のアグリゲータそれぞれから、アグリゲータ電力情報を取得する。例えば、取得部300は、需要者が電力を購入したい購入希望期間(開始時間及び終了時間)、当該購入希望期間における希望買電量、需要者(送電先)の位置情報等を設定し、アグリゲータシステム20に問い合わせを行う。取得部300は、アグリゲータシステム20からの応答である、売電可否を示す情報、及びアグリゲータ電力情報を、第2ブロックチェーンBC2及び第3ブロックチェーンBC3を通じて取得する。 The acquisition unit 300 of the consumer system 30 acquires aggregator power information from each of the plurality of aggregators. For example, the acquisition unit 300 sets the desired purchase period (start time and end time) in which the consumer wants to purchase electric power, the desired purchase amount in the desired purchase period, the position information of the consumer (transmission destination), and the like, and sets the aggregator system. Make an inquiry to 20. The acquisition unit 300 acquires the information indicating whether or not the power can be sold and the aggregator power information, which are the responses from the aggregator system 20, through the second blockchain BC2 and the third blockchain BC3.
 需要者システム30の選択部301は、第2ブロックチェーンBC2から取得したアグリゲータ電力情報に基づいて、複数のアグリゲータのうち少なくとも一つのアグリゲータを選択する。本実施形態に係る選択部301は、需要者により予め設定された条件(希望買電量及び希望買電価格)を満たすアグリゲータを一つ選択する。 The selection unit 301 of the consumer system 30 selects at least one aggregator from a plurality of aggregators based on the aggregator power information acquired from the second blockchain BC2. The selection unit 301 according to the present embodiment selects one aggregator that satisfies the conditions (desired power purchase amount and desired power purchase price) preset by the consumer.
 また、選択部301は、選択したアグリゲータに対し電力購入の発注を行うように、第3ブロックチェーンBC3に指示を行う。 In addition, the selection unit 301 instructs the third blockchain BC3 to place an order for power purchase from the selected aggregator.
 第3ノード31のトランザクション生成部310は、第2ブロックチェーンBC2における電力取引に係るトランザクションを生成する。トランザクション生成部310は、生成したトランザクションを他の第3ノード31に送信することで、第3ブロックチェーンBC3のトランザクションプールに登録する。本実施形態では、トランザクション生成部310は、需要者システム30から電力購入の発注の指示を受け付けると、当該購入契約に係るスマートコントラクトを含むトランザクションを生成する。 The transaction generation unit 310 of the third node 31 generates a transaction related to the electric power transaction in the second blockchain BC2. The transaction generation unit 310 registers the generated transaction in the transaction pool of the third blockchain BC3 by transmitting the generated transaction to another third node 31. In the present embodiment, when the transaction generation unit 310 receives an instruction to order an electric power purchase from the consumer system 30, it generates a transaction including a smart contract related to the purchase contract.
 第3ノード31のブロック生成部311は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。ブロック生成部311の処理は、上述の第1ノード11のブロック生成部111における処理と同様である。 The block generation unit 311 of the third node 31 generates block data including a predetermined number of transactions registered in the transaction pool. The processing of the block generation unit 311 is the same as the processing of the block generation unit 111 of the first node 11 described above.
 第3ノード31のデータ登録部312は、ブロック生成部311が生成したブロックデータを他の第3ノード31に送信することで、ブロックデータを第3ブロックチェーンBC3に登録する。また、データ登録部312は、他の第3ノード31から受信したブロックデータを検証し、記憶媒体314に記憶する。データ登録部312の処理は、上述の第1ノード11のデータ登録部112における処理と同様である。 The data registration unit 312 of the third node 31 registers the block data in the third blockchain BC3 by transmitting the block data generated by the block generation unit 311 to another third node 31. Further, the data registration unit 312 verifies the block data received from the other third node 31 and stores it in the storage medium 314. The processing of the data registration unit 312 is the same as the processing in the data registration unit 112 of the first node 11 described above.
 第3ノード31の契約処理部313は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者と、需要者と、アグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部310で新たなトランザクションが生成されてもよい。 The contract processing unit 313 of the third node 31 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 310.
 第3ノード31の記憶媒体314には、各部で取得、生成されたデータが記憶される。例えば、記憶媒体314には、トランザクション生成部310が生成したトランザクション、ブロック生成部311が生成したブロックデータ等が記憶される。 The storage medium 314 of the third node 31 stores the data acquired and generated by each unit. For example, the storage medium 314 stores transactions generated by the transaction generation unit 310, block data generated by the block generation unit 311 and the like.
(電力取引システムの処理フロー)
 図5は、本開示の第1の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。
 以下、図5を参照しながら、本実施形態に係る電力取引システム1における処理の流れについて説明する。
(Processing flow of electric power trading system)
FIG. 5 is a flowchart showing an example of processing of the electric power trading system according to the first embodiment of the present disclosure.
Hereinafter, the processing flow in the electric power trading system 1 according to the present embodiment will be described with reference to FIG.
 供給者システム10の第1処理部100は、供給者電力情報を生成し、第1ブロックチェーンBC1に登録する。また、供給者システム10の通知部101は、この供給者電力情報を、第1ブロックチェーンBC1及び第2ブロックチェーンBC2を通じて、複数のアグリゲータそれぞれに通知する(ステップS100)。そうすると、アグリゲータシステム20a、20bと接続されている第2ブロックチェーンBC2a、BC2bには、供給者システム10から通知された供給者電力情報が登録される(ステップS101)。 The first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies each of the plurality of aggregators of the supplier power information through the first blockchain BC1 and the second blockchain BC2 (step S100). Then, the supplier power information notified from the supplier system 10 is registered in the second blockchains BC2a and BC2b connected to the aggregator systems 20a and 20b (step S101).
 需要者システム30の取得部300は、複数のアグリゲータそれぞれに対し、需要者が購入を希望する電力に関する問い合わせを行う(ステップS102)。問い合わせには、例えば、需要者が電力を購入したい購入希望期間、希望買電量、需要者の位置情報等が含まれる。 The acquisition unit 300 of the consumer system 30 makes inquiries to each of the plurality of aggregators regarding the electric power that the consumer wants to purchase (step S102). The inquiry includes, for example, a desired purchase period for which the consumer wants to purchase electric power, a desired amount of electric charge, the location information of the consumer, and the like.
 アグリゲータシステム20a、20bの第2処理部200は、需要者からの問い合わせを受け付けると、アグリゲータ電力情報を生成するとともに、当該需要者への売電可否を判定する(ステップS103)。具体的には、第2処理部200は、需要者の購入希望期間に対応する供給者電力情報を第2ブロックチェーンBC2から取得する。第2処理部200は、取得した供給者電力情報に基づいて、送電可能電力、及び小売価格を設定し、アグリゲータ電力情報を生成する。 When the second processing unit 200 of the aggregator systems 20a and 20b receives an inquiry from a consumer, it generates aggregator power information and determines whether or not to sell the power to the consumer (step S103). Specifically, the second processing unit 200 acquires the supplier power information corresponding to the desired purchase period of the consumer from the second blockchain BC2. The second processing unit 200 sets the transmittable power and the retail price based on the acquired supplier power information, and generates the aggregator power information.
 具体的には、第2処理部200は、供給者電力情報に含まれる供給可能電力を上限として、需要者に売電可能な電力(売電契約が成立していない電力)を送電可能電力として設定する。また、第2処理部200は、アグリゲータが使用する送電網の最大送電容量を超えないように、送電可能電力を設定する。更に、第2処理部200は、供給者が供給可能な電力のうち所定の電力がアグリゲータに割り当てられている場合は、割り当てられた電力の範囲内で送電可能電力を設定してもよい。 Specifically, the second processing unit 200 sets the power that can be supplied to the consumer (the power for which the power sale contract has not been established) as the power that can be transmitted, up to the power that can be supplied included in the power information of the supplier. Set. In addition, the second processing unit 200 sets the transmittable power so as not to exceed the maximum transmission capacity of the transmission network used by the aggregator. Further, when a predetermined power among the powers that can be supplied by the supplier is assigned to the aggregator, the second processing unit 200 may set the power that can be transmitted within the range of the assigned powers.
 また、第2処理部200は、需要者の位置情報から送電経路を特定し、当該送電経路の距離等に応じた送電コストを、供給者電力情報に含まれる卸売価格に加算して小売価格を設定する。第2処理部200は、アグリゲータの電力売買マージンを更に加算した小売価格を設定してもよい。 In addition, the second processing unit 200 identifies the power transmission route from the position information of the consumer, adds the power transmission cost according to the distance of the power transmission route, etc. to the wholesale price included in the supplier power information, and adds the retail price. Set. The second processing unit 200 may set the retail price by further adding the power trading margin of the aggregator.
 なお、第2処理部200は、送電経路の送電予定量又は使用率を考慮して、小売価格を設定してもよい。送電経路の送電予定量又は使用率は、既に売買契約が完了している電力から算出されてもよいし、需要予測に基づいて算出されてもよい。例えば、第2処理部200は、送電経路の使用率が上限値(最大送電容量)に近いほど、小売価格を高くしてもよい。これにより、電力需要が多い(限界に近い)ことが予測される場合は、小売価格を高くして更なる需要を抑制させるなど、電力取引量を調整することができる。更に、第2処理部200は、需要者への給電開始(需要者の購入希望期間の開始時間)までの時間に応じて小売価格を設定してもよい。例えば、第2処理部200は、給電開始までの時間が長いほど小売価格を低く設定する。これにより、需要者に早期の買電を促すことができるため、将来の電力取引量を早い段階から把握することが容易となる。 The second processing unit 200 may set the retail price in consideration of the planned power transmission amount or the usage rate of the power transmission path. The planned transmission amount or usage rate of the transmission path may be calculated from the electric power for which the sales contract has already been completed, or may be calculated based on the demand forecast. For example, the second processing unit 200 may raise the retail price as the usage rate of the power transmission path approaches the upper limit value (maximum power transmission capacity). As a result, when electricity demand is expected to be high (close to the limit), the electricity transaction volume can be adjusted by raising the retail price and suppressing further demand. Further, the second processing unit 200 may set the retail price according to the time until the start of power supply to the consumer (the start time of the desired purchase period of the consumer). For example, the second processing unit 200 sets the retail price lower as the time until the start of power supply becomes longer. As a result, it is possible to encourage consumers to purchase electricity at an early stage, and it becomes easy to grasp the future electricity transaction volume from an early stage.
 また、アグリゲータが複数の送電経路を有している場合(例えば、複数の供給者それぞれと電力取引が可能である場合)、第2処理部200は、送電経路毎の小売価格を設定してもよい。この場合、送電経路毎に複数のアグリゲータ電力情報を生成するようにしてもよい。例えば、第2処理部200は、一の送電経路における使用率が上限値に近い場合、当該一の送電経路の送電コストよりも、使用率の低い他の送電経路の送電コストを低く設定してもよい。これにより、アグリゲータは、需要者を空いている送電経路(供給者)へ誘導することができる。 Further, when the aggregator has a plurality of power transmission paths (for example, when electric power can be traded with each of the plurality of suppliers), the second processing unit 200 may set the retail price for each power transmission path. Good. In this case, a plurality of aggregator power information may be generated for each transmission path. For example, when the usage rate in one transmission path is close to the upper limit value, the second processing unit 200 sets the transmission cost of another transmission path having a lower usage rate lower than the transmission cost of the one transmission path. May be good. As a result, the aggregator can guide the consumer to a vacant power transmission path (supplier).
 また、第2処理部200は、需要者の希望買電量が送電可能電力以下である場合、当該需要者への売電が可能であると判定する。第2処理部200は、希望買電量が送電可能電力を超える場合、当該需要者への売電が不可であると判定する。なお、第2処理部200は、需要者への送電経路における送電容量が所定値を超えている場合、当該需要者への売電が不可であると判定してもよい。これにより、アグリゲータにおける電力取引量を調整することが可能である。 Further, when the desired power purchase amount of the consumer is less than or equal to the power that can be transmitted, the second processing unit 200 determines that the power can be sold to the consumer. The second processing unit 200 determines that it is impossible to sell power to the consumer when the desired power purchase amount exceeds the power that can be transmitted. The second processing unit 200 may determine that it is impossible to sell power to the consumer when the power transmission capacity in the power transmission path to the consumer exceeds a predetermined value. This makes it possible to adjust the amount of electricity traded in the aggregator.
 次に、アグリゲータシステム20a、20bの通知部201は、アグリゲータ電力情報及び売電可否を示す情報を、第2ブロックチェーンBC2a、BC2b及び第3ブロックチェーンBC3を通じて、需要者に通知する(ステップS104)。そうすると、需要者システム30の取得部300は、アグリゲータシステム20a、20bから通知されたアグリゲータ電力情報及び売電可否を示す情報を、第3ブロックチェーンBC3から取得することができる。 Next, the notification unit 201 of the aggregator systems 20a and 20b notifies the consumer of the aggregator power information and the information indicating whether or not the power can be sold through the second blockchain BC2a, BC2b and the third blockchain BC3 (step S104). .. Then, the acquisition unit 300 of the consumer system 30 can acquire the aggregator power information notified from the aggregator systems 20a and 20b and the information indicating whether or not the power can be sold from the third blockchain BC3.
 需要者システム30の選択部301は、アグリゲータ電力情報及び売電可否を示す情報に基づいて、需要者により予め設定された条件を満たすアグリゲータを一つ選択する(ステップS105)。 The selection unit 301 of the consumer system 30 selects one aggregator that satisfies the conditions preset by the consumer based on the aggregator power information and the information indicating whether or not the power can be sold (step S105).
 具体的には、選択部301は、需要者により予め設定された希望買電量以上の送電が可能である(売電可能を示す情報を通知した)アグリゲータであって、且つ、卸売価格が需要者の希望買電価格よりも低いアグリゲータを選択する。複数のアグリゲータがこれらの条件を満たす場合、選択部301は、最も卸売価格が低いアグリゲータを選択する。図5の例では、選択部301は、アグリゲータ1を選択したとする。 Specifically, the selection unit 301 is an aggregator capable of transmitting more than the desired power purchase amount preset by the consumer (notifying information indicating that the power can be sold), and the wholesale price is the consumer. Select an aggregator that is lower than the desired electricity purchase price. When a plurality of aggregators satisfy these conditions, the selection unit 301 selects the aggregator having the lowest wholesale price. In the example of FIG. 5, it is assumed that the selection unit 301 selects the aggregator 1.
 なお、選択部301は、需要者からの問い合わせに最も早く応答し、且つ、需要者により設定された条件を満たすアグリゲータを選択するようにしてもよい。 The selection unit 301 may select an aggregator that responds to an inquiry from a consumer as soon as possible and satisfies the conditions set by the consumer.
 次に、需要者システム30の選択部301は、選択したアグリゲータ1に対し電力購入の発注を行うように、第3ブロックチェーンBC3に指示を行う。需要者システム30からの指示を受け付けると、第3ブロックチェーンBC3のトランザクション生成部310は、選択されたアグリゲータとの電力の購入契約に係るスマートコントラクトを含むトランザクションを生成し、選択したアグリゲータの第2ブロックチェーンBC2(図5の例では、第2ブロックチェーンBC2a)に送信することで、アグリゲータ1への発注を行う(ステップS106)。 Next, the selection unit 301 of the consumer system 30 instructs the third blockchain BC3 to place an order for power purchase with the selected aggregator 1. Upon receiving the instruction from the consumer system 30, the transaction generation unit 310 of the third blockchain BC3 generates a transaction including a smart contract related to the power purchase contract with the selected aggregator, and the second of the selected aggregator. An order is placed to the aggregator 1 by transmitting to the blockchain BC2 (in the example of FIG. 5, the second blockchain BC2a) (step S106).
 また、アグリゲータ1の第2ブロックチェーンBC2aでは、契約処理部213が第3ブロックチェーンBC3から受信したトランザクションに含まれるスマートコントラクトを実行し、需要者からの受注(売電)が可能か判断する(ステップS107)。契約処理部213は、受注が不可である場合(ステップS107:NO)、需要者の第3ブロックチェーンBC3に不成立の通知を行う(ステップS108)。例えば、契約処理部213は、需要者からの発注前にアグリゲータの送電経路の使用率が上限値に達した場合は、受注が不可であると判断する。一方、契約処理部213は、需要者の希望どおりに受注が可能である場合(ステップS107:YES)、需要者が購入を希望する電力について、第2ブロックチェーンBC2aを通じて供給者へ発注する(ステップS109)。 Further, in the second blockchain BC2a of the aggregator 1, the contract processing unit 213 executes the smart contract included in the transaction received from the third blockchain BC3, and determines whether it is possible to receive an order (power sale) from the consumer (power sale). Step S107). When the contract processing unit 213 cannot accept the order (step S107: NO), the contract processing unit 213 notifies the third blockchain BC3 of the consumer of the failure (step S108). For example, the contract processing unit 213 determines that the order cannot be received if the usage rate of the transmission path of the aggregator reaches the upper limit value before the order is placed from the consumer. On the other hand, when the contract processing unit 213 can receive an order as desired by the consumer (step S107: YES), the contract processing unit 213 places an order with the supplier through the second blockchain BC2a for the electric power that the consumer wants to purchase (step S107: YES). S109).
 また、アグリゲータ1から供給者への発注が行われると、このスマートコントラクトが含まれるトランザクションは、供給者の第1ブロックチェーンBC1に送信され、契約処理部113においてスマートコントラクトが更に実行される。具体的には、契約処理部113は、需要者への売電が可能であるかを判断し、売電可能である場合は(ステップS110:YES)、アグリゲータ1の第2ブロックチェーンBC2aへ約定を通知し(ステップS112)、売電が不可である場合は(ステップS110:NO)、アグリゲータ1の第2ブロックチェーンBC2aへ不成立の通知を行う(ステップS111)。例えば、契約処理部113は、需要者からの発注前に供給可能電力が変化し、需要者の希望買電量を供給できない場合は、売電が不可であると判断する。 Further, when an order is placed from the aggregator 1 to the supplier, the transaction including this smart contract is transmitted to the first blockchain BC1 of the supplier, and the smart contract is further executed in the contract processing unit 113. Specifically, the contract processing unit 113 determines whether the power can be sold to the consumer, and if the power can be sold (step S110: YES), the contract processing unit 113 executes the contract to the second blockchain BC2a of the aggregator 1. (Step S112), and if power sales are not possible (step S110: NO), the second blockchain BC2a of the aggregator 1 is notified of the failure (step S111). For example, the contract processing unit 113 determines that the electric power cannot be sold when the electric power that can be supplied changes before the order is placed by the consumer and the desired electric power purchase amount of the consumer cannot be supplied.
 また、需要者の第3ブロックチェーンBC3は、不成立の通知(ステップS113)、又は約定の通知(ステップS114)を、第2ブロックチェーンBC2aを通じて受領する。 Further, the third blockchain BC3 of the consumer receives a notification of failure (step S113) or a notification of execution (step S114) through the second blockchain BC2a.
 なお、ステップS106からS111までの処理は、トランザクションに含まれるスマートコントラクトで予め規定されている。このため、供給者、アグリゲータ、需要者それぞれが確認、承認等の処理を行うことなく、第1ブロックチェーンBC1、第2ブロックチェーンBC2、及び第3ブロックチェーンBC3で自動的に処理される。 The processing from steps S106 to S111 is predetermined by the smart contract included in the transaction. Therefore, it is automatically processed by the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 without each of the supplier, the aggregator, and the consumer performing processing such as confirmation and approval.
 また、需要者は、不成立の結果を受領した場合(ステップS113)、ステップS105に戻り、前回選択したアグリゲータ1とは異なるアグリゲータ(たとえば、アグリゲータ2)を選択して発注を行うようにしてもよい。 Further, when the consumer receives the result of failure (step S113), he / she may return to step S105 and select an aggregator (for example, an aggregator 2) different from the previously selected aggregator 1 to place an order. ..
(作用効果)
 以上のように、本実施形態に係る電力取引システム1は、インターレジャーを利用して、供給者の第1ブロックチェーンBC1、アグリゲータの第2ブロックチェーンBC2、及び需要者の第3ブロックチェーンそれぞれに登録された電力取引に係る各種データの受け渡しを行うことができる。これにより、電力取引システム1は、特定のアグリゲータが中央集権的な管理を行うことなく、電力取引の参加者(供給者、アグリゲータ、需要者)それぞれのブロックチェーンを接続、連携させて、信頼性の高い電力取引を行うことができる。
(Action effect)
As described above, the electric power trading system 1 according to the present embodiment uses the interleisure to connect the first blockchain BC1 of the supplier, the second blockchain BC2 of the aggregator, and the third blockchain of the consumer to each of them. It is possible to transfer various data related to registered electric power transactions. As a result, the electric power trading system 1 connects and links the blockchains of each electric power trading participant (supplier, aggregator, consumer) without centralized management by a specific aggregator, and is reliable. Can carry out high power trading.
 また、参加者はそれぞれ既存のシステムとのインタフェースをブロックチェーンに対して持てばよいため、参加者が電力取引システム1に参加する際のコストを低減させることができる。また、各ブロックチェーンは、参加者それぞれの管理下にかるため、参加者個々の事情に応じて改修することが容易である。 In addition, since each participant only needs to have an interface with the existing system for the blockchain, the cost when the participant participates in the electric power trading system 1 can be reduced. In addition, since each blockchain is under the control of each participant, it is easy to modify it according to the circumstances of each participant.
 また、電力取引システム1は、スマートコントラクトを利用して、電力取引の契約を自動的に行うことができるので、短時間での契約成立を実現することができる。これにより、電力取引システム1は、リアルタイムで変動する需給状況への追従を行うことが可能となる。 Further, since the electric power trading system 1 can automatically make a contract for electric power trading by using a smart contract, it is possible to conclude a contract in a short time. As a result, the electric power trading system 1 can follow the fluctuating supply and demand situation in real time.
 また、電力取引システム1において、アグリゲータシステム20は、卸売価格に対し、アグリゲータの送電コストを加算した小売価格を設定する。
 例えば、ある供給者1の卸売価格が低価格であったとしても、当該供給者1から需要者への送電経路の距離が長く、送電コストが高くなる場合がある。そうすると、この供給者1よりも高い卸売価格を設定しているものの、需要者の近隣にあり送電コストが供給者1よりも低い供給者2から売電した方が、総額が安くなる可能性がある。本実施形態に係る電力取引システム1において、アグリゲータから需要者に提示される小売価格は送電コストが含まれているので、需要者はより安価なアグリゲータを選択することができる。
Further, in the electric power trading system 1, the aggregator system 20 sets a retail price obtained by adding the transmission cost of the aggregator to the wholesale price.
For example, even if the wholesale price of a certain supplier 1 is low, the distance of the transmission path from the supplier 1 to the consumer may be long, and the transmission cost may be high. Then, although the wholesale price is set higher than this supplier 1, it is possible that the total amount will be cheaper if the power is sold from the supplier 2 which is in the vicinity of the consumer and whose transmission cost is lower than that of the supplier 1. is there. In the electric power trading system 1 according to the present embodiment, since the retail price presented to the consumer by the aggregator includes the transmission cost, the consumer can select a cheaper aggregator.
 また、アグリゲータシステム20は、アグリゲータの電力売買マージンを更に加算した小売価格を設定してもよい。送電コスト及び電力売買マージンは、アグリゲータ毎に変わり得る。また、同じアグリゲータであっても、送電を行う日時における需要の過多等に応じて、送電コスト及び電力売買マージンが変化する可能性がある。このため、需要者は、買電を希望する期間において、より安価な小売価格を提示するアグリゲータを選択することができる。 Further, the aggregator system 20 may set a retail price in which the power trading margin of the aggregator is further added. Transmission costs and power trading margins can vary from aggregator to aggregator. Further, even if the same aggregator is used, the power transmission cost and the power trading margin may change depending on the excessive demand on the date and time of power transmission. Therefore, the consumer can select an aggregator that offers a cheaper retail price during the period in which he / she desires to purchase electricity.
<第2の実施形態>
 次に、本開示の第2の実施形態に係る電力取引システム1について説明する。
 第1の実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
<Second embodiment>
Next, the electric power trading system 1 according to the second embodiment of the present disclosure will be described.
The components common to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
(全体構成)
 図6は、本開示の第2の実施形態に係る電力取引システムの概略図である。
 図6に示すように、本実施形態に係る電力取引システム1では、複数のアグリゲータの第2ブロックチェーンBC2が直列に接続されていてもよい。
 図6の例では、電力取引システム1に三つのアグリゲータ1~3が参加している。この三つのアグリゲータのうち、アグリゲータ1の第2ブロックチェーンBC2aと、アグリゲータ2の第2ブロックチェーンBC2bとは、インターレジャーを介して通信可能に接続される。
(overall structure)
FIG. 6 is a schematic view of the electric power trading system according to the second embodiment of the present disclosure.
As shown in FIG. 6, in the electric power trading system 1 according to the present embodiment, the second blockchain BC2 of a plurality of aggregators may be connected in series.
In the example of FIG. 6, three aggregators 1 to 3 participate in the electric power trading system 1. Of these three aggregators, the second blockchain BC2a of the aggregator 1 and the second blockchain BC2b of the aggregator 2 are communicably connected via interledgers.
 図7は、本開示の第2の実施形態に係る電力取引システムを説明するための図である。
 図7には、アグリゲータ1~3は、それぞれ異なるサービス範囲R1~R3を有している。アグリゲータ1~3は、変電所T1~T9、及び、変電所間を接続する送電線により、サービス範囲内に位置する需要者に送電を行うことができる。図7の例では、アグリゲータ3のサービス範囲R3内には、供給者及び需要者の双方が含まれるため、需要者は、アグリゲータ3を介してこの供給者から受電することが可能である。一方、アグリゲータ1のサービス範囲R1内には需要者が含まれておらず、また、アグリゲータ2のサービス範囲R2内には供給者が含まれていない。このため、需要者は、アグリゲータ1、又はアグリゲータ2のみを介して、この供給者から受電することはできない。
FIG. 7 is a diagram for explaining the electric power trading system according to the second embodiment of the present disclosure.
In FIG. 7, the aggregators 1 to 3 have different service ranges R1 to R3. Aggregators 1 to 3 can transmit power to consumers located within the service range by means of transmission lines connecting the substations T1 to T9 and the substations. In the example of FIG. 7, since both the supplier and the consumer are included in the service range R3 of the aggregator 3, the consumer can receive power from the supplier via the aggregator 3. On the other hand, the service range R1 of the aggregator 1 does not include the consumer, and the service range R2 of the aggregator 2 does not include the supplier. Therefore, the consumer cannot receive power from this supplier only through the aggregator 1 or the aggregator 2.
 しかしながら、本実施形態に係る電力取引システム1では、アグリゲータ1のサービス範囲R1と、アグリゲータ2のサービス範囲R2とが重複する領域に位置する変電所T5を経由して、アグリゲータ1の送電経路(供給者~変電所T1~変電所T5)と、アグリゲータ2の送電経路(変電所T5~変電所T6~需要者)とに跨って送電を行うことが可能である。つまり、需要者は、図7の例では、アグリゲータ1及びアグリゲータ2を介して、供給者から受電することが可能である。 However, in the electric power trading system 1 according to the present embodiment, the power transmission path (supply) of the aggregator 1 is passed through the substation T5 located in the area where the service range R1 of the aggregator 1 and the service range R2 of the aggregator 2 overlap. It is possible to transmit power across the person-substation T1 to substation T5) and the power transmission path of the aggregator 2 (substation T5 to substation T6 to consumer). That is, in the example of FIG. 7, the consumer can receive power from the supplier via the aggregator 1 and the aggregator 2.
