WO2021075425A1 - Disinfectant including ultrafine-bubble-containing solution - Google Patents

Disinfectant including ultrafine-bubble-containing solution Download PDF

Info

Publication number
WO2021075425A1
WO2021075425A1 PCT/JP2020/038631 JP2020038631W WO2021075425A1 WO 2021075425 A1 WO2021075425 A1 WO 2021075425A1 JP 2020038631 W JP2020038631 W JP 2020038631W WO 2021075425 A1 WO2021075425 A1 WO 2021075425A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
ultrafine
carbon dioxide
bubble
bubbles
Prior art date
Application number
PCT/JP2020/038631
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 豊久
蘭因 張
ジョルジ ドドビバ
裕史 松井
宏美 黒川
税 鈴木
Original Assignee
ベルパック株式会社
ベルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベルパック株式会社, ベルテクノサービス株式会社 filed Critical ベルパック株式会社
Priority to JP2021552395A priority Critical patent/JP7450849B2/en
Publication of WO2021075425A1 publication Critical patent/WO2021075425A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to a disinfectant containing an ultrafine bubble-containing solution, and more particularly to a disinfectant containing an ultrafine bubble-containing solution containing carbon dioxide and hydrogen.
  • ROS Active oxygen
  • hydroxyl radicals (OH ⁇ ) and the superoxide anion radical ( ⁇ O 2 -) active oxygen such as, for high low stability reactive, difficult to expect a sustained action for such the sterilizing action Is.
  • Ultrafine Bubble (hereinafter, also referred to as "UFB (Ultrafine Bubble)"
  • UFB Ultrafine Bubble
  • the size of UFB decreases with the passage of time, and it is considered that the UFB can exist even after the passage of one month.
  • Patent Document 1 A disinfectant containing a weakly alkaline stable sodium hypochlorite solution and containing ultrafine bubbles is disclosed (Patent Document 1 below). However, this is based on the bactericidal action of sodium hypochlorite and is not related to the bactericidal action of the ultrafine bubble itself.
  • Ahmed AKB Shi X., Likun Hua L., Leidy Manzueta L., Weihua Qing W., Marhaba T., Wen Zhang, W., J. of Agricultural and Food Chemistry (Journal of Agricultural and Food Chemistry) ⁇ Chemistry), 2018, 66 (20), 5117-5124.
  • the present inventors have investigated the antioxidative ability and the effect on various diseases of nanofine bubbles of various gases, and the present inventors include at least one gas of carbon dioxide and hydrogen inside the ultrafine bubbles.
  • the solution containing ultrafine bubbles has a continuous ROS scavenging ability, a cytotoxic effect on cancer cells, and an antitumor effect on cancer-bearing mice, and has an active oxygen scavenging ability, and cytotoxicity on cancer cells.
  • a solution containing ultrafine bubbles containing at least one gas of carbon dioxide and hydrogen inside the ultrafine bubbles which has an effect and an antitumor effect on cancer-bearing mice, and a beverage containing the same, and a medicine. It is disclosed in PCT / JP2019 / 041060 that it can be done.
  • a fine bubble-containing solution particularly a mixed solution of an organic solvent / water containing the ultrafine bubble, has an ROS enhancing action and a bactericidal action based on the ROS enhancing action.
  • an object of the present invention is to provide an ultrafine bubble-containing bactericidal agent containing carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles, which have active oxygen enhancing action and bactericidal action.
  • the present invention is as follows.
  • the fungicide according to [3], wherein the alcohol-based organic solvent is at least one selected from the group consisting of ethanol, ethylene glycol, and isopropanol.
  • the bactericidal agent according to [3] or [4], wherein the alcohol-based organic solvent is ethylene glycol.
  • an ultrafine bubble-containing bactericidal agent containing carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles, which have active oxygen enhancing action and bactericidal action.
  • the ultrafine bubble-containing fungicide according to the present invention is an organic solvent solution containing ultrafine bubbles.
  • the organic solvent solution containing the ultrafine bubble is an organic solvent solution containing an ultrafine bubble containing both carbon dioxide and hydrogen gases inside the ultrafine bubble.
  • At least one gas of carbon dioxide and hydrogen may be contained inside each ultrafine bubble contained in the solution.
  • the organic solvent solution is a solution containing an organic solvent, and may be a mixed solution of an organic solvent and water, or a solution composed of one or a plurality of organic solvents.
  • a bubble is a closed space composed of a gas surrounded by a gas other than a gas, and a bubble completely surrounded by a liquid is a planktonic gas.
  • planktonic gases bubbles having a diameter of 1 micrometer or less are called ultrafine bubbles (Fine Bubble Society Association).
  • carbon dioxide, hydrogen, and an ultrafine bubble-containing solution containing both carbon dioxide and hydrogen are provided inside the ultrafine bubble, respectively, carbon dioxide ultrafine bubble, hydrogen ultrafine bubble, and carbon dioxide and hydrogen ultra. It is called fine bubble.
  • the ultrafine bubble also has a specific 50% average particle size. Since the gas contained inside the ultrafine bubble has a particle size smaller than a specific 50% average particle size, the stability of the ultrafine bubble is improved and the ultrafine bubble can exist as an ultrafine bubble for a long time.
  • the 50% average particle size in the present invention usually refers to the 50% average particle size with respect to the number of ultrafine bubbles.
  • the 50% average particle size of the carbon dioxide ultrafine bubble is in the range of 50 nm to 300 nm in water. A 50% average particle size in this range allows it to exist as an ultrafine bubble for several days. It is difficult to prepare ultrafine bubble carbon dioxide with a 50% average particle size less than 50 nm.
  • the 50% average particle size of the hydrogen ultrafine bubble is in the range of 10 nm to 500 nm in water. A 50% average particle size in this range allows it to exist as an ultrafine bubble for several days. It is difficult to prepare ultrafine bubbles with a 50% average particle size less than 10 nm.
  • Table 1 shows an example of the particle sizes of carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles in water, an ethanol (EtOH) aqueous solution, and an ethylene glycol (EG) aqueous solution.
  • EtOH ethanol
  • EG ethylene glycol
  • the ultrafine bubble has a specific ultrafine bubble content.
  • the ultrafine bubble-containing solution In order for the ultrafine bubble-containing solution to exhibit its antioxidant capacity, it is necessary for the ultrafine bubble to contain a certain amount of gas.
  • the content of the carbon dioxide ultrafine bubbles is preferably in the range of 100 million / mL to 10 billion / mL, and more preferably in the range of 1 billion / mL to 10 billion / mL.
  • the content of the hydrogen ultrafine bubbles is preferably in the range of 100 million / mL to 100 billion / mL, and further preferably in the range of 100 million / mL to 50 billion / mL. preferable.
