WO2021088073A1 - Method and apparatus for determining position occupied by resource, and terminal device - Google Patents

Method and apparatus for determining position occupied by resource, and terminal device Download PDF

Info

Publication number
WO2021088073A1
WO2021088073A1 PCT/CN2019/116873 CN2019116873W WO2021088073A1 WO 2021088073 A1 WO2021088073 A1 WO 2021088073A1 CN 2019116873 W CN2019116873 W CN 2019116873W WO 2021088073 A1 WO2021088073 A1 WO 2021088073A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
positions
candidate positions
synchronization signal
configuration information
Prior art date
Application number
PCT/CN2019/116873
Other languages
French (fr)
Chinese (zh)
Inventor
田文强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/116873 priority Critical patent/WO2021088073A1/en
Priority to CN201980100198.1A priority patent/CN114365440A/en
Publication of WO2021088073A1 publication Critical patent/WO2021088073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communication technology, and more specifically, to a method, device, and terminal device for determining the location of resource occupation.
  • the base station may report to the terminal at a certain number of candidate locations.
  • the equipment UE, User Equipment
  • SSB synchronization signal block
  • SS/PBCH block synchronization signal block
  • this application proposes a method, device and terminal equipment for determining the location of resource occupation to improve the above-mentioned problems.
  • an embodiment of the present application provides a method for determining a resource occupation location, the method is applied to a terminal device, and the method includes: acquiring location configuration information, where the location configuration information includes the base station's response to the transmission synchronization signal block The configuration of the candidate positions; according to the position configuration information, the resource occupied positions in all candidate positions in the synchronization signal block transmission window are determined, and the candidate positions are the positions used to transmit the synchronization signal block.
  • an embodiment of the present application provides an apparatus for determining a resource occupation location, which is applied to a terminal device.
  • the method includes: an information acquisition module for acquiring location configuration information, where the location configuration information includes base station synchronization to transmission The configuration of the candidate positions of the signal block; the position determining module is used to determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, and the candidate positions are used to transmit the synchronization signal block s position.
  • the embodiments of the present application provide a method for determining the location of resource occupation, which is applied to a base station, and the method includes: sending location configuration information to a terminal device, where the location configuration information includes the base station's candidate for transmitting synchronization signal blocks.
  • the position configuration is used to instruct the terminal device to determine the resource occupation positions of all candidate positions in the synchronization signal block transmission window according to the position configuration information, where the candidate positions are the positions used to transmit the synchronization signal block;
  • an embodiment of the present application provides a terminal device, including: one or more processors; system memory; touch screen memory; one or more programs, wherein the one or more programs are stored in the system In the memory and configured to be executed by the one or more processors, and the one or more programs are configured to execute the above-mentioned method.
  • an embodiment of the present application provides a computer-readable storage medium having program code stored in the computer-readable storage medium, and the program code can be invoked by a processor to execute the above-mentioned method.
  • the method, device, and terminal device for determining the location of resource occupation acquire location configuration information, where the location configuration information includes the configuration of the base station for the candidate locations for transmitting synchronization signal blocks; determine according to the location configuration information The resource occupancy positions in all candidate positions in the synchronization signal block transmission window.
  • Figure 1 Figure 4, Figure 6, Figure 7, and Figure 9 to Figure 13 show schematic diagrams of the arrangement of candidate positions in an embodiment of the present application.
  • Fig. 2 shows a flowchart of a method for determining a resource occupation position provided by the first embodiment of the present application.
  • Fig. 3 shows a flowchart of a method for determining a resource occupation location provided by a second embodiment of the present application.
  • Fig. 5 shows a flowchart of a method for determining a resource occupation position provided by a third embodiment of the present application.
  • Fig. 8 shows a flowchart of a method for determining a resource occupation location provided by a fourth embodiment of the present application.
  • FIG. 14 shows a flowchart of a method for determining a resource occupation position provided by another embodiment of the present application.
  • Fig. 15 shows a functional module diagram of an apparatus for determining a resource occupation position provided by an embodiment of the present application.
  • Fig. 16 shows a structural block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 17 is a storage unit for storing or carrying program code for implementing the method for determining the resource occupation position according to the embodiment of the present application according to an embodiment of the present application.
  • an SSB is sent at a candidate location.
  • a candidate location may be used to send an SSB or may not send an SSB.
  • multiple candidate locations sent by the SSB can be provided, and the number of candidate locations provided It is greater than the maximum number of SSBs to be sent, so that after the LBT is successful, there are still enough candidate positions for the base station to send the SSB, and accordingly to avoid the impact of the LBT failure on the terminal equipment receiving the SSB, as shown in Figure 1.
  • the base station sends a maximum of 8 SSBs in a transmission period
  • more than 8 candidate positions can be configured.
  • 20 candidate positions for SSB transmission can be pre-configured, and a maximum of 8 can be transmitted from these 20 candidate positions for SSB transmission.
  • SSB is a position in the time domain.
  • some candidate positions may be sent by SSB, and some candidate positions may not be sent by SSB. If all candidate positions are used as candidate positions for SSB transmission, the terminal equipment cannot perform rate matching well. , And also cause a waste of available resources. Therefore, the terminal device can determine which candidate positions will not be sent by SSB among all the candidate positions configured, and which candidate positions may be sent by SSB, so as to facilitate the UE to respond to those who may be sent by SSB.
  • candidate positions are rate-matched, and candidate positions that are not sent by SSB are used to transmit other information, such as physical downlink control channel (PDCCH, Physical Downlink Control CHannel), physical downlink shared channel (PDSCH, Physical Downlink Shared CHannel), or others Reference signals (RS, Reference Signals), such as channel state information reference signal (CSI-RS, Channel-State Information Reference Signal), demodulation reference signal (DMRS, DeModulation Reference Signal), tracking reference signal (TRS, tracking reference signal) , Phase tracking reference signal (PTRS, phase noise tracking RS), etc.
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink shared channel
  • RS Reference Signals
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • TRS tracking reference signal
  • PTRS Phase tracking reference signal
  • phase noise tracking RS Phase noise tracking RS
  • the inventor proposes the method for determining the resource occupied position in the embodiment of the present application, which is used for the terminal device to determine the candidate positions for SSB transmission in the unlicensed frequency band, and correspondingly, it can simultaneously determine that all candidate positions are not.
  • Fig. 2 shows the method for determining the resource occupation position provided by the first embodiment of the present application. This method can be applied to terminal equipment. Specifically, the method includes:
  • Step S110 Obtain location configuration information, where the location configuration information includes the configuration of the base station for the candidate location for transmitting the synchronization signal block.
  • the base station may send location configuration information to the terminal device, and the location configuration information may be a kind of indication information (index) used to notify the terminal device of the configuration of the base station for the candidate location for transmitting the synchronization signal block.
  • the terminal device can obtain the location configuration information to determine the transmission status of the synchronization signal block at each candidate location, that is, determine at which candidate locations the base station may send the synchronization signal block to the terminal device, and at which candidate locations the base station will not send the synchronization signal block to the terminal device Send the sync signal block.
  • the terminal device may receive the synchronization signal block, and in the candidate location where the base station is impossible to send the synchronization signal block, the terminal device may not receive the synchronization signal block.
  • Step S120 According to the position configuration information, determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block.
  • candidate positions for the synchronization signal block may be determined, and the candidate positions for the synchronization signal block may be sent as the resource occupation position. It is understandable that the candidate position is the position used to transmit the synchronization signal block, for the base station, it is the position used to send the synchronization signal block, and for the terminal device, it is the position where the synchronization signal block is received.
  • the candidate location in the transmission window where the synchronization signal block may be transmitted may be determined as the determined resource occupation location.
  • This application also provides an embodiment, which describes a specific way of determining the resource occupation location.
  • the candidate position corresponding to the transmittable candidate position is the resource occupied position.
  • it may include:
  • Step S210 Receive location configuration information, where the location configuration information includes: among a set of candidate locations used by the base station to transmit synchronization signal blocks, the arrangement relationship between candidate locations that can transmit synchronization signal blocks and candidate locations that cannot transmit synchronization signal blocks .
  • the position configuration information may include an arrangement relationship between the candidate positions of the transmittable synchronization signal block and the candidate positions of the untransmissible synchronization signal block among a set of candidate positions for transmitting the synchronization signal block.
  • the candidate positions where the synchronization signal block can be transmitted are the candidate positions where the synchronization signal block may be transmitted, and the candidate position where the synchronization signal block cannot be transmitted is the candidate position where the synchronization signal block will not be transmitted.
  • Each candidate position in the set of candidate positions is adjacent in the time domain.
  • the candidate position where the synchronization signal block may be sent indicates that within a transmission period, if the LBT is successful and the synchronization signal block corresponding to the candidate position has not been transmitted, the base station will transmit the corresponding synchronization signal block at the candidate position.
  • the base station can use a bitmap as the location configuration information, and send the configuration of a group of candidate locations in the form of a bitmap.
  • Each bit in the bitmap represents a candidate location, and the number of valid bits in the bitmap It is the number of candidate positions in a group of candidate positions, or the length of the bitmap is expressed as the number of candidate positions in a group of candidate positions.
  • one of 0 or 1 may be used to indicate a candidate position of a synchronization signal block that may be transmitted, and the other may indicate a candidate position of a synchronization signal block that will not be transmitted.
  • the arrangement of 0 and 1 represents the arrangement relationship between the candidate positions of a group of candidate positions that can transmit a synchronization signal block and the candidate positions that cannot transmit a synchronization signal block.
  • 1 represents the candidate position of the synchronization signal block that may actually be sent
  • 0 represents the candidate position of the synchronization signal block that will not be sent.
  • the candidate position of the synchronization signal block that can be transmitted and the position of the synchronization signal block can be determined according to the arrangement of 1 and 0.
  • the arrangement relationship between the candidate positions of the non-transmissible sync signal block can be determined according to the arrangement of 1 and 0.
  • the bitmap indicating the configuration of a group of candidate positions in the configuration information is 1101, which means that in a group of candidate positions, the first, second, and fourth candidate positions may have corresponding SSB transmissions. The candidate position will not have the corresponding SSB sent.
  • valid configuration information in the location configuration information may also be determined.
  • the effective configuration information when determining the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the location configuration information, all candidates in the synchronization signal block transmission window may be determined according to the effective configuration information
  • the resources in the location occupy the location. That is to say, in the manner of determining the resource occupation location described in the embodiment of the present application, the location configuration information on which it is based is the determined effective configuration information.
  • the first Q candidate locations in the location configuration information can be used as valid location configuration information ; Or, use the last Q candidate positions in the position configuration information as valid position configuration information; or use the position configuration information as valid configuration information.
  • the quasi co-location parameter is used to determine the quasi co-location relationship between candidate positions in the transmission window, and the quasi co-location parameter Q is a positive integer.
  • the location configuration information is a bitmap, and if the length of the bitmap is greater than the value Q of the quasi co-location parameter, the bitmap is used as the effective configuration information; or the first Q bits of the bitmap are used as the effective configuration information ; Or use the last Q bits of the bitmap as valid configuration information.
  • Step S220 cyclically expand the arrangement relationship to all candidate positions in the transmission window.
  • Step S230 Determine one or more candidate positions that can transmit synchronization signal blocks among all the expanded candidate positions as the resource occupied positions.
  • the transmittable candidate positions among all the candidate positions in the transmission window can be determined according to the expansion of the arrangement relationship in a set of candidate positions, and the transmittable candidate positions are candidate positions where the synchronization signal block may be transmitted.
  • K represents the number of all candidate positions in the transmission window
  • K is a positive integer
  • the cyclic expansion is that the arrangement relationship of a group of candidate positions in the position configuration information is cyclically expanded among the K candidate positions, so as to realize K
  • Each of the candidate positions corresponds to a candidate position where a synchronization signal block is likely to be transmitted or a position where it is impossible to transmit a synchronization signal block, so that one or more transmittable candidates among the K candidate positions after expansion can be determined
  • Location is the location occupied by the resource.
  • the position configuration information is represented by a bitmap
  • 1 corresponds to the candidate position that may transmit the synchronization signal block
  • 0 corresponds to the candidate position that does not transmit the synchronization signal block
  • the effective length of the bitmap is L bits
  • the position configuration information of L bits is extended to K candidate positions.
  • the L bits are expanded to K bits, and the candidate position corresponding to 1 after the expansion is determined as the resource occupation position.
  • the position configuration information is cyclically expanded to 20 candidate positions, which is expanded to 11010101 11010101 1101.
  • 1 corresponds to a candidate position where a synchronization signal block may be transmitted
  • 0 corresponds to a candidate position where a synchronization signal block is not transmitted.
  • the candidate position corresponding to 1 can be determined as a resource-occupied position
  • the candidate position corresponding to 0 is a non-resource-occupied position.
  • the arrangement relationship of candidate positions in the location configuration information is cyclically extended to all candidate positions in the transmission window, so that the resource occupation positions in all candidate positions in the transmission window can be determined according to the arrangement relationship.
  • this application also provides an embodiment for determining the synchronization signal transmission window based on the arrangement relationship of a group of candidate locations Among all candidate positions in, the candidate position corresponding to the transmittable candidate position is the resource occupied position. Specifically, in this embodiment, the resource occupation location can be determined according to the quasi co-location relationship.
  • the method provided by the embodiment of the present application includes:
  • Step S310 Acquire location configuration information, where the location configuration information includes: among a set of candidate locations used by the base station to transmit synchronization signal blocks, the ranking between candidate locations that can transmit synchronization signal blocks and candidate locations that cannot transmit synchronization signal blocks Cloth relationship.
  • the configuration of the candidate positions of the synchronization signal block transmitted by the base station may include the arrangement relationship of the candidate positions therein, so that the arrangement relationship can be obtained according to the position configuration information.
  • this step please refer to the foregoing embodiment, which will not be repeated here.
  • Step S320 According to the arrangement relationship, among all candidate positions in the synchronization signal transmission window, a candidate position having a quasi co-location relationship with the transmittable candidate position is determined to be the resource occupation position, and the transmittable candidate position is The position of the sync signal block can be transmitted.
  • the quasi-co-location relationship can be determined according to the quasi-co-location parameter, and the quasi-co-location parameter can be a positive integer, which is represented by Q in the embodiment of the present application.
  • the terminal equipment can obtain the quasi co-location parameters from the base station.
  • all candidate positions in the transmission window can be correspondingly numbered, and the terminal device can obtain the number from the base station or in a manner predefined by the protocol.
  • the two candidate positions have a quasi co-location relationship.
  • the numbers of the two candidate positions are M1 and M2 respectively. If M1 mod Q is equal to M2 mod Q, the two candidate positions are considered to have a quasi co-location relationship. Or, for example, as shown in Figure 6, the value of Q is 8, and the numbers corresponding to the SSBs with candidate positions of 0, 8, and 16 are all 0 after the modulus of Q. It can be determined that the candidate positions are 0, 8, and 16. The candidate locations have a quasi co-location relationship.
  • the candidate position that has a quasi co-location relationship with the transmissible candidate position may be, if the number of the candidate position is aligned with the value obtained after the modulus of the co-location parameter, it is compared with the transmissible candidate in a group of candidate positions. If the location corresponds to the location, it is determined that the candidate location is a candidate location that has a quasi co-location relationship with the transmittable candidate location.
  • the number of all candidate positions in the transmission window may be obtained. Calculate all the numbers, align the modulo values of the co-location parameters to obtain multiple modulus values. Among the multiple modulus values, the modulus value corresponding to the arrangement position of the transmittable candidate position in the arrangement relationship is determined, and the candidate position corresponding to the determined modulus value is used as a candidate having a quasi co-location relationship with the transmittable candidate position position.
  • the transmittable candidate position is a candidate position where a synchronization signal block can be transmitted, that is, a candidate position where a synchronization signal block may be transmitted.
  • the correspondence between the modulus value and the arrangement position can be understood as the modulus value obtained by the number of the first candidate position among all the K candidate positions in the transmission window, including the 1st to Kth candidate positions, Correspond to the first candidate position in the arrangement relationship; the modulus value obtained by the number of the second candidate position corresponds to the second candidate position in the arrangement relationship, and so on, until the number of the Lth candidate position is obtained
  • the modulus value corresponds to the Lth candidate position in the arrangement relationship.
  • the arrangement relationship includes a group of L candidate positions.
  • the terminal device can determine that the number and 4 are modulo 0 (numbers 0, 4, 8, 12, 16 in Figure 7), number After modulo 4, it is equal to 1 (numbers 1,5,9,13,17 in Figure 7) and number and 4 are modulo 3 (numbers 3,7,11,15,19 in Figure 7)
  • the candidate position of is the resource occupied position.
  • X is used as the ranking position of the candidate position in the transmission window in the time domain.
  • the number corresponding to the Xth candidate position can be the last three digits of X.
  • X is 9 (decimal), which is 1001, then the number of the corresponding candidate position is 001, which is 1 in decimal.
  • the number corresponding to the Xth candidate position may also be X, for example, if X is 9, then the corresponding number is 9.
  • the candidate position in the transmission window may start from the 0th position, and X may start from 0 to (K-1).
  • the ranking position X of the candidate position is mainly used as an example for illustration.
  • the candidate position numbers are in other forms, such as the last three digits of the sorted position X
  • the sorted position is the candidate position of X.
  • Q is taken modulo Q
  • the latter three digits are taken modulo Q.
  • the 9th candidate position in FIG. 7 ie, the candidate position corresponding to the number 9 in FIG. 7
  • the last three digits of 9 are used as the number, since the binary number of 9 is 0001, the next three digits 001 modulate Q.
  • a candidate location that has a quasi co-location relationship with a transmissible candidate location can be determined as a resource-occupied location based on the quasi-co-location parameter, which improves the determination speed of the resource-occupied location.
  • this application also provides an embodiment, which can determine from the candidate position in the transmission window when it is determined that the base station has preempted the channel The resource occupancy position, so that the determined resource occupancy position is more accurate.
  • the method of this embodiment includes:
  • Step S410 Obtain location configuration information, where the location configuration information includes the configuration of the base station for the candidate location for transmitting the synchronization signal block.
  • Step S420 In the transmission window, when the indication information sent by the base station is received, a reference position is determined according to the indication information, and the indication information indicates that the base station has seized the channel.
  • the indication information is information that can indicate that the base station has seized the channel, for example, it can be COT indication, DCI message (carried on PDCCH or GC-PDCCH), or other reference information (such as SSB, CSI-RS, TRS, DMRS), etc. .
  • any information sent from the base station can be used as the indication information.
  • a reference position may be determined according to the indication information.
  • the reference position is a time domain position for determining whether to confirm the resource occupation position for the candidate position after the reference position.
  • the time at which the indication information is received may be directly used as the reference position.
  • the location where the synchronization signal block is sent may be set with certain preset conditions, such as sending at an even-numbered position, sending at a position that is a multiple of 4, and sending at a position that is a multiple of 8. Therefore, in the embodiment of the present application, the nearest candidate position that satisfies the preset condition after the time when the indication information is received may be obtained as the reference position.
  • all candidate positions can be grouped, starting from the first candidate position, after each adjacent L grouping of the candidate positions in the transmission window, the final candidate positions less than L are grouped into one group, two groups The boundary between is defined as the group boundary.
  • L is the number of a group of candidate positions indicated in the position configuration information.
  • the candidate position that meets the preset condition may be the first candidate position after the group boundary.
  • the candidate positions that meet the preset conditions may also be candidate positions numbered even; or candidate positions numbered as multiples of 4; or candidate positions numbered as multiples of 8. Or the nearest candidate position after the indication information, etc., can be set as needed.
  • G can be determined in one of the following ways: broadcast messages, including MIB, SIB1 (RMSI), and SIB; RRC proprietary signaling; pre-arranged by the protocol.
  • Step S430 According to the position configuration information, determine the resource occupation position from the candidate position after the reference position.
  • the position configuration information when determining the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, the position configuration information may be determined from the candidate positions after the reference position Resource occupation location. That is, after the reference position is determined, the resource occupation position is determined from the candidate position after the reference position.
  • the candidate position after the reference position may include the reference position itself, and the candidate position between the reference position and the group boundary may include the reference position itself.
  • the candidate position after the reference position may not include the reference position, and the candidate position between the reference position and the group boundary may not include the reference position itself, which can be specifically set according to requirements.
  • the embodiment of the present application mainly uses the time when the indication information is received as the reference position as an example to describe the determination of the resource occupation position.
  • determining the resource occupation position from the candidate position after the reference position may be to use all candidate positions after the reference position as the resource occupation position; or, to use all the candidates for the synchronization signal block that may be transmitted after the reference position
  • the positions are all taken as resource occupied positions; or, the resource occupied positions are determined from a designated number of candidate positions after the reference position, and the designated number can be determined according to the reference position and the number of a set of candidate positions.
  • the following describes the designated number of candidate positions after the reference position through different implementation manners to determine the resource-occupied position.
  • the location configuration information may include the number L of a group of candidate locations used by the base station to transmit the synchronization signal block, where L is a positive integer.
  • L is a positive integer.
  • every adjacent L candidate positions may be grouped into a group, and finally, candidate positions that do not satisfy the number L are grouped into a group. Take the boundary between the two groups as the group boundary.
  • the group boundary closest to the reference position may be determined, and the group boundary is determined from the reference position and the group Among the candidate positions between the boundaries and the nearest L candidate positions after the group of boundaries, one or more candidate positions are determined as resource-occupied positions.
  • a bitmap is used as an example of location configuration information to describe grouping.
  • the effective length of the bitmap is L. If the value of L is 8, the grouping of every L candidate positions in the transmission window can be as shown in Fig. 9, because the last 4 candidate positions (that is, the numbered 16 to 19 in Fig. 9 Candidate positions) do not meet 8, then the 4 candidate positions are grouped into one group. In the grouping shown in FIG. 9, the group boundary is between 7 and 8, and the group boundary is between 16 and 16.
  • before the first candidate position and after the last candidate position in the transmission window can also be used as group boundaries, as shown in Figure 8 before the candidate position numbered 0 and the candidate numbered 19 After the location.
  • the first number information in FIG. 9 is the number of the candidate position.
  • the group boundary closest to the reference position can be determined, that is, after the time of the reference position and the group boundary closest to the time of the reference position.
  • the time corresponding to the indication information is the reference position.
  • the group boundary with the closest reference position is between 7 and 8.
  • one or more candidate positions can be determined as resource-occupied positions from candidate positions between the reference position and the nearest group boundary, and L candidate positions after the nearest group boundary.
  • the candidate positions between the reference position and the nearest group boundary, and the L candidate positions after the nearest group boundary may be used as resource occupation positions.
  • the candidate positions numbered 5 to 7 are the candidate positions between the reference position and the nearest group boundary
  • the candidate positions numbered 8 to 15 are the L candidate positions after the nearest group boundary
  • the number 5 to The candidate positions numbered 7 and numbered 8 to 15 are all determined to be resource-occupied positions.
  • the candidate positions between the reference position and the nearest group boundary, and among the L candidate positions after the nearest group boundary, candidate positions that may transmit synchronization signal blocks may be used as resource occupation positions .
  • the location configuration information may include the arrangement relationship between the candidate locations where the synchronization signal block can be transmitted and the candidate locations where the synchronization signal block cannot be transmitted in the set of candidate locations. Since the candidate positions where the synchronization signal block can be transmitted have a quasi co-location relationship, the synchronization signal block may be transmitted in a candidate position.
  • the specific method for determining the resource occupation position may be based on a set of candidate positions. Arrangement relationship, determining the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary, which have a quasi co-location relationship with the candidate positions of the transmittable synchronization signal block The candidate position is used as the resource occupation position.
  • the time when the indication information is received is the reference position, and the bitmap is used as the position configuration information.
  • the bitmap is 11011101, that is, the effective length of the position configuration information is 8, which means that there are 8 candidate positions in a group. Candidate position.
  • the candidate positions of 1), 5 (corresponding to the sixth 1 in the bitmap), or 7 (corresponding to the eighth 1) are the resource occupied positions, as the PDCCH or PDSCH or other RS (such as CSI-RS, DMRS) cannot be transmitted ,TRS,PTRS) resources.
  • the location configuration information may include an arrangement relationship between candidate locations where a synchronization signal block can be transmitted and candidate locations where a synchronization signal block cannot be transmitted in a set of candidate locations.
  • all candidate locations may be Among the L1 candidate positions between the reference position and the group boundary, the candidate position corresponding to the transmittable candidate position among the last L1 candidate positions in the arrangement relationship is used as the resource occupation position; and, Among the L nearest candidate positions after the group boundary, the candidate positions corresponding to the transmittable candidate positions in the arrangement relationship are used as the resource-occupied positions.
  • the transmittable candidate position is a candidate position where the base station can transmit a synchronization signal block, that is, a candidate position where the base station may transmit a synchronization signal block.
  • L1 represents the number of candidate positions from the reference position to the group boundary.
