WO2021081613A1 - Processo de produção de agregado artificial a partir de rejeitos de mineração, agregado artificial, composição de concreto e uso - Google Patents

Processo de produção de agregado artificial a partir de rejeitos de mineração, agregado artificial, composição de concreto e uso Download PDF

Info

Publication number
WO2021081613A1
WO2021081613A1 PCT/BR2020/050444 BR2020050444W WO2021081613A1 WO 2021081613 A1 WO2021081613 A1 WO 2021081613A1 BR 2020050444 W BR2020050444 W BR 2020050444W WO 2021081613 A1 WO2021081613 A1 WO 2021081613A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
artificial aggregate
aggregate
tailings
artificial
Prior art date
Application number
PCT/BR2020/050444
Other languages
English (en)
French (fr)
Inventor
Evandro Moraes DA GAMA
Larissa Virgínia Queiroz FAGUNDES
Abdias Magalhães GOMES
Original Assignee
Vale S.A.
Fundação De Amparo À Pesquisa Do Estado De Minas Gerais - Fapemig
Universidade Federal De Minas Gerais - Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vale S.A., Fundação De Amparo À Pesquisa Do Estado De Minas Gerais - Fapemig, Universidade Federal De Minas Gerais - Ufmg filed Critical Vale S.A.
Priority to MX2022004985A priority Critical patent/MX2022004985A/es
Priority to US17/772,486 priority patent/US20220371956A1/en
Priority to AU2020375359A priority patent/AU2020375359A1/en
Priority to CN202080076487.5A priority patent/CN114981228A/zh
Publication of WO2021081613A1 publication Critical patent/WO2021081613A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/062Microsilica, e.g. colloïdal silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/12Natural pozzuolanas; Natural pozzuolana cements; Artificial pozzuolanas or artificial pozzuolana cements other than those obtained from waste or combustion residues, e.g. burned clay; Treating inorganic materials to improve their pozzuolanic characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • C04B7/522After-treatment of ground cement
    • C04B7/525Briquetting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to the process of producing artificial aggregate from ore dam tailings.
  • the iron ore sandy tailings are mixed with a binder and, through the process of mixing and pelletizing, form the artificial aggregate.
  • the artificial aggregate thus produced has a spheroidal shape, large size, rough surface and coloring that varies between pink and dark red.
  • This artificial aggregate is capable of replacing the natural aggregate, and can be used in the manufacture of a more resistant concrete, for the base and sub-base of highways, as a decorative element for gardens and flower beds, in addition to being a way of stocking ore dam tailings in the form of pellets, adding value to these tailings and reducing the environmental impacts of mining.
  • Iron ore tailings are remnants of the processing and concentration of ores in industrial facilities. Due to the type of ore and the differences in the mineral processing process, the tailings present a great variety in their characteristics, such as: particle size, mineralogy, density and particle shape. Therefore, the properties of iron ore tailings can vary, from materials with very fine granulometry and high plasticity to non-plastic materials with sandy characteristics (MACHADO, WGF (2007). Monitoring of Mining Tailings Dams. Masters dissertation. Polytechnic School of the University of S ⁇ o Paulo, S ⁇ o Paulo. 155p).
  • Iron ore tailings can be used as fine aggregates because they are relatively inert and the particle size is significantly larger than that of cement.
  • iron ore tailing has the potential to replace natural sand as a fine aggregate, being a cheaper and environmentally friendly alternative (ZFIAO, S .; FAN, J .; SUN, W. Utilization of iron ore tailing as fine aggregate in ultra-high performance concrete.Construction and Building Materials, v 50, p 540-548. 2014; (HUANG, X .; RANADE, R .; NI, W .; LI, VC Development of Green engineered cementitious composites using iron ore tailigs as aggregates, Construction and Building Materials, v 44, p 757-764).
  • Patent application BR1020130312606 entitled “Use of tailings from iron ore dams as raw material for road infrastructure construction” reports a method of applying iron ore tailings as raw material for infrastructure construction road and urban roads through a mixture composed of tailings and hydraulic binder, pozzolana, lime, slag, cement, among others.
  • this method involves physical mixing and mechanical compaction, either by chemical actions of hardening the mixtures, or by mechanical compaction energy or a combination of these.
  • Document KR101631276 entitled “Manufacturing method of recycled aggregates using bauxite residue”, describes a rigid artificial aggregate that can exhibit a fixed level of strength through a solidification process of a mixture composed of residual bauxite, cement, an additive composed of a solidifying agent and an inorganic binder, which can be applied as drainage material or similar for the soil improvement process.
  • JP2005104804 entitled “Artificial Aggregate”, presents an artificial aggregate material formed by heating and sintering a molded body comprising coal ash, aluminum ash, cement and water, for use in the production of concrete and concrete. sidewalk.
  • the document JP2008137842 entitled “Method of manufacturing artificial aggregate using construction waste” presents a method of manufacturing an artificial aggregate using construction waste, such as glass, debris and concrete, generated from demolished buildings. Such residues are mixed with cement and water, and then they are subjected to the granulation process.
  • the state of the art comprises artificial aggregates with applications that stop only as construction elements manufactured from construction waste or industrial waste such as residual bauxite and coal ash.
  • the quote that uses tailings from iron ore dams as raw material for building road infrastructure is related to a compacted mixture at the road site, a mass made up of various inputs that is tightened or compacted.
  • the present invention describes an artificial aggregate obtained from tailings from iron ore dams composed of fine and agglomerate sandy tailings such as cement or pozzolana, which are mixed and pelletized, giving the product a spheroidal shape, which is coarse in size (of 4.8 to 16 mm), rough surface and color ranging from pink to dark red, having physical properties suitable for use in applications such as civil construction, sub-base of highways, storage of tailings in the form of pellets, decorative element for gardens and flowerbeds. It also describes an efficient and effective process for the manufacture of said artificial aggregate from tailings from iron ore dams and a concrete composition for civil construction using said artificial aggregate as a partial substitute for natural gravel.
  • the artificial aggregate is able to replace the natural aggregate (crushed stone) in the concrete, causing the concrete to have compatible strength when using the natural aggregate (resistance to axial compression - NBR 5739: 2007).
  • Figure 1 illustrates a flowchart of the production process of the artificial aggregate from sandy mining tailings proposed by the present invention.
  • Figure 2 shows an artificial aggregate pellet, produced according to the process described in the present invention.
  • Figure 3 shows the concrete mortars in the standard form with natural aggregate and with mixtures I and III.
  • the present invention relates to the process of producing artificial aggregate from ore dam tailings.
  • the iron ore sandy tailings are mixed with a binder and, through the process of mixing and pelletizing, form the artificial aggregate.
  • the artificial aggregate thus produced has a spheroidal shape, large size, rough surface and coloring that varies between pink and dark red.
  • This artificial aggregate is capable of replacing the natural aggregate, and can be used in the manufacture of a more resistant concrete, for the base and sub-base of highways, as a decorative element for gardens and flowerbeds, in addition to being a way of stockpiling tailings from the ore dam in the form of pellets, adding value to these tailings and reducing the environmental impacts of mining.
  • the production process of the artificial aggregate is carried out at room temperature and comprises the following steps: a. Provide a sandy mining tailings with granulometry between 0.03 and 11 mm; B. Mix the sandy tailings and a binder in which the mixture composition has 65 to 85% by weight of mining waste and 15 to 35% by weight of binder, for approximately 30 to 60 minutes until the mixture is homogeneous; ç. Pelletize the mixture at room temperature in a pelletizing machine by adding water in a sprinkling manner; d. Curing the pellets at room temperature for a period ranging from 1 to 14 days.
  • the mining tailings mentioned in step “a” can be a fine sandy tailings from iron ore dams and containing the minerals Goethite, Hematite, Quartz, Kaolinite and preferably also Gibbsite.
  • the sandy tailings have humidity less than 20%, the mixing must be done in continuous mixers with the following preferential characteristics: mixing chamber with diaphragm for flow adjustment, central rotor, mixing utensils type shovels and side scrapers. The rotation varies between 10 and 45 rpm, according to the homogeneity of the water in the mixture.
  • the sandy tailings have humidity greater than 20% by weight, it will need to go through a drying process prior to mixing and pelletizing, that is, after step “a”.
  • the drying process can be natural or in a rotary dryer used to dry river dredging sand.
  • the sandy tailings can be mixed with the binder in a mixer, according to step “b” or, alternatively, it can be mixed with the binder in a pelletizing disc with adjustable edges, being added at the same time.
  • the binder mentioned in step “b” can be commercial pozzolana or pozzolana produced with the mining waste itself after calcination of the waste.