(電力取引システムの処理フロー)
 図8は、本開示の第2の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。
 以下、図8を参照しながら、本実施形態に係る電力取引システム1における処理の流れについて説明する。なお、図8のステップS100~S114については、第1の実施形態における処理の流れ(図5)と同様の箇所があるため、重複する説明については省略する。
(Processing flow of electric power trading system)
FIG. 8 is a flowchart showing an example of processing of the electric power trading system according to the second embodiment of the present disclosure.
Hereinafter, the processing flow in the electric power trading system 1 according to the present embodiment will be described with reference to FIG. Note that steps S100 to S114 of FIG. 8 have the same parts as the processing flow (FIG. 5) in the first embodiment, and therefore duplicate description will be omitted.
 供給者システム10の第1処理部100は、供給者電力情報を生成し、第1ブロックチェーンBC1に登録する。また、供給者システム10の通知部101は、この供給者電力情報を、複数のアグリゲータそれぞれに通知する(ステップS100)。なお、本実施形態に係る第1処理部100は、供給者が送電可能なアグリゲータのみ、即ち、供給者をサービス範囲に含むアグリゲータ1及び3のみに供給者電力情報を通知するようにしてもよい。そうすると、第2ブロックチェーンBC2a、BC2cにこの供給者電力情報が登録される(ステップS101)。 The first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies each of the plurality of aggregators of the supplier power information (step S100). The first processing unit 100 according to the present embodiment may notify the supplier power information only to the aggregators capable of transmitting power by the supplier, that is, only the aggregators 1 and 3 including the supplier in the service range. .. Then, the supplier power information is registered in the second blockchains BC2a and BC2c (step S101).
 また、アグリゲータシステム20の第2処理部200は、他のアグリゲータを経由して自身のサービス範囲外に送電可能である場合、取得した供給者電力情報を他のアグリゲータに更に送信する(ステップS201)。図7の例では、アグリゲータ1は、変電所T5を経由してアグリゲータ2のサービス範囲R2に送電可能である。このため、アグリゲータ1(アグリゲータシステム20a)の第2処理部200は、取得した供給者電力情報をアグリゲータ2に取得した供給者電力情報を送信する。そうすると、アグリゲータ2の第2ブロックチェーンBC2bには、アグリゲータ1から送信された供給者電力情報が登録される(ステップS202)。 Further, when the second processing unit 200 of the aggregator system 20 can transmit power outside its own service range via another aggregator, the acquired supplier power information is further transmitted to the other aggregator (step S201). .. In the example of FIG. 7, the aggregator 1 can transmit power to the service range R2 of the aggregator 2 via the substation T5. Therefore, the second processing unit 200 of the aggregator 1 (aggregator system 20a) transmits the acquired supplier power information to the aggregator 2. Then, the supplier power information transmitted from the aggregator 1 is registered in the second blockchain BC2b of the aggregator 2 (step S202).
 需要者システム30の取得部300は、複数のアグリゲータそれぞれに対し、需要者が購入を希望する電力に関する問い合わせを行う(ステップS102)。このとき、取得部300は、需要者へ送電可能なアグリゲータ、即ち、需要者をサービス範囲に含むアグリゲータ2及び3のみに問い合わせを行うようにしてもよい。 The acquisition unit 300 of the consumer system 30 makes inquiries to each of the plurality of aggregators regarding the electric power that the consumer wants to purchase (step S102). At this time, the acquisition unit 300 may make an inquiry only to the aggregator capable of transmitting power to the consumer, that is, the aggregators 2 and 3 including the consumer in the service range.
 アグリゲータシステム20の第2処理部200は、需要者からの問い合わせを受け付けると、当該需要者に対する小売価格を含む、アグリゲータ電力情報を生成して(ステップS103)、売電可否を示す情報とともに需要者に通知する(ステップS104)。 When the second processing unit 200 of the aggregator system 20 receives an inquiry from a consumer, it generates aggregator power information including the retail price for the consumer (step S103), and the consumer together with information indicating whether or not the power can be sold. (Step S104).
 また、第2処理部200は、他のアグリゲータを経由して自身のサービス範囲外に送電可能である場合、他のアグリゲータにアグリゲータ電力情報の提供を要求する(ステップS203)。図8の例では、アグリゲータ2(アグリゲータシステム20b)の第2処理部200は、アグリゲータ1に対してアグリゲータ電力情報の提供を要求する。そうすると、アグリゲータ1(アグリゲータシステム20a)の第2処理部200は、アグリゲータ1の送電コスト(図7の例では、供給者から変電所T5までの送電コスト)を含む小売価格を設定して、アグリゲータ電力情報を生成し、アグリゲータ2に通知する(ステップS204)。 Further, the second processing unit 200 requests the other aggregator to provide the aggregator power information when the power can be transmitted outside the service range of the other aggregator via the other aggregator (step S203). In the example of FIG. 8, the second processing unit 200 of the aggregator 2 (aggregator system 20b) requests the aggregator 1 to provide the aggregator power information. Then, the second processing unit 200 of the aggregator 1 (aggregator system 20a) sets the retail price including the power transmission cost of the aggregator 1 (in the example of FIG. 7, the power transmission cost from the supplier to the substation T5), and sets the aggregator. Power information is generated and notified to the aggregator 2 (step S204).
 次に、アグリゲータ2(アグリゲータシステム20b)の第2処理部200は、アグリゲータ1から取得したアグリゲータ電力情報の小売価格(第1小売価格)に、アグリゲータ2の送電コスト(図7の例では、変電所Tか5ら需要者までの送電コスト)を更に加算して、アグリゲータ2の小売価格(第2小売価格)を設定する。アグリゲータ2は、計算した第2小売価格を含むアグリゲータ電力情報を生成して(ステップS205)、売電可否を示す情報とともに需要者へ通知する(ステップS104)。 Next, the second processing unit 200 of the aggregator 2 (aggregator system 20b) adds the transmission cost of the aggregator 2 (in the example of FIG. 7, the substation) to the retail price (first retail price) of the aggregator power information acquired from the aggregator 1. The retail price (second retail price) of the aggregator 2 is set by further adding (transmission cost from T or 5 to the consumer). The aggregator 2 generates aggregator power information including the calculated second retail price (step S205), and notifies the consumer together with the information indicating whether or not the power can be sold (step S104).
 ステップS105~S114の処理の流れは、第1の実施形態と同様である。なお、本実施形態では、需要者が選択したアグリゲータ2へ発注すると、まず選択されたアグリゲータ2において受注可否の判断が行われる(ステップS107)。アグリゲータ2において受注不可である場合(ステップS107:NO)、需要者へ不成立が通知され(ステップS111)、受注可能である場合(ステップS107:YES)、更にアグリゲータ2からアグリゲータ1へこの需要者の発注に係るトランザクションが送信される。アグリゲータ1では、発注を受け付けると同様に受注可否の判断が行われる(ステップS107’)。アグリゲータ1において受注可能である場合(ステップS107’:YES)、アグリゲータ1から供給者に発注が行われる(ステップS109’)。一方、アグリゲータ1において受注不可である場合(ステップS107’:NO)、アグリゲータ2へ不成立が通知される(ステップS111’)。この不成立の通知は、アグリゲータ2から需要者へも通知される(ステップS111)。更に、供給者において受注不可であると判断されると(ステップS110:NO)、アグリゲータ1に不成立が通知され(ステップS111’)、受注可能であると判断されると(ステップS110:YES)、アグリゲータ1に約定が通知される(ステップS112’)。この約定又は不成立の通知は、アグリゲータ1からアグリゲータ2にも通知される(ステップS111、S112)。従って、需要者は、供給者、アグリゲータ1、及びアグリゲータ2の三者のうち何れもが受注可能である場合、約定の通知を受領し(ステップS114)、これら三者のうち何れかが受注不可である場合、不成立の通知を受領する(ステップS113)。需要者は、不成立の結果を受領した場合、第1の実施形態と同様に、ステップS105に戻り、他のアグリゲータ(例えば、アグリゲータ3)を選択して発注を行うようにしてもよい。 The processing flow of steps S105 to S114 is the same as that of the first embodiment. In the present embodiment, when an order is placed from the aggregator 2 selected by the consumer, the selected aggregator 2 first determines whether or not the order can be received (step S107). When the aggregator 2 cannot receive an order (step S107: NO), the consumer is notified of the failure (step S111), and when the order can be received (step S107: YES), the aggregator 2 further sends the aggregator 1 to the aggregator 1. The transaction related to the order is sent. The aggregator 1 determines whether or not to accept an order in the same manner as when receiving an order (step S107'). When the aggregator 1 can receive an order (step S107': YES), the aggregator 1 places an order with the supplier (step S109'). On the other hand, when the aggregator 1 cannot receive an order (step S107': NO), the aggregator 2 is notified of the failure (step S111'). The notification of failure is also notified from the aggregator 2 to the consumer (step S111). Further, if the supplier determines that the order cannot be received (step S110: NO), the aggregator 1 is notified of the failure (step S111'), and if it is determined that the order can be received (step S110: YES), The aggregator 1 is notified of the execution (step S112'). The notification of the contract or failure is also notified from the aggregator 1 to the aggregator 2 (steps S111 and S112). Therefore, if any of the supplier, the aggregator 1, and the aggregator 2 can receive an order, the consumer receives a notification of the contract (step S114), and one of these three cannot receive an order. If, the notification of failure is received (step S113). When the consumer receives the result of failure, he / she may return to step S105 and select another aggregator (for example, aggregator 3) to place an order, as in the first embodiment.
(作用効果)
 従来の仕組みでは、需要者は、供給者及び需要者の双方をサービス範囲に含むアグリゲータ(図7の例では、アグリゲータ3)のみと電力取引を行うことが可能であった。しかしながら、本実施形態に係る電力取引システム1は、複数のアグリゲータを接続して送電を行うことができるので、需要者が選択可能なアグリゲータを増やすことができる。
 また、図7の例では、アグリゲータ3は、アグリゲータ1及び2よりも広いサービス範囲R3を有しているため、送電網の管理費用等により送電コストが高くなる可能性がある。この場合、アグリゲータ3の小売価格(アグリゲータ3の送電コストを含む小売価格)よりも、アグリゲータ2の小売価格(アグリゲータ1及び2の送電コストを含む小売価格)の方が安くなる可能性がある。このような場合であっても、需要者はアグリゲータ2及び3それぞれの小売価格を参照して、より安価なアグリゲータを選択することができる。
(Action effect)
In the conventional mechanism, the consumer can carry out electric power trading only with an aggregator (aggregator 3 in the example of FIG. 7) that includes both the supplier and the consumer in the service range. However, since the electric power trading system 1 according to the present embodiment can connect a plurality of aggregators to transmit power, it is possible to increase the number of aggregators that can be selected by the consumer.
Further, in the example of FIG. 7, since the aggregator 3 has a service range R3 wider than that of the aggregators 1 and 2, the power transmission cost may increase due to the management cost of the power grid and the like. In this case, the retail price of the aggregator 2 (retail price including the transmission cost of the aggregators 1 and 2) may be lower than the retail price of the aggregator 3 (retail price including the transmission cost of the aggregator 3). Even in such a case, the consumer can select a cheaper aggregator by referring to the retail prices of the aggregators 2 and 3 respectively.
<第3の実施形態>
 次に、本開示の第3の実施形態に係る電力取引システム1について説明する。
 第1、第2の実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
<Third embodiment>
Next, the electric power trading system 1 according to the third embodiment of the present disclosure will be described.
The components common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 図9は、本開示の第3の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。
 本実施形態に係る電力取引システム1において、需要者システム30は、複数のアグリゲータに電力購入の発注を行う。以下、図9を参照しながら、本実施形態に係る電力取引システム1の処理の流れについて説明する。
FIG. 9 is a flowchart showing an example of processing of the electric power trading system according to the third embodiment of the present disclosure.
In the electric power trading system 1 according to the present embodiment, the consumer system 30 places an order for electric power purchase from a plurality of aggregators. Hereinafter, the processing flow of the electric power trading system 1 according to the present embodiment will be described with reference to FIG.
 図9に示すように、本実施形態に係る需要者システム30において、選択部301は、図5のステップS105~S106に代えて、ステップS301及びS302を実行する。 As shown in FIG. 9, in the consumer system 30 according to the present embodiment, the selection unit 301 executes steps S301 and S302 instead of steps S105 to S106 in FIG.
 選択部301は、複数のアグリゲータから取得したアグリゲータ電力情報を参照し、需要者により予め設定された希望買電量を満たすアグリゲータが存在しない場合は、複数のアグリゲータを選択する(ステップS301)。例えば、アグリゲータ1及び2の両方の送電可能電力を総計すると希望買電量を満たす場合、選択部301は、これら二つのアグリゲータ1及び2を選択する(ステップS301)。 The selection unit 301 refers to the aggregator power information acquired from the plurality of aggregators, and selects a plurality of aggregators when there is no aggregator that satisfies the desired power purchase amount preset by the consumer (step S301). For example, when the desired power purchase amount is satisfied by summing up the transmittable powers of both aggregators 1 and 2, the selection unit 301 selects these two aggregators 1 and 2 (step S301).
 次に、選択部301は、選択したアグリゲータ1及び2に対し電力購入の発注を行うように、第3ブロックチェーンBC3に指示を行う。このとき、選択部301は各アグリゲータからの購入量を合わせて指定する。図9の例では、選択部301は、アグリゲータ1から希望買電量の3分の1を購入し、アグリゲータ2から希望買電量の3分の2を購入するように指示する。需要者システム30からの指示を受け付けると、第3ブロックチェーンBC3のトランザクション生成部310は、選択されたアグリゲータ1及び2との電力の購入契約に係るスマートコントラクトを含むトランザクションをそれぞれ生成し、選択したアグリゲータ1及び2の第2ブロックチェーンBC2a及びBC2bに送信することで、アグリゲータ1への発注を行う(ステップS302)。 Next, the selection unit 301 instructs the third blockchain BC3 to place an order for power purchase to the selected aggregators 1 and 2. At this time, the selection unit 301 also specifies the purchase amount from each aggregator. In the example of FIG. 9, the selection unit 301 instructs the aggregator 1 to purchase one-third of the desired power purchase amount and the aggregator 2 to purchase two-thirds of the desired power purchase amount. Upon receiving the instruction from the consumer system 30, the transaction generation unit 310 of the third blockchain BC3 generates and selects a transaction including a smart contract related to the power purchase contract with the selected aggregators 1 and 2, respectively. An order is placed to the aggregator 1 by transmitting the power to the second blockchains BC2a and BC2b of the aggregator 1 and 2 (step S302).
 ステップS107~S114の処理の流れは、第1の実施形態と同様である。なお、本実施形態では、需要者の発注先となるアグリゲータ1及びアグリゲータ2の双方において、受注可否の判断が行われる(ステップS107)。アグリゲータ1及びアグリゲータ2のそれぞれにおいて、受注不可(ステップS107:NO)である場合は需要者へ不成立が通知され(ステップS108)、受注可能(ステップS107:YES)である場合は供給者へ発注が行われる(ステップS109)。供給者では、アグリゲータ1及びアグリゲータ2それぞれの発注に対して受注可否が判断される(ステップS110)。アグリゲータ1及びアグリゲータ2のそれぞれには、供給者が受注不可(ステップS110:NO)である場合は不成立が通知され(ステップS111)、受注可能(ステップS110:YES)である場合は約定が通知される。この不成立又は約定の通知は、需要者にも通知される(ステップS113、S114)。需要者は、一つ又は複数のアグリゲータから不成立の通知を受領した場合(ステップS113)、ステップS301に戻り、不成立となったアグリゲータの代替となる他のアグリゲータを再選択して発注を行うようにしてもよい。不成立となったアグリゲータが一つのみの場合は、需要者は代替となるアグリゲータを一つのみ選択してもよいし、複数選択してもよい。 The processing flow of steps S107 to S114 is the same as that of the first embodiment. In the present embodiment, both the aggregator 1 and the aggregator 2, which are the ordering parties of the consumer, determine whether or not to accept the order (step S107). In each of the aggregator 1 and the aggregator 2, if the order cannot be received (step S107: NO), the consumer is notified of the failure (step S108), and if the order can be received (step S107: YES), the order is placed with the supplier. It is performed (step S109). The supplier determines whether or not an order can be received for each of the aggregator 1 and aggregator 2 orders (step S110). Each of the aggregator 1 and the aggregator 2 is notified of the failure (step S111) when the supplier is unable to receive an order (step S110: NO), and is notified of the contract when the supplier is able to receive an order (step S110: YES). To. The notification of the failure or execution is also notified to the consumer (steps S113 and S114). When the consumer receives the notification of failure from one or more aggregators (step S113), the consumer returns to step S301 and reselects another aggregator to replace the failed aggregator to place an order. You may. When only one aggregator is unsuccessful, the consumer may select only one alternative aggregator or may select a plurality of alternative aggregators.
(作用効果)
 以上のように、本実施形態に係る電力取引システム1において、需要者システム30の選択部301は、複数のアグリゲータを選択して、電力購入の発注を行うことができる。これにより、個々のアグリゲータが送電可能な電力が足りない場合であっても、需要者は希望する買電量を確保することが可能となる。
(Action effect)
As described above, in the electric power trading system 1 according to the present embodiment, the selection unit 301 of the consumer system 30 can select a plurality of aggregators and place an order for electric power purchase. As a result, even if the electric power that can be transmitted by each aggregator is insufficient, the consumer can secure the desired amount of electric power purchase.
 また、このように複数のアグリゲータを経由して送電を行うことにより、需要が集中しても送配電可能な設備を設けるのではなく、電力取引システム1全体で需要を満たすような送電網の構築が可能となる。更に、電力取引システム1においては、輻輳時は電力使用量を抑えるインセンティブが需要者側に生じる。このため、設備の初期費用、維持管理費等を削減でき、その分電気料金を安価とすることができる。 Further, by transmitting power via a plurality of aggregators in this way, it is not necessary to provide equipment capable of transmitting and distributing power even if demand is concentrated, but to construct a power transmission network that satisfies the demand in the entire power trading system 1. Is possible. Further, in the electric power trading system 1, there is an incentive on the consumer side to suppress the amount of electric power used during congestion. Therefore, the initial cost of the equipment, the maintenance cost, and the like can be reduced, and the electricity charge can be reduced accordingly.
<第4の実施形態>
 以下、本開示の第4の実施形態に係る電力取引システム1について、図を参照しながら説明する。
<Fourth Embodiment>
Hereinafter, the electric power trading system 1 according to the fourth embodiment of the present disclosure will be described with reference to the drawings.
(全体構成)
 図10は、本開示の第4の実施形態に係る電力取引システムの概略図である。
 本実施形態に係る電力取引システム1において、供給者及び需要者は、アグリゲータを介して電力取引を行う。需要者は、企業、一般家庭等である。供給者は、発電事業者、送配電事業者等である。アグリゲータは、需要者が必要とする電力と、供給者より供給される電力との需給バランスを調整する事業者である。
(overall structure)
FIG. 10 is a schematic view of the electric power trading system according to the fourth embodiment of the present disclosure.
In the electric power trading system 1 according to the present embodiment, the supplier and the consumer perform electric power trading via an aggregator. Consumers are businesses, ordinary households, etc. The suppliers are power generation companies, power transmission and distribution companies, and the like. An aggregator is a business operator that adjusts the supply-demand balance between the electric power required by a consumer and the electric power supplied by the supplier.
 図10に示すように、電力取引システム1は、供給者システム10、アグリゲータシステム20、需要者システム30、第1ブロックチェーンBC1、第2ブロックチェーンBC2、及び、第3ブロックチェーンBC3を備えている。 As shown in FIG. 10, the electric power trading system 1 includes a supplier system 10, an aggregator system 20, a consumer system 30, a first blockchain BC1, a second blockchain BC2, and a third blockchain BC3. ..
 供給者システム10は、電力取引に係る供給者側の各種処理を行うシステムである。
 また、供給者システム10は、第1ブロックチェーンBC1と接続されている。第1ブロックチェーンBC1は、供給者の電力取引に係る情報が登録される。例えば、図10に示すように、複数の供給者それぞれが供給者システム10a~10c、及び第1ブロックチェーンBC1a~BC1cを有していてもよい。
The supplier system 10 is a system that performs various processes on the supplier side related to electric power transactions.
Further, the supplier system 10 is connected to the first blockchain BC1. In the first blockchain BC1, information related to the electric power transaction of the supplier is registered. For example, as shown in FIG. 10, each of the plurality of suppliers may have a supplier system 10a to 10c and a first blockchain BC1a to BC1c.
 アグリゲータシステム20は、電力取引に係るアグリゲータ側の各種処理を行うシステムである。
 また、アグリゲータシステム20は、第2ブロックチェーンBC2と接続されている。第2ブロックチェーンBC2は、供給者が供給する電力のカテゴリそれぞれに対応して複数設けられ、アグリゲータのカテゴリ別の電力取引に係る情報が登録される。電力のカテゴリとは、電力の発電方法、供給地域、発電規模等である。
The aggregator system 20 is a system that performs various processes on the aggregator side related to electric power trading.
Further, the aggregator system 20 is connected to the second blockchain BC2. A plurality of second blockchain BC2s are provided corresponding to each category of electric power supplied by the supplier, and information related to electric power transactions for each category of the aggregator is registered. The electric power category includes the power generation method, supply area, power generation scale, and the like.
 例えば、図10に示すように、アグリゲータが太陽光発電、風力発電、火力発電により発電された電力の取引を仲介する場合、アグリゲータはこれらの発電方法(カテゴリ)それぞれに対応する第2ブロックチェーンBC2a、BC2b、BC2dを有している。第2ブロックチェーンBC2a~BC2cそれぞれは、対応するカテゴリの電力を供給する供給者の第1ブロックチェーンBC1a~BC1cと接続可能である。更に、アグリゲータは、カテゴリを問わず買電したい需要者向けに、全てのカテゴリに対応する第2ブロックチェーンBC2dを有していてもよい。この第2ブロックチェーンBC2dは、供給者の全ての第1ブロックチェーンBC1a~BC1cと接続可能である。また、アグリゲータは、所定の条件を満たす複数のカテゴリに対応する第2ブロックチェーンBC2を有していてもよい。例えば、アグリゲータは、図10に示すように、自然エネルギー由来の電力を供給可能な太陽光発電、及び風力発電に対応する第2ブロックチェーンBC2eを有していてもよい。この第2ブロックチェーンBC2eは、供給者の第1ブロックチェーンBC1a、BC1bと接続可能である。これにより、例えば自然エネルギー由来の電力であれば何れでもよいと考える需要者は、複数のカテゴリに対応する第2ブロックチェーンBC2eを通じて取引を簡易に行うことができる。 For example, as shown in FIG. 10, when an aggregator mediates the transaction of electric power generated by solar power generation, wind power generation, and thermal power generation, the aggregator has a second blockchain BC2a corresponding to each of these power generation methods (categories). , BC2b, BC2d. Each of the second blockchains BC2a to BC2c can be connected to the first blockchain BC1a to BC1c of the supplier that supplies the power of the corresponding category. Further, the aggregator may have a second blockchain BC2d corresponding to all categories for consumers who want to purchase electricity regardless of the category. The second blockchain BC2d can be connected to all the first blockchains BC1a to BC1c of the supplier. Further, the aggregator may have a second blockchain BC2 corresponding to a plurality of categories satisfying a predetermined condition. For example, as shown in FIG. 10, the aggregator may have a second blockchain BC2e corresponding to photovoltaic power generation and wind power generation capable of supplying electric power derived from natural energy. The second blockchain BC2e can be connected to the supplier's first blockchains BC1a and BC1b. As a result, for example, a consumer who thinks that any electric power derived from renewable energy may be used can easily carry out a transaction through the second blockchain BC2e corresponding to a plurality of categories.
 なお、本実施形態では、複数のアグリゲータそれぞれがアグリゲータシステム20a~20d、及び第2ブロックチェーンBC2a~BC2dを有している態様について説明するが、これに限られることはない。他の実施形態では、一つのアグリゲータが一つのアグリゲータシステム20、及び複数の第2ブロックチェーンBC2を有していてもよい。また、同一のカテゴリに対応する第2ブロックチェーンBC2が複数あってもよい。 In the present embodiment, a mode in which each of the plurality of aggregators has the aggregator systems 20a to 20d and the second blockchain BC2a to BC2d will be described, but the present invention is not limited to this. In other embodiments, one aggregator may have one aggregator system 20 and a plurality of second blockchain BC2s. Further, there may be a plurality of second blockchain BC2s corresponding to the same category.
 需要者システム30は、電力取引に係る需要者側の各種処理を行うシステムである。
 また、需要者システム30は、第3ブロックチェーンBC3と接続されている。第3ブロックチェーンBC3は、複数の第2ブロックチェーンBC2のうち、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンBC2と接続可能であり、需要者の電力取引に係る情報が登録される。
 なお、図10には、説明を簡略化するために需要者が一つのみ存在している例が示されているが、これに限られることはない。他の実施形態では、需要者は複数存在してもよい。この場合、各需要者は、それぞれ需要者システム30及び第3ブロックチェーンBC3を有している。
The consumer system 30 is a system that performs various processes on the consumer side related to electric power transactions.
Further, the consumer system 30 is connected to the third blockchain BC3. The third blockchain BC3 can be connected to the second blockchain BC2 corresponding to the category preset by the consumer among the plurality of second blockchain BC2, and the information related to the electric power transaction of the consumer is registered. To.
Note that FIG. 10 shows an example in which only one consumer exists for the sake of simplification of the explanation, but the present invention is not limited to this. In other embodiments, there may be multiple consumers. In this case, each consumer has a consumer system 30 and a third blockchain BC3, respectively.
 第1ブロックチェーンBC1、第2ブロックチェーンBC2、及び第3ブロックチェーンBC3それぞれに登録されるデータ(情報)のフォーマットは、これらのブロックチェーンを管理する供給者、アグリゲータ、需要者それぞれにより独自に設定される。また、このフォーマットは、供給者、アグリゲータ、需要者個々の事情に応じて変更されてもよい。 The format of the data (information) registered in each of the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 is set independently by each of the supplier, aggregator, and consumer who manages these blockchains. Will be done. In addition, this format may be changed according to the individual circumstances of the supplier, the aggregator, and the consumer.
 また、第1ブロックチェーンBC1及び第2ブロックチェーンBC2は、インターレジャーを利用して通信可能に接続されている。第2ブロックチェーンBC2及び第3ブロックチェーンBC3についても同様である。インターレジャーは、規格の異なる台帳(データ)間で価値を交換し、取引を行うための仕組みである。例えば、本実施形態に係る各ブロックチェーンは、他のブロックチェーンとのコネクタとなるノードを有しており、これらノード間で必要なデータの交換を行う。 Further, the first blockchain BC1 and the second blockchain BC2 are connected so as to be able to communicate using interleisure. The same applies to the second blockchain BC2 and the third blockchain BC3. Interledger is a mechanism for exchanging values and conducting transactions between ledgers (data) with different standards. For example, each blockchain according to the present embodiment has nodes that serve as connectors to other blockchains, and necessary data is exchanged between these nodes.
(供給者システム及び第1ブロックチェーンの機能構成)
 図11は、本開示の第4の実施形態に係る供給者システム及び第1ブロックチェーンの機能構成を示す図である。
 図11に示すように、供給者システム10は、第1処理部100と、通知部101とを備えている。また、第1ブロックチェーンBC1を構成する複数の第1ノード11それぞれは、トランザクション生成部110と、ブロック生成部111と、データ登録部112と、契約処理部113と、記憶媒体114とを備えている。
(Functional configuration of supplier system and first blockchain)
FIG. 11 is a diagram showing a functional configuration of a supplier system and a first blockchain according to a fourth embodiment of the present disclosure.
As shown in FIG. 11, the supplier system 10 includes a first processing unit 100 and a notification unit 101. Further, each of the plurality of first nodes 11 constituting the first blockchain BC1 includes a transaction generation unit 110, a block generation unit 111, a data registration unit 112, a contract processing unit 113, and a storage medium 114. There is.
