WO2021095858A1 - Method for measuring physiologically active substance - Google Patents

Method for measuring physiologically active substance Download PDF

Info

Publication number
WO2021095858A1
WO2021095858A1 PCT/JP2020/042470 JP2020042470W WO2021095858A1 WO 2021095858 A1 WO2021095858 A1 WO 2021095858A1 JP 2020042470 W JP2020042470 W JP 2020042470W WO 2021095858 A1 WO2021095858 A1 WO 2021095858A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
solution
measuring
physiologically active
binding
Prior art date
Application number
PCT/JP2020/042470
Other languages
French (fr)
Japanese (ja)
Inventor
義徳 鈴木
Original Assignee
インターメディック株式会社
常盤化学工業株式会社
有限会社Venture Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターメディック株式会社, 常盤化学工業株式会社, 有限会社Venture Lab filed Critical インターメディック株式会社
Priority to JP2021556182A priority Critical patent/JPWO2021095858A1/ja
Publication of WO2021095858A1 publication Critical patent/WO2021095858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a method for measuring a physiologically active substance.
  • Patent Documents 1 and 2 also describe methods for measuring a large number of types of measurement objects with one type of supplement-immobilized porous filter.
  • Patent Document 1 describes a measurement method using an enzyme substance as a labeling substance
  • Patent Document 2 using an enzyme substance and a fluorescent dye as a labeling substance.
  • all of these measuring methods have low measurement sensitivity and cannot be put into practical use, or even if they can be put into practical use, a large amount of sample solution is required, which causes a heavy burden on the patient. Medical personnel are demanding that the amount of sample solution required for measurement be reduced and the burden on patients be reduced.
  • An object of the method for measuring a physiologically active substance in a sample solution of the present invention is to improve the sensitivity and accuracy of measurement. As a result, the required amount of the sample solution can be reduced and the burden on the patient can be reduced. It is also to improve the reproducibility of measured values. As a result, the number of measurements required can be reduced, and the burden on patients and medical staff can be reduced. Furthermore, the measurement is speeded up. As a result, the time from sample solution collection to diagnosis can be shortened, the burden on the persons concerned can be reduced, and the cost required for measurement can be reduced.
  • the present invention (1) Label the measurement target in the sample solution, the first binding substance to which the ligand is bound to the physiologically active substance that specifically binds to the measurement target, and the physiologically active substance that specifically binds to the measurement target.
  • the bioactivity of the object to be measured is measured by fixing the ternary complex in which the ternary of the second binding substance to which the substance is bound to a porous filter via a ligand trapping agent and measuring the light emitted by the labeling substance.
  • a method for measuring a bioactive substance which comprises a labeling substance containing fluorescent beads in a method for measuring a substance.
  • the method for measuring a physiologically active substance in a sample solution of the present invention By the method for measuring a physiologically active substance in a sample solution of the present invention, the sensitivity and accuracy of measurement can be improved, the amount of sample solution required for measurement can be reduced, and the burden on the patient can be reduced. In addition, the reproducibility of the measured values can be improved, the required number of measurements can be reduced, and the burden on patients and medical staff can be reduced. Furthermore, the measurement can be speeded up, the time from sample solution collection to diagnosis can be shortened, the burden on the persons concerned can be reduced, and the cost required for the measurement can be reduced. Further, conventionally, in order to measure a physiologically active substance in various kinds of sample liquids, it has been necessary to use a porous filter in which a ligand scavenger peculiar to each physiologically active substance is immobilized.
  • any physiologically active substance can be measured with a porous filter on which one kind of ligand supplement is immobilized, and has high workability, easy automation, low cost, and high sensitivity as described above.
  • the present inventor has diligently studied the cause of low reproducibility of the measured values of the method for measuring a physiologically active substance using an enzyme substance or a porous filter using a fluorescent dye as a labeling substance.
  • the enzyme substance and fluorescent dye which are the labeling substances, penetrate deep into the porous filter, and the light emitted by the labeling substance may be obstructed by the porous filter and may not reach the detector. It was presumed that the variation was the cause of the low reproducibility of the measured values.
  • the size of the compound of the enzyme substance and the fluorescent dye, which are conventionally used labeling substances is about 3 nm, which is significantly smaller than the size of the mesh of the porous filter, so that the labeling substance is buried in the mesh of the porous filter.
  • FIG. 7 It is a front view of the solid phase reaction vessel shown in FIG. 7. It is a bottom view of the solid phase reaction vessel shown in FIG. 7. It is sectional drawing of the solid phase reaction vessel shown in FIG. It is an exploded view of the solid phase reaction vessel shown in FIG. 7. This is another example of the method for measuring a physiologically active substance according to the present invention.
  • the ligand of the binding substance L of the present invention that directly immobilizes the physiologically active substance that specifically binds to the object to be measured to the porous filter without the intervention of a ligand such as the binding substance L (first binding substance). It corresponds to the measurement method that does not use. In the case of this measurement method, it is necessary to immobilize the physiologically active substance corresponding to each object to be measured on the porous filter, so that a filter to which a specific scavenger corresponding to the substance is fixed is required for each measurement object. .. That is, if there are 40 types of measurement objects, a filter in which 40 types of different scavengers are fixed is required. However, in the measuring method of the embodiment according to the present invention, a large number of measurement objects can be measured by using one kind of porous filter in which one kind of ligand scavenger corresponding to the ligand of the binding substance L is fixed.
  • the sample solution and the solution containing the binding substance L are mixed, and the solution containing the binding substance F is mixed with the mixed solution.
  • the sample solution and the solution containing the binding substance F (second binding substance) are mixed, and the solution containing the binding substance L is mixed with the mixed solution.
  • IV) The solution containing the binding substance L and the solution containing the binding substance F are mixed, and the mixed solution and the sample solution are mixed.
  • Binding substance L A substance in which a ligand is bound to a first physiologically active substance that specifically binds to an object to be measured.
  • Binding substance F second binding substance: A substance in which a labeling substance is bound to a second physiologically active substance that specifically binds to the object to be measured.
  • the first bioactive substance and the second bioactive substance may be the same or different.
  • Ligand scavenger A scavenger that supplements a ligand containing the binding substance L.
  • Tripartite complex A complex of three substances, the object to be measured, the binding substance L, and the binding substance F.
  • Sample fluids include whole blood, serum, plasma, tears, nasal juice, lymph, digestive juice, saliva, gastric juice, bile, pancreatic juice, intestinal juice, sweat, urine, semen, cavity fluid, amniotic fluid, and milk. It can be applied to both human and animal sample solutions.
  • bioactive substance required for human and animal medical treatment and examination can be used as a measurement target.
  • bioactive substance required for human and animal medical treatment and examination
  • examples include allergen-specific IgE antibodies, non-specific IgE, hepatitis viruses (A, B, C, D, E types), viral infections (HIV, HTLV, herpes, rota, rubella, etc.), protozoal infections.
  • Toxoplasma Spiroheta, etc.
  • various infectious disease markers such as fungal infections (Chlamydia, Candida, Tricomonas, etc.)
  • tumor markers such as CEA, AFP, PSA, CA19-9, CA125, ferritin, DUPANII, CRP, ASO, RF Infectious markers such as troponin I, troponin T, myoglobin and other myocardial infarction markers, peptides, polypeptides, proteins (enzymes, antibodies other than lgE, antigenic proteins, glycoproteins, lipoproteins, etc.
  • the allergen is not particularly limited, but for example, house dust 1 (2), house dust mite, sugi, hinoki, alder (genus), malassezia (genus), and camouflage.
  • genotype derived from human papillomavirus (HPV) and the genomic DNA probe derived from the binding substance HPV are defined as 16 type, 18 type, 31 type, 33 type, 39 type, 45 type, 51 type, 52 type, 13 types of high risk type such as 56 type, 58 type, 59 type, 68 type, 82 type and 7 types of low risk type such as 6, 11 type, 42 type, 43 type, 53 type, 54 type, 70 type HPV classified into a type can also be a measurement target.
  • various cancer tumor markers amebiasis, hepatitis E, influenza, salmonellosis, various infectious diseases such as SARS, myocardial markers, autoimmune diseases, stimulants, cannabis ( It can be used as a simple diagnostic tool for marijuana), cocaine, LSD, magic mushrooms, MDMA, hormones, etc.
  • ligands for the binding substance L peptides, polypeptides, proteins (enzymes, antibodies, antigenic proteins, glycoproteins, lipoproteins, avidin, etc.), hormones, immune system modulators, vitamins, etc. , Steroids, carbohydrates (eg, sugars), glycolipids, nucleic acids (including single-stranded and double-stranded oligonucleotides), haptens, lectins, biotin, etc., but biotin is particularly preferred. preferable.
  • the ligand scavenger may be any substance that can capture the ligand to be introduced into the binding substance L.
  • Examples of the combination with the ligand-ligand scavenger include an antigen antibody, a hapten antibody, a sugar lectin, an antibody-protein Ano G, and a biotin-antibiotin antibody.
  • biotin it is preferable to use an anti-biotin antibody, avidin, streptavidin or the like as the ligand scavenger.
  • the labeling substance of the binding substance F contains fluorescent beads.
  • Fluorescent beads include a fluorescent substance that emits fluorescence and a fine particle-like base material that retains the fluorescent substance.
  • Fluorescent substances include fluorescent dyes and rare earth element-containing substances.
  • Fluorophores include merocyanine, perylene, acrydin, perylene, luciferin, pyranine, stilben, rhodamine, coumarin, 4- (dicyanomethylene) -2-methyl-6- (4-dimethylaminostyryl), 4H, pyranine (DCM), Pyrromethene, fluorescein, umbelliferone, and silol are preferable, and silol is more preferable because of its high luminescence intensity.
  • tetraphenyl siror 1,1,2,3,4,5, hexaphenyl siror, 2,5 dianicil, 3,4 diphenyl siror are preferable.
  • the rare earth element trivalent ions of Sm, Eu, Tb, Dy, Ce, Pr, Nd, Pm, Er, Tm and Yb are preferable, trivalent ions of Sm, Eu, Tb and Dy are more preferable, and the fluorescence intensity is high. Due to its high value, Eu trivalent ions are particularly preferable.
  • Inorganic compound particles, plastic particles, and latex particles can be used as the base material for holding the fluorescent substance.
  • metal oxides such as silica, alumina, and titania are preferable, and silica is more preferable from the viewpoint of surface reactivity and particle size uniformity.
  • plastic particles polystyrene (PS), polymethyl methacrylate (PMMA), and polytetrafluoroethylene (PTFE) are preferable, and PS is more preferable from the viewpoint of surface reactivity and particle size uniformity. It is preferable to have a polar group such as a hydroxyl group, an amino group, or a carboxyl group on the surface of the base material.
  • the method for producing fluorescent beads is not particularly limited, but there is a method in which a dispersion of latex particles, plastic particles or inorganic compound particles is mixed with a solution of a fluorescent dye or a rare earth element-containing substance, evaporated, and centrifuged. .. There is also a method in which a fluorescent dye and a monomer such as styrene are mixed and the particles of the replastic polymer contain the fluorescent dye by a polymerization reaction of the monomers.
  • Fluorescent beads using a silol compound such as tetraphenyl silol, 1,1,2,3,4,5, hexaphenylcyclol, 2,5 dianicil, 3,4 diphenyl silol contain the silol compound and a styrene monomer. It is obtained by performing emulsion polymerization in an aqueous solution to form polystyrene particles containing the silol compound inside, and chemically modifying the surface.
  • the particle size of the fluorescent beads is preferably 50 to 500 nm, more preferably 100 to 300 nm.
  • the fluorescent beads the following commercially available ones can also be preferably used. Thermo Fisher (Fluoro, MAX, etc.), Luminex (xMAP, etc.), Merck (fluorescent silica nanobeads, etc.), Cosmo Bio (polystyrene fluorescent particles, etc.), Nippon Techno Cruster (fluorescent dyed carboxyl group-modified microspheres, etc.), Spectortech (Fluoroscent Particles, etc.).
  • Thermo Fisher Fluoro, MAX, etc.
  • Luminex xMAP, etc.
  • Merck fluorescent silica nanobeads, etc.
  • Cosmo Bio polystyrene fluorescent particles, etc.
  • Nippon Techno Cruster fluorescent dyed carboxyl group-modified microspheres, etc.
  • Spectortech Fluoroscent Particles, etc.
  • a blocking solution can be used to prevent non-specific binding, and as the blocking solution, a solution such as protein blocking, biotin blocking, or endogenous enzyme blocking can be used.
  • a solution such as protein blocking, biotin blocking, or endogenous enzyme blocking
  • serum proteins such as BSA (bovine serum albumin), casein, skim milk, and water-soluble synthetic polymers can be used.
  • An aqueous solution containing a surfactant can be used as the cleaning liquid, and polyoxyethylene sorbitan, Tv7een20 and the like are preferable as the surfactant.
  • Immobilization of the ligand scavenger on the porous filter surface can be performed by physical adsorption or chemical bonding.
  • the ligand scavenger may be directly immobilized on the porous filter surface, and after immobilizing on the porous filter surface using an antibody or the like that specifically binds to the ligand scavenger as a spacer, the ligand scavenger may be immobilized on the porous filter surface.
  • the method using a spacer is more preferable because of the high certainty of ligand scavenging.
  • the ligand-capturing agent is an anti-biotin antibody
  • an antibody against the anti-biotin antibody can be used for the spacer
  • an anti-streptavidin antibody can be used for the spacer.
  • Materials for the porous filter include low-density polyethylene, high-density polyethylene, polypropylene, polymethylacrylate, plastics such as polytetrafluoride ethylene, membrane filters such as PVDF, cellulose acetates, nylons, cellulose fibers, and glass fibers.
  • plastics such as polytetrafluoride ethylene
  • membrane filters such as PVDF, cellulose acetates, nylons, cellulose fibers, and glass fibers.
  • Metals such as stainless steel, nickel and aluminum, and inorganic compounds such as alumina, zirconia and silicon carbide can be used, but fibers are preferable, cellulose fibers and glass fibers are more preferable, and glass fibers are most preferable.
  • an absorbent material in the measuring container to remove unnecessary liquid.
  • the material of the absorbent material fibers such as polyester, polyolefin and polyamide, recycled fibers such as sodium polyacrylate, pulp fiber, cellulose fiber, silk fiber and rayon, woven fabric, non-woven fabric, paper and the like can be used. It is important to control the liquid absorption rate of the absorbent material. If the speed is too fast, the reaction on the porous filter becomes insufficient and the measured value becomes smaller than normal, and if the speed is too slow, unnecessary liquid remains on the filter and the measured value becomes large, which is not preferable.
  • the liquid absorption rate can be adjusted by selecting the material of the absorbent material and the structure (porosity) of the absorbent material.
  • the liquid absorption rate can also be adjusted by combining two or more types of absorbent materials.
  • the porosity of the absorbent material is preferably 60 to 75%, more preferably 65 to 70%. If the porosity is too high, the removal of the liquid to be removed on the porous filter will be delayed and the measurement time will be longer, and the labeling substance to be removed will remain on the porous filter and the emission intensity will be higher than the original value. It becomes high and causes erroneous measurement, which is not preferable. If it is too low, the liquid will be removed too quickly and the reaction will not be performed normally, which is not preferable. It is also preferable to control the absorption rate of the liquid on the porous filter by sequentially laminating two or more kinds of absorbent materials having different porosities.
  • the absorption speed can be increased. Can be controlled.
  • the porosity of the laminated absorbent material it is preferable that the absorbent material closest to the porous filter has the highest porosity and the porosity gradually decreases.
