WO2021097759A1 - Systems and methods for traffic control based on vehicle trajectory data - Google Patents

Systems and methods for traffic control based on vehicle trajectory data Download PDF

Info

Publication number
WO2021097759A1
WO2021097759A1 PCT/CN2019/119977 CN2019119977W WO2021097759A1 WO 2021097759 A1 WO2021097759 A1 WO 2021097759A1 CN 2019119977 W CN2019119977 W CN 2019119977W WO 2021097759 A1 WO2021097759 A1 WO 2021097759A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
traffic flow
bottleneck
trajectory data
speed
Prior art date
Application number
PCT/CN2019/119977
Other languages
French (fr)
Inventor
Jianfeng Zheng
Zihao Wang
Xianghong Liu
Yu Han
Original Assignee
Beijing Didi Infinity Technology And Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Didi Infinity Technology And Development Co., Ltd. filed Critical Beijing Didi Infinity Technology And Development Co., Ltd.
Priority to PCT/CN2019/119977 priority Critical patent/WO2021097759A1/en
Priority to CN201980003397.0A priority patent/CN112492889B/en
Publication of WO2021097759A1 publication Critical patent/WO2021097759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/075Ramp control

Definitions

  • the present disclosure relates to systems and methods for traffic control, and more particularly to, systems and methods for traffic control based on vehicle trajectory data.
  • Traffic management measures are widely used to improve the mobility and safety of freeway traffic because of the urbanization and the ever-growing transportation demands. For example, important traffic parameters such as traffic flow speed and efficiency may be improved based on proper traffic control.
  • Inputs for a conventional freeway traffic control system usually come from fixed sensors (e.g., loop detectors, geomagnetic detectors, or video sensors that placed in strategic locations) .
  • the performance of conventional freeway traffic control systems depends heavily on the data availability from the fixed detectors.
  • fixed sensors can provide a thorough time history of both speed and volume of traffic at the location where the sensor is located, installation and maintenance cost render the solution less preferable. Also, the ability of fixed sensors to provide sufficient traffic information is further limited due to its immobility. For example, insufficiency of detector coverage (e.g., in small cities or rural area where inadequate detectors are established) and damaged or malfunctioning detectors (e.g., due to deficient manpower for conducting routinely check) may reduce the quality and quantity of the data provided by fixed sensors. On the other hand, traffic information such as traffic flow can be obtained manually. However, the high cost of labor and required resource (e.g., for transporting investigators) would render the method not economical.
  • Embodiments of the disclosure address the above problems by improved methods and systems for traffic control based on vehicle trajectory data.
  • Embodiments of the disclosure provide a method for traffic control based on vehicle trajectory data.
  • the method may include receiving, by a communication interface, the vehicle trajectory data associated with a traffic flow from at least one navigation device.
  • the method may further include determining, by at least one processor, at least one bottleneck in the traffic flow based on the vehicle trajectory data and estimating, a traffic volume associated with the bottleneck based on the vehicle trajectory data.
  • the method may further include predicting, by the at least one processor, a future traffic flow based on the estimated traffic volume and controlling traffic based on the predicted future traffic flow.
  • Embodiments of the disclosure also provide a system for traffic control based on trajectory data.
  • the system may include a communication interface configured to receive the vehicle trajectory data associated with a traffic flow from at least one navigation device.
  • the system may also include at least one processor.
  • the at least one processor may be configured to determine at least one bottleneck in the traffic flow based on the vehicle trajectory data and estimate a traffic volume associated with the bottleneck based on the vehicle trajectory data.
  • the at least one processor may be further configured to predict a future traffic flow based on the estimated traffic volume and control traffic based on the predicted future traffic flow.
  • the system may further include a storage configured to store the trajectory data and the predicted future traffic flow.
  • Embodiments of the disclosure further provide a non-transitory computer-readable medium having instructions stored thereon that, when executed by one or more processors, causes the one or more processors to perform a method for traffic control based on vehicle trajectory data.
  • the method may include receiving the vehicle trajectory data associated with an intersection where the traffic light is located from at least one navigation device and determining at least one bottleneck in the traffic flow based on the vehicle trajectory data.
  • the method may further include estimating a traffic volume associated with the bottleneck based on the vehicle trajectory data and predicting a future traffic flow based on the estimated traffic volume.
  • the method may further include controlling traffic based on the predicted future traffic flow.
  • FIG. 1 illustrates a schematic diagram of an exemplary traffic control system, according to embodiments of the disclosure.
  • FIG. 2 illustrates a block diagram of an exemplary system for traffic control, according to embodiments of the disclosure.
  • FIG. 3 illustrates a flowchart of an exemplary method for traffic control, according to embodiments of the disclosure.
  • FIG. 4 illustrates an exemplary traffic diagnosis of the traffic control system, according to embodiments of the disclosure.
  • FIG. 5 illustrates an exemplary visualization rpovided by the traffic control system, according to embodiments of the disclosure.
  • FIG. 1 illustrates a schematic diagram of an exemplary traffic control system 100, according to embodiments of the disclosure.
  • traffic control system 100 may be configured to control freeway traffic by controlling traffic flows from the ramps merging onto the freeway.
  • traffic control system 100 may be configured to control traffic flow of a road section 130.
  • road section 130 may include an entrance ramp (e.g., an on-ramp) that allows vehicles to enter a controlled-access highway (e.g., a freeway or a motorway) .
  • traffic control system 100 performs traffic control based on vehicle trajectory data acquired by a navigation device 110 onboard of each vehicle 101.
  • a navigation device 110 may be a device configured to receive signals from a satellite navigation system (not shown) .
  • Navigation device 110 may be a standalone device or integrated inside another device, e.g., a vehicle, a mobile phone, a wearable device, a camera, etc. It is contemplated that navigation device 110 may be any kind of movable device or equivalent structures equipped with any suitable satellite navigation module that enables navigation device 110 to obtain trajectory data.
  • the satellite navigation system from which navigation device 110 receives signals may be a global navigation satellite system such as a Global Positioning System (GPS) , a Global Navigation Satellite System (GLONASS) , a BeiDou-2 Navigation Satellite System (BDS) or a European Union’s Galileo system.
  • the satellite navigation system may also be a regional navigation satellite system such as a BeiDou-1 system, a NAVigation with Indian Constellation (NAVIC) system or a Quasi-Zenith Satellite System (QZSS) .
  • Navigation device 110 may be a high sensitivity GPS receiver, a conventional GPS receiver, a hand-held receiver, an outdoor receiver, or a sport receiver.
  • navigation device 110 may be connected to the satellite directly, through Assisted or Augmented GPS, through an intermediary device (e.g., a cell tower or a station) , or via any other communication method that could transmit satellite signals (e.g., satellites broadcast microwave signals) or provide orbital data or almanac for the satellite (e.g., Mobile Station Based assistance) to navigation device 110.
  • satellite signals e.g., satellites broadcast microwave signals
  • orbital data or almanac for the satellite (e.g., Mobile Station Based assistance) to navigation device 110.
  • navigation device 110 may be connected to traffic control system 100 via a network, such as a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, a satellite communication network, and/or a local or short-range wireless network (e.g., Bluetooth TM ) for transmitting vehicle navigation information.
  • a network such as a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, a satellite communication network, and/or a local or short-range wireless network (e.g., Bluetooth TM ) for transmitting vehicle navigation information.
  • WLAN Wireless Local Area Network
  • WAN Wide Area Network
  • wireless networks such as radio waves, a cellular network, a satellite communication network, and/or a local or short-range wireless network (e.g., Bluetooth TM ) for transmitting vehicle navigation information.
  • Bluetooth TM local or short-range wireless network
  • vehicle 101 may be a vehicle configured for traveling along the trajectory and allows navigation device 110 to acquire trajectory data. It is contemplated that vehicle 101 may be an electric vehicle, a fuel cell vehicle, a hybrid vehicle, or a conventional internal combustion engine vehicle. Vehicle 101 may have a body and at least one wheel. The body may be any body style, such as a sports vehicle, a coupe, a sedan, a pick-up truck, a station wagon, a sports utility vehicle (SUV) , a minivan, or a conversion van. In some embodiments, vehicle 101 may include a pair of front wheels and a pair of rear wheels, as illustrated in FIG. 1. However, it is contemplated that vehicle 101 may have more or less wheels or equivalent structures that enable vehicle 101 to move around.
  • SUV sports utility vehicle
  • Vehicle 101 may be configured to be all-wheel drive (AWD) , front wheel drive (FWR) , or rear wheel drive (RWD) .
  • vehicle 101 may be configured to be operated by an operator occupying the vehicle, remotely controlled, and/or autonomous.
  • a trace in geographical space associated with vehicle 101’s movement is generated (e.g., a trace represented by a series of chronologically ordered points, e.g. p1 ⁇ p2 ⁇ ... ⁇ pn, where each point consists of a geospatial coordinate set and
  • traffic control system 100 may include a server 120.
  • server 120 may be a local physical server, a cloud server (as illustrated in FIG. 1) , a virtual server, a distributed server, or any other suitable computing device.
  • server 120 may obtain data from navigation device 110.
  • trajectory data may be transmitted to a server 120 in real-time (e.g., by streaming) , or collectively after a certain period of time (e.g., 1ms or 5ms) .