  • the candidate positions corresponding to 1 in the position configuration information 11011101 are the candidate positions corresponding to numbers 8, 9, 11, 12, 13, and 15, respectively, and the numbers 8, 9, 11, and 15 can be determined.
  • the candidate positions corresponding to 12, 13, and 15 are resource-occupied positions.
  • the location configuration information may include the number L of a set of candidate locations used by the base station to transmit the synchronization signal block, where L is a positive integer.
  • determining the resource occupation position from the candidate positions after the reference position may be: determining the resource occupation position from the last L candidate positions after the reference position.
  • the position configuration information is a bitmap with an effective length of 8, and the indication information is used as a reference position. Between the candidate position numbered 4 and the candidate position numbered 5 in Figure 12, you can start from 8 after the indication information.
  • the resource-occupied location is determined from the candidate locations, that is, the resource-occupied location is determined from the candidate locations numbered 5 to 12.
  • all the L nearest candidate positions after the reference position may be determined as resource-occupied positions.
  • candidate positions that may transmit synchronization signal blocks may be used as resource occupation positions.
  • the location configuration information may include the arrangement relationship between the candidate locations where the synchronization signal block can be transmitted and the candidate locations where the synchronization signal block cannot be transmitted in the set of candidate locations. Since the candidate positions where the synchronization signal block can be transmitted have a quasi co-location relationship, the synchronization signal block may be transmitted in a candidate position.
  • the position configuration information from the nearest L candidates after the reference position The resource occupancy position is determined in the position, which may be, according to the arrangement relationship, the nearest L candidate positions after the reference position are determined, which have a quasi co-location relationship with the candidate positions that can transmit the synchronization signal block in the arrangement relationship
  • the candidate position is used as the resource occupation position.
  • the time when the instruction information is received is the reference position, and the bitmap is used as the location configuration information.
  • the bitmap is 11011101, that is, the effective length of the location configuration information is 8, which means that there are 8 candidate positions in a group.
  • the number and Q are modulo 0 (corresponding to the first 1 in the bitmap), 1 (corresponding to the second 1 in the bitmap), and 3 (corresponding to the first 1 in the bitmap).
  • the candidate positions numbered 5, 7, 8, 9, 11, and 12 are resource occupied positions.
  • the location configuration information may include an arrangement relationship between candidate locations where a synchronization signal block can be transmitted and candidate locations where a synchronization signal block cannot be transmitted in a set of candidate locations.
  • determining the resource occupation position from the nearest L candidate positions after the reference position according to the position configuration information may include: determining the nearest group boundary after the reference position; and determining the reference position to the Among the L2 candidate positions between the nearest group boundaries, the candidate position corresponding to the last L2 transmittable candidate positions in the arrangement relationship is used as the resource occupation position; and, after determining the nearest group boundary Among the L3 candidate positions, the candidate position corresponding to the transmittable candidate position among the first L3 candidate positions in the arrangement relationship is used as the resource occupation position, L2 and L3 are non-negative integers, and the sum of L2 and L3 Is L. It can be understood that L2 represents the number of candidate positions between the reference position and the group boundary.
  • the transmittable candidate position is a candidate position where the base station can transmit a synchronization signal block, that is, a candidate position where the base station may transmit a synchronization signal block.
  • the time when the indication information is received is the reference position, and the bitmap is used as the location configuration information.
  • the bitmap is 11011101, that is, the effective length of the location configuration information is 8, which means that there are 8 candidate positions in a group.
  • the number 8 corresponds to the 1 in the first position in the position configuration information
  • the number 9 corresponds to the 1 in the second position in the position configuration information
  • the number 10 corresponds to the third in the position configuration information.
  • Position 0 and number 11 correspond to 1 in the 4th position in the position configuration information
  • number 12 corresponds to 1 in the 5th position in the position configuration information.
  • the 5 candidate positions after the nearest group boundary can be numbered 8, 9 , 11, and 12 are resource occupation positions respectively.
  • the resource occupation position may be determined from the nearest L candidate positions after the reference position.
  • the above two implementation manners can be implemented alternatively.
  • the resource occupation position is determined in the second embodiment described above, that is, the resource occupation position is determined from the nearest L candidate positions after the reference position; if the reference position is not at the group boundary, Then the resource occupation position can be determined in the above-mentioned first implementation manner, that is, one or more candidate positions can be determined from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary.
  • the location is the resource occupied location.
  • the reference position after receiving the indication information, the reference position may be determined according to the indication information to determine the resource occupation position from the candidate positions after the reference position.
  • the determined resource occupation position is more accurate, and more unintended positions can be determined. Occupied candidate positions to determine more available candidate positions.
  • the above-mentioned embodiments may be selectively executed, or executed according to some received information.
  • the transmission window when the indication information sent by the base station is not received, it may be determined to be in all candidate positions in the synchronization signal transmission window according to the arrangement relationship of a group of candidate positions ,
  • the candidate position corresponding to the transmittable candidate position is the resource occupied position. That is to say, in the case that the indication information is not received, the above-mentioned determination of the resource occupation position according to the above-mentioned second embodiment or the third embodiment may be performed.
  • the reference position can be determined according to the instruction information, and the position configuration Information, the resource occupation position is determined from the candidate position after the reference position. That is, when the instruction information is received, the resource occupation position is determined according to the embodiment corresponding to the above step S410 to step S430.
  • the method according to which the resource occupation position is determined can be determined according to the instruction of the base station.
  • the configuration information sent by the base station can be obtained, and the manner of resource occupation can be determined according to the configuration information.
  • the manner of determining the resource occupation position may include: determining the resource occupation position from the nearest L candidate positions after the reference position; or, from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary Among the candidate positions, one or more candidate positions are determined as resource-occupied positions; or, according to the arrangement relationship between the candidate positions for which synchronization signal blocks can be transmitted and the candidate positions for which synchronization signal blocks cannot be transmitted, the position in the synchronization signal transmission window is determined Among all the candidate positions, the candidate position corresponding to the transmittable candidate position is the resource occupied position.
  • the three methods for determining the occupied position of the resource listed here are only examples, and the different determining methods included in each determination method can also be selected.
  • the configuration information may indicate the manner of determining the resource occupation location through the first information.
  • the determination manner may be selected from different determination manners through the indication of the first information and the presence or absence of the first information.
  • the terminal device when the terminal device receives the first information, and the first information indicates that the resource occupation location is determined according to the first rule, the resource occupation location is determined according to the first rule; when the terminal device receives the first information Information, and the first information indicates that the resource occupation position is determined according to the above second rule, the resource occupation position is determined according to the above second rule; when the terminal device receives the first information, and the first message instructs the terminal device to determine the unavailability according to the default rule
  • the time-frequency resource used is determined according to the default rule to determine the resource occupancy position.
  • the first information of 2 bits can realize the indication.
  • the resource occupation position is determined according to the first rule; when the terminal device receives the first information, and The first information indicates that the resource occupation position is determined according to the second rule, and the resource occupation position is determined according to the second rule; when the terminal device does not receive the first information, it means that the base station has not sent the first information, then the resource occupation position is determined according to the default rule .
  • the first information of 1 bit can realize the indication.
  • the resource occupation position is determined according to the first rule; when the terminal device receives the first information, And the first information indicates that the resource occupation position is determined according to the default rule, then the resource occupation position is determined according to the default rule; when the terminal device does not arrive at the first message, which means that the base station has not sent the first information, the resource occupation position is determined according to the second rule.
  • the first information of 1 bit can realize the indication.
  • the resource occupation position is determined according to the second rule; when the terminal device receives the first information, And the first information indicates that the resource occupation position is determined according to the default rule, then the resource occupation position is determined according to the default rule; when the terminal device does not arrive at the first message, it means that the base station has not sent the first information, then the resource occupation position is determined according to the first rule.
  • the first information of 1 bit can realize the indication.
  • the first rule is to determine the resource occupation position from the last L candidate positions after the reference position, or the second implementation in the above fourth embodiment
  • the second rule may be from the reference position to the group boundary Among the candidate positions of, and the nearest L candidate positions after the group boundary, one or more candidate positions are determined to be resource-occupied positions, or the first implementation in the above fourth embodiment
  • the default rule is based on the transmittable
  • the arrangement relationship between the candidate positions of the synchronization signal block and the candidate positions of the non-transmissible synchronization signal block is determined, among all the candidate positions of the synchronization signal transmission window, the candidate position corresponding to the candidate position that can be transmitted is the resource occupied position,
  • the first embodiment and the second embodiment of the above-mentioned embodiments are to determine the resource occupation position from the last L candidate positions after the reference position, or the second implementation in the above fourth embodiment
  • the second rule may be from the reference position to the group boundary Among the candidate positions of, and the nearest L candidate positions after the group boundary, one or more candidate positions are determined to
  • the first information can be sent in any form.
  • the first information can be sent in one or more of the following ways: broadcast messages, including MIB, SIB1 (RMSI), SIB ; RRC dedicated signaling; DCI messages (carried on PDCCH or GC-PDCCH); MAC CE messages, etc.
  • the determination method of the resource occupancy position can be determined according to the configuration information received from the base station, so that the determination method is more specific.
  • configuration information may be obtained, and it is determined whether to determine the resource occupation location according to the configuration information. If it is determined that the resource occupation position is to be determined, the resource occupation position among all candidate positions in the synchronization signal block transmission window can be determined according to the position configuration information, that is, the resource occupation position method in the foregoing embodiment can be performed.
  • the configuration information involved in different embodiments may be the same or different. If the same, the information used in the configuration information may be different in different embodiments.
  • the second information in the configuration information may be used to determine whether to determine the resource occupation location. If the second information indicates that the resource occupancy position is to be determined, then it is determined to determine the resource occupancy position; if the second information indicates that the resource occupancy position is uncertain, the resource occupancy position may be uncertain.
  • any transmission window after the second information may use the determination result as the standard until the second information is received again.
  • each transmission window may be indicated through the second information. According to the instruction result, it is determined whether to determine the resource occupation position in the current transmission window or the latest transmission window after receiving the second information.
  • the second information is not received, which may also be used as an indication. For example, if the second information is not received, it is determined that the resource occupation location is uncertain; or if the second information is not received, it is determined that the resource occupation location is to be determined.
  • the second information can be sent from the base station in one or more of the following ways: broadcast message, including MIB, SIB1 (RMSI), SIB; RRC dedicated signaling; DCI message (carried on PDCCH) Or GC-PDCCH); MAC CE message.
  • broadcast message including MIB, SIB1 (RMSI), SIB
  • RRC dedicated signaling including DCI message (carried on PDCCH) Or GC-PDCCH); MAC CE message.
  • the configuration information is used as a switch to determine whether the resource occupation position is determined, so that the resource occupation position can be determined when necessary, and the processing space can be saved; the resource occupation position can also be determined when necessary, In order to enable the terminal equipment to do better rate matching.
  • This application also provides an embodiment, which is applied to the base station side. Specifically, please refer to Figure 14.
  • This embodiment includes:
  • Step S510 Send location configuration information to the terminal device.
  • the position configuration information includes the configuration of the candidate positions of the synchronization signal block transmitted by the base station, and is used to instruct the terminal device to determine the resource occupation positions of all candidate positions in the synchronization signal block transmission window according to the position configuration information,
  • the candidate position is a position for transmitting the synchronization signal block.
  • Step S520 In the transmission window, when listening first and then speaking success (LBT success), starting from the nearest candidate position, send the corresponding and unsuccessful synchronization signal block to the terminal device.
  • LBT success listening first and then speaking success
  • each candidate position transmits the synchronization signal block in a different direction of wave speed. Therefore, the same synchronization signal block can only be sent at its corresponding candidate position, and the corresponding synchronization signal block
  • the candidate locations have quasi co-location parameters.
  • the synchronization signal block starts to be sent from the nearest candidate position where the synchronization signal block needs to be sent.
  • the nearest candidate position of the synchronization signal block that needs to be sent is that there is a synchronization signal block to be sent, and the synchronization signal block has not been sent yet.
  • the base station in candidate positions after LBT failure, cannot send synchronization signal blocks, and in candidate positions after LBT success, if synchronization signal blocks need to be sent, they can be sent.
  • Figure 1 shows candidate positions in a transmission window, the base station can transmit at most 2 synchronization signal blocks in a window, and only one synchronization signal block is configured to be transmitted, and the corresponding position configuration information is 10, it may be in Figure 1.
  • the synchronization signal block is sent at the nearest candidate position after the moment when the LBT succeeds.
  • the base station can send the location configuration information to the terminal device, and when the base station sends the synchronization signal block, it transmits according to the location configuration information, so that the terminal device can determine that the synchronization signal may be received according to the location configuration information
  • the candidate position of the block will be determined as the candidate position of the block that may receive the synchronization signal as the resource occupation position.
  • the embodiment of the present application also provides an apparatus 600 for determining a resource occupation position, which is applied to a terminal device.
  • the apparatus 600 includes: an information obtaining module 610 for obtaining location configuration information, where the location configuration information includes the configuration of the base station for the candidate locations for transmitting the synchronization signal block.
  • the position determining module 620 is configured to determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, and the candidate positions are positions for transmitting the synchronization signal block.
  • the position determining module 620 may include a reference position determining unit, configured to determine a reference position according to the indication information when the indication information sent by the base station is received in the transmission window, and the indication information indicates the The base station has preempted the channel; the position determining unit is configured to determine the resource occupation position from the candidate position after the reference position according to the position configuration information.
  • the position determining unit may be configured to determine the closest group boundary after the reference position, where the group boundary is the boundary between two groups; from the candidate position between the reference position and the group boundary And among the last L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
  • the position determining unit may be configured to determine, according to the arrangement relationship, a candidate position between the reference position and the group boundary and the nearest L candidate positions after the group boundary, and the The candidate position where the synchronization signal block can be transmitted has a quasi co-location relationship as the resource occupation position.
  • the position determining unit may be used to determine the L1 candidate positions between the reference position and the group boundary corresponding to the transmittable candidate position among the last L1 candidate positions in the arrangement relationship.
  • Candidate positions, as the resource-occupied positions, the transmittable candidate positions are candidate positions where the base station can transmit synchronization signal blocks, and the L nearest candidate positions after the group boundary are aligned with the arrangement
  • the candidate position corresponding to the candidate position may be transmitted in the relationship as the resource occupied position.
  • the method further includes a boundary judgment module, configured to judge whether the reference position is at the group boundary. If yes, the position determining unit may be used to determine the resource occupation position from the last L candidate positions after the reference position; if not, the position determining unit may be used to determine the candidate position between the reference position and the group boundary And among the last L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
  • a boundary judgment module configured to judge whether the reference position is at the group boundary. If yes, the position determining unit may be used to determine the resource occupation position from the last L candidate positions after the reference position; if not, the position determining unit may be used to determine the candidate position between the reference position and the group boundary And among the last L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
  • the position determining unit may be used to determine the resource occupation position from the last L candidate positions after the reference position.
  • the position determining unit may be configured to, according to the arrangement relationship, determine the nearest L candidate positions after the reference position, which has a quasi-common relationship with the candidate positions that can transmit the synchronization signal block in the arrangement relationship.
  • the candidate position of the address relationship is used as the resource occupation position.
  • the position determining unit may be configured to determine the nearest group boundary after the reference position, where the group boundary is the boundary between two groups; and determine L2 between the reference position and the group boundary Among the candidate positions, the candidate positions corresponding to the last L2 transmittable candidate positions in the arrangement relationship are used as the resource occupation positions, and the transmittable candidate positions are candidate positions where the base station can transmit synchronization signal blocks, and , Determine that among the L3 candidate positions after the group boundary, the candidate positions corresponding to the transmittable candidate positions among the first L3 candidate positions in the arrangement relationship are used as the resource occupied positions, and L2 and L3 are non-negative An integer, and the sum of L2 and L3 is L.
  • the reference position determining unit may be configured to use the time when the indication information is received as the reference position.
  • the reference position determining unit may be configured to obtain the nearest candidate position that satisfies a preset condition after the time when the indication information is received, as the reference position.
  • the candidate position that satisfies the preset condition may be: the first candidate position after the group boundary, and the group boundary is the distance between the two groups after every L adjacent groups of the candidate positions in the transmission window.
  • L is the number of a group of candidate positions indicated in the position configuration information; or candidate positions numbered even; or candidate positions numbered as multiples of 4; or candidate positions numbered as multiples of 8; or nearest after the indication information Candidate positions.
  • the position determining module may be used to, in the transmission window, when the indication information sent by the base station is not received, according to the arrangement relationship, determine that among all candidate positions in the synchronization signal transmission window, the corresponding available The candidate position of the transmission candidate position is the resource occupied position, and the transmittable candidate position is the candidate position that can transmit the synchronization signal block; in the transmission window, when the instruction information sent by the base station is received, the In the transmission window, when the indication information sent by the base station is received, the reference position is determined according to the indication information, and the indication information indicates that the base station has seized the channel; according to the position configuration information, from the candidate position after the reference position Determine where the resource is occupied.
  • the position determining module may be configured to determine, according to the arrangement relationship, among all candidate positions in the synchronization signal transmission window, a candidate position having a quasi co-location relationship with the transmittable candidate position is the resource occupation position ,
  • the transmittable candidate position is a position where the synchronization signal block can be transmitted.
  • the device may further include a quasi co-location relationship module, configured to obtain quasi co-location parameters, where the quasi co-location parameters are used to determine the quasi co-location relationship between candidate positions in the transmission window, and the quasi co-location relationship
  • the address parameter is a positive integer Q; to determine the candidate positions that have a quasi co-location relationship with the transmissible candidate position, including: determining the numbers of all candidate positions; calculating all numbers, aligning the value of the co-location parameter after modulo, and obtaining multiple Modulus value; determining the modulus value corresponding to the arrangement position of the transmittable candidate position in the arrangement relationship among the plurality of modulus values, and the transmittable candidate position is a candidate position of a synchronization signal block that can be transmitted; The candidate position corresponding to the modulus of is regarded as the candidate position that has a quasi co-location relationship with the transmittable candidate position.
  • the position determining module may be used to cyclically expand the arrangement relationship to all candidate positions; determine that among all the expanded candidate positions, one or more candidate positions that can transmit synchronization signal blocks are the resource Occupy position.
  • the device may further include a configuration information acquisition module, configured to acquire configuration information; a mode selection module, configured to acquire a manner of determining the resource occupation location according to the configuration information, wherein the base station is used to transmit synchronization signal blocks
  • the number L of a group of candidate positions for determining the resource occupation position includes: determining the resource occupation position from the latest L candidate positions after the reference position; or determining the resource occupation position from the candidate position between the reference position and the group boundary and the Among the last L candidate positions after the group boundary, determine one or more candidate positions as resource-occupied positions; or determine according to the arrangement relationship between candidate positions that can transmit synchronization signal blocks and candidate positions that cannot transmit synchronization signal blocks Among all the candidate positions in the synchronization signal transmission window, the candidate position corresponding to the transmittable candidate position is the resource occupied position.
  • the device may further include a configuration information acquisition module for acquiring configuration information; a location determination module, which determines whether to determine the resource occupation location based on the configuration information, and if so, executes the determination based on the location configuration information Resource occupied positions among all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block.
  • a configuration information acquisition module for acquiring configuration information
  • a location determination module which determines whether to determine the resource occupation location based on the configuration information, and if so, executes the determination based on the location configuration information Resource occupied positions among all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block.
  • the configuration information acquisition module may also be used to determine the effective configuration information in the location configuration information, and determine the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the effective configuration information.
  • the embodiment of the present application also provides an apparatus for determining a resource occupation position, which is applied to a base station.
  • the device may: an information sending module, configured to send location configuration information to a terminal device, where the location configuration information includes a base station's configuration of candidate locations for transmitting synchronization signal blocks, and is used to instruct the terminal device to configure information according to the location , Determine the resource occupancy positions in all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block; the synchronization signal block sending module is used in the transmission window to listen first and then say success , Starting from the nearest candidate position, send the corresponding and unsuccessful synchronization signal block to the terminal device.
  • the coupling between the modules may be electrical, mechanical or other forms of coupling.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • Each module may be configured in different terminal devices, and may also be configured in the same terminal device, which is not limited in the embodiment of the present application.
  • FIG. 16 shows a structural block diagram of a terminal device 700 provided by an embodiment of the present application.
  • the terminal device 700 may be a smart phone, a wearable device, an e-reader, a tablet computer, a computer, and other smart devices that can be used for 5G communication.
  • the terminal device may include one or more processors 710 (only one is shown in the figure), a memory 720, and one or more programs.
  • the memory may include system memory and touch screen memory.
  • the system memory is used to store system data of the terminal device and various files called by the system.
  • the one or more programs are stored in the system memory and configured Is executed by one or more processors 710.
  • the one or more programs are configured to execute the methods described in the foregoing embodiments.
  • the touch screen memory is used to store the touch screen operating system and the use files related to the touch screen, for example, it can store the touch screen firmware.
  • the processor 710 may include one or more processing cores.
  • the processor 710 uses various interfaces and lines to connect various parts of the entire terminal device 700, and executes by running or executing instructions, programs, code sets, or instruction sets stored in the memory 720, and calling data stored in the memory 720.
  • the processor 710 may adopt at least one of digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 710 may integrate one or a combination of a central processing unit (CPU), a graphics processing unit (GPU), a modem, and the like.
  • the CPU mainly processes the operating system, user interface, and application programs; the GPU is used for rendering and drawing of display content; the modem is used for processing wireless communication. It can be understood that the above-mentioned modem may not be integrated into the processor 710, but may be implemented by a communication chip alone.
  • the memory 720 may include random access memory (RAM) or read-only memory (Read-Only Memory).
  • the memory 720 may be used to store instructions, programs, codes, code sets or instruction sets.
  • the memory 720 may include a storage program area and a storage data area, where the storage program area may store instructions for implementing an operating system, instructions for implementing at least one function, instructions for implementing each of the foregoing method embodiments, and the like.
  • the data storage area can also include data created by the terminal device in use.
  • FIG. 17 shows a structural block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • the computer-readable storage medium 800 stores program code, and the program code can be invoked by a processor to execute the method described in the foregoing method embodiment.
  • the computer-readable storage medium 800 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the computer-readable storage medium 800 includes a non-transitory computer-readable storage medium.
  • the computer-readable storage medium 800 has storage space for the program code 810 for executing any method steps in the above-mentioned methods. These program codes can be read from or written into one or more computer program products.
  • the program code 810 may be compressed in a suitable form, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present application relates to the technical field of communications, and disclosed therein are a method and apparatus for determining a position occupied by a resource, and a terminal device. The method comprises: acquiring position configuration information, the position configuration information comprising configuration conditions of a base station for a candidate position for transmitting a synchronization signal block; and according to the position configuration information, determining a position occupied by a resource among all candidate positions in a synchronization signal block transmission window, the candidate positions being positions used to transmit a synchronization signal block.