  • the binder can be the pozzolan obtained from the sterile iron mining calcined by flash technology between 750 and 950 C ° , and mixed with Portland CPV cement in the mass proportion of 25 to 30% by weight of the calcined sterile and 70 to 75% by weight of Portland CPV cement.
  • step “c” the pelletizing machine should preferably have an adjustable height edge.
  • the rotation should be between 10 and 25 rpm, using a disk inclination between 40 and 50 °, for a period of time between 30 and 70 minutes, considering a mass of 400 kg.
  • Pelletizing is carried out at room temperature.
  • the water is sprayed continuously when the age of the mixture is below 8%.
  • the ideal humidity for pellet formation varies between 4 to 12%.
  • step “d” the pellets must be cured at room temperature for a period of 1 day to 14 days.
  • the artificial aggregate obtained through the process described above, is composed of 65 to 85% by weight of mining waste and 15 to 35% by weight of binder, which are mixed and pelletized, giving the product a spheroidal shape, which it has a large size (from 4.8 to 16 mm), a rough surface, color ranging from pink to dark red and preferably a diameter ranging from gravel 0 (B0: - 12.5mm + 4.8mm), gravel 00 (B00: -9 , 5mm + 4.8mm) or B0 / B1 gravel (B0 / B1: -16mm + 9.5mm).
  • the artificial aggregate based on tailings from ore dams can be used in the manufacture of concrete, for the base and sub-base of highways; storage of dam tailings in the form of pellets; or decorative element for gardens and flowerbeds.
  • the present invention also proposes a concrete composition employing artificial aggregate that is characterized by comprising:
  • the percentages of the composition refer to the percentage in mass considering the dry basis. To obtain the concrete, water must be added to the composition.
  • the concrete composition employing artificial aggregate may contain only the artificial aggregate or may contain the artificial aggregate together with the natural aggregate (crushed stone).
  • the percentage by weight of the aggregate can be divided between 25.2% by weight of B0 / B1 gravel (B0 / B1: -16mm + 9.5mm) and 25.2% in gravel weight 0 (B0: - 12.5mm + 4.8mm); or 24.3% by weight of B0 / B1 gravel (B0 / B1: -16mm + 9.5mm) and 24.3% by weight of gravel 0 (B0: - 12.5mm + 4.8mm); or 12.1% by weight of gravel 00 (B00: -9.5mm + 4.8mm) and 36.4% by weight of gravel 0 (B0: - 12.5mm + 4.8mm).
  • the process of obtaining the artificial aggregate was carried out according to Figure 1.
  • the sandy tailing of iron ore mixed with a binder provides, through a process of mixing and pelletizing at room temperature, the formation of the artificial aggregate material capable of replace the coarse natural aggregate, providing mechanical resistance to concrete, compatible with the Brazilian standard NBR 5759.
  • the sandy tailings present in iron ore dams have a particle size between 0.03 and 11 mm. Its mineralogical composition is quite variable in percentage, however the type of mineral is constant, composed of silicon and iron minerals.
  • Table 1 presents mineralogical compositions of tailings samples obtained from iron ore dams. It is noted that the present invention has a special interest in using the ore dam tailings, mainly the fine sandy tailings containing the minerals Goethite, Hematite, Quartz, Kaolinite and preferably also Gibbsite, but other tailings with suitable characteristics can also be used. Table 1 - Percentage of mineral components of iron ore dam tailings
  • the manufacturing process of the artificial aggregate begins with the mixture of 65 to 75% of sandy tailings (fine to medium granulometry) of iron ore dams with 25 to 35% of agglomerate.
  • the mixing must be done in continuous mixers with the following preferential characteristics: mixing chamber with flow adjustment diaphragm, central rotor, paddle-type mixing utensils and side scrapers.
  • the rotation varies between 10 and 45 rpm, according to the homogeneity of the water in the mixture.
  • the sandy tailings from the dam contain more than 20% humidity, it must undergo a drying process.
  • the process can be natural or in a rotary dryer used to dry river dredging sand. In this case, it will not be necessary to use a mixer.
  • the sandy waste from the dam after drying enters a pelletizing disc with adjustable edges at the same time as the binder.
  • the binder must be a commercial pozzolana or produced with the mining waste itself after calcination of the waste.
  • the iron mine waste must be calcined with flash technology between 750 and 950 ° C.
  • the mixtures of the calcined sterile with CPV cement, called binders, must be in the mass proportion of 25 to 30% calcined sterile and 70 to 75% by weight of Portland CPV cement.
  • the homogenized mixture is poured into a pelletizing machine with an adjustable height edge.
  • the rotation and inclination of the pelletizing disc with adjustable edge must be between 10 and 25 rpm, and the inclination between 40 and 50 °.
  • the residence time of the mixture in the pelletizer varies between 30 and 70 minutes, considering a mass of 400 kg. Pelletizing is carried out at room temperature, that is, there are no further stages of burning the pellets.
  • the resulting product is pellets of approximately spherical shape, rough surface, coarse size and color ranging from pink to dark red, which will be used as an artificial aggregate.
  • the apparent density is between 1800 to 2000 kg / m 3 .
  • the diameter of the pellets can vary, preferably, between gravel 0 (B0: - 12.5mm + 4.8mm), gravel 00 (B00: -9.5mm + 4.8mm) or gravel B0 / B1 (B0 / B1: - 16mm + 9.5mm).
  • the pellets After the pelletizing process, the pellets must undergo a curing process at room temperature.
  • the curing time for the pellets to have adequate mechanical strength varies from 24 hours to 21 days, depending on the diameter manufactured and the desired use.
  • the artificial aggregate based on tailings from ore dams can be used in the manufacture of concrete, for the base and sub-base of highways; storage of dam tailings in the form of pellets; or decorative element for gardens and flowerbeds.
  • the concrete composition employing the artificial aggregate proposed in the present invention comprises 15.2 to 18.6% by weight of Portland cement; 32.8 to 34.3% by weight of natural sand; 48.5 to 50.4% by weight of aggregate (only artificial or artificial and natural together).
  • the weight percentage of the aggregate is divided between 25.2% by weight of B0 / B1 gravel (B0 / B1: -16mm + 9.5mm) and 25.2% by weight of gravel 0 (B0: - 12.5mm + 4.8mm); or 24.3% by weight of B0 / B1 gravel (B0 / B1: -16mm + 9.5mm) and 24.3% by weight of gravel 0 (B0: - 12.5mm + 4.8mm); or 12.1% by weight of gravel 00 (B00: -9.5mm + 4.8mm) and 36.4% by weight of gravel 0 (B0: - 12.5mm + 4.8mm).
  • the present technology of artificial aggregates, applied in concrete, can replace the natural aggregate (crushed stone) or can be used in conjunction with the natural aggregate.
  • the natural aggregate does not have a chemical affinity with cement and concrete (thixotropy).
  • the artificial aggregate improves the strength of the concrete due to the surface roughness.
  • the artificial aggregate from tailings from dams can be used to compose the base and the sub-base.
  • the use must be made by mixing the artificial aggregate in the soil and then processing the compaction according to current technical standards.
  • the spherical shape of the artificial aggregate provides greater mechanical resistance in addition to better storage, as it allows drainage between the spheres through the empty spaces when disposed in piles or stored in open yards subject to rain.
  • Mining dams usually store mud (mining tailings with very fine granulometry) and sand with water, which makes the complex unstable with the possibility of rupture.
  • the artificial aggregate can be stored inside this location or dam without the need for water, or in stockpiles in storage yards. Subsequently, the artificial aggregate can be used as an aggregate for concrete, a base and sub-base building element for roads or even an ornamental element for gardens and flowerbeds.
  • the present technology has the advantage of mobilizing environmental liabilities efficiently and economically, adding value to mining waste. In addition, it provides ease of storage because it is a spherical and inert material and, due to its water absorption capacity, it favors the humidity of the environment, which benefits the applications of artificial aggregate in gardens and flowerbeds.
  • Curing time (day) 0 1 2 3 6 7 14 31 Average resistance 3.77 7.10 14.53 21, 03 31, 40 28.70 42.20 51, 30% compared to 29 days 7.3 13 , 8 28.3 41, 0 61, 2 55.9 82.3 100.0
  • Figure 2 shows the appearance of a pellet obtained by the process of the present invention. It can be seen that, from the center to the edge, the layers that are formed are concentric, being a skeleton for resistance. It is noted that the pellets have very low porosity, that is, they do not absorb water or dissolve when immersed. The apparent density is between 1800 to 2000 Kg / m 3
  • the resistance of mixtures where the artificial aggregate is used is at least 51.6% of the resistance of the same mortar, when using the natural aggregate, having reached the standard resistance.
  • the artificial aggregate of the present invention has a special application to replace natural aggregates in the concrete composition.
  • the artificial aggregate of the present invention can be used in the most diverse applications, such as base and sub-base building element for roads, storage of tailings in dams in the form of pellets, as well as decorative element in gardens and flower beds .
  • base and sub-base building element for roads
  • storage of tailings in dams in the form of pellets as well as decorative element in gardens and flower beds .
  • present invention is not limited to the particular configurations / embodiments described above.