 供給者システム10の第1処理部100は、供給者が供給可能な電力に関する供給者電力情報を生成し、第1ブロックチェーンBC1に登録する。供給者電力情報には、例えば、ある期間に供給可能な電力を示す供給可能電力、当該期間における単位電力あたりの売電価格(以下、「卸売価格」と記載する)、当該期間の開始時間及び終了時間(供給可能時間)、電力のカテゴリ等の情報が含まれる。電力のカテゴリは、電力の発電方法、供給地域、発電規模等を示す情報である。また、供給者電力情報には、供給者の識別情報(供給者名等)が含まれていてもよい。 The first processing unit 100 of the supplier system 10 generates the supplier electric power information regarding the electric power that can be supplied by the supplier and registers it in the first blockchain BC1. The supplier power information includes, for example, the power that can be supplied indicating the power that can be supplied in a certain period, the selling price per unit power in the period (hereinafter referred to as "wholesale price"), the start time of the period, and the start time of the period. Information such as end time (supplyable time) and power category is included. The electric power category is information indicating the power generation method, supply area, power generation scale, and the like. Further, the supplier power information may include supplier identification information (supplier name, etc.).
 供給者システム10の通知部101は、第1処理部100が生成した供給者電力情報を、カテゴリに対応する第2ブロックチェーンBC2に送信する。具体的には、通知部101は、供給者電力情報に含まれるカテゴリに対応する第2ブロックチェーンBC2を接続先として指定し、インターレジャーを介して指定された第2ブロックチェーンBC2に当該供給者電力情報を送信するように、第1ブロックチェーンBC1に指示を行う。 The notification unit 101 of the supplier system 10 transmits the supplier power information generated by the first processing unit 100 to the second blockchain BC2 corresponding to the category. Specifically, the notification unit 101 designates the second blockchain BC2 corresponding to the category included in the supplier power information as the connection destination, and the supplier to the second blockchain BC2 designated via the interledger. Instruct the first blockchain BC1 to transmit the power information.
 第1ノード11のトランザクション生成部110は、第1ブロックチェーンBC1における電力取引に係るトランザクションを生成する。トランザクション生成部110は、生成したトランザクションを他の第1ノード11に送信することで、第1ブロックチェーンBC1のトランザクションプールに登録する。このトランザクションには、供給者システム10が生成した供給者電力情報も含まれる。トランザクション生成部110は、生成したトランザクションにスマートコントラクトを含めてもよい。スマートコントラクトは、例えば需要者による電力の購入契約に用いられる。 The transaction generation unit 110 of the first node 11 generates a transaction related to the electric power transaction in the first blockchain BC1. The transaction generation unit 110 registers the generated transaction in the transaction pool of the first blockchain BC1 by transmitting the generated transaction to another first node 11. This transaction also includes supplier power information generated by the supplier system 10. The transaction generation unit 110 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
 また、トランザクション生成部110は、供給者システム10から供給者電力情報の通知を指示されると、インターレジャーを介して指定された第2ブロックチェーンBC2に当該供給者電力情報を含むトランザクションを送信する。これにより、第2ブロックチェーンBC2のトランザクションプールには、供給者電力情報を含むトランザクションが登録される。 Further, when the transaction generation unit 110 is instructed by the supplier system 10 to notify the supplier power information, the transaction generation unit 110 transmits a transaction including the supplier power information to the second blockchain BC2 designated via the interledger. .. As a result, the transaction including the supplier power information is registered in the transaction pool of the second blockchain BC2.
 第1ノード11のブロック生成部111は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。例えば、各第1ノード11において、ブロック生成部111は、複数のトランザクションを含むブロックデータが所定のハッシュ値を持つように、ブロックデータに含めるナンス値を計算する。この場合、最も早く計算を終えた第1ノード11がブロックデータを生成する(Proof of Work)。なお、他の実施形態では、ブロック生成部111はProof of Stake方式等を用いてブロックデータを生成するようにしてもよい。 The block generation unit 111 of the first node 11 generates block data including a predetermined number of transactions registered in the transaction pool. For example, in each first node 11, the block generation unit 111 calculates the nonce value to be included in the block data so that the block data including the plurality of transactions has a predetermined hash value. In this case, the first node 11 that has completed the calculation earliest generates the block data (Proof of Work). In another embodiment, the block generation unit 111 may generate block data by using the Proof of Stake method or the like.
 第1ノード11のデータ登録部112は、ブロック生成部111が生成したブロックデータを他の第1ノード11に送信することで、ブロックデータを第1ブロックチェーンBC1に登録する。また、データ登録部112は、他の第1ノード11から受信したブロックデータを検証し、記憶媒体114に記憶する。このとき、データ登録部112は、例えば、他の第1ノード11から受信したブロックデータのハッシュ値を計算し、当該ハッシュ値が所定の条件を満たしているか否かを判定することでブロックを検証する。 The data registration unit 112 of the first node 11 registers the block data in the first blockchain BC1 by transmitting the block data generated by the block generation unit 111 to the other first node 11. Further, the data registration unit 112 verifies the block data received from the other first node 11 and stores it in the storage medium 114. At this time, the data registration unit 112 verifies the block by, for example, calculating the hash value of the block data received from the other first node 11 and determining whether or not the hash value satisfies a predetermined condition. To do.
 第1ノード11の契約処理部113は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者と、需要者と、アグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部110で新たなトランザクションが生成されてもよい。 The contract processing unit 113 of the first node 11 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 110.
 第1ノード11の記憶媒体114には、各部で取得、生成されたデータが、供給者の電力取引に係る情報として記憶される。例えば、記憶媒体114には、トランザクション生成部110が生成したトランザクション、ブロック生成部111が生成したブロックデータ等が記憶される。 The data acquired and generated by each unit is stored in the storage medium 114 of the first node 11 as information related to the power transaction of the supplier. For example, the storage medium 114 stores transactions generated by the transaction generation unit 110, block data generated by the block generation unit 111, and the like.
(アグリゲータシステム及び第2ブロックチェーンの機能構成)
 図12は、本開示の第4の実施形態に係るアグリゲータシステム及び第2ブロックチェーンの機能構成を示す図である。
 図12に示すように、アグリゲータシステム20は、第2処理部200と、通知部201とを備えている。また、第2ブロックチェーンBC2を構成する複数の第2ノード21それぞれは、トランザクション生成部210と、ブロック生成部211と、データ登録部212と、契約処理部213と、記憶媒体214とを備えている。
(Functional configuration of aggregator system and 2nd blockchain)
FIG. 12 is a diagram showing a functional configuration of an aggregator system and a second blockchain according to a fourth embodiment of the present disclosure.
As shown in FIG. 12, the aggregator system 20 includes a second processing unit 200 and a notification unit 201. Further, each of the plurality of second nodes 21 constituting the second blockchain BC2 includes a transaction generation unit 210, a block generation unit 211, a data registration unit 212, a contract processing unit 213, and a storage medium 214. There is.
 アグリゲータシステム20の第2処理部200は、第1ブロックチェーンBC1から取得した供給者電力情報に基づいて、アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、第2ブロックチェーンBC2に登録する。アグリゲータ電力情報には、例えば、ある期間におけるアグリゲータの送電可能電力、単位電力あたりの売電価格(以下、「小売価格」と記載する)、当該期間の開始時間及び終了時間(送電可能時間)、電力のカテゴリ等の情報が含まれる。また、アグリゲータ電力情報には、アグリゲータの識別情報(アグリゲータ名称等)が含まれていてもよい。 The second processing unit 200 of the aggregator system 20 generates aggregator power information regarding the power that can be transmitted via the aggregator based on the supplier power information acquired from the first blockchain BC1, and registers the aggregator power information in the second blockchain BC2. To do. The aggregator power information includes, for example, the power that can be transmitted by the aggregator in a certain period, the selling price per unit power (hereinafter referred to as "retail price"), the start time and the end time (transmitable time) of the period, and so on. Contains information such as power categories. Further, the aggregator power information may include aggregator identification information (aggregator name, etc.).
 なお、本実施形態では、第1ブロックチェーンBC1は、供給者電力情報に含まれるカテゴリに対応した第2ブロックチェーンにのみ、当該供給者電力情報を送信する。例えば、図10に示すように、太陽光発電を行う供給者の第1ブロックチェーンBC1aは、太陽光発電に対応した第2ブロックチェーンBC2aにのみ、供給者電力情報を送信する。なお、第1ブロックチェーンBC1aは、複数のカテゴリに対応する第2ブロックチェーンBC2dが存在する場合、この第2ブロックチェーンBC2dにも供給者電力情報を送信してもよい。このようにすることで、複数の第2ブロックチェーンBC2それぞれには、特定のカテゴリの供給者電力情報及びアグリゲータ電力情報のみが登録される。 In the present embodiment, the first blockchain BC1 transmits the supplier electric power information only to the second blockchain corresponding to the category included in the supplier electric power information. For example, as shown in FIG. 10, the first blockchain BC1a of the supplier performing the photovoltaic power generation transmits the supplier power information only to the second blockchain BC2a corresponding to the photovoltaic power generation. When the second blockchain BC2d corresponding to a plurality of categories exists, the first blockchain BC1a may also transmit the supplier power information to the second blockchain BC2d. By doing so, only the supplier power information and the aggregator power information of a specific category are registered in each of the plurality of second blockchain BC2s.
 また、第2処理部200は、需要者から購入を希望する期間、当該期間における希望買電量等の問い合わせを受け付けると、当該需要者に対する売電可否を示す情報を生成して、第2ブロックチェーンBC2に登録する。 In addition, when the second processing unit 200 receives an inquiry from a consumer about the period when he / she wants to purchase, the desired amount of electric charge purchased during the period, etc., the second processing unit 200 generates information indicating whether or not the electric charge can be sold to the consumer, and the second blockchain. Register with BC2.
 アグリゲータシステム20の通知部201は、第2処理部200が生成したアグリゲータ電力情報、及び売電可否を示す情報を需要者に通知する。具体的には、通知部201は、第2ブロックチェーンBC2に登録されたアグリゲータ電力情報及び売電可否を示す情報を、インターレジャーを介して需要者の第3ブロックチェーンBC3に送信するように、第2ブロックチェーンBC2に指示を行う。 The notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information generated by the second processing unit 200 and the information indicating whether or not the power can be sold. Specifically, the notification unit 201 transmits the aggregator power information registered in the second blockchain BC2 and the information indicating whether or not the power can be sold to the third blockchain BC3 of the consumer via the interledger. Instruct the second blockchain BC2.
 第2ノード21のトランザクション生成部210は、第2ブロックチェーンBC2における電力取引に係るトランザクションを生成する。トランザクション生成部210は、生成したトランザクションを他の第2ノード21に送信することで、第2ブロックチェーンBC2のトランザクションプールに登録する。このトランザクションには、アグリゲータシステム20が生成したアグリゲータ電力情報も含まれる。トランザクション生成部210は、生成したトランザクションにスマートコントラクトを含めてもよい。スマートコントラクトは、例えば需要者による電力の購入契約に用いられる。 The transaction generation unit 210 of the second node 21 generates a transaction related to the electric power transaction in the second blockchain BC2. The transaction generation unit 210 registers the generated transaction in the transaction pool of the second blockchain BC2 by transmitting the generated transaction to another second node 21. This transaction also includes aggregator power information generated by the aggregator system 20. The transaction generation unit 210 may include a smart contract in the generated transaction. Smart contracts are used, for example, in contracts for purchasing electricity by consumers.
 また、トランザクション生成部210は、アグリゲータシステム20からアグリゲータ電力情報、及び売電可否を示す情報の通知を指示されると、インターレジャーを介して第3ブロックチェーンBC3に、これらの情報を含むトランザクションを送信する。これにより、第3ブロックチェーンBC3のトランザクションプールには、アグリゲータ電力情報を含むトランザクションが登録される。 Further, when the transaction generation unit 210 is instructed by the aggregator system 20 to notify the aggregator power information and the information indicating whether or not the power can be sold, the transaction generation unit 210 transmits the transaction including the information to the third blockchain BC3 via the interledger. Send. As a result, the transaction including the aggregator power information is registered in the transaction pool of the third blockchain BC3.
 第2ノード21のブロック生成部211は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。ブロック生成部211の処理は、上述の第1ノード11のブロック生成部111における処理と同様である。 The block generation unit 211 of the second node 21 generates block data including a predetermined number of transactions registered in the transaction pool. The processing of the block generation unit 211 is the same as the processing of the block generation unit 111 of the first node 11 described above.
 第2ノード21のデータ登録部212は、ブロック生成部211が生成したブロックデータを他の第2ノード21に送信することで、ブロックデータを第2ブロックチェーンBC2に登録する。また、データ登録部212は、他の第2ノード21から受信したブロックデータを検証し、記憶媒体214に記憶する。データ登録部212の処理は、上述の第1ノード11のデータ登録部112における処理と同様である。 The data registration unit 212 of the second node 21 registers the block data in the second blockchain BC2 by transmitting the block data generated by the block generation unit 211 to another second node 21. Further, the data registration unit 212 verifies the block data received from the other second node 21 and stores it in the storage medium 214. The processing of the data registration unit 212 is the same as the processing in the data registration unit 112 of the first node 11 described above.
 第2ノード21の契約処理部213は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者と、需要者と、アグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部210で新たなトランザクションが生成されてもよい。 The contract processing unit 213 of the second node 21 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 210.
 第2ノード21の記憶媒体214には、各部で取得、生成されたデータが、アグリゲータの電力取引に係る情報として記憶される。例えば、記憶媒体214には、トランザクション生成部210が生成したトランザクション、ブロック生成部211が生成したブロックデータ等が記憶される。 The data acquired and generated by each part is stored in the storage medium 214 of the second node 21 as information related to the power transaction of the aggregator. For example, the storage medium 214 stores transactions generated by the transaction generation unit 210, block data generated by the block generation unit 211, and the like.
(需要者システム及び第3ブロックチェーンの機能構成)
 図13は、本開示の第4の実施形態に係る需要者システム及び第3ブロックチェーンの機能構成を示す図である。
 図13に示すように、需要者システム30は、取得部300と、選択部301とを備えている。また、第3ブロックチェーンBC3を構成する複数の第3ノード31それぞれは、トランザクション生成部310と、ブロック生成部311と、データ登録部312と、契約処理部313と、記憶媒体314とを備えている。
(Functional configuration of consumer system and 3rd blockchain)
FIG. 13 is a diagram showing a functional configuration of the consumer system and the third blockchain according to the fourth embodiment of the present disclosure.
As shown in FIG. 13, the consumer system 30 includes an acquisition unit 300 and a selection unit 301. Further, each of the plurality of third nodes 31 constituting the third blockchain BC3 includes a transaction generation unit 310, a block generation unit 311, a data registration unit 312, a contract processing unit 313, and a storage medium 314. There is.
 需要者システム30の取得部300は、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンBC2からアグリゲータ電力情報を取得する。例えば、需要者が太陽光発電により発電された電力のみを購入することを設定しているとする。この場合、取得部300は、太陽光発電に対応する第2ブロックチェーンBC2aに対し、需要者の要求する電力に関する問い合わせを行う。この問い合わせには、例えば、需要者が希望する電力のカテゴリ、購入希望期間(開始時間及び終了時間)、当該購入希望期間における希望買電量、需要者(送電先)の位置情報等の情報が含まれる。
 なお、取得部300は、需要者が複数のカテゴリを設定していた場合、各カテゴリに対応する第2ブロックチェーンBC2それぞれからアグリゲータ電力情報を取得する。
The acquisition unit 300 of the consumer system 30 acquires the aggregator power information from the second blockchain BC2 corresponding to the category preset by the consumer. For example, suppose a consumer has set up to purchase only the electricity generated by solar power generation. In this case, the acquisition unit 300 makes an inquiry to the second blockchain BC2a corresponding to the photovoltaic power generation regarding the electric power required by the consumer. This inquiry includes, for example, information such as the category of electric power desired by the consumer, the desired purchase period (start time and end time), the desired purchase amount in the desired purchase period, and the location information of the consumer (transmission destination). Is done.
When the consumer has set a plurality of categories, the acquisition unit 300 acquires the aggregator power information from each of the second blockchain BC2 corresponding to each category.
 また、取得部300は、第2ブロックチェーンBC2からの応答である、売電可否を示す情報、及びアグリゲータ電力情報を、第3ブロックチェーンBC3を通じて取得する。 Further, the acquisition unit 300 acquires the information indicating whether or not the power can be sold and the aggregator power information, which are the responses from the second blockchain BC2, through the third blockchain BC3.
 需要者システム30の選択部301は、需要者が複数のカテゴリを設定していた場合、各カテゴリに対応するアグリゲータ電力情報に基づいて、どのカテゴリの電力を購入するか選択する。例えば、選択部301は、需要者により予め設定された第1条件(希望買電量、希望買電価格、電力が供給開始されるまでの応答時間、及びカテゴリの優先順位のうち少なくとも一つ)を満たすカテゴリを一つ選択する。 When the consumer has set a plurality of categories, the selection unit 301 of the consumer system 30 selects which category of power to purchase based on the aggregator power information corresponding to each category. For example, the selection unit 301 sets the first condition (at least one of the desired power purchase amount, the desired power purchase price, the response time until the power supply starts, and the priority of the category) set in advance by the consumer. Select one category to meet.
 また、選択部301は、選択したカテゴリの電力を提供するアグリゲータに対し電力購入の発注を行うように、第3ブロックチェーンBC3に指示を行う。 In addition, the selection unit 301 instructs the third blockchain BC3 to place an order for power purchase from the aggregator that provides the power of the selected category.
 第3ノード31のトランザクション生成部310は、第2ブロックチェーンBC2における電力取引に係るトランザクションを生成する。トランザクション生成部310は、生成したトランザクションを他の第3ノード31に送信することで、第3ブロックチェーンBC3のトランザクションプールに登録する。本実施形態では、トランザクション生成部310は、需要者システム30から電力購入の発注の指示を受け付けると、当該購入契約に係るスマートコントラクトを含むトランザクションを生成する。 The transaction generation unit 310 of the third node 31 generates a transaction related to the electric power transaction in the second blockchain BC2. The transaction generation unit 310 registers the generated transaction in the transaction pool of the third blockchain BC3 by transmitting the generated transaction to another third node 31. In the present embodiment, when the transaction generation unit 310 receives an instruction to order an electric power purchase from the consumer system 30, it generates a transaction including a smart contract related to the purchase contract.
 第3ノード31のブロック生成部311は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。ブロック生成部311の処理は、上述の第1ノード11のブロック生成部111における処理と同様である。 The block generation unit 311 of the third node 31 generates block data including a predetermined number of transactions registered in the transaction pool. The processing of the block generation unit 311 is the same as the processing of the block generation unit 111 of the first node 11 described above.
 第3ノード31のデータ登録部312は、ブロック生成部311が生成したブロックデータを他の第3ノード31に送信することで、ブロックデータを第3ブロックチェーンBC3に登録する。また、データ登録部312は、他の第3ノード31から受信したブロックデータを検証し、記憶媒体314に記憶する。データ登録部312の処理は、上述の第1ノード11のデータ登録部112における処理と同様である。 The data registration unit 312 of the third node 31 registers the block data in the third blockchain BC3 by transmitting the block data generated by the block generation unit 311 to another third node 31. Further, the data registration unit 312 verifies the block data received from the other third node 31 and stores it in the storage medium 314. The processing of the data registration unit 312 is the same as the processing in the data registration unit 112 of the first node 11 described above.
 第3ノード31の契約処理部313は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者と、需要者と、アグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部310で新たなトランザクションが生成されてもよい。 The contract processing unit 313 of the third node 31 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 310.
 第3ノード31の記憶媒体314には、各部で取得、生成されたデータが、需要者の電力取引に係る情報として記憶される。例えば、記憶媒体314には、トランザクション生成部310が生成したトランザクション、ブロック生成部311が生成したブロックデータ等が記憶される。 In the storage medium 314 of the third node 31, the data acquired and generated by each unit is stored as information related to the electric power transaction of the consumer. For example, the storage medium 314 stores transactions generated by the transaction generation unit 310, block data generated by the block generation unit 311 and the like.
(電力取引システムの処理フロー)
 図14は、本開示の第4の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。
 以下、図14を参照しながら、本実施形態に係る電力取引システム1における処理の流れについて説明する。
(Processing flow of electric power trading system)
FIG. 14 is a flowchart showing an example of processing of the electric power trading system according to the fourth embodiment of the present disclosure.
Hereinafter, the processing flow in the electric power trading system 1 according to the present embodiment will be described with reference to FIG.
 供給者システム10の第1処理部100は、供給者電力情報を生成し、第1ブロックチェーンBC1に登録する。また、供給者システム10の通知部101は、この供給者電力情報を第1ブロックチェーンBC1及び第2ブロックチェーンBC2を通じてアグリゲータに通知する(ステップS1000)。このとき、第1処理部100は、供給者電力情報に含まれるカテゴリに対応する第2ブロックチェーンBC2に当該供給者電力情報を送信する。図10の例では、太陽光発電による電力を供給する供給者の供給者システム10において、第1処理部100は、太陽光発電のカテゴリに対応する第2ブロックチェーンBC2a、BC2dに供給者電力情報を送信する。同様に、第1処理部100は、風力発電に関する供給者電力情報を第2ブロックチェーンBC2b、BC2dに送信し、火力発電に関する供給者電力情報を第2ブロックチェーンBC2c、BC2dに送信する。そうすると、アグリゲータの第2ブロックチェーンBC2a~BC2dには、対応するカテゴリに関する供給者電力情報がそれぞれ登録される(ステップS1010)。 The first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies the aggregator of the supplier power information through the first blockchain BC1 and the second blockchain BC2 (step S1000). At this time, the first processing unit 100 transmits the supplier electric power information to the second blockchain BC2 corresponding to the category included in the supplier electric power information. In the example of FIG. 10, in the supplier system 10 of the supplier that supplies the electric power by the photovoltaic power generation, the first processing unit 100 supplies the supplier electric power information to the second blockchains BC2a and BC2d corresponding to the category of the photovoltaic power generation. To send. Similarly, the first processing unit 100 transmits the supplier electric power information regarding wind power generation to the second blockchains BC2b and BC2d, and transmits the supplier electric power information regarding thermal power generation to the second blockchains BC2c and BC2d. Then, the supplier power information related to the corresponding category is registered in the second blockchain BC2a to BC2d of the aggregator (step S1010).
 需要者システム30の取得部300は、需要者により予め設定されたカテゴリの電力を提供するアグリゲータに対し、電力購入に関する問い合わせを行う(ステップS1020)。この問い合わせは、第1ブロックチェーンBC1及び、設定されたカテゴリに対応する第2ブロックチェーンBC2を通じてアグリゲータシステム20に送信される。例えば、需要者が太陽光発電による電力の購入を希望している場合、取得部300は、太陽光発電に対応する第2ブロックチェーンBC2aに問い合わせを送信する。 The acquisition unit 300 of the consumer system 30 makes an inquiry regarding the purchase of electric power to the aggregator that provides the electric power of the category preset by the consumer (step S1020). This inquiry is transmitted to the aggregator system 20 through the first blockchain BC1 and the second blockchain BC2 corresponding to the set category. For example, when the consumer wants to purchase electric power by solar power generation, the acquisition unit 300 transmits an inquiry to the second blockchain BC2a corresponding to the solar power generation.
 なお、需要者は、複数のカテゴリを設定してもよい。例えば、需要者は、自然エネルギー由来の電力の何れかの購入を希望している場合、太陽光発電及び風力発電の二つのカテゴリを設定してもよい。この場合、取得部300は、太陽光発電に対応する第2ブロックチェーンBC2aに問い合わせを送信するとともに、図14に破線で示すように、風力発電のカテゴリに対応する第2ブロックチェーンBC2bにも問い合わせを送信する。また、需要者は、どのカテゴリの電力であってもよい場合は、全てのカテゴリを設定してもよい。この場合、取得部300は、各カテゴリに対応する第2ブロックチェーンBC2a~BC2cそれぞれに問い合わせを送信してもよいし、全てのカテゴリに対応する第2ブロックチェーンBC2dのみに問い合わせを送信してもよい。 The consumer may set a plurality of categories. For example, a consumer may set up two categories, solar power and wind power, if he wishes to purchase any of the electricity derived from renewable energy. In this case, the acquisition unit 300 transmits an inquiry to the second blockchain BC2a corresponding to the solar power generation, and also inquires to the second blockchain BC2b corresponding to the wind power generation category as shown by the broken line in FIG. To send. In addition, the consumer may set all categories if the electric power may be in any category. In this case, the acquisition unit 300 may send an inquiry to each of the second blockchains BC2a to BC2c corresponding to each category, or may send an inquiry only to the second blockchain BC2d corresponding to all the categories. Good.
 アグリゲータシステム20の第2処理部200は、需要者からの問い合わせを受け付けると、アグリゲータ電力情報を生成するとともに、当該需要者への売電可否を判定する(ステップS1030)。例えば、需要者が太陽光発電による電力の購入を希望している場合、第2処理部200は、第2ブロックチェーンBC2aに登録されている供給者電力情報に基づいて送電可能電力、及び小売価格を設定し、アグリゲータ電力情報を生成する。 When the second processing unit 200 of the aggregator system 20 receives an inquiry from a consumer, it generates aggregator power information and determines whether or not to sell the power to the consumer (step S1030). For example, when a consumer wants to purchase electric power generated by photovoltaic power generation, the second processing unit 200 can transmit electric power and retail price based on the supplier electric power information registered in the second blockchain BC2a. To generate aggregator power information.
 具体的には、第2処理部200は、供給者電力情報に含まれる供給可能電力を上限として、需要者に売電可能な電力(売電契約が成立していない電力)である送電可能電力を設定する。また、第2処理部200は、アグリゲータが使用する送電網の最大送電容量を超えないように、送電可能電力を設定する。更に、第2処理部200は、供給者が供給可能な電力のうち所定の電力がアグリゲータに割り当てられている場合は、割り当てられた電力の範囲内で送電可能電力を設定してもよい。 Specifically, the second processing unit 200 is capable of selling power to the consumer (power for which a power selling contract has not been concluded), up to the power that can be supplied included in the supplier power information. To set. In addition, the second processing unit 200 sets the transmittable power so as not to exceed the maximum transmission capacity of the transmission network used by the aggregator. Further, when a predetermined power among the powers that can be supplied by the supplier is assigned to the aggregator, the second processing unit 200 may set the power that can be transmitted within the range of the assigned powers.
 また、第2処理部200は、需要者の位置情報から送電経路を特定し、当該送電経路の距離等に応じた送電コストを、供給者電力情報に含まれる卸売価格に加算して小売価格を設定する。第2処理部200は、アグリゲータの電力売買マージンを更に加算した小売価格を設定してもよい。 In addition, the second processing unit 200 identifies the power transmission route from the position information of the consumer, adds the power transmission cost according to the distance of the power transmission route, etc. to the wholesale price included in the supplier power information, and adds the retail price. Set. The second processing unit 200 may set the retail price by further adding the power trading margin of the aggregator.