  • Server 120 may communicate with navigation device 110, ramp meter 140 and/or other components internal or external to traffic control system 100 via a network, such as a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, a satellite communication network, and/or a local or short-range wireless network (e.g., Bluetooth TM ) .
  • server 120 may store trajectory data acquired by navigation device 110.
  • server 120 may be configured to determine at least one bottleneck in the traffic flow of road section 130 based on the vehicle trajectory data.
  • the bottleneck may be a standing queue bottleneck or a moving jam.
  • server 120 may determine various parameters associated with the bottleneck, such as location and range (e.g., length of the jam) .
  • Server 120 may also estimate a traffic volume associated with the bottleneck based on the vehicle trajectory data.
  • Server 120 may also be responsible for predicting a future traffic flow of road section 130 from time to time to provide optimized traffic control to ramp meter 140.
  • Server 120 may use the acquired trajectory data to optimize a green-split time of ramp meter 140 to manage the traffic flow getting on the freeway.
  • server 120 may communicate the optimized green-split time to ramp meter 140.
  • ramp meter 140 can be a single aspects traffic light, a dual aspects traffic light, or a three or more aspects traffic lights. It is contemplated that ramp meter 140 may have one or more aspect or equivalent structures that enable ramp meter 140 to signal.
  • ramp meter 140 may be mounted to supporting device 160 via a mounting structure 150.
  • Mounting structure 150 may be an electro-mechanical device installed or otherwise attached to the supporting device 160. In some embodiments, mounting structure 150 may use screws, adhesives, or another mounting mechanism.
  • Supporting device 160 may be a tripod, a jib, carne, a lamp stick or any other suitable structures for providing support to mounting structure 150 and ramp meter 140. It is contemplated that the manners in which ramp meter 140 is mounted are not limited by the example shown in FIG. 1 and may be modified depending on the types of ramp meter 140, mounting structure 150 and/or the supporting device 160 to achieve desirable detecting performance.
  • FIG. 2 illustrates a block diagram of an exemplary server 120 for traffic control, according to embodiments of the disclosure.
  • server 120 may receive road map data 201 and vehicle trajectory data 203 from navigation device 110 and may send green split time 205 to ramp meter 140. Based on vehicle trajectory data 203, server 120 may determine at least one bottleneck in a traffic flow and estimate traffic volume accordingly. Server 120 may then simulate a traffic speed based on the estimated traffic volume and calibrate the simulation with spatial and temporal speed data acquired from the trajectory data (e.g., minimizing the simulated traffic speed and the measured traffic speed) . Then server 120 may predict future traffic flow based on the simulation.
  • server 120 may receive road map data 201 and vehicle trajectory data 203 from navigation device 110 and may send green split time 205 to ramp meter 140. Based on vehicle trajectory data 203, server 120 may determine at least one bottleneck in a traffic flow and estimate traffic volume accordingly. Server 120 may then simulate a traffic speed based on the estimated traffic volume and calibrate the simulation with spatial and temporal speed data acquired from the trajectory
  • Server 120 may then control the green-split time of ramp meter 140 for traffic management according to the future traffic flow prediction.
  • server 120 may further generate a visualization of traffic flow using road map data 201 to provides a visualized view of the freeway traffic flow in a map.
  • server 120 may include a communication interface 202, a processor 204, a memory 206, and a storage 208.
  • server 120 may have different modules in a single device, such as an integrated circuit (IC) chip (implemented as an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA) ) , or separate devices with dedicated functions.
  • IC integrated circuit
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • server 120 may be located in a cloud or may be alternatively in a single location (such as inside navigation device 110) or distributed locations.
  • Components of server 120 may be in an integrated device or distributed at different locations but communicate with each other through a network (not shown) .
  • Communication interface 202 may send data to and receive data from components such as navigation device 110 and ramp meter 140 via communication cables, a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, and/or a local or short-range wireless network (e.g., Bluetooth TM ) , or other communication methods.
  • communication interface 202 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection.
  • ISDN integrated services digital network
  • communication interface 202 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN.
  • Wireless links can also be implemented by communication interface 202.
  • communication interface 202 can send and receive electrical, electromagnetic or optical signals that carry digital data streams representing various types of information via a network.
  • communication interface 202 may receive data regarding the mobility of vehicle 101 that consists of vehicle trajectory data 203 and road map data 201 captured by navigation device 110.
  • vehicle trajectory data 203 includes GPS coordinates acquired by navigation device 110.
  • Communication interface 202 may further provide the received data to storage 208 for storage or to processor 204 for processing.
  • Communication interface 202 may also transmit control signals that consist of green-split time 205 to ramp meter 140 to control the traffic.
  • green-split time 205 is encoded into electronic signals that consists of traffic information (e.g., green-split time and/or cycle length) processed by processor 204.
  • Processor 204 may include any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, or microcontroller. Processor 204 may be configured as a separate processor module dedicated to determination of an optimized green-split time of a ramp meter. Alternatively, processor 204 may be configured as a shared processor module for performing other functions unrelated to optimizing green-split time of a ramp mete based on vehicle trajectory data.
  • processor 204 may include multiple modules, such as a traffic diagnosis unit 210, a traffic volume estimation unit 212, a traffic simulation unit 214, a traffic control unit 216 and the like. These modules (and any corresponding sub-modules or sub-units) can be hardware units (e.g., portions of an integrated circuit) of processor 204 designed for use with other components or software units implemented by processor 204 through executing at least part of a program.
  • the program may be stored on a computer-readable medium, and when executed by processor 204, it may perform one or more functions.
  • FIG. 2 shows units 210-216 all within one processor 204, it is contemplated that these units may be distributed among multiple processors located near or remotely with each other.
  • Traffic diagnosis unit 210 may be configured to determine at least one bottleneck in a traffic flow based on vehicle trajectory data 203.
  • the bottleneck may be a standing queue bottleneck or a moving jam.
  • traffic diagnosis unit 210 may determine the bottleneck based on a spatial and temporal distribution of speed. For example, each and every speed within a range (e.g., 0-80 km/h) may be associated with a road section spatially and a time interval (e.g., set a duration of time interval as 5 minutes) temporally.
  • the activation of a bottleneck is identified when the speed within a road section drops conspicuously while its downstream section still flows in free state. The place where the bottleneck is activated is determined as the location of the bottleneck.
  • traffic diagnosis unit 210 may further be configured to identify a congestion area triggered by the bottleneck. For example, traffic diagnosis unit 210 may apply a depth-first-search algorithm to identify the border of the traffic congestion that is triggered from the bottleneck.
  • FIG. 4 illustrates an exemplary traffic diagnosis of the traffic control system, according to embodiments of the disclosure.
  • a space-time diagram 400 is shown in FIG. 4.
  • each and every speed from 0-80 km/h corresponds to the road section spatially and to a time interval temporally.
  • the time interval in diagram 400 is 5 minutes.
  • the bottleneck can be identified where the speed within a road section drops conspicuously while its downstream section still flows in free state (e.g., the two red-parts in the lower part of diagram 400) .
  • traffic volume estimation unit 212 may be configured to estimate a traffic volume associated with the bottleneck.
  • traffic volume estimation unit 212 may estimate a fundamental diagram (FD) of the road section and use the estimation to describe the relationship between traffic density and traffic flow.
  • traffic volume estimation unit 212 may use a triangular FD method to represent the relationship.
  • traffic estimation unit 212 may use a free-flow speed, capacity and jam density to represent the relationship.
  • the free-flow speed may be determined as the maximum speed limit of the freeway, capacity is the freeway-capacity before the jam occurs and the jam density may be assumed as a fixed value.
  • traffic volume estimation unit 212 may estimate the traffic volume based on the estimated FD and the measured speed contained in vehicle trajectory data 203.
  • traffic simulation unit 214 may be configured to simulate the traffic speed.
  • traffic simulation unit 214 may apply a macroscopic first-order model (e.g., the cell transmission model or its variants) to simulate the traffic flow.
  • Traffic simulation unit 214 may further be configured to calibrate the model parameters and traffic demand using optimization approaches. For example, the objective of the optimization approach is to minimize the difference between the simulated speed by traffic simulation unit 214 and the measured speed contained in vehicle trajectory data 203.
  • traffic simulation unit 214 may be configured to predict future traffic flow. For example, traffic simulation unit 214 may use the model to make short-term traffic flow predictions.
  • traffic control unit 216 may be configured to control the traffic.
  • traffic control unit 216 may use an adaptive ramp meter control approach to control the traffic.
  • traffic control unit 216 may use an ALINEA-type approach (e.g., applying a feedback regulator that is based on mainstream measurements of the downstream ramp occupancy) .
  • the feedback regulator is designed based on measurements of speed downstream of the ramp.