Abstract

A presente invenção refere-se ao processo de produção de agregado artificial a partir de rejeitos de barragens de minério. O rejeito arenoso de minério de ferro é misturado a um aglomerante e, através do processo de mistura e pelotização, forma o agregado artificial. O agregado artificial assim produzido apresenta forma esferoidal, tamanho graúdo, superfície rugosa e coloração que varia entre o rosa e o vermelho escuro. Esse agregado artificial é capaz de substituir o agregado natural, e pode ser utilizado na fabricação de um concreto mais resistente, para base e sub-base de estradas de rodagem, como elemento decorativo para jardins e canteiros, além de ser uma forma de estocagem de rejeitos de barragem de minério sob a forma de pelotas, agregando valor a estes rejeitos e reduzindo os impactos ambientais das minerações.

Description

PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL A PARTIR DE REJEITOS DE MINERAÇÃO, AGREGADO ARTIFICIAL, COMPOSIÇÃO DE
CONCRETO E USO
CAMPO TÉCNICO
[001] A presente invenção refere-se ao processo de produção de agregado artificial a partir de rejeitos de barragens de minério. O rejeito arenoso de minério de ferro é misturado a um aglomerante e, através do processo de mistura e pelotização, forma o agregado artificial. O agregado artificial assim produzido apresenta forma esferoidal, tamanho graúdo, superfície rugosa e coloração que varia entre o rosa e o vermelho escuro. Esse agregado artificial é capaz de substituir o agregado natural, e pode ser utilizado na fabricação de um concreto mais resistente, para base e sub-base de estradas de rodagem, como elemento decorativo para jardins e canteiros, além de ser uma forma de estocagem de rejeitos de barragem de minério sob a forma de pelotas, agregando valor a estes rejeitos e reduzindo os impactos ambientais das minerações.
ESTADO DA TÉCNICA
[002] Os agregados para construção civil e para base e sub-base de estradas são geralmente naturais, oriundos de pedreiras de gnaisse, granitos e calcários, entre outras rochas. Essas pedreiras são exploradas por concessões minerais federais. A exploração dessas rochas dentro das grandes cidades não é permitida, por gerar problemas ambientais nas proximidades de comunidades urbanas. No caso de estradas, a exploração desses minerais ao longo do traçado da estrada requer a obtenção de licenças. Dessa forma, a produção do agregado natural é onerosa e complexa, demanda obtenção de licenças e envolve perfuração, desmonte, britagem, peneiramento e lavagem.
[003] Os rejeitos de minério de ferro são resíduos remanescentes do processo de beneficiamento e concentração de minérios em instalações industriais. Devido ao tipo de minério e às diferenças no processo de beneficiamento do mineral, os rejeitos apresentam grande variedade em suas características, tais como: granulometria, mineralogia, densidade e forma da partícula. Diante disso, as propriedades do rejeito de minério de ferro podem variar, desde materiais com granulometria muito fina e alta plasticidade até materiais não plásticos com característica arenosa (MACHADO, W. G. F. (2007). Monitoramento de Barragens de Contenção de Rejeitos da Mineração. Dissertação de Mestrado. Escola Politécnica da Universidade de São Paulo, São Paulo. 155p).
[004] Os rejeitos de mineração já são aplicados como matéria prima para construção civil, na produção de concreto. Franco e colaboradores utilizaram a lama de barragens de minério de ferro como agregado artificial para substituição do agregado miúdo natural empregado ao concreto, nas porcentagens de 0,5%, 5%, 10% e 50% (FRANCO, L. C. et al. Aplicação de rejeito de mineração como agregado para a produção de concreto. 2014. 56° Congresso Brasileiro do Concreto - Natal/RN. Ed. : IBRACON. ISSN. :2175- 8182. Português, p.561 2014).
[005] Os rejeitos de minério de ferro podem ser utilizados como agregados finos por serem relativamente inertes e pelo tamanho das partículas ser significativamente maior do que o do cimento. Entretanto, o rejeito de minério de ferro apresenta potencial para substituição à areia natural como agregado fino, sendo uma alternativa mais barata e ambientalmente amigável (ZFIAO, S.; FAN, J.; SUN, W. Utilization of iron ore tailing as fine aggregate in ultra-high performance concrete. Construction and Building Materials, v 50, p 540-548. 2014; (HUANG, X.; RANADE, R.; NI, W.; LI, V.C. Development of Green engineered cementitious composites using iron ore tailigs as aggregates. Construction and Building Materials, v 44, p 757-764).
[006] Encontram-se no estado da técnica estratégias baseadas no uso do rejeito de barragens de minério de ferro como matéria prima a fim de minimizar impactos ambientais decorrentes da exploração de materiais naturais e das obras de engenharia.
[007] O pedido de patente BR1020130312606, intitulado “Utilização de rejeito de barragens de minério de ferro como matéria prima para construção de infra- estrutura rodoviária” reporta um método de aplicação de rejeito de minério de ferro como matéria-prima para construção de infraestrutura rodoviária e vias urbanas através de uma mistura composta de rejeitos e ligante hidráulico, pozolana, cal, escória, cimento, entre outros. Porém, desse método envolve mistura física e compactação mecânica, tanto por ações químicas de endurecimento das misturas, quanto por energia mecânica de compactação ou por uma combinação destas. [008] Existem no estado da técnica outras tecnologias que tratam de agregados artificiais para aplicação em concretos ou estradas, sobretudo de agregados formados por materiais de rejeito industrial ou rejeito de construção civil para redução de custos de disposição e de carga ambiental dos resíduos industrial. Dentre estas, destacam-se as citadas a seguir.
[009] O documento KR101631276, intitulado “Manufacturing method of recycled aggregates using bauxite residue”, descreve um agregado artificial rígido que pode exibir um nível fixo de força através de um processo de solidificação de uma mistura composta de bauxita residual, cimento, um aditivo composto por um agente solidificante e um aglutinante inorgânico, que pode ser aplicado como material de drenagem ou similar para o processo de melhoria do solo.
[0010] O documento JP2005104804, intitulado “Artificial Aggregate”, apresenta um material agregado artificial formado por aquecimento e sinterização de um corpo moldado que compreende cinzas de carvão, cinzas de alumínio, cimento e água, para utilização na produção de concreto e material de calçada.