  • the absorbent material is preferably a synthetic chemical fiber, more preferably polyolefin, polyester, or polyamide, and most preferably polyester, because the porosity can be easily adjusted.
  • the liquid absorption rate of the absorbent material can also be adjusted by selecting the material of the absorbent material.
  • polyolefins and polyesters with low liquid wettability have a slow absorption rate
  • celluloses, polyamides and polyacrylates with high liquid wettability have a high absorption rate. Therefore, by arranging polyolefin and polyester with slow liquid absorption rate directly under the porous filter and arranging cellulose, polyamide and polyacrylic acid salt with high liquid absorption rate under the absorbent material, the absorption speed can be increased. It is preferable to control.
  • a solid-phase reaction vessel containing a porous filter As shown in FIGS. 2 to 6, a preferred example of the solid-phase reaction vessel 100 is a top lid member 10 having a tapered opening 14 at a substantially central portion of a top surface portion, and a top lid member 10 formed so as to be matable with the top lid member 10.
  • the absorption member 60 and the absorption member 60 housed in the internal space 40 formed by fitting the lower lid member 20 having the ventilation portion 23 on the bottom portion 22 and the upper lid member 10 and the lower lid member 20.
  • the size of the solid-phase reaction vessel 100 is preferably 8 to 16 mm in length, 6 to 12 mm in width, and 8 to 20 mm in height.
  • the size of the diameter of the narrowest portion of the opening 14 of the tapered structure is preferably 1 to 5 mm, more preferably 2 to 3 mm.
  • plastics such as polyethylene, polycarbonate, polyethylene terephthalate, vinyl chloride, polystyrene, ABS resin, polyamide, ethylene tetrafluoride, polypropylene, polyester and epoxy can be used.
  • a ventilation portion 23 is formed on the bottom portion 22 of the lower lid main body portion 21. Since the ventilation portion 23 is formed in the bottom portion 22, for example, as shown in the example of FIG. 1, a liquid such as a sample liquid or a cleaning liquid containing a substance to be measured introduced through the opening 14 of the upper lid member 10 It is possible to facilitate the passage of liquid inside the solid phase reaction vessel 100.
  • the outer peripheral wall 25 of the lower lid main body 21 is formed so as to extend from the pedestal portion 24 forming the bottom portion 22 in the fitting direction to the upper lid member 10, and the outer peripheral wall 25 is formed with the upper lid member 10. At the same time, it faces the inner peripheral wall 17 of the upper lid member 10.
  • the outer peripheral wall 15 of the upper lid member 10 and the outer peripheral wall 27 of the pedestal portion 24 of the lower lid member 20 on the side where the positioning portion 16 is provided are arranged and fitted so as to be located on the same wall surface at the time of fitting.
  • the shape of the solid phase reaction vessel 100 after the joint is a shallow cylindrical shape with no steps on the outer peripheral wall.
  • the mixing container 30 has a liquid storage empty portion 31 formed by erecting a side wall portion 33 from the peripheral edge of the bottom portion 32 continuous from the outer peripheral wall 15 of the upper lid main body portion 11. It is formed in a tray shape (box shape) with an open upper part.
  • a flange portion 34 extending toward the outside of the liquid storage empty portion 31 is formed on the upper end side of the side wall portion 33, and the longitudinal length of the side wall portion 33 including the flange portion 34 is the length of the upper lid member 10. The length is almost the same as the diameter (Fig. 2).
  • the flange portion 34, together with the positioning portion 16, is provided for fixing the solid-phase reaction vessel 100 to a measurement chamber in a measuring device (not shown).
  • the length of the side wall portion 33 including the flange portion 34 in the height direction is substantially the same as the length of the upper lid main body portion 11 in the height direction.
  • FIG. 6 is a sectional view taken along line AA'of the solid-phase reaction vessel 100 in FIG.
  • the absorbing member 60 is housed in the crushed state in the internal space 40 formed by fitting the upper lid member 10 and the lower lid member 20.
  • a porous filter 50 is housed in the upper lid member 10 side end surface of the absorbing member 60 so that a part of the absorbing member 60 is exposed as an exposed surface 50a through the opening 14, and the exposed surface 50a is a reaction field for a solid phase reaction. Used as.
  • the liquid reservoir empty portion 31 has a substantially inverted trapezoidal cross section that dents downward from the opening 31a toward the bottom portion 32.
  • these liquids are used as the liquid in the liquid reservoir 31 when premixing the substance to be measured and the substance having a specific binding ability to the substance to be measured. Since it can be collected at the bottom 310, the liquid absorption / waste liquid operation by the pipetter can be surely performed.
  • the shape of the opening 31a of the liquid reservoir 31 is a rectangular shape as shown in FIG. 2, but the shape of the opening is not particularly limited, and for example, a round shape, a triangular shape, or the like is adopted. Is also good.
  • the size of the absorbing member 60 is not particularly limited as long as it has a volume slightly larger than the volume of the internal space 40 formed by the upper lid member 10 and the lower lid member 20, and the shape thereof is also limited to the internal space 40. As long as it can be maintained in a crushed state when it is housed, it may have a rectangular parallelepiped shape instead of a cylindrical shape.
  • the pedestal portion 24 of the lower lid member 20 may be provided with a groove portion 28 capable of accommodating the opening portion 14 (annular portion 13) of the other solid-phase reaction vessel 100.
  • a plurality of solid-phase reaction vessels 100 can be vertically stacked and set in a chamber such as an automatic dispenser or a luminescence measuring device, so that it is possible to speed up the processing of multiple samples. Is.
  • a ligand-capturing substance that has a specific binding ability to the substance to be measured and captures the ligand-introducing substance into which a predetermined ligand has been introduced is previously provided with respect to the exposed surface 50a exposed through the opening 14. This is done using the immobilized solid phase reaction vessel 100.
  • the ligand trapping substance can be immobilized on the exposed surface 50a of the solid phase reaction vessel 100 by generally used physical adsorption or chemical bonding.
  • the ligand-capturing substance may be directly immobilized on the exposed surface 50a, or an antibody or the like that specifically binds to the ligand-capturing substance may be immobilized on the exposed surface 50a as a spacer substance, and then the ligand is interposed via the spacer substance. It may be in the form of immobilizing the trapping substance.
  • a labeling substance containing fluorescent beads having a specific binding ability to the substance to be measured or the ligand-introducing substance and fluorescing under predetermined conditions is performed.
  • a sample solution containing a complex consisting of a substance to be measured-ligand-introduced substance-labeled substance generated by premix is applied to an exposed surface 50a on which a ligand-capturing substance is immobilized to capture the complex and emit light by fluorescent beads.
  • the concentration of the substance to be measured is measured by measuring the spots.
  • Step 1 of FIG. 1 several ⁇ L of samples (serum, plasma, nasal juice, tears, etc.), several ⁇ L of the first binding substance (biotinylated allergen solution), and the number of second binding substances (fluorescent bead-labeled antibody solution).
  • ⁇ L is introduced into the liquid reservoir 31 of the mixing vessel 30 and subjected to liquid absorption / waste liquid by a pipetter or a liquid phase reaction by allowing it to stand to form a complex consisting of a substance to be measured-a ligand-introducing substance-a labeling substance ( First reaction).
  • Step 2 a blocking agent containing a block ace and a blocking liquid containing a preservative are added to the exposed surface 50a of the porous filter 50 through the opening 14 (Step 2).
  • Step 3 the sample liquid is sucked from the liquid reservoir 31 by a pipetter, discharged onto the exposed surface 50a through the adjacent opening 14, supplied, and then subjected to a solid phase reaction (second reaction).
  • Step 4 After the solid-phase reaction, wash with a washing solution such as a washing buffer (Step 4). After washing, the concentration of the substance to be measured is measured by measuring the spots emitted by the fluorescent beads (Step 5).
  • the temperature at the time of measurement by the measuring method of the embodiment according to the present invention is preferably 30 to 45 ° C, more preferably 34 to 42 ° C, and most preferably 36 to 40 ° C. If the temperature is too low, the reaction rate becomes slow and the required reaction time becomes long, or the viscosity of the liquid becomes high and the liquid stays on the porous filter and cannot be removed, which is not preferable. If the temperature is too high, the properties of the liquid such as the sample liquid will change, which is not preferable.
  • Ligand Ligand; Biotin (2) Binding agent L; Biotinylated allergen (3) Binding substance F; Fluorescent bead-labeled antibody (4) Ligand trapping agent; Anti-biotin antibody (5) Ligand trapping agent; Anti-biotin antibody, And spacers; antibodies against anti-biotin antibodies (6) ligand trapping agents; streptavidin (7) ligand trapping agents; streptavidin, and spacers; anti-streptavidin antibodies (8) ligand trapping agents; streptavidin, spacers; anti-streptavidin antibodies Anti-streptavidin antibody is layered on the antibody against
  • the measuring method of the embodiment according to the present invention can be preferably used for measuring an allergen-specific antibody in a sample solution, and particularly an IgE antibody.
  • it can be used as a platform capable of measuring autoimmune diseases, cancer markers, infectious diseases, myocardial markers, drugs, hormones, etc., and can automate the measuring device to measure a large amount of sample solution quickly and accurately.
  • the solid-phase reaction vessel of the embodiment according to the present invention can be used as a platform capable of detecting and measuring autoimmune diseases, cancer markers, infectious diseases, myocardial markers, etc., in addition to the above measurement examples.
  • Example 1 ⁇ Preparation of anti-biotin antibody-immobilized porous filter> 5 ⁇ L of a wetting agent was added to a glass fiber filter having a diameter of 10 mm, 5 ⁇ L of an anti-goat IgG antibody (donkey) solution was added as a spacer substance, 5 ⁇ L of an anti-biotin antibody (goat) solution was added as a ligand capture agent, and bovine serum was added. A protective solution such as a phosphate buffer containing albumin was passed through 10 ⁇ L, left for 1 hour to dry, and an anti-biotin antibody (goat) was immobilized via an anti-goat IgG antibody (donkey) to obtain a glass fiber filter A. ..
  • a rectangular parallelepiped shape with a length of 13 mm, a width of 9 mm, and a height of 13 mm, with a tapered opening for liquid addition having a diameter of 2.5 mm at the narrowest part, and a solid having a ventilation hole at the bottom of the container.
  • the glass fiber filter A was housed in the phase reaction vessel.
  • a polyester fiber absorber was placed on the back surface of the glass fiber filter A.
  • FIG. 7 is a perspective view of the solid-phase reaction vessel 100B of the second embodiment.
  • 8 is a top view of the solid-phase reaction vessel 100B shown in FIG. 7, and
  • FIGS. 9 to 12 are a rear view, a side view, a front view, and a bottom view.
  • 13 is a cross-sectional view of the solid-phase reaction vessel 100B shown in FIG. 7, and
  • FIG. 14 is an exploded view of the solid-phase reaction vessel 100B shown in FIG. 7.
  • the solid-phase reaction vessel 100B is formed so as to be fitted with an upper lid member 10B having a tapered opening 14b at a substantially central portion of a top surface portion 12b and an upper lid member 10B, and a lower lid member having a ventilation portion 23b at a bottom portion 22b.
  • an absorbent member 60B (for example, a polyester fiber absorbent) accommodated in an internal space formed by fitting the upper lid member 10B and the lower lid member 20B, and an absorption member 60B provided on the upper lid member side end surface.
  • It is provided with a porous filter 50B (for example, the glass fiber filter A of Example 1).
  • the solid-phase reaction vessel 100B undergoes a solid-phase reaction on the exposed surface of the porous filter 50B through the opening 14b by, for example, the procedure (Steps 1 to 5) as shown in FIG. It is a place.
  • a liquid such as a sample solution or a cleaning solution containing a substance to be measured can be introduced into the internal space of the solid phase reaction vessel 100B through the opening 14b.
  • the upper lid member 10B is formed with a mixing container 30B as a sample adjusting portion extending from the side wall portion 33b of the lower lid member 20B.
  • the mixing container 30B is used, for example, as a place for premixing the substance to be measured and the substance having a specific binding ability to the substance to be measured.
  • an internal space 40B is formed inside the lower lid member 20B so as to accommodate the fitting portion of the upper lid member 10B.
  • an engaged portion that can be engaged with the engaging portion formed on the outer peripheral wall side of the upper lid member 10B is formed, and the engaging portion is formed.
  • the upper lid member 10B and the lower lid member 20B can be fitted to each other by engaging the engaged portion with the engaged portion.
  • a ventilation portion 23b is formed on the bottom portion 22b of the lower lid member 20B. Since the ventilation portion 23b is formed in the bottom portion 22b, a liquid such as a sample liquid or a cleaning liquid containing a substance to be measured introduced through the opening 14b of the upper lid member 10B can be passed through the solid phase reaction vessel 100B. Can be easy.
  • the positioning portion 35b which is a groove provided in the direction from the bottom portion 32b to the liquid reservoir empty portion 31b, is provided for positioning and fixing the solid phase reaction vessel 100B in the measurement chamber in the measuring device (not shown).
  • the mixing container 30B has a tray-shaped (box-shaped) open upward, which has a liquid storage empty portion 31b formed by erecting a side wall portion 33b from the peripheral edge of the bottom portion 32b continuous from the bottom portion 22b of the lower lid main body portion 21b. ) Is formed.
  • the shape of the opening of the liquid reservoir 31b is rectangular, but the shape of the opening is not particularly limited, and for example, a round shape, a triangular shape, or the like may be adopted.
  • the liquid reservoir empty portion 31b has a substantially V-shaped cross section that is recessed downward from the opening toward the bottom portion 32b.
  • plastics such as polyethylene, polycarbonate, polyethylene terephthalate, vinyl chloride, polystyrene, ABS resin, polyamide, ethylene tetrafluoride, polypropylene, polyester and epoxy can be used.
  • Example 2 (A) Measurement method A using standard IgE (Example of the present invention) 5 ⁇ L of IgE standard solution (concentration is shown in the table) as the object to be measured, 5 ⁇ L of biotin-labeled anti-human IgE monoclonal antibody (4 ⁇ g / mL) which is the binding substance L, and Fluoro of the fluorescent dose-containing labeled antibody which is the binding substance F. -MAX (manufactured by Thermo Fisher) was mixed with 5 ⁇ L of the three substances, and the mixed solution was heated and held at 37 ° C. for 2 minutes.
  • each of a blocking agent containing a block ace and a blocking solution containing a preservative was added to the glass fiber filter A in the solid phase reaction vessel.
  • 10 pL of the preheated tripartite mixed solution was added dropwise, heated at 37 ° C. for 1 minute, and buffered physiological saline containing 0.5% Tween 20 in each solid phase reaction vessel.
  • a cleaning solution consisting of 20 ⁇ L was supplied three times after the solution supplied immediately before was completely absorbed, and the excess labeling substance remaining on the glass fiber filter A was removed.
  • the spot where the immobilization part emitted light was measured with a CMOS camera, the emission intensity was obtained, and the measured value was calculated using a standard curve.
  • Example 3 Under the conditions that the concentration of the IgE standard solution was as shown in Table 1, the measurement methods A, B, C, and X were repeated 7 times each. Table 1 shows the coefficient of variation (average value of standard deviation,%). If the coefficient of variation is 10% or less, it can be put into practical use without any problem, but a smaller coefficient is preferable. ⁇ Table 1 Evaluation of coefficient of variation of measured values> The methods for measuring A, B, and C of the examples of the present invention were preferred because the coefficient of variation was smaller than that of X of the comparative example, and the coefficients of variation were all 10% or less, which was a preferable level without any problem in practical use. It was. The coefficient of variation became smaller in the order of the measuring method A ⁇ B ⁇ C of the embodiment of the present invention, which was more preferable, and the measuring method C was the most preferred.
  • Example 4 The measurement was repeated 7 times each using each of the measurement methods A, B, C, and X under the conditions that the concentration of the IgE standard solution was as shown in Table 2. The evaluation indicates that ⁇ could be detected and ⁇ could not be detected. ⁇ Table 2 Sensitivity evaluation>