  • traffic control unit 216 may use a fixed-time control strategy that is derived offline for particular time-of-day based on historical demands. For example, traffic control unit 216 may optimize green-split time for ramp meter 140 to maximize the capacity flows within a target area.
  • Memory 206 and storage 208 may include any appropriate type of mass storage provided to store any type of information that processor 204 may need to operate.
  • Memory 206 and storage 208 may be a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other type of storage device or tangible (i.e., non-transitory) computer-readable medium including, but not limited to, a ROM, a flash memory, a dynamic RAM, and a static RAM.
  • Memory 206 and/or storage 208 may be configured to store one or more computer programs that may be executed by processor 204 to perform traffic control disclosed herein.
  • memory 206 and/or storage 208 may be configured to store program (s) that may be executed by processor 204 to control traffic based on vehicle trajectory data.
  • Memory 206 and/or storage 208 may be further configured to store information and data used by processor 204.
  • memory 206 and/or storage 208 may be configured to store the various types of data (e.g., road map data, vehicle trajectory data, traffic information data etc. ) captured by navigation device 110.
  • Memory 206 and/or storage 208 may also store intermediate data such as optimization models, bottleneck parameters, travel volumes, simulated traffic speed, and future traffic flows, etc.
  • the various types of data may be stored permanently, removed periodically, or disregarded immediately after each frame of data is processed.
  • FIG. 3 illustrates a flowchart of an exemplary method 300 for traffic control, according to embodiments of the disclosure.
  • method 300 may be implemented by a traffic control system 100 that includes, among other things, server 120, and ramp meter 140.
  • Method 300 is not limited to that exemplary embodiment.
  • Method 300 may include steps S302-S314 as described below. It is to be appreciated that some of the steps may be optional to perform the disclosure provided below. It is also to be appreciated that some of the steps may be optional to perform the disclosure provided herein. Further, some of the steps may be performed simultaneously, or in a different order than shown in FIG. 3.
  • server 120 may receive vehicle trajectory data 203 and road map data 201 associated with a traffic flow acquired by navigation device 110.
  • Navigation device 110 may collect vehicle 101’s position information at certain time intervals (e.g., 0.5s or 1s) in sequence to obtain vehicle trajectory data 203.
  • server 120 may calculate vehicle 101’s speed based on the time interval and the change of position meanwhile. For example, server 120 may divide the distance between a first position and a second position by the time interval between the time points information of the two positions was obtained. Server 120 may use the average speed between the two positions as the representation of the vehicle 101’s speed while vehicle 101 travels from the first position to the second position if the time interval is small enough (e.g., set the time interval as 0.5s) .
  • server 120 may determine at least one bottleneck in the traffic flow based on vehicle trajectory data 203.
  • server 120 may determine the bottleneck based on a spatial and temporal distribution of speed where vehicles’ speed is distributed among both time and space. For example, server 120 may associate each and every speed within a range (e.g., 0-80 km/h, and can be colored to show different speed) to a road section (e.g., a portion of freeway within a target area) spatially and a time interval (e.g., set a duration of time interval as 1 minute or 5 minutes) temporally.
  • a range e.g., 0-80 km/h
  • a time interval e.g., set a duration of time interval as 1 minute or 5 minutes
  • server 120 may further identify a congestion area triggered by the determined bottleneck. For example, server 120 may apply the depth-first-search algorithm to identify the border of the traffic congestion that is triggered from the bottleneck according to Equation (1)
  • s is the congestion area
  • i is a road section index (e.g., a target area include 5 road sections and the third road section’s index is 3)
  • t is time index in the congestion (e.g., a total data collecting time of 3 hours with an interval of 5 minutes, the time index for data collected at the 30-minute time point is 6)
  • l i is the length of section I
  • v f is the free-flow speed
  • v i (t) is the speed of road section i in time interval t.
  • server 120 may estimate the traffic volume of the identified bottleneck based on vehicle trajectory data 203.
  • server 120 may estimate a fundamental diagram (FD) of the road section which may be used to describe the relationship between traffic density and traffic flow.
  • server 120 may use a triangular FD to represent the relationship.
  • Server 120 may determine parameters characterizing the traffic volume, which include, e.g., the free-flow speed, the capacity and the jam density to the triangular FD.
  • the free-flow speed and the critical speed in a triangular FD are the same, which is not realistic according to empirical findings.
  • server 120 may assume a second-order function to represent the left part of the FD.
  • the present FD is a piecewise function, in which server 120 assumes a second-order function for traffic density lower than the critical value and a first-order function for traffic density higher than the critical value.
  • the free-flow speed is determined as the maximum speed limit of the freeway.
  • Critical speed corresponds to the average speed of traffic flow when traffic volume reaches the capacity and can be measured at the time point right before the traffic is broken down band the bottleneck. Also, critical speed can be calculated as the total travel distance over the total travel time of those trajectories.
  • the jam density may be determined based on empirical evidence. Determination of the jam density may depend on the average length of vehicle bodies. For example, the jam density may be 135veh/h based on empirical evidence.
  • server 120 may derive the capacity based on the congestion wave speed.
  • the congestion wave speed is indicative of the propagation speed of traffic jams.
  • traffic is in the car-following state, i.e., the right part of the FD, if the leading vehicle decelerates and changes his speed to a lower value, the new traffic state will propagate to the following vehicles.
  • the backwards propagation speed of traffic state is known as the congestion wave speed.
  • server 120 may identify conspicuous deceleration of two consecutive trajectories and calculate the wave speed. Server 120 may further filter unrealistic waves and determine the average of all remaining wave speeds to be the congestion wave speed.
  • server 120 may estimate the traffic volume based on the estimated FD and the measured speed acquired contained in vehicle trajectory data 203 according to equation (2) :
  • B is the area in the time-space diagram
  • d is the average distance driven by vehicle 101 in the target area
  • L is the total length of the target area
  • T is the total data collecting time.
  • server 120 may simulate traffic speed based on the estimated traffic volume.
  • server 120 may apply a macroscopic first-order model to simulate the traffic flow.
  • server 120 may use the cell transmission model (CMT) or its variants in which the dynamics of variables (e.g., traffic density) may be captured to simulate traffic speed based on the estimated traffic flow.
  • CMT cell transmission model
  • variables e.g., traffic density
  • server 120 may be further configured to calibrate the model parameters and traffic demand using optimizations that minimize the difference between simulated speed and measured speed from vehicle trajectory data 203. For example, server 120 may calibrate the model based on comparing the estimated traffic speed with the measured traffic speed in real time. In some embodiments, based on the calibrated simulation model, server 120 may be configured to predict a future traffic flow. For example, server 120 may use the model to make short-term traffic flow predictions.
  • server 120 may control traffic based on the predicted future traffic flow.
  • server 120 may use an adaptive ramp meter control approach to determine a green-split time for ramp meter 140.
  • server 120 may use an ALINEA-type approach (e.g., applying a feedback regulator that is based on mainstream measurements of the downstream ramp occupancy) .
  • the feedback regulator is designed based on measurements of speed downstream of the ramp.
  • server 120 may use a fixed-time control strategy that is derived offline for a particular time-of-day based on constant historical demands to determine a green-split time for ramp meter 140.
  • traffic control unit 216 may optimize green-split time for ramp meters to maximize the capacity flows within a target area.
  • Server 120 may send the determined green-split time 205 to ramp meter 140 to control the traffic within the target area.
  • server 120 may generate a visualization of traffic flow using road map data 201 to show the future traffic flow.
  • road map data 201 acquired by navigation device 110 may be used to construct the topology graph of the target area for visualization purposes.
  • Server 120 may further associate the short-term traffic flow prediction to the constructed topology graph of the target area to provide a brief view of traffic status of the freeway.
  • the visualization may be provided to vehicle 101 or a terminal device such as a mobile phone, which render the visualization for displaying to a user.
  • FIG. 5 illustrates an exemplary visualization 500 provided by traffic control system 100, according to embodiments of the disclosure.
  • short-term traffic flow prediction is superimposed or otherwise rendered into a topology graph constructed based on road map data 201 acquired by navigation device 110.
  • the colored line on the graph is the part of a freeway where short-term traffic flow prediction is made. Different colors represent different traffic speeds. For example, in visualization 500, red indicates the congested area (e.g., a standing queue) , yellow indicates slow traffic (e.g., a moving jam) , and green indicates normal traffic (e.g., vehicles moving at a free-flow speed) .
  • visualization 500 may be used for presenting a brief view of traffic status of the freeway, for traffic management and/or for making individual travel plans.
  • the computer-readable medium may include volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other types of computer-readable medium or computer-readable storage devices.
  • the computer-readable medium may be the storage device or the memory module having the computer instructions stored thereon, as disclosed.
  • the computer-readable medium may be a disc or a flash drive having the computer instructions stored thereon.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