[0011] O documento JP2008137842, intitulado “Method of manufacturing artificial aggregate using construction waste”, apresenta um método de fabricação de um agregado artificial usando resíduos de construção, tais como vidros, detritos e concreto, gerados a partir de edifícios demolidos. Tais resíduos são misturados a cimento e água, e em seguida são submetidos ao processo de granulação.
[0012] Assim, o estado da técnica compreende agregados artificiais com aplicações que se detêm apenas como elementos construtivos fabricados a partir de resíduos de construção civil ou resíduos industriais como bauxita residual e cinzas de carvão. A citação que emprega rejeitos de barragens de minério de ferro como matéria prima para construção de infra-estrutura rodoviária está relacionada a uma mistura compactada no local da estrada, uma massa composta de vários insumos que é apertada ou compactada. Não há no estado da técnica uma técnica capaz de utilizar rejeitos de barragens de minério de ferro como matéria-prima para fabricação de um agregado capaz de ser utilizado a posteriori em aplicações como construção civil. [0013] A presente invenção descreve um agregado artificial obtido a partir rejeitos de barragens de minério de ferro composto por rejeito arenoso fino e aglomerante como cimento ou pozolana, que são misturados e pelotizados, conferindo forma esferoidal ao produto, que possui tamanho graúdo (de 4,8 a 16 mm), superfície rugosa e coloração que varia entre o rosa e o vermelho escuro, possuindo propriedades físicas adequadas para utilização em aplicações como construção civil, sub-base de estradas de rodagem, estocagem de rejeitos de barragem na forma de pelotas, elemento decorativo para jardins e canteiros. Descreve também um processo eficiente e eficaz para a fabricação do referido agregado artificial a partir rejeitos de barragens de minério de ferro e uma composição de concreto para construção civil utilizando o referido agregado artificial como substituinte parcial da brita natural. O agregado artificial é capaz de substituir o agregado natural (brita) no concreto, levando o concreto a ter resistência compatível quando da utilização do agregado natural (resistência à compressão axial - NBR 5739: 2007).
[0014]
BREVE DESCRIÇÃO DAS FIGURAS
[0015] A Figura 1 ilustra um fluxograma do processo de produção do agregado artificial a partir de rejeito arenoso de mineração proposto pela presente invenção.
[0016] A Figura 2 exibe uma pelota de agregado artificial, produzida de acordo com o processo descrito na presente invenção.
[0017] A Figura 3 exibe os morteiros de concreto na forma padrão com agregado natural e com as misturas I e III.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[0018] A presente invenção refere-se ao processo de produção de agregado artificial a partir de rejeitos de barragens de minério. O rejeito arenoso de minério de ferro é misturado a um aglomerante e, através do processo de mistura e pelotização, forma o agregado artificial. O agregado artificial assim produzido apresenta forma esferoidal, tamanho graúdo, superfície rugosa e coloração que varia entre o rosa e o vermelho escuro. Esse agregado artificial é capaz de substituir o agregado natural, e pode ser utilizado na fabricação de um concreto mais resistente, para base e sub-base de estradas de rodagem, como elemento decorativo para jardins e canteiros, além de ser uma forma de estocagem de rejeitos de barragem de minério sob a forma de pelotas, agregando valor a estes rejeitos e reduzindo os impactos ambientais das minerações.
[0019] O processo de produção do agregado artificial é realizado a temperatura ambiente e compreende as seguintes etapas: a. Prover um rejeito de mineração arenoso com granulometria entre 0,03 e 11 mm; b. Misturar o rejeito arenoso e um aglomerante em que a composição da mistura possua 65 a 85% em peso de rejeito de mineração e 15 a 35% em peso de aglomerante, por aproximadamente 30 a 60 minutos até a mistura ficar homogénea; c. Pelotizar a temperatura ambiente a mistura em uma máquina de pelotização adicionando água de forma aspergida; d. Realizar a cura das pelotas a temperatura ambiente por um período que varia de 1 a 14 dias.
[0020] O rejeito de mineração citado na etapa “a” pode ser um rejeito arenoso fino proveniente de barragens de minério de ferro e contendo os minerais Goethita, Hematita, Quartzo, Caulinita e preferencialmente também Gibbsita. [0021] Caso o rejeito arenoso tenha umidade inferior a 20%, a mistura deve ser feita em misturadores contínuos com as seguintes características preferenciais: câmara de mistura com diafragma para ajuste de fluxo, rotor central, utensílios de mistura tipo pás e raspadores laterais. A rotação varia entre 10 e 45 rpm, de acordo com a homogeneidade da água na mistura.
[0022] Caso o rejeito arenoso possua umidade maior que 20% em peso, o mesmo precisará passar por um processo de secagem previamente à mistura e à pelotização, ou seja, após a etapa “a”. O processo de secagem poderá ser natural ou em secador rotativo usado para secar areia de dragagem de rio. Após secagem, o rejeito arenoso pode ser misturado ao aglomerante em misturador, conforme etapa “b” ou, alternativamente, poderá ser misturado ao aglomerante em um disco pelotizador com bordas reguláveis, sendo adicionados ao mesmo tempo. [0023] O aglomerante citado na etapa “b” pode ser pozolana comercial ou pozolana produzida com o próprio estéril da mineração após calcinação do estéril.
[0024] O aglomerante pode ser a pozolana obtida a partir do estéril da mineração de ferro calcinada por tecnologia flash entre 750 e 950 C°, e misturada com cimento Portland CPV na proporção em massa de 25 a 30% em peso do estéril calcinado e 70 a 75% em peso de cimento Portland CPV.
[0025] Na etapa “c”, a máquina pelotizadora preferencialmente deve apresentar borda de altura regulável. A rotação deve ser entre 10 e 25 rpm, utilizando uma inclinação de disco entre 40 e 50°, por um período de tempo entre 30 e 70 minutos, considerando uma massa de 400 kg. A pelotização é realizada a temperatura ambiente. Durante o processo de pelotização da etapa “c”, a água é aspergida de forma contínua quando a um idade da mistura está abaixo de 8%. A umidade ideal para formação da pelota varia entre 4 a 12%.
[0026] Por fim, como descrito na etapa “d”, deve ser realizada a cura das pelotas à temperatura ambiente por um período de 1 dia a 14 dias.