Description

资源占用位置的确定方法、装置及终端设备Method, device and terminal equipment for determining resource occupation position 技术领域Technical field
本申请涉及通信技术领域,更具体地,涉及一种资源占用位置的确定方法、装置及终端设备。This application relates to the field of communication technology, and more specifically, to a method, device, and terminal device for determining the location of resource occupation.
背景技术Background technique
在第五代移动通信技术(5G,5th generation mobile networks)非授权载波的新无线(NR-U,New Radio-unlicensed)技术中,每个传输周期内,基站可能在一定数量的候选位置向终端设备(UE,User Equipment)发送同步信号块(SSB,SS/PBCH block)。但是,在该一定数量的候选位置中,可能只有部分候选位置实际会向UE发送SSB,因此,需要确定基站实际向UE发送SSB的候选位置,以便于UE做速率匹配。In the new radio (NR-U, New Radio-unlicensed) technology of the fifth generation mobile communication technology (5G, 5th generation mobile networks) unlicensed carrier, in each transmission period, the base station may report to the terminal at a certain number of candidate locations. The equipment (UE, User Equipment) sends a synchronization signal block (SSB, SS/PBCH block). However, among the certain number of candidate positions, only some candidate positions may actually send the SSB to the UE. Therefore, it is necessary to determine the candidate positions where the base station actually sends the SSB to the UE, so that the UE can perform rate matching.
发明内容Summary of the invention
鉴于上述问题,本申请提出了一种资源占用位置的确定方法、装置及终端设备,以改善上述问题。In view of the above-mentioned problems, this application proposes a method, device and terminal equipment for determining the location of resource occupation to improve the above-mentioned problems.
第一方面,本申请实施例提供了一种资源占用位置的确定方法,所述方法应用于终端设备,所述方法包括:获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况;根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。In the first aspect, an embodiment of the present application provides a method for determining a resource occupation location, the method is applied to a terminal device, and the method includes: acquiring location configuration information, where the location configuration information includes the base station's response to the transmission synchronization signal block The configuration of the candidate positions; according to the position configuration information, the resource occupied positions in all candidate positions in the synchronization signal block transmission window are determined, and the candidate positions are the positions used to transmit the synchronization signal block.
第二方面,本申请实施例提供了一种资源占用位置的确定装置,应用于终端设备,所述方法包括:信息获取模块,用于获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况;位置确定模块,用于根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。In a second aspect, an embodiment of the present application provides an apparatus for determining a resource occupation location, which is applied to a terminal device. The method includes: an information acquisition module for acquiring location configuration information, where the location configuration information includes base station synchronization to transmission The configuration of the candidate positions of the signal block; the position determining module is used to determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, and the candidate positions are used to transmit the synchronization signal block s position.
第二方面,本申请实施例提供了一种资源占用位置的确定方法,应用于基站,所述方法包括:向终端设备发送位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况,用于指示所述终端设备根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置;In the second aspect, the embodiments of the present application provide a method for determining the location of resource occupation, which is applied to a base station, and the method includes: sending location configuration information to a terminal device, where the location configuration information includes the base station's candidate for transmitting synchronization signal blocks. The position configuration is used to instruct the terminal device to determine the resource occupation positions of all candidate positions in the synchronization signal block transmission window according to the position configuration information, where the candidate positions are the positions used to transmit the synchronization signal block;
在传输窗口中,当先听后说成功,从最近的候选位置开始,向所述终端设备发送对应的且未成功发送的同步信号块。In the transmission window, when listening first and then saying success, starting from the nearest candidate position, send the corresponding and unsuccessful synchronization signal block to the terminal device.
第四方面,本申请实施例提供了一种终端设备,包括:一个或多个处理器;系统存储器;触摸屏存储器;一个或多个程序,其中所述一个或多个程序被存储在所述系统存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置用于执行上述的方法。In a fourth aspect, an embodiment of the present application provides a terminal device, including: one or more processors; system memory; touch screen memory; one or more programs, wherein the one or more programs are stored in the system In the memory and configured to be executed by the one or more processors, and the one or more programs are configured to execute the above-mentioned method.
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序代码,所述程序代码可被处理器调用执行上述的方法。In a fifth aspect, an embodiment of the present application provides a computer-readable storage medium having program code stored in the computer-readable storage medium, and the program code can be invoked by a processor to execute the above-mentioned method.
本申请实施例提供的资源占用位置的确定方法、装置及终端设备,获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况;根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置。The method, device, and terminal device for determining the location of resource occupation provided by the embodiments of the present application acquire location configuration information, where the location configuration information includes the configuration of the base station for the candidate locations for transmitting synchronization signal blocks; determine according to the location configuration information The resource occupancy positions in all candidate positions in the synchronization signal block transmission window.
附图说明Description of the drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly describe the technical solutions in the embodiments of the present application, the following will briefly introduce the drawings that need to be used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can be obtained based on these drawings without creative work.
图1、图4、图6、图7以及图9至图13示出了本申请实施例中候选位置的排布示意图。Figure 1, Figure 4, Figure 6, Figure 7, and Figure 9 to Figure 13 show schematic diagrams of the arrangement of candidate positions in an embodiment of the present application.
图2示出了本申请第一实施例提供的资源占用位置的确定方法的流程图。Fig. 2 shows a flowchart of a method for determining a resource occupation position provided by the first embodiment of the present application.
图3示出了本申请第二实施例提供的资源占用位置的确定方法的流程图。Fig. 3 shows a flowchart of a method for determining a resource occupation location provided by a second embodiment of the present application.
图5示出了本申请第三实施例提供的资源占用位置的确定方法的流程图。Fig. 5 shows a flowchart of a method for determining a resource occupation position provided by a third embodiment of the present application.
图8示出了本申请第四实施例提供的资源占用位置的确定方法的流程图。Fig. 8 shows a flowchart of a method for determining a resource occupation location provided by a fourth embodiment of the present application.
图14示出了本申请又一实施例提供的资源占用位置的确定方法的流程图。FIG. 14 shows a flowchart of a method for determining a resource occupation position provided by another embodiment of the present application.
图15示出了本申请实施例提供的资源占用位置的确定装置的功能模块图。Fig. 15 shows a functional module diagram of an apparatus for determining a resource occupation position provided by an embodiment of the present application.
图16示出了本申请实施例提供的终端设备的结构框图。Fig. 16 shows a structural block diagram of a terminal device provided by an embodiment of the present application.
图17是本申请实施例的用于保存或者携带实现根据本申请实施例的资源占用位置的确定方法的程序代码的存储单元。FIG. 17 is a storage unit for storing or carrying program code for implementing the method for determining the resource occupation position according to the embodiment of the present application according to an embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。In order to enable those skilled in the art to better understand the solutions of the present application, the technical solutions in the embodiments of the present application will be described clearly and completely in conjunction with the accompanying drawings in the embodiments of the present application.
在5G技术中,由于非授权频谱上基站LBT(先听后说,Listen Before Talk)成功的位置是不可预期的,而若LBT失败,很有可能造成基站对SSB的发送失败,也可能造成终端设备对SSB的接收失败。在NR-U中,一个SSB在一个候选位置进行发送,一个候选位置可能用于发送一个SSB,也可能不会发送SSB,因此,可以提供SSB发送的多个候选位置,提供的候选位置的数量大于最多要发送的SSB的数量,以方便LBT成功后,仍然有足够的候选位置可以用于基站发送SSB,相应地避免LBT失败对终端设备接收SSB造成的影响,如图1所示。例如,若在一个传输周期内,基站最多发送8个SSB,可以配置多于8的候选位置,比如预配置20个SSB传输的候选位置,在这20个SSB传输的候选位置上最多能传8个SSB。其中,如图1所示,该候选位置为时域上的位置。In 5G technology, because the successful location of the base station LBT (Listen Before Talk) on the unlicensed spectrum is unpredictable, and if the LBT fails, it is likely to cause the base station to fail to send the SSB, and it may also cause the terminal The device failed to receive the SSB. In NR-U, an SSB is sent at a candidate location. A candidate location may be used to send an SSB or may not send an SSB. Therefore, multiple candidate locations sent by the SSB can be provided, and the number of candidate locations provided It is greater than the maximum number of SSBs to be sent, so that after the LBT is successful, there are still enough candidate positions for the base station to send the SSB, and accordingly to avoid the impact of the LBT failure on the terminal equipment receiving the SSB, as shown in Figure 1. For example, if the base station sends a maximum of 8 SSBs in a transmission period, more than 8 candidate positions can be configured. For example, 20 candidate positions for SSB transmission can be pre-configured, and a maximum of 8 can be transmitted from these 20 candidate positions for SSB transmission. SSB. Among them, as shown in Figure 1, the candidate position is a position in the time domain.
由于在配置的候选位置中,有些候选位置可能有SSB发送,有些候选位置不会有SSB发送,若将所有候选位置都作为可能进行SSB发送的候选位置,则终端设备不能很好地做速率匹配,并且也会造成可利用资源的浪费,因此,终端设备可以确定配置的所有候选位置中,哪些候选位置不会有SSB发送,哪些候选位置可能有SSB发送,以方便UE对可能有SSB发送的候选位置做速率匹配,并且对没有SSB发送的候选位置利用,用于传输其他信息,如物理下行控制信道(PDCCH,Physical Downlink Control  CHannel)、物理下行共享信道(PDSCH,Physical Downlink Shared CHannel)或者其他参考信号(RS,Reference Signals),如信道状态信息参考信号(CSI-RS,Channel-State Information Reference Signal)、解调参考信号(DMRS,DeModulation Reference Signal)、追踪参考信号(TRS,追踪参考信号)、相位追踪参考信号(PTRS,phase noise tracking RS)等。As in the configured candidate positions, some candidate positions may be sent by SSB, and some candidate positions may not be sent by SSB. If all candidate positions are used as candidate positions for SSB transmission, the terminal equipment cannot perform rate matching well. , And also cause a waste of available resources. Therefore, the terminal device can determine which candidate positions will not be sent by SSB among all the candidate positions configured, and which candidate positions may be sent by SSB, so as to facilitate the UE to respond to those who may be sent by SSB. Candidate positions are rate-matched, and candidate positions that are not sent by SSB are used to transmit other information, such as physical downlink control channel (PDCCH, Physical Downlink Control CHannel), physical downlink shared channel (PDSCH, Physical Downlink Shared CHannel), or others Reference signals (RS, Reference Signals), such as channel state information reference signal (CSI-RS, Channel-State Information Reference Signal), demodulation reference signal (DMRS, DeModulation Reference Signal), tracking reference signal (TRS, tracking reference signal) , Phase tracking reference signal (PTRS, phase noise tracking RS), etc.
因此,发明人提出了本申请实施例的资源占用位置的确定方法,用于终端设备确定非授权频段中,可能进行SSB发送的候选位置,并且,对应的,可以同时确定所有候选位置中不会进行SSB发送的位置。Therefore, the inventor proposes the method for determining the resource occupied position in the embodiment of the present application, which is used for the terminal device to determine the candidate positions for SSB transmission in the unlicensed frequency band, and correspondingly, it can simultaneously determine that all candidate positions are not. The location where the SSB is sent.
第一实施例The first embodiment
如图2示出了本申请第一实施例提供的资源占用位置的确定方法。该方法可以应用于终端设备。具体的,该方法包括:Fig. 2 shows the method for determining the resource occupation position provided by the first embodiment of the present application. This method can be applied to terminal equipment. Specifically, the method includes:
步骤S110:获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况。Step S110: Obtain location configuration information, where the location configuration information includes the configuration of the base station for the candidate location for transmitting the synchronization signal block.
基站可以通过向终端设备发送位置配置信息,该位置配置信息可以是一种指示信息(index),用于通知终端设备基站对传输同步信号块的候选位置的配置情况。终端设备可以获取到该位置配置信息,从而确定在各个候选位置对同步信号块的传输情况,即确定在哪些候选位置基站可能向终端设备发送同步信号块,在哪些候选位置基站不会向终端设备发送同步信号块。在基站可能发送同步信号块的候选位置,终端设备则可能接收到同步信号块,在基站不可能发送同步信号块的候选位置,终端设备则不会接收到同步信号块。The base station may send location configuration information to the terminal device, and the location configuration information may be a kind of indication information (index) used to notify the terminal device of the configuration of the base station for the candidate location for transmitting the synchronization signal block. The terminal device can obtain the location configuration information to determine the transmission status of the synchronization signal block at each candidate location, that is, determine at which candidate locations the base station may send the synchronization signal block to the terminal device, and at which candidate locations the base station will not send the synchronization signal block to the terminal device Send the sync signal block. In the candidate locations where the base station may send the synchronization signal block, the terminal device may receive the synchronization signal block, and in the candidate location where the base station is impossible to send the synchronization signal block, the terminal device may not receive the synchronization signal block.
步骤S120:根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。Step S120: According to the position configuration information, determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block.
根据位置配置信息,可以确定同步信号块的每个传输窗口中的所有候选位置中,可能发送同步信号块的候选位置,将该可能发送同步信号块的候选位置作为资源占用位置。可以理解的,候选位置为用于传输同步信号块的位置,对于基站而言,则是用于发送同步信号块的位置,对于终端设备而言,则是接收同步信号块的位置。According to the position configuration information, among all candidate positions in each transmission window of the synchronization signal block, candidate positions for the synchronization signal block may be determined, and the candidate positions for the synchronization signal block may be sent as the resource occupation position. It is understandable that the candidate position is the position used to transmit the synchronization signal block, for the base station, it is the position used to send the synchronization signal block, and for the terminal device, it is the position where the synchronization signal block is received.
在本申请实施例中,可以根据基站发送的反映候选位置配置情况的位置配置信息,确定传输窗口中可能传输同步信号块的候选位置,作为确定的资源占用位置。In the embodiment of the present application, according to the location configuration information that reflects the configuration of the candidate location sent by the base station, the candidate location in the transmission window where the synchronization signal block may be transmitted may be determined as the determined resource occupation location.
第二实施例Second embodiment
本申请还提供了一种实施例,描述了一种具体的确定资源占用位置的方式。在该实施例中,可以根据一组候选位置的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置。具体的,在该实施例中,如图3所示,可以包括:This application also provides an embodiment, which describes a specific way of determining the resource occupation location. In this embodiment, according to the arrangement relationship of a group of candidate positions, it can be determined that among all the candidate positions in the synchronization signal transmission window, the candidate position corresponding to the transmittable candidate position is the resource occupied position. Specifically, in this embodiment, as shown in FIG. 3, it may include:
步骤S210:接收位置配置信息,位置配置信息包括:基站用于传输同步信号块的一组候选位置中,可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系。Step S210: Receive location configuration information, where the location configuration information includes: among a set of candidate locations used by the base station to transmit synchronization signal blocks, the arrangement relationship between candidate locations that can transmit synchronization signal blocks and candidate locations that cannot transmit synchronization signal blocks .
在位置配置信息中,可以包括用于传输同步信号块的一组候选位置中,可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系。其中,可传输同步信号块的候选位置为可能传输 同步信号块的候选位置,不可传输同步信号块的候选位置为不会进行同步信号块传输的候选位置。该一组候选位置中各个候选位置在时域上相邻。其中,可能发送同步信号块的候选位置表示,在一个传输周期内,若LBT成功,且该候选位置对应的同步信号块尚未传输,则基站会在该候选位置传输相应的同步信号块。The position configuration information may include an arrangement relationship between the candidate positions of the transmittable synchronization signal block and the candidate positions of the untransmissible synchronization signal block among a set of candidate positions for transmitting the synchronization signal block. Among them, the candidate positions where the synchronization signal block can be transmitted are the candidate positions where the synchronization signal block may be transmitted, and the candidate position where the synchronization signal block cannot be transmitted is the candidate position where the synchronization signal block will not be transmitted. Each candidate position in the set of candidate positions is adjacent in the time domain. Among them, the candidate position where the synchronization signal block may be sent indicates that within a transmission period, if the LBT is successful and the synchronization signal block corresponding to the candidate position has not been transmitted, the base station will transmit the corresponding synchronization signal block at the candidate position.
其中,基站可以以位图(bitmap)作为位置配置信息,通过位图的形式发送一组候选位置的配置情况,位图中每一比特(bit)代表一个候选位置,位图中的有效比特数则为一组候选位置中的候选位置数,或者说位图的长度表示为一组候选位置中的候选位置数量。并且,在位图中,可以通过0或1中的一个表示可能发送同步信号块的候选位置,另一个表示不会发送同步信号块的候选位置。0和1的排布表示一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系。例如,在位图中以1表示实际可能发送同步信号块的候选位置,0表示不会发送同步信号块的候选位置,则可以根据1和0的排布确定可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系。Among them, the base station can use a bitmap as the location configuration information, and send the configuration of a group of candidate locations in the form of a bitmap. Each bit in the bitmap represents a candidate location, and the number of valid bits in the bitmap It is the number of candidate positions in a group of candidate positions, or the length of the bitmap is expressed as the number of candidate positions in a group of candidate positions. In addition, in the bitmap, one of 0 or 1 may be used to indicate a candidate position of a synchronization signal block that may be transmitted, and the other may indicate a candidate position of a synchronization signal block that will not be transmitted. The arrangement of 0 and 1 represents the arrangement relationship between the candidate positions of a group of candidate positions that can transmit a synchronization signal block and the candidate positions that cannot transmit a synchronization signal block. For example, in the bitmap, 1 represents the candidate position of the synchronization signal block that may actually be sent, and 0 represents the candidate position of the synchronization signal block that will not be sent. The candidate position of the synchronization signal block that can be transmitted and the position of the synchronization signal block can be determined according to the arrangement of 1 and 0. The arrangement relationship between the candidate positions of the non-transmissible sync signal block.
例如,配置信息中指示一组候选位置的配置情况的位图为1101,表示在一组候选位置中,第一、第二以及第四个候选位置,可能有相应的SSB发送,在第三个候选位置不会有相应的SSB发送。For example, the bitmap indicating the configuration of a group of candidate positions in the configuration information is 1101, which means that in a group of candidate positions, the first, second, and fourth candidate positions may have corresponding SSB transmissions. The candidate position will not have the corresponding SSB sent.
可选的,在本申请实施例中,还可以确定所述位置配置信息中的有效配置信息。在确定有效配置信息后,根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置时,可以根据所述有效配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置。也就是说,在本申请实施例中描述的确定资源占用位置的方式中,所依据的位置配置信息为确定的有效配置信息。Optionally, in this embodiment of the present application, valid configuration information in the location configuration information may also be determined. After the effective configuration information is determined, when determining the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the location configuration information, all candidates in the synchronization signal block transmission window may be determined according to the effective configuration information The resources in the location occupy the location. That is to say, in the manner of determining the resource occupation location described in the embodiment of the present application, the location configuration information on which it is based is the determined effective configuration information.
在本申请实施例中,在接收到的位置配置信息中,若一组候选位置的数量大于准共址参数的值Q,可以将该位置配置信息中前Q个候选位置作为有效的位置配置信息;或者是,将该位置配置信息中后Q个候选位置作为有效的位置配置信息;或者是就将该位置配置信息作为有效配置信息。准共址参数用于确定传输窗口中候选位置之间的准共址关系,准共址参数Q为正整数。In the embodiment of the present application, in the received location configuration information, if the number of candidate locations in a group is greater than the value Q of the quasi co-location parameter, the first Q candidate locations in the location configuration information can be used as valid location configuration information ; Or, use the last Q candidate positions in the position configuration information as valid position configuration information; or use the position configuration information as valid configuration information. The quasi co-location parameter is used to determine the quasi co-location relationship between candidate positions in the transmission window, and the quasi co-location parameter Q is a positive integer.
例如,位置配置信息为位图,若所述位图的长度大于准共址参数的数值Q,则以所述位图作为有效配置信息;或以所述位图的前Q位作为有效配置信息;或以所述位图的后Q位作为有效配置信息。For example, the location configuration information is a bitmap, and if the length of the bitmap is greater than the value Q of the quasi co-location parameter, the bitmap is used as the effective configuration information; or the first Q bits of the bitmap are used as the effective configuration information ; Or use the last Q bits of the bitmap as valid configuration information.
步骤S220:将排布关系循环扩展到传输窗口中的所有候选位置。Step S220: cyclically expand the arrangement relationship to all candidate positions in the transmission window.
步骤S230:确定扩展后的所有候选位置中,一个或多个可传输同步信号块的候选位置,为所述资源占用位置。Step S230: Determine one or more candidate positions that can transmit synchronization signal blocks among all the expanded candidate positions as the resource occupied positions.
在本申请实施例中,可以根据一组候选位置中的排布关系的扩展,确定传输窗口中所有候选位置中的可传输候选位置,该可传输候选位置为可能传输同步信号块的候选位置。In the embodiment of the present application, the transmittable candidate positions among all the candidate positions in the transmission window can be determined according to the expansion of the arrangement relationship in a set of candidate positions, and the transmittable candidate positions are candidate positions where the synchronization signal block may be transmitted.
具体的,以K表示传输窗口中所有候选位置的数量,K为正整数,则循环扩展为,将位置配置信息中一组候选位置的排布关系在K个候选位置中循环扩展,实现将K个候选位置中的每一个候选位置对应为可能传输同步信号块的候选位置或者不可能传输同步信号块的位置,从而可以确定扩展后的所述K个候选位置中的一个或多个可传输候选位置,为所述资源占用位置。Specifically, K represents the number of all candidate positions in the transmission window, and K is a positive integer, then the cyclic expansion is that the arrangement relationship of a group of candidate positions in the position configuration information is cyclically expanded among the K candidate positions, so as to realize K Each of the candidate positions corresponds to a candidate position where a synchronization signal block is likely to be transmitted or a position where it is impossible to transmit a synchronization signal block, so that one or more transmittable candidates among the K candidate positions after expansion can be determined Location is the location occupied by the resource.
例如,以位图表示位置配置信息,1对应可能传输同步信号块的候选位置,0对应不会传输同步信号块的候选位置,位图的有效长度为L比特,当传输窗口内有K个候选位置时,将L比特的位置配置 信息扩展到K个候选位置。或者说,将L比特扩展为K比特,扩展后1对应的候选位置确定为资源占用位置。For example, the position configuration information is represented by a bitmap, 1 corresponds to the candidate position that may transmit the synchronization signal block, 0 corresponds to the candidate position that does not transmit the synchronization signal block, the effective length of the bitmap is L bits, when there are K candidates in the transmission window In the position, the position configuration information of L bits is extended to K candidate positions. In other words, the L bits are expanded to K bits, and the candidate position corresponding to 1 after the expansion is determined as the resource occupation position.
如图4所示,假设位置配置信息为11010101,同步信号块的传输窗口内有20个候选位置,则将位置配置信息循环扩展到20个候选位置,扩展为11010101 11010101 1101。其中,1对应可能传输同步信号块的候选位置,0对应不会传输同步信号块的候选位置。则可以在扩展后的20个候选位置中,确定1对应的候选位置为资源占用位置,0对应的候选位置为非资源占用位置,没有SSB传输,可以用于传输其他信息。As shown in Figure 4, assuming that the position configuration information is 11010101 and there are 20 candidate positions in the transmission window of the synchronization signal block, the position configuration information is cyclically expanded to 20 candidate positions, which is expanded to 11010101 11010101 1101. Among them, 1 corresponds to a candidate position where a synchronization signal block may be transmitted, and 0 corresponds to a candidate position where a synchronization signal block is not transmitted. Then, among the expanded 20 candidate positions, the candidate position corresponding to 1 can be determined as a resource-occupied position, and the candidate position corresponding to 0 is a non-resource-occupied position. There is no SSB transmission and can be used to transmit other information.
在本申请实施例中,将位置配置信息中候选位置的排布关系,循环扩展到传输窗口内所有候选位置,从而可以根据排布关系,确定传输窗口内所有候选位置中的资源占用位置。In the embodiment of the present application, the arrangement relationship of candidate positions in the location configuration information is cyclically extended to all candidate positions in the transmission window, so that the resource occupation positions in all candidate positions in the transmission window can be determined according to the arrangement relationship.
第三实施例The third embodiment