Abstract

Provided is a method for measuring a physiologically active substance, in which a tripartite complex in which three parts of: an object to be measured in a specimen solution; a first binding substance to which a ligand binds to a first physiologically active substance that specifically binds to the object to be measured; and a second binding substance to which a labeling substance binds to a second physiologically active substance that specifically binds to the object to be measured, are combined, is fixed to a porous filter via a ligand scavenger, and a light emitted by the labeling substance is measured, the method characterized in that the labeling substance contains fluorescent beads.

Description

生理活性物質の測定方法Method for measuring physiologically active substances
 本発明は、生理活性物質の測定方法に関するものである。 The present invention relates to a method for measuring a physiologically active substance.
 免疫学的測定法に基づく生理活性を持つ試料物質の測定方法は従来から知られている。多種類の測定対象物を1種類の補足剤固定化多孔性フィルタで測定する方法についても、特許文献1および2に記載されている。特許文献1は標識物質として酵素物質を用い、特許文献2は標識物質として酵素物質および蛍光色素を用いる測定方法の記載がある。しかし、これらの測定方法はいずれも測定感度が低いため実用化できない、あるいは実用化できても多量の検体液を要するため患者の負担が大きい問題がある。医療関係者からは測定に必要な検体液をより少なくし患者の負担を軽減することが求められている。又測定値の再現性が劣るため多数回の測定が必要であると言った測定方法として信頼性が劣る問題がある。さらに測定に時間が掛かるため測定結果を得るまでに長時間待たざるを得ない問題もある。医療機関から検体液の採取から測定結果の提示までの時間を短縮したいと言う強い要求がある。 A method for measuring a sample substance having physiological activity based on an immunological measurement method has been known conventionally. Patent Documents 1 and 2 also describe methods for measuring a large number of types of measurement objects with one type of supplement-immobilized porous filter. Patent Document 1 describes a measurement method using an enzyme substance as a labeling substance, and Patent Document 2 using an enzyme substance and a fluorescent dye as a labeling substance. However, all of these measuring methods have low measurement sensitivity and cannot be put into practical use, or even if they can be put into practical use, a large amount of sample solution is required, which causes a heavy burden on the patient. Medical personnel are demanding that the amount of sample solution required for measurement be reduced and the burden on patients be reduced. In addition, there is a problem that the reliability is inferior as a measurement method that requires a large number of measurements because the reproducibility of the measured value is inferior. Further, since the measurement takes time, there is a problem that it is necessary to wait for a long time until the measurement result is obtained. There is a strong demand from medical institutions to shorten the time from the collection of sample solution to the presentation of measurement results.
特開2010-44083号公報JP-A-2010-44083 特開2016-200429号公報Japanese Unexamined Patent Publication No. 2016-200429
 本発明の検体液中の生理活性物質の測定方法の課題は、測定の感度、精度を上げることである。これにより検体液の必要量を減量でき患者の負担を軽減できる。又測定値の再現性を上げることである。これにより必要な測定回数を減少でき患者、医療従事者の負担を軽減できる。さらに測定の迅速化である。これによりに検体液採取から診断までの時間を短縮でき関係者の負担を軽減できるともに、測定に要する経費を削減できる。これらの高感度、高精度、高再現性、迅速性を有し、多種類の測定対象物を1種類の補足剤固定化多孔性フィルタで測定できる多孔性フィルタを用いた生理活性物質の測定方法を提供することである。 An object of the method for measuring a physiologically active substance in a sample solution of the present invention is to improve the sensitivity and accuracy of measurement. As a result, the required amount of the sample solution can be reduced and the burden on the patient can be reduced. It is also to improve the reproducibility of measured values. As a result, the number of measurements required can be reduced, and the burden on patients and medical staff can be reduced. Furthermore, the measurement is speeded up. As a result, the time from sample solution collection to diagnosis can be shortened, the burden on the persons concerned can be reduced, and the cost required for measurement can be reduced. A method for measuring a physiologically active substance using a porous filter having these high sensitivity, high accuracy, high reproducibility, and quickness, and capable of measuring various types of measurement objects with one type of supplement-immobilized porous filter. Is to provide.
 本発明は、
(1)検体液中の測定対象物、測定対象物に特異的に結合する生理活性物質にリガンドが結合された第一の結合物質、及び測定対象物に特異的に結合する生理活性物質に標識物質が結合された第二の結合物質の3者が結合した3者複合体を、多孔性フィルタにリガンド捕捉剤を介し固定し、標識物質が発する光を測定することで測定対象物の生理活性物質を測定する方法において、標識物質が蛍光ビーズを含有することを特徴とする生理活性物質の測定方法。
(2)該3者複合体を溶液中で形成し、該溶液を多孔性フィルタに添加することを特徴とする第1項記載の生理活性物質の測定方法。
(3)検体液、第一の結合物質の溶液、第二の結合物質の溶液の3種の溶液を同時に混合することを特徴とする第2項記載の生理活性物質の測定方法。
(4)第一の結合物質の溶液、第二の結合物質の溶液の2種の溶液を混合し、該混合液に検体液を混合することを特徴とする第2項記載の生理活性物質の測定方法。
(5)ポリエチレングリコール、ポリビニルアルコール、ポリピロリドンの内の少なくとも1種を含有する溶液中で3者複合体を形成することを特徴とする第2項記載の生理活性物質の測定方法。
(6)該検体液と、第一の結合物質を含む溶液、及び第二の結合物質を含む溶液を混合する際に、検体液量に対する該両結合物質の溶液の合計量の容積比が、2/1~1/20であることを特徴とする第1項記載の生理活性物質の測定方法。
、である。
The present invention
(1) Label the measurement target in the sample solution, the first binding substance to which the ligand is bound to the physiologically active substance that specifically binds to the measurement target, and the physiologically active substance that specifically binds to the measurement target. The bioactivity of the object to be measured is measured by fixing the ternary complex in which the ternary of the second binding substance to which the substance is bound to a porous filter via a ligand trapping agent and measuring the light emitted by the labeling substance. A method for measuring a bioactive substance, which comprises a labeling substance containing fluorescent beads in a method for measuring a substance.
(2) The method for measuring a physiologically active substance according to Item 1, wherein the tripartite complex is formed in a solution and the solution is added to a porous filter.
(3) The method for measuring a physiologically active substance according to item 2, wherein three kinds of solutions, a sample solution, a solution of a first binding substance, and a solution of a second binding substance, are mixed at the same time.
(4) The physiologically active substance according to item 2, wherein two kinds of solutions, a solution of the first binding substance and a solution of the second binding substance, are mixed, and a sample solution is mixed with the mixed solution. Measuring method.
(5) The method for measuring a physiologically active substance according to Item 2, wherein a tripartite complex is formed in a solution containing at least one of polyethylene glycol, polyvinyl alcohol, and polypyrrolidone.
(6) When the sample liquid is mixed with the solution containing the first binding substance and the solution containing the second binding substance, the volume ratio of the total amount of the solutions of both binding substances to the sample liquid volume is determined. The method for measuring a physiologically active substance according to item 1, wherein the content is 2/1 to 1/20.
,.
 本発明の検体液中の生理活性物質の測定方法により、測定の感度、精度を上げることができ、測定に必要な検体液の量を減量でき患者の負担を軽減できた。又測定値の再現性を上げることもでき、必要な測定回数を減少でき患者、医療従事者の負担を軽減できた。さらに測定の迅速化もでき、検体液採取から診断までの時間を短縮でき関係者の負担を軽減できるともに、測定に要する経費を削減できた。又従来は多種類の検体液中の生理活性物質を測定するには、各生理活性物質ごとにそれに特有なリガンド捕捉剤を固定化した多孔性フィルタを用いる必要があった。しかし、本発明によりいかなる生理活性物質であっても1種類のリガンド補足剤が固定化された多孔性フィルタで測定でき、高作業性、自動化容易、低コストで、かつ上記記載のように高感度、高精度、高再現性、迅速測定可能な生理活性物質の測定方法を提供できた。 By the method for measuring a physiologically active substance in a sample solution of the present invention, the sensitivity and accuracy of measurement can be improved, the amount of sample solution required for measurement can be reduced, and the burden on the patient can be reduced. In addition, the reproducibility of the measured values can be improved, the required number of measurements can be reduced, and the burden on patients and medical staff can be reduced. Furthermore, the measurement can be speeded up, the time from sample solution collection to diagnosis can be shortened, the burden on the persons concerned can be reduced, and the cost required for the measurement can be reduced. Further, conventionally, in order to measure a physiologically active substance in various kinds of sample liquids, it has been necessary to use a porous filter in which a ligand scavenger peculiar to each physiologically active substance is immobilized. However, according to the present invention, any physiologically active substance can be measured with a porous filter on which one kind of ligand supplement is immobilized, and has high workability, easy automation, low cost, and high sensitivity as described above. We were able to provide a method for measuring bioactive substances with high accuracy, high reproducibility, and rapid measurement.
 本発明者は標識物質として酵素物質、又は蛍光色素を使用する多孔性フィルタを用いた生理活性物質の測定方法の測定値の再現性が低い原因を鋭意研究した。その結果標識物質である酵素物質、蛍光色素が多孔性フィルタの奥にまで入りこみ標識物質が発する光が多孔性フィルタに邪魔され検知器まで届かないことがあり、この邪魔される程度が測定毎にばらつくことが測定値の再現性が低い原因であると推定した。従来用いられてきた標識物質である酵素物質、蛍光色素の化合物の大きさは3nm程度であり、多孔性フィルタのメッシュの大きさに比べ著しく小さいため、標識物質が多孔性フィルタのメッシュ内に埋もれてしまう。この埋もれ方が測定の都度変化するため測定値の再現性が低くなると推定した。そのため標識物質としてサイズが大きい20-500nmのサイズの蛍光ビーズを用いることで測定値の再現性を著しく高くすることができた。 The present inventor has diligently studied the cause of low reproducibility of the measured values of the method for measuring a physiologically active substance using an enzyme substance or a porous filter using a fluorescent dye as a labeling substance. As a result, the enzyme substance and fluorescent dye, which are the labeling substances, penetrate deep into the porous filter, and the light emitted by the labeling substance may be obstructed by the porous filter and may not reach the detector. It was presumed that the variation was the cause of the low reproducibility of the measured values. The size of the compound of the enzyme substance and the fluorescent dye, which are conventionally used labeling substances, is about 3 nm, which is significantly smaller than the size of the mesh of the porous filter, so that the labeling substance is buried in the mesh of the porous filter. It ends up. It was estimated that the reproducibility of the measured values would be low because this burial method would change each time the measurement was performed. Therefore, the reproducibility of the measured values could be remarkably improved by using fluorescent beads having a large size of 20-500 nm as the labeling substance.
本発明に係る生理活性物質の測定方法の実施例である。This is an example of the method for measuring a physiologically active substance according to the present invention. 第1の実施形態の固相反応容器の斜視図である。It is a perspective view of the solid phase reaction vessel of 1st Embodiment. 図2に示す固相反応容器の上面図である。It is a top view of the solid phase reaction vessel shown in FIG. 図2に示す固相反応容器の底面側の斜視図である。It is a perspective view of the bottom surface side of the solid phase reaction vessel shown in FIG. 図2に示す固相反応容器の底面図である。It is a bottom view of the solid phase reaction vessel shown in FIG. 図2に示す固相反応容器の断面図である。It is sectional drawing of the solid phase reaction vessel shown in FIG. 第2の実施形態の固相反応容器の斜視図である。It is a perspective view of the solid phase reaction vessel of 2nd Embodiment. 図7に示す固相反応容器の上面図である。It is a top view of the solid phase reaction vessel shown in FIG. 7. 図7に示す固相反応容器の背面図である。It is a back view of the solid phase reaction vessel shown in FIG. 7. 図7に示す固相反応容器の側面図である。It is a side view of the solid phase reaction vessel shown in FIG. 7. 図7に示す固相反応容器の正面図である。It is a front view of the solid phase reaction vessel shown in FIG. 7. 図7に示す固相反応容器の底面図である。It is a bottom view of the solid phase reaction vessel shown in FIG. 7. 図7に示す固相反応容器の断面図である。It is sectional drawing of the solid phase reaction vessel shown in FIG. 図7に示す固相反応容器の分解図である。It is an exploded view of the solid phase reaction vessel shown in FIG. 7. 本発明に係る生理活性物質の測定方法の他の実施例である。This is another example of the method for measuring a physiologically active substance according to the present invention.
  100、100B 固相反応容器
  10、10B 上蓋部材
  11 上蓋本体部
  12、12b 天面部分
  13 円環部
  14、14b 開口部
  15 外周壁
  16、35b 位置決め部
  17 内周壁
  18 係合部
  20、20B 下蓋部材
  21、21b 下蓋本体部
  22、22b 底部
  23、23b 通気部
  24 台座部
  25 外周壁
  26 被係合部
  27 台座部外周壁
  28 溝部
  30、30B 混合容器
  31、31b 液溜空部
  31a 開口部
  310 液溜底部
  32、32b 底部
  33、33b 側壁部
  34 フランジ部
  40、40B 内部空間
  50、50B 多孔性フィルタ
  50a 露出面
  60、60B 吸収部材
100, 100B Solid reaction vessel 10, 10B Top lid member 11 Top lid body part 12, 12b Top surface part 13 Ring part 14, 14b Opening part 15 Outer wall wall 16, 35b Positioning part 17 Inner peripheral wall 18 Engagement part 20, 20B Bottom Lid member 21, 21b Lower lid body 22, 22b Bottom 23, 23b Ventilation 24 Pedestal 25 Outer wall 26 Engagement 27 Pedestal outer wall 28 Groove 30, 30B Mixing container 31, 31b Liquid reservoir 31a Opening Part 310 Liquid reservoir bottom 32, 32b Bottom 33, 33b Side wall 34 Flange 40, 40B Internal space 50, 50B Porous filter 50a Exposed surface 60, 60B Absorbent member