[0027] O agregado artificial, obtido através do processo acima descrito, é composto por 65 a 85% em peso de rejeito de mineração e 15 a 35% em peso de aglomerante, que são misturados e pelotizados, conferindo forma esferoidal ao produto, que possui tamanho graúdo (de 4,8 a 16 mm), superfície rugosa, coloração variando entre rosa e vermelho escuro e preferencialmente diâmetro variando entre brita 0 (B0: - 12,5mm +4,8mm), brita 00 (B00: -9,5mm +4,8mm) ou brita B0/B1(B0/B1: -16mm +9,5mm).
[0028] O agregado artificial à base de rejeitos de barragens de minério pode ser utilizado na fabricação de concreto, para base e sub-base de estradas de rodagem; estocagem de rejeitos de barragem na forma de pelotas; ou elemento decorativo para jardins e canteiros.
[0029] A presente invenção propõe ainda uma composição de concreto empregando agregado artificial que é caracterizada por compreender:
15,2 a 18,6% em peso de cimento Portland;
32,8 a 34,3% em peso de areia natural;
48,5 a 50,4% em peso de agregado (somente o artificial ou artificial e natural juntos). [0030] Os percentuais da composição referem-se ao percentual em massa considerando-se a base seca. Para a obtenção do concreto deve-se adicionar água à composição.
[0031] A composição de concreto empregando agregado artificial pode conter somente o agregado artificial ou pode conter o agregado artificial junto com o agregado natural (brita).
[0032] Dentro da composição do concreto empregando agregado artificial, o percentual em peso do agregado pode ser dividido entre 25,2% em peso de brita B0/B1(B0/B1: -16mm +9,5mm) e 25,2% em peso de brita 0 (B0: - 12,5mm +4,8mm); ou 24,3% em peso de brita B0/B1(B0/B1: -16mm +9,5mm) e 24,3% em peso de brita 0 (B0: - 12,5mm +4,8mm); ou 12,1% em peso de brita 00 (B00: -9,5mm +4,8mm) e 36,4% em peso de brita 0 (B0: - 12,5mm +4,8mm).
[0033] A matéria tratada pode ser mais bem compreendida a partir dos seguintes exemplos, sem que os mesmos limitem o escopo da invenção.
EXEMPLO 1 - Processo de produção do agregado artificial
[0034] O processo de obtenção do agregado artificial foi realizado conforme Figura 1. O rejeito arenoso de minério de ferro misturado a um aglomerante propicia, por meio de um processo de mistura e pelotização a temperatura ambiente, a formação do material agregado artificial capaz de substituir o agregado natural graúdo, proporcionando resistência mecânica ao concreto, compatível com a norma brasileira NBR 5759.
[0035] O rejeito arenoso presente em barragens de minério de ferro possui granulometria entre de 0,03 e 11 mm. Sua composição mineralógica é bastante variável em porcentagem, porém o tipo de mineral é constante, composto por silício e minerais de ferro.
[0036] A Tabela 1 apresenta composições mineralógicas de amostras de rejeito obtidas em barragens de minério de ferro. Nota-se que a presente invenção possui especial interesse em utilizar os rejeitos de barragem de minério, principalmente o rejeito arenoso fino contendo os minerais Goethita, Hematita, Quartzo, Caulinita e preferencialmente também Gibbsita, mas outros rejeitos com características adequadas também podem ser utilizados. Tabela 1 - Percentual dos componentes minerais dos rejeitos de barragem de minério de ferro
Figure imgf000010_0001
[0037] O processo de fabricação do agregado artificial inicia-se com a mistura de 65 a 75% de rejeito arenoso (granulometria fina a média) de barragens de minério de ferro com 25 a 35% de aglomerante.
[0038] No caso de o rejeito arenoso ter um idade inferior a 20%, a mistura deve ser feita em misturadores contínuos com as seguintes características preferenciais: câmara de mistura com diafragma para ajuste de fluxo, rotor central, utensílios de mistura tipo pás e raspadores laterais. A rotação varia entre 10 e 45 rpm, de acordo com a homogeneidade da água na mistura.
[0039] Se o rejeito arenoso de barragem contiver mais de 20% de umidade, este deverá passar por processo de secagem. O processo poderá ser natural ou em secador rotativo usado para secar areia de dragagem de rio. Neste caso não será necessário o uso de misturador. Preferencialmente, o rejeito arenoso de barragem após secagem entra em um disco pelotizador com bordas reguláveis ao mesmo tempo que o aglomerante.
[0040] O aglomerante deve ser uma pozolana comercial ou produzida com o próprio estéril da mineração após calcinação do estéril. O estéril de mina de ferro deve ser calcinado com tecnologia flash entre 750 e 950 C°. As misturas do estéril calcinado com cimento CPV, intituladas aglomerantes, devem estar na proporção em massa de 25 a 30 % de estéril calcinado e 70 a 75% em peso de cimento Portland CPV.
[0041] Na etapa seguinte, a mistura homogeneizada é vertida em uma máquina pelotizadora com borda de altura regulável. A rotação e inclinação do disco pelotizador com borda regulável deve estar entre 10 e 25 rpm, e a inclinação entre 40 e 50°. O tempo de residência da mistura na pelotizadora varia entre 30 a 70 minutos, considerando uma massa de 400 kg. A pelotização é realizada a temperatura ambiente, ou seja, não há etapas posteriores de queima das pelotas.
[0042] Durante o processo de pelotização, água é aspergida de forma contínua quando a um idade da mistura está abaixo de 8%. A um idade ideal para formação da pelota varia entre 4 a 12%.
[0043] O produto resultante são pelotas de formato aproximadamente esférico, superfície rugosa, tamanho graúdo e coloração que varia entre rosa e vermelho escuro, que serão utilizadas como agregado artificial. A densidade aparente está entre 1800 a 2000 kg/m3.
[0044] O diâmetro das pelotas pode variar, preferencialmente, entre brita 0 (B0: - 12,5mm +4,8mm), brita 00 (B00: -9,5mm +4,8mm) ou brita B0/B1(B0/B1: - 16mm +9,5mm).
[0045] Após o processo de pelotização, as pelotas devem passar por um processo de cura à temperatura ambiente. O tempo de cura para que as pelotas tenham resistência mecânica adequada varia de 24 horas a 21 dias, dependendo do diâmetro fabricado e da utilização desejada.
EXEMPLO 2- Usos do agregado artificial
[0046] O agregado artificial à base de rejeitos de barragens de minério pode ser utilizado na fabricação de concreto, para base e sub-base de estradas de rodagem; estocagem de rejeitos de barragem na forma de pelotas; ou elemento decorativo para jardins e canteiros.
[0047] A composição de concreto empregando o agregado artificial proposta na presente invenção compreende 15,2 a 18,6% em peso de cimento Portland; 32,8 a 34,3% em peso de areia natural; 48,5 a 50,4% em peso de agregado (somente o artificial ou artificial e natural juntos).