  • Examples of the method for preparing the ultrafine bubble-containing solution include a spiral flow system method, a pressurized dissolution system, an ultrasonic wave method, passage through porous ceramics, and porosity.
  • Various methods such as passing through a plastic film and a double bottle hydrogen generator are known.
  • the carbon dioxide ultrafine bubble can be prepared by various methods. Among them, the carbon dioxide ultrafine bubble is prepared by passing carbon dioxide from a pressurized tank through porous ceramics (the porous ceramics passing method) or passing through a porous plastic membrane, and then blowing it into a liquid. (See FIG. 1). As the porous plastic film, a film that removes ordinary fine particles can also be used for nanobubble preparation.
  • the hydrogen ultrafine bubble can be prepared by various methods. Among them, the hydrogen ultra fine bubble is prepared by electrolysis (electrolysis method for producing fine bubble) using a double bottle hydrogen generator (Woo Co., Ltd., Gas & Water Double Hydrogen Bottle (registered trademark)). Fine bubbles are preferred. A solution containing hydrogen ultrafine bubbles can be prepared by the double bottle hydrogen generator (see FIG. 2).
  • the carbon dioxide and hydrogen ultrafine bubble solution allows carbon dioxide to pass through porous ceramics (the porous ceramics passing method) or a porous plastic film, and then blows into the solution containing hydrogen ultrafine bubbles. It can be prepared by or by causing the carbon dioxide ultrafine bubble to generate hydrogen ultrafine bubble by a double bottle hydrogen generator.
  • the carbon dioxide and hydrogen ultrafine bubble-containing solution can be prepared by at least one method selected from the group consisting of the pressurized dissolution system and the spiral flow system. According to these methods, a large amount of carbon dioxide and hydrogen ultrafine bubble-containing solution can be prepared.
  • the characteristics of the ultrafine bubble in the present invention can be measured by various methods. Among them, in the measurement of the ultrafine bubble of the present invention, it is possible to measure an ultrafine bubble having a small particle size equivalent to that of the dynamic light scattering method (DLS) method, and since it has high accuracy, the following interactions occur. It is preferable to use a force device (IFA) measurement method.
  • IFA force device
  • the particle size distribution of the ultrafine bubble in the present invention was measured in a solution using the IFA measuring device shown in FIG. 3 (see FIG. 4).
  • the particle size distribution of fine bubbles from several nm to several 100 ⁇ m can be measured with high accuracy, and the particle concentration, the light transmittance of the liquid, and the refractive index are not affected.
  • “Measurable” Patent No. 650265, p. 3, paragraph [0009]
  • An example of this measuring device is shown in FIG. The measured values were in good agreement with those measured by the Dynamic Light Scattering (DLS) method.
  • DLS Dynamic Light Scattering
  • the particle diameter of the particle size the ultra-fine bubbles of ultra-fine bubbles was measured by the interaction force system method.
  • the particle size of the carbon dioxide ultrafine bubble (50% average diameter of the bubble size) was measured to be 115 nm in water, and the particle size of the hydrogenated ultrafine bubble (50% average diameter of the bubble size) was 130 nm in water. Measured (see Table 1).
  • the contents of carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles in the ultrafine bubble-containing solution in water are 100 million / mL to 10 billion / mL and 0.1, respectively, according to the particle size and density measurement. It was in the range of 100 billion pieces / mL to 100 billion pieces / mL.
  • the ultrafine bubble according to the present invention has a sufficiently small particle size and its internal content, and can exist stably for a long period of time.
  • the Kohri's ESR spin trap method which is a typical method, was used for data analysis.
  • the peak-to-peak intensity of the selected ESR line of the free radical adduct was followed in the presence and absence of antioxidants.
  • the oxidant species is mixed with the free radical generating system hours prior to ESR measurements.
  • I 0 and I have ESR peak heights in the presence of ST alone and ST + oxidant, respectively
  • the amount of free radical generation system oxidized to the oxidant species is I 0- I. Therefore, I 0 / I-1 is calculated to quantify the free radical capture capacity.
  • the organic solvent-based disinfectant according to the present invention preferably contains the disinfectant as a mixed solvent of an organic solvent and water.
  • the organic solvent is preferably an alcohol-based organic solvent.
  • the ethanol aqueous solution is a form of a mixed solution of the alcohol-based organic solvent and water.
  • the alcohol-based organic solvent include ethylene glycol and isopropanol in addition to ethanol because ROS in the solution is enhanced.
  • the organic solvent system in the present invention is not particularly limited as long as carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles can exist and ROS in the solution is enhanced.
  • carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles can be present in the solution, as long as the ROS in the solution is enhanced.
  • the ROS in the solution is enhanced.
  • the alcohol-based organic solvent it is considered that hydroxyl radical (HO ⁇ ) is further generated by ROS.
  • Ethylene glycol is preferable as the alcohol-based organic solvent.
  • the ethylene glycol content in the mixed solvent of ethylene glycol and water is preferably 25% to 55% from the viewpoint of regeneration of active oxygen, particularly hydroxyl radical.
  • Examples of the organic solvent-based solution in the present invention include a mixed solvent of isopropanol and kerosene. This solution does not contain water, but ultrafine bubbles can be present.
  • the isopropanol content is preferably 25% to 55% from the viewpoint of regeneration of active oxygen, particularly hydroxyl radical.
  • Hydroxyl radicals are generated by light in the presence of hydrogen peroxide H2O2 in alcohol-based organic solvents such as ethanol and ethylene glycol.
  • alcohol-based organic solvents such as ethanol and ethylene glycol.
  • hydrogen peroxide H2O2 is reduced by the reactions of (2), (3) and (4) of Chemical formula 2.
  • the hydroxyl radical generated by light by the reaction (1) and the remaining hydrogen peroxide H2O2 generate a superoxide anion by the reactions (7) and (8).
  • an alcohol-based organic solvent such as ethanol or ethylene glycol and a superoxide anion coexist, more hydrogen peroxide is generated by the reactions (12) and (13) by blowing hydrogen.
  • a mechanism is conceivable.
  • the disinfectant according to the present invention is characterized by being a disinfectant as the above-mentioned organic solvent-based solution containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles.
  • Active oxygen regenerated in an organic solvent system containing the hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles, particularly hydroxyl radicals, is expected to have antibacterial, sterilizing, and bactericidal effects on bacteria and microorganisms.
  • the bactericidal agent according to the present invention is preferable from the viewpoint of high safety and low environmental load.
  • the disinfectant according to the present invention is an organic solvent-based disinfectant containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles, and is further prepared by hydrogen injection (CO2 ⁇ H2) after carbon dioxide injection. It is unique in that.
  • the method for producing a bactericide according to the present invention is a method for producing an ultrafine bubble-containing bactericide containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles, and is an ultrafine bubble-containing organic solvent containing carbon dioxide ultrafine bubbles. This is a method of producing an organic solvent containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles by further injecting hydrogen into the water.