 なお、第2処理部200は、送電経路の送電予定量又は使用率を考慮して、小売価格を設定してもよい。送電経路の送電予定量又は使用率は、既に売買契約が完了している電力から算出されてもよいし、需要予測に基づいて算出されてもよい。例えば、第2処理部200は、送電経路の使用率が上限値(最大送電容量)に近いほど、小売価格を高くしてもよい。これにより、電力需要が多い(限界に近い)ことが予測される場合は、小売価格を高くして更なる需要を抑制させるなど、電力取引量を調整することができる。更に、第2処理部200は、需要者への給電開始(需要者の購入希望期間の開始時間)までの時間に応じて小売価格を設定してもよい。例えば、第2処理部200は、給電開始までの時間が長いほど小売価格を低く設定する。これにより、需要者に早期の買電を促すことができるため、将来の電力取引量を早い段階から把握することが容易となる。 The second processing unit 200 may set the retail price in consideration of the planned power transmission amount or the usage rate of the power transmission path. The planned transmission amount or usage rate of the transmission path may be calculated from the electric power for which the sales contract has already been completed, or may be calculated based on the demand forecast. For example, the second processing unit 200 may raise the retail price as the usage rate of the power transmission path approaches the upper limit value (maximum power transmission capacity). As a result, when electricity demand is expected to be high (close to the limit), the electricity transaction volume can be adjusted by raising the retail price and suppressing further demand. Further, the second processing unit 200 may set the retail price according to the time until the start of power supply to the consumer (the start time of the desired purchase period of the consumer). For example, the second processing unit 200 sets the retail price lower as the time until the start of power supply becomes longer. As a result, it is possible to encourage consumers to purchase electricity at an early stage, and it becomes easy to grasp the future electricity transaction volume from an early stage.
 また、アグリゲータが複数の送電経路を有している場合(例えば、複数の供給者それぞれと電力取引が可能である場合)、第2処理部200は、送電経路毎の小売価格を設定してもよい。この場合、送電経路毎に複数のアグリゲータ電力情報を生成するようにしてもよい。例えば、第2処理部200は、一の送電経路における使用率が上限値に近い場合、当該一の送電経路の送電コストよりも、使用率の低い他の送電経路の送電コストを低く設定してもよい。これにより、アグリゲータは、需要者を空いている送電経路(供給者)へ誘導することができる。 Further, when the aggregator has a plurality of power transmission paths (for example, when electric power can be traded with each of the plurality of suppliers), the second processing unit 200 may set the retail price for each power transmission path. Good. In this case, a plurality of aggregator power information may be generated for each transmission path. For example, when the usage rate in one transmission path is close to the upper limit value, the second processing unit 200 sets the transmission cost of another transmission path having a lower usage rate lower than the transmission cost of the one transmission path. May be good. As a result, the aggregator can guide the consumer to a vacant power transmission path (supplier).
 また、第2処理部200は、需要者の希望買電量が送電可能電力以下である場合、当該需要者への売電が可能であると判定する。第2処理部200は、希望買電量が送電可能電力を超える場合、当該需要者への売電が不可であると判定する。なお、第2処理部200は、需要者への送電経路における送電容量が所定値を超えている場合、当該需要者への売電が不可であると判定してもよい。これにより、アグリゲータにおける電力取引量を調整することが可能である。 Further, when the desired power purchase amount of the consumer is less than or equal to the power that can be transmitted, the second processing unit 200 determines that the power can be sold to the consumer. The second processing unit 200 determines that it is impossible to sell power to the consumer when the desired power purchase amount exceeds the power that can be transmitted. The second processing unit 200 may determine that it is impossible to sell power to the consumer when the power transmission capacity in the power transmission path to the consumer exceeds a predetermined value. This makes it possible to adjust the amount of electricity traded in the aggregator.
 次に、アグリゲータシステム20の通知部201は、アグリゲータ電力情報及び受電可否を示す情報を、第2ブロックチェーンBC2及び第3ブロックチェーンBC3を通じて、需要者に通知する(ステップS1040)。そうすると、需要者システム30の取得部300は、アグリゲータシステム20から通知されたアグリゲータ電力情報及び売電可否を示す情報を、第3ブロックチェーンBC3を通じて取得することができる。 Next, the notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information and the information indicating whether or not the power can be received through the second blockchain BC2 and the third blockchain BC3 (step S1040). Then, the acquisition unit 300 of the consumer system 30 can acquire the aggregator power information notified from the aggregator system 20 and the information indicating whether or not the power can be sold through the third blockchain BC3.
 需要者システム30の選択部301は、需要者が複数のカテゴリを設定している場合、アグリゲータ電力情報及び売電可否を示す情報に基づいて、需要者により設定された第1条件を満たす電力のカテゴリを一つ選択する(ステップS1050)。 When the consumer sets a plurality of categories, the selection unit 301 of the consumer system 30 determines the power satisfying the first condition set by the consumer based on the aggregator power information and the information indicating whether or not the power can be sold. Select one category (step S1050).
 例えば、選択部301は、需要者により予め設定された希望買電量及び希望買電価格に基づいてカテゴリを選択する。この場合、選択部301は、複数のカテゴリのうち、需要者により予め設定された希望買電量以上の送電が可能(売電可能を示す情報が通知された)であり、且つ、小売価格が需要者の希望買電価格よりも低いカテゴリを選択する。複数のアグリゲータがこれらの第1条件を満たす場合、選択部301は、最も小売価格が低いカテゴリを選択する。 For example, the selection unit 301 selects a category based on the desired power purchase amount and the desired power purchase price preset by the consumer. In this case, the selection unit 301 can transmit power in excess of the desired power purchase amount preset by the consumer among the plurality of categories (information indicating that power can be sold has been notified), and the retail price is demand. Select a category that is lower than the person's desired power purchase price. When a plurality of aggregators satisfy these first conditions, the selection unit 301 selects the category having the lowest retail price.
 また、選択部301は、電力が供給開始されるまでの応答時間に基づいてカテゴリを選択してもよい。この場合、選択部301は、売電可能なカテゴリのうち供給開始時間(応答時間)が最も早いカテゴリを選択する。これにより、例えば需要者が緊急に電力を必要とする場合、最も早く電力を供給可能な供給者から電力を購入することができる。 Further, the selection unit 301 may select a category based on the response time until the power supply is started. In this case, the selection unit 301 selects the category having the earliest supply start time (response time) among the categories in which power can be sold. As a result, for example, when a consumer needs electric power urgently, the electric power can be purchased from the supplier who can supply the electric power earliest.
 更に、選択部301は、カテゴリの優先順位に基づいてカテゴリを選択してもよい。この場合、選択部301は、売電可能なカテゴリのうち最も優先順位の高いカテゴリを選択する。 Further, the selection unit 301 may select a category based on the priority of the category. In this case, the selection unit 301 selects the category having the highest priority among the categories in which power can be sold.
 上述の第1条件に含まれる各条件(希望買電量、希望買電価格、応答時間、カテゴリの優先順位)の有無は、需要者により任意に設定可能である。また、需要者は、これら複数の条件の優先順位を指定可能であってもよい。これにより、選択部301は、需要者の希望に応じて適切なカテゴリを選択することができる。 The presence or absence of each condition (desired power purchase amount, desired power purchase price, response time, category priority) included in the above-mentioned first condition can be arbitrarily set by the consumer. In addition, the consumer may be able to specify the priority of these plurality of conditions. As a result, the selection unit 301 can select an appropriate category according to the wishes of the consumer.
 次に、需要者システム30の選択部301は、選択したカテゴリに対応する第2ブロックチェーンBC2に対し電力購入の発注を行うように、第3ブロックチェーンBC3に指示を行う。需要者システム30からの指示を受け付けると、第3ブロックチェーンBC3のトランザクション生成部310は、選択されたカテゴリの電力の購入契約に係るスマートコントラクトを含むトランザクションを生成し、選択したアグリゲータの第2ブロックチェーンBC2(図14の例では、第2ブロックチェーンBC2a)に送信することで、アグリゲータへの発注を行う(ステップS1060)。 Next, the selection unit 301 of the consumer system 30 instructs the third blockchain BC3 to place an order for power purchase to the second blockchain BC2 corresponding to the selected category. Upon receiving the instruction from the consumer system 30, the transaction generation unit 310 of the third blockchain BC3 generates a transaction including a smart contract related to the power purchase contract of the selected category, and the second block of the selected aggregator. By transmitting to the chain BC2 (in the example of FIG. 14, the second blockchain BC2a), an order is placed with the aggregator (step S1060).
 また、アグリゲータの第2ブロックチェーンBC2aでは、契約処理部213が第3ブロックチェーンBC3から受信したトランザクションに含まれるスマートコントラクトを実行し、需要者からの受注(売電)が可能か判断する(ステップS1070)。契約処理部213は、受注が不可である場合(ステップS1070:NO)、需要者の第3ブロックチェーンBC3に不成立の通知を行う(ステップS1080)。例えば、契約処理部213は、需要者からの発注前にアグリゲータの送電経路の使用率が所定の上限値に達した場合は、受注が不可であると判断する。一方、契約処理部213は、需要者の希望どおりに受注が可能である場合(ステップS1070:YES)、需要者が購入を希望する電力について、第2ブロックチェーンBC2aを通じて供給者へ発注する(ステップS1090)。 Further, in the second blockchain BC2a of the aggregator, the contract processing unit 213 executes the smart contract included in the transaction received from the third blockchain BC3, and determines whether it is possible to receive an order (power sale) from the consumer (step). S1070). When the contract processing unit 213 cannot accept the order (step S1070: NO), the contract processing unit 213 notifies the third blockchain BC3 of the consumer of the failure (step S1080). For example, the contract processing unit 213 determines that the order cannot be received if the usage rate of the transmission path of the aggregator reaches a predetermined upper limit value before the order is placed from the consumer. On the other hand, when the contract processing unit 213 can receive an order as desired by the consumer (step S1070: YES), the contract processing unit 213 places an order with the supplier through the second blockchain BC2a for the electric power that the consumer wants to purchase (step S1070: YES). S1090).
 また、アグリゲータから供給者への発注が行われると、このスマートコントラクトが含まれるトランザクションは、供給者の第1ブロックチェーンBC1に送信され、契約処理部113においてスマートコントラクトが更に実行される。具体的には、契約処理部113は、需要者への売電が可能であるかを判断し、売電可能である場合は(ステップS1100:YES)、アグリゲータの第2ブロックチェーンBC2aへ約定を通知し(ステップS1120)、売電が不可である場合は(ステップS1100:NO)、アグリゲータの第2ブロックチェーンBC2aへ不成立の通知を行う(ステップS1110)。例えば、契約処理部113は、需要者からの発注前に供給可能電力が変化し、需要者の希望買電量を供給できない場合は、売電が不可であると判断する。 Further, when an order is placed from the aggregator to the supplier, the transaction including this smart contract is transmitted to the first blockchain BC1 of the supplier, and the smart contract is further executed in the contract processing unit 113. Specifically, the contract processing unit 113 determines whether it is possible to sell power to the consumer, and if it is possible to sell power (step S1100: YES), makes a contract to the second blockchain BC2a of the aggregator. A notification is given (step S1120), and if power sales are not possible (step S1100: NO), a notification of failure is given to the second blockchain BC2a of the aggregator (step S1110). For example, the contract processing unit 113 determines that the electric power cannot be sold when the electric power that can be supplied changes before the order is placed by the consumer and the desired electric power purchase amount of the consumer cannot be supplied.
 また、需要者の第3ブロックチェーンBC3は、不成立の通知(ステップS1130)、又は約定の通知(ステップS1140)を、第2ブロックチェーンBC2aを通じて受領する。 Further, the third blockchain BC3 of the consumer receives a notification of failure (step S1130) or a notification of execution (step S1140) through the second blockchain BC2a.
 なお、ステップS1060からS1110までの処理は、トランザクションに含まれるスマートコントラクトで予め規定されている。このため、供給者、アグリゲータ、需要者それぞれが確認、承認等の処理を行うことなく、第1ブロックチェーンBC1、第2ブロックチェーンBC2、及び第3ブロックチェーンBC3で自動的に処理される。 The processing from steps S1060 to S1110 is predetermined by the smart contract included in the transaction. Therefore, it is automatically processed by the first blockchain BC1, the second blockchain BC2, and the third blockchain BC3 without each of the supplier, the aggregator, and the consumer performing processing such as confirmation and approval.
 また、需要者は、不成立の結果を受領した場合(ステップS1130)、ステップS1050に戻り、他のカテゴリを選択して発注を行うようにしてもよい。 Further, when the consumer receives the result of failure (step S1130), the consumer may return to step S1050 and select another category to place an order.
(作用効果)
 以上のように、本実施形態に係る電力取引システム1は、電力のカテゴリそれぞれに対応する複数の第2ブロックチェーンBC2を備えている。これにより、電力取引システム1は、電力のカテゴリ毎に電力市場を分割して、需要者が希望するカテゴリの電力のみを選択的に売買することが可能となる。また、電力取引システム1の参加者である供給者、アグリゲータ、需要者それぞれは、各ブロックチェーンに登録された情報に基づいて、各参加者がどのカテゴリの電力をどのくらい売買したかを追跡することができる。
(Action effect)
As described above, the electric power trading system 1 according to the present embodiment includes a plurality of second blockchain BC2s corresponding to each of the electric power categories. As a result, the electric power trading system 1 can divide the electric power market for each electric power category and selectively buy and sell only the electric power of the category desired by the consumer. In addition, each of the supplier, aggregator, and consumer who is a participant of the electric power trading system 1 should track how much electric power of which category each participant bought and sold based on the information registered in each blockchain. Can be done.
 また、参加者はそれぞれ既存のシステムとのインタフェースをブロックチェーンに対して持てばよいため、参加者が電力取引システム1に参加する際のコストを低減させることができる。また、各ブロックチェーンは、参加者それぞれの管理下にあるため、参加者個々の事情に応じて改修することが容易である。 In addition, since each participant only needs to have an interface with the existing system for the blockchain, the cost when the participant participates in the electric power trading system 1 can be reduced. In addition, since each blockchain is under the control of each participant, it is easy to modify it according to the circumstances of each participant.
 また、電力取引システム1において、第3ブロックチェーンBC3の選択部301は、第2ブロックチェーンBC2から取得したアグリゲータ電力情報に基づいて、需要者により設定された第1条件を満たすアグリゲータ及び供給者から買電するためのスマートコントラクトを含むトランザクションを生成する。これにより、第3ブロックチェーンBC3は、需要者から買電の指示を受け付けることなく、迅速に電力取引の手続きを進めることができる。更に、スマートコントラクトにより、第1ブロックチェーンBC1及び第2ブロックチェーンBC2においても電力取引の手続きを自動化することができるので、短時間での契約成立を実現することができる。これにより、電力取引システム1は、リアルタイムで変動する需給状況への追従を行うことが可能となる。 Further, in the electric power trading system 1, the selection unit 301 of the third blockchain BC3 is from an aggregator and a supplier that satisfy the first condition set by the consumer based on the aggregator electric power information acquired from the second blockchain BC2. Generate a transaction containing a smart contract to buy electricity. As a result, the third blockchain BC3 can quickly proceed with the electric power transaction procedure without receiving an instruction to purchase electric power from the consumer. Further, since the smart contract can automate the procedure of electric power transaction in the first blockchain BC1 and the second blockchain BC2, it is possible to realize the contract conclusion in a short time. As a result, the electric power trading system 1 can follow the fluctuating supply and demand situation in real time.
 また、需要者により設定された第1条件は、希望買電量、希望買電価格、及び電力が供給開始されるまでの応答時間、カテゴリの優先順位のうち、少なくとも一つを含む。また、需要者は、これらの第1条件に含まれる各条件の優先順位を指定可能であってもよい。これにより、第3ブロックチェーンBC3の選択部301は、需要者の希望に応じて適切なカテゴリを選択することができる。 Further, the first condition set by the consumer includes at least one of the desired power purchase amount, the desired power purchase price, the response time until the power supply starts, and the priority of the category. In addition, the consumer may be able to specify the priority of each condition included in these first conditions. As a result, the selection unit 301 of the third blockchain BC3 can select an appropriate category according to the wishes of the consumer.
<第5の実施形態>
 次に、本開示の第5の実施形態に係る電力取引システム1について説明する。
 第4の実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
<Fifth Embodiment>
Next, the electric power trading system 1 according to the fifth embodiment of the present disclosure will be described.
The components common to the fourth embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
(全体構成)
 図15は、本開示の第5の実施形態に係る電力取引システムの概略図である。
 図15に示すように、本実施形態に係る電力取引システム1は、蓄電池所有者が有する蓄電池システム40及び第4ブロックチェーンBC4を更に備えている。蓄電池所有者は、蓄電池への充電(買電)及び放電(売電)をコントロールすることにより、電力需給の調整を行う事業者である。即ち、蓄電池所有者は、電力市場の需給状況に応じて、供給者又は需要者として電力取引に参加する。なお、蓄電池は、電気自動車の蓄電池であってもよい。
(overall structure)
FIG. 15 is a schematic view of the electric power trading system according to the fifth embodiment of the present disclosure.
As shown in FIG. 15, the electric power trading system 1 according to the present embodiment further includes a storage battery system 40 owned by the storage battery owner and a fourth blockchain BC4. The storage battery owner is a business operator that adjusts the supply and demand of electric power by controlling the charging (purchasing) and discharging (selling) of the storage battery. That is, the storage battery owner participates in the electric power transaction as a supplier or a consumer depending on the supply and demand situation of the electric power market. The storage battery may be a storage battery of an electric vehicle.
 蓄電池システム40は、蓄電池からの放電(売電)、及び蓄電池への充電(買電)に係る各種処理を行うシステムである。
 また、蓄電池システム40は、第4ブロックチェーンBC4と接続されている。第4ブロックチェーンBC4は、蓄電池所有者により予め設定されたカテゴリに対応する第2ブロックチェーンBC2に接続可能である。第4ブロックチェーンBC4は、所有者の電力取引に係る情報が登録される。
 なお、図15には、説明を簡略化するために蓄電池所有者が一つのみ存在している例が示されているが、これに限られることはない。他の実施形態では、蓄電池所有者は複数存在してもよい。この場合、各蓄電池所有者は、それぞれ蓄電池システム40及び第4ブロックチェーンBC4を有している。
The storage battery system 40 is a system that performs various processes related to discharging from the storage battery (selling power) and charging the storage battery (purchasing power).
Further, the storage battery system 40 is connected to the fourth blockchain BC4. The fourth blockchain BC4 can be connected to the second blockchain BC2 corresponding to the category preset by the storage battery owner. In the fourth blockchain BC4, information related to the owner's electric power transaction is registered.
Note that FIG. 15 shows an example in which only one storage battery owner exists for the sake of simplification of the description, but the present invention is not limited to this. In other embodiments, there may be multiple battery owners. In this case, each storage battery owner has a storage battery system 40 and a fourth blockchain BC4, respectively.
(蓄電池システム及び第4ブロックチェーンの機能構成)
 図16は、本開示の第5の実施形態に係る蓄電池システム及び第4ブロックチェーンの機能構成を示す図である。
 図16に示すように、蓄電池システム40は、第3処理部400と、通知部401と、取得部402と、選択部403とを備えている。また、第4ブロックチェーンBC34を構成する複数の第4ノード41それぞれは、トランザクション生成部410と、ブロック生成部411と、データ登録部412と、契約処理部413と、記憶媒体414とを備えている。
(Functional configuration of storage battery system and 4th blockchain)
FIG. 16 is a diagram showing a functional configuration of a storage battery system and a fourth blockchain according to a fifth embodiment of the present disclosure.
As shown in FIG. 16, the storage battery system 40 includes a third processing unit 400, a notification unit 401, an acquisition unit 402, and a selection unit 403. Further, each of the plurality of fourth nodes 41 constituting the fourth blockchain BC34 includes a transaction generation unit 410, a block generation unit 411, a data registration unit 412, a contract processing unit 413, and a storage medium 414. There is.
 蓄電池システム40の第3処理部400は、蓄電池から供給可能な電力に関する蓄電池電力情報を生成し、第4ブロックチェーンBC4に登録する。蓄電池電力情報には、例えば、ある期間に蓄電池から供給可能な電力を示す供給可能電力、当該期間における単位電力あたりの売電価格(以下、「卸売価格」と記載する)、当該期間の開始時間及び終了時間(供給可能時間)、電力のカテゴリ等の情報が含まれる。電力のカテゴリは、蓄電池に充電された電力の発電方法、供給地域、発電規模等を示す情報である。また、蓄電池電力情報には、蓄電池所有者の識別情報(所有者名等)が含まれていてもよい。 The third processing unit 400 of the storage battery system 40 generates storage battery power information regarding the power that can be supplied from the storage battery, and registers it in the fourth blockchain BC4. The storage battery power information includes, for example, the power that can be supplied from the storage battery in a certain period, the selling price per unit power in the period (hereinafter referred to as "wholesale price"), and the start time of the period. And information such as end time (supplyable time), power category, etc. is included. The electric power category is information indicating the power generation method, supply area, power generation scale, etc. of the electric power charged in the storage battery. Further, the storage battery power information may include identification information (owner name, etc.) of the storage battery owner.
 蓄電池システム40の通知部101は、第3処理部400が生成した蓄電池電力情報を、カテゴリに対応する第2ブロックチェーンBC2に送信する。具体的には、通知部401は、蓄電池電力情報に含まれるカテゴリに対応する第2ブロックチェーンBC2を接続先として指定し、インターレジャーを介して指定された第2ブロックチェーンBC2に当該蓄電池電力情報を送信するように、第4ブロックチェーンBC4に指示を行う。 The notification unit 101 of the storage battery system 40 transmits the storage battery power information generated by the third processing unit 400 to the second blockchain BC2 corresponding to the category. Specifically, the notification unit 401 designates the second blockchain BC2 corresponding to the category included in the storage battery power information as the connection destination, and the storage battery power information is supplied to the second blockchain BC2 designated via the interledger. Is instructed to the fourth blockchain BC4 to transmit.
 蓄電池システム40の取得部402は、蓄電池所有者により予め設定されたカテゴリに対応する第2ブロックチェーンBC2からアグリゲータ電力情報を取得する。例えば、蓄電池所有者が太陽光発電により発電された電力のみを蓄電池に充電することを設定しているとする。この場合、取得部402は、太陽光発電に対応する第2ブロックチェーンBC2aに対し、蓄電池所有者の要求する電力に関する問い合わせを行う。この問い合わせには、例えば、蓄電池所有者が希望する電力のカテゴリ、購入希望期間(開始時間及び終了時間)、当該購入希望期間における希望買電量、蓄電池(送電先)の位置情報等の情報が含まれる。
 なお、取得部402は、蓄電池所有者が複数のカテゴリを設定していた場合、各カテゴリに対応する第2ブロックチェーンBC2それぞれからアグリゲータ電力情報を取得する。
The acquisition unit 402 of the storage battery system 40 acquires the aggregator power information from the second blockchain BC2 corresponding to the category preset by the storage battery owner. For example, suppose that the storage battery owner has set the storage battery to be charged only with the electric power generated by solar power generation. In this case, the acquisition unit 402 makes an inquiry to the second blockchain BC2a corresponding to the photovoltaic power generation regarding the electric power required by the storage battery owner. This inquiry includes, for example, information such as the category of electric power desired by the storage battery owner, the desired purchase period (start time and end time), the desired purchase amount during the desired purchase period, and the location information of the storage battery (transmission destination). Is done.
When the storage battery owner has set a plurality of categories, the acquisition unit 402 acquires the aggregator power information from each of the second blockchain BC2 corresponding to each category.
 また、取得部402は、第2ブロックチェーンBC2からの応答である、売電可否を示す情報、及びアグリゲータ電力情報を、第4ブロックチェーンBC4を通じて取得する。 Further, the acquisition unit 402 acquires the information indicating whether or not the power can be sold and the aggregator power information, which are the responses from the second blockchain BC2, through the fourth blockchain BC4.
 蓄電池システム40の選択部403は、蓄電池所有者が複数のカテゴリを設定していた場合、各カテゴリに対応するアグリゲータ電力情報に基づいて、どのカテゴリの電力を購入するか選択する。例えば、選択部403は、蓄電池所有者により予め設定された第2条件(希望買電量、希望買電価格、及びカテゴリの優先順位)を満たすカテゴリを一つ選択する。 When the storage battery owner has set a plurality of categories, the selection unit 403 of the storage battery system 40 selects which category of power to purchase based on the aggregator power information corresponding to each category. For example, the selection unit 403 selects one category that satisfies the second condition (desired power purchase amount, desired power purchase price, and category priority) preset by the storage battery owner.
 また、選択部403は、選択したカテゴリの電力を提供するアグリゲータに対し電力購入の発注を行うように、第4ブロックチェーンBC4に指示を行う。 Further, the selection unit 403 instructs the fourth blockchain BC4 to place an order for power purchase from the aggregator that provides the power of the selected category.
 第4ノード41のトランザクション生成部410は、第4ブロックチェーンBC4における電力取引に係るトランザクションを生成する。トランザクション生成部410は、生成したトランザクションを他の第4ノード41に送信することで、第4ブロックチェーンBC4のトランザクションプールに登録する。このトランザクションには、蓄電池システム40が生成した蓄電池電力情報も含まれる。また、本実施形態では、トランザクション生成部410は、蓄電池システム40から電力購入の発注の指示を受け付けると、当該購入契約に係るスマートコントラクトを含むトランザクションを生成する。 The transaction generation unit 410 of the fourth node 41 generates a transaction related to the electric power transaction in the fourth blockchain BC4. The transaction generation unit 410 registers the generated transaction in the transaction pool of the fourth blockchain BC4 by transmitting the generated transaction to another fourth node 41. This transaction also includes storage battery power information generated by the storage battery system 40. Further, in the present embodiment, when the transaction generation unit 410 receives an instruction to order the electric power purchase from the storage battery system 40, the transaction generation unit 410 generates a transaction including a smart contract related to the purchase contract.
 第4ノード41のブロック生成部411は、トランザクションプールに登録された所定数のトランザクションを含むブロックデータを生成する。ブロック生成部411の処理は、上述の第1ノード11のブロック生成部111における処理と同様である。 The block generation unit 411 of the fourth node 41 generates block data including a predetermined number of transactions registered in the transaction pool. The processing of the block generation unit 411 is the same as the processing of the block generation unit 111 of the first node 11 described above.
 第4ノード41のデータ登録部412は、ブロック生成部411が生成したブロックデータを他の第4ノード41に送信することで、ブロックデータを第4ブロックチェーンBC4に登録する。また、データ登録部412は、他の第4ノード41から受信したブロックデータを検証し、記憶媒体414に記憶する。データ登録部412の処理は、上述の第1ノード11のデータ登録部112における処理と同様である。 The data registration unit 412 of the fourth node 41 registers the block data in the fourth block chain BC4 by transmitting the block data generated by the block generation unit 411 to another fourth node 41. Further, the data registration unit 412 verifies the block data received from the other fourth node 41 and stores it in the storage medium 414. The process of the data registration unit 412 is the same as the process of the data registration unit 112 of the first node 11 described above.
 第4ノード41の契約処理部413は、トランザクションに含まれるスマートコントラクトを実行することにより、供給者、需要者、及びアグリゲータとの間の電力取引に係る処理を実行する。スマートコントラクトの内容によっては、トランザクション生成部410で新たなトランザクションが生成されてもよい。 The contract processing unit 413 of the fourth node 41 executes the processing related to the electric power transaction between the supplier, the consumer, and the aggregator by executing the smart contract included in the transaction. Depending on the content of the smart contract, a new transaction may be generated by the transaction generation unit 410.
 第4ノード41の記憶媒体414には、各部で取得、生成されたデータが記憶される。例えば、記憶媒体414には、トランザクション生成部410が生成したトランザクション、ブロック生成部411が生成したブロックデータ等が記憶される。 The storage medium 414 of the fourth node 41 stores the data acquired and generated by each unit. For example, the storage medium 414 stores transactions generated by the transaction generation unit 410, block data generated by the block generation unit 411, and the like.
(電力取引システムの処理フロー)
 図17は、本開示の第5の実施形態に係る電力取引システムの処理の一例を示す第1のフローチャートである。
 以下、図17を参照しながら、本実施形態に係る電力取引システム1において、蓄電池所有者が蓄電池に充電するための電力を供給者から購入する際の処理の流れについて説明する。
(Processing flow of electric power trading system)
FIG. 17 is a first flowchart showing an example of processing of the electric power trading system according to the fifth embodiment of the present disclosure.