当两个参考信号(比如同步信号块)具有准共址(QCL,quasi co-located)关系的时候,可以认为这两个参考信号的大尺度参数(如多普勒时延、平均时延、空间接收参数等)是可以相互推断的,或者可以认为是类似的。对应的,具有准共址关系的候选位置,可以传输同一个同步信号块,因此,本申请还提供了一种实施例,用于根据一组候选位置的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置。具体的,在该实施例中,可以根据准共址关系确定资源占用位置。如图5所示,本申请实施例提供的方法包括:When two reference signals (such as synchronization signal blocks) have a quasi co-located (QCL) relationship, it can be considered that the large-scale parameters of the two reference signals (such as Doppler delay, average delay, Spatial reception parameters, etc.) can be inferred from each other, or can be considered similar. Correspondingly, candidate locations with a quasi co-location relationship can transmit the same synchronization signal block. Therefore, this application also provides an embodiment for determining the synchronization signal transmission window based on the arrangement relationship of a group of candidate locations Among all candidate positions in, the candidate position corresponding to the transmittable candidate position is the resource occupied position. Specifically, in this embodiment, the resource occupation location can be determined according to the quasi co-location relationship. As shown in Figure 5, the method provided by the embodiment of the present application includes:
步骤S310:获取位置配置信息,所述位置配置信息包括:基站用于传输同步信号块的一组候选位置中,可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系。Step S310: Acquire location configuration information, where the location configuration information includes: among a set of candidate locations used by the base station to transmit synchronization signal blocks, the ranking between candidate locations that can transmit synchronization signal blocks and candidate locations that cannot transmit synchronization signal blocks Cloth relationship.
基站对传输同步信号块的候选位置的配置情况可以包括其中候选位置的排布关系,从而可以根据位置配置信息获得该排布关系。本步骤的具体描述可以参见前述实施例,在此不再赘述。The configuration of the candidate positions of the synchronization signal block transmitted by the base station may include the arrangement relationship of the candidate positions therein, so that the arrangement relationship can be obtained according to the position configuration information. For the specific description of this step, please refer to the foregoing embodiment, which will not be repeated here.
步骤S320:根据所述排布关系,确定在同步信号传输窗口的所有候选位置中,与可传输候选位置具有准共址关系的候选位置,为所述资源占用位置,所述可传输候选位置为可传输同步信号块的位置。Step S320: According to the arrangement relationship, among all candidate positions in the synchronization signal transmission window, a candidate position having a quasi co-location relationship with the transmittable candidate position is determined to be the resource occupation position, and the transmittable candidate position is The position of the sync signal block can be transmitted.
在一个传输窗口中的所有候选位置中,可以存着具有准共址关系的候选位置。因此,可以确定其中具有准共址关系的候选位置。Among all the candidate positions in a transmission window, there may be candidate positions with a quasi co-location relationship. Therefore, it is possible to determine the candidate positions in which there is a quasi co-location relationship.
其中,可以根据准共址参数确定准共址关系,该准共址参数可以为一个正整数,本申请实施例以Q表示。终端设备可以从基站获取到准共址参数。Wherein, the quasi-co-location relationship can be determined according to the quasi-co-location parameter, and the quasi-co-location parameter can be a positive integer, which is represented by Q in the embodiment of the present application. The terminal equipment can obtain the quasi co-location parameters from the base station.
另外,传输窗口中所有候选位置可以对应有编号,终端设备可以从基站或协议预定义的方式获得该编号。In addition, all candidate positions in the transmission window can be correspondingly numbered, and the terminal device can obtain the number from the base station or in a manner predefined by the protocol.
若两个候选位置的编号对Q取模获得的值相同,则可以确定这两个候选位置具有准共址关系。例如,两个候选位置的编号分别为M1和M2,若M1 mod Q等于M2 mod Q,则认为这两个候选位置是具有准共址关系的。或者例如图6所示,Q的值为8,候选位置为0、8以及16的SSB对应的编号对Q取模后的值均为0,则可以确定候选位置为0、8以及16对应的候选位置具有准共址关系。If the number of the two candidate positions is the same as the value obtained by modulating Q, it can be determined that the two candidate positions have a quasi co-location relationship. For example, the numbers of the two candidate positions are M1 and M2 respectively. If M1 mod Q is equal to M2 mod Q, the two candidate positions are considered to have a quasi co-location relationship. Or, for example, as shown in Figure 6, the value of Q is 8, and the numbers corresponding to the SSBs with candidate positions of 0, 8, and 16 are all 0 after the modulus of Q. It can be determined that the candidate positions are 0, 8, and 16. The candidate locations have a quasi co-location relationship.
在本申请实施例中,与可传输候选位置具有准共址关系的候选位置可以是,若有候选位置的编号对准共址参数取模后获得的值,与一组候选位置中可传输候选位置的位置对应,则确定该候选位置为与可传输候选位置具有准共址关系的候选位置。In the embodiment of this application, the candidate position that has a quasi co-location relationship with the transmissible candidate position may be, if the number of the candidate position is aligned with the value obtained after the modulus of the co-location parameter, it is compared with the transmissible candidate in a group of candidate positions. If the location corresponds to the location, it is determined that the candidate location is a candidate location that has a quasi co-location relationship with the transmittable candidate location.
具体的,确定在同步信号传输窗口的所有候选位置中,与可传输候选位置具有准共址关系的候选位置时,可以是,获取传输窗口中所有候选位置的编号。计算所有编号中,对准共址参数取模后的值,获得多个模值。确定多个模值中,与所述排布关系中可传输候选位置的排布位置对应的模值,将确定的模值对应的候选位置,作为与可传输候选位置具有准共址关系的候选位置。该可传输候选位置为可传输同步信号块的候选位置,即可能传输同步信号块的候选位置。Specifically, when determining the candidate positions that have a quasi co-location relationship with the transmittable candidate positions among all the candidate positions in the synchronization signal transmission window, the number of all candidate positions in the transmission window may be obtained. Calculate all the numbers, align the modulo values of the co-location parameters to obtain multiple modulus values. Among the multiple modulus values, the modulus value corresponding to the arrangement position of the transmittable candidate position in the arrangement relationship is determined, and the candidate position corresponding to the determined modulus value is used as a candidate having a quasi co-location relationship with the transmittable candidate position position. The transmittable candidate position is a candidate position where a synchronization signal block can be transmitted, that is, a candidate position where a synchronization signal block may be transmitted.
其中,模值与排布位置的对应,可以理解为,在传输窗口中所有的K个候选位置中,包括第1个至第K个候选位置,第一个候选位置的编号获得的模值,与排布关系中第一个候选位置对应;第二个候选位置的编号获得的模值,与排布关系中第二个候选位置对应,以此类推,直至第L个候选位置的编号获得的模值,与排布关系中第L个候选位置对应。其中,排布关系中包括一组的L个候选位置。Among them, the correspondence between the modulus value and the arrangement position can be understood as the modulus value obtained by the number of the first candidate position among all the K candidate positions in the transmission window, including the 1st to Kth candidate positions, Correspond to the first candidate position in the arrangement relationship; the modulus value obtained by the number of the second candidate position corresponds to the second candidate position in the arrangement relationship, and so on, until the number of the Lth candidate position is obtained The modulus value corresponds to the Lth candidate position in the arrangement relationship. Among them, the arrangement relationship includes a group of L candidate positions.
例如图7所示,假设位置配置信息为1101,准共址参数为4。由于编号与4取模后等于0的候选位置与位置配置信息中第一个1对应;编号与4取模后等于1的候选位置与位置配置信息中第二个1对应;编号与4取模后等于3的候选位置与位置配置信息中第四个1对应,则终端设备可以确定,编号与4取模后等于0(如图7中的编号0,4,8,12,16)、编号与4取模后等于1(如图7中的编号1,5,9,13,17)以及编号与4取模后等于3(如图7中的编号3,7,11,15,19)的候选位置为资源占用位置。For example, as shown in Figure 7, suppose the location configuration information is 1101 and the quasi co-location parameter is 4. The candidate position equal to 0 after the number and 4 modulo corresponds to the first 1 in the position configuration information; the candidate position equal to 1 after the number modulo 4 corresponds to the second 1 in the position configuration information; the number modulo 4 The candidate position that is equal to 3 corresponds to the fourth 1 in the position configuration information, and the terminal device can determine that the number and 4 are modulo 0 ( numbers 0, 4, 8, 12, 16 in Figure 7), number After modulo 4, it is equal to 1 ( numbers 1,5,9,13,17 in Figure 7) and number and 4 are modulo 3 ( numbers 3,7,11,15,19 in Figure 7) The candidate position of is the resource occupied position.
可选的,传输窗口中,对于第X个候选位置,X作为候选位置在传输窗口中在时域上的排序位置。第X个候选位置所对应的编号可以是X的后三位,例如X是9(十进制),也就是1001,那么对应的候选位置的编号就是001,也就是十进制的1。另外,可选的,第X候选位置所对应的编号也可以就是X,例如X是9,那么对应的编号就是9。可选的,如图7所示,传输窗口中候选位置可以从第0个开始,X可以是从0开始至(K-1)。Optionally, in the transmission window, for the Xth candidate position, X is used as the ranking position of the candidate position in the transmission window in the time domain. The number corresponding to the Xth candidate position can be the last three digits of X. For example, X is 9 (decimal), which is 1001, then the number of the corresponding candidate position is 001, which is 1 in decimal. In addition, optionally, the number corresponding to the Xth candidate position may also be X, for example, if X is 9, then the corresponding number is 9. Optionally, as shown in FIG. 7, the candidate position in the transmission window may start from the 0th position, and X may start from 0 to (K-1).
在本申请实施例中,主要以候选位置的排序位置X作为编号进行举例说明。当然,若候选位置的编号是其他形式,例如排序位置X的后三位,则排序位置为X的候选位置,在对Q取模时,则以该后三位对Q取模。如对于图7中第9个候选位置(即图7中数字9对应的候选位置),若以9的后三位作为编号,由于9的二进制为0001,则以后三位001对Q取模。In the embodiment of the present application, the ranking position X of the candidate position is mainly used as an example for illustration. Of course, if the candidate position numbers are in other forms, such as the last three digits of the sorted position X, then the sorted position is the candidate position of X. When Q is taken modulo Q, the latter three digits are taken modulo Q. For example, for the 9th candidate position in FIG. 7 (ie, the candidate position corresponding to the number 9 in FIG. 7), if the last three digits of 9 are used as the number, since the binary number of 9 is 0001, the next three digits 001 modulate Q.
在本申请实施例,可以根据准共址参数,确定与可传输候选位置具有准共址关系的候选位置为资源占用位置,提高了资源占用位置的确定速度。In the embodiment of the present application, a candidate location that has a quasi co-location relationship with a transmissible candidate location can be determined as a resource-occupied location based on the quasi-co-location parameter, which improves the determination speed of the resource-occupied location.
第四实施例Fourth embodiment
由于基站在抢占到信道的情况下发送同步信号块的可能性较高,因此,本申请还提供了一种实施例,可以在确定基站已抢占到信道时,再从传输窗口中的候选位置确定资源占用位置,从而确定的资源占用位置更准确。具体的,请参见图8,该实施例的方法包括:Since the base station has a higher possibility of transmitting the synchronization signal block when the channel is preempted, this application also provides an embodiment, which can determine from the candidate position in the transmission window when it is determined that the base station has preempted the channel The resource occupancy position, so that the determined resource occupancy position is more accurate. Specifically, referring to FIG. 8, the method of this embodiment includes:
步骤S410:获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况。Step S410: Obtain location configuration information, where the location configuration information includes the configuration of the base station for the candidate location for transmitting the synchronization signal block.
步骤S420:在所述传输窗口中,当接收到基站发送的指示信息,根据所述指示信息确定参考位置,所述指示信息表示所述基站已抢占信道。Step S420: In the transmission window, when the indication information sent by the base station is received, a reference position is determined according to the indication information, and the indication information indicates that the base station has seized the channel.
指示信息为可以表示基站已抢占到信道的信息,例如,可以是COT indication,DCI消息(承载于PDCCH或GC-PDCCH),或者是其他参考信息(例如SSB,CSI-RS,TRS,DMRS)等。可选的,在 本申请实施例中,任何从基站发出的信息,都可以作为该指示信息。The indication information is information that can indicate that the base station has seized the channel, for example, it can be COT indication, DCI message (carried on PDCCH or GC-PDCCH), or other reference information (such as SSB, CSI-RS, TRS, DMRS), etc. . Optionally, in this embodiment of the application, any information sent from the base station can be used as the indication information.
在接收到指示信息后,可以根据该指示信息确定一个参考位置,该参考位置为一个时域位置,用于确定是否对参考位置后的候选位置确认资源占用位置。After receiving the indication information, a reference position may be determined according to the indication information. The reference position is a time domain position for determining whether to confirm the resource occupation position for the candidate position after the reference position.
在一种实施方式中,在本申请实施例中,可以直接以接收到所述指示信息的时刻作为所述参考位置。In an implementation manner, in this embodiment of the present application, the time at which the indication information is received may be directly used as the reference position.
在另一种实施方式中,发送同步信号块的位置可能设置有某些预设条件,如在偶数位发送,在4的倍数的位置发送,在8的倍数的位置发送。因此,在本申请实施例中,可以获取接收到所述指示信息的时刻后最近的满足预设条件的候选位置,作为所述参考位置。In another implementation manner, the location where the synchronization signal block is sent may be set with certain preset conditions, such as sending at an even-numbered position, sending at a position that is a multiple of 4, and sending at a position that is a multiple of 8. Therefore, in the embodiment of the present application, the nearest candidate position that satisfies the preset condition after the time when the indication information is received may be obtained as the reference position.
其中,在传输窗口中,所有候选位置可以分组,从第一个候选位置开始,对传输窗口中的候选位置每相邻L个分组后,最后不足L的候选位置分为一组,两个分组之间的边界定义为组边界。其中,L为位置配置信息中指示的一组候选位置的数量。可选的,在本申请实施例中,满足预设条件的候选位置可以是组边界后的第一个候选位置。Among them, in the transmission window, all candidate positions can be grouped, starting from the first candidate position, after each adjacent L grouping of the candidate positions in the transmission window, the final candidate positions less than L are grouped into one group, two groups The boundary between is defined as the group boundary. Where L is the number of a group of candidate positions indicated in the position configuration information. Optionally, in this embodiment of the present application, the candidate position that meets the preset condition may be the first candidate position after the group boundary.
另外,可选的,在本申请实施例中,满足预设条件的候选位置也可以是编号为偶数的候选位置;或编号为4的倍数的候选位置;或编号为8的倍数的候选位置;或者指示信息后最近的一个候选位置等,可以根据需要设置。In addition, optionally, in the embodiment of the present application, the candidate positions that meet the preset conditions may also be candidate positions numbered even; or candidate positions numbered as multiples of 4; or candidate positions numbered as multiples of 8. Or the nearest candidate position after the indication information, etc., can be set as needed.
其中,编号为偶数的候选位置;或编号为4的倍数的候选位置;或编号为8的倍数的候选位置等可以根据公式计算,该公式可以是X mod G=0,表示传输窗口中,如前所述,第X候选位置表示编号为X的候选位置,G的取值可以根据预设条件设置,例如,若满足预设条件的候选位置为编号为偶数的候选位置,则G的取值为2;若满足预设条件的候选位置为编号为4的倍数的候选位置,则G的取值为4;若满足预设条件的候选位置为编号为8的倍数的候选位置,则G的取值为8;若满足预设条件的候选位置为指示信息后最近的一个候选位置,则G的取值为1。其中,G可以采用以下方式中的一种确定:广播消息,包括MIB,SIB1(RMSI),SIB;RRC专有信令;协议预先约定。Among them, the candidate position numbered even; or the candidate position numbered as a multiple of 4; or the candidate position numbered as a multiple of 8 can be calculated according to the formula, which can be X mod G=0, which means in the transmission window, such as As mentioned above, the Xth candidate position represents the candidate position numbered X, and the value of G can be set according to a preset condition. For example, if the candidate position that meets the preset condition is a candidate position with an even number, then the value of G If the candidate position that meets the preset condition is a candidate position that is a multiple of 4, then the value of G is 4; if the candidate location that meets the preset condition is a candidate position that is a multiple of 8, then the value of G is The value is 8; if the candidate position that meets the preset condition is the nearest candidate position after the indication information, the value of G is 1. Among them, G can be determined in one of the following ways: broadcast messages, including MIB, SIB1 (RMSI), and SIB; RRC proprietary signaling; pre-arranged by the protocol.
步骤S430:根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。Step S430: According to the position configuration information, determine the resource occupation position from the candidate position after the reference position.
在本申请实施例中,根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置时,可以根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。即,当确定参考位置后,从参考位置后的候选位置确定资源占用位置。In the embodiment of the present application, when determining the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, the position configuration information may be determined from the candidate positions after the reference position Resource occupation location. That is, after the reference position is determined, the resource occupation position is determined from the candidate position after the reference position.
在本申请实施例中,若参考位置本身为候选位置,则参考位置后的候选位置可以包括参考位置本身,参考位置与组边界之间的候选位置可以包括参考位置本身。当然,若参考位置本身为候选位置,则参考位置后的候选位置也可以不包括参考位置,参考位置与组边界之间的候选位置也可以不包括参考位置本身,具体可以根据需求设置。In the embodiment of the present application, if the reference position itself is a candidate position, the candidate position after the reference position may include the reference position itself, and the candidate position between the reference position and the group boundary may include the reference position itself. Of course, if the reference position itself is a candidate position, the candidate position after the reference position may not include the reference position, and the candidate position between the reference position and the group boundary may not include the reference position itself, which can be specifically set according to requirements.
本申请实施例主要以接收到指示信息的时刻作为参考位置为例,进行确定资源占用位置的说明。The embodiment of the present application mainly uses the time when the indication information is received as the reference position as an example to describe the determination of the resource occupation position.
在本申请实施例中,从参考位置后的候选位置确定资源占用位置可以是,将参考位置后的所有候选位置都作为资源占用位置;或者是,将参考位置后所有可能传输同步信号块的候选位置都作为资源占用位置;或者是,从参考位置后指定数量的候选位置,确定资源占用位置,该指定数量可以根据参考位置以及一组候选位置的数量确定。In the embodiment of the present application, determining the resource occupation position from the candidate position after the reference position may be to use all candidate positions after the reference position as the resource occupation position; or, to use all the candidates for the synchronization signal block that may be transmitted after the reference position The positions are all taken as resource occupied positions; or, the resource occupied positions are determined from a designated number of candidate positions after the reference position, and the designated number can be determined according to the reference position and the number of a set of candidate positions.
下面通过不同的实施方式说明参考位置后指定数量的候选位置,确定资源占用位置。The following describes the designated number of candidate positions after the reference position through different implementation manners to determine the resource-occupied position.
在第一种实施方式中,位置配置信息中可以包括基站用于传输同步信号块的一组候选位置的数量L,所述L为正整数。所述传输窗口内同步信号块的所有候选位置中每相邻的L个候选位置可以分为一组,最后不满足数量L的候选位置分为一组。以两个分组之间的边界作为组边界。In the first implementation manner, the location configuration information may include the number L of a group of candidate locations used by the base station to transmit the synchronization signal block, where L is a positive integer. Among all candidate positions of the synchronization signal block in the transmission window, every adjacent L candidate positions may be grouped into a group, and finally, candidate positions that do not satisfy the number L are grouped into a group. Take the boundary between the two groups as the group boundary.
在该实施方式中,在根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置时,可以确定所述参考位置后最近的组边界,从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置。In this embodiment, when the resource occupation position is determined from the candidate position after the reference position according to the position configuration information, the group boundary closest to the reference position may be determined, and the group boundary is determined from the reference position and the group Among the candidate positions between the boundaries and the nearest L candidate positions after the group of boundaries, one or more candidate positions are determined as resource-occupied positions.
在该实施方式中,以位图作为位置配置信息为例,对分组进行说明。该位图的有效长度为L,若L的值为8,传输窗口中每L个候选位置的分组可以如图9所示,由于最后4个候选位置(即图9中编号为16至19的候选位置)不满足8个,则该4个候选位置被分为一组。在图9所示的分组中,7和8之间为组边界,16和16之间为组边界。可选的,根据需要,在本申请实施例中,传输窗口中第一个候选位置之前和最后一个候选位置之后也可以作为组边界,如图8中编号0的候选位置之前以及编号19的候选位置之后。图9中的第一编号信息即为候选位置的编号。In this embodiment, a bitmap is used as an example of location configuration information to describe grouping. The effective length of the bitmap is L. If the value of L is 8, the grouping of every L candidate positions in the transmission window can be as shown in Fig. 9, because the last 4 candidate positions (that is, the numbered 16 to 19 in Fig. 9 Candidate positions) do not meet 8, then the 4 candidate positions are grouped into one group. In the grouping shown in FIG. 9, the group boundary is between 7 and 8, and the group boundary is between 16 and 16. Optionally, according to needs, in this embodiment of the application, before the first candidate position and after the last candidate position in the transmission window can also be used as group boundaries, as shown in Figure 8 before the candidate position numbered 0 and the candidate numbered 19 After the location. The first number information in FIG. 9 is the number of the candidate position.
在确定参考位置后,可以确定参考位置后最近的组边界,即在参考位置所在时刻后,且是离参考位置所在时刻最近的一个组边界。如图10所示,指示信息对应的时刻为参考位置,结合图9,该参考位置最近的组边界即为7和8之间。After the reference position is determined, the group boundary closest to the reference position can be determined, that is, after the time of the reference position and the group boundary closest to the time of the reference position. As shown in FIG. 10, the time corresponding to the indication information is the reference position. With reference to FIG. 9, the group boundary with the closest reference position is between 7 and 8.
在该实施方式中,可以从参考位置与最近组边界之间的候选位置,以及最近的组边界后的L个候选位置中,确定一个或多个候选位置为资源占用位置。In this embodiment, one or more candidate positions can be determined as resource-occupied positions from candidate positions between the reference position and the nearest group boundary, and L candidate positions after the nearest group boundary.
可选的,在该实施方式中,可以将参考位置与最近组边界之间的候选位置,以及最近的组边界后的L个候选位置,都作为资源占用位置。例如图10所示,编号5至7的候选位置为参考位置与最近组边界之间的候选位置,编号8至15的候选位置为最近的组边界后的L个候选位置,则将编号5至7以及编号8至15的候选位置,都确定为资源占用位置。Optionally, in this embodiment, the candidate positions between the reference position and the nearest group boundary, and the L candidate positions after the nearest group boundary may be used as resource occupation positions. For example, as shown in Figure 10, the candidate positions numbered 5 to 7 are the candidate positions between the reference position and the nearest group boundary, and the candidate positions numbered 8 to 15 are the L candidate positions after the nearest group boundary, and the number 5 to The candidate positions numbered 7 and numbered 8 to 15 are all determined to be resource-occupied positions.
可选的,在该实施方式中,可以将参考位置与最近组边界之间的候选位置,以及最近的组边界后的L个候选位置中,可能传输同步信号块的候选位置,作为资源占用位置。Optionally, in this embodiment, the candidate positions between the reference position and the nearest group boundary, and among the L candidate positions after the nearest group boundary, candidate positions that may transmit synchronization signal blocks may be used as resource occupation positions .
位置配置信息可以包括所述一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系。由于可传输同步信号块的候选位置具有准共址关系的候选位置可能传输同步信号块,在该实施方式的一种子实施方式中,具体确定资源占用位置的方式可以是,根据一组候选位置的排布关系,确定所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,与所述可传输同步信号块的候选位置具有准共址关系的候选位置,作为所述资源占用位置。The location configuration information may include the arrangement relationship between the candidate locations where the synchronization signal block can be transmitted and the candidate locations where the synchronization signal block cannot be transmitted in the set of candidate locations. Since the candidate positions where the synchronization signal block can be transmitted have a quasi co-location relationship, the synchronization signal block may be transmitted in a candidate position. In a sub-implementation of this embodiment, the specific method for determining the resource occupation position may be based on a set of candidate positions. Arrangement relationship, determining the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary, which have a quasi co-location relationship with the candidate positions of the transmittable synchronization signal block The candidate position is used as the resource occupation position.
具体与可传输候选位置具有准共址关系的候选位置的确定可以参见前述实施例中相应部分,在此不再赘述。For the specific determination of the candidate location that has a quasi co-location relationship with the transmittable candidate location, reference may be made to the corresponding part in the foregoing embodiment, and details are not repeated here.
例如图10所示,以接收到指示信息的时刻为参考位置,以位图作为位置配置信息,位图为11011101,也就是位置配置信息的有效长度为8,表示一组候选位置中有8个候选位置。用于确定候选位置之间准共址关系的准共址参数为Q=8,则终端设备在指示信息后的(3+8)个候选位置(即图10中5至15)中,确定编号与Q取模后等于0(对应位图中第一个1),1(对应位图中第二个1),3(对应位图中第四个1),4(对应位图中第五个1),5(对应位图中第六个1),或7(对应第八个1)的候选位置 为资源占用位置,作为不可以传输PDCCH或者PDSCH或者其他RS(例如CSI-RS,DMRS,TRS,PTRS)的资源。For example, as shown in Figure 10, the time when the indication information is received is the reference position, and the bitmap is used as the position configuration information. The bitmap is 11011101, that is, the effective length of the position configuration information is 8, which means that there are 8 candidate positions in a group. Candidate position. The quasi-co-location parameter used to determine the quasi-co-location relationship between candidate positions is Q=8, and the terminal device determines the number in the (3+8) candidate positions (that is, 5 to 15 in Figure 10) after the indication information After modulo Q, it is equal to 0 (corresponding to the first 1 in the bitmap), 1 (corresponding to the second 1 in the bitmap), 3 (corresponding to the fourth 1 in the bitmap), 4 (corresponding to the fifth in the bitmap The candidate positions of 1), 5 (corresponding to the sixth 1 in the bitmap), or 7 (corresponding to the eighth 1) are the resource occupied positions, as the PDCCH or PDSCH or other RS (such as CSI-RS, DMRS) cannot be transmitted ,TRS,PTRS) resources.