  • active oxygen regenerated in an organic solvent system containing the hydrogen ultrafine bubble and carbon dioxide ultrafine bubble, particularly hydroxyl radical has an antibacterial action and a sterilizing action against bacteria, microorganisms and the like. Expected to have bactericidal action. This bactericidal action was confirmed by the bactericidal action against Escherichia coli in the following examples (Fig. 14).
  • Experimental Example 2 Preparation of hydrogen ultrafine bubble-containing solution
  • the hydrogen ultrafine bubble-containing solution (aqueous solution) is subjected to a double bottle hydrogen generator (manufactured by Woo, Gas & Water Double Hydrogen Bottle) as shown in FIG. It was produced by electrolysis using (trademark)) (hereinafter, also referred to as “UFB / EH 2”).
  • the hydrogen ultrafine bubble-containing solution (aqueous solution) was prepared in 200 mL of water for 30 minutes (hereinafter, also referred to as “containing solution EH 2”).
  • the concentration of ultrafine bubble hydrogen by electrolysis was 0.15% by volume, and was quantified using a specific gravity bottle.
  • Superoxide anion radical ( ⁇ O 2 -) it is, was generated in hypoxanthine / xanthine (HX / XO) system.
  • HX / XO hypoxanthine / xanthine
  • the ESR spectrum of the spin trapping adduct was recorded using an ESR spectrometer (JES-TE25X manufactured by JEOL). Typical ESR measurement conditions were as follows. Microwave power: 4 mW, microwave frequency: 9.2 GHz, magnetic field: 328.0 mT, field sweep with: ⁇ 7.5 mT, field modulation: 0.16 mT, sweep time: 1 minute, 0.003663 mT / Points, all 4096 points, ESR measurements were performed at room temperature.
  • the Kohri's ESR spin trap method which is a typical method, was used for data analysis.
  • the peak-to-peak intensity of the selected ESR line of the free radical adduct was followed in the presence and absence of antioxidants.
  • the oxidant species is mixed with the free radical generating system hours prior to ESR measurement.
  • I 0 and I have ESR peak heights in the presence of ST alone and ST + oxidant, respectively, the amount of free radical generation system oxidized to the oxidant species is I 0- I. Therefore, I 0 / I-1 was calculated to quantify the free radical capture capacity.
  • Examples 1 to 5 Intensity of hydroxyl radical (OH ⁇ ) of the ultrafine bubble-containing ethylene glycol (EG) solution (50%) according to the present invention
  • Control Example 1 Ultrafine bubble-free
  • Reference Example 2 Hydrogen Ultra Fine bubble containing
  • Reference Example 3 Carbon dioxide ultrafine bubble containing
  • Reference Example 4 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing hydrogen to carbon dioxide in order)
  • Example 5 Carbon dioxide and hydrogen ultrafine
  • the I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 10 and 11.
  • Example 5 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of carbon dioxide to hydrogen) is compared with Reference Example 4: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of hydrogen to carbon dioxide). Therefore, stronger hydroxyl radicals (Example 5: ⁇ , Reference Example 4: ⁇ ) were observed.
  • Examples 6 to 10 Strength of hydroxyl radical (OH ⁇ ) of ultrafine bubble-containing ethylene glycol aqueous solution (30%) according to the present invention
  • Control example 6 Ultrafine bubble free
  • Reference example 7 Hydrogen ultrafine bubble content
  • Reference Example 8 Carbon dioxide ultrafine bubble containing
  • Reference Example 9 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing hydrogen to carbon dioxide in order)
  • Example 10 Carbon dioxide and hydrogen ultrafine bubble containing
  • the hydroxyl radical (OH ⁇ ) strength of each 30% ethylene glycol aqueous solution was examined by ESR measurement.
  • the I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 10 and 11.
  • Example 10 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of carbon dioxide to hydrogen) is compared with Reference Example 9: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of hydrogen to carbon dioxide). Therefore, stronger hydroxyl radicals (Example 10: ⁇ , Reference Example 9: ⁇ ) were observed.
  • Examples 11 to 15 Strength of super oxide anion (O2 ⁇ -) of ultrafine bubble-containing ethylene glycol aqueous solution (50%) according to the present invention
  • Control example 11 Ultrafine bubble-free
  • Reference example 12 Hydrogen Ultrafine Bubble containing
  • Reference Example 13 Carbon dioxide ultrafine bubble containing
  • Reference Example 14 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of hydrogen to hydrogen)
  • Example 15 Carbon dioxide and hydrogen ultrafine bubble
  • the I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 12 and 13.
  • Example 15 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of carbon dioxide to hydrogen) is compared with Reference Example 14: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of hydrogen to carbon dioxide). The latter was slightly stronger in the superoxide anion (Example 15: ⁇ , Reference example 14: ⁇ ).
  • Examples 16 to 20 Strength of super oxide anion (O2 ⁇ -) of ultrafine bubble-containing ethylene glycol aqueous solution (30%) according to the present invention
  • Control example 16 Ultrafine bubble-free
  • Reference example 17 Hydrogen Ultrafine Bubble containing
  • Reference Example 18 Carbon dioxide ultrafine bubble containing
  • Reference Example 19 Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of hydrogen to carbon dioxide)
  • Example 20 Carbon dioxide and hydrogen ultrafine bubble
  • the strength of the superoxide anion (O2 ⁇ -) of each 30% ethylene glycol aqueous solution containing (prepared by blowing in the order of carbon dioxide to hydrogen) was examined by ESR measurement.
  • the I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 12 and 13.
  • Examples 1 to 5 Bactericidal effect of the ultrafine bubble-containing ethylene glycol (EG) solution (50%) according to the present invention
  • Control Example 1 No additive
  • Control Example 2 Ultrafine bubble-free
  • Reference Example 4 50% ethylene each containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of carbon dioxide to carbon dioxide)
  • Example 5 containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of carbon dioxide to hydrogen)
  • the bactericidal effect of the glycol solution was evaluated by observing survival after 48 hours of incubation using Escherichia coli (Fig. 14).
  • Example 5 the survival of Escherichia coli was significantly suppressed as compared with Control Example 1 (FIG. 14D), as in Control Example 2 (FIG. 14A). In addition, the survival of Escherichia coli was further suppressed as compared with Reference Example 4 (FIG. 14a) (Table 3: Example 5). From the above, the bactericidal effect of the regenerated hydroxyl radical of the ultrafine bubble-containing bactericidal agent according to the present invention was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

[Problem] Ultrafine bubbles can be present for a long period of time, and therefore the ROS elimination effect thereof could also persist for a long period of time. The effect of ultrafine bubble beverages containing various gases on reactive oxygen is unknown, and the present invention addresses the study of this effect. [Solution] With this disinfectant containing an ultrafine-bubble-containing organic solution, it is possible to provide a very safe disinfectant having a reactive-oxygen-reinforcing effect and a disinfectant effect, the disinfectant including carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles and not including chemical substances.