A system (100) and a method (300) for traffic control based on vehicle trajectory data (203), the system (100) may include: a communication interface (202) configured to receive the vehicle trajectory data (203) associated with a traffic flow from at least one navigation device (110), at least one processor (204) configured to determine at least one bottleneck in the traffic flow based on the vehicle trajectory data (203) and estimate a traffic volume associated with the bottleneck based on the vehicle trajectory data (203). The at least one processor (204) may be further configured to predict a future traffic flow based on the estimated traffic volume and control traffic based on the predicted future traffic flow. And the system (100) may further include a storage (208) configured to store the trajectory data and the predicted future traffic flow.

Description

SYSTEMS AND METHODS FOR TRAFFIC CONTROL BASED ON VEHICLE TRAJECTORY DATA TECHNICAL FIELD
The present disclosure relates to systems and methods for traffic control, and more particularly to, systems and methods for traffic control based on vehicle trajectory data.
BACKGROUND
Traffic management measures are widely used to improve the mobility and safety of freeway traffic because of the urbanization and the ever-growing transportation demands. For example, important traffic parameters such as traffic flow speed and efficiency may be improved based on proper traffic control. Inputs for a conventional freeway traffic control system usually come from fixed sensors (e.g., loop detectors, geomagnetic detectors, or video sensors that placed in strategic locations) . The performance of conventional freeway traffic control systems depends heavily on the data availability from the fixed detectors.
Although fixed sensors can provide a thorough time history of both speed and volume of traffic at the location where the sensor is located, installation and maintenance cost render the solution less preferable. Also, the ability of fixed sensors to provide sufficient traffic information is further limited due to its immobility. For example, insufficiency of detector coverage (e.g., in small cities or rural area where inadequate detectors are established) and damaged or malfunctioning detectors (e.g., due to deficient manpower for conducting routinely check) may reduce the quality and quantity of the data provided by fixed sensors. On the other hand, traffic information such as traffic flow can be obtained manually. However, the high cost of labor and required resource (e.g., for transporting investigators) would render the method not economical.
Embodiments of the disclosure address the above problems by improved methods and systems for traffic control based on vehicle trajectory data.
SUMMARY
Embodiments of the disclosure provide a method for traffic control based on vehicle trajectory data. The method may include receiving, by a communication interface, the vehicle trajectory data associated with a traffic flow from at least one navigation device. The method may further include determining, by at least one processor, at least one bottleneck in the traffic flow based on the vehicle trajectory data and estimating, a traffic  volume associated with the bottleneck based on the vehicle trajectory data. The method may further include predicting, by the at least one processor, a future traffic flow based on the estimated traffic volume and controlling traffic based on the predicted future traffic flow.
Embodiments of the disclosure also provide a system for traffic control based on trajectory data. The system may include a communication interface configured to receive the vehicle trajectory data associated with a traffic flow from at least one navigation device. The system may also include at least one processor. The at least one processor may be configured to determine at least one bottleneck in the traffic flow based on the vehicle trajectory data and estimate a traffic volume associated with the bottleneck based on the vehicle trajectory data. The at least one processor may be further configured to predict a future traffic flow based on the estimated traffic volume and control traffic based on the predicted future traffic flow. The system may further include a storage configured to store the trajectory data and the predicted future traffic flow.
Embodiments of the disclosure further provide a non-transitory computer-readable medium having instructions stored thereon that, when executed by one or more processors, causes the one or more processors to perform a method for traffic control based on vehicle trajectory data. The method may include receiving the vehicle trajectory data associated with an intersection where the traffic light is located from at least one navigation device and determining at least one bottleneck in the traffic flow based on the vehicle trajectory data. The method may further include estimating a traffic volume associated with the bottleneck based on the vehicle trajectory data and predicting a future traffic flow based on the estimated traffic volume. The method may further include controlling traffic based on the predicted future traffic flow.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a schematic diagram of an exemplary traffic control system, according to embodiments of the disclosure.
FIG. 2 illustrates a block diagram of an exemplary system for traffic control, according to embodiments of the disclosure.
FIG. 3 illustrates a flowchart of an exemplary method for traffic control, according to embodiments of the disclosure.
FIG. 4 illustrates an exemplary traffic diagnosis of the traffic control system, according to embodiments of the disclosure.
FIG. 5 illustrates an exemplary visualization rpovided by the traffic control system, according to embodiments of the disclosure.
DETAILED DESCRIPTION
Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
FIG. 1 illustrates a schematic diagram of an exemplary traffic control system 100, according to embodiments of the disclosure. In some embodiments, traffic control system 100 may be configured to control freeway traffic by controlling traffic flows from the ramps merging onto the freeway. For example, traffic control system 100 may be configured to control traffic flow of a road section 130. Consistent with the present disclosure, road section 130 may include an entrance ramp (e.g., an on-ramp) that allows vehicles to enter a controlled-access highway (e.g., a freeway or a motorway) . Consistent with the disclosure, traffic control system 100 performs traffic control based on vehicle trajectory data acquired by a navigation device 110 onboard of each vehicle 101.
Consistent with some embodiments, a navigation device 110 may be a device configured to receive signals from a satellite navigation system (not shown) . Navigation device 110 may be a standalone device or integrated inside another device, e.g., a vehicle, a mobile phone, a wearable device, a camera, etc. It is contemplated that navigation device 110 may be any kind of movable device or equivalent structures equipped with any suitable satellite navigation module that enables navigation device 110 to obtain trajectory data.
It is contemplated that the satellite navigation system from which navigation device 110 receives signals may be a global navigation satellite system such as a Global Positioning System (GPS) , a Global Navigation Satellite System (GLONASS) , a BeiDou-2 Navigation Satellite System (BDS) or a European Union’s Galileo system. The satellite navigation system may also be a regional navigation satellite system such as a BeiDou-1 system, a NAVigation with Indian Constellation (NAVIC) system or a Quasi-Zenith Satellite System (QZSS) . Navigation device 110 may be a high sensitivity GPS receiver, a conventional GPS receiver, a hand-held receiver, an outdoor receiver, or a sport receiver. In some embodiments, navigation device 110 may be connected to the satellite directly, through Assisted or Augmented GPS, through an intermediary device (e.g., a cell tower or a station) ,  or via any other communication method that could transmit satellite signals (e.g., satellites broadcast microwave signals) or provide orbital data or almanac for the satellite (e.g., Mobile Station Based assistance) to navigation device 110.
In addition, navigation device 110 may be connected to traffic control system 100 via a network, such as a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, a satellite communication network, and/or a local or short-range wireless network (e.g., Bluetooth TM) for transmitting vehicle navigation information.
Consistent with some embodiments, vehicle 101 may be a vehicle configured for traveling along the trajectory and allows navigation device 110 to acquire trajectory data. It is contemplated that vehicle 101 may be an electric vehicle, a fuel cell vehicle, a hybrid vehicle, or a conventional internal combustion engine vehicle. Vehicle 101 may have a body and at least one wheel. The body may be any body style, such as a sports vehicle, a coupe, a sedan, a pick-up truck, a station wagon, a sports utility vehicle (SUV) , a minivan, or a conversion van. In some embodiments, vehicle 101 may include a pair of front wheels and a pair of rear wheels, as illustrated in FIG. 1. However, it is contemplated that vehicle 101 may have more or less wheels or equivalent structures that enable vehicle 101 to move around. Vehicle 101 may be configured to be all-wheel drive (AWD) , front wheel drive (FWR) , or rear wheel drive (RWD) . In some embodiments, vehicle 101 may be configured to be operated by an operator occupying the vehicle, remotely controlled, and/or autonomous.
In some embodiments, navigation device 110 may be configured to capture trajectory data as vehicle 101 travels along a trajectory. Consistent with the present disclosure, navigation device 110 may be equipped with a GPS module configured to constantly receive location information of vehicle 101. In some embodiments, as vehicle 101 travels along the trajectory, a trace in geographical space associated with vehicle 101’s movement is generated (e.g., a trace represented by a series of chronologically ordered points, e.g. p1 → p2 → …→ pn, where each point consists of a geospatial coordinate set and a timestamp such as p = (x, y, t) ) . Navigation device 110 may also capture or construct road map data including map of areas along vehicle 101’s trajectory.
Consistent with the present disclosure, traffic control system 100 may include a server 120. In some embodiments, server 120 may be a local physical server, a cloud server (as illustrated in FIG. 1) , a virtual server, a distributed server, or any other suitable computing device. For example, server 120 may obtain data from navigation device 110. Consistent  with the present disclosure, trajectory data may be transmitted to a server 120 in real-time (e.g., by streaming) , or collectively after a certain period of time (e.g., 1ms or 5ms) . Server 120 may communicate with navigation device 110, ramp meter 140 and/or other components internal or external to traffic control system 100 via a network, such as a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, a satellite communication network, and/or a local or short-range wireless network (e.g., Bluetooth TM) . Consistent with the present disclosure, server 120 may store trajectory data acquired by navigation device 110.