在另一种子实施方式中,位置配置信息可以包括一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系。根据位置配置信息,从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置时,可以将所述参考位置到所述组边界之间的L1个候选位置中,与所述排布关系中的最后L1个候选位置中的可传输候选位置对应的候选位置,作为所述资源占用位置;并且,将所述组边界后最近的L个候选位置中,与所述排布关系中可传输候选位置对应的候选位置,作为所述资源占用位置。可以理解的,该可传输候选位置为基站可传输同步信号块的候选位置,即基站可能发送同步信号块的候选位置。其中,L1表示参考位置到组边界之间的候选位置的数量。In another sub-implementation, the location configuration information may include an arrangement relationship between candidate locations where a synchronization signal block can be transmitted and candidate locations where a synchronization signal block cannot be transmitted in a set of candidate locations. According to the location configuration information, when one or more candidate locations are determined to be resource-occupied locations from the candidate locations between the reference location and the group boundary and the nearest L candidate locations after the group boundary, all candidate locations may be Among the L1 candidate positions between the reference position and the group boundary, the candidate position corresponding to the transmittable candidate position among the last L1 candidate positions in the arrangement relationship is used as the resource occupation position; and, Among the L nearest candidate positions after the group boundary, the candidate positions corresponding to the transmittable candidate positions in the arrangement relationship are used as the resource-occupied positions. It is understandable that the transmittable candidate position is a candidate position where the base station can transmit a synchronization signal block, that is, a candidate position where the base station may transmit a synchronization signal block. Among them, L1 represents the number of candidate positions from the reference position to the group boundary.
例如图11所示,位置配置信息为11011101,长度为8,指示信息到其后最邻近组边界的L1=3个候选位置为图11中第一部分的编号为5-7的候选位置。根据位置配置信息的后L1=3比特确定资源占用位置,即与位置配置信息中最后L1个候选位置中的可传输候选位置对应的候选位置。如图11所示,编号为5-7的候选位置中,编号5对应位置配置信息中第6个位置的1,编号6对应位置配置信息中第7个位置的0,编号7对应位置配置信息中第8个位置的1,则可以确定指示信息与组边界之间的3个候选位置中,编号5以及编号7分别为资源占用位置。For example, as shown in FIG. 11, the position configuration information is 11011101, the length is 8, and the L1=3 candidate positions that indicate the information to the nearest group boundary thereafter are the candidate positions numbered 5-7 in the first part of FIG. 11. The resource occupied position is determined according to the last L1=3 bits of the position configuration information, that is, the candidate position corresponding to the transmittable candidate position among the last L1 candidate positions in the position configuration information. As shown in Figure 11, among the candidate positions numbered 5-7, number 5 corresponds to 1 in the 6th position in the position configuration information, number 6 corresponds to 0 in the 7th position in the position configuration information, and number 7 corresponds to the position configuration information 1 in the eighth position in the middle, it can be determined that among the 3 candidate positions between the indication information and the group boundary, the numbers 5 and 7 are respectively the resource occupied positions.
另外,图11中第二部分,编号8至15对应的候选位置为最近的组边界后L=8个候选位置。在该8个候选位置中,与位置配置信息11011101中的1依次对应的候选位置分别为编号8、9、11、12、13以及15对应的候选位置,则可以确定编号8、9、11、12、13以及15对应的候选位置为资源占用位置。In addition, in the second part of FIG. 11, candidate positions corresponding to numbers 8 to 15 are L=8 candidate positions after the nearest group boundary. Among the 8 candidate positions, the candidate positions corresponding to 1 in the position configuration information 11011101 are the candidate positions corresponding to numbers 8, 9, 11, 12, 13, and 15, respectively, and the numbers 8, 9, 11, and 15 can be determined. The candidate positions corresponding to 12, 13, and 15 are resource-occupied positions.
本申请实施例还提供了第二种实施方式。在该实施方式中,位置配置信息可以包括基站用于传输同步信号块的一组候选位置的数量L,L为正整数。根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置,可以是:从所述参考位置后的最近L个候选位置中确定资源占用位置。例如图12所示,位置配置信息是有效长度为8的位图,指示信息作为参考位置,在如图12中编号4的候选位置与编号5的候选位置之间,则可以从指示信息后8个候选位置中确定资源占用位置,即从编号5至编号12的候选位置中确定资源占用位置。The embodiments of the present application also provide a second implementation manner. In this embodiment, the location configuration information may include the number L of a set of candidate locations used by the base station to transmit the synchronization signal block, where L is a positive integer. According to the position configuration information, determining the resource occupation position from the candidate positions after the reference position may be: determining the resource occupation position from the last L candidate positions after the reference position. For example, as shown in Figure 12, the position configuration information is a bitmap with an effective length of 8, and the indication information is used as a reference position. Between the candidate position numbered 4 and the candidate position numbered 5 in Figure 12, you can start from 8 after the indication information. The resource-occupied location is determined from the candidate locations, that is, the resource-occupied location is determined from the candidate locations numbered 5 to 12.
可选的,在该实施方式中,可以将参考位置后的最近L个候选位置都确定为资源占用位置。Optionally, in this implementation manner, all the L nearest candidate positions after the reference position may be determined as resource-occupied positions.
可选的,在该实施方式中,可以将参考位置后的最近L个候选位置中,可能传输同步信号块的候选位置作为资源占用位置。Optionally, in this implementation manner, among the nearest L candidate positions after the reference position, candidate positions that may transmit synchronization signal blocks may be used as resource occupation positions.
位置配置信息可以包括所述一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系。由于可传输同步信号块的候选位置具有准共址关系的候选位置可能传输同步信号块,在该实施方式的一种子实施方式中,根据位置配置信息,从所述参考位置后的最近L个候选位置中确定资源占用位置,可以是,根据排布关系,确定所述参考位置后的最近L个候选位置中,与所述排布关系中可传输同步信号块的候选位置具有准共址关系的候选位置,作为所述资源占用位置。The location configuration information may include the arrangement relationship between the candidate locations where the synchronization signal block can be transmitted and the candidate locations where the synchronization signal block cannot be transmitted in the set of candidate locations. Since the candidate positions where the synchronization signal block can be transmitted have a quasi co-location relationship, the synchronization signal block may be transmitted in a candidate position. In a sub-implementation of this embodiment, according to the position configuration information, from the nearest L candidates after the reference position The resource occupancy position is determined in the position, which may be, according to the arrangement relationship, the nearest L candidate positions after the reference position are determined, which have a quasi co-location relationship with the candidate positions that can transmit the synchronization signal block in the arrangement relationship The candidate position is used as the resource occupation position.
具体与可传输候选位置具有准共址关系的候选位置的确定可以参见前述实施例中相应部分,在此不再赘述。For the specific determination of the candidate location that has a quasi co-location relationship with the transmittable candidate location, reference may be made to the corresponding part in the foregoing embodiment, and details are not repeated here.
例如图12所示,以接收到指示信息的时刻为参考位置,以位图作为位置配置信息,位图为11011101,也就是位置配置信息的有效长度为8,表示一组候选位置中有8个候选位置。用于确定候选位置之间准共址关系的准共址参数为Q=8,则终端设备在指示信息后的8个候选位置中确定资源占用位置。如图12所示,由于在候选位置中,编号与Q取模后等于0(对应位图中第一个1),1(对应位图中第二个1),3(对应位图中第四个1),4(对应位图中第五个1),5(对应位图中第六个1),或7(对应第八个1)的候选位置对应位图中的1,则确定指示信息后的8个候选位置中,编号为5,7,8,9,11以及12的候选位置,为资源占用位置。For example, as shown in Figure 12, the time when the instruction information is received is the reference position, and the bitmap is used as the location configuration information. The bitmap is 11011101, that is, the effective length of the location configuration information is 8, which means that there are 8 candidate positions in a group. Candidate position. The quasi co-location parameter used to determine the quasi co-location relationship between candidate positions is Q=8, and the terminal device determines the resource-occupied position among the eight candidate positions after the indication information. As shown in Figure 12, because in the candidate position, the number and Q are modulo 0 (corresponding to the first 1 in the bitmap), 1 (corresponding to the second 1 in the bitmap), and 3 (corresponding to the first 1 in the bitmap). Four 1), 4 (corresponding to the fifth 1 in the bitmap), 5 (corresponding to the sixth 1 in the bitmap), or 7 (corresponding to the eighth 1) candidate positions corresponding to 1 in the bitmap, then determine Among the 8 candidate positions after the indication information, the candidate positions numbered 5, 7, 8, 9, 11, and 12 are resource occupied positions.
另一种子实施方式中,传输窗口中的所有候选位置每相邻的L个分为一组,最后不满足数量L的多个候选位置分为一组。位置配置信息可以包括一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系。In another sub-implementation, all candidate positions in the transmission window are grouped into a group for every adjacent L, and finally multiple candidate positions that do not satisfy the number L are grouped into a group. The location configuration information may include an arrangement relationship between candidate locations where a synchronization signal block can be transmitted and candidate locations where a synchronization signal block cannot be transmitted in a set of candidate locations.
在该子实施方式中,根据位置配置信息,从参考位置后的最近L个候选位置中确定资源占用位置,可以包括:确定所述参考位置后最近的组边界;确定所述参考位置到所述最近的组边界之间的L2个候选位置中,与所述排布关系中最后L2个可传输候选位置对应的候选位置,作为所述资源占用位置;以及,确定所述最近的组边界后的L3个候选位置中,与所述排布关系中的前L3个候选位置中可传输候选位置对应的候选位置,作为所述资源占用位置,L2与L3为非负整数,且L2与L3的和为L。可以理解的,L2表示参考位置与组边界之间的候选位置的数量。该可传输候选位置为所述基站可传输同步信号块的候选位置,即基站可能发送同步信号块的候选位置。In this sub-implementation, determining the resource occupation position from the nearest L candidate positions after the reference position according to the position configuration information may include: determining the nearest group boundary after the reference position; and determining the reference position to the Among the L2 candidate positions between the nearest group boundaries, the candidate position corresponding to the last L2 transmittable candidate positions in the arrangement relationship is used as the resource occupation position; and, after determining the nearest group boundary Among the L3 candidate positions, the candidate position corresponding to the transmittable candidate position among the first L3 candidate positions in the arrangement relationship is used as the resource occupation position, L2 and L3 are non-negative integers, and the sum of L2 and L3 Is L. It can be understood that L2 represents the number of candidate positions between the reference position and the group boundary. The transmittable candidate position is a candidate position where the base station can transmit a synchronization signal block, that is, a candidate position where the base station may transmit a synchronization signal block.
例如图13所示,以接收到指示信息的时刻为参考位置,以位图作为位置配置信息,位图为11011101,也就是位置配置信息的有效长度为8,表示一组候选位置中有8个候选位置。在指示信息到最邻近组边界之间的L2=3个候选位置为图13中第一部分,编号为5-7的候选位置。根据位置配置信息的最后L2=3比特确定资源占用位置,即与位置配置信息中最后L2个候选位置中的可传输候选位置对应的候选位置。如图13所示,编号为5-7的候选位置中,编号5对应位置配置信息中第6个位置的1,编号6对应位置配置信息中第7个位置的0,编号7对应位置配置信息中第8个位置的1,则可以确定指示信息与组边界之间的3个候选位置中,编号5以及编号7分别为资源占用位置。For example, as shown in Figure 13, the time when the indication information is received is the reference position, and the bitmap is used as the location configuration information. The bitmap is 11011101, that is, the effective length of the location configuration information is 8, which means that there are 8 candidate positions in a group. Candidate position. The L2=3 candidate positions between the indication information and the nearest neighbor group boundary are the first part in FIG. 13, and the candidate positions numbered 5-7. The resource occupation position is determined according to the last L2=3 bits of the position configuration information, that is, the candidate position corresponding to the transmittable candidate position among the last L2 candidate positions in the position configuration information. As shown in Figure 13, among the candidate positions numbered 5-7, number 5 corresponds to 1 in the 6th position in the position configuration information, number 6 corresponds to 0 in the 7th position in the position configuration information, and number 7 corresponds to the position configuration information 1 in the eighth position in the middle, it can be determined that among the 3 candidate positions between the indication information and the group boundary, the numbers 5 and 7 are respectively the resource occupied positions.
另外,图13中,编号8至12的候选位置为最近的组边界后的L3=5个候选位置。其中,编号为8至12的候选位置中,编号8对应位置配置信息中第1个位置的1,编号9对应位置配置信息中第2个位置的1,编号10对应位置配置信息中第3个位置的0,编号11对应位置配置信息中第4个位置的1,编号12对应位置配置信息中第5个位置的1,则可以最近的组边界之后的5个候选位置中,编号8,9,11,以及12分别为资源占用位置。In addition, in FIG. 13, candidate positions numbered 8 to 12 are L3=5 candidate positions behind the nearest group boundary. Among the candidate positions numbered 8 to 12, the number 8 corresponds to the 1 in the first position in the position configuration information, the number 9 corresponds to the 1 in the second position in the position configuration information, and the number 10 corresponds to the third in the position configuration information. Position 0 and number 11 correspond to 1 in the 4th position in the position configuration information, and number 12 corresponds to 1 in the 5th position in the position configuration information. Then the 5 candidate positions after the nearest group boundary can be numbered 8, 9 , 11, and 12 are resource occupation positions respectively.
在上述第一种实施方式中,若参考位置在组边界,可以从所述参考位置后的最近L个候选位置中确定资源占用位置。In the first implementation manner described above, if the reference position is at the group boundary, the resource occupation position may be determined from the nearest L candidate positions after the reference position.
在本申请实施例中,上述两种实施方式可以择一执行。或者是,当参考位置在组边界,则以上述第二种实施方式确定资源占用位置,即从所述参考位置后的最近L个候选位置中确定资源占用位置;若参考位置不是在组边界,则可以以上述第一种实施方式确定资源占用位置,即从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位 置。In the embodiments of the present application, the above two implementation manners can be implemented alternatively. Or, when the reference position is at the group boundary, the resource occupation position is determined in the second embodiment described above, that is, the resource occupation position is determined from the nearest L candidate positions after the reference position; if the reference position is not at the group boundary, Then the resource occupation position can be determined in the above-mentioned first implementation manner, that is, one or more candidate positions can be determined from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary. The location is the resource occupied location.
因此,可选的,在本申请实施例中,还可以判断所述参考位置是否在组边界。若是,则执行上述第二种实施方式,即从所述参考位置后的最近L个候选位置中确定资源占用位置;若否,则执行上述第二种实施方式,即从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置。Therefore, optionally, in this embodiment of the present application, it can also be determined whether the reference position is at the group boundary. If yes, execute the second implementation manner, that is, determine the resource-occupied location from the latest L candidate locations after the reference location; if not, execute the second implementation manner, that is, from the reference location and the location Among the candidate positions between the group boundaries and the nearest L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
在本申请实施例中,可以在接收到指示信息,根据指示信息确定参考位置,以从参考位置后的候选位置中确定资源占用位置,确定的资源占用位置更准确,且可以确定更多的未被占用的候选位置,从而确定更多的可利用的候选位置。In the embodiment of the present application, after receiving the indication information, the reference position may be determined according to the indication information to determine the resource occupation position from the candidate positions after the reference position. The determined resource occupation position is more accurate, and more unintended positions can be determined. Occupied candidate positions to determine more available candidate positions.
另外,在本申请实施例中,上述的实施例可以选择性的执行,或者根据一些接收到的信息执行。In addition, in the embodiments of the present application, the above-mentioned embodiments may be selectively executed, or executed according to some received information.
在一种实施例中,可以是,在所述传输窗口中,当没有接收到基站发送的指示信息,则可以根据一组候选位置的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置。也就是说,在没有接收到指示信息的情况下,可以执行上述根据上述第二实施例或第三实施例确定资源占用位置。In an embodiment, it may be that, in the transmission window, when the indication information sent by the base station is not received, it may be determined to be in all candidate positions in the synchronization signal transmission window according to the arrangement relationship of a group of candidate positions , The candidate position corresponding to the transmittable candidate position is the resource occupied position. That is to say, in the case that the indication information is not received, the above-mentioned determination of the resource occupation position according to the above-mentioned second embodiment or the third embodiment may be performed.
在所述传输窗口中,当接收到基站发送的指示信息,则在所述传输窗口中,当接收到基站发送的指示信息,则可以根据所述指示信息确定参考位置,并根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。也就是说,当接收到指示信息,则以上述步骤S410至步骤S430对应的实施例确定资源占用位置。In the transmission window, when the instruction information sent by the base station is received, in the transmission window, when the instruction information sent by the base station is received, the reference position can be determined according to the instruction information, and the position configuration Information, the resource occupation position is determined from the candidate position after the reference position. That is, when the instruction information is received, the resource occupation position is determined according to the embodiment corresponding to the above step S410 to step S430.
在另一种实施例中,根据何种方式确定资源占用位置可以根据基站的指示确定。具体的,可以获取基站发送的配置信息,并根据配置信息获取确定资源占用的方式。其中,确定资源占用位置的方式可以包括:从参考位置后的最近L个候选位置中确定资源占用位置;或,从参考位置与组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置;或,根据可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置。In another embodiment, the method according to which the resource occupation position is determined can be determined according to the instruction of the base station. Specifically, the configuration information sent by the base station can be obtained, and the manner of resource occupation can be determined according to the configuration information. Wherein, the manner of determining the resource occupation position may include: determining the resource occupation position from the nearest L candidate positions after the reference position; or, from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary Among the candidate positions, one or more candidate positions are determined as resource-occupied positions; or, according to the arrangement relationship between the candidate positions for which synchronization signal blocks can be transmitted and the candidate positions for which synchronization signal blocks cannot be transmitted, the position in the synchronization signal transmission window is determined Among all the candidate positions, the candidate position corresponding to the transmittable candidate position is the resource occupied position.
当然,此处列举的资源占用位置的三种确定方式仅为举例,每种确定方式中所包括的不同确定方式,也可以选择。并且,可选择的也可以比此处列举的三种确定方式更少,在本申请实施例中并不限定。也就是说,本申请实施例所列举的任何资源占用位置的确定方式都是可选的,并且可以通过配置信息进行选择。Of course, the three methods for determining the occupied position of the resource listed here are only examples, and the different determining methods included in each determination method can also be selected. In addition, there may be fewer options than the three determination methods listed here, which are not limited in the embodiments of the present application. That is to say, any method for determining the resource occupation location listed in the embodiment of the present application is optional, and can be selected through configuration information.
其中,配置信息中可以通过第一信息指示确定资源占用位置的方式,具体可以通过第一信息的指示、第一信息的存在与否,从不同的确定方式中选择确定方式。Wherein, the configuration information may indicate the manner of determining the resource occupation location through the first information. Specifically, the determination manner may be selected from different determination manners through the indication of the first information and the presence or absence of the first information.
例如,作为一种实施方式中,当终端设备接收到第一信息,且第一信息指示为按照第一规则确定资源占用位置,则按照第一规则确定资源占用位置;当终端设备接收到第一信息,且第一信息指示为按照上述第二规则确定资源占用位置,则按照上述第二规则确定资源占用位置;当终端设备接收到第一信息,且第一消息指示终端设备按照默认规则确定不可利用的时频资源,则按照默认规则确定资源占用位置。在该实施方式中,2比特的第一信息即可实现指示。For example, as an implementation manner, when the terminal device receives the first information, and the first information indicates that the resource occupation location is determined according to the first rule, the resource occupation location is determined according to the first rule; when the terminal device receives the first information Information, and the first information indicates that the resource occupation position is determined according to the above second rule, the resource occupation position is determined according to the above second rule; when the terminal device receives the first information, and the first message instructs the terminal device to determine the unavailability according to the default rule The time-frequency resource used is determined according to the default rule to determine the resource occupancy position. In this embodiment, the first information of 2 bits can realize the indication.
作为一种实施方式,当终端设备接收到第一信息,且第一信息指示为按照第一规则确定资源占用位 置,则按照第一规则确定资源占用位置;当终端设备接收到第一信息,且第一信息指示为按照第二规则确定资源占用位置,则按照第二规则确定资源占用位置;当终端设备未接收到第一信息,表示基站未发送第一信息,则按照默认规则确定资源占用位置。在该实施方式中,1比特的第一信息即可实现指示。As an implementation manner, when the terminal device receives the first information, and the first information indicates that the resource occupation position is determined according to the first rule, the resource occupation position is determined according to the first rule; when the terminal device receives the first information, and The first information indicates that the resource occupation position is determined according to the second rule, and the resource occupation position is determined according to the second rule; when the terminal device does not receive the first information, it means that the base station has not sent the first information, then the resource occupation position is determined according to the default rule . In this embodiment, the first information of 1 bit can realize the indication.
作为一种实施方式中,当终端设备接收到第一信息,且第一信息指示为按照第一规则确定资源占用位置,则按照第一规则确定资源占用位置;当终端设备接收到第一信息,且第一信息指示为按照默认规则确定资源占用位置,则按照默认规则确定资源占用位置;当终端设备未到第一信息,表示基站未发送第一信息,则按照第二规则确定资源占用位置。在该实施方式中,1比特的第一信息即可实现指示。As an implementation manner, when the terminal device receives the first information, and the first information indicates that the resource occupation position is determined according to the first rule, the resource occupation position is determined according to the first rule; when the terminal device receives the first information, And the first information indicates that the resource occupation position is determined according to the default rule, then the resource occupation position is determined according to the default rule; when the terminal device does not arrive at the first message, which means that the base station has not sent the first information, the resource occupation position is determined according to the second rule. In this embodiment, the first information of 1 bit can realize the indication.
作为一种实施方式中,当终端设备接收到第一信息,且第一信息指示为按照第二规则确定资源占用位置,则按照第二规则确定资源占用位置;当终端设备接收到第一信息,且第一信息指示为按照默认规则确定资源占用位置,则按照默认规则确定资源占用位置;当终端设备未到第一信息,表示基站未发送第一信息,则按照第一规则确定资源占用位置。在该实施方式中,1比特的第一信息即可实现指示。As an implementation manner, when the terminal device receives the first information, and the first information indicates that the resource occupation position is determined according to the second rule, the resource occupation position is determined according to the second rule; when the terminal device receives the first information, And the first information indicates that the resource occupation position is determined according to the default rule, then the resource occupation position is determined according to the default rule; when the terminal device does not arrive at the first message, it means that the base station has not sent the first information, then the resource occupation position is determined according to the first rule. In this embodiment, the first information of 1 bit can realize the indication.
其中,第一规则为从参考位置后的最近L个候选位置中确定资源占用位置,或者说上述第四实施例中的第二种实施方式;第二规则可以为从参考位置与组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置,或者说上述第四实施例中的第一种实施方式;默认规则为根据可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置,或者说上述实施例中的第一实施例以及第二实施例。Among them, the first rule is to determine the resource occupation position from the last L candidate positions after the reference position, or the second implementation in the above fourth embodiment; the second rule may be from the reference position to the group boundary Among the candidate positions of, and the nearest L candidate positions after the group boundary, one or more candidate positions are determined to be resource-occupied positions, or the first implementation in the above fourth embodiment; the default rule is based on the transmittable The arrangement relationship between the candidate positions of the synchronization signal block and the candidate positions of the non-transmissible synchronization signal block is determined, among all the candidate positions of the synchronization signal transmission window, the candidate position corresponding to the candidate position that can be transmitted is the resource occupied position, In other words, the first embodiment and the second embodiment of the above-mentioned embodiments.
另外,在该实施例中,该第一信息可以采用任何的形式进行发送,例如,第一信息可以采用以下方式中的一种或多种发送:广播消息,包括MIB,SIB1(RMSI),SIB;RRC专有信令;DCI消息(承载于PDCCH或GC-PDCCH);MAC CE消息等。In addition, in this embodiment, the first information can be sent in any form. For example, the first information can be sent in one or more of the following ways: broadcast messages, including MIB, SIB1 (RMSI), SIB ; RRC dedicated signaling; DCI messages (carried on PDCCH or GC-PDCCH); MAC CE messages, etc.
在该实施例中,可以根据从基站接收到的配置信息确定资源占用位置的确定方式,从而确定方式更明确。In this embodiment, the determination method of the resource occupancy position can be determined according to the configuration information received from the base station, so that the determination method is more specific.
在本申请的一种实施例中,还可以根据基站的指示确定是否要确定候选位置中的资源占用位置。In an embodiment of the present application, it may also be determined whether to determine the resource-occupied position in the candidate position according to an instruction of the base station.
具体的,在该实施例中,可以获取配置信息,根据所述配置信息判断是否确定资源占用位置。若判定要确定资源占用位置,则可以根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,即可以执行前述实施例中资源占用位置的方法。Specifically, in this embodiment, configuration information may be obtained, and it is determined whether to determine the resource occupation location according to the configuration information. If it is determined that the resource occupation position is to be determined, the resource occupation position among all candidate positions in the synchronization signal block transmission window can be determined according to the position configuration information, that is, the resource occupation position method in the foregoing embodiment can be performed.
在本申请实施例中,不同实施例所涉及到的配置信息可以相同也可以不同,若相同,则在不同实施例中,配置信息中使用的信息可以不同。In the embodiments of the present application, the configuration information involved in different embodiments may be the same or different. If the same, the information used in the configuration information may be different in different embodiments.