 本発明の実施形態等について、適宜、図面を用いて説明するが、図面は模式的なものであり、寸法等は現実のものとは異なることがある。 The embodiments of the present invention will be described with reference to the drawings as appropriate, but the drawings are schematic and the dimensions and the like may differ from the actual ones.
 測定対象物に特異的に結合する生理活性物質を結合物質L(第一の結合物質)の様なリガンドを介せずに多孔性フィルタに直接を固定化する、本発明の結合物質Lのリガンドを使用しない測定方法に当たる。この測定方法の場合は測定対象物の個々に対応する生理活性物質を多孔性フィルタに固定化する必要があるため、測定対象毎にそれに対応する特有の捕捉剤が固定されたフィルタが必要になる。即ち40種類の測定対象物があれば、40種類の各々異なる捕捉剤が固定されたフィルタが必要になる。しかし、本発明に係る実施形態の測定方法では結合物質Lのリガンドに対応した1種のリガンド捕捉剤が固定された1種の多孔性フィルタを用いで多数の測定対象物の測定ができる。 The ligand of the binding substance L of the present invention that directly immobilizes the physiologically active substance that specifically binds to the object to be measured to the porous filter without the intervention of a ligand such as the binding substance L (first binding substance). It corresponds to the measurement method that does not use. In the case of this measurement method, it is necessary to immobilize the physiologically active substance corresponding to each object to be measured on the porous filter, so that a filter to which a specific scavenger corresponding to the substance is fixed is required for each measurement object. .. That is, if there are 40 types of measurement objects, a filter in which 40 types of different scavengers are fixed is required. However, in the measuring method of the embodiment according to the present invention, a large number of measurement objects can be measured by using one kind of porous filter in which one kind of ligand scavenger corresponding to the ligand of the binding substance L is fixed.
 3者複合体を形成する際に、I)検体液と結合物質L(第一の結合物質)を含む溶液を混合し、その混合液に結合物質Fを含む溶液を混合する。II)検体液と結合物質F(第二の結合物質)を含む溶液を混合し、その混合液に結合物質Lを含む溶液を混合する。III)検体液、結合物質Lを含む溶液、結合物質Fを含む溶液の3種の溶液を同時に混合する。IV)結合物質Lを含む溶液及び結合物質Fを含む溶液を混合し、その混合液と検体液を混合する。これらのI)、II)、III)、IV)のいずれの方法も用いることもできるが、3者複合体の形成を迅速に、反応率高くできることからIII)、IV)方法がより好ましく、IV)が最も好ましい。
 結合物質L(第一の結合物質):測定対象物に特異的に結合する第一の生理活性物質にリガンドが結合された物質。
 結合物質F(第二の結合物質):測定対象物に特異的に結合する第二の生理活性物質に標識物質が結合された物質。なお第一の生理活性物質と第二の生理活性物質は同じでも異なつていてもどちらでも良い。
 リガンド捕捉剤:結合物質L含有のリガンドを補足する捕捉剤。
 3者複合体:測定対象物、結合物質L、結合物質Fの3物質の複合体
When forming the tripartite complex, I) the sample solution and the solution containing the binding substance L (first binding substance) are mixed, and the solution containing the binding substance F is mixed with the mixed solution. II) The sample solution and the solution containing the binding substance F (second binding substance) are mixed, and the solution containing the binding substance L is mixed with the mixed solution. III) Simultaneously mix three types of solutions: the sample solution, the solution containing the binding substance L, and the solution containing the binding substance F. IV) The solution containing the binding substance L and the solution containing the binding substance F are mixed, and the mixed solution and the sample solution are mixed. Any of these methods I), II), III) and IV) can be used, but the methods III) and IV) are more preferable because the formation of the tripartite complex can be rapidly and the reaction rate can be increased. ) Is the most preferable.
Binding substance L (first binding substance): A substance in which a ligand is bound to a first physiologically active substance that specifically binds to an object to be measured.
Binding substance F (second binding substance): A substance in which a labeling substance is bound to a second physiologically active substance that specifically binds to the object to be measured. The first bioactive substance and the second bioactive substance may be the same or different.
Ligand scavenger: A scavenger that supplements a ligand containing the binding substance L.
Tripartite complex: A complex of three substances, the object to be measured, the binding substance L, and the binding substance F.
 検体液としては、全血、血清、血漿、涙液、鼻汁、リンパ液、消化液、唾液、胃液、胆汁、膵液、腸液、汗、尿、精液、腔液、羊水、乳汁がある。人、動物いずれの検体液にも適用できる。 Sample fluids include whole blood, serum, plasma, tears, nasal juice, lymph, digestive juice, saliva, gastric juice, bile, pancreatic juice, intestinal juice, sweat, urine, semen, cavity fluid, amniotic fluid, and milk. It can be applied to both human and animal sample solutions.
 人、動物の医療、検査に必要な生理活性物質はいずれも測定対象物にできる。例としてはアレルゲン特異的IgE抗体、非特異的IgE、肝炎ウイルス(A、B、C、D、E型)、ウイルス性感染症(HIV、HTLV、ヘルペス、ロタ、ルベラなど)、原虫性感染症(トキソプラズマ、スピロヘータなど)、真菌性感染症(クラミジア、カンジダ、トリコモナスなど)など各種感染症マーカー、CEA、AFP、PSA、CA19-9、CA125、フェリチン、DUPANIIなどの腫瘍マーカー、CRP、ASO、RFなどの炎症マーカー、 トロポニンI、トロポニンT、ミオグロビンなどの心筋梗塞マーカー、ペプチド類、ポリペプチド類、タンパク質類(酵素類、lgE以外の抗体類、抗原性タンパク質類、糖タンパク質類、リポタンパク質類、アビジン等)、ホルモン類、免疫系モジュレータ、ビタミン類、ステロイド類、炭水化物類(例えば、糖類)、糖脂質類、核酸類(一本鎖及び二本差オリゴヌクレオチドを含む)、覚せい剤、大麻(マリファナ)、コカイン、LSD、マジックマッシュルーム、MDMA力ある。測定対象物がアレルゲン特異的IgEの場合、アレルゲンとしては、特に限定されることはないが、例えば、ハウスダスト1(2)、ヤケヒョウヒダニ、スギ、ヒノキ、ハンノキ(属)、シラカンバ(属)、カモガヤ、プタクサ、ヨモギ、アルテルナリア、アスペルギルス、マラセチア(属)、ネコ(フケ)、イヌ(フケ)、ゴキブリ、ガ、ラテックス等の吸入系。その他のアレルゲン、牛乳、卵白、オポムコイド、米、コムギ(実)、ソバ、大豆、ピーナッツ、リンゴ、キウイ、ゴマ、牛肉、鶏肉、エビ、カニ、サバ、サケ、マグロ等の食物系アレルゲンといった、医療機関等でアレルゲン検査項目として受診可能なものであれば如何なるアレルゲンも選択可能である。又ヒトパピローウィルス(HPV)に由来する遺伝子型とし、結合物質HPVに由来するゲノムDNAプロープとし、16型、18型、31型、33型、39型、45型、51型、52型、56型、58型、59型、68型、82型等の13種の高リスク型と6型、11型、42型、43型、53型、54型、70型等の7種の低リスク型に分類されるHPVを測定対象物にすることもできる。 Any bioactive substance required for human and animal medical treatment and examination can be used as a measurement target. Examples include allergen-specific IgE antibodies, non-specific IgE, hepatitis viruses (A, B, C, D, E types), viral infections (HIV, HTLV, herpes, rota, rubella, etc.), protozoal infections. (Toxoplasma, Spiroheta, etc.), various infectious disease markers such as fungal infections (Chlamydia, Candida, Tricomonas, etc.), tumor markers such as CEA, AFP, PSA, CA19-9, CA125, ferritin, DUPANII, CRP, ASO, RF Infectious markers such as troponin I, troponin T, myoglobin and other myocardial infarction markers, peptides, polypeptides, proteins (enzymes, antibodies other than lgE, antigenic proteins, glycoproteins, lipoproteins, etc. Avidin, etc.), hormones, immune system modulators, vitamins, steroids, carbohydrates (eg, sugars), glycolipids, nucleic acids (including single-stranded and double-stranded oligonucleotides), stimulants, cannabis ( Marijuana), cocaine, LSD, magic mushroom, MDMA power. When the object to be measured is an allergen-specific IgE, the allergen is not particularly limited, but for example, house dust 1 (2), house dust mite, sugi, hinoki, alder (genus), malassezia (genus), and camouflage. , Putaxa, Yomogi, Alternaria, Aspergillus, Malassezia (genus), cat (dandruff), dog (dandruff), cockroach, moth, latex, etc. Medical allergens such as other allergens, milk, egg white, opomcoid, rice, wheat (fruit), buckwheat, soybean, peanut, apple, kiwi, sesame, beef, chicken, shrimp, crab, mackerel, salmon, tuna and other food allergens. Any allergen can be selected as long as it can be examined as an allergen test item at an institution or the like. In addition, the genotype derived from human papillomavirus (HPV) and the genomic DNA probe derived from the binding substance HPV are defined as 16 type, 18 type, 31 type, 33 type, 39 type, 45 type, 51 type, 52 type, 13 types of high risk type such as 56 type, 58 type, 59 type, 68 type, 82 type and 7 types of low risk type such as 6, 11 type, 42 type, 43 type, 53 type, 54 type, 70 type HPV classified into a type can also be a measurement target.
 上記測定対象物をターゲットとすることにより、各種がんの腫瘍マーカー、アメーバ赤痢、E型肝炎、インフルエンザ、サルモネラ感染症、SARS等の各種感染症、心筋マーカー、自己免疫疾患、覚せい剤、大麻(マリファナ)、コカイン、LSD、マジックマッシュルーム、MDMA、ホルモン等の簡易診断ツールとしての使用が可能である。 By targeting the above measurement objects, various cancer tumor markers, amebiasis, hepatitis E, influenza, salmonellosis, various infectious diseases such as SARS, myocardial markers, autoimmune diseases, stimulants, cannabis ( It can be used as a simple diagnostic tool for marijuana), cocaine, LSD, magic mushrooms, MDMA, hormones, etc.
 結合物質Lのリガンドとしては、ペプチド類、ポリペプチド類、タンパク質類(酵素類、抗体類、抗原性タンパク質類、糖タンパク質類、リポタンパク質類、アビジン等)、ホルモン類、免疫系モジュレータ、ビタミン類、ステロイド類、炭水化物類(例えば、糖類)、糖脂質類、核酸類(一本鎖及び二本差オリゴヌクレオチドを含む)、ハプテン類、レクチン類、ビオチン等を挙げることができるが、ビオチンが特に好ましい。 As ligands for the binding substance L, peptides, polypeptides, proteins (enzymes, antibodies, antigenic proteins, glycoproteins, lipoproteins, avidin, etc.), hormones, immune system modulators, vitamins, etc. , Steroids, carbohydrates (eg, sugars), glycolipids, nucleic acids (including single-stranded and double-stranded oligonucleotides), haptens, lectins, biotin, etc., but biotin is particularly preferred. preferable.
 リガンド捕捉剤としては、結合物質L導入されるリガンドを捕捉することができる物質ならいかなるものでも良い。リガンドーリガンド捕捉剤との組合せとしては、抗原一抗体、ハプテンー抗体、糖一レクチン、抗体―プロテインAノG、ビオチンー抗ビオチン抗体等を挙げることができる。リガンドとしてビオチンを用いる場合、リガンド捕捉剤として抗ビオチン抗体やアビジン、ストレプトアビジン等を用いるのが好ましい。 The ligand scavenger may be any substance that can capture the ligand to be introduced into the binding substance L. Examples of the combination with the ligand-ligand scavenger include an antigen antibody, a hapten antibody, a sugar lectin, an antibody-protein Ano G, and a biotin-antibiotin antibody. When biotin is used as the ligand, it is preferable to use an anti-biotin antibody, avidin, streptavidin or the like as the ligand scavenger.
 結合物質Fの標識物質は蛍光ビーズを含有する。蛍光ビーズは蛍光を発光する蛍光物質、及び蛍光物質を保持する微粒子状の基材を含む。蛍光物質としては蛍光色素及び希土類元素含有物質がある。蛍光色素としてはメロシアニン、ペリレン、アクリジン、ペリレン、ルシフェリン、ピラニン、スチルベン、ローダミン、クマリン、4-(ジシアノメチレン)-2-メチル-6-(4-ジメチルアミノスチリル)・4H・ピラン(DCM)、ピロメテン、フルオレセイン、ウンベリフェロン、シロールが好ましく、シロールが発光強度が高いことからより好ましい。シロールの内でテトラフェニルシロール、1,1,2,3,4,5・ヘキサフェニルシロール、2,5ジアニシル・3,4ジフェニルシロールが好ましい。希土類元素としてはSm、Eu、Tb、Dy、Ce、Pr、Nd、Pm、Er、Tm、Ybの3価イオンが好ましく、Sm、Eu、Tb、Dyの3価イオンがより好ましく、蛍光強度が高いことからEuの3価イオンが特に好ましい。 The labeling substance of the binding substance F contains fluorescent beads. Fluorescent beads include a fluorescent substance that emits fluorescence and a fine particle-like base material that retains the fluorescent substance. Fluorescent substances include fluorescent dyes and rare earth element-containing substances. Fluorophores include merocyanine, perylene, acrydin, perylene, luciferin, pyranine, stilben, rhodamine, coumarin, 4- (dicyanomethylene) -2-methyl-6- (4-dimethylaminostyryl), 4H, pyranine (DCM), Pyrromethene, fluorescein, umbelliferone, and silol are preferable, and silol is more preferable because of its high luminescence intensity. Among the sirors, tetraphenyl siror, 1,1,2,3,4,5, hexaphenyl siror, 2,5 dianicil, 3,4 diphenyl siror are preferable. As the rare earth element, trivalent ions of Sm, Eu, Tb, Dy, Ce, Pr, Nd, Pm, Er, Tm and Yb are preferable, trivalent ions of Sm, Eu, Tb and Dy are more preferable, and the fluorescence intensity is high. Due to its high value, Eu trivalent ions are particularly preferable.
 蛍光物質を保持する基材としては無機化合物粒子、プラスチック粒子、ラテックス粒子を用いることができる。無機化合物粒子としてはシリカ、アルミナ、チタニア等の金属酸化物が好ましく、シリカが表面の反応性、粒子径の均一性の観点でより好ましい。プラスチック粒子としてはポリスチレン(PS)、ポリメタクリル酸メチル(PMMA)、ポリテトラフルオロエチレン(PTFE)が好ましく、PSが表面の反応性、粒子径の均一性の観点でより好ましい。基材の表面に水酸基、アミノ基、カルボキシル基等の極性基を有することが好ましい。 Inorganic compound particles, plastic particles, and latex particles can be used as the base material for holding the fluorescent substance. As the inorganic compound particles, metal oxides such as silica, alumina, and titania are preferable, and silica is more preferable from the viewpoint of surface reactivity and particle size uniformity. As the plastic particles, polystyrene (PS), polymethyl methacrylate (PMMA), and polytetrafluoroethylene (PTFE) are preferable, and PS is more preferable from the viewpoint of surface reactivity and particle size uniformity. It is preferable to have a polar group such as a hydroxyl group, an amino group, or a carboxyl group on the surface of the base material.