In some embodiments, server 120 may be configured to determine at least one bottleneck in the traffic flow of road section 130 based on the vehicle trajectory data. For example, the bottleneck may be a standing queue bottleneck or a moving jam. In some embodiments, server 120 may determine various parameters associated with the bottleneck, such as location and range (e.g., length of the jam) . Server 120 may also estimate a traffic volume associated with the bottleneck based on the vehicle trajectory data. Server 120 may also be responsible for predicting a future traffic flow of road section 130 from time to time to provide optimized traffic control to ramp meter 140. Server 120 may use the acquired trajectory data to optimize a green-split time of ramp meter 140 to manage the traffic flow getting on the freeway.
Consistent with the present disclosure, server 120 may communicate the optimized green-split time to ramp meter 140. In some embodiments, ramp meter 140 can be a single aspects traffic light, a dual aspects traffic light, or a three or more aspects traffic lights. It is contemplated that ramp meter 140 may have one or more aspect or equivalent structures that enable ramp meter 140 to signal.
As illustrated in FIG. 1, ramp meter 140 may be mounted to supporting device 160 via a mounting structure 150. Mounting structure 150 may be an electro-mechanical device installed or otherwise attached to the supporting device 160. In some embodiments, mounting structure 150 may use screws, adhesives, or another mounting mechanism. Supporting device 160 may be a tripod, a jib, carne, a lamp stick or any other suitable structures for providing support to mounting structure 150 and ramp meter 140. It is contemplated that the manners in which ramp meter 140 is mounted are not limited by the example shown in FIG. 1 and may be modified depending on the types of ramp meter 140, mounting structure 150 and/or the supporting device 160 to achieve desirable detecting performance.
For example, FIG. 2 illustrates a block diagram of an exemplary server 120 for traffic control, according to embodiments of the disclosure. Consistent with the present disclosure, server 120 may receive road map data 201 and vehicle trajectory data 203 from navigation device 110 and may send green split time 205 to ramp meter 140. Based on vehicle trajectory data 203, server 120 may determine at least one bottleneck in a traffic flow and estimate traffic volume accordingly. Server 120 may then simulate a traffic speed based on the estimated traffic volume and calibrate the simulation with spatial and temporal speed data acquired from the trajectory data (e.g., minimizing the simulated traffic speed and the measured traffic speed) . Then server 120 may predict future traffic flow based on the simulation. Server 120 may then control the green-split time of ramp meter 140 for traffic management according to the future traffic flow prediction. In some embodiments, server 120 may further generate a visualization of traffic flow using road map data 201 to provides a visualized view of the freeway traffic flow in a map.
In some embodiments, as shown in FIG. 2, server 120 may include a communication interface 202, a processor 204, a memory 206, and a storage 208. In some embodiments, server 120 may have different modules in a single device, such as an integrated circuit (IC) chip (implemented as an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA) ) , or separate devices with dedicated functions. In some embodiments, one or more components of server 120 may be located in a cloud or may be alternatively in a single location (such as inside navigation device 110) or distributed locations. Components of server 120 may be in an integrated device or distributed at different locations but communicate with each other through a network (not shown) .
Communication interface 202 may send data to and receive data from components such as navigation device 110 and ramp meter 140 via communication cables, a Wireless Local Area Network (WLAN) , a Wide Area Network (WAN) , wireless networks such as radio waves, a cellular network, and/or a local or short-range wireless network (e.g., Bluetooth TM) , or other communication methods. In some embodiments, communication interface 202 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection. As another example, communication interface 202 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links can also be implemented by communication interface 202. In such an implementation, communication interface 202 can send and receive electrical, electromagnetic or optical signals that carry digital data streams representing various types of information via a network.
Consistent with some embodiments, communication interface 202 may receive data regarding the mobility of vehicle 101 that consists of vehicle trajectory data 203 and road map data 201 captured by navigation device 110. In some embodiments, vehicle trajectory data 203 includes GPS coordinates acquired by navigation device 110. Communication interface 202 may further provide the received data to storage 208 for storage or to processor 204 for processing. Communication interface 202 may also transmit control signals that consist of green-split time 205 to ramp meter 140 to control the traffic. In some embodiments, green-split time 205 is encoded into electronic signals that consists of traffic information (e.g., green-split time and/or cycle length) processed by processor 204.
Processor 204 may include any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, or microcontroller. Processor 204 may be configured as a separate processor module dedicated to determination of an optimized green-split time of a ramp meter. Alternatively, processor 204 may be configured as a shared processor module for performing other functions unrelated to optimizing green-split time of a ramp mete based on vehicle trajectory data.
As shown in FIG. 2, processor 204 may include multiple modules, such as a traffic diagnosis unit 210, a traffic volume estimation unit 212, a traffic simulation unit 214, a traffic control unit 216 and the like. These modules (and any corresponding sub-modules or sub-units) can be hardware units (e.g., portions of an integrated circuit) of processor 204 designed for use with other components or software units implemented by processor 204 through executing at least part of a program. The program may be stored on a computer-readable medium, and when executed by processor 204, it may perform one or more functions. Although FIG. 2 shows units 210-216 all within one processor 204, it is contemplated that these units may be distributed among multiple processors located near or remotely with each other.
Traffic diagnosis unit 210 may be configured to determine at least one bottleneck in a traffic flow based on vehicle trajectory data 203. For example, the bottleneck may be a standing queue bottleneck or a moving jam. In some embodiments, traffic diagnosis unit 210 may determine the bottleneck based on a spatial and temporal distribution of speed. For example, each and every speed within a range (e.g., 0-80 km/h) may be associated with a road section spatially and a time interval (e.g., set a duration of time interval as 5 minutes) temporally. The activation of a bottleneck is identified when the speed within a road section drops conspicuously while its downstream section still flows in free state. The place where the bottleneck is activated is determined as the location of the bottleneck. In some  embodiments, traffic diagnosis unit 210 may further be configured to identify a congestion area triggered by the bottleneck. For example, traffic diagnosis unit 210 may apply a depth-first-search algorithm to identify the border of the traffic congestion that is triggered from the bottleneck.
For example, FIG. 4 illustrates an exemplary traffic diagnosis of the traffic control system, according to embodiments of the disclosure. A space-time diagram 400 is shown in FIG. 4. In diagram 400, each and every speed from 0-80 km/h corresponds to the road section spatially and to a time interval temporally. For example, the time interval in diagram 400 is 5 minutes. The bottleneck can be identified where the speed within a road section drops conspicuously while its downstream section still flows in free state (e.g., the two red-parts in the lower part of diagram 400) .
Return to FIG. 2, based on the determined bottleneck in the traffic flow, traffic volume estimation unit 212 may be configured to estimate a traffic volume associated with the bottleneck. In some embodiments, traffic volume estimation unit 212 may estimate a fundamental diagram (FD) of the road section and use the estimation to describe the relationship between traffic density and traffic flow. For example, traffic volume estimation unit 212 may use a triangular FD method to represent the relationship. For example, traffic estimation unit 212 may use a free-flow speed, capacity and jam density to represent the relationship. In some embodiments, the free-flow speed may be determined as the maximum speed limit of the freeway, capacity is the freeway-capacity before the jam occurs and the jam density may be assumed as a fixed value. In some embodiments, traffic volume estimation unit 212 may estimate the traffic volume based on the estimated FD and the measured speed contained in vehicle trajectory data 203.
Based on the estimated traffic volume, traffic simulation unit 214 may be configured to simulate the traffic speed. In some embodiments, traffic simulation unit 214 may apply a macroscopic first-order model (e.g., the cell transmission model or its variants) to simulate the traffic flow. Traffic simulation unit 214 may further be configured to calibrate the model parameters and traffic demand using optimization approaches. For example, the objective of the optimization approach is to minimize the difference between the simulated speed by traffic simulation unit 214 and the measured speed contained in vehicle trajectory data 203. In some embodiments, based on the calibrated simulation model, traffic simulation unit 214 may be configured to predict future traffic flow. For example, traffic simulation unit 214 may use the model to make short-term traffic flow predictions.
Based on the prediction, traffic control unit 216 may be configured to control the traffic. In some embodiments, traffic control unit 216 may use an adaptive ramp meter control approach to control the traffic. For example, traffic control unit 216 may use an ALINEA-type approach (e.g., applying a feedback regulator that is based on mainstream measurements of the downstream ramp occupancy) . In some embodiments, the feedback regulator is designed based on measurements of speed downstream of the ramp.
In another embodiment, traffic control unit 216 may use a fixed-time control strategy that is derived offline for particular time-of-day based on historical demands. For example, traffic control unit 216 may optimize green-split time for ramp meter 140 to maximize the capacity flows within a target area.
Memory 206 and storage 208 may include any appropriate type of mass storage provided to store any type of information that processor 204 may need to operate. Memory 206 and storage 208 may be a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other type of storage device or tangible (i.e., non-transitory) computer-readable medium including, but not limited to, a ROM, a flash memory, a dynamic RAM, and a static RAM. Memory 206 and/or storage 208 may be configured to store one or more computer programs that may be executed by processor 204 to perform traffic control disclosed herein. For example, memory 206 and/or storage 208 may be configured to store program (s) that may be executed by processor 204 to control traffic based on vehicle trajectory data.