在本申请实施例中,可以以配置信息中的第二信息确定判定是否确定资源占用位置。若第二信息指示要确定资源占用位置,则判定确定资源占用位置;若第二信息指示不确定资源占用位置,则可以不确定资源占用位置。In the embodiment of the present application, the second information in the configuration information may be used to determine whether to determine the resource occupation location. If the second information indicates that the resource occupancy position is to be determined, then it is determined to determine the resource occupancy position; if the second information indicates that the resource occupancy position is uncertain, the resource occupancy position may be uncertain.
在一种实施方式中,可以在根据第二信息判定是否确定资源占用位置后,第二信息后的任何传输窗口,都以该判定结果为标准,直至再次接收到第二信息。In an implementation manner, after determining whether to determine the resource occupancy position according to the second information, any transmission window after the second information may use the determination result as the standard until the second information is received again.
在另一种实施方式中,可以通过第二信息对每个传输窗口进行指示。根据指示结果判断在当前传输窗口,或者接收到第二信息后的最近一个传输窗口,是否要确定资源占用位置。In another implementation manner, each transmission window may be indicated through the second information. According to the instruction result, it is determined whether to determine the resource occupation position in the current transmission window or the latest transmission window after receiving the second information.
可选的,在本申请实施例中,未接收到第二信息,也可以作为一种指示。例如,若未接收到第二信息,则判定为不确定资源占用位置;或者若未接收到第二信息,则判定为要确定资源占用位置。Optionally, in this embodiment of the present application, the second information is not received, which may also be used as an indication. For example, if the second information is not received, it is determined that the resource occupation location is uncertain; or if the second information is not received, it is determined that the resource occupation location is to be determined.
在本申请实施例中,第二息可以采用以下方式中的一种或多种从基站发送:广播消息,包括MIB,SIB1(RMSI),SIB;RRC专有信令;DCI消息(承载于PDCCH或GC-PDCCH);MAC CE消息。In the embodiment of this application, the second information can be sent from the base station in one or more of the following ways: broadcast message, including MIB, SIB1 (RMSI), SIB; RRC dedicated signaling; DCI message (carried on PDCCH) Or GC-PDCCH); MAC CE message.
在本申请实施例中,通过配置信息作为是否确定资源占用位置的开关,从而在有需要的时候可以不确定资源占用位置,节省处理空间;在有需要的时候也可以对资源占用位置进行确定,以使终端设备更好地做速率匹配。In the embodiment of the present application, the configuration information is used as a switch to determine whether the resource occupation position is determined, so that the resource occupation position can be determined when necessary, and the processing space can be saved; the resource occupation position can also be determined when necessary, In order to enable the terminal equipment to do better rate matching.
本申请还提供了一种实施例,应用于基站侧。具体的,请参见图14,该实施例包括:This application also provides an embodiment, which is applied to the base station side. Specifically, please refer to Figure 14. This embodiment includes:
步骤S510:向终端设备发送位置配置信息。所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况,用于指示所述终端设备根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。位置配置信息的具体描述可以参见前述实施例,在此不再赘述。Step S510: Send location configuration information to the terminal device. The position configuration information includes the configuration of the candidate positions of the synchronization signal block transmitted by the base station, and is used to instruct the terminal device to determine the resource occupation positions of all candidate positions in the synchronization signal block transmission window according to the position configuration information, The candidate position is a position for transmitting the synchronization signal block. For a specific description of the location configuration information, reference may be made to the foregoing embodiment, which will not be repeated here.
步骤S520:在传输窗口中,当先听后说成功(LBT成功),从最近的候选位置开始,向所述终端设备发送对应的且未成功发送的同步信号块。Step S520: In the transmission window, when listening first and then speaking success (LBT success), starting from the nearest candidate position, send the corresponding and unsuccessful synchronization signal block to the terminal device.
在对应有同步信号块发送的候选位置,每个候选位置发送同步信号块时波速方向不同,因此,同一个同步信号块只能在其对应的候选位置发送,且,对应同一个同步信号块的候选位置具有准共址参数。In the candidate positions corresponding to the synchronization signal block, each candidate position transmits the synchronization signal block in a different direction of wave speed. Therefore, the same synchronization signal block can only be sent at its corresponding candidate position, and the corresponding synchronization signal block The candidate locations have quasi co-location parameters.
因此,当基站LBT成功,表示可以发送同步信号块,则从最近的需要发送同步信号块的候选位置开始发送同步信号块。该最近的需要发送同步信号块的候选位置为,对应有要发送的同步信号块,且该同步信号块尚未发送。Therefore, when the base station LBT succeeds, indicating that the synchronization signal block can be sent, the synchronization signal block starts to be sent from the nearest candidate position where the synchronization signal block needs to be sent. The nearest candidate position of the synchronization signal block that needs to be sent is that there is a synchronization signal block to be sent, and the synchronization signal block has not been sent yet.
例如图1所述,在LBT失败后的候选位置,基站不可发送同步信号块,在LBT成功后的候选位置中,若需要发送同步信号块,则可以发送。若图1中表示的是一个传输窗口中的候选位置,基站在一个窗口中最多发送2个同步信号块,且配置的只发送一个同步信号块,对应位置配置信息为10,则可能在图1中LBT成功的时刻后最近一个候选位置发送同步信号块。For example, as shown in FIG. 1, in candidate positions after LBT failure, the base station cannot send synchronization signal blocks, and in candidate positions after LBT success, if synchronization signal blocks need to be sent, they can be sent. If Figure 1 shows candidate positions in a transmission window, the base station can transmit at most 2 synchronization signal blocks in a window, and only one synchronization signal block is configured to be transmitted, and the corresponding position configuration information is 10, it may be in Figure 1. The synchronization signal block is sent at the nearest candidate position after the moment when the LBT succeeds.
在本申请实施例中,基站可以将位置配置信息发送到终端设备,并且,基站在发送同步信号块时,根据位置配置信息进行发送,从而终端设备可以根据该位置配置信息确定可能接收到同步信号块的候选位置,将确定为可能接收到同步信号块的候选位置,作为资源占用位置。In the embodiment of the present application, the base station can send the location configuration information to the terminal device, and when the base station sends the synchronization signal block, it transmits according to the location configuration information, so that the terminal device can determine that the synchronization signal may be received according to the location configuration information The candidate position of the block will be determined as the candidate position of the block that may receive the synchronization signal as the resource occupation position.
本申请实施例还提供了一种资源占用位置的确定装置600,应用于终端设备。请参见图15,该装置600包括:信息获取模块610,用于获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况。位置确定模块620,用于根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。The embodiment of the present application also provides an apparatus 600 for determining a resource occupation position, which is applied to a terminal device. Referring to FIG. 15, the apparatus 600 includes: an information obtaining module 610 for obtaining location configuration information, where the location configuration information includes the configuration of the base station for the candidate locations for transmitting the synchronization signal block. The position determining module 620 is configured to determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, and the candidate positions are positions for transmitting the synchronization signal block.
可选的,位置确定模块620可以包括,参考位置确定单元,用于在所述传输窗口中,当接收到基站发送的指示信息,根据所述指示信息确定参考位置,所述指示信息表示所述基站已抢占信道;位置确定单元,用于根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。Optionally, the position determining module 620 may include a reference position determining unit, configured to determine a reference position according to the indication information when the indication information sent by the base station is received in the transmission window, and the indication information indicates the The base station has preempted the channel; the position determining unit is configured to determine the resource occupation position from the candidate position after the reference position according to the position configuration information.
可选的,位置确定单元可以用于,确定所述参考位置后最近的组边界,所述组边界为两个分组之间的边界;从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定 一个或多个候选位置为资源占用位置。Optionally, the position determining unit may be configured to determine the closest group boundary after the reference position, where the group boundary is the boundary between two groups; from the candidate position between the reference position and the group boundary And among the last L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
可选的,位置确定单元可以用于,根据所述排布关系,确定所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,与所述可传输同步信号块的候选位置具有准共址关系的候选位置,作为所述资源占用位置。Optionally, the position determining unit may be configured to determine, according to the arrangement relationship, a candidate position between the reference position and the group boundary and the nearest L candidate positions after the group boundary, and the The candidate position where the synchronization signal block can be transmitted has a quasi co-location relationship as the resource occupation position.
可选的,位置确定单元可以用于将所述参考位置到所述组边界之间的L1个候选位置中,与所述排布关系中的最后L1个候选位置中的可传输候选位置对应的候选位置,作为所述资源占用位置,所述可传输候选位置为所述基站可传输同步信号块的候选位置,以及,将所述组边界后最近的L个候选位置中,与所述排布关系中可传输候选位置对应的候选位置,作为所述资源占用位置。Optionally, the position determining unit may be used to determine the L1 candidate positions between the reference position and the group boundary corresponding to the transmittable candidate position among the last L1 candidate positions in the arrangement relationship. Candidate positions, as the resource-occupied positions, the transmittable candidate positions are candidate positions where the base station can transmit synchronization signal blocks, and the L nearest candidate positions after the group boundary are aligned with the arrangement The candidate position corresponding to the candidate position may be transmitted in the relationship as the resource occupied position.
可选的,该方法还包括,边界判断模块,用于判断所述参考位置是否在组边界。若是,位置确定单元可以用于从所述参考位置后的最近L个候选位置中确定资源占用位置;若否,位置确定单元可以用于从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置。Optionally, the method further includes a boundary judgment module, configured to judge whether the reference position is at the group boundary. If yes, the position determining unit may be used to determine the resource occupation position from the last L candidate positions after the reference position; if not, the position determining unit may be used to determine the candidate position between the reference position and the group boundary And among the last L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
可选的,位置确定单元可以用于从所述参考位置后的最近L个候选位置中确定资源占用位置。Optionally, the position determining unit may be used to determine the resource occupation position from the last L candidate positions after the reference position.
可选的,位置确定单元可以用于,根据所述排布关系,确定所述参考位置后的最近L个候选位置中,与所述排布关系中可传输同步信号块的候选位置具有准共址关系的候选位置,作为所述资源占用位置。Optionally, the position determining unit may be configured to, according to the arrangement relationship, determine the nearest L candidate positions after the reference position, which has a quasi-common relationship with the candidate positions that can transmit the synchronization signal block in the arrangement relationship. The candidate position of the address relationship is used as the resource occupation position.
可选的,位置确定单元可以用于,确定所述参考位置后最近的组边界,所述组边界为两个分组之间的边界;确定所述参考位置到所述组边界之间的L2个候选位置中,与所述排布关系中最后L2个可传输候选位置对应的候选位置,作为所述资源占用位置,所述可传输候选位置为所述基站可传输同步信号块的候选位置,以及,确定所述组边界后的L3个候选位置中,与所述排布关系中的前L3个候选位置中可传输候选位置对应的候选位置,作为所述资源占用位置,L2与L3为非负整数,且L2与L3的和为L。Optionally, the position determining unit may be configured to determine the nearest group boundary after the reference position, where the group boundary is the boundary between two groups; and determine L2 between the reference position and the group boundary Among the candidate positions, the candidate positions corresponding to the last L2 transmittable candidate positions in the arrangement relationship are used as the resource occupation positions, and the transmittable candidate positions are candidate positions where the base station can transmit synchronization signal blocks, and , Determine that among the L3 candidate positions after the group boundary, the candidate positions corresponding to the transmittable candidate positions among the first L3 candidate positions in the arrangement relationship are used as the resource occupied positions, and L2 and L3 are non-negative An integer, and the sum of L2 and L3 is L.
可选的,参考位置确定单元可以用于,以接收到所述指示信息的时刻作为所述参考位置。Optionally, the reference position determining unit may be configured to use the time when the indication information is received as the reference position.
可选的,参考位置确定单元可以用于,获取接收到所述指示信息的时刻后最近的满足预设条件的候选位置,作为所述参考位置。其中,所述满足预设条件的候选位置可以是:组边界后的第一个候选位置,所述组边界为对传输窗口中的候选位置每相邻L个分组后,两个分组之间的边界,L为位置配置信息中指示的一组候选位置的数量;或编号为偶数的候选位置;或编号为4的倍数的候选位置;或编号为8的倍数的候选位置;或指示信息后最近的候选位置。Optionally, the reference position determining unit may be configured to obtain the nearest candidate position that satisfies a preset condition after the time when the indication information is received, as the reference position. Wherein, the candidate position that satisfies the preset condition may be: the first candidate position after the group boundary, and the group boundary is the distance between the two groups after every L adjacent groups of the candidate positions in the transmission window. Boundary, L is the number of a group of candidate positions indicated in the position configuration information; or candidate positions numbered even; or candidate positions numbered as multiples of 4; or candidate positions numbered as multiples of 8; or nearest after the indication information Candidate positions.
可选的,位置确定模块可以用于,在所述传输窗口中,当没有接收到基站发送的指示信息,则根据所述排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置,所述可传输候选位置为可传输同步信号块的候选位置;在所述传输窗口中,当接收到基站发送的指示信息,则在所述传输窗口中,当接收到基站发送的指示信息,根据所述指示信息确定参考位置,所述指示信息表示所述基站已抢占信道;根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。Optionally, the position determining module may be used to, in the transmission window, when the indication information sent by the base station is not received, according to the arrangement relationship, determine that among all candidate positions in the synchronization signal transmission window, the corresponding available The candidate position of the transmission candidate position is the resource occupied position, and the transmittable candidate position is the candidate position that can transmit the synchronization signal block; in the transmission window, when the instruction information sent by the base station is received, the In the transmission window, when the indication information sent by the base station is received, the reference position is determined according to the indication information, and the indication information indicates that the base station has seized the channel; according to the position configuration information, from the candidate position after the reference position Determine where the resource is occupied.
可选的,位置确定模块可以用于,根据所述排布关系,确定在同步信号传输窗口的所有候选位置中,与可传输候选位置具有准共址关系的候选位置,为所述资源占用位置,所述可传输候选位置为可传输同步信号块的位置。Optionally, the position determining module may be configured to determine, according to the arrangement relationship, among all candidate positions in the synchronization signal transmission window, a candidate position having a quasi co-location relationship with the transmittable candidate position is the resource occupation position , The transmittable candidate position is a position where the synchronization signal block can be transmitted.
可选的,该装置还可以包括,准共址关系模块,用于获取准共址参数,所述准共址参数用于确定传输窗口中候选位置之间的准共址关系,所述准共址参数为正整数Q;确定与可传输候选位置具有准共址关系的候选位置,包括:确定所有候选位置的编号;计算所有编号中,对准共址参数取模后的值,获得多个模值;确定所述多个模值中,与所述排布关系中可传输候选位置的排布位置对应的模值,所述可传输候选位置为可传输同步信号块的候选位置;将确定的模值对应的候选位置,作为与可传输候选位置具有准共址关系的候选位置。Optionally, the device may further include a quasi co-location relationship module, configured to obtain quasi co-location parameters, where the quasi co-location parameters are used to determine the quasi co-location relationship between candidate positions in the transmission window, and the quasi co-location relationship The address parameter is a positive integer Q; to determine the candidate positions that have a quasi co-location relationship with the transmissible candidate position, including: determining the numbers of all candidate positions; calculating all numbers, aligning the value of the co-location parameter after modulo, and obtaining multiple Modulus value; determining the modulus value corresponding to the arrangement position of the transmittable candidate position in the arrangement relationship among the plurality of modulus values, and the transmittable candidate position is a candidate position of a synchronization signal block that can be transmitted; The candidate position corresponding to the modulus of is regarded as the candidate position that has a quasi co-location relationship with the transmittable candidate position.
可选的,位置确定模块可以用于,将所述排布关系循环扩展到所有候选位置;确定扩展后的所有候选位置中,一个或多个可传输同步信号块的候选位置,为所述资源占用位置。Optionally, the position determining module may be used to cyclically expand the arrangement relationship to all candidate positions; determine that among all the expanded candidate positions, one or more candidate positions that can transmit synchronization signal blocks are the resource Occupy position.
可选的,该装置还可以包括,配置信息获取模块,用于获取配置信息;方式选择模块,用于根据所述配置信息,获取确定资源占用位置的方式,其中,基站用于传输同步信号块的一组候选位置的数量L,所述确定资源占用位置的方式包括:从参考位置后的最近L个候选位置中确定资源占用位置;或从参考位置与组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置;或根据可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置。Optionally, the device may further include a configuration information acquisition module, configured to acquire configuration information; a mode selection module, configured to acquire a manner of determining the resource occupation location according to the configuration information, wherein the base station is used to transmit synchronization signal blocks The number L of a group of candidate positions for determining the resource occupation position includes: determining the resource occupation position from the latest L candidate positions after the reference position; or determining the resource occupation position from the candidate position between the reference position and the group boundary and the Among the last L candidate positions after the group boundary, determine one or more candidate positions as resource-occupied positions; or determine according to the arrangement relationship between candidate positions that can transmit synchronization signal blocks and candidate positions that cannot transmit synchronization signal blocks Among all the candidate positions in the synchronization signal transmission window, the candidate position corresponding to the transmittable candidate position is the resource occupied position.
可选的,该装置还可以包括,配置信息获取模块,用于获取配置信息;位置确定模块,根据所述配置信息判断是否确定资源占用位置,若是,执行所述根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。Optionally, the device may further include a configuration information acquisition module for acquiring configuration information; a location determination module, which determines whether to determine the resource occupation location based on the configuration information, and if so, executes the determination based on the location configuration information Resource occupied positions among all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block.
可选的,配置信息获取模块,还可以用于确定所述位置配置信息中的有效配置信息,根据所述有效配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置。Optionally, the configuration information acquisition module may also be used to determine the effective configuration information in the location configuration information, and determine the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the effective configuration information.
本申请实施例还提供了一种资源占用位置的确定装置,应用于基站。该装置可以:信息发送模块,用于向终端设备发送位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况,用于指示所述终端设备根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置;同步信号块发送模块,用于在传输窗口中,当先听后说成功,从最近的候选位置开始,向所述终端设备发送对应的且未成功发送的同步信号块。The embodiment of the present application also provides an apparatus for determining a resource occupation position, which is applied to a base station. The device may: an information sending module, configured to send location configuration information to a terminal device, where the location configuration information includes a base station's configuration of candidate locations for transmitting synchronization signal blocks, and is used to instruct the terminal device to configure information according to the location , Determine the resource occupancy positions in all candidate positions in the synchronization signal block transmission window, where the candidate positions are the positions used to transmit the synchronization signal block; the synchronization signal block sending module is used in the transmission window to listen first and then say success , Starting from the nearest candidate position, send the corresponding and unsuccessful synchronization signal block to the terminal device.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述的各个方法实施例之间可以相互参照;上述描述装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and concise description, the above-mentioned method embodiments can be referred to each other; for the specific working process of the above-described device and module, please refer to the corresponding process in the aforementioned method embodiment. , I won’t repeat it here.
在本申请所提供的几个实施例中,模块相互之间的耦合可以是电性,机械或其它形式的耦合。In the several embodiments provided in this application, the coupling between the modules may be electrical, mechanical or other forms of coupling.
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。各个模块可以配置在不同的终端设备中,也可以配置在相同的终端设备中,本申请实施例并不限定。In addition, each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or software function modules. Each module may be configured in different terminal devices, and may also be configured in the same terminal device, which is not limited in the embodiment of the present application.
请参考图16,其示出了本申请实施例提供的一种终端设备700的结构框图。该终端设备700可以是智能手机、可穿戴设备、电子阅读器、平板电脑、计算机等可用于5G通信的智能设备。该终端设备可以包括一个或多个处理器710(图中仅示出一个),存储器720以及一个或多个程序。 其中,存储器可以包括系统存储器以及触摸屏存储器,系统存储器用于存储终端设备的系统数据以及系统调用的各种文件等,所述一个或多个程序被存储在可以存储在系统存储器中,并被配置为由一个或多个处理器710执行。所述一个或多个程序配置用于执行前述实施例所描述的方法。触摸屏存储器用于存储触摸屏操作系统以及触摸屏相关的使用文件,例如可以存储触摸屏固件。Please refer to FIG. 16, which shows a structural block diagram of a terminal device 700 provided by an embodiment of the present application. The terminal device 700 may be a smart phone, a wearable device, an e-reader, a tablet computer, a computer, and other smart devices that can be used for 5G communication. The terminal device may include one or more processors 710 (only one is shown in the figure), a memory 720, and one or more programs. The memory may include system memory and touch screen memory. The system memory is used to store system data of the terminal device and various files called by the system. The one or more programs are stored in the system memory and configured Is executed by one or more processors 710. The one or more programs are configured to execute the methods described in the foregoing embodiments. The touch screen memory is used to store the touch screen operating system and the use files related to the touch screen, for example, it can store the touch screen firmware.
处理器710可以包括一个或者多个处理核。处理器710利用各种接口和线路连接整个终端设备700内的各个部分,通过运行或执行存储在存储器720内的指令、程序、代码集或指令集,以及调用存储在存储器720内的数据,执行终端设备700的各种功能和处理数据。可选地,处理器710可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器710可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器710中,单独通过一块通信芯片进行实现。The processor 710 may include one or more processing cores. The processor 710 uses various interfaces and lines to connect various parts of the entire terminal device 700, and executes by running or executing instructions, programs, code sets, or instruction sets stored in the memory 720, and calling data stored in the memory 720. Various functions and processing data of the terminal device 700. Optionally, the processor 710 may adopt at least one of digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA). A kind of hardware form to realize. The processor 710 may integrate one or a combination of a central processing unit (CPU), a graphics processing unit (GPU), a modem, and the like. Among them, the CPU mainly processes the operating system, user interface, and application programs; the GPU is used for rendering and drawing of display content; the modem is used for processing wireless communication. It can be understood that the above-mentioned modem may not be integrated into the processor 710, but may be implemented by a communication chip alone.
存储器720可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器720可用于存储指令、程序、代码、代码集或指令集。存储器720可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令、用于实现上述各个方法实施例的指令等。存储数据区还可以终端设备在使用中所创建的数据等。The memory 720 may include random access memory (RAM) or read-only memory (Read-Only Memory). The memory 720 may be used to store instructions, programs, codes, code sets or instruction sets. The memory 720 may include a storage program area and a storage data area, where the storage program area may store instructions for implementing an operating system, instructions for implementing at least one function, instructions for implementing each of the foregoing method embodiments, and the like. The data storage area can also include data created by the terminal device in use.
请参考图17,其示出了本申请实施例提供的一种计算机可读存储介质的结构框图。该计算机可读存储介质800中存储有程序代码,所述程序代码可被处理器调用执行上述方法实施例中所描述的方法。Please refer to FIG. 17, which shows a structural block diagram of a computer-readable storage medium provided by an embodiment of the present application. The computer-readable storage medium 800 stores program code, and the program code can be invoked by a processor to execute the method described in the foregoing method embodiment.
计算机可读存储介质800可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选地,计算机可读存储介质800包括非易失性计算机可读介质(non-transitory computer-readable storage medium)。计算机可读存储介质800具有执行上述方法中的任何方法步骤的程序代码810的存储空间。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。程序代码810可以例如以适当形式进行压缩。The computer-readable storage medium 800 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM. Optionally, the computer-readable storage medium 800 includes a non-transitory computer-readable storage medium. The computer-readable storage medium 800 has storage space for the program code 810 for executing any method steps in the above-mentioned methods. These program codes can be read from or written into one or more computer program products. The program code 810 may be compressed in a suitable form, for example.
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the application, not to limit them; although the application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions recorded in the foregoing embodiments are modified, or some of the technical features thereof are equivalently replaced; these modifications or replacements do not drive the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present application.