Hereinafter, in the electric power trading system 1 according to the present embodiment, the flow of processing when the storage battery owner purchases electric power for charging the storage battery from the supplier will be described with reference to FIG.
 供給者システム10の第1処理部100は、供給者電力情報を生成し、第1ブロックチェーンBC1に登録する。また、供給者システム10の通知部101は、この供給者電力情報を第1ブロックチェーンBC1及び第2ブロックチェーンBC2を通じてアグリゲータに通知する(ステップS2000)。そうすると、アグリゲータの第2ブロックチェーンBC2には、対応するカテゴリに関する供給者電力情報が登録される(ステップS2010)。 The first processing unit 100 of the supplier system 10 generates the supplier power information and registers it in the first blockchain BC1. Further, the notification unit 101 of the supplier system 10 notifies the aggregator of the supplier power information through the first blockchain BC1 and the second blockchain BC2 (step S2000). Then, the supplier power information related to the corresponding category is registered in the second blockchain BC2 of the aggregator (step S2010).
 蓄電池システム40の取得部402は、蓄電池所有者により予め設定されたカテゴリの電力を提供するアグリゲータに対し、電力購入に関する問い合わせを行う(ステップS2020)。この問い合わせは、第4ブロックチェーンBC4及び、設定されたカテゴリに対応する第2ブロックチェーンBC2(例えば、太陽光発電に対応する第2ブロックチェーンBC2a)を通じてアグリゲータシステム20に送信される。なお、蓄電池所有者は複数のカテゴリを設定してもよい。この場合の処理は、第4の実施形態のステップS1020(図14)と同様である。 The acquisition unit 402 of the storage battery system 40 makes an inquiry regarding power purchase to the aggregator that provides the power of the category preset by the storage battery owner (step S2020). This inquiry is transmitted to the aggregator system 20 through the fourth blockchain BC4 and the second blockchain BC2 corresponding to the set category (for example, the second blockchain BC2a corresponding to photovoltaic power generation). The storage battery owner may set a plurality of categories. The process in this case is the same as in step S1020 (FIG. 14) of the fourth embodiment.
 アグリゲータシステム20の第2処理部200は、蓄電池所有者からの問い合わせを受け付けると、アグリゲータ電力情報を生成するとともに、当該蓄電池所有者への売電可否を判定する(ステップS2030)。また、アグリゲータシステム20の通知部201は、アグリゲータ電力情報及び受電可否を示す情報を、第2ブロックチェーンBC2及び第4ブロックチェーンBC4を通じて、蓄電池所有者に通知する(ステップS2040)。これらステップS2030~S2040の処理は、第4の実施形態のステップS1030~S1040(図14)と同様である。 When the second processing unit 200 of the aggregator system 20 receives an inquiry from the storage battery owner, it generates aggregator power information and determines whether or not to sell the power to the storage battery owner (step S2030). Further, the notification unit 201 of the aggregator system 20 notifies the storage battery owner of the aggregator power information and the information indicating whether or not the power can be received through the second blockchain BC2 and the fourth blockchain BC4 (step S2040). The processing of these steps S2030 to S2040 is the same as that of steps S1030 to S1040 (FIG. 14) of the fourth embodiment.
 蓄電池システム40の選択部403は、蓄電池所有者が複数のカテゴリを設定している場合、アグリゲータ電力情報及び売電可否を示す情報に基づいて、蓄電池所有者により設定された第2条件を満たす電力のカテゴリを一つ選択する(ステップS2050)。当該処理は、第4の実施形態のステップS1050(図14)と同様である。 When the storage battery owner sets a plurality of categories, the selection unit 403 of the storage battery system 40 satisfies the second condition set by the storage battery owner based on the aggregator power information and the information indicating whether or not the power can be sold. Select one of the categories (step S2050). The process is the same as in step S1050 (FIG. 14) of the fourth embodiment.
 次に、蓄電池システム40の選択部403は、選択したカテゴリに対応する第2ブロックチェーンBC2に対し電力購入の発注を行うように、第4ブロックチェーンBC4に指示を行う。蓄電池システム40からの指示を受け付けると、第4ブロックチェーンBC4のトランザクション生成部410は、選択されたカテゴリの電力の購入契約に係るスマートコントラクトを含むトランザクションを生成し、選択したアグリゲータの第2ブロックチェーンBC2(図17の例では、第2ブロックチェーンBC2a)に送信することで、アグリゲータへの発注を行う(ステップS2060)。 Next, the selection unit 403 of the storage battery system 40 instructs the fourth blockchain BC4 to place an order for power purchase to the second blockchain BC2 corresponding to the selected category. Upon receiving the instruction from the storage battery system 40, the transaction generation unit 410 of the fourth blockchain BC4 generates a transaction including a smart contract related to the power purchase contract of the selected category, and the second blockchain of the selected aggregator. By transmitting to BC2 (in the example of FIG. 17, the second blockchain BC2a), an order is placed with the aggregator (step S2060).
 供給者及びアグリゲータにおけるステップS2070~S2120の処理の流れは、第4の実施形態のステップS1070~S1120(図14)と同様である。 The processing flow of steps S2070 to S2120 in the supplier and the aggregator is the same as in steps S1070 to S1120 (FIG. 14) of the fourth embodiment.
 第4ブロックチェーンBC4は、第2ブロックチェーンBC2aから不成立の結果(ステップS2130)、又は約定の結果(ステップS2140)を受領する。蓄電池所有者は、不成立の結果を受領した場合(ステップS2130)、ステップS2050に戻り、他のカテゴリを選択して発注を行うようにしてもよい。 The fourth blockchain BC4 receives the result of failure (step S2130) or the result of execution (step S2140) from the second blockchain BC2a. When the storage battery owner receives the result of failure (step S2130), he / she may return to step S2050 and select another category to place an order.
 図18は、本開示の第5の実施形態に係る電力取引システムの処理の一例を示す第2のフローチャートである。
 以下、図18を参照しながら、本実施形態に係る電力取引システム1において、需要者が蓄電池に充電された電力を購入する際の処理の流れについて説明する。
FIG. 18 is a second flowchart showing an example of processing of the electric power trading system according to the fifth embodiment of the present disclosure.
Hereinafter, in the electric power trading system 1 according to the present embodiment, the flow of processing when the consumer purchases the electric power charged in the storage battery will be described with reference to FIG.
 まず、蓄電池システム40の第3処理部400は、蓄電池へ充電した電力の購入価格(買電価格)に基づいて、蓄電池に充電されている電力の売電価格(卸売価格)を設定する。また、第3処理部400は、蓄電池へ充電した電力のカテゴリと、設定した卸売価格とを含む蓄電池電力情報を生成し、第4ブロックチェーンBC4に登録する。蓄電池システム40の通知部401は、この蓄電池電力情報を第4ブロックチェーンBC4及び第2ブロックチェーンBC2を通じてアグリゲータに通知する(ステップS2200)。このとき、第3処理部400は、蓄電池電力情報に含まれるカテゴリに対応する第2ブロックチェーンBC2に当該蓄電池電力情報を送信する。そうすると、アグリゲータの第2ブロックチェーンBC2には、対応するカテゴリに関する蓄電池電力情報が登録される(ステップS2210)。 First, the third processing unit 400 of the storage battery system 40 sets the selling price (wholesale price) of the power charged in the storage battery based on the purchase price (purchasing price) of the power charged in the storage battery. Further, the third processing unit 400 generates the storage battery power information including the category of the power charged to the storage battery and the set wholesale price, and registers it in the fourth blockchain BC4. The notification unit 401 of the storage battery system 40 notifies the aggregator of the storage battery power information through the fourth blockchain BC4 and the second blockchain BC2 (step S2200). At this time, the third processing unit 400 transmits the storage battery power information to the second blockchain BC2 corresponding to the category included in the storage battery power information. Then, the storage battery power information related to the corresponding category is registered in the second blockchain BC2 of the aggregator (step S2210).
 需要者システム30の取得部300は、需要者により予め設定されたカテゴリの電力を提供するアグリゲータに対し、電力購入に関する問い合わせを行う(ステップS2220)。当該処理は、第4の実施形態のステップS1020(図14)と同様である。 The acquisition unit 300 of the consumer system 30 makes an inquiry regarding the purchase of electric power to the aggregator that provides the electric power of the category preset by the consumer (step S2220). The process is the same as in step S1020 (FIG. 14) of the fourth embodiment.
 アグリゲータシステム20の第2処理部200は、需要者からの問い合わせを受け付けると、アグリゲータ電力情報を生成するとともに、当該需要者への売電可否を判定する(ステップS2230)。また、アグリゲータシステム20の通知部201は、アグリゲータ電力情報及び受電可否を示す情報を、第2ブロックチェーンBC2及び第3ブロックチェーンBC3を通じて、需要者に通知する(ステップS2240)。これらの処理は、第4の実施形態のステップS1030~S1040(図14)と同様である。 When the second processing unit 200 of the aggregator system 20 receives an inquiry from a consumer, it generates aggregator power information and determines whether or not to sell the power to the consumer (step S2230). Further, the notification unit 201 of the aggregator system 20 notifies the consumer of the aggregator power information and the information indicating whether or not the power can be received through the second blockchain BC2 and the third blockchain BC3 (step S2240). These processes are the same as in steps S1030 to S1040 (FIG. 14) of the fourth embodiment.
 需要者システム30の選択部301は、需要者が複数のカテゴリを設定している場合、アグリゲータ電力情報及び売電可否を示す情報に基づいて、需要者により設定された第1条件を満たす電力のカテゴリを一つ選択する(ステップS2250)。当該処理は、第4の実施形態のステップS1050(図14)と同様である。 When the consumer sets a plurality of categories, the selection unit 301 of the consumer system 30 determines the power satisfying the first condition set by the consumer based on the aggregator power information and the information indicating whether or not the power can be sold. Select one category (step S2250). The process is the same as in step S1050 (FIG. 14) of the fourth embodiment.
 次に、需要者システム30の選択部301は、選択したカテゴリに対応する第2ブロックチェーンBC2に対し電力購入の発注を行うように、第3ブロックチェーンBC3に指示を行う(ステップS2260)。当該処理は、第4の実施形態のステップS1060(図14)と同様である。 Next, the selection unit 301 of the consumer system 30 instructs the third blockchain BC3 to place an order for power purchase to the second blockchain BC2 corresponding to the selected category (step S2260). The process is the same as in step S1060 (FIG. 14) of the fourth embodiment.
 また、アグリゲータの第2ブロックチェーンBC2aでは、契約処理部213が第3ブロックチェーンBC3から受信したトランザクションに含まれるスマートコントラクトを実行し、需要者からの受注(売電)が可能か判断する(ステップS2270)。契約処理部213は、受注が不可である場合(ステップS2270:NO)、需要者の第3ブロックチェーンBC3に不成立の通知を行う(ステップS2280)。一方、契約処理部213は、需要者の希望どおりに受注が可能である場合(ステップS2270:YES)、需要者が購入を希望する電力について、第2ブロックチェーンBC2aを通じて蓄電池所有者へ発注する(ステップS2290)。 Further, in the second blockchain BC2a of the aggregator, the contract processing unit 213 executes the smart contract included in the transaction received from the third blockchain BC3, and determines whether it is possible to receive an order (power sale) from the consumer (step). S2270). When the contract processing unit 213 cannot accept the order (step S2270: NO), the contract processing unit 213 notifies the third blockchain BC3 of the consumer of the failure (step S2280). On the other hand, when the contract processing unit 213 can receive the order as the consumer desires (step S2270: YES), the contract processing unit 213 orders the electric power that the consumer wants to purchase from the storage battery owner through the second blockchain BC2a (step S2270: YES). Step S2290).
 また、アグリゲータから蓄電池所有者への発注が行われると、このスマートコントラクトが含まれるトランザクションは、蓄電池所有者の第4ブロックチェーンBC4に送信され、契約処理部413においてスマートコントラクトが更に実行される。具体的には、契約処理部413は、需要者への売電が可能であるかを判断し、売電可能である場合は(ステップS2300:YES)、アグリゲータの第2ブロックチェーンBC2aへ約定を通知し(ステップS2320)、売電が不可である場合は(ステップS2300:NO)、アグリゲータの第2ブロックチェーンBC2aへ不成立の通知を行う(ステップS2310)。 Further, when an order is placed from the aggregator to the storage battery owner, the transaction including this smart contract is transmitted to the storage battery owner's fourth blockchain BC4, and the smart contract is further executed in the contract processing unit 413. Specifically, the contract processing unit 413 determines whether it is possible to sell power to the consumer, and if it is possible to sell power (step S2300: YES), makes a contract to the second blockchain BC2a of the aggregator. A notification is given (step S2320), and if power sales are not possible (step S2300: NO), a notification of failure is given to the second blockchain BC2a of the aggregator (step S2310).
 また、需要者の第1ブロックチェーンBC1は、不成立の通知(ステップS2330)、又は約定の通知(ステップS2340)を、第2ブロックチェーンBC2aを通じて受領する。需要者は、不成立の結果を受領した場合(ステップS2330)、ステップS2250に戻り、他のカテゴリを選択して発注を行うようにしてもよい。 Further, the first blockchain BC1 of the consumer receives a notification of failure (step S2330) or a notification of execution (step S2340) through the second blockchain BC2a. When the consumer receives the result of failure (step S2330), he / she may return to step S2250 and select another category to place an order.
 なお、図17~図18では、蓄電池所有者が特定のカテゴリに対応する一つの第2ブロックチェーンBC2(例えば、太陽光発電に対応する第2ブロックチェーンBC2a)を通じて電力の売買を行う例について説明したが、これに限られることはない。他の実施形態では、蓄電池所有者は、買電及び売電を、それぞれ異なる第2ブロックチェーンBC2を通じて行うようにしてもよい。例えば、蓄電池所有者は、太陽光発電に対応する第2ブロックチェーンBC2aから買電し、自然エネルギー由来の複数のカテゴリ(太陽光発電、及び風力発電)に対応する第2ブロックチェーンBC2eを通じて売電するようにしてもよい。これにより、蓄電池所有者は、太陽光発電による電力のみを所望する需要者だけでなく、自然エネルギー由来の電力であれば何れでもよいと考える需要者に対しても、売電することができる。即ち、蓄電池所有者は、異なる希望を有する複数の需要者に売電可能となる。 In addition, in FIGS. 17 to 18, an example in which a storage battery owner buys and sells electric power through one second blockchain BC2 (for example, a second blockchain BC2a corresponding to photovoltaic power generation) corresponding to a specific category will be described. However, it is not limited to this. In another embodiment, the storage battery owner may purchase and sell power through different second blockchain BC2s. For example, a storage battery owner purchases power from the second blockchain BC2a corresponding to solar power generation and sells power through the second blockchain BC2e corresponding to multiple categories derived from natural energy (solar power generation and wind power generation). You may try to do it. As a result, the storage battery owner can sell the electric power not only to the consumer who desires only the electric power generated by solar power generation but also to the consumer who thinks that the electric power derived from natural energy may be used. That is, the storage battery owner can sell power to a plurality of consumers who have different hopes.
(作用効果)
 以上のように、本実施形態に係る電力取引システム1は、蓄電池所有者の電力取引に係る情報が登録される第4ブロックチェーンBC4を更に備える。これにより、蓄電池所有者は、所有する蓄電池の電力の出自を明らかにして売買電を行うことが可能となる。また、蓄電池を介した電力取引についても、各ブロックチェーンに登録された情報に基づいて、各参加者がどのカテゴリの電力をどのくらい売買したかを追跡することが可能となる。
(Action effect)
As described above, the electric power trading system 1 according to the present embodiment further includes the fourth blockchain BC4 in which the information related to the electric power transaction of the storage battery owner is registered. As a result, the storage battery owner can buy and sell electricity by clarifying the origin of the electric power of the storage battery he owns. Also, regarding electric power transactions via storage batteries, it is possible to track how much electric power of which category each participant bought and sold based on the information registered in each blockchain.
 また、第4ブロックチェーンBC4は、第2ブロックチェーンBC2を通じて供給者から蓄電池に充電するための電力を購入すること、及び、需要者へ蓄電池に充電された電力を販売することが可能である。これにより、蓄電池所有者は、希望するカテゴリに応じた電力を供給者から買電して、蓄電池に蓄電することができる。また、需要者は、例えば供給者から供給される電力が不足している場合であっても、蓄電池所有者から希望するカテゴリの電力を購入可能となる。
 更に、蓄電池所有者は、例えば電力供給までの応答時間が長い供給者から買電して蓄電池に蓄電しておくことにより、即応が必要な需要者へ迅速に売電を行うことが可能となる。この場合、蓄電池システム40の第3処理部400は、応答時間が早いほど卸売価格を高く設定するようにしてもよい。
Further, the fourth blockchain BC4 can purchase electric power for charging the storage battery from the supplier through the second blockchain BC2, and can sell the electric power charged in the storage battery to the consumer. As a result, the storage battery owner can purchase electric power according to the desired category from the supplier and store the electric power in the storage battery. Further, the consumer can purchase the electric power of the desired category from the storage battery owner even when the electric power supplied from the supplier is insufficient, for example.
Furthermore, the storage battery owner can quickly sell power to consumers who need immediate response by purchasing power from a supplier having a long response time until power supply and storing the power in the storage battery, for example. .. In this case, the third processing unit 400 of the storage battery system 40 may set the wholesale price higher as the response time is earlier.
<第6の実施形態>
 次に、本開示の第6の実施形態に係る電力取引システム1について説明する。
 第4、第5の実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
<Sixth Embodiment>
Next, the electric power trading system 1 according to the sixth embodiment of the present disclosure will be described.
The components common to the fourth and fifth embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
(全体構成)
 図19は、本開示の第6の実施形態に係る電力取引システムの概略図である。
 図19に示すように、本実施形態に係る電力取引システム1において、一つのアグリゲータが複数の第2ブロックチェーンBC2a~BC2dを有している。アグリゲータは、自身のサービス提供範囲を複数の地域(第1地域A~D)に分割し、当該第1地域を電力のカテゴリとして設定する。即ち、第2ブロックチェーンBC2a~BC2dは、第1地域A~Dにそれぞれ対応している。アグリゲータは、例えば行政区画(都道府県、市町村等)、地理的条件(山岳、平野、盆地等)などに応じて各第1地域の範囲を予め設定する。
(overall structure)
FIG. 19 is a schematic view of the electric power trading system according to the sixth embodiment of the present disclosure.
As shown in FIG. 19, in the electric power trading system 1 according to the present embodiment, one aggregator has a plurality of second blockchains BC2a to BC2d. The aggregator divides its service provision range into a plurality of regions (first regions A to D), and sets the first region as a category of electric power. That is, the second blockchains BC2a to BC2d correspond to the first regions A to D, respectively. The aggregator presets the range of each first area according to, for example, administrative divisions (prefectures, municipalities, etc.), geographical conditions (mountains, plains, basins, etc.).
 また、アグリゲータシステム20は、隣接する複数の第1地域を統合した第2地域R1、R2を更に設定する。例えば、本実施形態に係るアグリゲータシステム20は、図19に示すように、二つの第1地域A、Bを統合した第2地域R1と、二つの第1地域C、Dを統合した第2地域R2とを設定する。アグリゲータシステム20は、所定の第3条件を満たしたときに電力取引の仲介範囲を第2地域に設定し、それ以外は仲介範囲を第1地域に設定する。従って、アグリゲータシステム20は、通常は第1地域Aの供給者及び需要者の電力取引を仲介するが、所定の第3条件を満たした場合、第2地域R1に含まれる第1地域A、B双方の供給者及び需要者の電力取引を仲介する。 Further, the aggregator system 20 further sets the second regions R1 and R2 in which a plurality of adjacent first regions are integrated. For example, in the aggregator system 20 according to the present embodiment, as shown in FIG. 19, a second region R1 in which two first regions A and B are integrated and a second region in which two first regions C and D are integrated are used. Set with R2. The aggregator system 20 sets the mediation range of the electric power transaction to the second area when the predetermined third condition is satisfied, and sets the mediation range to the first area otherwise. Therefore, the aggregator system 20 normally mediates the electric power transaction of the supplier and the consumer of the first region A, but when the predetermined third condition is satisfied, the first regions A and B included in the second region R1. Mediate electricity transactions between both suppliers and consumers.
 所定の第3条件を満たした場合、同一の第2地域に属する第2ブロックチェーンBD2同士は、それぞれに登録された各種情報を、インターレジャーを介して交換可能に接続される。図19の例では、第2地域R1に含まれる第1地域A、Bに対応する第2ブロックチェーンBC2a、BC2bは、インターレジャーを介して接続可能である。同様に、第2地域R2に含まれる第1地域C、Dに対応する第2ブロックチェーンBC2c、BC2dは、インターレジャーを介して接続可能である。このため、アグリゲータシステム20は、第1地域Aに存在する需要者に対し、第2ブロックチェーンBC2a、BC2bを通じて、第1地域Bに存在する供給者との電力取引を仲介することができる。 When the predetermined third condition is satisfied, the second blockchain BD2s belonging to the same second area are connected to each other so that various information registered in each can be exchanged via interleisure. In the example of FIG. 19, the second blockchains BC2a and BC2b corresponding to the first regions A and B included in the second region R1 can be connected via the interledger. Similarly, the second blockchains BC2c and BC2d corresponding to the first regions C and D included in the second region R2 can be connected via the interledger. Therefore, the aggregator system 20 can mediate the electric power transaction with the supplier existing in the first area B to the consumer existing in the first area A through the second blockchain BC2a and BC2b.
 図20は、本開示の第6の実施形態に係る電力取引システムの処理の一例を示すフローチャートである。
 以下、図20を参照しながら、本実施形態に係るアグリゲータシステム20の処理の流れについて説明する。
FIG. 20 is a flowchart showing an example of processing of the electric power trading system according to the sixth embodiment of the present disclosure.
Hereinafter, the processing flow of the aggregator system 20 according to the present embodiment will be described with reference to FIG. 20.
 図20に示すように、本実施形態に係るアグリゲータシステム20の第2処理部200は、所定の第3条件を満たしたか否かを地域別に判断する(ステップS3000)。所定の第3条件は、例えば、第1地域内に存在する供給者の発電方法、発電規模、供給者数、需要者数、季節、過去の取引履歴等に応じて予め設定される。例えば、第1地域Aでは太陽光発電による電力が供給される場合、第2処理部200は、時間、天気情報等を第3条件として設定してもよい。この場合、例えば第2処理部200は、取引対象の時間が夜間に対応する時間帯に含まれる場合(ステップS3000:YES)、第1地域Aでは供給量よりも需要量が大きくなると考えられるため、電力取引の仲介範囲を第2地域R1に設定する(ステップS3010)。 As shown in FIG. 20, the second processing unit 200 of the aggregator system 20 according to the present embodiment determines whether or not the predetermined third condition is satisfied for each region (step S3000). The predetermined third condition is set in advance according to, for example, a power generation method, a power generation scale, a number of suppliers, a number of consumers, a season, a past transaction history, etc. of a supplier existing in the first area. For example, when power is supplied by solar power generation in the first area A, the second processing unit 200 may set time, weather information, and the like as the third condition. In this case, for example, when the transaction target time is included in the time zone corresponding to the nighttime (step S3000: YES), the second processing unit 200 is considered to have a larger demand than the supply in the first region A. , The mediation range of the electric power transaction is set in the second region R1 (step S3010).
 一方、第2処理部200は、取引対象の時間が昼間に対応する時間帯に含まれ、且つ天気の状態が良いと予測される場合(ステップS3000:NO)、第1地域A内で需要量に見合う供給量を確保できると考えられるため、電力取引の仲介範囲を第1地域Aに設定する。 On the other hand, when the time to be traded is included in the time zone corresponding to the daytime and the weather condition is predicted to be good (step S3000: NO), the second processing unit 200 demands the amount in the first area A. Since it is considered that the supply amount commensurate with the above can be secured, the mediation range of the electric power transaction is set to the first region A.
 第2処理部200は、他の地域(第1地域B、C、D)についても同様にステップS3000~S3020の処理を行う。また、第2処理部200は、所定間隔毎、又は、天気情報等が更新される毎に、各地域についてステップS3000~S3020の処理を実行する。 The second processing unit 200 performs the processing of steps S3000 to S3020 in the same manner for the other areas (first areas B, C, D). In addition, the second processing unit 200 executes the processing of steps S3000 to S3020 for each area at predetermined intervals or every time the weather information or the like is updated.
 また、第2処理部200が仲介範囲を第2地域R1に設定した場合の処理について、図14を例に説明する。第1地域A内の需要者から、第3ブロックチェーンBC3及び第2ブロックチェーンBC2aを通じて問い合わせを受け付けた場合(ステップS1020)、第2処理部200は、第2ブロックチェーンBC2aから第1地域Aの供給者電力情報を取得するとともに、インターレジャーを通じて第2ブロックチェーンBC2bから第1地域Bの供給者電力情報を取得する。そして、第2処理部200は、第1地域A、Bの供給者電力情報に基づいてアグリゲータ電力情報を生成するとともに、売電可否を需要者に通知する(ステップS1040)。また、需要者から発注を受け付けた場合(ステップS1060)、第2ブロックチェーンBC2aのトランザクション生成部210は、インターレジャーを介して第1ブロックチェーンBC1aに電力の購入契約に係るスマートコントラクトを含むトランザクションを送信するともに、第2ブロックチェーンBC2bを通じて第1ブロックチェーンBC1bに電力の購入契約に係るスマートコントラクトを含むトランザクションを送信して、各供給者に発注を行う(ステップS1060)。 Further, the processing when the second processing unit 200 sets the intermediary range to the second area R1 will be described with reference to FIG. 14 as an example. When an inquiry is received from a consumer in the first area A through the third blockchain BC3 and the second blockchain BC2a (step S1020), the second processing unit 200 receives the inquiry from the second blockchain BC2a to the first area A. In addition to acquiring the supplier power information, the supplier power information of the first area B is acquired from the second blockchain BC2b through interleisure. Then, the second processing unit 200 generates the aggregator power information based on the supplier power information of the first areas A and B, and notifies the consumer of whether or not the power can be sold (step S1040). When an order is received from the consumer (step S1060), the transaction generation unit 210 of the second blockchain BC2a executes a transaction including a smart contract related to the power purchase contract to the first blockchain BC1a via interledger. At the same time, a transaction including a smart contract related to a power purchase contract is transmitted to the first blockchain BC1b through the second blockchain BC2b to place an order with each supplier (step S1060).
(作用効果)
 以上のように、本実施形態に係る電力取引システム1において、第2ブロックチェーンBC2は、所定の第3条件を満たす場合、登録された情報を他の第2ブロックチェーンBC2と交換可能に接続される。これにより、複数の地域を統合して電力取引を行った方が有利である(例えば、需要量に応じた供給量を確保できる等)場合は、複数の地域それぞれに対応する第2ブロックチェーンBC2同士で情報(トランザクション)を交換して、電力を融通しあうことができる。
(Action effect)
As described above, in the electric power trading system 1 according to the present embodiment, the second blockchain BC2 is connected so that the registered information can be exchanged with another second blockchain BC2 when the predetermined third condition is satisfied. To. As a result, if it is advantageous to integrate multiple regions for electric power transactions (for example, it is possible to secure supply according to demand), the second blockchain BC2 corresponding to each of the multiple regions Information (transactions) can be exchanged between each other to exchange electric power.