[0048] Para a obtenção do concreto deve-se adicionar água à composição.
[0049] Nesta composição de concreto, o percentual em peso do agregado é dividido entre 25,2% em peso de brita B0/B1(B0/B1: -16mm +9,5mm) e 25,2% em peso de brita 0 (B0: - 12,5mm +4,8mm); ou 24,3% em peso de brita B0/B1(B0/B1: -16mm +9,5mm) e 24,3% em peso de brita 0 (B0: - 12,5mm +4,8mm); ou 12,1% em peso de brita 00 (B00: -9,5mm +4,8mm) e 36,4% em peso de brita 0 (B0: - 12,5mm +4,8mm). [0050] A presente tecnologia de agregados artificiais, aplicada em concreto, pode substituir o agregado natural (brita) ou pode ser utilizada em conjunto com o agregado natural. O agregado natural não possui uma afinidade química com cimento e concreto (tixotropia). Por outro lado, o agregado artificial melhora a resistência do concreto devido à rugosidade da superfície.
[0051] Na construção de estradas, o agregado artificial a partir de rejeito de barragens pode ser usado para compor a base e a sub-base. A utilização deve ser feita misturando o agregado artificial no solo e depois processando a compactação conforme normas técnicas vigentes.
[0052] O formato esférico do agregado artificial proporciona maior resistência mecânica além de melhor estocagem, pois permite uma drenagem entre as esferas através dos espaços vazios quando disposto em pilhas ou estocado em pátios abertos sujeitos as chuvas.
[0053] As barragens das mineradoras costumam estocar lama (rejeito de mineração com granulometria muito fina) e areia com água, o que torna o conjunto instável com possibilidade de ruptura. O agregado artificial pode ser estocado dentro deste local ou barramento sem a necessidade de água, ou em pilhas de estocagem em pátios de estocagem. Posteriormente, o agregado artificial pode ser utilizado como agregado para concreto, elemento construtivo de base e sub-base para estradas ou até mesmo elemento ornamental de jardins e canteiros.
[0054] A presente tecnologia possui a vantagem de mobilizar passivo ambiental de forma eficiente e económica, agregando valor aos rejeitos de mineração. Além disso, proporciona facilidade de armazenamento por ser um material esférico e inerte e, devido a sua capacidade de absorção de água, favorece a umidade do ambiente, o que beneficia as aplicações do agregado artificial em jardins e canteiros.
EXEMPLO 3 - Teste de resistência à compressão
[0055] Os resultados de resistência à compressão em função do tempo de cura do agregado artificial estão relacionados na Tabela 2. O teste de resistência à compressão axial seguiu a metodologia e prescrições normativas descritos na NBR 5739/2007. Os resultados da Tabela 2 mostram uma evolução da resistência do agregado artificial com o tempo de cura. Esta evolução chega a 100% da resistência de uma brita de calcário. Tabela 2- Resistência à compressão em função do tempo de cura
_ Resistência (Kgf/pelota) - 12,5 mm + 9,5 mm _
Tempo de cura (dia) 0 1 2 3 6 7 14 31
Resistência média 1 ,40 3,12 7,83 12,35 14,80 17,50 18,80 15,50
% em relação a 29 dias _ 9,0 20,1 50,5 79,7 95,5 112,9 121 ,3 100,0
_ Resistência (Kgf/pelota) - 16 mm a 12,5 mm _
Tempo de cura (dia) 0 1 2 3 6 7 14 31
Resistência média 2,32 4,85 10,54 17,17 23,40 25,40 27,30 26,80
% em relação a 29 dias 8,7 18,1 39,3 64,1 87,3 94,8 101 ,9 100,0
Resistência (Kgf/pelota) - 19 mm a 1 mm
Tempo de cura (dia) 0 1 2 3 6 7 14 31 Resistência média 3,77 7,10 14,53 21 ,03 31 ,40 28,70 42,20 51 ,30 % em relação a 29 dias 7,3 13,8 28,3 41 ,0 61 ,2 55,9 82,3 100,0
Evolução da resistência à compressão com o tempo, considerando a resistência final de 29 dias Tempo de cura (dia) 0 1 2 3 6 7 14 31
% média em relação a resistência 29 dias 8,3 17,4 39,4 61 ,6 81 ,3 87,9 101 ,8 100,0
[0056] Observa-se que o tempo preferencial de cura são 14 dias.
[0057] A Figura 2 mostra o aspecto de uma pelota obtida pelo processo da presente invenção. Pode-se observar que, do centro para a borda, as camadas que se formam são concêntricas, sendo um esqueleto para resistência. Nota-se que as pelotas possuem muito baixa porosidade, ou seja, não absorve água nem se dissolve quando imersas. A densidade aparente está entre 1800 a 2000 Kg/m3
EXEMPLO 3 - Testes de resistência à compressão em morteiros de concreto
[0058] Para o procedimento de moldagem e cura do concreto empregando o agregado artificial utilizou-se a metodologia e prescrições normativas descritos na NBR 5738/2003. A Figura 3 mostra o aspecto dos morteiros de concreto na forma padrão com agregado natural e com as misturas I e III.
[0059] Os morteiros de concreto foram obtidos de forma padrão e em diferentes misturas com o agregado artificial, conforme dosagens apresentadas na Tabela 3.
Tabela 3 - Dosagem de materiais para obtenção de morteiros de concreto padrão e em mistura com agregado artificial
% em massa (base seca)
Matéria-prima Padrão (%) Mistura I (%) Mistura II (%) Mistura III (%) Cimento CPV 16,7 15.2 18,5 18,6
Areia natural 27,8 34.3 33 32,8
Agregado artificial (B0/B1) 25,2 24,3
Agregado Artificial (Boo) 12,1
Agregado Natural (Bo) 55,5 25,2 24,3 36,4
Água (Litros) 4,25 5 5,4 5,3
[0060] O teste de compressão dos morteiros seguiu-se a metodologia e prescrição normativas descritas na NBR 5739/2007 - Concreto - Ensaio de compressão de corpos-de-prova cilíndricos. Os resultados de sua resistência em relação ao padrão estão relacionados na Tabela 4.
Tabela 4 - Resistência à compressão em relação ao padrão.
Resistência à compressão em relação ao padrão (%)
Amostra 12 dias 17 dias 28 dias
Mistura i 65,8 51 ,6 53,2
Mistura II 79,5 65,8 82,5
Mistura lll 99,1 99,4 101 ,0
[0061] A resistência das misturas onde é utilizado o agregado artificial é no mínimo 51,6% da resistência do mesmo morteiro, quando da utilização do agregado natural, tendo atingido a resistência de norma.
[0062] Inúmeras variações incidindo no escopo de proteção da presente invenção são permitidas. O agregado artificial da presente invenção possui uma aplicação especial para substituir agregados naturais na composição de concreto.
[0063] Entretanto, o agregado artificial da presente invenção pode ser utilizado nas mais diversas aplicações, tais como elemento construtivo de base e sub- base para estradas, estocagem de rejeitos em barragens na forma de pelotas, além de elemento decorativo em jardins e canteiros. Dessa forma, reforça-se o fato de que a presente invenção não está limitada às configurações/concretizações particulares acima descritas.