Claims (25)

  1. 一种资源占用位置的确定方法,其特征在于,应用于终端设备,所述方法包括:A method for determining a resource occupation position, characterized in that it is applied to a terminal device, and the method includes:
    获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况;Acquiring location configuration information, where the location configuration information includes the configuration of the base station for the candidate locations for transmitting the synchronization signal block;
    根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。According to the position configuration information, the resource occupied positions in all candidate positions in the synchronization signal block transmission window are determined, and the candidate positions are the positions used to transmit the synchronization signal block.
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,包括:The method according to claim 1, wherein the determining, according to the position configuration information, the resource occupation positions in all candidate positions in the synchronization signal block transmission window comprises:
    在所述传输窗口中,当接收到基站发送的指示信息,根据所述指示信息确定参考位置,所述指示信息表示所述基站已抢占信道;In the transmission window, when the indication information sent by the base station is received, a reference position is determined according to the indication information, and the indication information indicates that the base station has seized the channel;
    根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。According to the location configuration information, the resource occupation location is determined from the candidate location after the reference location.
  3. 根据权利要求2所述的方法,其特征在于,所述位置配置信息包括基站用于传输同步信号块的一组候选位置的数量L,所述L为正整数,所述传输窗口内同步信号块的所有候选位置中每相邻的L个候选位置分为一组,最后不满足数量L的候选位置分为一组;The method according to claim 2, wherein the position configuration information includes the number L of a group of candidate positions used by the base station to transmit synchronization signal blocks, where L is a positive integer, and the synchronization signal blocks in the transmission window Among all candidate positions in, each adjacent L candidate positions are grouped into one group, and finally the candidate positions that do not meet the number L are grouped into one group;
    所述根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置,包括:The determining, according to the position configuration information, the resource occupation position from the candidate position after the reference position includes:
    确定所述参考位置后最近的组边界,所述组边界为两个分组之间的边界;The closest group boundary after the reference position is determined, where the group boundary is the boundary between two groups;
    从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置。From the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary, one or more candidate positions are determined as resource-occupied positions.
  4. 根据权利要求3所述的方法,其特征在于,所述位置配置信息还包括所述一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系;The method according to claim 3, wherein the position configuration information further comprises an arrangement relationship between the candidate positions of the set of candidate positions that can transmit a synchronization signal block and the candidate positions that cannot transmit a synchronization signal block ;
    所述从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置,包括:The determining one or more candidate positions as resource occupation positions from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary includes:
    根据所述排布关系,确定所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,与所述可传输同步信号块的候选位置具有准共址关系的候选位置,作为所述资源占用位置。According to the arrangement relationship, it is determined that the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary have a quasi-common relationship with the candidate positions of the transmittable synchronization signal block. The candidate position of the address relationship is used as the resource occupation position.
  5. 根据权利要求3所述的方法,其特征在于,所述位置配置信息还包括所述一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系;The method according to claim 3, wherein the position configuration information further comprises an arrangement relationship between the candidate positions of the set of candidate positions that can transmit a synchronization signal block and the candidate positions that cannot transmit a synchronization signal block ;
    所述从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置,包括:The determining one or more candidate positions as resource occupation positions from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary includes:
    将所述参考位置到所述组边界之间的L1个候选位置中,与所述排布关系中的最后L1个候选位置中的可传输候选位置对应的候选位置,作为所述资源占用位置,所述可传输候选位置为所述基站可传输同步信号块的候选位置,以及Among the L1 candidate positions between the reference position and the group boundary, the candidate position corresponding to the transmittable candidate position among the last L1 candidate positions in the arrangement relationship is used as the resource occupation position, The transmittable candidate position is a candidate position where the base station can transmit a synchronization signal block, and
    将所述组边界后最近的L个候选位置中,与所述排布关系中可传输候选位置对应的候选位置,作为所述资源占用位置。Among the L nearest candidate positions after the group boundary, the candidate positions corresponding to the transmittable candidate positions in the arrangement relationship are used as the resource-occupied positions.
  6. 根据权利要求3所述的方法,其特征在于,所述从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置之前,还包括:The method according to claim 3, wherein said determining one or more candidate positions from candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary Before the location is occupied by resources, it also includes:
    判断所述参考位置是否在组边界;Determine whether the reference position is at the group boundary;
    若是,从所述参考位置后的最近L个候选位置中确定资源占用位置;If yes, determine the resource occupation position from the last L candidate positions after the reference position;
    若否,从所述参考位置与所述组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置。If not, determine one or more candidate positions as resource-occupied positions from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary.
  7. 根据权利要求2所述的方法,其特征在于,所述位置配置信息包括基站用于传输同步信号块的一组候选位置的数量L,所述L为正整数;The method according to claim 2, wherein the location configuration information includes a number L of a set of candidate locations used by the base station to transmit synchronization signal blocks, and the L is a positive integer;
    从所述参考位置后的候选位置确定资源占用位置,包括:Determining the resource occupation position from the candidate position after the reference position includes:
    从所述参考位置后的最近L个候选位置中确定资源占用位置。The resource occupied position is determined from the last L candidate positions after the reference position.
  8. 根据权利要求6或7所述的方法,其特征在于,所述位置配置信息还包括所述一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系;The method according to claim 6 or 7, wherein the position configuration information further includes a ranking between candidate positions that can transmit a synchronization signal block and candidate positions that cannot transmit a synchronization signal block in the set of candidate positions. Cloth relationship
    所述从所述参考位置后的最近L个候选位置中确定资源占用位置,包括:The determining the resource occupation position from the nearest L candidate positions after the reference position includes:
    根据所述排布关系,确定所述参考位置后的最近L个候选位置中,与所述排布关系中可传输同步信号块的候选位置具有准共址关系的候选位置,作为所述资源占用位置。According to the arrangement relationship, among the nearest L candidate positions after the reference position is determined, a candidate position that has a quasi co-location relationship with the candidate position that can transmit a synchronization signal block in the arrangement relationship is used as the resource occupation position.
  9. 根据权利要求6或7所述的方法,其特征在于,所述位置配置信息还包括所述一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系,所述传输窗口中的所有候选位置每相邻的L个分为一组,最后不满足数量L的多个候选位置分为一组;The method according to claim 6 or 7, wherein the position configuration information further includes a ranking between candidate positions that can transmit a synchronization signal block and candidate positions that cannot transmit a synchronization signal block in the set of candidate positions. Distribution relationship, all candidate positions in the transmission window are grouped into a group for every adjacent L, and finally multiple candidate positions that do not satisfy the number L are grouped into a group;
    所述从所述参考位置后的最近L个候选位置中确定资源占用位置,包括:The determining the resource occupation position from the nearest L candidate positions after the reference position includes:
    确定所述参考位置后最近的组边界,所述组边界为两个分组之间的边界;The closest group boundary after the reference position is determined, where the group boundary is the boundary between two groups;
    确定所述参考位置到所述组边界之间的L2个候选位置中,与所述排布关系中最后L2个可传输候选位置对应的候选位置,作为所述资源占用位置,所述可传输候选位置为所述基站可传输同步信号块的候选位置,以及Determine the candidate position corresponding to the last L2 transmittable candidate positions in the arrangement relationship among the L2 candidate positions between the reference position and the group boundary as the resource occupation position, and the transmittable candidate The location is a candidate location where the base station can transmit a synchronization signal block, and
    确定所述组边界后的L3个候选位置中,与所述排布关系中的前L3个候选位置中可传输候选位置对应的候选位置,作为所述资源占用位置,L2与L3为非负整数,且L2与L3的和为L。Among the L3 candidate positions after the group boundary is determined, the candidate position corresponding to the transmittable candidate position among the first L3 candidate positions in the arrangement relationship is used as the resource occupation position, and L2 and L3 are non-negative integers , And the sum of L2 and L3 is L.
  10. 根据权利要求2-9任一项所述的方法,其特征在于,根据所述指示信息确定参考位置,包括:The method according to any one of claims 2-9, wherein determining a reference position according to the indication information comprises:
    以接收到所述指示信息的时刻作为所述参考位置。The time when the instruction information is received is used as the reference position.
  11. 根据权利要求2-9任一项所述的方法,其特征在于,根据所述指示信息确定参考位置,包括:The method according to any one of claims 2-9, wherein determining a reference position according to the indication information comprises:
    获取接收到所述指示信息的时刻后最近的满足预设条件的候选位置,作为所述参考位置。A candidate position that meets a preset condition most recently after the time when the instruction information is received is acquired as the reference position.
  12. 根据权利要求11任一项所述的方法,其特征在于,所述满足预设条件的候选位置可以是:The method according to any one of claims 11, wherein the candidate position that satisfies a preset condition may be:
    组边界后的第一个候选位置,所述组边界为对传输窗口中的候选位置每相邻L个分组后,两个分组之间的边界,L为位置配置信息中指示的一组候选位置的数量;或The first candidate position after the group boundary, the group boundary is the boundary between two groups after every L adjacent grouping of candidate positions in the transmission window, L is a group of candidate positions indicated in the position configuration information The quantity; or
    编号为偶数的候选位置;或Candidate positions numbered even; or
    编号为4的倍数的候选位置;或Candidate positions numbered as multiples of 4; or
    编号为8的倍数的候选位置;或Candidate positions numbered as multiples of 8; or
    指示信息后最近的候选位置。Indicate the nearest candidate position after the message.
  13. 根据权利要求1或2所述的方法,其特征在于,所述根据所述位置配置信息,确定在同步信号 块传输窗口中所有候选位置中的资源占用位置,包括:The method according to claim 1 or 2, wherein the determining, according to the position configuration information, the resource occupation positions of all candidate positions in the synchronization signal block transmission window comprises:
    在所述传输窗口中,当没有接收到基站发送的指示信息,则根据所述排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置,所述可传输候选位置为可传输同步信号块的候选位置;In the transmission window, when the instruction information sent by the base station is not received, according to the arrangement relationship, it is determined that among all the candidate positions in the synchronization signal transmission window, the candidate position corresponding to the candidate position that can be transmitted is the resource Occupied position, where the transmittable candidate position is a candidate position for which a synchronization signal block can be transmitted;
    在所述传输窗口中,当接收到基站发送的指示信息,则在所述传输窗口中,当接收到基站发送的指示信息,根据所述指示信息确定参考位置,所述指示信息表示所述基站已抢占信道,In the transmission window, when the instruction information sent by the base station is received, in the transmission window, when the instruction information sent by the base station is received, the reference position is determined according to the instruction information, and the instruction information indicates that the base station Channel has been preempted,
    根据所述位置配置信息,从所述参考位置后的候选位置确定资源占用位置。According to the location configuration information, the resource occupation location is determined from the candidate location after the reference location.
  14. 根据权利要求1或13所述的方法,其特征在于,所述位置配置信息包括:基站用于传输同步信号块的一组候选位置中,可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系;The method according to claim 1 or 13, wherein the position configuration information includes: among a set of candidate positions used by the base station to transmit synchronization signal blocks, the candidate positions of the synchronization signal block that can be transmitted and the synchronization signal block that cannot be transmitted The arrangement relationship between the candidate positions;
    所述根据所述位置配置信息,确定在同步信号块传输窗口的所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置,包括:The determining the resource occupied positions in all candidate positions of the synchronization signal block transmission window according to the position configuration information, where the candidate positions are the positions used to transmit the synchronization signal block, include:
    根据所述排布关系,确定在同步信号传输窗口的所有候选位置中,与可传输候选位置具有准共址关系的候选位置,为所述资源占用位置,所述可传输候选位置为可传输同步信号块的位置。According to the arrangement relationship, among all candidate positions in the synchronization signal transmission window, a candidate position that has a quasi co-location relationship with the transmittable candidate position is determined as the resource occupation position, and the transmittable candidate position is a transmittable synchronization position. The location of the signal block.
  15. 根据权利要求4、8或14所述的方法,其特征在于,所述方法还包括:The method according to claim 4, 8 or 14, wherein the method further comprises:
    获取准共址参数,所述准共址参数用于确定传输窗口中候选位置之间的准共址关系,所述准共址参数为正整数Q;Acquiring a quasi co-location parameter, where the quasi co-location parameter is used to determine a quasi co-location relationship between candidate positions in a transmission window, and the quasi co-location parameter is a positive integer Q;
    确定与可传输候选位置具有准共址关系的候选位置,包括:Determine candidate locations that have a quasi co-location relationship with the transmittable candidate locations, including:
    确定所有候选位置的编号;Determine the numbers of all candidate positions;
    计算所有编号中,对准共址参数取模后的值,获得多个模值;Calculate all the numbers, align the modulo values of the co-location parameters to obtain multiple modulus values;
    确定所述多个模值中,与所述排布关系中可传输候选位置的排布位置对应的模值,所述可传输候选位置为可传输同步信号块的候选位置;Determining, among the multiple modulus values, a modulus value corresponding to an arrangement position of a transmittable candidate position in the arrangement relationship, and the transmittable candidate position is a candidate position that can transmit a synchronization signal block;
    将确定的模值对应的候选位置,作为与可传输候选位置具有准共址关系的候选位置。The candidate position corresponding to the determined modulus value is taken as the candidate position having a quasi co-location relationship with the transmittable candidate position.
  16. 根据权利要求1或13所述的方法,其特征在于,所述位置配置信息包括:基站用于传输同步信号块的一组候选位置中,可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系,所述根据所述位置配置信息,确定在同步信号块传输窗口的所有候选位置中的资源占用位置,包括:The method according to claim 1 or 13, wherein the position configuration information includes: among a set of candidate positions used by the base station to transmit synchronization signal blocks, the candidate positions of the synchronization signal block that can be transmitted and the synchronization signal block that cannot be transmitted The arrangement relationship between the candidate positions, the determining the resource occupation positions in all the candidate positions of the synchronization signal block transmission window according to the position configuration information includes:
    将所述排布关系循环扩展到所有候选位置;Cyclically expanding the arrangement relationship to all candidate positions;
    确定扩展后的所有候选位置中,一个或多个可传输同步信号块的候选位置,为所述资源占用位置。It is determined that among all the candidate positions after expansion, one or more candidate positions that can transmit synchronization signal blocks are the resource occupied positions.
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括:The method according to claim 1, wherein the method further comprises:
    获取配置信息;Obtain configuration information;
    根据所述配置信息,获取确定资源占用位置的方式,其中,基站用于传输同步信号块的一组候选位置的数量L,所述确定资源占用位置的方式包括:According to the configuration information, a method for determining the resource occupation position is acquired, where the number L of a group of candidate positions used by the base station to transmit synchronization signal blocks, and the method for determining the resource occupation position includes:
    从参考位置后的最近L个候选位置中确定资源占用位置;或Determine the resource occupancy position from the last L candidate positions after the reference position; or
    从参考位置与组边界之间的候选位置以及所述组边界后的最近L个候选位置中,确定一个或多个候选位置为资源占用位置;或Determine one or more candidate positions as resource-occupied positions from the candidate positions between the reference position and the group boundary and the nearest L candidate positions after the group boundary; or
    根据可传输同步信号块的候选位置与不可传输同步信号块的候选位置之间的排布关系,确定在同步信号传输窗口的所有候选位置中,对应可传输候选位置的候选位置,为所述资源占用位置。According to the arrangement relationship between the candidate positions of the transmittable synchronization signal block and the candidate positions of the untransmissible synchronization signal block, it is determined that among all the candidate positions in the synchronization signal transmission window, the candidate position corresponding to the transmittable candidate position is the resource Occupy position.
  18. 根据权利要求1至17任一项所述的方法,其特征在于,所述方法还包括:The method according to any one of claims 1 to 17, wherein the method further comprises:
    获取配置信息;Obtain configuration information;
    根据所述配置信息判断是否确定资源占用位置;Judging whether to determine the resource occupation location according to the configuration information;
    若是,执行所述根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。If yes, perform the determination of the resource occupied positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, where the candidate positions are the positions used to transmit the synchronization signal block.
  19. 根据权利要求1至18任一项所述的方法,其特征在于,所述位置配置信息为位图,所述位图的长度表示一组候选位置的数量,所述位图中0和1的排布表示一组候选位置中可传输同步信号块的候选位置以及不可传输同步信号块的候选位置之间的排布关系。The method according to any one of claims 1 to 18, wherein the position configuration information is a bitmap, the length of the bitmap indicates the number of a set of candidate positions, and the number of 0 and 1 in the bitmap The arrangement represents the arrangement relationship between the candidate positions where the synchronization signal block can be transmitted and the candidate positions where the synchronization signal block cannot be transmitted in a group of candidate positions.
  20. 根据权利要求1至18任一项所述的方法,其特征在于,所述方法还包括:确定所述位置配置信息中的有效配置信息;The method according to any one of claims 1 to 18, wherein the method further comprises: determining valid configuration information in the location configuration information;
    所述根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,包括:The determining the resource occupation positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information includes:
    根据所述有效配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置。According to the effective configuration information, the resource occupied positions among all candidate positions in the synchronization signal block transmission window are determined.
  21. 根据权利要求20所述的方法,其特征在于,所述位置配置信息为位图,以所述位图作为有效配置信息;或The method according to claim 20, wherein the location configuration information is a bitmap, and the bitmap is used as the effective configuration information; or
    以所述位图的前Q位作为有效配置信息;或Use the first Q bits of the bitmap as valid configuration information; or
    以所述位图的后Q位作为有效配置信息,Taking the last Q bits of the bitmap as valid configuration information,
    其中,所述准共址参数用于确定传输窗口中候选位置之间的准共址关系,准共址参数Q为正整数。The quasi co-location parameter is used to determine the quasi co-location relationship between candidate positions in the transmission window, and the quasi co-location parameter Q is a positive integer.
  22. 一种资源占用位置的确定装置,其特征在于,应用于终端设备,所述装置包括:A device for determining a resource occupation location, which is characterized in that it is applied to a terminal device, and the device includes:
    信息获取模块,用于获取位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况;An information acquisition module, configured to acquire location configuration information, where the location configuration information includes a base station's configuration of candidate locations for transmitting synchronization signal blocks;
    位置确定模块,用于根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置。The position determining module is configured to determine the resource occupied positions in all candidate positions in the synchronization signal block transmission window according to the position configuration information, and the candidate positions are the positions used to transmit the synchronization signal block.
  23. 一种资源占用位置的确定方法,其特征在于,应用于基站,所述方法包括:A method for determining a resource occupation position, characterized in that it is applied to a base station, and the method includes:
    向终端设备发送位置配置信息,所述位置配置信息包括基站对传输同步信号块的候选位置的配置情况,用于指示所述终端设备根据所述位置配置信息,确定在同步信号块传输窗口中所有候选位置中的资源占用位置,所述候选位置为用于传输同步信号块的位置;Send location configuration information to the terminal device, where the location configuration information includes the base station's configuration of the candidate locations for transmitting the synchronization signal block, and is used to instruct the terminal device to determine the location configuration information in the synchronization signal block transmission window according to the location configuration information. A resource occupation position in a candidate position, where the candidate position is a position for transmitting a synchronization signal block;
    在传输窗口中,当先听后说成功,从最近的候选位置开始,向所述终端设备发送对应的且未成功发送的同步信号块。In the transmission window, when listening first and then saying success, starting from the nearest candidate position, send the corresponding and unsuccessful synchronization signal block to the terminal device.
  24. 一种终端设备,其特征在于,包括:A terminal device, characterized in that it comprises:
    一个或多个处理器;One or more processors;
    系统存储器;System memory
    触摸屏存储器;Touch screen memory;
    一个或多个程序,其中所述一个或多个程序被存储在所述系统存储器中并被配置为由所述一个或多 个处理器执行,所述一个或多个程序配置用于执行如权利要求1-21任一项所述的方法。One or more programs, wherein the one or more programs are stored in the system memory and configured to be executed by the one or more processors, and the one or more programs are configured to execute The method of any one of 1-21 is required.
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序代码,所述程序代码可被处理器调用执行如权利要求1-21任一项或权利要求23所述的方法。A computer-readable storage medium, wherein a program code is stored in the computer-readable storage medium, and the program code can be invoked by a processor to execute as described in any one of claims 1-21 or claim 23 Methods.
PCT/CN2019/116873 2019-11-08 2019-11-08 Method and apparatus for determining position occupied by resource, and terminal device WO2021088073A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116873 WO2021088073A1 (en) 2019-11-08 2019-11-08 Method and apparatus for determining position occupied by resource, and terminal device
CN201980100198.1A CN114365440A (en) 2019-11-08 2019-11-08 Method and device for determining resource occupation position and terminal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116873 WO2021088073A1 (en) 2019-11-08 2019-11-08 Method and apparatus for determining position occupied by resource, and terminal device