 蛍光ビーズの製造法は特に限定されないが、ラテックス粒子、プラスチック粒子又は無機化合物粒子の分散液と、蛍光色素又は希土類元素含有物質の溶液を混合し、エバポレートし、遠心分離して製造する方法がある。また蛍光色素とスチレン等のモノマーを混合し、モノマーの重合反応によリプラスチックポリマーの粒子に蛍光色素を含有させる方法もある。テトラフェニルシロール、1,1,2,3,4,5・ヘキサフェニルシロール、2,5ジアニシル・3,4ジフェニルシロール等のシロール化合物を用いた蛍光ビーズは、該シロール化合物とスチレンモノマーを含有する水溶液で乳化重合を行い、該シロール化合物を内部に含有したポリスチレン粒子を形成し、表面を化学修飾することで得られる。蛍光ビーズの粒径は50~500nmが好ましく、100~300nmがより好ましい。 The method for producing fluorescent beads is not particularly limited, but there is a method in which a dispersion of latex particles, plastic particles or inorganic compound particles is mixed with a solution of a fluorescent dye or a rare earth element-containing substance, evaporated, and centrifuged. .. There is also a method in which a fluorescent dye and a monomer such as styrene are mixed and the particles of the replastic polymer contain the fluorescent dye by a polymerization reaction of the monomers. Fluorescent beads using a silol compound such as tetraphenyl silol, 1,1,2,3,4,5, hexaphenylcyclol, 2,5 dianicil, 3,4 diphenyl silol contain the silol compound and a styrene monomer. It is obtained by performing emulsion polymerization in an aqueous solution to form polystyrene particles containing the silol compound inside, and chemically modifying the surface. The particle size of the fluorescent beads is preferably 50 to 500 nm, more preferably 100 to 300 nm.
 蛍光ビーズとしては下記の市販のものも好ましく用いることができる。ThermoFisher社(Fluoro・MAX等)、Luminex社(xMAP等)、メルク社(蛍光シリカナノビーズ等)、コスモバイオ社(ポリスチレン蛍光粒子等)、Nippon Techno Cluster社(蛍光染色カルボキシル基修飾マイクロスフィア等)、Spectortech社(Fluoroscent Particles等)。 As the fluorescent beads, the following commercially available ones can also be preferably used. Thermo Fisher (Fluoro, MAX, etc.), Luminex (xMAP, etc.), Merck (fluorescent silica nanobeads, etc.), Cosmo Bio (polystyrene fluorescent particles, etc.), Nippon Techno Cruster (fluorescent dyed carboxyl group-modified microspheres, etc.), Spectortech (Fluoroscent Particles, etc.).
 非特異的結合を防ぐためにブロック液を用いることができる、ブロック液としてはタンパク質によるブロッキング、ビオチンのブロッキング、内因性酵素のブロッキング等の液を用いることができる。例えば血清、BSA(ウシ血清アルブミン)、カゼイン、スキムミルクなどのタンパク質、水溶性合成高分子を用いることができる。洗浄液としては界面活性剤を含む水溶液を用いることができ、界面活性剤としてはポリオキシエチレンソルビタン、Tv7een20等が好ましい。 A blocking solution can be used to prevent non-specific binding, and as the blocking solution, a solution such as protein blocking, biotin blocking, or endogenous enzyme blocking can be used. For example, serum, proteins such as BSA (bovine serum albumin), casein, skim milk, and water-soluble synthetic polymers can be used. An aqueous solution containing a surfactant can be used as the cleaning liquid, and polyoxyethylene sorbitan, Tv7een20 and the like are preferable as the surfactant.
 リガンド捕捉剤の多孔性フィルタ面上への固定化は、物理吸着、化学結合によって行える。リガンド捕捉剤を直接多孔性フィルタ面上に固定させても良く、リガンド捕捉剤に特異的に結合する抗体等をスペーサとして多孔性フィルタ面上に固定化した後、該スペーサを介してリガンド捕捉剤を固定化しても良いが、スペーサを介する方法の方がリガンド捕捉の確実性が高くより好ましい。リガンド捕捉剤が抗ビオチン抗体の場合は、スペーサに抗ビオチン抗体に対する抗体を、又リガンド捕捉剤がストレプトアビジンの場合は、スペーサに抗ストレプトアビジン抗体を用いることができる。 Immobilization of the ligand scavenger on the porous filter surface can be performed by physical adsorption or chemical bonding. The ligand scavenger may be directly immobilized on the porous filter surface, and after immobilizing on the porous filter surface using an antibody or the like that specifically binds to the ligand scavenger as a spacer, the ligand scavenger may be immobilized on the porous filter surface. However, the method using a spacer is more preferable because of the high certainty of ligand scavenging. When the ligand-capturing agent is an anti-biotin antibody, an antibody against the anti-biotin antibody can be used for the spacer, and when the ligand-capturing agent is streptavidin, an anti-streptavidin antibody can be used for the spacer.
 多孔性フィルタの材料としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリメチルアクリレート、ポリ四フッ化エチレン等のプラスチック、PVDF、酢酸セルロース類、ナイロン類等のメンブレンフィルタ、セルロース繊維、ガラス繊維、ステンレス鋼、ニッケル、アルミニウム等の金属、アルミナ、ジルコニア、炭化ケイ素等の無機化合物を用いることができるが、繊維が好ましく、セルロース繊維、ガラス繊維がより好ましく、ガラス繊維が最も好ましい Materials for the porous filter include low-density polyethylene, high-density polyethylene, polypropylene, polymethylacrylate, plastics such as polytetrafluoride ethylene, membrane filters such as PVDF, cellulose acetates, nylons, cellulose fibers, and glass fibers. Metals such as stainless steel, nickel and aluminum, and inorganic compounds such as alumina, zirconia and silicon carbide can be used, but fibers are preferable, cellulose fibers and glass fibers are more preferable, and glass fibers are most preferable.
 測定容器には不要な液を除去するために吸収材を設置することが好ましい。吸収材の材料としては、ポリエステル、ポリオレフィン、ポリアミド等の繊維、ポリアクリル酸ナトリウム、パルプ繊維、セルロース繊維、絹繊維、レーヨン等の再生繊維、織布、不織布、紙等を用いることができる。吸収材の液吸収速度の調節は重要である。該速度が速すぎると多孔性フィルタ上での反応が不十分になり測定値が正常より小さくなり、遅すぎると不要な液が該フィルタ上に残留し測定値が大きくなり好ましくない。液吸収速度は吸収材の素材、吸収材の構造(気孔率)を選ぶことで調節できる。吸収材を2種以上組み合わせで液吸収速度を調節することもできる。吸収材の気孔率は60~75%が好ましく、65~70%がより好ましい。気孔率が高すぎると多孔性フィルタ上の除去されるべき液の除去が遅れ測定必要時間が長くなるだけでなく、除去されるべき標識物質が多孔性フィルタ上に残り発光強度が本来の値より高くなり誤測定の原因になり好ましくない。また低すぎると液の除去が速くなりすぎ反応が正常に行われないため好ましくない。なお、2種以上の気孔率の異なる吸収材を順次積層することで多孔性フィルタ上の液の吸収の速度を制御することも好ましい。例えば多孔性フィルタの直下に液吸収速度の遅い気孔率の高い吸収材を配置し、その吸収材の下に液吸収速度の速い気孔率の低い吸収材を配置することで、吸収の速さを制御することができる。積層している吸収材の気孔率は、多孔性フィルタに最も近い吸収材の気孔率が一番高く、順次気孔率が小さくなる配置が好ましい。気孔率の調節が容易である点で吸収材は合成化学繊維であることが好ましく、ポリオレフィン、ポリエステル、ポリアミドがより好ましく、ポリエステルが最も好ましい。又吸収材の液吸収速度の調節は吸収材の素材を選ぶことでも行える。一般には液濡れ性の低いポリオレフィン、ポリエステルは吸収速度が遅く、液濡れ性の高いセルロース、ポリアミド、ポリアクリル酸塩は吸収速度が速い。したがって、多孔性フィルタの直下に液吸収速度の遅いポリオレフィン、ポリエステルを配置し、その吸収材の下に液吸収速度の速いセルロース、ポリアミド、ポリアクリル酸塩を配置することで、吸収の速さを制御することが好ましい。 It is preferable to install an absorbent material in the measuring container to remove unnecessary liquid. As the material of the absorbent material, fibers such as polyester, polyolefin and polyamide, recycled fibers such as sodium polyacrylate, pulp fiber, cellulose fiber, silk fiber and rayon, woven fabric, non-woven fabric, paper and the like can be used. It is important to control the liquid absorption rate of the absorbent material. If the speed is too fast, the reaction on the porous filter becomes insufficient and the measured value becomes smaller than normal, and if the speed is too slow, unnecessary liquid remains on the filter and the measured value becomes large, which is not preferable. The liquid absorption rate can be adjusted by selecting the material of the absorbent material and the structure (porosity) of the absorbent material. The liquid absorption rate can also be adjusted by combining two or more types of absorbent materials. The porosity of the absorbent material is preferably 60 to 75%, more preferably 65 to 70%. If the porosity is too high, the removal of the liquid to be removed on the porous filter will be delayed and the measurement time will be longer, and the labeling substance to be removed will remain on the porous filter and the emission intensity will be higher than the original value. It becomes high and causes erroneous measurement, which is not preferable. If it is too low, the liquid will be removed too quickly and the reaction will not be performed normally, which is not preferable. It is also preferable to control the absorption rate of the liquid on the porous filter by sequentially laminating two or more kinds of absorbent materials having different porosities. For example, by arranging an absorbent material having a slow liquid absorption rate and a high porosity directly under the porous filter and arranging an absorbent material having a high liquid absorption rate and a low porosity under the absorbent material, the absorption speed can be increased. Can be controlled. As for the porosity of the laminated absorbent material, it is preferable that the absorbent material closest to the porous filter has the highest porosity and the porosity gradually decreases. The absorbent material is preferably a synthetic chemical fiber, more preferably polyolefin, polyester, or polyamide, and most preferably polyester, because the porosity can be easily adjusted. The liquid absorption rate of the absorbent material can also be adjusted by selecting the material of the absorbent material. Generally, polyolefins and polyesters with low liquid wettability have a slow absorption rate, and celluloses, polyamides and polyacrylates with high liquid wettability have a high absorption rate. Therefore, by arranging polyolefin and polyester with slow liquid absorption rate directly under the porous filter and arranging cellulose, polyamide and polyacrylic acid salt with high liquid absorption rate under the absorbent material, the absorption speed can be increased. It is preferable to control.
 本発明に係る実施形態の測定方法では多孔性フィルタを収納した固相反応容器を用いることが好ましい。固相反応容器100の好ましい例は、図2乃至図6に示すように、天面部分の略中央部にテーパ形状の開口部14を有する上蓋部材10と、上蓋部材10と嵌合可能に形成され、底部22に通気部23を有する下蓋部材20と、上蓋部材10と下蓋部材20とが嵌合することにより形成される内部空間40に収容される吸収部材60と、吸収部材60の上蓋部材側端面に設けられた多孔性フィルタ50とを備え、開口部14を介した該多孔性フィルタ50の露出面50aを固相反応の反応場とするものである。固相反応容器100のサイズは、縦8~16mm、横6~12mm、高さ8~20mmが好ましい。テーパ構造の開口部14の最も狭い部分の口径のサイズは1~5mmが好ましく、2~3mmがより好ましい。固相反応容器100の材質はポリエチレン、ポリカーボネート、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ABS樹脂、ポリアミド、四フッ化エチレン、ポリプロピレン、ポリエステル、エポキシ等のプラスチック類を用いることができる。 In the measuring method of the embodiment according to the present invention, it is preferable to use a solid-phase reaction vessel containing a porous filter. As shown in FIGS. 2 to 6, a preferred example of the solid-phase reaction vessel 100 is a top lid member 10 having a tapered opening 14 at a substantially central portion of a top surface portion, and a top lid member 10 formed so as to be matable with the top lid member 10. The absorption member 60 and the absorption member 60 housed in the internal space 40 formed by fitting the lower lid member 20 having the ventilation portion 23 on the bottom portion 22 and the upper lid member 10 and the lower lid member 20. It is provided with a porous filter 50 provided on the end surface on the upper lid member side, and the exposed surface 50a of the porous filter 50 via the opening 14 is used as a reaction field for a solid phase reaction. The size of the solid-phase reaction vessel 100 is preferably 8 to 16 mm in length, 6 to 12 mm in width, and 8 to 20 mm in height. The size of the diameter of the narrowest portion of the opening 14 of the tapered structure is preferably 1 to 5 mm, more preferably 2 to 3 mm. As the material of the solid phase reaction vessel 100, plastics such as polyethylene, polycarbonate, polyethylene terephthalate, vinyl chloride, polystyrene, ABS resin, polyamide, ethylene tetrafluoride, polypropylene, polyester and epoxy can be used.
 ここで、本発明に係る実施形態の測定方法および当該測定方法に用いる固相容器の一例について、図1乃至図6を参照しながら説明する。
 図4及び図5等に示されるように、下蓋本体部21の底部22には、通気部23が形成されている。底部22において通気部23が形成されていることにより、例えば図1の例に示すように、上蓋部材10の開口部14を介して導入された測定対象物質を含む試料液や洗浄液等の液体の固相反応容器100内部における通液を容易とすることができる。例えば、下蓋本体部21の外周壁25は、底部22を形成する台座部24から上蓋部材10への嵌合方向に延在して形成され、当該外周壁25は、上蓋部材10との篏合時に上蓋部材10の内周壁17と対峙する。なお、位置決め部16が設けられた側における上蓋部材10の外周壁15と下蓋部材20の台座部24の台座部外周壁27とは嵌合時に同一壁面上に位置するように配置され、嵌合後の固相反応容器100の形状は、外周壁に段差が無い浅底の円筒形状となる。
Here, an example of the measurement method of the embodiment according to the present invention and the solid phase container used in the measurement method will be described with reference to FIGS. 1 to 6.
As shown in FIGS. 4 and 5, a ventilation portion 23 is formed on the bottom portion 22 of the lower lid main body portion 21. Since the ventilation portion 23 is formed in the bottom portion 22, for example, as shown in the example of FIG. 1, a liquid such as a sample liquid or a cleaning liquid containing a substance to be measured introduced through the opening 14 of the upper lid member 10 It is possible to facilitate the passage of liquid inside the solid phase reaction vessel 100. For example, the outer peripheral wall 25 of the lower lid main body 21 is formed so as to extend from the pedestal portion 24 forming the bottom portion 22 in the fitting direction to the upper lid member 10, and the outer peripheral wall 25 is formed with the upper lid member 10. At the same time, it faces the inner peripheral wall 17 of the upper lid member 10. The outer peripheral wall 15 of the upper lid member 10 and the outer peripheral wall 27 of the pedestal portion 24 of the lower lid member 20 on the side where the positioning portion 16 is provided are arranged and fitted so as to be located on the same wall surface at the time of fitting. The shape of the solid phase reaction vessel 100 after the joint is a shallow cylindrical shape with no steps on the outer peripheral wall.
 混合容器30は、図2乃至図5等に示すように、上蓋本体部11の外周壁15から連続する底部32の周縁から側壁部33を立設することで形成された液溜空部31を有する上方が開放したトレイ状(箱状)に形成されている。側壁部33の上端側には液溜空部31外側に向けて延在するフランジ部34が形成されており、当該フランジ部34を含めた側壁部33の長手方向長さは、上蓋部材10の直径と略同じ長さとされている(図2)。フランジ部34は、位置決め部16とともに、図示せぬ測定装置内の測定チャンバーに当該固相反応容器100を固定するために設けられている。なお、図2及び図6に示されるように、フランジ部34を含めた側壁部33の高さ方向長さは、上蓋本体部11の高さ方向長さと略同じ長さとされる。 As shown in FIGS. 2 to 5, the mixing container 30 has a liquid storage empty portion 31 formed by erecting a side wall portion 33 from the peripheral edge of the bottom portion 32 continuous from the outer peripheral wall 15 of the upper lid main body portion 11. It is formed in a tray shape (box shape) with an open upper part. A flange portion 34 extending toward the outside of the liquid storage empty portion 31 is formed on the upper end side of the side wall portion 33, and the longitudinal length of the side wall portion 33 including the flange portion 34 is the length of the upper lid member 10. The length is almost the same as the diameter (Fig. 2). The flange portion 34, together with the positioning portion 16, is provided for fixing the solid-phase reaction vessel 100 to a measurement chamber in a measuring device (not shown). As shown in FIGS. 2 and 6, the length of the side wall portion 33 including the flange portion 34 in the height direction is substantially the same as the length of the upper lid main body portion 11 in the height direction.