Description

ウルトラファインバブル含有溶液を含む殺菌剤Fungicide containing ultrafine bubble-containing solution
 本発明は、ウルトラファインバブル含有溶液を含む殺菌剤に関し、特に、二酸化炭素および水素を含むウルトラファインバブル含有溶液を含む殺菌剤に関する。 The present invention relates to a disinfectant containing an ultrafine bubble-containing solution, and more particularly to a disinfectant containing an ultrafine bubble-containing solution containing carbon dioxide and hydrogen.
 活性酸素(以下、「ROS」ともいう。)は、多くの疾患の原因物質であるが、一方活性酸素は高い反応活性を持つため、外部から入り込んできた異物(微生物)を排除する防衛機能をもつこともわかってきた。 Active oxygen (hereinafter, also referred to as "ROS") is a causative agent of many diseases, while active oxygen has a high reaction activity, so it has a defense function to eliminate foreign substances (microorganisms) that have entered from the outside. I've also come to understand that it has.
 白血球などの好中球やマクロファージが体内の異物や毒物を認識し取り込み分解する時に細菌などを分解するのに活性酸素が働いている。白血球(好中球)は、体内に細菌が侵入してくるとこれを貪食し、白血球はNAD(P)Hオキシダーゼを使ってNADH(NADPH)とH+と酸素を反応させて、過酸化水素を生成し、貪食されてもまだ増殖しようとする細菌を殺菌し感染から守る生体防御メカニズムを有するといわれる。 When neutrophils such as white blood cells and macrophages recognize foreign substances and toxic substances in the body and take them in and decompose them, active oxygen works to decompose bacteria and the like. White blood cells (neutrophils) phagocytose when bacteria invade the body, and white blood cells use NAD (P) H oxidase to react NADH (NADPH) with H + and oxygen to generate hydrogen peroxide. It is said to have a biological defense mechanism that sterilizes bacteria that are produced and that are still proliferating even after being phagocytosed and protect them from infection.
 ただ、ヒドロキシラジカル(OH・)及びスーパーオキシドアニオンラジカル(・O )などの活性酸素は、反応性が高く安定性が低いため、上記殺菌作用などについて持続的な作用を期待することは困難である。 However, hydroxyl radicals (OH ·) and the superoxide anion radical (· O 2 -) active oxygen, such as, for high low stability reactive, difficult to expect a sustained action for such the sterilizing action Is.
 一方、ウルトラファインバブル(以下、「UFB(Ultrafine Bubble)」ともいう。)は、中性溶液中で高い負のゼータ電位を有し、抗酸化能を有する。UFBは、時間経過とともにサイズが減少し、1か月経過後も存在可能とされる。 On the other hand, Ultrafine Bubble (hereinafter, also referred to as "UFB (Ultrafine Bubble)") has a high negative zeta potential in a neutral solution and has an antioxidant ability. The size of UFB decreases with the passage of time, and it is considered that the UFB can exist even after the passage of one month.
 ウルトラファインバブルの持続的な抗酸化作用や殺菌作用について十分な検討は未だ行われていない。例えば、水素は高い還元力を有するが、ナノファインバブ水素水(水素を含むウルトラファインバブル水溶液)について、その抗酸化能は未だ十分に検討されていない。 Sufficient studies have not yet been conducted on the sustained antioxidant and bactericidal effects of ultrafine bubbles. For example, hydrogen has a high reducing power, but the antioxidant capacity of nanofine bab hydrogen water (ultrafine bubble aqueous solution containing hydrogen) has not been sufficiently investigated.
 従来、ウルトラファインバブルと殺菌作用との関連性のある報告は極めて少ない。弱アルカリ性の安定型次亜塩素酸ナトリウム溶液からなり、かつ、ウルトラファインバブルを含有する除菌剤が開示されている(下記特許文献1)。しかし、これは次亜塩素酸ナトリウムの殺菌作用に基づくものであり、ウルトラファインバブル自体の殺菌作用に関するものではない。 Conventionally, there are very few reports on the relationship between ultrafine bubbles and bactericidal action. A disinfectant containing a weakly alkaline stable sodium hypochlorite solution and containing ultrafine bubbles is disclosed (Patent Document 1 below). However, this is based on the bactericidal action of sodium hypochlorite and is not related to the bactericidal action of the ultrafine bubble itself.
 ウルトラファインバブルの作成に関し、Ahmedらは、流体力学、音響、粒子、光キャビテーションによる従来の生成方法ではなく、円筒状セラミックナノ濾過膜を用いる空気、窒素、及び酸素のウルトラファインバブル含有水溶液を検討し、空気バブルのサイズをナノレベルにできることを報告している(下記非特許文献1参照)。 Regarding the creation of ultrafine bubbles, Ahmed et al. Considered ultrafine bubble-containing aqueous solutions of air, nitrogen, and oxygen using cylindrical ceramic nanofiltration membranes instead of the conventional method of generation by hydrodynamics, acoustics, particles, and optical cavitation. However, it has been reported that the size of air bubbles can be reduced to the nano level (see Non-Patent Document 1 below).
特開2018-090547号公報JP-A-2018-090547
 上述のとおり、ウルトラファインバブルは長期間の存在が可能なため、抗酸化作用などのウルトラファインバブルの特有な作用も長期に持続する可能性がある。しかしながら、各種気体のウルトラファインバブルが活性酸素に及ぼす影響は未知であり、その検討が課題とされていた。 As mentioned above, since the ultrafine bubble can exist for a long period of time, there is a possibility that the peculiar action of the ultrafine bubble such as antioxidant action will continue for a long period of time. However, the effect of ultrafine bubbles of various gases on active oxygen is unknown, and its examination has been an issue.
 本発明者らは、種々の気体のナノファインバブルについて、その抗酸化能、各種疾患への効果を検討する中で、ウルトラファインバブルの内部に二酸化炭素及び水素の少なくともいずれか一方の気体を含むウルトラファインバブルの含有溶液が持続的なROS消去能、癌細胞への細胞障害効果、担癌マウスへの抗腫瘍効果を有することを見出し、活性酸素消去能を有し、癌細胞への細胞障害効果、担癌マウスへの抗腫瘍効果を有する、ウルトラファインバブルの内部に二酸化炭素及び水素の少なくともいずれか一方の気体を含むウルトラファインバブルの含有溶液、およびこれを含む飲料、及び医薬を提供することができることを、PCT/JP2019/041060において開示した。 The present inventors have investigated the antioxidative ability and the effect on various diseases of nanofine bubbles of various gases, and the present inventors include at least one gas of carbon dioxide and hydrogen inside the ultrafine bubbles. We found that the solution containing ultrafine bubbles has a continuous ROS scavenging ability, a cytotoxic effect on cancer cells, and an antitumor effect on cancer-bearing mice, and has an active oxygen scavenging ability, and cytotoxicity on cancer cells. Provided are a solution containing ultrafine bubbles containing at least one gas of carbon dioxide and hydrogen inside the ultrafine bubbles, which has an effect and an antitumor effect on cancer-bearing mice, and a beverage containing the same, and a medicine. It is disclosed in PCT / JP2019 / 041060 that it can be done.