 また、図19の例では一つのアグリゲータが有する複数の第2ブロックチェーンBC2同士を接続可能としたが、これに限られることはない。他の実施形態では、異なるアグリゲータが自身のサービス提供範囲毎の第2ブロックチェーンBC2を有していてもよい。この場合、各アグリゲータのサービス提供範囲が第1地域として設定される。このように、第2ブロックチェーンBC2同士を接続して情報の交換を行うことにより、各アグリゲータのアグリゲータシステム20同士で問い合わせ、受発注の確認等を行う必要がなく、電力取引に係る処理を迅速に完了させることが可能となる。 Further, in the example of FIG. 19, a plurality of second blockchain BC2s possessed by one aggregator can be connected to each other, but the present invention is not limited to this. In other embodiments, different aggregators may have a second blockchain BC2 for each service provision range of their own. In this case, the service provision range of each aggregator is set as the first region. By connecting the second blockchain BC2s to each other and exchanging information in this way, it is not necessary for the aggregator systems 20 of each aggregator to make inquiries and confirm orders received, and the processing related to electric power transactions can be expedited. It is possible to complete it.
(ハードウェア構成)
 図21は、本開示の少なくとも一の実施形態に係る供給者システム、アグリゲータシステム、需要者システム、及びノードのハードウェア構成の一例を示す図である。
 以下、図21を参照しながら、本実施形態に係る電力取引システム1の各部のハードウェア構成について説明する。
(Hardware configuration)
FIG. 21 is a diagram showing an example of hardware configurations of a supplier system, an aggregator system, a consumer system, and a node according to at least one embodiment of the present disclosure.
Hereinafter, the hardware configuration of each part of the electric power trading system 1 according to the present embodiment will be described with reference to FIG. 21.
 コンピュータ900は、プロセッサ901、主記憶装置902、補助記憶装置903、インタフェース904を備える。 The computer 900 includes a processor 901, a main storage device 902, an auxiliary storage device 903, and an interface 904.
 上述の供給者システム10、アグリゲータシステム20、需要者システム30、第1~第3ノード11、21、31は、それぞれ一つ又は複数のコンピュータ900に実装される。そして、上述した各機能部の動作は、プログラムの形式で補助記憶装置903に記憶されている。プロセッサ901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ901は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置902に確保する。プロセッサ901の例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。 The above-mentioned supplier system 10, aggregator system 20, consumer system 30, and first to third nodes 11, 21, and 31 are implemented in one or a plurality of computers 900, respectively. The operation of each of the above-mentioned functional units is stored in the auxiliary storage device 903 in the form of a program. The processor 901 reads a program from the auxiliary storage device 903, deploys it to the main storage device 902, and executes the above processing according to the program. Further, the processor 901 secures a storage area corresponding to each of the above-mentioned storage units in the main storage device 902 according to the program. Examples of the processor 901 include a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), a microprocessor, and the like.
 プログラムは、コンピュータ900に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、補助記憶装置903に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ900は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ901によって実現される機能の一部または全部が当該集積回路によって実現されてよい。このような集積回路も、プロセッサの一例に含まれる。 The program may be for realizing a part of the functions exerted on the computer 900. For example, the program may exert its function in combination with another program already stored in the auxiliary storage device 903, or in combination with another program mounted on the other device. In another embodiment, the computer 900 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, some or all of the functions realized by the processor 901 may be realized by the integrated circuit. Such integrated circuits are also included as an example of a processor.
 補助記憶装置903の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。補助記憶装置903は、コンピュータ900のバスに直接接続された内部メディアであってもよいし、インタフェース904または通信回線を介してコンピュータ900に接続される外部記憶装置910であってもよい。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の記憶媒体である。 Examples of the auxiliary storage device 903 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), and DVD-ROM (Digital Versatile Disc Read Only). Memory), semiconductor memory, and the like. The auxiliary storage device 903 may be an internal medium directly connected to the bus of the computer 900, or an external storage device 910 connected to the computer 900 via the interface 904 or a communication line. When this program is distributed to the computer 900 via a communication line, the distributed computer 900 may expand the program to the main storage device 902 and execute the above processing. In at least one embodiment, the auxiliary storage device 903 is a non-temporary tangible storage medium.
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the program may be for realizing a part of the above-mentioned functions. Further, the program may be a so-called difference file (difference program) that realizes the above-mentioned function in combination with another program already stored in the auxiliary storage device 903.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例であり、発明の範囲を限定しない。これらの実施形態は、発明の要旨を逸脱しない範囲で、種々の追加、省略、置き換え、変更を行ってよい。 Although some embodiments of the present invention have been described, these embodiments are examples and do not limit the scope of the invention. Various additions, omissions, replacements, and changes may be made to these embodiments without departing from the gist of the invention.
 例えば、第1~第3の実施形態に係るアグリゲータ電力情報には、アグリゲータが使用する送電経路の需要予測情報(送電経路の最大送電容量、使用率の予測等)が更に含まれていてもよい。また、需要者システム30の選択部301は、需要予測情報を参照して、アグリゲータを選択するようにしてもよい。例えば選択部301は、使用率に基づいて、約定の可能性が高い(送電経路の使用率が低い)アグリゲータを選択するようにしてもよい。また、選択部301は、所定の使用率以下のアグリゲータのうち、最も小売価格が安いアグリゲータを選択してもよい。このように、需要者は、需要予測情報及び小売価格に基づいて、より柔軟にアグリゲータを選択することが可能となる。また、供給者は、需要者が使用率を勘案してアグリゲータを選択するようになることで、電力の安定供給が可能となる。 For example, the aggregator power information according to the first to third embodiments may further include demand forecast information of the transmission path used by the aggregator (maximum transmission capacity of the transmission path, prediction of usage rate, etc.). .. Further, the selection unit 301 of the consumer system 30 may select an aggregator by referring to the demand forecast information. For example, the selection unit 301 may select an aggregator with a high possibility of execution (low usage rate of the transmission path) based on the usage rate. Further, the selection unit 301 may select the aggregator having the lowest retail price among the aggregators having a predetermined usage rate or less. In this way, the consumer can more flexibly select the aggregator based on the demand forecast information and the retail price. In addition, the supplier can select an aggregator in consideration of the usage rate, so that a stable supply of electric power becomes possible.
 また、第3の実施形態において、アグリゲータの送電可能電力が需要者の希望買電量に満たない場合、需要者システム30の選択部301が複数のアグリゲータを選択する例について説明したが、これに限られることはない。他の実施形態では、アグリゲータは、需要者の希望買電量が一つの供給者からの供給可能電力を超える場合、複数の供給者に電力購入を発注するようにしてもよい。この場合、アグリゲータシステム20の第2処理部200は、ステップS103において、複数の供給者からの供給可能電力を合算した送電可能電力を設定し、アグリゲータ電力情報を生成してもよい。また、需要者からの発注を受け付けると、アグリゲータの契約処理部213は、ステップS107において、複数の供給者それぞれに電力の購入を発注する。
 このようにすることで、アグリゲータは、需要者が希望する電力を提供することが可能となる。
Further, in the third embodiment, an example in which the selection unit 301 of the consumer system 30 selects a plurality of aggregators when the power that can be transmitted by the aggregator is less than the desired power purchase amount of the consumer has been described, but the present invention is limited to this. It will not be done. In another embodiment, the aggregator may order power purchases from a plurality of suppliers when the desired power purchase amount of the consumer exceeds the power that can be supplied from one supplier. In this case, the second processing unit 200 of the aggregator system 20 may set the transmittable power that is the sum of the powers that can be supplied from the plurality of suppliers in step S103, and generate the aggregator power information. Upon receiving an order from the consumer, the contract processing unit 213 of the aggregator orders the purchase of electric power from each of the plurality of suppliers in step S107.
By doing so, the aggregator can provide the electric power desired by the consumer.
 また、上述の第1~第3の実施形態において、アグリゲータシステム20の第2処理部200が送電経路の送電予定量又は使用率、需要者への給電開始までの時間等の各種状態に応じて小売価格を調整する例を説明した。他の実施形態では、供給者システム10の第1処理部100も同様に、各種状態に応じて卸売価格を調整するようにしてもよい。例えば、第1処理部100は、電力需要、又は送電経路の使用率が高いほど、卸売価格を高く設定する。また、第1処理部100は、給電開始までの時間が長いほど卸売価格を低く設定する。 Further, in the first to third embodiments described above, the second processing unit 200 of the aggregator system 20 responds to various states such as the planned power transmission amount or usage rate of the power transmission path, the time until the start of power supply to the consumer, and the like. An example of adjusting the retail price was explained. In another embodiment, the first processing unit 100 of the supplier system 10 may similarly adjust the wholesale price according to various states. For example, the first processing unit 100 sets the wholesale price higher as the power demand or the usage rate of the power transmission path increases. Further, the first processing unit 100 sets the wholesale price lower as the time until the start of power supply becomes longer.
 また、上述の第4~第6の実施形態において、需要者システム30の選択部301は、複数のカテゴリを選択していた場合、第1条件を満たす一つのカテゴリを選択する(図14のステップS1050)態様について説明したが、これに限られることはない。他の実施形態では、選択部301は、第1条件を満たす複数のカテゴリを選択するようにしてもよい。これにより、一つの供給者から買電可能な電力が希望買電量に満たない場合であっても、複数の供給者それぞれから買電を行い、希望買電量を確保することが可能となる。 Further, in the fourth to sixth embodiments described above, when the selection unit 301 of the consumer system 30 has selected a plurality of categories, the selection unit 301 selects one category satisfying the first condition (step of FIG. 14). Although the S1050) aspect has been described, the present invention is not limited to this. In another embodiment, the selection unit 301 may select a plurality of categories satisfying the first condition. As a result, even when the electric power that can be purchased from one supplier is less than the desired electric charge purchase amount, it is possible to purchase electric power from each of a plurality of suppliers and secure the desired electric power purchase amount.
 また、上述の第4~第6の実施形態において、アグリゲータシステム20の第2処理部200が送電経路の送電予定量又は使用率、需要者への給電開始までの時間等の各種状態に応じて小売価格を調整する例を説明した。他の実施形態では、供給者システム10の第1処理部100も同様に、各種状態に応じて卸売価格を調整するようにしてもよい。例えば、第1処理部100は、電力需要、又は送電経路の使用率が高いほど、卸売価格を高く設定する。また、第1処理部100は、給電開始までの時間が長いほど卸売価格を低く設定する。 Further, in the fourth to sixth embodiments described above, the second processing unit 200 of the aggregator system 20 responds to various states such as the planned power transmission amount or usage rate of the power transmission path, the time until the start of power supply to the consumer, and the like. An example of adjusting the retail price was explained. In another embodiment, the first processing unit 100 of the supplier system 10 may similarly adjust the wholesale price according to various states. For example, the first processing unit 100 sets the wholesale price higher as the power demand or the usage rate of the power transmission path increases. Further, the first processing unit 100 sets the wholesale price lower as the time until the start of power supply becomes longer.
<付記>
 上述の実施形態に記載の電力取引システム1及び電力取引方法は、例えば以下のように把握される。
<Additional notes>
The electric power trading system 1 and the electric power trading method described in the above-described embodiment are grasped as follows, for example.
 本開示の第1の態様によれば、電力取引システムは、供給者が有する第1ブロックチェーンと、アグリゲータが有する第2ブロックチェーンと、需要者が有する第3ブロックチェーンとを備え、前記第2ブロックチェーンは、前記第1ブロックチェーン及び前記第3ブロックチェーンそれぞれと接続可能である。
 このようにすることで、電力取引システムは、供給者、アグリゲータ、及び需要者それぞれが有するブロックチェーンを連携させて信頼性の高い電力取引を行うことができる。
According to the first aspect of the present disclosure, the electric power trading system includes a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer. The blockchain can be connected to each of the first blockchain and the third blockchain.
By doing so, the electric power trading system can carry out highly reliable electric power trading by linking the blockchains of the supplier, the aggregator, and the consumer.
 本開示の第2の態様によれば、第1の態様に係る電力取引システムは、前記供給者が供給可能な電力に関する供給者電力情報を生成し、前記第1ブロックチェーンに登録する第1処理部と、前記第1ブロックチェーンから取得した前記供給者電力情報に基づいて、前記アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、前記第2ブロックチェーンに登録する第2処理部と、前記第2ブロックチェーンから取得した前記アグリゲータ電力情報に基づいて、複数の前記アグリゲータのうち少なくとも一つのアグリゲータを選択する選択部と、前記第1ブロックチェーン、前記第2ブロックチェーン、及び前記第3ブロックチェーンのそれぞれにおいて、前記供給者と、前記需要者と、選択された前記アグリゲータとの間の電力取引に係る処理を実行する契約処理部と、を備える。
 これにより、電力取引システムは、特定のアグリゲータが中央集権的な管理を行うことなく、電力取引の参加者(供給者、アグリゲータ、需要者)それぞれのブロックチェーンを接続、連携させて、信頼性の高い電力取引を行うことができる。
According to the second aspect of the present disclosure, the electric power trading system according to the first aspect generates the supplier electric power information regarding the electric power that can be supplied by the supplier, and registers the first process in the first blockchain. A second processing unit that generates aggregator electric power information regarding electric power that can be transmitted via the aggregator based on the supplier electric power information acquired from the first blockchain and registers it in the second blockchain. A selection unit that selects at least one aggregator from the plurality of aggregators based on the aggregator power information acquired from the second blockchain, the first blockchain, the second blockchain, and the third. Each of the blockchains includes a contract processing unit that executes processing related to electric power transactions between the supplier, the consumer, and the selected aggregator.
As a result, the electric power trading system can connect and link the blockchains of each electric power trading participant (supplier, aggregator, consumer) without centralized management by a specific aggregator, and is reliable. High power trading can be done.
 本開示の第3の態様によれば、第2の態様に係る電力取引システムにおいて、前記アグリゲータ電力情報は、前記アグリゲータの送電可能電力、及び単位電力あたりの小売価格を含み、前記選択部は、前記送電可能電力及び前記小売価格のうち少なくとも一方が前記需要者により予め設定された条件を満たすアグリゲータを選択する。
 このようにすることで、需要者は、複数のアグリゲータの中から自身の希望する条件に合致するアグリゲータを容易に選択することができる。
According to the third aspect of the present disclosure, in the electric power trading system according to the second aspect, the aggregator electric power information includes the transmittable electric power of the aggregator and the retail price per unit electric power, and the selection unit comprises. Select an aggregator in which at least one of the transmittable power and the retail price meets the conditions preset by the consumer.
By doing so, the consumer can easily select an aggregator that meets his / her desired conditions from a plurality of aggregators.
 本開示の第4の態様によれば、第3の態様に係る電力取引システムにおいて、前記第2処理部は、前記供給者と前記需要者との間の送電経路に応じた送電コストを、前記供給者電力情報に含まれる前記供給者の単位電力あたりの卸売価格に加算して前記小売価格を設定する。
 アグリゲータの送電コストは使用する送電経路に応じて変化するため、ある供給者の卸売価格が他の供給者よりも安価であったとしても、実際に支払う金額が他の供給者から購入するよりも高くなってしまう可能性がある。しかしながら、上述の態様に係る電力取引システムでは、需要者には送電コストを含む小売価格が提示されるため、需要者はより安価なアグリゲータを選択することができる。
According to the fourth aspect of the present disclosure, in the electric power trading system according to the third aspect, the second processing unit sets the transmission cost according to the transmission path between the supplier and the consumer. The retail price is set in addition to the wholesale price per unit power of the supplier included in the supplier power information.
Aggregator transmission costs vary depending on the transmission route used, so even if one supplier's wholesale price is cheaper than another, the actual amount paid is higher than purchasing from another. It can be expensive. However, in the electric power trading system according to the above aspect, since the retail price including the transmission cost is presented to the consumer, the consumer can select a cheaper aggregator.
 本開示の第5の態様によれば、第3又は第4の態様に係る電力取引システムにおいて、前記第2処理部は、前記供給者と前記需要者との間の送電経路の送電予定量又は使用率に基づいて前記小売価格を設定する。
 このようにすることで、アグリゲータは、電力需要が多い(送電経路の送電予定量又は使用率が上限に近い)ことが予測される場合は、小売価格を高くして更なる需要を抑制させるなど、電力取引量を調整することができる。
According to the fifth aspect of the present disclosure, in the electric power trading system according to the third or fourth aspect, the second processing unit is the planned power transmission amount of the power transmission path between the supplier and the consumer. The retail price is set based on the usage rate.
By doing so, the aggregator can raise the retail price to suppress further demand when it is predicted that the power demand is high (the planned transmission amount or usage rate of the transmission route is close to the upper limit). , Electricity trading volume can be adjusted.
 本開示の第6の態様によれば、第4又は第5の態様に係る電力取引システムにおいて、前記第2処理部は、前記送電経路が複数ある場合、送電経路毎に前記小売価格を設定する。
 このようにすることで、アグリゲータは、小売価格を調整して特定の送電経路(例えば、空いている送電経路)へ需要者を誘導することができる。
According to the sixth aspect of the present disclosure, in the electric power trading system according to the fourth or fifth aspect, the second processing unit sets the retail price for each power transmission path when there are a plurality of the power transmission paths. ..
In this way, the aggregator can adjust the retail price to guide the consumer to a specific transmission path (for example, a vacant transmission path).
 本開示の第7の態様によれば、第3から第5の何れか一の態様に係る電力取引システムにおいて、前記第2処理部は、前記需要者への給電開始までの時間に応じて前記小売価格を設定する。
 このようにすることで、アグリゲータは、例えば給電開始までの時間が長いほど小売価格を設定して、需要者に早期の買電を促すことができる。この結果、アグリゲータは、将来の電力取引量を早い段階から把握することが容易となる。
According to the seventh aspect of the present disclosure, in the electric power trading system according to any one of the third to fifth aspects, the second processing unit is said to respond to the time until the start of power supply to the consumer. Set the retail price.
By doing so, the aggregator can set the retail price as the time until the start of power supply becomes longer, and encourage the consumer to purchase the power at an early stage. As a result, the aggregator can easily grasp the future electricity transaction volume from an early stage.
 本開示の第8の態様によれば、第3から第6の何れか一の態様に係る電力取引システムにおいて、前記第2処理部は、前記供給者の供給可能電力を上限として、前記需要者に売電可能な電力を前記送電可能電力として設定する。
 このようにすることで、アグリゲータは、送電可能な電力量をより正確に需要者に提供することができる。
According to the eighth aspect of the present disclosure, in the electric power trading system according to any one of the third to sixth aspects, the second processing unit uses the electric power that can be supplied by the supplier as an upper limit, and the consumer. The power that can be sold is set as the power that can be transmitted.
By doing so, the aggregator can more accurately provide the amount of electric power that can be transmitted to the consumer.
 本開示の第9の態様によれば、第8の態様に係る電力取引システムにおいて、前記第2処理部は、複数の供給者それぞれが有する複数の前記第1ブロックチェーンから取得した複数の前記供給者電力情報に基づいて、複数の前記供給者からの供給可能電力を合算した値に基づいて前記送電可能電力を設定する。
 このようにすることで、アグリゲータは、一の供給者の供給可能電力が需要者の希望買電量に満たない場合であっても、複数の供給者の供給可能電力を合算して、需要者の希望買電量に応じた電力を提供することが可能となる。
According to the ninth aspect of the present disclosure, in the electric power trading system according to the eighth aspect, the second processing unit is a plurality of the supply obtained from the plurality of first blockchains owned by the plurality of suppliers. Based on the personal power information, the transmittable power is set based on the total value of the powers that can be supplied from the plurality of suppliers.
By doing so, the aggregator can add up the available power of a plurality of suppliers even if the available electric power of one supplier is less than the desired amount of electric charge of the consumer, and the aggregator can add the electric power of the consumer. It is possible to provide electric power according to the desired amount of electric power purchased.
 本開示の第10の態様によれば、第2から第10の何れか一の態様に係る電力取引システムにおいて、前記第2処理部は、前記需要者への送電経路における送電予定量又は使用率が所定値を超えている場合、当該需要者への売電が不可であると判定し、売電不可を示す情報を当該需要者へ通知する。
 このようにすることで、アグリゲータは、需要者への電力取引量を調整することが可能である。
According to the tenth aspect of the present disclosure, in the electric power trading system according to any one of the second to tenth aspects, the second processing unit is the planned power transmission amount or the usage rate in the power transmission path to the consumer. If exceeds a predetermined value, it is determined that the power cannot be sold to the consumer, and the information indicating that the power cannot be sold is notified to the consumer.
By doing so, the aggregator can adjust the amount of electricity traded to the consumer.
 本開示の第11の態様によれば、第2から第10の何れか一の態様に係る電力取引システムにおいて、前記契約処理部は、前記供給者及び前記アグリゲータにおいて前記需要者が希望する電力の受注可否を判断し、前記第1ブロックチェーン及び前記第2ブロックチェーンを通じて前記第3ブロックチェーンへ判断結果を通知し、前記選択部は、受注不可を示す判断結果が通知された場合、前回選択したアグリゲータとは異なるアグリゲータを選択する。
 例えば、需要者がアグリゲータ電力情報を取得してから発注を行うまでに、他の需要者による契約が結ばれてアグリゲータの送電可能電力が変化し、受注不可となる場合がある。このような場合であっても、需要者は、他のアグリゲータを再選択して発注を行うことにより、希望する電力を購入する可能性を高くすることができる。
According to the eleventh aspect of the present disclosure, in the electric power trading system according to any one of the second to tenth aspects, the contract processing unit is the electric power desired by the consumer in the supplier and the aggregator. It is determined whether or not an order can be accepted, and the determination result is notified to the third blockchain through the first blockchain and the second blockchain, and the selection unit selects the last time when the determination result indicating that the order cannot be received is notified. Select an aggregator that is different from the aggregator.
For example, from the time when a consumer acquires the aggregator power information to the time when an order is placed, a contract with another consumer may be concluded, the power that can be transmitted by the aggregator may change, and an order may not be accepted. Even in such a case, the consumer can increase the possibility of purchasing the desired electric power by reselecting another aggregator and placing an order.
 本開示の第12の態様によれば、第2から第11の何れか一の態様に係る電力取引システムにおいて、前記アグリゲータ電力情報には、前記アグリゲータが使用する送電経路の需要予測情報が含まれる。
 このようにすることで、需要者は、需要予測情報に基づいて、より柔軟にアグリゲータを選択することが可能となる。また、供給者は、需要者が使用率を勘案してアグリゲータを選択するようになることで、電力の安定供給が可能となる。
According to the twelfth aspect of the present disclosure, in the electric power trading system according to any one of the second to eleventh aspects, the aggregator power information includes demand forecast information of a power transmission path used by the aggregator. ..
By doing so, the consumer can more flexibly select the aggregator based on the demand forecast information. In addition, the supplier can select an aggregator in consideration of the usage rate, so that a stable supply of electric power becomes possible.
 本開示の第13の態様によれば、第3から第9の態様に係る電力取引システムにおいて、前記選択部は、前記送電可能量が前記需要者により予め設定された希望買電量よりも小さい場合、複数の前記アグリゲータを選択する。
 これにより、個々のアグリゲータが送電可能な電力が足りない場合であっても、需要者は希望する買電量を確保することが可能となる。
According to the thirteenth aspect of the present disclosure, in the electric power trading system according to the third to ninth aspects, the selection unit is the case where the power transmission possible amount is smaller than the desired power purchase amount preset by the consumer. , Select a plurality of said aggregators.
As a result, even if the electric power that can be transmitted by each aggregator is insufficient, the consumer can secure the desired amount of electric power purchase.
 本開示の第14の態様によれば、第2から第12の何れか一の態様に係る電力取引システムにおいて、前記契約処理部は、前記需要者により予め設定された希望買電量を満たすように、複数の前記供給者との前記契約処理を実行する。
 このようにすることで、アグリゲータは、需要者が希望する電力を提供することが可能となる。
According to the fourteenth aspect of the present disclosure, in the electric power trading system according to any one of the second to twelfth aspects, the contract processing unit satisfies the desired power purchase amount preset by the consumer. , Perform the contract processing with the plurality of the suppliers.
By doing so, the aggregator can provide the electric power desired by the consumer.
 本開示の第15の態様によれば、第2から第14の何れか一の態様に係る電力取引システムにおいて、前記第2処理部は、複数の前記アグリゲータのうち、前記需要者へ送電を行う第1アグリゲータに関するアグリゲータ電力情報を、当該第1アグリゲータへ送電が可能な第2アグリゲータに関するアグリゲータ電力情報に基づいて更に生成する。
 従来の仕組みでは、需要者は、供給者及び需要者の双方をサービス範囲に含むアグリゲータのみと電力取引を行うことが可能であった。しかしながら、上述の態様に係る電力取引システムは、複数のアグリゲータを接続して送電を行うことができるので、需要者が選択可能なアグリゲータを増やすことができる。
According to the fifteenth aspect of the present disclosure, in the electric power trading system according to any one of the second to the fourteenth aspects, the second processing unit transmits power to the consumer among the plurality of aggregators. The aggregator power information regarding the first aggregator is further generated based on the aggregator power information regarding the second aggregator capable of transmitting power to the first aggregator.
In the conventional mechanism, the consumer can trade electricity only with an aggregator that includes both the supplier and the consumer in the service range. However, since the electric power trading system according to the above aspect can connect a plurality of aggregators to transmit power, it is possible to increase the number of aggregators that can be selected by the consumer.
 本開示の第16の態様によれば、第2から第15の何れか一の態様に係る電力取引システムにおいて、前記第1ブロックチェーンとの前記第2ブロックチェーンとの間、及び、前記第2ブロックチェーンと前記第3ブロックチェーンとの間は、それぞれインターレジャーを用いて通信可能に接続される。
 このようにすることで、供給者、アグリゲータ、及び需要者は、インターレジャーを利用して、供給者の第1ブロックチェーンBC1、アグリゲータの第2ブロックチェーンBC2、及び需要者の第3ブロックチェーンそれぞれに登録された電力取引に係る各種データの受け渡しを行うことができる。また、各ブロックチェーンに登録されたデータの仕様が異なっていたとしても、インターレジャーの仕組みにより交換可能となる。これにより、供給者、アグリゲータ、及び需要者は、それぞれが有するブロックチェーンを自由に設計、改修することが容易となる。
According to the sixteenth aspect of the present disclosure, in the electric power trading system according to any one of the second to fifteenth aspects, between the first blockchain and the second blockchain, and the second. The blockchain and the third blockchain are connected to each other so as to be communicable using interledgers.
By doing so, the supplier, the aggregator, and the consumer can use the interleisure to use the first blockchain BC1 of the supplier, the second blockchain BC2 of the aggregator, and the third blockchain of the consumer, respectively. It is possible to transfer various data related to electric power transactions registered in. Moreover, even if the specifications of the data registered in each blockchain are different, they can be exchanged by the interleisure mechanism. This makes it easy for suppliers, aggregators, and consumers to freely design and modify their own blockchains.
 本開示の第17の態様によれば、電力取引方法は、供給者が有する第1ブロックチェーンと、アグリゲータが有する第2ブロックチェーンと、需要者が有する第3ブロックチェーンと用いた電力取引方法であって、前記供給者が供給可能な電力に関する供給者電力情報を生成し、前記第1ブロックチェーンに登録するステップと、前記第1ブロックチェーンから取得した前記供給者電力情報に基づいて、前記アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、前記第2ブロックチェーンに登録するステップと、前記第2ブロックチェーンから取得した前記アグリゲータ電力情報に基づいて、複数の前記アグリゲータのうち少なくとも一つのアグリゲータを選択するステップと、前記第1ブロックチェーン、前記第2ブロックチェーン、及び前記第3ブロックチェーンのそれぞれにおいて、前記供給者と、選択された前記アグリゲータと、前記需要者との間の電力供給に係る契約処理を実行するステップと、を有する。 According to the 17th aspect of the present disclosure, the electric power trading method is an electric power trading method using a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer. The aggregator is based on a step of generating supplier electric power information regarding electric power that can be supplied by the supplier and registering the electric power in the first blockchain, and the supplier electric power information acquired from the first blockchain. At least one of the plurality of the aggregators based on the step of generating the aggregator electric power information regarding the electric power that can be transmitted via the second blockchain and registering the aggregator electric power information in the second blockchain and the aggregator electric power information acquired from the second blockchain. Power between the supplier, the selected aggregator, and the consumer in each of the steps of selecting one aggregator and the first blockchain, the second blockchain, and the third blockchain. It has a step of executing contract processing related to supply.