Publications (1)

Publication Number Publication Date
WO2021088073A1 true WO2021088073A1 (en) 2021-05-14

Family

ID=75849543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116873 WO2021088073A1 (en) 2019-11-08 2019-11-08 Method and apparatus for determining position occupied by resource, and terminal device

Country Status (2)

Country Link
CN (1) CN114365440A (en)
WO (1) WO2021088073A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174606A1 (en) * 2017-03-22 2018-09-27 삼성전자 주식회사 Method and apparatus for transmitting uplink control channel in wireless cellular communication system
CN109845372A (en) * 2019-01-10 2019-06-04 北京小米移动软件有限公司 It was found that the setting of reference signal DRS, method of sending and receiving and device
CN110235477A (en) * 2019-04-29 2019-09-13 北京小米移动软件有限公司 Information transferring method, device and computer readable storage medium
CN110249582A (en) * 2019-04-29 2019-09-17 北京小米移动软件有限公司 Information transferring method, device and computer readable storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121198A (en) * 2017-06-23 2019-01-01 维沃移动通信有限公司 Information transferring method and the network equipment under a kind of unauthorized frequency range
CN110365438B (en) * 2018-03-26 2021-05-11 华为技术有限公司 Signal transmission method, related equipment and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174606A1 (en) * 2017-03-22 2018-09-27 삼성전자 주식회사 Method and apparatus for transmitting uplink control channel in wireless cellular communication system
CN109845372A (en) * 2019-01-10 2019-06-04 北京小米移动软件有限公司 It was found that the setting of reference signal DRS, method of sending and receiving and device
CN110235477A (en) * 2019-04-29 2019-09-13 北京小米移动软件有限公司 Information transferring method, device and computer readable storage medium
CN110249582A (en) * 2019-04-29 2019-09-17 北京小米移动软件有限公司 Information transferring method, device and computer readable storage medium

Also Published As

Publication number Publication date
CN114365440A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
EP3749013A1 (en) Sounding reference signal transmission method, terminal device, and network device
CN113285795B (en) BWP frequency hopping configuration method, network equipment and terminal
AU2018286249B2 (en) Communication method, apparatus, and computer-readable storage medium
JP2019537379A (en) Coding method determination method and apparatus
CN110366254B (en) Resource determination method, related equipment and system
CN111385901B (en) Method for determining frequency domain location of control resource set and related device
CN113692000A (en) Method, terminal and storage medium for receiving common control message
CN111817824B (en) Information transmission method, terminal equipment and control node
CN114830699A (en) Method for establishing ISO link and BLE equipment
US20210204312A1 (en) Downlink control information transmission method and apparatus
US20220263626A1 (en) Method and apparatus for determining position occupied by resource, user equipment, and storage medium
JP2021520703A (en) Uplink control information transmission method and equipment
WO2021088073A1 (en) Method and apparatus for determining position occupied by resource, and terminal device
CN110830402B (en) Method and device for sending and detecting synchronous broadcast information
CN109475009B (en) Method and device for license-free transmission
CN112188446A (en) Synchronization signal sending method, terminal, device and storage medium
WO2017167001A1 (en) Resource scheduling method, terminal device, and system
WO2018058537A1 (en) Signal transmission method and apparatus
WO2017173775A1 (en) A resource allocation method for a control channel
CN113711661B (en) Data transmission method, device and medium
WO2022151267A1 (en) Monitoring method and device
CN111600683B (en) Processing method and device
CN111770571B (en) Communication method and terminal device
EP3079395A1 (en) D2d signal detecting method and device
WO2019191986A1 (en) Channel sending method, channel receiving method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952045

Country of ref document: EP

Kind code of ref document: A1