Claims

REIVINDICAÇÕES
1. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, caracterizado por compreender as seguintes etapas:
(a) Prover um rejeito de mineração arenoso com granulometria entre 0,03 e 11 mm;
(b) Misturar o rejeito arenoso e um aglomerante em que a composição da mistura possua 65 a 85% em peso de rejeito de mineração e 15 a 35% em peso de aglomerante, por 30 a 60 minutos até a mistura ficar homogénea;
(c) Pelotizar a temperatura ambiente a mistura em uma máquina de pelotização adicionando água de forma aspergida;
(d) Realizar a cura das pelotas a temperatura ambiente por um período que varia de 1 a 14 dias.
2. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, etapa “a”, caracterizado pelo rejeito de mineração ser um rejeito arenoso fino proveniente de barragens de minério de ferro e conter os minerais Goethita, Hematita, Quartzo e Caulinita, e opcionalmente Gibbsita.
3. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, caracterizado pela adição de uma etapa de secagem do rejeito arenoso após a etapa “a”, caso o rejeito arenoso provido possua um idade maior que 20% em peso.
4. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 3, caracterizado pela secagem do rejeito arenoso ser natural ou em secador rotativo usado para secar areia de dragagem de rio.
5. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, etapa “b”, caracterizado pelo aglomerante ser uma pozolana comercial ou produzida com o próprio estéril da mineração após calcinação do estéril.
6. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 5, caracterizado pelo aglomerante pozolana ser obtido a partir do estéril da mineração de ferro calcinada por tecnologia flash entre 750 e 950 C°, e misturada com cimento Portland CPV na proporção em massa de 25 a 30% em peso do estéril calcinado e 70 a 75% em peso de cimento Portland CPV.
7. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, etapa “b”, caracterizado pela mistura ser feita em misturadores contínuos caso o rejeito arenoso tenha um idade inferior a 20%, tendo os misturadores contínuos as seguintes características preferenciais: câmara de mistura com diafragma para ajuste de fluxo, rotor central, utensílios de mistura tipo pás e raspadores laterais, sendo que a rotação deve variar entre 10 e 45 rpm.
8. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, etapa “b”, caracterizado pela mistura do rejeito com o aglomerante poder ser feita em um disco pelotizador com bordas reguláveis, sendo adicionados ao mesmo tempo, caso o rejeito arenoso provido na etapa “a” possua um idade maior que 20%.
9. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, etapa “c”, caracterizado pela máquina pelotizadora apresentar borda de altura regulável, com rotação entre 10 e 25 rpm, inclinação de disco entre 40 e 50°, por um período de tempo entre 30 e 70 minutos.
10. PROCESSO DE PRODUÇÃO DE AGREGADO ARTIFICIAL, de acordo com a reivindicação 1, etapa “c”, caracterizado pela água ser aspergida de forma contínua quando a um idade da mistura está abaixo de 8%, sendo que a um idade ideal varia entre 4% e 12%.
11. AGREGADO ARTIFICIAL, obtido pelo processo definido nas reivindicações 1 a 10, caracterizado por possuir 65 a 85% em peso de rejeito de mineração e 15 a 35% em peso de aglomerante.
12. AGREGADO ARTIFICIAL, de acordo com a reivindicação 10, caracterizado por possuir coloração variando entre rosa e vermelho escuro, possuir forma esférica, tamanho graúdo (de 4,8 a 16 mm), superfície rugosa e por seu diâmetro variar entre brita 0 (B0: - 12,5mm +4,8mm), brita 00 (B00: - 9,5mm +4,8mm) ou brita B0/B1(B0/B1: -16mm +9,5mm).
13. COMPOSIÇÃO DE CONCRETO, caracterizada por compreender:
15,2 a 18,6% em peso de cimento Portland;
32,8 a 34,3% em peso de areia natural; 48,5 a 50,4% em peso de agregado (somente o artificial ou artificial e natural juntos).
14. COMPOSIÇÃO DE CONCRETO, de acordo coma reinvindicação 13, caracterizado pelo percentual em peso do agregado artificial ser dividido entre 25,2% em peso de brita B0/B1(B0/B1: -16mm +9,5mm) e 25,2% em peso de brita 0 (B0: - 12,5mm +4,8mm); ou 24,3% em peso de brita B0/B1(B0/B1: - 16mm +9,5mm) e 24,3% em peso de brita 0 (B0: - 12,5mm +4,8mm); ou 12,1% em peso de brita 00 (B00: -9,5mm +4,8mm) e 36,4% em peso de brita 0 (B0: - 12,5mm +4,8mm).
15. USO DO AGREGADO ARTIFICIAL, definido nas reivindicações 13 e
14, caracterizado por ser utilizado na fabricação de um concreto, como elemento construtivo de base e sub base para estradas, para estocagem de rejeitos de barragem na forma de pelotas, ou como elemento decorativo em jardins e canteiros.
PCT/BR2020/050444 2019-10-30 2020-10-30 Processo de produção de agregado artificial a partir de rejeitos de mineração, agregado artificial, composição de concreto e uso WO2021081613A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2022004985A MX2022004985A (es) 2019-10-30 2020-10-30 Proceso de produccion de agregado artificial a partir de relaves de mineria, agregado artificial, composicion de concreto y uso.
US17/772,486 US20220371956A1 (en) 2019-10-30 2020-10-30 Production process of artificial aggregate from tailings from mining, artificial aggregate, concrete composition and use
AU2020375359A AU2020375359A1 (en) 2019-10-30 2020-10-30 Production process of artificial aggregate from tailings from mining, artificial aggregate, concrete composition and use
CN202080076487.5A CN114981228A (zh) 2019-10-30 2020-10-30 从矿山尾矿中生产人工骨料的工艺,人工骨料,混凝土组成和用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020190227249 2019-10-30
BR102019022724-9A BR102019022724B1 (pt) 2019-10-30 2019-10-30 Processo de produção de agregado artificial a partir de rejeitos de mineração, agregado artificial, composição de concreto e uso

Publications (1)

Publication Number Publication Date
WO2021081613A1 true WO2021081613A1 (pt) 2021-05-06

Family

ID=69191406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050444 WO2021081613A1 (pt) 2019-10-30 2020-10-30 Processo de produção de agregado artificial a partir de rejeitos de mineração, agregado artificial, composição de concreto e uso

Country Status (7)

Country Link
US (1) US20220371956A1 (pt)
CN (1) CN114981228A (pt)
AR (1) AR120355A1 (pt)
AU (1) AU2020375359A1 (pt)
BR (1) BR102019022724B1 (pt)
MX (1) MX2022004985A (pt)
WO (1) WO2021081613A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110390A (zh) * 2022-07-13 2022-09-27 中铁第四勘察设计院集团有限公司 一种适用于市政道路的局部开挖沟槽快速回填的施工方法
RU2795801C1 (ru) * 2022-04-14 2023-05-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" Гранулированный заполнитель для бетонной смеси, состав бетонной смеси для получения бетонных строительных изделий, бетонное строительное изделие