 本開示の第18の態様によれば、第1の態様に係る電力取引システムにおいて、前記第1ブロックチェーンに前記供給者の電力取引に係る情報が登録され、前記第2ブロックチェーンは前記供給者が供給する電力のカテゴリそれぞれに対応して複数設けられ、複数の前記第2ブロックチェーンそれぞれにアグリゲータの前記カテゴリ別の電力取引に係る情報が登録され、前記第3ブロックチェーンは複数の前記第2ブロックチェーンのうち、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続可能であり、前記需要者の電力取引に係る情報が登録される。
これにより、電力取引システムは、電力のカテゴリ毎に電力市場を分割して、需要者が希望するカテゴリの電力のみを選択的に売買することが可能となる。また、電力取引システムの参加者である供給者、アグリゲータ、需要者それぞれは、各ブロックチェーンに登録された情報に基づいて、各参加者がどのカテゴリの電力をどのくらい売買したかを追跡することができる。
According to the eighteenth aspect of the present disclosure, in the electric power trading system according to the first aspect, information relating to the electric power transaction of the supplier is registered in the first blockchain, and the second blockchain is the supplier. A plurality of information relating to the power transaction of the aggregator according to the category are registered in each of the plurality of second blockchains, and the third blockchain is a plurality of the second blockchains. Among the blockchains, it is possible to connect to the second blockchain corresponding to the category preset by the consumer, and the information related to the electric power transaction of the consumer is registered.
As a result, the electric power trading system can divide the electric power market for each electric power category and selectively buy and sell only the electric power of the category desired by the consumer. In addition, each of the suppliers, aggregators, and consumers who are participants in the electricity trading system can track how much electricity in which category each participant bought and sold based on the information registered in each blockchain. it can.
 本開示の第19の態様によれば、第18の態様に係る電力取引システムにおいて、前記第2ブロックチェーンに登録される前記情報には、特定の期間における前記アグリゲータの送電可能電力、単位電力あたりの小売価格、送電可能時間、カテゴリ、及び前記アグリゲータの識別情報のうち、少なくとも一つが含まれる。
 これにより、需要者は、ブロックチェーンを通じてアグリゲータが提供可能な電力に関する各種情報を取得することができる。
According to the 19th aspect of the present disclosure, in the electric power trading system according to the 18th aspect, the information registered in the second blockchain includes the power that can be transmitted by the aggregator in a specific period, per unit electric power. At least one of the retail price, transmission available time, category, and identification information of the aggregator is included.
As a result, the consumer can acquire various information about the electric power that the aggregator can provide through the blockchain.
 本開示の第20の態様によれば、第19の態様に係る電力取引システムにおいて、前記小売価格は、前記供給者と前記需要者との間の送電経路に応じた送電コストを、前記供給者の単位電力あたりの卸売価格に加算されて設定される。
 アグリゲータの送電コストは使用する送電経路に応じて変化するため、あるカテゴリの卸売価格が他のカテゴリよりも安価であったとしても、実際に支払う金額が他のカテゴリから購入するよりも高くなってしまう可能性がある。しかしながら、上述の態様に係る電力取引システムでは、需要者には送電コストを含む小売価格が提示されるため、需要者はより安価なカテゴリを選択することができる。
According to the twentieth aspect of the present disclosure, in the power trading system according to the nineteenth aspect, the retail price is the transmission cost according to the transmission path between the supplier and the consumer. It is set in addition to the wholesale price per unit power of.
Aggregator transmission costs vary depending on the transmission route used, so even if the wholesale price of one category is cheaper than that of another category, the actual amount paid will be higher than purchasing from another category. There is a possibility that it will end up. However, in the electric power trading system according to the above aspect, since the retail price including the transmission cost is presented to the consumer, the consumer can select a cheaper category.
 本開示の第21の態様によれば、第19又は第20の態様に係る電力取引システムにおいて、前記小売価格は、前記供給者と前記需要者との間の送電経路の送電予定量又は使用率に基づいて設定される。
 このようにすることで、アグリゲータは、電力需要が多い(送電経路の送電予定量又は使用率が上限に近い)ことが予測される場合は、小売価格を高くして更なる需要を抑制させるなど、電力取引量を調整することができる。
According to the 21st aspect of the present disclosure, in the electric power trading system according to the 19th or 20th aspect, the retail price is the planned transmission amount or the usage rate of the transmission path between the supplier and the consumer. It is set based on.
By doing so, the aggregator can raise the retail price to suppress further demand when it is predicted that the power demand is high (the planned transmission amount or usage rate of the transmission route is close to the upper limit). , Electricity trading volume can be adjusted.
 本開示の第22の態様によれば、第20又は第21の態様に係る電力取引システムにおいて、前記小売価格は、前記送電経路が複数ある場合、送電経路毎に設定される。
このようにすることで、アグリゲータは、小売価格を調整して特定の送電経路(例えば、空いている送電経路)へ需要者を誘導することができる。
According to the 22nd aspect of the present disclosure, in the electric power trading system according to the 20th or 21st aspect, the retail price is set for each power transmission path when there are a plurality of the power transmission paths.
In this way, the aggregator can adjust the retail price to guide the consumer to a specific transmission path (for example, a vacant transmission path).
 本開示の第23の態様によれば、第19から第22の何れか一の態様に係る電力取引システムにおいて、前記小売価格は、前記需要者への給電開始までの時間に応じて設定される。
 このようにすることで、アグリゲータは、例えば給電開始までの時間が長いほど小売価格を設定して、需要者に早期の買電を促すことができる。この結果、アグリゲータは、将来の電力取引量を早い段階から把握することが容易となる。
According to the 23rd aspect of the present disclosure, in the electric power trading system according to any one of the 19th to 22nd aspects, the retail price is set according to the time until the start of power supply to the consumer. ..
By doing so, the aggregator can set the retail price as the time until the start of power supply becomes longer, and encourage the consumer to purchase the power at an early stage. As a result, the aggregator can easily grasp the future electricity transaction volume from an early stage.
 本開示の第24の態様によれば、第19から第23の何れか一の態様に係る電力取引システムにおいて、前記送電可能電力は、前記供給者の供給可能電力を上限として、前記需要者に売電可能な電力が設定される。
 このようにすることで、アグリゲータは、送電可能な電力量をより正確に需要者に提供することができる。
According to the 24th aspect of the present disclosure, in the electric power trading system according to any one of the 19th to 23rd aspects, the power that can be transmitted is supplied to the consumer up to the power that can be supplied by the supplier. The power that can be sold is set.
By doing so, the aggregator can more accurately provide the amount of electric power that can be transmitted to the consumer.
 本開示の第25の態様によれば、第18から第24の何れか一の態様に係る電力取引システムにおいて、前記第2ブロックチェーンは、前記需要者への送電経路における送電予定容量又は使用率が所定値を超えている場合、当該需要者への売電が不可であると判定し、前記第1ブロックチェーンに対し売電不可を示す情報を通知する。
 このようにすることで、アグリゲータは、需要者への電力取引量を調整することが可能である。
According to the 25th aspect of the present disclosure, in the electric power trading system according to any one of the 18th to 24th aspects, the second blockchain is the planned power transmission capacity or the usage rate in the power transmission path to the consumer. If exceeds a predetermined value, it is determined that the power cannot be sold to the consumer, and the first blockchain is notified of the information indicating that the power cannot be sold.
By doing so, the aggregator can adjust the amount of electricity traded to the consumer.
 本開示の第26の態様によれば、第18から第25の何れか一の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、前記需要者が希望する電力のカテゴリ、購入希望期間、希望買電量、及び前記需要者の位置情報を含む問い合わせ情報を前記第2ブロックチェーンに送信し、前記第2ブロックチェーンは、前記問い合わせ情報と、前記第2ブロックチェーンに登録されている情報とに基づいて、前記需要者への売電可否を含む応答を第3ブロックチェーンに送信する。
 このようにすることで、需要者は、発注を行う前に、希望するカテゴリの電力を買電可能であるかを知ることができる。
According to the 26th aspect of the present disclosure, in the electric power trading system according to any one of the 18th to 25th aspects, the third blockchain is the electric power category desired by the consumer, the desired purchase period, and the like. Inquiry information including the desired power purchase amount and the position information of the consumer is transmitted to the second blockchain, and the second blockchain is divided into the inquiry information and the information registered in the second blockchain. Based on this, a response including whether or not to sell the electric power to the consumer is transmitted to the third blockchain.
By doing so, the consumer can know whether or not the electric power of the desired category can be purchased before placing an order.
 本開示の第27の態様によれば、第18から第26の何れか一の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、接続された前記第2ブロックチェーンから取得した情報に基づいて、前記需要者により設定された第1条件を満たすカテゴリを選択し、当該カテゴリの電力を提供するアグリゲータを介して前記供給者から買電するためのスマートコントラクトを含むトランザクションを生成する。
 これにより、第3ブロックチェーンは、需要者から買電の指示を受け付けることなく、迅速に電力取引の手続きを進めることができる。更に、スマートコントラクトにより、第1ブロックチェーン及び第2ブロックチェーンにおいても電力取引の手続きを自動化することができるので、短時間での契約成立を実現することができる。これにより、電力取引システムは、リアルタイムで変動する需給状況への追従を行うことが可能となる。
According to the 27th aspect of the present disclosure, in the electric power trading system according to any one of the 18th to 26th aspects, the third blockchain is based on the information acquired from the connected second blockchain. Then, a category that satisfies the first condition set by the consumer is selected, and a transaction including a smart contract for purchasing power from the supplier is generated via an aggregator that provides power in the category.
As a result, the third blockchain can quickly proceed with the electric power transaction procedure without receiving an instruction to purchase electric power from the consumer. Further, since the smart contract can automate the procedure of electric power transaction in the first blockchain and the second blockchain, it is possible to realize the contract conclusion in a short time. As a result, the electric power trading system can follow the fluctuating supply and demand situation in real time.
 本開示の第28の態様によれば、第27の態様に係る電力取引システムにおいて、前記第1条件は、前記需要者の希望買電量、希望買電価格、電力が供給開始されるまでの応答時間、及び前記カテゴリの優先順位のうち、少なくとも一つを含む。
 これにより、電力取引システムは、需要者の希望に応じて適切なカテゴリを選択して電力の取引を行うことができる。
According to the 28th aspect of the present disclosure, in the electric power trading system according to the 27th aspect, the first condition is the desired power purchase amount, the desired power purchase price, and the response until the power supply is started. Includes time and at least one of the priorities of the categories.
As a result, the electric power trading system can trade electric power by selecting an appropriate category according to the wishes of the consumer.
 本開示の第29の態様によれば、第28の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、前記第1条件を満たすカテゴリが複数ある場合、最も低い小売価格が設定されたカテゴリを選択して前記トランザクションを生成する。
 このようにすることで、需要者は、自身が定めた電力購入に関する方針(例えば、自然エネルギー由来の電力のみを使用する、特定の地域(例えば需要者の所在地)で発電される電力のみ使用する、等)に従いつつ、より安価な電力を購入することができる。
According to the 29th aspect of the present disclosure, in the electric power trading system according to the 28th aspect, the third blockchain is a category in which the lowest retail price is set when there are a plurality of categories satisfying the first condition. To generate the transaction.
By doing so, the consumer uses only the electricity generated in a specific area (for example, the location of the consumer), which is the policy regarding the purchase of electricity that he / she has set (for example, only the electricity derived from renewable energy is used). , Etc.), and cheaper electricity can be purchased.
 本開示の第30の態様によれば、第28の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、前記第1条件を満たすカテゴリが複数ある場合、最も早い応答時間が設定されたカテゴリを選択して前記トランザクションを生成する。
 このようにすることで、需要者は、緊急に電力を要する場合であっても、自身が定めた電力購入方針に従いつつ、必要な電力を購入することができる。
According to the thirtieth aspect of the present disclosure, in the electric power trading system according to the 28th aspect, the third blockchain is a category in which the earliest response time is set when there are a plurality of categories satisfying the first condition. To generate the transaction.
By doing so, the consumer can purchase the necessary electric power while following the electric power purchase policy set by himself / herself even when the electric power is urgently required.
 本開示の第31の態様によれば、第28の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、前記第1条件を満たすカテゴリが複数ある場合、最も優先順位の高いカテゴリを選択して前記トランザクションを生成する。
 このようにすることで、需要者は、自身が定めた電力購入方針に従いつつ、必要な電力を購入できる可能性を高めることができる。
According to the 31st aspect of the present disclosure, in the electric power trading system according to the 28th aspect, when there are a plurality of categories satisfying the first condition, the third blockchain selects the category having the highest priority. Generates the transaction.
By doing so, the consumer can increase the possibility of purchasing the necessary electric power while following the electric power purchasing policy set by the consumer.
 本開示の第32の態様によれば、第28の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、前記第1条件を満たすカテゴリのうち、複数のカテゴリを選択して前記トランザクションを生成する。
 このようにすることで、需要者、一つの供給者から買電可能な電力が希望買電量に満たない場合であっても、複数の供給者それぞれから買電を行い、希望買電量を確保することが可能となる。
According to the 32nd aspect of the present disclosure, in the electric power trading system according to the 28th aspect, the third blockchain selects a plurality of categories from the categories satisfying the first condition to generate the transaction. To do.
By doing so, even if the amount of power that can be purchased from the consumer or one supplier is less than the desired amount of power purchased, power is purchased from each of a plurality of suppliers to secure the desired amount of power purchased. It becomes possible.
 本開示の第33の態様によれば、第27から第32の何れか一の態様に係る電力取引システムにおいて、前記第1ブロックチェーン及び前記第2ブロックチェーンは、前記トランザクションに基づいて、前記供給者及び前記アグリゲータにおいて前記需要者が希望する電力の受注可否を判断し、前記第1ブロックチェーン及び前記第2ブロックチェーンを通じて前記第3ブロックチェーンへ判断結果を通知し、前記第3ブロックチェーンは、受注不可を示す判断結果が通知された場合、前回選択したカテゴリとは異なるカテゴリを選択して新たなトランザクションを生成する。
 例えば、需要者がアグリゲータから情報を取得してから発注を行うまでに、他の需要者による契約が結ばれてアグリゲータの送電可能電力が変化し、受注不可となる場合がある。このような場合であっても、需要者は、他のカテゴリを再選択して発注を行うことにより、希望する電力を購入する可能性を高くすることができる。
According to the 33rd aspect of the present disclosure, in the electric power trading system according to any one of the 27th to 32nd aspects, the first blockchain and the second blockchain are supplied based on the transaction. The person and the aggregator determine whether or not the consumer desires to receive an order for electric power, notify the third blockchain of the determination result through the first blockchain and the second blockchain, and the third blockchain determines the decision result. When the judgment result indicating that the order cannot be received is notified, a category different from the previously selected category is selected and a new transaction is generated.
For example, from the time a consumer obtains information from an aggregator to the time an order is placed, a contract with another consumer may be concluded, the power that can be transmitted by the aggregator may change, and an order may not be accepted. Even in such a case, the consumer can increase the possibility of purchasing the desired electric power by reselecting another category and placing an order.
 本開示の第34の態様によれば、第18から第33の何れか一の態様に係る電力取引システムにおいて、前記第1ブロックチェーンとの前記第2ブロックチェーンとの間、及び、前記第2ブロックチェーンと前記第3ブロックチェーンとの間は、それぞれインターレジャーを用いて通信可能に接続される。
 このようにすることで、供給者、アグリゲータ、及び需要者は、インターレジャーを利用して、供給者の第1ブロックチェーン、アグリゲータの第2ブロックチェーン、及び需要者の第3ブロックチェーンそれぞれに登録された電力取引に係る各種データの受け渡しを行うことができる。また、各ブロックチェーンに登録されたデータの仕様が異なっていたとしても、インターレジャーの仕組みにより交換可能となる。これにより、供給者、アグリゲータ、及び需要者は、それぞれが有するブロックチェーンを自由に設計、改修することが容易となる。
According to the 34th aspect of the present disclosure, in the electric power trading system according to any one of the 18th to 33rd aspects, between the first blockchain and the second blockchain, and the second aspect. The blockchain and the third blockchain are connected to each other so as to be communicable using interledgers.
In this way, the supplier, aggregator, and consumer can use interledger to register with the supplier's first blockchain, the aggregator's second blockchain, and the consumer's third blockchain, respectively. It is possible to transfer various data related to the completed electric power transaction. Moreover, even if the specifications of the data registered in each blockchain are different, they can be exchanged by the interleisure mechanism. This makes it easy for suppliers, aggregators, and consumers to freely design and modify their own blockchains.
 本開示の第35の態様によれば、第18から第34の何れか一の態様に係る電力取引システムは、蓄電池所有者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続可能であり、当該蓄電池所有者による電力の取引に係る情報が登録される第4ブロックチェーンを更に備える。
 これにより、蓄電池所有者は、所有する蓄電池の電力の出自を明らかにして売買電を行うことが可能となる。また、蓄電池を介した電力取引についても、各ブロックチェーンに登録された情報に基づいて、各参加者がどのカテゴリの電力をどのくらい売買したかを追跡することが可能となる。
According to the 35th aspect of the present disclosure, the electric power trading system according to any one of the 18th to 34th aspects can be connected to the second blockchain corresponding to the category preset by the storage battery owner. , A fourth blockchain is further provided in which information relating to the electric power transaction by the storage battery owner is registered.
As a result, the storage battery owner can buy and sell electricity by clarifying the origin of the electric power of the storage battery he owns. Also, regarding electric power transactions via storage batteries, it is possible to track how much electric power of which category each participant bought and sold based on the information registered in each blockchain.
 本開示の第36の態様によれば、第35の態様に係る電力取引システムにおいて、前記第4ブロックチェーンは、接続された前記第2ブロックチェーンから取得した情報に基づいて、前記蓄電池所有者により設定された第2条件を満たすカテゴリを選択し、当該カテゴリの電力を提供するアグリゲータを介して前記供給者から買電するためのスマートコントラクトを含むトランザクションを生成する。
 これにより、蓄電池所有者は、希望するカテゴリに応じた電力を供給者から買電して、蓄電池に蓄電することができる。
According to the 36th aspect of the present disclosure, in the electric power trading system according to the 35th aspect, the 4th blockchain is connected by the storage battery owner based on the information acquired from the connected 2nd blockchain. A category that satisfies the set second condition is selected, and a transaction including a smart contract for purchasing power from the supplier is generated via an aggregator that provides power in the category.
As a result, the storage battery owner can purchase electric power according to the desired category from the supplier and store the electric power in the storage battery.
 本開示の第37の態様によれば、第35又は第36の態様に係る電力取引システムにおいて、前記第3ブロックチェーンは、接続された前記第2ブロックチェーンから取得した情報に基づいて、前記需要者により設定された第1条件を満たすカテゴリを選択し、当該カテゴリの電力を提供するアグリゲータを介して前記蓄電池所有者から買電するためのスマートコントラクトを含むトランザクションを生成する。
 これにより、需要者は、例えば供給者から供給される電力が不足している場合であっても、蓄電池所有者から希望するカテゴリの電力を購入可能となる。
According to the 37th aspect of the present disclosure, in the electric power trading system according to the 35th or 36th aspect, the third blockchain is the demand based on the information acquired from the connected second blockchain. Select a category that satisfies the first condition set by the person, and generate a transaction including a smart contract for purchasing power from the storage battery owner via an aggregator that provides power in the category.
As a result, the consumer can purchase the electric power of the desired category from the storage battery owner even when the electric power supplied from the supplier is insufficient, for example.
 本開示の第38の態様によれば、第35から第37の何れか一の態様に係る電力取引システムにおいて、前記第2ブロックチェーンと前記第4ブロックチェーンとの間は、インターレジャーを用いて通信可能に接続される。
 このようにすることで、アグリゲータ及び蓄電池所有者は、インターレジャーを利用して、アグリゲータの第2ブロックチェーン、及び蓄電池所有者の第4ブロックチェーンそれぞれに登録された電力取引に係る各種データの受け渡しを行うことができる。また、各ブロックチェーンに登録されたデータの仕様が異なっていたとしても、インターレジャーの仕組みにより交換可能となる。これにより、蓄電池所有者は、自身が有するブロックチェーンを自由に設計、改修することが容易となる。
According to the 38th aspect of the present disclosure, in the electric power trading system according to any one of the 35th to 37th aspects, an interleisure is used between the second blockchain and the fourth blockchain. Connected to be communicable.
By doing so, the aggregator and the storage battery owner can use the interleisure to transfer various data related to the electric power transaction registered in each of the aggregator's second blockchain and the storage battery owner's fourth blockchain. It can be performed. Moreover, even if the specifications of the data registered in each blockchain are different, they can be exchanged by the interleisure mechanism. This makes it easy for battery owners to freely design and modify their own blockchain.
 本開示の第39の態様によれば、第18から第38の何れか一の態様に係る電力取引システムにおいて、前記第2ブロックチェーンは、前記アグリゲータにより設定された第3条件を満たす場合、登録された情報を他の第2ブロックチェーンと交換可能に接続される。
 これにより、複数のカテゴリ(例えば、地域)を統合して電力取引を行った方が有利である場合は、複数のカテゴリそれぞれに対応する第2ブロックチェーンBC2同士で情報(トランザクション)を交換して、電力を融通しあうことができる。
According to the 39th aspect of the present disclosure, in the electric power trading system according to any one of the 18th to 38th aspects, the second blockchain is registered when the third condition set by the aggregator is satisfied. The information provided is exchangeably connected to another second blockchain.
As a result, when it is advantageous to integrate multiple categories (for example, regions) for electric power trading, information (transactions) are exchanged between the second blockchain BC2s corresponding to each of the multiple categories. , Power can be interchanged.
 本開示の第40の態様によれば、第39の態様に係る電力取引システムにおいて、前記第3条件は、地域内に存在する前記供給者の発電方法、供給者数、需要者数、季節、及び過去の取引履歴のうち少なくとも一つに応じて設定される。
 このようにすることで、アグリゲータは、例えばある季節、時間帯、地域等における電力の供給量又は需要量の多寡に応じて、複数のカテゴリそれぞれに対応する第2ブロックチェーン同士で情報を交換して、電力を融通しあうことができる。
According to the 40th aspect of the present disclosure, in the electric power trading system according to the 39th aspect, the third condition is the power generation method, the number of suppliers, the number of consumers, the season, and the power generation method of the supplier existing in the area. And set according to at least one of the past transaction history.
By doing so, the aggregator exchanges information between the second blockchains corresponding to each of the plurality of categories according to the amount of power supply or demand in a certain season, time zone, region, etc., for example. And can interchange power.
 本開示の第41の態様によれば、第18から第38の何れか一の態様に係る電力取引システムにおいて、前記カテゴリは、前記供給者が供給する電力の発電方法、供給地域、及び発電規模のうち少なくとも一つに基づいて設定される。
 このようにすることで、アグリゲータは、需要者の電力購入方針に応じた様々なカテゴリに対応することができる。
According to the 41st aspect of the present disclosure, in the electric power trading system according to any one of the 18th to 38th aspects, the category includes the power generation method, the supply area, and the power generation scale of the electric power supplied by the supplier. It is set based on at least one of them.
By doing so, the aggregator can correspond to various categories according to the electricity purchase policy of the consumer.
 本開示の第42の態様によれば、第39又は第40の態様に係る電力取引システムにおいて、前記カテゴリは、前記アグリゲータのサービス提供範囲を複数の地域に分割し、当該地域それぞれに対応して設定される。
 このようにすることで、アグリゲータは、例えば電力の供給量又は需要量の多寡に応じて、各地域に対応する第2ブロックチェーン同士で情報を交換して、これら地域間で電力を融通しあうことができる。
According to the 42nd aspect of the present disclosure, in the electric power trading system according to the 39th or 40th aspect, the category divides the service provision range of the aggregator into a plurality of regions, and corresponds to each of the regions. Set.
By doing so, the aggregator exchanges information between the second blockchains corresponding to each region according to the amount of power supply or demand, for example, and exchanges power between these regions. be able to.
 本開示の第43の態様によれば、第39又は第40の態様に係る電力取引システムにおいて、前記カテゴリは、複数の前記アグリゲータのサービス提供範囲それぞれに対応して設定される。
 このようにすることで、複数のアグリゲータは、例えば電力の供給量又は需要量の多寡に応じて、各アグリゲータに対応する第2ブロックチェーン同士で情報を交換して、これらアグリゲータ間で電力を融通しあうことができる。また、このように、第2ブロックチェーン同士を接続して情報の交換を行うことにより、各アグリゲータのアグリゲータシステム同士で問い合わせ、受発注の確認等を行う必要がなく、電力取引に係る処理を迅速に完了させることが可能となる。
According to the 43rd aspect of the present disclosure, in the electric power trading system according to the 39th or 40th aspect, the category is set corresponding to each of the service provision ranges of the plurality of the aggregators.
By doing so, the plurality of aggregators exchange information between the second blockchains corresponding to each aggregator according to, for example, the amount of power supply or demand, and the power is interchanged between these aggregators. You can meet each other. Further, by connecting the second blockchains to each other and exchanging information in this way, it is not necessary to make inquiries between the aggregator systems of each aggregator and confirm the ordering, etc., and the processing related to the electric power transaction can be expedited. It is possible to complete it.
 本開示の第44の態様によれば、電力取引方法は、第1ブロックチェーンに供給者の電力取引に係る情報を登録するステップと、前記供給者が供給する電力のカテゴリそれぞれに対応して複数設けられた第2ブロックチェーンそれぞれに、アグリゲータの前記カテゴリ別の電力取引に係る情報を登録するステップと、第3ブロックチェーンを複数の前記第2ブロックチェーンのうち、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続し、前記需要者の電力取引に係る情報を登録するステップと、を有する。 According to the 44th aspect of the present disclosure, there are a plurality of electric power trading methods corresponding to a step of registering information related to the electric power transaction of the supplier in the first blockchain and a category of electric power supplied by the supplier. Each of the provided second blockchains has a step of registering information related to the electric power transaction of the aggregator according to the category, and the third blockchain is a category preset by the consumer among the plurality of the second blockchains. It has a step of connecting to a second blockchain corresponding to the above and registering information related to the electric power transaction of the consumer.
 本開示の一態様によれば、複数のブロックチェーンを連携させることにより電力取引の信頼性を向上させることができる。 According to one aspect of the present disclosure, the reliability of electric power transactions can be improved by linking a plurality of blockchains.
 また、本開示の一態様によれば、電力のカテゴリを選択して買電することが可能である。 Further, according to one aspect of the present disclosure, it is possible to select an electric power category and purchase electric power.
1 電力取引システム
10 供給者システム
100 第1処理部
101 通知部
11 第1ノード
110 トランザクション生成部
111 ブロック生成部
112 データ登録部
113 契約処理部
114 記憶媒体
20、20a、20b、20c アグリゲータシステム
200 第2処理部
201 通知部
21 第2ノード
210 トランザクション生成部
211 ブロック生成部
212 データ登録部
213 契約処理部
214 記憶媒体
30 需要者システム
300 取得部
301 選択部
31 第3ノード
310 トランザクション生成部
311 ブロック生成部
312 データ登録部
313 契約処理部
314 記憶媒体
1 Power trading system 10 Supplier system 100 1st processing unit 101 Notification unit 11 1st node 110 Transaction generation unit 111 Block generation unit 112 Data registration unit 113 Contract processing unit 114 Storage media 20, 20a, 20b, 20c Aggregator system 200 2 Processing unit 201 Notification unit 21 Second node 210 Transaction generation unit 211 Block generation unit 212 Data registration unit 213 Contract processing unit 214 Storage medium 30 Consumer system 300 Acquisition unit 301 Selection unit 31 Third node 310 Transaction generation unit 311 Block generation Unit 312 Data registration unit 313 Contract processing unit 314 Storage medium

Claims (44)

  1.  供給者が有する第1ブロックチェーンと、
     アグリゲータが有する第2ブロックチェーンと、
     需要者が有する第3ブロックチェーンと、
     を備え、
     前記第2ブロックチェーンは、前記第1ブロックチェーン及び前記第3ブロックチェーンそれぞれと接続可能である、
     電力取引システム。
    The first blockchain owned by the supplier,
    The second blockchain of the aggregator and
    The third blockchain owned by consumers and
    With
    The second blockchain can be connected to each of the first blockchain and the third blockchain.