Memory 206 and/or storage 208 may be further configured to store information and data used by processor 204. For instance, memory 206 and/or storage 208 may be configured to store the various types of data (e.g., road map data, vehicle trajectory data, traffic information data etc. ) captured by navigation device 110. Memory 206 and/or storage 208 may also store intermediate data such as optimization models, bottleneck parameters, travel volumes, simulated traffic speed, and future traffic flows, etc. The various types of data may be stored permanently, removed periodically, or disregarded immediately after each frame of data is processed.
FIG. 3 illustrates a flowchart of an exemplary method 300 for traffic control, according to embodiments of the disclosure. In some embodiments, method 300 may be implemented by a traffic control system 100 that includes, among other things, server 120, and ramp meter 140. However, method 300 is not limited to that exemplary embodiment. Method 300 may include steps S302-S314 as described below. It is to be appreciated that some of the steps may be optional to perform the disclosure provided below. It is also to be  appreciated that some of the steps may be optional to perform the disclosure provided herein. Further, some of the steps may be performed simultaneously, or in a different order than shown in FIG. 3.
In step S302, server 120 may receive vehicle trajectory data 203 and road map data 201 associated with a traffic flow acquired by navigation device 110. Navigation device 110 may collect vehicle 101’s position information at certain time intervals (e.g., 0.5s or 1s) in sequence to obtain vehicle trajectory data 203. In some embodiments, server 120 may calculate vehicle 101’s speed based on the time interval and the change of position meanwhile. For example, server 120 may divide the distance between a first position and a second position by the time interval between the time points information of the two positions was obtained. Server 120 may use the average speed between the two positions as the representation of the vehicle 101’s speed while vehicle 101 travels from the first position to the second position if the time interval is small enough (e.g., set the time interval as 0.5s) .
In step S304, server 120 may determine at least one bottleneck in the traffic flow based on vehicle trajectory data 203. In some embodiments, server 120 may determine the bottleneck based on a spatial and temporal distribution of speed where vehicles’ speed is distributed among both time and space. For example, server 120 may associate each and every speed within a range (e.g., 0-80 km/h, and can be colored to show different speed) to a road section (e.g., a portion of freeway within a target area) spatially and a time interval (e.g., set a duration of time interval as 1 minute or 5 minutes) temporally. The starting point of a bottleneck is identified on the time-space diagram where the speed within a road section drops conspicuously while its downstream section still flows in a free state. In some embodiments, server 120 may further identify a congestion area triggered by the determined bottleneck. For example, server 120 may apply the depth-first-search algorithm to identify the border of the traffic congestion that is triggered from the bottleneck according to Equation (1)
Figure PCTCN2019119977-appb-000001
where s is the congestion area, i is a road section index (e.g., a target area include 5 road sections and the third road section’s index is 3) , and t is time index in the congestion (e.g., a total data collecting time of 3 hours with an interval of 5 minutes, the time index for data collected at the 30-minute time point is 6) , l i is the length of section I, v f is the free-flow speed and v i (t) is the speed of road section i in time interval t.
In step S306, server 120 may estimate the traffic volume of the identified bottleneck based on vehicle trajectory data 203. In some embodiments, server 120 may estimate a fundamental diagram (FD) of the road section which may be used to describe the relationship between traffic density and traffic flow. For example, server 120 may use a triangular FD to represent the relationship. Server 120 may determine parameters characterizing the traffic volume, which include, e.g., the free-flow speed, the capacity and the jam density to the triangular FD. Typically, the free-flow speed and the critical speed in a triangular FD are the same, which is not realistic according to empirical findings. To differentiate the free-flow speed and critical speed, server 120 may assume a second-order function to represent the left part of the FD. Thus, the present FD is a piecewise function, in which server 120 assumes a second-order function for traffic density lower than the critical value and a first-order function for traffic density higher than the critical value. In some embodiments, the free-flow speed is determined as the maximum speed limit of the freeway. Critical speed corresponds to the average speed of traffic flow when traffic volume reaches the capacity and can be measured at the time point right before the traffic is broken down band the bottleneck. Also, critical speed can be calculated as the total travel distance over the total travel time of those trajectories.
In some embodiments, the jam density may be determined based on empirical evidence. Determination of the jam density may depend on the average length of vehicle bodies. For example, the jam density may be 135veh/h based on empirical evidence.
When the jam density and the critical speed are known, server 120 may derive the capacity based on the congestion wave speed. The congestion wave speed is indicative of the propagation speed of traffic jams. When traffic is in the car-following state, i.e., the right part of the FD, if the leading vehicle decelerates and changes his speed to a lower value, the new traffic state will propagate to the following vehicles. The backwards propagation speed of traffic state is known as the congestion wave speed. To determine the congestion wave speed, server 120 may identify conspicuous deceleration of two consecutive trajectories and calculate the wave speed. Server 120 may further filter unrealistic waves and determine the average of all remaining wave speeds to be the congestion wave speed.
In some embodiments, server 120 may estimate the traffic volume based on the estimated FD and the measured speed acquired contained in vehicle trajectory data 203 according to equation (2) :
Figure PCTCN2019119977-appb-000002
where
Figure PCTCN2019119977-appb-000003
is the space-mean flow, B is the area in the time-space diagram, d is the average distance driven by vehicle 101 in the target area, L is the total length of the target area, T is the total data collecting time.
In step S308, server 120 may simulate traffic speed based on the estimated traffic volume. In some embodiments, server 120 may apply a macroscopic first-order model to simulate the traffic flow. For example, server 120 may use the cell transmission model (CMT) or its variants in which the dynamics of variables (e.g., traffic density) may be captured to simulate traffic speed based on the estimated traffic flow.
In step S310, server 120 may be further configured to calibrate the model parameters and traffic demand using optimizations that minimize the difference between simulated speed and measured speed from vehicle trajectory data 203. For example, server 120 may calibrate the model based on comparing the estimated traffic speed with the measured traffic speed in real time. In some embodiments, based on the calibrated simulation model, server 120 may be configured to predict a future traffic flow. For example, server 120 may use the model to make short-term traffic flow predictions.
In step S312, server 120 may control traffic based on the predicted future traffic flow. In some embodiments, server 120 may use an adaptive ramp meter control approach to determine a green-split time for ramp meter 140. For example, server 120 may use an ALINEA-type approach (e.g., applying a feedback regulator that is based on mainstream measurements of the downstream ramp occupancy) . In some embodiments, the feedback regulator is designed based on measurements of speed downstream of the ramp.
In another embodiment, server 120 may use a fixed-time control strategy that is derived offline for a particular time-of-day based on constant historical demands to determine a green-split time for ramp meter 140. For example, traffic control unit 216 may optimize green-split time for ramp meters to maximize the capacity flows within a target area. Server 120 may send the determined green-split time 205 to ramp meter 140 to control the traffic within the target area.
In some embodiments, in step S314, server 120 may generate a visualization of traffic flow using road map data 201 to show the future traffic flow. For example, road map data 201 acquired by navigation device 110 may be used to construct the topology graph of the target area for visualization purposes. Server 120 may further associate the short-term traffic flow prediction to the constructed topology graph of the target area to provide a brief view of traffic status of the freeway. The visualization may be provided to vehicle 101 or a  terminal device such as a mobile phone, which render the visualization for displaying to a user.
FIG. 5 illustrates an exemplary visualization 500 provided by traffic control system 100, according to embodiments of the disclosure. As shown in FIG. 5, short-term traffic flow prediction is superimposed or otherwise rendered into a topology graph constructed based on road map data 201 acquired by navigation device 110. For example, in visualization 500, the colored line on the graph is the part of a freeway where short-term traffic flow prediction is made. Different colors represent different traffic speeds. For example, in visualization 500, red indicates the congested area (e.g., a standing queue) , yellow indicates slow traffic (e.g., a moving jam) , and green indicates normal traffic (e.g., vehicles moving at a free-flow speed) . Additionally, visualization 500 may be used for presenting a brief view of traffic status of the freeway, for traffic management and/or for making individual travel plans.
Another aspect of the disclosure is directed to non-transitory computer-readable medium storing instructions which, when executed, cause one or more processors to perform the methods, as discussed above. The computer-readable medium may include volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other types of computer-readable medium or computer-readable storage devices. For example, the computer-readable medium may be the storage device or the memory module having the computer instructions stored thereon, as disclosed. In some embodiments, the computer-readable medium may be a disc or a flash drive having the computer instructions stored thereon.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed system and related methods. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system and related methods.
It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims (20)