 図6は、図3における固相反応容器100のA-A’線断面図である。図6に示す例では、上蓋部材10と下蓋部材20とが嵌合することで形成される内部空間40には、吸収部材60が圧潰した状態で収容される。下蓋本体部21の外周壁25には、上蓋部材10の内周壁17側に形成された係合部18と係合可能な被係合部26が形成されており、当該係合部18と被係合部26とが係合することにより、上蓋部材10と下蓋部材20とが嵌合することができる。また、吸収部材60の上蓋部材10側端面には開口部14を介して一部分が露出面50aとして露出するように多孔性フィルタ50が収容されており、当該露出面50aは固相反応の反応場として用いられる。 FIG. 6 is a sectional view taken along line AA'of the solid-phase reaction vessel 100 in FIG. In the example shown in FIG. 6, the absorbing member 60 is housed in the crushed state in the internal space 40 formed by fitting the upper lid member 10 and the lower lid member 20. On the outer peripheral wall 25 of the lower lid main body 21, an engaged portion 26 that can be engaged with the engaging portion 18 formed on the inner peripheral wall 17 side of the upper lid member 10 is formed, and the engaging portion 26 and the engaging portion 18 are formed. By engaging the engaged portion 26, the upper lid member 10 and the lower lid member 20 can be fitted. Further, a porous filter 50 is housed in the upper lid member 10 side end surface of the absorbing member 60 so that a part of the absorbing member 60 is exposed as an exposed surface 50a through the opening 14, and the exposed surface 50a is a reaction field for a solid phase reaction. Used as.
 本実施形態に係る液溜空部31は、開口部31aから底部32に向って下方にすぼむ断面略逆台形の形状とされる。液溜空部31をこのような形状とすることにより、測定対象物質と当該測定対象物質と特異的結合能を有する物質とのプレミックスの際に、これらの液を液溜空部31の液溜底部310に集めることができるため、確実にピペッターによる吸液・廃液動作を行うことができる。なお、液溜空部31の開口部31a形状は、図2等に示す矩形状とされるが、その開口部形状については特に制限は無く、例えば、丸形形状、三角形状等を採用しても良い。 The liquid reservoir empty portion 31 according to the present embodiment has a substantially inverted trapezoidal cross section that dents downward from the opening 31a toward the bottom portion 32. By forming the liquid reservoir 31 in such a shape, these liquids are used as the liquid in the liquid reservoir 31 when premixing the substance to be measured and the substance having a specific binding ability to the substance to be measured. Since it can be collected at the bottom 310, the liquid absorption / waste liquid operation by the pipetter can be surely performed. The shape of the opening 31a of the liquid reservoir 31 is a rectangular shape as shown in FIG. 2, but the shape of the opening is not particularly limited, and for example, a round shape, a triangular shape, or the like is adopted. Is also good.
 吸収部材60の寸法としては、上蓋部材10及び下蓋部材20から形成される内部空間40の体積よりも僅かに大きい体積を有するものであれば特に制限はなく、その形状も当該内部空間40に収容される際に圧潰した状態を維持することができれば、円筒形状でなくとも直方体形状であっても構わない。 The size of the absorbing member 60 is not particularly limited as long as it has a volume slightly larger than the volume of the internal space 40 formed by the upper lid member 10 and the lower lid member 20, and the shape thereof is also limited to the internal space 40. As long as it can be maintained in a crushed state when it is housed, it may have a rectangular parallelepiped shape instead of a cylindrical shape.
 さらに、図6に示すように、下蓋部材20の台座部24には、他の固相反応容器100の開口部14(円環部13)を収容可能な溝部28を設けてもよい。これにより、複数の固相反応容器100を縦に積層した状態で、自動分注器や発光量測定器等のチャンバー内にセットすることができるため、多検体処理の高速化を図ることが可能である。 Further, as shown in FIG. 6, the pedestal portion 24 of the lower lid member 20 may be provided with a groove portion 28 capable of accommodating the opening portion 14 (annular portion 13) of the other solid-phase reaction vessel 100. As a result, a plurality of solid-phase reaction vessels 100 can be vertically stacked and set in a chamber such as an automatic dispenser or a luminescence measuring device, so that it is possible to speed up the processing of multiple samples. Is.
 次に、本実施形態に係る固相反応容器100を用いた測定方法について説明する。本測定方法は、開口部14を介して露出する露出面50aに対して、測定対象物質と特異的結合能を有し、所定のリガンドが導入されたリガンド導入物質を捕捉するリガンド捕捉物質が予め固定化された固相反応容器100を用いて行われる。 Next, the measurement method using the solid-phase reaction vessel 100 according to the present embodiment will be described. In this measurement method, a ligand-capturing substance that has a specific binding ability to the substance to be measured and captures the ligand-introducing substance into which a predetermined ligand has been introduced is previously provided with respect to the exposed surface 50a exposed through the opening 14. This is done using the immobilized solid phase reaction vessel 100.
 リガンド捕捉物質を固相反応容器100の露出面50aに固定化するには、一般的に用いられる物理的吸着又は化学的結合によって行うことができる。この場合、リガンド捕捉物質を直接露出面50aに固定させてもよいし、リガンド捕捉物質に特異的に結合する抗体等をスペーサ物質として露出面50aに固定化した後、当該スペーサ物質を介してリガンド捕捉物質を固定化する形態としてもよい。 The ligand trapping substance can be immobilized on the exposed surface 50a of the solid phase reaction vessel 100 by generally used physical adsorption or chemical bonding. In this case, the ligand-capturing substance may be directly immobilized on the exposed surface 50a, or an antibody or the like that specifically binds to the ligand-capturing substance may be immobilized on the exposed surface 50a as a spacer substance, and then the ligand is interposed via the spacer substance. It may be in the form of immobilizing the trapping substance.
 そして、本実施形態に係る固相反応容器100を用いた測定方法では、固相反応容器100の混合容器30において、測定対象物質を含む検体、当該検体と特異的結合能を有するリガンド導入物質、及び測定対象物質又はリガンド導入物質に対して特異的結合能を有し、所定の条件下で蛍光する蛍光ビーズを含有する標識物質とのプレミックスが行われる。プレミックスにより生じた測定対象物質-リガンド導入物質-標識物質からなる複合体を含む試料液をリガンド捕捉物質が固定化された露出面50aに供することにより当該複合体を捕捉し、蛍光ビーズにより発光したスポットを測定することで、測定対象物質の濃度を測定する。 Then, in the measurement method using the solid phase reaction vessel 100 according to the present embodiment, in the mixing vessel 30 of the solid phase reaction vessel 100, a sample containing the substance to be measured, a ligand-introducing substance having a specific binding ability to the sample, and the like. And a labeling substance containing fluorescent beads having a specific binding ability to the substance to be measured or the ligand-introducing substance and fluorescing under predetermined conditions is performed. A sample solution containing a complex consisting of a substance to be measured-ligand-introduced substance-labeled substance generated by premix is applied to an exposed surface 50a on which a ligand-capturing substance is immobilized to capture the complex and emit light by fluorescent beads. The concentration of the substance to be measured is measured by measuring the spots.
 まず、図1のStep1において、検体(血清、血漿、鼻汁、涙液等)数μL、第一の結合物質(ビオチン化アレルゲン溶液)数μL及び第二の結合物質(蛍光ビーズ標識抗体溶液)数μLを混合容器30の液溜空部31に導入し、ピペッターによる吸液・廃液、又は静置して液相反応させ、測定対象物質-リガンド導入物質-標識物質からなる複合体を形成させる(第1反応)。
 次に、開口部14を介して、多孔性フィルタ50の露出面50aへ、ブロックエースを含有するブロッキング剤と防腐剤を含有するブロック液を添加する(Step2)。
 次に、Step3において、液溜空部31からピペッターにより試料液を吸引し、隣接する開口部14を介して露出面50a上に排出して供給後、固相反応させる(第2反応)。
First, in Step 1 of FIG. 1, several μL of samples (serum, plasma, nasal juice, tears, etc.), several μL of the first binding substance (biotinylated allergen solution), and the number of second binding substances (fluorescent bead-labeled antibody solution). μL is introduced into the liquid reservoir 31 of the mixing vessel 30 and subjected to liquid absorption / waste liquid by a pipetter or a liquid phase reaction by allowing it to stand to form a complex consisting of a substance to be measured-a ligand-introducing substance-a labeling substance ( First reaction).
Next, a blocking agent containing a block ace and a blocking liquid containing a preservative are added to the exposed surface 50a of the porous filter 50 through the opening 14 (Step 2).
Next, in Step 3, the sample liquid is sucked from the liquid reservoir 31 by a pipetter, discharged onto the exposed surface 50a through the adjacent opening 14, supplied, and then subjected to a solid phase reaction (second reaction).
 固相反応後、ウォッシングバッファー等の洗浄液で洗浄する(Step4)。洗浄後、蛍光ビーズにより発光したスポットを測定することで、測定対象物質の濃度を測定する(Step5)。 After the solid-phase reaction, wash with a washing solution such as a washing buffer (Step 4). After washing, the concentration of the substance to be measured is measured by measuring the spots emitted by the fluorescent beads (Step 5).
 本発明に係る実施形態の測定方法による測定時の温度は30~45℃が好ましく、34~42℃がより好ましく、36~40℃が最も好ましい。温度が低過ぎると反応速度が遅くなり反応必要時間が長くなったり、液の粘度が高くなり液が多孔性フィルタ上に滞留し除去されなくなるため好ましくない。温度が高過ぎると検体液等の液の性質が変化するため好ましくない。 The temperature at the time of measurement by the measuring method of the embodiment according to the present invention is preferably 30 to 45 ° C, more preferably 34 to 42 ° C, and most preferably 36 to 40 ° C. If the temperature is too low, the reaction rate becomes slow and the required reaction time becomes long, or the viscosity of the liquid becomes high and the liquid stays on the porous filter and cannot be removed, which is not preferable. If the temperature is too high, the properties of the liquid such as the sample liquid will change, which is not preferable.
 本発明のリガンド関連の好ましい態様例を記す。
(1)リガンド;ビオチン
(2)結合物質L;ビオチン化アレルゲン
(3)結合物質F;蛍光ビーズ標識抗体
(4)リガンド補捉剤;抗ビオチン抗体
(5)リガンド補捉剤;抗ビオチン抗体、及びスペーサ;抗ビオチン抗体に対する抗体
(6)リガンド捕捉剤;ストレプトアビジン
(7)リガンド捕捉剤;ストレプトアビジン、及びスペーサ;抗ストレプトアビジン抗体
(8)リガンド捕捉剤;ストレプトアビジン、スペーサ;抗ストレプトアビジン抗体に対する抗体に抗ストレプトアビジン抗体を重層
Examples of preferred embodiments related to the ligand of the present invention will be described.
(1) Ligand; Biotin (2) Binding agent L; Biotinylated allergen (3) Binding substance F; Fluorescent bead-labeled antibody (4) Ligand trapping agent; Anti-biotin antibody (5) Ligand trapping agent; Anti-biotin antibody, And spacers; antibodies against anti-biotin antibodies (6) ligand trapping agents; streptavidin (7) ligand trapping agents; streptavidin, and spacers; anti-streptavidin antibodies (8) ligand trapping agents; streptavidin, spacers; anti-streptavidin antibodies Anti-streptavidin antibody is layered on the antibody against
 本発明に係る実施形態の測定方法は検体液中のアレルゲン特異的抗体の、又特にIgE抗体の測定に好ましく用いることができる。又自己免疫疾患、癌マーカー、感染症、心筋マーカー、薬物、ホルモン等を測定可能で、かつ測定装置の自動化ができ多量の検体液を迅速に精確に測定できるプラットホームとして用いることができる。 The measuring method of the embodiment according to the present invention can be preferably used for measuring an allergen-specific antibody in a sample solution, and particularly an IgE antibody. In addition, it can be used as a platform capable of measuring autoimmune diseases, cancer markers, infectious diseases, myocardial markers, drugs, hormones, etc., and can automate the measuring device to measure a large amount of sample solution quickly and accurately.
 本発明に係る実施形態の固相反応容器は上記測定例以外にも、自己免疫疾患、癌マーカー、感染症、心筋マーカー等を検出・測定可能なプラットホームとして用いることができる。 The solid-phase reaction vessel of the embodiment according to the present invention can be used as a platform capable of detecting and measuring autoimmune diseases, cancer markers, infectious diseases, myocardial markers, etc., in addition to the above measurement examples.
 以下、本発明の実施例について述べるが、本発明はこれらの実施例の記載に限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the description of these examples.
(実施例1)
<抗ビオチン抗体固定化多孔性フィルタの作製>
 直径10mmのガラス繊維フィルタに湿潤剤5μLを添加し、さらにスペーサ物質として抗ヤギIgG抗体(ロバ)の溶液5μL添加し、リガンド捕捉剤として抗ビオチン抗体(ヤギ)の溶液5μLを添加し、ウシ血清アルブミンを含むリン酸緩衝液等の保護液10μLを通液し、1時間放置し乾燥させ、抗ヤギIgG抗体(ロバ)を介し抗ビオチン抗体(ヤギ)を固定化し、ガラス繊維フィルタAを得た。縦13mm、横9mm、高さ13mmの直方体状で、最も狭い部分の口径のサイズが2.5mmのテーパ状の液添加のための開口部を有し、該容器の下部に通気孔を有する固相反応容器にガラス繊維フィルタAを収納した。なおガラス繊維フィルタAの背面にポリエステル繊維吸収材を配置した。
(Example 1)
<Preparation of anti-biotin antibody-immobilized porous filter>
5 μL of a wetting agent was added to a glass fiber filter having a diameter of 10 mm, 5 μL of an anti-goat IgG antibody (donkey) solution was added as a spacer substance, 5 μL of an anti-biotin antibody (goat) solution was added as a ligand capture agent, and bovine serum was added. A protective solution such as a phosphate buffer containing albumin was passed through 10 μL, left for 1 hour to dry, and an anti-biotin antibody (goat) was immobilized via an anti-goat IgG antibody (donkey) to obtain a glass fiber filter A. .. A rectangular parallelepiped shape with a length of 13 mm, a width of 9 mm, and a height of 13 mm, with a tapered opening for liquid addition having a diameter of 2.5 mm at the narrowest part, and a solid having a ventilation hole at the bottom of the container. The glass fiber filter A was housed in the phase reaction vessel. A polyester fiber absorber was placed on the back surface of the glass fiber filter A.