    Electricity trading system.
  2.  前記供給者が供給可能な電力に関する供給者電力情報を生成し、前記第1ブロックチェーンに登録する第1処理部と、
     前記第1ブロックチェーンから取得した前記供給者電力情報に基づいて、前記アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、前記第2ブロックチェーンに登録する第2処理部と、
     前記第2ブロックチェーンから取得した前記アグリゲータ電力情報に基づいて、複数の前記アグリゲータのうち少なくとも一つのアグリゲータを選択する選択部と、
     前記第1ブロックチェーン、前記第2ブロックチェーン、及び前記第3ブロックチェーンのそれぞれにおいて、前記供給者と、前記需要者と、選択された前記アグリゲータとの間の電力取引に係る契約処理を実行する契約処理部と、
     を備える請求項1に記載の電力取引システム。
    A first processing unit that generates supplier power information regarding power that can be supplied by the supplier and registers it in the first blockchain.
    Based on the supplier power information acquired from the first blockchain, a second processing unit that generates aggregator power information regarding power that can be transmitted via the aggregator and registers it in the second blockchain.
    A selection unit that selects at least one aggregator from the plurality of aggregators based on the aggregator power information acquired from the second blockchain.
    In each of the first blockchain, the second blockchain, and the third blockchain, the contract processing related to the electric power transaction between the supplier, the consumer, and the selected aggregator is executed. Contract processing department and
    The electric power trading system according to claim 1.
  3.  前記アグリゲータ電力情報は、前記アグリゲータの送電可能電力、及び単位電力あたりの小売価格を含み、
     前記選択部は、前記送電可能電力及び前記小売価格のうち少なくとも一方が前記需要者により予め設定された条件を満たすアグリゲータを選択する、
     請求項2に記載の電力取引システム。
    The aggregator power information includes the power that can be transmitted by the aggregator and the retail price per unit power.
    The selection unit selects an aggregator in which at least one of the transmittable power and the retail price meets the conditions preset by the consumer.
    The electric power trading system according to claim 2.
  4.  前記第2処理部は、前記供給者と前記需要者との間の送電経路に応じた送電コストを、前記供給者電力情報に含まれる前記供給者の単位電力あたりの卸売価格に加算して前記小売価格を設定する、
     請求項3に記載の電力取引システム。
    The second processing unit adds the transmission cost according to the transmission path between the supplier and the consumer to the wholesale price per unit electric power of the supplier included in the supplier electric power information. Set retail price,
    The electric power trading system according to claim 3.
  5.  前記第2処理部は、前記供給者と前記需要者との間の送電経路の送電予定量又は使用率に基づいて前記小売価格を設定する、
     請求項3又は4に記載の電力取引システム。
    The second processing unit sets the retail price based on the planned transmission amount or usage rate of the transmission path between the supplier and the consumer.
    The electric power trading system according to claim 3 or 4.
  6.  前記第2処理部は、前記送電経路が複数ある場合、送電経路毎に前記小売価格を設定する、
     請求項4又は5に記載の電力取引システム。
    When there are a plurality of power transmission paths, the second processing unit sets the retail price for each power transmission path.
    The electric power trading system according to claim 4 or 5.
  7.  前記第2処理部は、前記需要者への給電開始までの時間に応じて前記小売価格を設定する、
     請求項3から5の何れか一項に記載の電力取引システム。
    The second processing unit sets the retail price according to the time until the start of power supply to the consumer.
    The electric power trading system according to any one of claims 3 to 5.
  8.  前記第2処理部は、前記供給者の供給可能電力を上限として、前記需要者に売電可能な電力を前記送電可能電力として設定する、
     請求項3から6の何れか一項に記載の電力取引システム。
    The second processing unit sets the power that can be sold to the consumer as the power that can be transmitted, with the power that can be supplied by the supplier as the upper limit.
    The electric power trading system according to any one of claims 3 to 6.
  9.  前記第2処理部は、複数の供給者それぞれが有する複数の前記第1ブロックチェーンから取得した複数の前記供給者電力情報に基づいて、複数の前記供給者からの供給可能電力を合算した値に基づいて前記送電可能電力を設定する、
     請求項8に記載の電力取引システム。
    The second processing unit is a value obtained by adding up the powers that can be supplied from the plurality of suppliers based on the plurality of supplier power information acquired from the plurality of first blockchains owned by the plurality of suppliers. Set the transmittable power based on,
    The electric power trading system according to claim 8.
  10.  前記第2処理部は、前記需要者への送電経路における送電予定量又は使用率が所定値を超えている場合、当該需要者への売電が不可であると判定し、売電不可を示す情報を当該需要者へ通知する、
     請求項2から9の何れか一項に記載の電力取引システム。
    When the planned power transmission amount or the usage rate in the power transmission path to the consumer exceeds a predetermined value, the second processing unit determines that the power cannot be sold to the consumer, and indicates that the power cannot be sold. Notify the consumer of the information,
    The electric power trading system according to any one of claims 2 to 9.
  11.  前記契約処理部は、前記供給者及び前記アグリゲータにおいて前記需要者が希望する電力の受注可否を判断し、前記第1ブロックチェーン及び前記第2ブロックチェーンを通じて前記第3ブロックチェーンへ判断結果を通知し、
     前記選択部は、受注不可を示す判断結果が通知された場合、前回選択したアグリゲータとは異なるアグリゲータを選択する、
     請求項2から10の何れか一項に記載の電力取引システム。
    The contract processing unit determines whether or not the supplier and the aggregator can receive an order for electric power desired by the consumer, and notifies the third blockchain of the determination result through the first blockchain and the second blockchain. ,
    When notified of the determination result indicating that the order cannot be received, the selection unit selects an aggregator different from the previously selected aggregator.
    The electric power trading system according to any one of claims 2 to 10.
  12.  前記アグリゲータ電力情報には、前記アグリゲータが使用する送電経路の需要予測情報が含まれる、
     請求項2から11の何れか一項に記載の電力取引システム。
    The aggregator power information includes demand forecast information of a transmission path used by the aggregator.
    The electric power trading system according to any one of claims 2 to 11.
  13.  前記選択部は、前記送電可能電力が前記需要者により予め設定された希望買電量よりも小さい場合、複数の前記アグリゲータを選択する、
     請求項3から9の何れか一項に記載の電力取引システム。
    The selection unit selects a plurality of the aggregators when the transmittable power is smaller than the desired power purchase amount preset by the consumer.
    The electric power trading system according to any one of claims 3 to 9.
  14.  前記契約処理部は、前記需要者により予め設定された希望買電量を満たすように、複数の前記供給者との前記契約処理を実行する、
     請求項2から12の何れか一項に記載の電力取引システム。
    The contract processing unit executes the contract processing with a plurality of the suppliers so as to satisfy the desired power purchase amount preset by the consumer.
    The electric power trading system according to any one of claims 2 to 12.
  15.  前記第2処理部は、複数の前記アグリゲータのうち、前記需要者へ送電を行う第1アグリゲータに関するアグリゲータ電力情報を、当該第1アグリゲータへ送電が可能な第2アグリゲータに関するアグリゲータ電力情報に基づいて更に生成する、
     請求項2から14の何れか一項に記載の電力取引システム。
    The second processing unit further obtains the aggregator power information regarding the first aggregator that transmits power to the consumer among the plurality of the aggregators, based on the aggregator power information regarding the second aggregator capable of transmitting power to the first aggregator. Generate,
    The electric power trading system according to any one of claims 2 to 14.
  16.  前記第1ブロックチェーンとの前記第2ブロックチェーンとの間、及び、前記第2ブロックチェーンと前記第3ブロックチェーンとの間は、それぞれインターレジャーを用いて通信可能に接続される、
     請求項2から15の何れか一項に記載の電力取引システム。
    The first blockchain and the second blockchain, and the second blockchain and the third blockchain are communicably connected using interledgers, respectively.
    The electric power trading system according to any one of claims 2 to 15.
  17.  供給者が有する第1ブロックチェーンと、アグリゲータが有する第2ブロックチェーンと、需要者が有する第3ブロックチェーンと用いた電力取引方法であって、
     前記供給者が供給可能な電力に関する供給者電力情報を生成し、前記第1ブロックチェーンに登録するステップと、
     前記第1ブロックチェーンから取得した前記供給者電力情報に基づいて、前記アグリゲータを介して送電可能な電力に関するアグリゲータ電力情報を生成し、前記第2ブロックチェーンに登録するステップと、
     前記第2ブロックチェーンから取得した前記アグリゲータ電力情報に基づいて、複数の前記アグリゲータのうち少なくとも一つのアグリゲータを選択するステップと、
     前記第1ブロックチェーン、前記第2ブロックチェーン、及び前記第3ブロックチェーンのそれぞれにおいて、前記供給者と、選択された前記アグリゲータと、前記需要者との間の電力供給に係る契約処理を実行するステップと、
     を有する電力取引方法。
    A power trading method using a first blockchain owned by a supplier, a second blockchain owned by an aggregator, and a third blockchain owned by a consumer.
    A step of generating supplier electric power information regarding electric power that can be supplied by the supplier and registering the information in the first blockchain.
    A step of generating aggregator power information regarding power that can be transmitted via the aggregator based on the supplier power information acquired from the first blockchain and registering the information in the second blockchain.
    A step of selecting at least one aggregator from a plurality of the aggregators based on the aggregator power information acquired from the second blockchain, and a step of selecting the aggregator.
    In each of the first blockchain, the second blockchain, and the third blockchain, the contract processing related to the power supply between the supplier, the selected aggregator, and the consumer is executed. Steps and
    Power trading method with.
  18.  前記第1ブロックチェーンに前記供給者の電力取引に係る情報が登録され、
     前記第2ブロックチェーンは前記供給者が供給する電力のカテゴリそれぞれに対応して複数設けられ、複数の前記第2ブロックチェーンそれぞれにアグリゲータの前記カテゴリ別の電力取引に係る情報が登録され、
     前記第3ブロックチェーンは複数の前記第2ブロックチェーンのうち、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続可能であり、前記需要者の電力取引に係る情報が登録される、
     請求項1に記載の電力取引システム。
    Information related to the power transaction of the supplier is registered in the first blockchain, and the information is registered.
    A plurality of the second blockchains are provided corresponding to each category of electric power supplied by the supplier, and information relating to the electric power transaction of the aggregator according to the category is registered in each of the plurality of the second blockchains.
    The third blockchain can be connected to the second blockchain corresponding to the category preset by the consumer among the plurality of second blockchains, and the information related to the electric power transaction of the consumer is registered. ,
    The electric power trading system according to claim 1.
  19.  前記第2ブロックチェーンに登録される前記情報には、特定の期間における前記アグリゲータの送電可能電力、単位電力あたりの小売価格、送電可能時間、カテゴリ、及び前記アグリゲータの識別情報のうち、少なくとも一つが含まれる、
     請求項18に記載の電力取引システム。
    The information registered in the second blockchain includes at least one of the aggregator's transmittable power, the retail price per unit power, the transmittable time, the category, and the aggregator's identification information in a specific period. included,
    The electric power trading system according to claim 18.
  20.  前記小売価格は、前記供給者と前記需要者との間の送電経路に応じた送電コストを、前記供給者の単位電力あたりの卸売価格に加算されて設定される、
     請求項19に記載の電力取引システム。
    The retail price is set by adding the transmission cost according to the transmission path between the supplier and the consumer to the wholesale price per unit power of the supplier.
    The electric power trading system according to claim 19.
  21.  前記小売価格は、前記供給者と前記需要者との間の送電経路の送電予定量又は使用率に基づいて設定される、
     請求項19又は20に記載の電力取引システム。
    The retail price is set based on the planned transmission amount or usage rate of the transmission path between the supplier and the consumer.
    The electric power trading system according to claim 19 or 20.
  22.  前記小売価格は、前記送電経路が複数ある場合、送電経路毎に設定される、
     請求項20又は21に記載の電力取引システム。
    The retail price is set for each transmission path when there are a plurality of transmission paths.
    The electric power trading system according to claim 20 or 21.
  23.  前記小売価格は、前記需要者への給電開始までの時間に応じて設定される、
     請求項19から22の何れか一項に記載の電力取引システム。
    The retail price is set according to the time until the start of power supply to the consumer.
    The electric power trading system according to any one of claims 19 to 22.
  24.  前記送電可能電力は、前記供給者の供給可能電力を上限として、前記需要者に売電可能な電力が設定される、
     請求項19から23の何れか一項に記載の電力取引システム。
    The power that can be transmitted is set to the power that can be sold to the consumer, with the power that can be supplied by the supplier as an upper limit.
    The electric power trading system according to any one of claims 19 to 23.
  25.  前記第2ブロックチェーンは、前記需要者への送電経路における送電予定容量又は使用率が所定値を超えている場合、当該需要者への売電が不可であると判定し、前記第1ブロックチェーンに対し売電不可を示す情報を通知する、
     請求項18から24の何れか一項に記載の電力取引システム。
    The second blockchain determines that it is impossible to sell power to the consumer when the planned power transmission capacity or the usage rate in the power transmission route to the consumer exceeds a predetermined value, and the first blockchain Notify information indicating that power cannot be sold to
    The electric power trading system according to any one of claims 18 to 24.
  26.  前記第3ブロックチェーンは、前記需要者が希望する電力のカテゴリ、購入希望期間、希望買電量、及び前記需要者の位置情報を含む問い合わせ情報を前記第2ブロックチェーンに送信し、
     前記第2ブロックチェーンは、前記問い合わせ情報と、前記第2ブロックチェーンに登録されている情報とに基づいて、前記需要者への売電可否を含む応答を第3ブロックチェーンに送信する、
     請求項18から25の何れか一項に記載の電力取引システム。
    The third blockchain transmits inquiry information including the category of electric power desired by the consumer, the desired purchase period, the desired amount of electricity purchased, and the location information of the consumer to the second blockchain.
    The second blockchain transmits a response including whether or not to sell power to the consumer to the third blockchain based on the inquiry information and the information registered in the second blockchain.
    The electric power trading system according to any one of claims 18 to 25.
  27.  前記第3ブロックチェーンは、接続された前記第2ブロックチェーンから取得した情報に基づいて、前記需要者により設定された第1条件を満たすカテゴリを選択し、当該カテゴリの電力を提供するアグリゲータを介して前記供給者から買電するためのスマートコントラクトを含むトランザクションを生成する、
     請求項18から26の何れか一項に記載の電力取引システム。
    The third blockchain selects a category that satisfies the first condition set by the consumer based on the information acquired from the connected second blockchain, and uses an aggregator that provides electric power for the category. Generate a transaction containing a smart contract to purchase electricity from the supplier.
    The electric power trading system according to any one of claims 18 to 26.
  28.  前記第1条件は、前記需要者の希望買電量、希望買電価格、電力が供給開始されるまでの応答時間、及び前記カテゴリの優先順位のうち、少なくとも一つを含む、
     請求項27に記載の電力取引システム。
    The first condition includes at least one of the consumer's desired power purchase amount, desired power purchase price, response time until power supply starts, and priority of the category.
    The electric power trading system according to claim 27.
  29.  前記第3ブロックチェーンは、前記第1条件を満たすカテゴリが複数ある場合、最も低い小売価格が設定されたカテゴリを選択して前記トランザクションを生成する、
     請求項28に記載の電力取引システム。
    When there are a plurality of categories satisfying the first condition, the third blockchain selects the category in which the lowest retail price is set and generates the transaction.
    The electric power trading system according to claim 28.
  30.  前記第3ブロックチェーンは、前記第1条件を満たすカテゴリが複数ある場合、最も早い応答時間が設定されたカテゴリを選択して前記トランザクションを生成する、
     請求項28に記載の電力取引システム。
    When there are a plurality of categories satisfying the first condition, the third blockchain selects the category in which the earliest response time is set and generates the transaction.
    The electric power trading system according to claim 28.
  31.  前記第3ブロックチェーンは、前記第1条件を満たすカテゴリが複数ある場合、最も優先順位の高いカテゴリを選択して前記トランザクションを生成する、
     請求項28に記載の電力取引システム。
    When there are a plurality of categories satisfying the first condition, the third blockchain selects the category having the highest priority and generates the transaction.
    The electric power trading system according to claim 28.
  32.  前記第3ブロックチェーンは、前記第1条件を満たすカテゴリのうち、複数のカテゴリを選択して前記トランザクションを生成する、
     請求項28に記載の電力取引システム。
    The third blockchain selects a plurality of categories from the categories satisfying the first condition to generate the transaction.
    The electric power trading system according to claim 28.
  33.  前記第1ブロックチェーン及び前記第2ブロックチェーンは、前記トランザクションに基づいて、前記供給者及び前記アグリゲータにおいて前記需要者が希望する電力の受注可否を判断し、前記第1ブロックチェーン及び前記第2ブロックチェーンを通じて前記第3ブロックチェーンへ判断結果を通知し、
     前記第3ブロックチェーンは、受注不可を示す判断結果が通知された場合、前回選択したカテゴリとは異なるカテゴリを選択して新たなトランザクションを生成する、
     請求項27から32の何れか一項に記載の電力取引システム。
    The first blockchain and the second blockchain determine whether or not the supplier and the aggregator can receive an order for electric power desired by the consumer based on the transaction, and the first blockchain and the second block Notify the third blockchain of the judgment result through the chain,
    When the judgment result indicating that the order cannot be received is notified, the third blockchain selects a category different from the previously selected category and generates a new transaction.
    The electric power trading system according to any one of claims 27 to 32.
  34.  前記第1ブロックチェーンとの前記第2ブロックチェーンとの間、及び、前記第2ブロックチェーンと前記第3ブロックチェーンとの間は、それぞれインターレジャーを用いて通信可能に接続される、
     請求項18から33の何れか一項に記載の電力取引システム。
    The first blockchain and the second blockchain, and the second blockchain and the third blockchain are communicably connected using interledgers, respectively.
    The electric power trading system according to any one of claims 18 to 33.
  35.  蓄電池所有者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続可能であり、当該蓄電池所有者による電力の取引に係る情報が登録される第4ブロックチェーンを更に備える、
     請求項18から34の何れか一項に記載の電力取引システム。
    It is further provided with a fourth blockchain that can be connected to a second blockchain corresponding to a category preset by the storage battery owner and in which information relating to power transactions by the storage battery owner is registered.
    The electric power trading system according to any one of claims 18 to 34.
  36.  前記第4ブロックチェーンは、接続された前記第2ブロックチェーンから取得した情報に基づいて、前記蓄電池所有者により設定された第2条件を満たすカテゴリを選択し、当該カテゴリの電力を提供するアグリゲータを介して前記供給者から買電するためのスマートコントラクトを含むトランザクションを生成する、
     請求項35に記載の電力取引システム。
    The fourth blockchain selects a category that satisfies the second condition set by the storage battery owner based on the information acquired from the connected second blockchain, and provides an aggregator that provides power in the category. Generate a transaction containing a smart contract to buy power from the supplier through
    The electric power trading system according to claim 35.
  37.  前記第3ブロックチェーンは、接続された前記第2ブロックチェーンから取得した情報に基づいて、前記需要者により設定された第1条件を満たすカテゴリを選択し、当該カテゴリの電力を提供するアグリゲータを介して前記蓄電池所有者から買電するためのスマートコントラクトを含むトランザクションを生成する、
     請求項35又は36に記載の電力取引システム。
    The third blockchain selects a category that satisfies the first condition set by the consumer based on the information acquired from the connected second blockchain, and via an aggregator that provides power for the category. Generate a transaction containing a smart contract to purchase power from the battery owner.
    The power trading system according to claim 35 or 36.
  38.  前記第2ブロックチェーンと前記第4ブロックチェーンとの間は、インターレジャーを用いて通信可能に接続される、
     請求項35から37の何れか一項に記載の電力取引システム。
    The second blockchain and the fourth blockchain are communicably connected using interledgers.
    The electric power trading system according to any one of claims 35 to 37.
  39.  前記第2ブロックチェーンは、前記アグリゲータにより設定された第3条件を満たす場合、登録された情報を他の第2ブロックチェーンと交換可能に接続される、
     請求項18から38の何れか一項に記載の電力取引システム。
    The second blockchain is connected so that the registered information can be exchanged with another second blockchain if the third condition set by the aggregator is satisfied.
    The electric power trading system according to any one of claims 18 to 38.
  40.  前記第3条件は、地域内に存在する前記供給者の発電方法、供給者数、需要者数、季節、及び過去の取引履歴のうち少なくとも一つに応じて設定される、
     請求項39に記載の電力取引システム。
    The third condition is set according to at least one of the power generation method, the number of suppliers, the number of consumers, the season, and the past transaction history of the supplier existing in the area.
    The electric power trading system according to claim 39.
  41.  前記カテゴリは、前記供給者が供給する電力の発電方法、供給地域、及び発電規模のうち少なくとも一つに基づいて設定される、
     請求項18から38の何れか一項に記載の電力取引システム。
    The category is set based on at least one of the power generation method, supply area, and power generation scale of the power supplied by the supplier.
    The electric power trading system according to any one of claims 18 to 38.
  42.  前記カテゴリは、前記アグリゲータのサービス提供範囲を複数の地域に分割し、当該地域それぞれに対応して設定される、
     請求項39又は40に記載の電力取引システム。
    The category divides the service provision range of the aggregator into a plurality of regions and is set corresponding to each region.
    The electric power trading system according to claim 39 or 40.
  43.  前記カテゴリは、複数の前記アグリゲータのサービス提供範囲それぞれに対応して設定される、
     請求項39又は40に記載の何れか一項に記載の電力取引システム。
    The category is set corresponding to each of the service provision ranges of the plurality of the aggregators.
    The electric power trading system according to any one of claims 39 or 40.
  44.  第1ブロックチェーンに供給者の電力取引に係る情報を登録するステップと、
     前記供給者が供給する電力のカテゴリそれぞれに対応して複数設けられた第2ブロックチェーンそれぞれに、アグリゲータの前記カテゴリ別の電力取引に係る情報を登録するステップと、
     第3ブロックチェーンを複数の前記第2ブロックチェーンのうち、需要者により予め設定されたカテゴリに対応する第2ブロックチェーンに接続し、前記需要者の電力取引に係る情報を登録するステップと、
     を有する電力取引方法。
    The step of registering the information related to the supplier's electricity transaction in the first blockchain,
    A step of registering information related to the electric power transaction of the aggregator according to the category in each of a plurality of second blockchains provided corresponding to each of the electric power categories supplied by the supplier, and
    A step of connecting the third blockchain to the second blockchain corresponding to a category preset by the consumer among the plurality of the second blockchains, and registering information related to the electric power transaction of the consumer.
    Power trading method with.
PCT/JP2020/038263 2019-11-27 2020-10-09 Power transaction system and power transaction method WO2021106385A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019214247A JP2021086361A (en) 2019-11-27 2019-11-27 Power transaction system and power transaction method
JP2019-214247 2019-11-27
JP2019-214246 2019-11-27
JP2019214246A JP2021086360A (en) 2019-11-27 2019-11-27 Power transaction system and power transaction method

Publications (1)

Publication Number Publication Date
WO2021106385A1 true WO2021106385A1 (en) 2021-06-03

Family

ID=76129380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038263 WO2021106385A1 (en) 2019-11-27 2020-10-09 Power transaction system and power transaction method

Country Status (1)

Country Link
WO (1) WO2021106385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554322A (en) * 2021-07-27 2021-10-26 广东电网有限责任公司 Control method of demand response management platform based on block chain technology

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128525A (en) * 2008-11-25 2010-06-10 Sekisui Chem Co Ltd Distribution system for green power
WO2014132371A1 (en) * 2013-02-27 2014-09-04 株式会社日立製作所 Power creation control system and method
JP2016200933A (en) * 2015-04-09 2016-12-01 国立大学法人 鹿児島大学 Information providing system, information providing method, and program
WO2017170018A1 (en) * 2016-03-31 2017-10-05 日本電気株式会社 Power control device, power control method, and program
WO2018177520A1 (en) * 2017-03-29 2018-10-04 Innogy Se Method of operating an electrical grid
JP2019133630A (en) * 2018-01-29 2019-08-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Control method, controller, data structure, and electronic transaction system
JP2019153275A (en) * 2018-03-02 2019-09-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Control method, controller, data structure and power transaction system
JP2019161706A (en) * 2018-03-07 2019-09-19 日新電機株式会社 Power transfer system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128525A (en) * 2008-11-25 2010-06-10 Sekisui Chem Co Ltd Distribution system for green power
WO2014132371A1 (en) * 2013-02-27 2014-09-04 株式会社日立製作所 Power creation control system and method
JP2016200933A (en) * 2015-04-09 2016-12-01 国立大学法人 鹿児島大学 Information providing system, information providing method, and program
WO2017170018A1 (en) * 2016-03-31 2017-10-05 日本電気株式会社 Power control device, power control method, and program
WO2018177520A1 (en) * 2017-03-29 2018-10-04 Innogy Se Method of operating an electrical grid
JP2019133630A (en) * 2018-01-29 2019-08-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Control method, controller, data structure, and electronic transaction system
JP2019153275A (en) * 2018-03-02 2019-09-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Control method, controller, data structure and power transaction system
JP2019161706A (en) * 2018-03-07 2019-09-19 日新電機株式会社 Power transfer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554322A (en) * 2021-07-27 2021-10-26 广东电网有限责任公司 Control method of demand response management platform based on block chain technology

Similar Documents

Publication Publication Date Title
US11238474B2 (en) Distributed energy control
Khorasany et al. Auction based energy trading in transactive energy market with active participation of prosumers and consumers
JP6160957B2 (en) Power management apparatus, power management method, and program
US20050165512A1 (en) Systems and methods for selective power transfer
US7945502B2 (en) Online trading and dynamic routing of electric power among electric service providers
WO2015019599A1 (en) Power adjustment device, power adjustment method, and program
JP6471566B2 (en) Power distribution management device, method and program
JP7298581B2 (en) Bidding condition determination device and power trading system for power trading by mobile
WO2021106385A1 (en) Power transaction system and power transaction method
JP2003032887A (en) Wide-area power supply transaction method and wide- area power supply and transaction system
JP2021086361A (en) Power transaction system and power transaction method
JP6835666B2 (en) Adjustment method, control device, power adjustment system and program
JPWO2019182016A1 (en) Power information management system, management method, program, power information management server, communication terminal, and power system
US11167659B2 (en) Allocation of electrical energy within a storage cell
JP7279698B2 (en) Bidding Condition Determining Device for Power Trading by Mobile
Janjic et al. Optimal scheduling of utility electric vehicle fleet offering ancillary services
JP2002064934A (en) System and method for controlling power supply
JP6996550B2 (en) Power management device, power management method, and program
JP4050021B2 (en) Power consignment control system and power transaction method
JP7363924B2 (en) Service management equipment, power conditioning systems, distributed power systems, power control systems and programs
JP3725411B2 (en) Electricity retail supply and demand balance control system
JP2021086360A (en) Power transaction system and power transaction method
US11329490B2 (en) Management device, management method, and storage medium
JP7056298B2 (en) Consignment charge calculation system, consignment charge calculation method and program
JP7434396B2 (en) Power trading system and power trading method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892231

Country of ref document: EP

Kind code of ref document: A1