  1. A method for traffic control based on vehicle trajectory data comprises:
    receiving, by a communication interface, the vehicle trajectory data associated with a traffic flow from at least one navigation device;
    determining, by at least one processor, at least one bottleneck in the traffic flow based on the vehicle trajectory data;
    estimating, by the at least one processor, a traffic volume associated with the bottleneck based on the vehicle trajectory data;
    predicting, by the at least one processor, a future traffic flow based on the estimated traffic volume; and
    controlling traffic based on the predicted future traffic flow.
  2. The method of claim 1, wherein controlling the traffic further comprises determining a green-split time for a ramp meter based on the predicted future traffic flow.
  3. The method of claim 1, wherein determining the at least one bottleneck further comprises:
    determining a spatial-temporal distribution of speed based on the vehicle trajectory data; and
    identifying the at least one bottleneck using the spatial-temporal distribution of speed.
  4. The method of claim 1, wherein determining the at least one bottleneck further comprises:
    determining a location of the bottleneck; and
    determining a congestion area triggered from the bottleneck.
  5. The method of claim 4, wherein the congestion area is determined based on a depth-first-search algorithm.
  6. The method of claim 1, wherein estimating the traffic volume further comprises determining at least one of a free-flow speed of the traffic flow, a road capacity, and a jam density associated with the traffic flow.
  7. The method of claim 1, further comprising:
    receiving, by a communication interface, road map data; and
    generating, by the at least one processor, a visualization of the traffic flow based on the road map data and the future traffic flow.
  8. The method of claim 1, wherein the at least one navigation device is associated with a vehicle traveling along a trajectory.
  9. The method of claim 1, wherein the at least one bottleneck is a standing queue or a moving jam.
  10. The method of claim 1, wherein estimating the traffic volume further comprises determining a congestion wave speed.
  11. The method of claim 1, wherein predicting the future traffic flow further comprises:
    simulating a traffic speed based on the estimated traffic volume using a macroscopic model; and
    minimizing a difference between the simulated traffic speed and a measured traffic speed.
  12. A system for traffic control based on vehicle trajectory data comprises:
    a communication interface configured to receive the vehicle trajectory data associated with a traffic flow from at least one navigation device;
    at least one processor configured to:
    determine at least one bottleneck in the traffic flow based on the vehicle trajectory data;
    estimate a traffic volume associated with the bottleneck based on the vehicle trajectory data;
    predict a future traffic flow based on the estimated traffic volume; and
    control traffic based on the predicted future traffic flow; and
    a storage configured to store the trajectory data and the predicted future traffic flow.
  13. The system of claim 12, wherein the at least one processor is further configured to determine a green-split time for a ramp meter based on the predicted future traffic flow.
  14. The system of claim 12, wherein the at least one processor is further configured to:
    determine a spatial-temporal distribution of speed based on the vehicle trajectory data; and
    identify the at least one bottleneck using the spatial-temporal distribution of speed.
  15. The system of claim 12, wherein to determine the at least one bottleneck the at least one processor is further configured to:
    determine a location of the bottleneck; and
    determining a congestion area triggered from the bottleneck.
  16. The system of claim 15, wherein the congestion area is determined based on a depth-first-search algorithm.
  17. The system of claim 12, wherein to estimate the traffic volume the at least one processor is further configured to determine at least one of a free-flow speed of the traffic flow, a road capacity, and a jam density associated with the traffic flow.
  18. The system of claim 12, wherein the at least one processor is further configured to:
    receive road map data; and
    generate a visualization of the traffic flow based on the road map data and the future traffic flow.
  19. The system of claim 12, wherein to predict the future traffic flow the at least one processor is further configured to:
    simulate a traffic speed based on the estimated traffic volume using a macroscopic model; and
    minimize a difference between the simulated traffic speed and a measured traffic speed.
  20. A non-transitory computer-readable medium having a computer program stored thereon, wherein the computer program, when executed by at least one processor, performs a method for traffic control based on vehicle trajectory data, the method comprising:
    receiving the vehicle trajectory data associated with a traffic flow from at least one navigation device;
    determining at least one bottleneck in the traffic flow based on the vehicle trajectory data;
    estimating a traffic volume associated with the bottleneck based on the vehicle trajectory data;
    predicting a future traffic flow based on the estimated traffic volume; and
    controlling traffic based on the predicted future traffic flow.
PCT/CN2019/119977 2019-11-21 2019-11-21 Systems and methods for traffic control based on vehicle trajectory data WO2021097759A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/119977 WO2021097759A1 (en) 2019-11-21 2019-11-21 Systems and methods for traffic control based on vehicle trajectory data
CN201980003397.0A CN112492889B (en) 2019-11-21 2019-11-21 Traffic control system and method based on vehicle track data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119977 WO2021097759A1 (en) 2019-11-21 2019-11-21 Systems and methods for traffic control based on vehicle trajectory data