 本発明者らは、上記の課題に鑑み、種々の気体のナノファインバブルについて、その抗酸化能、各種用途への適用を検討する中で、驚くべきことに、二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブル含有溶液、特に、当該ウルトラファインバブルを含む有機溶媒/水の混合溶液がROS増強作用、これに基づく殺菌作用を有することを見出した。 In view of the above problems, the present inventors are studying the antioxidative ability of nanofine bubbles of various gases and their application to various uses. Surprisingly, carbon dioxide ultrafine bubbles and hydrogen ultra It has been found that a fine bubble-containing solution, particularly a mixed solution of an organic solvent / water containing the ultrafine bubble, has an ROS enhancing action and a bactericidal action based on the ROS enhancing action.
 したがって、本発明の目的は、活性酸素増強作用、殺菌作用を有する、二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブルを含む、ウルトラファインバブル含有殺菌剤を提供することにある。 Therefore, an object of the present invention is to provide an ultrafine bubble-containing bactericidal agent containing carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles, which have active oxygen enhancing action and bactericidal action.
 すなわち、本発明は以下の通りである。
[1]
 水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系溶液の殺菌剤。
[2]
 前記有機溶媒系溶液が有機溶媒と水との混合溶液である、[1]に記載の殺菌剤。
[3]
 前記有機溶媒がアルコール系有機溶媒である、[2]に記載の殺菌剤。
[4]
 前記アルコール系有機溶媒が、エタノール、エチレングリコール、及びイソプロパノールからなる群から選択される少なくともいずれか1つである、[3]に記載の殺菌剤。
[5]
 前記アルコール系有機溶媒がエチレングリコールである、[3]又は[4]に記載の殺菌剤。
[6]
 前記エチレングリコールの含量が25%~55%である、[5]に記載の殺菌剤。
[7]
 前記有機溶媒系溶液が1又は複数の有機溶媒からなる、[1]に記載の殺菌剤。
[8]
 前記複数の有機溶媒がイソプロパノールとケロセンである、[7]に記載の殺菌剤。
[9]
 前記イソプロパノールの含量が25%~35%である、[8]に記載の殺菌剤。
[10]
 二酸化炭素ウルトラファインバブルを含むウルトラファインバブル含有水溶液に、さらに水素を吹き込んで水素ウルトラファインバブルを生成して調製される、[1]~[9]のいずれかに1つに記載の殺菌剤。
[11]
 水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系溶液の殺菌剤の製造方法であって、二酸化炭素ウルトラファインバブルを含むウルトラファインバブル含有溶液に、さらに水素を吹き込んで、水素ウルトラファインバブルを生成して前記殺菌剤を製造する、方法。
That is, the present invention is as follows.
[1]
A disinfectant for organic solvent-based solutions containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles.
[2]
The bactericidal agent according to [1], wherein the organic solvent-based solution is a mixed solution of an organic solvent and water.
[3]
The bactericidal agent according to [2], wherein the organic solvent is an alcohol-based organic solvent.
[4]
The fungicide according to [3], wherein the alcohol-based organic solvent is at least one selected from the group consisting of ethanol, ethylene glycol, and isopropanol.
[5]
The bactericidal agent according to [3] or [4], wherein the alcohol-based organic solvent is ethylene glycol.
[6]
The fungicide according to [5], wherein the ethylene glycol content is 25% to 55%.
[7]
The bactericidal agent according to [1], wherein the organic solvent-based solution comprises one or a plurality of organic solvents.
[8]
The fungicide according to [7], wherein the plurality of organic solvents are isopropanol and kerosene.
[9]
The fungicide according to [8], wherein the isopropanol content is 25% to 35%.
[10]
The bactericidal agent according to any one of [1] to [9], which is prepared by further blowing hydrogen into an aqueous solution containing carbon dioxide ultrafine bubbles to generate hydrogen ultrafine bubbles.
[11]
A method for producing a disinfectant for an organic solvent-based solution containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles. Hydrogen ultrafine is further blown into an ultrafine bubble-containing solution containing carbon dioxide ultrafine bubbles. A method of producing bubbles to produce the disinfectant.
 本発明によれば、活性酸素増強作用、殺菌作用を有する、二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブルを含む、ウルトラファインバブル含有殺菌剤を提供することすることができる。 According to the present invention, it is possible to provide an ultrafine bubble-containing bactericidal agent containing carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles, which have active oxygen enhancing action and bactericidal action.