<実施例の測定方法に用いる固相反応容器の一例>
 ここで、本発明に係る実施形態の実施例1の測定方法に用いる固相反応容器の一例として、図7乃至図15に、直方体状の固相反応容器100Bを示す。図7は、第2の実施形態の固相反応容器100Bの斜視図である。図8は図7に示す固相反応容器100Bの上面図、図9~図12は、同じく背面図、側面図、正面図および底面図である。また、図13は、図7に示す固相反応容器100Bの断面図であり、図14は、図7に示す固相反応容器100Bの分解図である。
 固相反応容器100Bは、天面部12bの略中央部にテーパ形状の開口部14bを有する上蓋部材10Bと、上蓋部材10Bと嵌合可能に形成され、底部22bに通気部23bを有する下蓋部材20Bと、上蓋部材10Bと下蓋部材20Bとが嵌合することにより形成される内部空間に収容される吸収部材60B(例えばポリエステル繊維吸収材)と、吸収部材60Bの上蓋部材側端面に設けられた多孔性フィルタ50B(例えば実施例1のガラス繊維フィルタA)とを備えている。以上のような構成により、固相反応容器100Bは、例えば図15に示すような手順(Step1~5)等により、開口部14bを介して、多孔性フィルタ50Bの露出面を固相反応の反応場とするものである。
<Example of solid-phase reaction vessel used in the measurement method of Examples>
Here, as an example of the solid-phase reaction vessel used in the measurement method of Example 1 of the embodiment according to the present invention, a rectangular parallelepiped solid-phase reaction vessel 100B is shown in FIGS. 7 to 15. FIG. 7 is a perspective view of the solid-phase reaction vessel 100B of the second embodiment. 8 is a top view of the solid-phase reaction vessel 100B shown in FIG. 7, and FIGS. 9 to 12 are a rear view, a side view, a front view, and a bottom view. 13 is a cross-sectional view of the solid-phase reaction vessel 100B shown in FIG. 7, and FIG. 14 is an exploded view of the solid-phase reaction vessel 100B shown in FIG. 7.
The solid-phase reaction vessel 100B is formed so as to be fitted with an upper lid member 10B having a tapered opening 14b at a substantially central portion of a top surface portion 12b and an upper lid member 10B, and a lower lid member having a ventilation portion 23b at a bottom portion 22b. 20B, an absorbent member 60B (for example, a polyester fiber absorbent) accommodated in an internal space formed by fitting the upper lid member 10B and the lower lid member 20B, and an absorption member 60B provided on the upper lid member side end surface. It is provided with a porous filter 50B (for example, the glass fiber filter A of Example 1). With the above configuration, the solid-phase reaction vessel 100B undergoes a solid-phase reaction on the exposed surface of the porous filter 50B through the opening 14b by, for example, the procedure (Steps 1 to 5) as shown in FIG. It is a place.
 固相反応容器100Bにおいて、開口部14bを介して、測定対象物質を含む試料液や洗浄液等の液体を、固相反応容器100Bの内部空間に導入することができる。上蓋部材10Bには、試料調整部としての混合容器30Bが下蓋部材20Bの側壁部33bから延在して形成されている。混合容器30Bは、例えば測定対象物質と当該測定対象物質と特異的結合能を有する物質との事前混合の場として用いられる。
 図13に示されるように、下蓋部材20Bの内部には上蓋部材10Bの嵌合部分を収容可能となるように内部空間40Bが形成されている。内部空間40Bを形成する下蓋本体部21bの内周壁には、上蓋部材10Bの外周壁側に形成された係合部と係合可能な被係合部が形成されており、当該係合部と被係合部とが係合することにより、上蓋部材10Bと下蓋部材20Bとは嵌合することができる。
 図12及び図13に示されるように、下蓋部材20Bの底部22bには、通気部23bが形成されている。底部22bにおいて通気部23bが形成されていることにより、上蓋部材10Bの開口部14bを介して導入された測定対象物質を含む試料液や洗浄液等の液体の固相反応容器100B内部における通液を容易とすることができる。底部32bから液溜空部31bの方向に設けられた溝である位置決め部35bは、図示せぬ測定装置内の測定チャンバーに固相反応容器100Bの位置決め及び固定するために設けられている。
In the solid phase reaction vessel 100B, a liquid such as a sample solution or a cleaning solution containing a substance to be measured can be introduced into the internal space of the solid phase reaction vessel 100B through the opening 14b. The upper lid member 10B is formed with a mixing container 30B as a sample adjusting portion extending from the side wall portion 33b of the lower lid member 20B. The mixing container 30B is used, for example, as a place for premixing the substance to be measured and the substance having a specific binding ability to the substance to be measured.
As shown in FIG. 13, an internal space 40B is formed inside the lower lid member 20B so as to accommodate the fitting portion of the upper lid member 10B. On the inner peripheral wall of the lower lid main body 21b forming the internal space 40B, an engaged portion that can be engaged with the engaging portion formed on the outer peripheral wall side of the upper lid member 10B is formed, and the engaging portion is formed. The upper lid member 10B and the lower lid member 20B can be fitted to each other by engaging the engaged portion with the engaged portion.
As shown in FIGS. 12 and 13, a ventilation portion 23b is formed on the bottom portion 22b of the lower lid member 20B. Since the ventilation portion 23b is formed in the bottom portion 22b, a liquid such as a sample liquid or a cleaning liquid containing a substance to be measured introduced through the opening 14b of the upper lid member 10B can be passed through the solid phase reaction vessel 100B. Can be easy. The positioning portion 35b, which is a groove provided in the direction from the bottom portion 32b to the liquid reservoir empty portion 31b, is provided for positioning and fixing the solid phase reaction vessel 100B in the measurement chamber in the measuring device (not shown).
 混合容器30Bは、下蓋本体部21bの底部22bから連続する底部32bの周縁から側壁部33bを立設することで形成された液溜空部31bを有する、上方が開放したトレイ状(箱状)に形成されている。
 本実施形態において、液溜空部31bの開口部形状は、矩形状とされるがその開口部形状については特に制限は無く、例えば、丸形形状、三角形状等を採用してもよい。すなわち、測定対象物質と当該測定対象物質と特異的結合能を有する物質とのプレミックスといった、ピペッター等による吸液・廃液動作に影響が無ければ、液溜空部31bの開口部形状は如何なる形状としてもよい。
 液溜空部31bは、図9に示すように、開口部から底部32bに向って下方にすぼむ断面略V字形状の形状とされる。液溜空部31bをこのような形状とすることにより、測定対象物質と当該測定対象物質と特異的結合能を有する物質とのプレミックスの際に、これらの液を液溜空部31bの底部側に集めることが容易となるため、確実にピペッターによる吸液・廃液動作を行うことができる。
 固相反応容器100Bの材質は、例えばポリエチレン、ポリカーボネート、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ABS樹脂、ポリアミド、四フッ化エチレン、ポリプロピレン、ポリエステル、エポキシ等のプラスチック類を用いることができる。
The mixing container 30B has a tray-shaped (box-shaped) open upward, which has a liquid storage empty portion 31b formed by erecting a side wall portion 33b from the peripheral edge of the bottom portion 32b continuous from the bottom portion 22b of the lower lid main body portion 21b. ) Is formed.
In the present embodiment, the shape of the opening of the liquid reservoir 31b is rectangular, but the shape of the opening is not particularly limited, and for example, a round shape, a triangular shape, or the like may be adopted. That is, if there is no influence on the liquid absorption / waste liquid operation by the pipettor or the like such as the premix of the substance to be measured and the substance having a specific binding ability to the substance to be measured, what shape is the opening shape of the liquid reservoir 31b? May be.
As shown in FIG. 9, the liquid reservoir empty portion 31b has a substantially V-shaped cross section that is recessed downward from the opening toward the bottom portion 32b. By forming the liquid reservoir 31b in such a shape, when premixing the substance to be measured and the substance having a specific binding ability to the substance to be measured, these liquids are collected at the bottom of the liquid reservoir 31b. Since it is easy to collect the liquid on the side, it is possible to reliably perform the liquid absorption / drainage operation by the pipetter.
As the material of the solid phase reaction vessel 100B, for example, plastics such as polyethylene, polycarbonate, polyethylene terephthalate, vinyl chloride, polystyrene, ABS resin, polyamide, ethylene tetrafluoride, polypropylene, polyester and epoxy can be used.
(実施例2)
(A)標準IgEを使用した測定方法A(本発明の実施例)
 測定対象物であるIgE標準液(濃度は表に記載)を5μL、結合物質Lであるビオチン標識抗ヒトIgEモノクローナル抗体(4μg/mL)5μL、及び結合物質Fである蛍光ドーズ含有標識抗体のFluoro・MAX(ThermoFisher社製)を5μLの3者を混合し混合液を37℃に2分間加温保持した。一方、固相反応容器中のガラス繊維フィルタAにブロックエースを含有するブロッキング剤と防腐剤を含有するブロック液を各10pL添加した。次いで、予め加温しておいた該3者混合液10pLを滴下し、37℃で1分加温し、各々の固相反応容器に0.5%Tween・20を含有する緩衝化生理食塩水から成る洗浄液20μLを3回、直前に供給した溶液が完全に吸収された後供給し、ガラス繊維フィルタAに残った過剰の標識物質を除去した。
 CMOSカメラで固定化部の発光したスポットを測定し、発光強度を得て、標準曲線を用い測定値を算出した。
(B)標準IgEを使用した測定方法B(本発明の実施例)
 結合物質L溶液と結合物質F溶液を混合した後に、IgE標準液を加え3者混合液を作成した以外は測定方法Aと同様にした。
(C)標準IgEを使用した測定方法C(本発明の実施例)
 結合物質L溶液と結合物質F溶液を混合し、その混合液にPEG溶液 をμL添加した後に、IgE標準液を加え3者混合液を作成した以外は測定方法Aと同様にした。
(Example 2)
(A) Measurement method A using standard IgE (Example of the present invention)
5 μL of IgE standard solution (concentration is shown in the table) as the object to be measured, 5 μL of biotin-labeled anti-human IgE monoclonal antibody (4 μg / mL) which is the binding substance L, and Fluoro of the fluorescent dose-containing labeled antibody which is the binding substance F. -MAX (manufactured by Thermo Fisher) was mixed with 5 μL of the three substances, and the mixed solution was heated and held at 37 ° C. for 2 minutes. On the other hand, 10 pL each of a blocking agent containing a block ace and a blocking solution containing a preservative was added to the glass fiber filter A in the solid phase reaction vessel. Next, 10 pL of the preheated tripartite mixed solution was added dropwise, heated at 37 ° C. for 1 minute, and buffered physiological saline containing 0.5% Tween 20 in each solid phase reaction vessel. A cleaning solution consisting of 20 μL was supplied three times after the solution supplied immediately before was completely absorbed, and the excess labeling substance remaining on the glass fiber filter A was removed.
The spot where the immobilization part emitted light was measured with a CMOS camera, the emission intensity was obtained, and the measured value was calculated using a standard curve.
(B) Measurement method B using standard IgE (Example of the present invention)
After mixing the binding substance L solution and the binding substance F solution, an IgE standard solution was added to prepare a tripartite mixed solution, which was the same as the measurement method A.
(C) Measurement method C using standard IgE (Example of the present invention)
The measurement method A was the same except that the binding substance L solution and the binding substance F solution were mixed, μL of the PEG solution was added to the mixed solution, and then the IgE standard solution was added to prepare a three-way mixed solution.
(比較例1)
(X)標準IgEを使用した測定方法X(酵素法、比較例)
 結合物質Fをペルオキシダーゼ標識抗IgEモノクローナル抗体30μLに変更し、標識物質を除去した後に西洋ワサビペルオキシダーゼの基質であるテトラメチルベンジジン(TMBZ)溶液を40μL添加し、37℃で反応させた以外は測定方法Aと同様にして測定方法Xを得た。レーザー光670nmを光源とする積分球検出器でガラス繊維フィルタ上の青色の色調の反射率(ΔK/S)を測定した。IgE標準液の各濃度の測定値を表1に示した。なお蛍光色素を標識物質に用いることも試みたが、感度があまりにも低いため意味のある実験ができなかった。
(Comparative Example 1)
(X) Measurement method using standard IgE X (enzyme method, comparative example)
The measurement method except that the binding substance F was changed to 30 μL of a peroxidase-labeled anti-IgE monoclonal antibody, 40 μL of a tetramethylbenzidine (TMBZ) solution which is a substrate of horseradish peroxidase was added after removing the labeled substance, and the reaction was carried out at 37 ° C. The measuring method X was obtained in the same manner as in A. The reflectance (ΔK / S) of the blue color tone on the glass fiber filter was measured with an integrating sphere detector using a laser beam of 670 nm as a light source. The measured values of each concentration of the IgE standard solution are shown in Table 1. We also tried to use a fluorescent dye as a labeling substance, but the sensitivity was so low that we could not conduct a meaningful experiment.
(実施例3)
 IgEの標準液の濃度を表1記載の様にした条件で、測定方法A、B、C、Xの各測定方法を各7回の測定を繰り返した。表1に変動係数(標準偏差の平均値、%)を記載した。変動係数は10%以下であれば支障なく実用に供することができるが、より小さい方が好ましい。
<表1 測定値の変動係数評価>
Figure JPOXMLDOC01-appb-T000001
 本発明の実施例のA、B、Cの測定方法は、比較例のXに比べ変動係数が小さく好ましかった、又変動係数は全て10%以下であり、実用上問題ない好ましいレベルであった。なお、本発明の実施例の測定方法A→B→Cの順で変動係数がより小さくなり、この順でより好ましく、測定方法Cが最も好ましかった。
(Example 3)
Under the conditions that the concentration of the IgE standard solution was as shown in Table 1, the measurement methods A, B, C, and X were repeated 7 times each. Table 1 shows the coefficient of variation (average value of standard deviation,%). If the coefficient of variation is 10% or less, it can be put into practical use without any problem, but a smaller coefficient is preferable.
<Table 1 Evaluation of coefficient of variation of measured values>
Figure JPOXMLDOC01-appb-T000001
The methods for measuring A, B, and C of the examples of the present invention were preferred because the coefficient of variation was smaller than that of X of the comparative example, and the coefficients of variation were all 10% or less, which was a preferable level without any problem in practical use. It was. The coefficient of variation became smaller in the order of the measuring method A → B → C of the embodiment of the present invention, which was more preferable, and the measuring method C was the most preferred.
(実施例4)
 IgEの標準液の濃度を表2記載の様にした条件で、各測定方法A、B、C、Xを用い各7回測定を繰り返した。評価は○が検出できた、×は検出できなかったことを示す。
<表2 感度評価>
Figure JPOXMLDOC01-appb-T000002
 