Publications (1)

Publication Number Publication Date
WO2021097759A1 true WO2021097759A1 (en) 2021-05-27

Family

ID=74920081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119977 WO2021097759A1 (en) 2019-11-21 2019-11-21 Systems and methods for traffic control based on vehicle trajectory data

Country Status (2)

Country Link
CN (1) CN112492889B (en)
WO (1) WO2021097759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115577574A (en) * 2022-12-08 2023-01-06 西南交通大学 Method, device and equipment for calculating position of diversion rail and readable storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020045985A1 (en) * 2000-07-28 2002-04-18 Boris Kerner Method for determining the traffic state in a traffic network with effective bottlenecks
US20060064234A1 (en) * 2004-09-17 2006-03-23 Masatoshi Kumagai Traffic information prediction system
CN105825669A (en) * 2015-08-15 2016-08-03 李萌 System and method for identifying urban expressway traffic bottlenecks
CN106960571A (en) * 2017-03-30 2017-07-18 百度在线网络技术(北京)有限公司 Congestion in road bottleneck point determines method, device, server and storage medium
CN107123266A (en) * 2017-06-09 2017-09-01 青岛海信网络科技股份有限公司 A kind of bottleneck road wagon flow amount adjustment method and device based on traffic big data
CN107765551A (en) * 2017-10-25 2018-03-06 河南理工大学 A kind of city expressway On-ramp Control method
CN108053645A (en) * 2017-09-12 2018-05-18 同济大学 A kind of signalized intersections cycle flow estimation method based on track data
CN109712401A (en) * 2019-01-25 2019-05-03 同济大学 A kind of compound road network bottleneck point recognition methods based on Floating Car track data
CN109935076A (en) * 2018-05-21 2019-06-25 吉林化工学院 A kind of city expressway often sends out sexual intercourse bottleneck link recognition methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081846B (en) * 2011-02-22 2013-06-05 交通运输部公路科学研究所 Expressway charge data track matching based traffic state recognition method
JP2013171491A (en) * 2012-02-22 2013-09-02 Nippon Expressway Research Institute Co Ltd Traffic estimation system using single image
CN103456169A (en) * 2012-07-18 2013-12-18 同济大学 Urban road intersection holographic three-dimensional dynamic analysis method
CN104821080B (en) * 2015-03-02 2017-04-12 北京理工大学 Intelligent vehicle traveling speed and time predication method based on macro city traffic flow
CN105489008B (en) * 2015-12-28 2018-10-19 北京握奇智能科技有限公司 Urban road congestion computational methods and system based on Floating Car satellite location data
US10403133B1 (en) * 2017-07-27 2019-09-03 State Farm Mutual Automobile Insurance Company Vehicle roadway traffic density management systems for optimizing vehicle spacing
US10134276B1 (en) * 2017-12-01 2018-11-20 International Business Machines Corporation Traffic intersection distance anayltics system
CN108133603A (en) * 2017-12-30 2018-06-08 重庆楠桦生物科技有限公司 Anti- congestion traffic light system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020045985A1 (en) * 2000-07-28 2002-04-18 Boris Kerner Method for determining the traffic state in a traffic network with effective bottlenecks
US20060064234A1 (en) * 2004-09-17 2006-03-23 Masatoshi Kumagai Traffic information prediction system
CN105825669A (en) * 2015-08-15 2016-08-03 李萌 System and method for identifying urban expressway traffic bottlenecks
CN106960571A (en) * 2017-03-30 2017-07-18 百度在线网络技术(北京)有限公司 Congestion in road bottleneck point determines method, device, server and storage medium
CN107123266A (en) * 2017-06-09 2017-09-01 青岛海信网络科技股份有限公司 A kind of bottleneck road wagon flow amount adjustment method and device based on traffic big data
CN108053645A (en) * 2017-09-12 2018-05-18 同济大学 A kind of signalized intersections cycle flow estimation method based on track data
CN107765551A (en) * 2017-10-25 2018-03-06 河南理工大学 A kind of city expressway On-ramp Control method
CN109935076A (en) * 2018-05-21 2019-06-25 吉林化工学院 A kind of city expressway often sends out sexual intercourse bottleneck link recognition methods
CN109712401A (en) * 2019-01-25 2019-05-03 同济大学 A kind of compound road network bottleneck point recognition methods based on Floating Car track data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115577574A (en) * 2022-12-08 2023-01-06 西南交通大学 Method, device and equipment for calculating position of diversion rail and readable storage medium
CN115577574B (en) * 2022-12-08 2023-03-10 西南交通大学 Method, device and equipment for calculating position of diversion rail and readable storage medium

Also Published As

Publication number Publication date
CN112492889A (en) 2021-03-12
CN112492889B (en) 2023-02-17

Similar Documents

Publication Publication Date Title
US10629071B1 (en) Adaptive traffic control using vehicle trajectory data
CN109410604B (en) Traffic signal lamp information acquisition device and method
CN112489433B (en) Traffic congestion analysis method and device
CN109872530B (en) Road condition information generation method, vehicle-mounted terminal and server
CN109074728A (en) Travel speed is recommended to provide program, running support system, vehicle control apparatus and automatic running vehicle
US10755564B2 (en) System to optimize SCATS adaptive signal system using trajectory data
CN106767858A (en) Traffic route planning system
US20200284594A1 (en) Vehicle and navigation system
CN109387218B (en) Vehicle-mounted equipment and road maintenance auxiliary management system
CN104575067A (en) System for automatic calculation, interactive sharing and publishing of real-time vehicle travelling data
JP2015076077A (en) Traffic volume estimation system,terminal device, traffic volume estimation method and traffic volume estimation program
KR20190043396A (en) Method and system for generating and providing road weather information by using image data of roads
US20230148097A1 (en) Adverse environment determination device and adverse environment determination method
CN111183464B (en) System and method for estimating saturation flow of signal intersection based on vehicle trajectory data
WO2021097759A1 (en) Systems and methods for traffic control based on vehicle trajectory data
CN103903432A (en) Equipment for determining road link congestion state and method
CN113852925A (en) Vehicle command method and system
CN113424209A (en) Trajectory prediction using deep learning multi-predictor fusion and bayesian optimization
US20230168368A1 (en) Guardrail estimation method based on multi-sensor data fusion, and vehicle-mounted device
US20230036770A1 (en) Real time traffic control system and method
CN113727434B (en) Vehicle-road cooperative auxiliary positioning system and method based on edge computing gateway
JP2012221167A (en) Traveling information arithmetic device and traveling information arithmetic method
US20230042001A1 (en) Weighted planning trajectory profiling method for autonomous vehicle
CN107798887B (en) traffic control method and device
CN113053100B (en) Method and device for estimating bus arrival time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953207

Country of ref document: EP

Kind code of ref document: A1