二酸化炭素ウルトラファインバブルの作成装置を示す図である。It is a figure which shows the carbon dioxide ultrafine bubble making apparatus. 水素ウルトラファインバブルの作成装置を示す図である。It is a figure which shows the hydrogen ultra fine bubble making apparatus. 本発明にかかるウルトラファインバブルのIFA測定装置の主要部を示す図である。It is a figure which shows the main part of the IFA measuring apparatus of the ultrafine bubble which concerns on this invention. 水素ウルトラファインバブルの安定性を示す図である。It is a figure which shows the stability of a hydrogen ultrafine bubble. 本発明における活性酸素の検出方法(スピントラップ法/ESR法)において、G-CYPMPOと活性酸素の付加物を示す図である。It is a figure which shows the adduct of G-CYPMPO and active oxygen in the active oxygen detection method (spin trap method / ESR method) in this invention. エタノール(EtOH)水溶液中の水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルのヒドロキシラジカル消去作用を示す図である。It is a figure which shows the hydroxyl radical scavenging action of hydrogen ultrafine bubble and carbon dioxide ultrafine bubble in ethanol (EtOH) aqueous solution. エタノール(EtOH)水溶液中の水素及び二酸化炭素ウルトラファインバブルのヒドロキシラジカル消去作用を示す図である。It is a figure which shows the hydroxyl radical scavenging action of hydrogen and carbon dioxide ultrafine bubble in an aqueous solution of ethanol (EtOH). エタノール(EtOH)水溶液中の水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルのスーパーオキシドアニオン消去作用を示す図である。It is a figure which shows the superoxide anion scavenging action of hydrogen ultrafine bubble and carbon dioxide ultrafine bubble in ethanol (EtOH) aqueous solution. エタノール(EtOH)水溶液中の水素及び二酸化炭素ウルトラファインバブルのスーパーオキシドアニオン消去作用を示す図である。It is a figure which shows the superoxide anion scavenging action of hydrogen and carbon dioxide ultrafine bubble in an aqueous solution of ethanol (EtOH). エチレングリコール(EG)水溶液中の水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルのヒドロキシラジカル消去作用を示す図である。It is a figure which shows the hydroxyl radical scavenging action of hydrogen ultrafine bubble and carbon dioxide ultrafine bubble in an ethylene glycol (EG) aqueous solution. エチレングリコール(EG)水溶液中の水素及び二酸化炭素ウルトラファインバブルのヒドロキシラジカル消去作用を示す図である。It is a figure which shows the hydroxyl radical scavenging action of hydrogen and carbon dioxide ultrafine bubble in the ethylene glycol (EG) aqueous solution. エチレングリコール(EG)水溶液中の水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルのスーパーオキシドアニオン消去作用を示す図である。It is a figure which shows the superoxide anion scavenging action of hydrogen ultrafine bubble and carbon dioxide ultrafine bubble in an ethylene glycol (EG) aqueous solution. エチレングリコール(EG)水溶液中の水素及び二酸化炭素ウルトラファインバブルのスーパーオキシドアニオン消去作用を示す図である。It is a figure which shows the superoxide anion scavenging action of hydrogen and carbon dioxide ultrafine bubbles in an aqueous ethylene glycol (EG) solution. 本発明にかかるウルトラファインバブル含有殺菌剤の殺菌作用を示す図である。It is a figure which shows the bactericidal action of the ultrafine bubble containing bactericidal agent which concerns on this invention.
 以下に、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (ウルトラファインバブル含有する有機溶媒系溶液)
 本発明にかかるウルトラファインバブル含有殺菌剤は、ウルトラファインバブルを含有する有機溶媒溶液である。当該ウルトラファインバブルを含有する有機溶媒溶液は、ウルトラファインバブルの内部に二酸化炭素及び水素の両方の気体を含むウルトラファインバブルを含有する有機溶媒溶液であることを特徴とする。
(Organic solvent solution containing ultrafine bubbles)
The ultrafine bubble-containing fungicide according to the present invention is an organic solvent solution containing ultrafine bubbles. The organic solvent solution containing the ultrafine bubble is an organic solvent solution containing an ultrafine bubble containing both carbon dioxide and hydrogen gases inside the ultrafine bubble.
 前記ウルトラファインバブルを含有する有機溶媒溶液においては、当該溶液に含まれる個々のウルトラファインバブルの内部に、二酸化炭素及び水素の少なくともいずれか一方の気体が含まれ得る。 In the organic solvent solution containing the ultrafine bubbles, at least one gas of carbon dioxide and hydrogen may be contained inside each ultrafine bubble contained in the solution.
 前記有機溶媒溶液とは、有機溶媒を含む溶液であり、有機溶媒と水との混合溶液でも、1又は複数の有機溶媒からなる溶液でもよい。 The organic solvent solution is a solution containing an organic solvent, and may be a mixed solution of an organic solvent and water, or a solution composed of one or a plurality of organic solvents.
 気泡は、気体以外により囲まれた気体からなる閉じた空間であり、液体に完全に囲まれている気泡は浮遊性気体である。この浮遊性気体のうち、直径が1マイクロメーター以下の気泡は、ウルトラファインバブルと呼ばれる(ファインバブル学会連合)。 A bubble is a closed space composed of a gas surrounded by a gas other than a gas, and a bubble completely surrounded by a liquid is a planktonic gas. Among these planktonic gases, bubbles having a diameter of 1 micrometer or less are called ultrafine bubbles (Fine Bubble Society Association).
 ウルトラファインバブルは極めて小さな気泡であるため、気泡がゼータ電位という負の電位を帯び、気泡が極めて長時間液中に存在できる等の特徴が知られている。 Since ultrafine bubbles are extremely small bubbles, it is known that the bubbles have a negative potential called the zeta potential, and the bubbles can exist in the liquid for an extremely long time.
 以下、ウルトラファインバブルの内部に、二酸化炭素、水素、及び二酸化炭素と水素の両方を含有するウルトラファインバブル含有溶液を、それぞれ、二酸化炭素ウルトラファインバブル、水素ウルトラファインバブル、及び二酸化炭素及び水素ウルトラファインバブルという。 Hereinafter, carbon dioxide, hydrogen, and an ultrafine bubble-containing solution containing both carbon dioxide and hydrogen are provided inside the ultrafine bubble, respectively, carbon dioxide ultrafine bubble, hydrogen ultrafine bubble, and carbon dioxide and hydrogen ultra. It is called fine bubble.
 前記ウルトラファインバブルは、特定の50%平均粒径をも有することが好ましい。ウルトラファインバブルの内部に含まれる気体が特定の50%平均粒径よりも小さな粒径を有することにより、ウルトラファインバブルの安定性が向上し、長時間ウルトラファインバブルとして存在することができる。本発明における50%平均粒径は、通常、ウルトラファインバブルの個数についての50%平均粒径をいう。 It is preferable that the ultrafine bubble also has a specific 50% average particle size. Since the gas contained inside the ultrafine bubble has a particle size smaller than a specific 50% average particle size, the stability of the ultrafine bubble is improved and the ultrafine bubble can exist as an ultrafine bubble for a long time. The 50% average particle size in the present invention usually refers to the 50% average particle size with respect to the number of ultrafine bubbles.
 前記二酸化炭素ウルトラファインバブルの50%平均粒径は、水中において50nm~300nmの範囲である。この範囲の50%平均粒径により、数日間ウルトラファインバブルとして存在することが可能になる。50nm未満の50%平均粒径のウルトラファインバブル二酸化炭素を調製することは困難である。 The 50% average particle size of the carbon dioxide ultrafine bubble is in the range of 50 nm to 300 nm in water. A 50% average particle size in this range allows it to exist as an ultrafine bubble for several days. It is difficult to prepare ultrafine bubble carbon dioxide with a 50% average particle size less than 50 nm.
 前記水素ウルトラファインバブルの50%平均粒径は、水中において10nm~500nmの範囲である。この範囲の50%平均粒径により、数日間ウルトラファインバブルとして存在することが可能になる。10nm未満の50%平均粒径のウルトラファインバブルを調製することは困難である。 The 50% average particle size of the hydrogen ultrafine bubble is in the range of 10 nm to 500 nm in water. A 50% average particle size in this range allows it to exist as an ultrafine bubble for several days. It is difficult to prepare ultrafine bubbles with a 50% average particle size less than 10 nm.