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162619A1 (en) * 2005-01-14 2006-07-27 Sophia Bethani Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
BRPI0504939A (pt) * 2005-11-10 2007-07-31 Fundacao Universidade Fed De S processo de preparação de compósito de peso leve, compósito assim preparado, uso e concreto de peso leve contendo o mesmo
BR102013031260A2 (pt) * 2013-12-05 2015-11-03 Lucas Augusto De Castro Bastos utilização de rejeito de barragens de minério de ferro como matéria prima para construção de infra-estrutura rodoviária
CN106348712A (zh) * 2016-08-30 2017-01-25 北京玉锦资源与环境技术研究院(有限合伙) 一种用于协同处置含铅危险废物的矿山用胶结充填料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015880A (ja) * 2005-07-06 2007-01-25 Nippon Steel & Sumikin Stainless Steel Corp 重量骨材及び重量コンクリート並びにそれらの製造方法
CN108191319A (zh) * 2018-02-27 2018-06-22 王福州 一种铁尾矿砂混凝土及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162619A1 (en) * 2005-01-14 2006-07-27 Sophia Bethani Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
BRPI0504939A (pt) * 2005-11-10 2007-07-31 Fundacao Universidade Fed De S processo de preparação de compósito de peso leve, compósito assim preparado, uso e concreto de peso leve contendo o mesmo
BR102013031260A2 (pt) * 2013-12-05 2015-11-03 Lucas Augusto De Castro Bastos utilização de rejeito de barragens de minério de ferro como matéria prima para construção de infra-estrutura rodoviária
CN106348712A (zh) * 2016-08-30 2017-01-25 北京玉锦资源与环境技术研究院(有限合伙) 一种用于协同处置含铅危险废物的矿山用胶结充填料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DA GAMA, E. M. ET AL.: "Moderna planta piloto de aglomeração a frio de finos de minerios de ferro empregando disco pelotizador Scarabeu-1000", CONTRIBUIÇÃO TECNICA AO 44° SEMINARIO DE REDUÇÃO DE MINERIO DE FERRO E MATERIAS-PRIMAS, 15° SIMPOSIO BRASILEIRO DE MINERIO DE FERRO E 2° SIMPOSIO BRASILEIRO DE AGLOMERAÇÀO DE MINERIO DE FERRO, 15 September 2014 (2014-09-15), pages 902, 903, 906, 909 - 912, XP055818388 *
DA GAMA, E. M. ET AL.: "Planta piloto de produção Metakflex e seu uso como aglomerante no pelotamento de minerio de ferro", CONTRIBUIÇÃO TECNICA AO 44° SEMINARIO DE REDUÇÃO DE MINERIO DE FERRO E MATERIAS-PRIMAS, 15° SIMPÓSIO BRASILEIRO DE MINERIO DE FERRO E 2° SIMPOSIO BRASILEIRO DE AGLOMERAÇÃO DE MINERIO DE FERRO, 15 September 2014 (2014-09-15), pages 913 - 920, XP055818394 *
HALT, JOSEPH A., ROACHE SAMUEL C., KAWATRA S. KOMAR: "Cold Bonding of Iron Ore Concentrate Pellets", JOURNAL MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, vol. 36, no. 3, 11 October 2014 (2014-10-11), pages 192 - 197, XP055818402, DOI: 10.1080/08827508.2013.873863 *
HUANG, S. C. ET AL.: "Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash", JOURNAL OF HAZERDOUS MATERIALS, vol. 144, no. 1-2, 1 June 2007 (2007-06-01), XP022385646, DOI: 10.1016/j.jhazmat.2006.09.094 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795801C1 (ru) * 2022-04-14 2023-05-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Белгородский государственный технологический университет им. В.Г. Шухова" Гранулированный заполнитель для бетонной смеси, состав бетонной смеси для получения бетонных строительных изделий, бетонное строительное изделие
CN115110390A (zh) * 2022-07-13 2022-09-27 中铁第四勘察设计院集团有限公司 一种适用于市政道路的局部开挖沟槽快速回填的施工方法
CN115110390B (zh) * 2022-07-13 2023-08-29 中铁第四勘察设计院集团有限公司 一种适用于市政道路的局部开挖沟槽快速回填的施工方法

Also Published As

Publication number Publication date
CN114981228A (zh) 2022-08-30
MX2022004985A (es) 2022-08-02
US20220371956A1 (en) 2022-11-24
AU2020375359A1 (en) 2022-05-26
BR102019022724A2 (pt) 2020-01-07
AR120355A1 (es) 2022-02-09
BR102019022724B1 (pt) 2020-06-16

Similar Documents

Publication Publication Date Title
Oluwatuyi et al. Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction
Saygili Use of waste marble dust for stabilization of clayey soil
CN103013526B (zh) 土壤固化剂及土壤固化方法
CN103274613B (zh) 用于砖混类建筑垃圾制备道路基层材料的胶结料及其应用
JP4962915B2 (ja) 保水性ブロックの製造方法
Ram et al. State of the art review on physiochemical and engineering characteristics of fly ash and its applications
Bakshi et al. A review on calcium-rich industrial wastes: a sustainable source of raw materials in India for civil infrastructure—opportunities and challenges to bond circular economy
Assiamah et al. Utilization of sawdust ash as cement replacement for landcrete interlocking blocks production and mortarless construction
Ronoh et al. Cement effects on the physical properties of expansive clay soil and the compressive strength of compressed interlocking clay blocks
WO2021081613A1 (pt) Processo de produção de agregado artificial a partir de rejeitos de mineração, agregado artificial, composição de concreto e uso
CN109293313A (zh) 一种淤泥砖及其制备工艺
CN108409215A (zh) 一种延性淤泥地质聚合物及其制备方法
Otunyo et al. Exploratory study of crushed periwinkle shell as partial replacement for fine aggregates in concrete
Zami et al. Compressive strength and wetting–drying cycles of al-hofuf" hamrah" soil stabilized with cement and lime
Shahane et al. Influence of design parameters on engineering properties of angular shaped fly ash aggregates
Hamzah et al. Correlation of the Na2SiO3 to NaOH ratios and solid to liquid ratios to the kedah’s soil strength
RU2806992C1 (ru) Способ производства искусственного заполнителя из хвостов от горнодобычных работ, искусственный заполнитель, композиция бетона и использование
Larrosa et al. Stabilization of Dredging Material from Rio Grande Harbor with Alkali-Activated Cements to Produce Masonry Elements
Naidu et al. A study on the properties of concrete on partial replacement of cement and sand with copper slag
TWI358398B (pt)
Shivakumar et al. Use of building demolished waste as coarse aggregate in porous concrete
Mukesh et al. A Systematic Study on Physical and Mechanical Properties of No-Fine Concrete with Additives
Lupo et al. Manufactured aggregate from waste materials
JP2007112713A (ja) 保水性固化体用水硬材及び保水性固化体
Reddy et al. An Experimental Analysis on the Effects of Manufactured Sand on the Compressive Strength of Concrete

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020375359

Country of ref document: AU

Date of ref document: 20201030

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522432442

Country of ref document: SA