(Example 4)
The measurement was repeated 7 times each using each of the measurement methods A, B, C, and X under the conditions that the concentration of the IgE standard solution was as shown in Table 2. The evaluation indicates that ○ could be detected and × could not be detected.
<Table 2 Sensitivity evaluation>
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。また、例えば各実施形態の特徴を組み合せてもよい。さらに、これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形には、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 
 
Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. Further, for example, the features of each embodiment may be combined. Furthermore, these embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention as well as in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (6)

  1.  検体液中の測定対象物、測定対象物に特異的に結合する生理活性物質にリガンドが結合された第一の結合物質、及び測定対象物に特異的に結合する生理活性物質に標識物質が結合された第二の結合物質の3者が結合した3者複合体を、多孔性フィルタにリガンド捕捉剤を介し固定し、標識物質が発する光を測定することで測定対象物の生理活性物質を測定する方法において、前記標識物質が蛍光ビーズを含有することを特徴とする生理活性物質の測定方法。 The target substance to be measured in the sample solution, the first binding substance to which the ligand is bound to the physiologically active substance that specifically binds to the measurement target, and the labeling substance to be bound to the physiologically active substance that specifically binds to the measurement target. The bioactive substance of the measurement target is measured by fixing the ternary complex in which the three of the second binding substances are bound to a porous filter via a ligand scavenger and measuring the light emitted by the labeling substance. A method for measuring a physiologically active substance, wherein the labeling substance contains fluorescent beads.
  2.  前記3者複合体を溶液中で形成し、該溶液を前記多孔性フィルタに添加することを特徴とする請求項1記載の生理活性物質の測定方法。 The method for measuring a bioactive substance according to claim 1, wherein the three-party complex is formed in a solution, and the solution is added to the porous filter.
  3.  前記検体液、前記第一の結合物質の溶液、前記第二の結合物質の溶液の3種の溶液を同時に混合することを特徴とする請求項2記載の生理活性物質の測定方法。 The method for measuring a physiologically active substance according to claim 2, wherein three kinds of solutions, the sample solution, the solution of the first binding substance, and the solution of the second binding substance, are mixed at the same time.
  4.  前記第一の結合物質の溶液、前記第二の結合物質の溶液の2種の溶液を混合し、該混合液に前記検体液を混合することを特徴とする請求項2記載の生理活性物質の測定方法。 The physiologically active substance according to claim 2, wherein two kinds of solutions, a solution of the first binding substance and a solution of the second binding substance, are mixed, and the sample solution is mixed with the mixed solution. Measuring method.
  5.  ポリエチレングリコール、ポリビニルアルコール、ポリピロリドンの内の少なくとも1種を含有する溶液中で前記3者複合体を形成することを特徴とする請求項2記載の生理活性物質の測定方法。 The method for measuring a physiologically active substance according to claim 2, wherein the tripartite complex is formed in a solution containing at least one of polyethylene glycol, polyvinyl alcohol, and polypyrrolidone.
  6.  前記検体液と、前記第一の結合物質を含む溶液、及び前記第二の結合物質を含む溶液を混合する際に、検体液量に対する該両結合物質の溶液の合計量の容積比が、2/1~1/20であることを特徴とする請求項1記載の生理活性物質の測定方法。
     
     
    When the sample liquid, the solution containing the first binding substance, and the solution containing the second binding substance are mixed, the volume ratio of the total amount of the solutions of both binding substances to the sample liquid amount is 2. The method for measuring a physiologically active substance according to claim 1, wherein the content is 1/1 to 1/20.

PCT/JP2020/042470 2019-11-14 2020-11-13 Method for measuring physiologically active substance WO2021095858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556182A JPWO2021095858A1 (en) 2019-11-14 2020-11-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218368 2019-11-14
JP2019-218368 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021095858A1 true WO2021095858A1 (en) 2021-05-20

Family

ID=75913006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042470 WO2021095858A1 (en) 2019-11-14 2020-11-13 Method for measuring physiologically active substance

Country Status (2)

Country Link
JP (1) JPWO2021095858A1 (en)
WO (1) WO2021095858A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203968A (en) * 1990-11-29 1992-07-24 Kyoto Daiichi Kagaku:Kk Method for measuring chemical emission immunity
JP2001235471A (en) * 2000-02-23 2001-08-31 Nippon Chemiphar Co Ltd Method using porous filter for measuring bioactive sample substance
JP2009080019A (en) * 2007-09-26 2009-04-16 Nippon Sekijiyuujishiya Antibody analysis method by detecting immune complex using fluorescent bead
JP2010101673A (en) * 2008-10-22 2010-05-06 Tanaka Holdings Kk High-sensitivity measurement kit by immunochromatography
JP2013512429A (en) * 2009-11-24 2013-04-11 インフォピア カンパニー,リミテッド Membrane biosensor with porous film and method for measuring immune reaction or enzyme reaction using the same
CN104237523A (en) * 2013-06-14 2014-12-24 杭州浙大迪迅生物基因工程有限公司 High throughput detection kit for allergen specific antibody IgE and detection method thereof
JP2015230293A (en) * 2014-06-06 2015-12-21 古河電気工業株式会社 Test kit for biomolecule detection, and detection method of biomolecule using the same, and test piece for biomolecule detection and labeling reagent for biomolecule detection used therein
CN205027758U (en) * 2015-09-09 2016-02-10 新疆维吾尔自治区产品质量监督检验研究院 Carbon quantum dot test strip
WO2016163493A1 (en) * 2015-04-08 2016-10-13 株式会社パートナーファーム Solid-phase reaction vessel and measurement method using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203968A (en) * 1990-11-29 1992-07-24 Kyoto Daiichi Kagaku:Kk Method for measuring chemical emission immunity
JP2001235471A (en) * 2000-02-23 2001-08-31 Nippon Chemiphar Co Ltd Method using porous filter for measuring bioactive sample substance
JP2009080019A (en) * 2007-09-26 2009-04-16 Nippon Sekijiyuujishiya Antibody analysis method by detecting immune complex using fluorescent bead
JP2010101673A (en) * 2008-10-22 2010-05-06 Tanaka Holdings Kk High-sensitivity measurement kit by immunochromatography
JP2013512429A (en) * 2009-11-24 2013-04-11 インフォピア カンパニー,リミテッド Membrane biosensor with porous film and method for measuring immune reaction or enzyme reaction using the same
CN104237523A (en) * 2013-06-14 2014-12-24 杭州浙大迪迅生物基因工程有限公司 High throughput detection kit for allergen specific antibody IgE and detection method thereof
JP2015230293A (en) * 2014-06-06 2015-12-21 古河電気工業株式会社 Test kit for biomolecule detection, and detection method of biomolecule using the same, and test piece for biomolecule detection and labeling reagent for biomolecule detection used therein
WO2016163493A1 (en) * 2015-04-08 2016-10-13 株式会社パートナーファーム Solid-phase reaction vessel and measurement method using same
CN205027758U (en) * 2015-09-09 2016-02-10 新疆维吾尔自治区产品质量监督检验研究院 Carbon quantum dot test strip

Also Published As

Publication number Publication date
JPWO2021095858A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
KR100994345B1 (en) Fluidics-based assay devices
CN100476435C (en) Self-calibration system for a magnetic binding measurement and method for detecting the resistance and quantity of measured object
EP3394597B1 (en) Optical detection of a substance in fluid
JPH07506184A (en) Automatic continuous random access analysis system
US11371987B2 (en) Method of amplifying detection light using light-reflecting material, in immunochromatography
CN1675545A (en) Membrane-based assay devices that utilize time-resolved fluorescence
EP2639584A1 (en) Real time diagnostic assays using an evanescence biosensor
JP7267211B2 (en) Sandwich-type assays using the decreasing signal portion of the dose-response curve to measure analytes, such as high-concentration analytes
KR20220165759A (en) Bead-based analysis of samples
US20110293473A1 (en) Automatic analyzer
US20120208292A1 (en) Fluorescent measurement in a disposable microfluidic device, and method thereof
WO2021095858A1 (en) Method for measuring physiologically active substance
US6342397B1 (en) Homogeneous biospecific assay using a solid phase, two-photon excitation and confocal fluorescence detection
EP1084408B1 (en) Homogeneous biospecific assay using a solid phase, two-photon excitation and confocal fluorescence detection
EP2090365A1 (en) Combined cell and protein analysis on a substrate
WO2021025066A1 (en) Solid-phase reaction container and measurement method in which same is used
JP7205940B2 (en) Solid phase reaction chip and measurement method using the same
JP2015500499A (en) Attenuating dyes and corresponding methods for examining fluorescence from multiple surfaces
JP2015500500A (en) Fluorescence measurement and method for disposable microfluidic devices
JP6775020B2 (en) Analytical cuvettes and derivatives with signal amplification
JP2004191073A (en) Immunological antigen detection method
MXPA06005123A (en) Method for extending the dynamic detection range of assay devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886577

Country of ref document: EP

Kind code of ref document: A1