 水、エタノール(EtOH)水溶液、エチレングリコール(EG)水溶液中の二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブルの粒径の一例を表1に示した。水中に比較して、有機溶媒と水との混合溶液(以下、「有機溶媒水溶液」ともいう。)においては、いずれのウルトラファインバブルも粒径が大きくなる傾向がある。 Table 1 shows an example of the particle sizes of carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles in water, an ethanol (EtOH) aqueous solution, and an ethylene glycol (EG) aqueous solution. Compared with water, in a mixed solution of an organic solvent and water (hereinafter, also referred to as "organic solvent aqueous solution"), all ultrafine bubbles tend to have a larger particle size.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記ウルトラファインバブルは、特定のウルトラファインバブルの含有量を有する。前記ウルトラファインバブル含有溶液の抗酸化能が発揮されるためには、一定量の気体がウルトラファインバブルに含有されることが必要である。 The ultrafine bubble has a specific ultrafine bubble content. In order for the ultrafine bubble-containing solution to exhibit its antioxidant capacity, it is necessary for the ultrafine bubble to contain a certain amount of gas.
 前記二酸化炭素ウルトラファインバブルの含有量は、1億個/mL~100億個/mLの範囲であることが好ましく、10億個/mL~100億個/mLの範囲であることが更に好ましい。 The content of the carbon dioxide ultrafine bubbles is preferably in the range of 100 million / mL to 10 billion / mL, and more preferably in the range of 1 billion / mL to 10 billion / mL.
 前記水素ウルトラファインバブルの含有量は、0.1億個/mL~1000億個/mLの範囲であるあることが好ましく、1億個/mL~500億個/mLの範囲であることが更に好ましい。 The content of the hydrogen ultrafine bubbles is preferably in the range of 100 million / mL to 100 billion / mL, and further preferably in the range of 100 million / mL to 50 billion / mL. preferable.
 (ウルトラファインバブル含有溶液の調製)
 前記ウルトラファインバブル含有溶液の調製法としては、スパイラル流システム法(Spiral Flow System Method)、加圧溶解システム法(Pressurized Dissolution System)、超音波法(Ultrasonic Wave Method)、多孔質セラミクス通過、多孔質プラスチック膜通過、ダブルボトル水素発生装置など様々な方法が知られている。
(Preparation of ultrafine bubble-containing solution)
Examples of the method for preparing the ultrafine bubble-containing solution include a spiral flow system method, a pressurized dissolution system, an ultrasonic wave method, passage through porous ceramics, and porosity. Various methods such as passing through a plastic film and a double bottle hydrogen generator are known.
 前記二酸化炭素ウルトラファインバブルは、様々な方法により調製することができる。なかでも、前記二酸化炭素ウルトラファインバブルは、加圧タンクからの二酸化炭素を多孔質セラミクス通過(前記多孔質セラミクス通過法)させ、または多孔質プラスチック膜を通過させ、次に液体に吹き込むことにより調製することが好ましい(図1参照)。前記多孔質プラスチック膜としては、通常の微粒子を除去する膜もナノバブル調製に用いることができる。 The carbon dioxide ultrafine bubble can be prepared by various methods. Among them, the carbon dioxide ultrafine bubble is prepared by passing carbon dioxide from a pressurized tank through porous ceramics (the porous ceramics passing method) or passing through a porous plastic membrane, and then blowing it into a liquid. (See FIG. 1). As the porous plastic film, a film that removes ordinary fine particles can also be used for nanobubble preparation.
 前記水素ウルトラファインバブルは、様々な方法により調製することができる。なかでも、前記水素ウルトラファインバブルは、ダブルボトル水素発生装置(Woo社製、Gas & Water Double Hydrogen Bottle(登録商標))を使用して電解(前記ファインバブル製造用電解法)により調製した水素ウルトラファインバブルが好ましい。前記ダブルボトル水素発生装置により、水素ウルトラファインバブルの含有溶液を調製することができる(図2参照)。 The hydrogen ultrafine bubble can be prepared by various methods. Among them, the hydrogen ultra fine bubble is prepared by electrolysis (electrolysis method for producing fine bubble) using a double bottle hydrogen generator (Woo Co., Ltd., Gas & Water Double Hydrogen Bottle (registered trademark)). Fine bubbles are preferred. A solution containing hydrogen ultrafine bubbles can be prepared by the double bottle hydrogen generator (see FIG. 2).
 前記二酸化炭素及び水素ウルトラファインバブル溶液は、二酸化炭素を多孔質セラミクス通過(前記多孔質セラミクス通過法)させ、または多孔質プラスチック膜を通過させ、次に前記水素ウルトラファインバブルの含有溶液に吹き込むことにより、又は前記二酸化炭素ウルトラファインバブルにダブルボトル水素発生装置により水素ウルトラファインバブルを生成させることにより、調製することができる。 The carbon dioxide and hydrogen ultrafine bubble solution allows carbon dioxide to pass through porous ceramics (the porous ceramics passing method) or a porous plastic film, and then blows into the solution containing hydrogen ultrafine bubbles. It can be prepared by or by causing the carbon dioxide ultrafine bubble to generate hydrogen ultrafine bubble by a double bottle hydrogen generator.
 また、前記二酸化炭素及び水素ウルトラファインバブル含有溶液は、前記加圧溶解システム及びスパイラル流システムからなる群から選択される少なくともいずれかの1つの方法により調製することができる。これらの方法によれば、二酸化炭素及び水素ウルトラファインバブル含有溶液を多量に調製することができる。 Further, the carbon dioxide and hydrogen ultrafine bubble-containing solution can be prepared by at least one method selected from the group consisting of the pressurized dissolution system and the spiral flow system. According to these methods, a large amount of carbon dioxide and hydrogen ultrafine bubble-containing solution can be prepared.
 (ウルトラファインバブル含有溶液の特性測定法)
 ウルトラファインバブルの特性測定法としては、共振質量法(Resonant Mass Method)、粒子軌道法(Particle Trajectory Method)、レーザー回折法(Laser Diffraction Method)、動的光散乱法(Dynamic Light Scattering Method: DLS Method)、相互作用力装置法(Interactive Force Apparatus Method: IFA Method)などが知られている。
(Characteristic measurement method for ultrafine bubble-containing solution)
The characteristics of ultrafine bubbles are measured by the Resonant Mass Method, Particle Trajectory Method, Laser Diffraction Method, and Dynamic Light Scattering Method (DLS Method). ), Interactive Force MFP Method (IFA Method), etc. are known.
 本発明におけるウルトラファインバブルは、その特性を様々な方法で測定することができる。なかでも、本発明のウルトラファインバブルの測定には、動的光散乱法(DLS)法と同等の粒径の小さなウルトラファインバブルの測定が可能であり、高い精度を有するため、以下の相互作用力装置(IFA)測定法を用いることが好ましい。 The characteristics of the ultrafine bubble in the present invention can be measured by various methods. Among them, in the measurement of the ultrafine bubble of the present invention, it is possible to measure an ultrafine bubble having a small particle size equivalent to that of the dynamic light scattering method (DLS) method, and since it has high accuracy, the following interactions occur. It is preferable to use a force device (IFA) measurement method.
 本発明におけるウルトラファインバブルは、溶液中で、図3のIFA測定装置を用いて、その粒径サイズ分布を測定した(図4参照)。本測定装置によれば、「数nm~数100μmまでのファインバブルの粒度分布を高精度に測定することができ、また、粒子濃度、液の光透過性、屈折率に影響されることなく、測定可能」(特許第6502657号公報、3頁段落[0009])である。本測定装置の1例を図3に示した。測定値は、動的光散乱(DLS)法による測定値とよく一致した。 The particle size distribution of the ultrafine bubble in the present invention was measured in a solution using the IFA measuring device shown in FIG. 3 (see FIG. 4). According to this measuring device, "the particle size distribution of fine bubbles from several nm to several 100 μm can be measured with high accuracy, and the particle concentration, the light transmittance of the liquid, and the refractive index are not affected. "Measurable" (Patent No. 650265, p. 3, paragraph [0009]). An example of this measuring device is shown in FIG. The measured values were in good agreement with those measured by the Dynamic Light Scattering (DLS) method.
 前記相互作用力装置測定法は、特開2016-109453(発明の名称「ファインバブルの粒度分布測定法及び測定装置」、特許第6502657号)に開示されている。 The method for measuring an interaction force device is disclosed in Japanese Patent Application Laid-Open No. 2016-109453 (Invention title "Fine bubble particle size distribution measuring method and measuring device", Japanese Patent No. 6502657).
 (ウルトラファインバブル含有溶液の特性)
 ウルトラファインバブルの粒径
 前記ウルトラファインバブルの粒径を上記相互作用力装置法により測定した。前記二酸化炭素ウルトラファインバブルの粒径(バブルサイズの50%平均直径)は、水中において115nmと測定され、記水素ウルトラファインバブルの粒径(バブルサイズの50%平均直径)は、水中において130nmと測定された(表1参照)。
(Characteristics of ultrafine bubble-containing solution)
The particle diameter of the particle size the ultra-fine bubbles of ultra-fine bubbles was measured by the interaction force system method. The particle size of the carbon dioxide ultrafine bubble (50% average diameter of the bubble size) was measured to be 115 nm in water, and the particle size of the hydrogenated ultrafine bubble (50% average diameter of the bubble size) was 130 nm in water. Measured (see Table 1).
 ウルトラファインバブルの安定性
 前記ウルトラファインバブルの経時的な粒径変化を上記相互作用力装置法により測定し、その安定性(持続性)を評価した。前記二酸化炭素ウルトラファインバブルは、蒸留水中で数日存在し、4日後には消失した。前記二酸化炭素ウルトラファインバブルの蒸留水中での安定性は、数日となりウルトラファインバブルによる安定性が認められた。前記水素ウルトラファインバブルは、40日の経過後における粒径は25nmであり、時間経過とともに粒径が小さくなることがわかった。前記水素ウルトラファインバブルは、40日後においても安定に存在することがわかった(図4参照)。
Stability of Ultra Fine Bubbles The change in particle size of the Ultra Fine Bubbles over time was measured by the above-mentioned interaction force device method, and its stability (sustainability) was evaluated. The carbon dioxide ultrafine bubbles existed in distilled water for several days and disappeared after 4 days. The stability of the carbon dioxide ultrafine bubble in distilled water was several days, and the stability due to the ultrafine bubble was confirmed. It was found that the hydrogen ultrafine bubble had a particle size of 25 nm after the lapse of 40 days, and the particle size became smaller with the lapse of time. It was found that the hydrogen ultrafine bubble was stably present even after 40 days (see FIG. 4).
 前記ウルトラファインバブル含有溶液における二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブルの水中における含有量は、粒子径と密度測定によれば、それぞれ、1億個/mL~100億個/mL及び0.1億個/mL~1000億個/mLの範囲であった。 The contents of carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles in the ultrafine bubble-containing solution in water are 100 million / mL to 10 billion / mL and 0.1, respectively, according to the particle size and density measurement. It was in the range of 100 billion pieces / mL to 100 billion pieces / mL.
 本発明にかかるウルトラファインバブルは、十分に小さなサイズの粒径及びその内部の含有量を有し、長時間安定に存在し得る。 The ultrafine bubble according to the present invention has a sufficiently small particle size and its internal content, and can exist stably for a long period of time.
 ヒドロキシラジカル(OH・)及びスーパーオキシドアニオンラジカル(・O2 )の測定は、スピントラップ剤としてG-CYPMPO(登録商標):2-(5,5-dimethyl-2-oxo-2-l5- [1,3,2]dioxaphosphinan-2-yl)-2-methyl-3,4-dihydro-2H-pyrro- line N-oxide {2-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphinan-2-yl)-3,4-dihydro-2-methyl-2H-pyrrole N-oxide(下記化学式1)を用いて、ESR分光器(JEOL製JES-TE25X)を用いて、スピン・トラッピング付加物のESRスペクトルを記録にすることにより行った。 Hydroxy radical (OH ·) and the superoxide anion radical (· O 2 -) Measurement of, G-CYPMPO as a spin trapping agent (R): 2- (5,5-dimethyl- 2-oxo-2-l5- [1,3,2] dioxaphosphinan-2-yl) -2-methyl-3,4-dihydro-2H-pyrro- line N-oxide {2- (5,5-dimethyl-2-oxo-1,3, Spin-using a 2-dioxaphosphinan-2-yl) -3,4-dihydro-2-methyl-2H-pyrrole N-oxide (chemical formula 1 below) and an ESR spectrometer (JES-TE25X manufactured by JEOL). This was done by recording the ESR spectrum of the trapping adduct.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 UV照射下における過酸化水素溶液(0.1w/v%)における、すなわちヒドロキシラジカル(OH・)とG-CYPMPO(登録商標)との付加物、及びヒポキサンチン/キサンチンオキシダーゼ系における、すなわちスーパーオキシドアニオンラジカル(・O2 )とG-CYPMPO(登録商標)との付加物のESRスペクトルを図5に示した。図中、ダイヤモンド印(◆)はスーパーオキシドアニオンラジカル(・O2 )付加物のピークを、逆三角印(▼)はヒドロキシラジカル(OH・)付加物のピークを示している。この両ピークのピークtoピーク強度を活性酸素量の測定に用いる。 In a hydrogen peroxide solution (0.1 w / v%) under UV irradiation, that is, an adduct of hydroxyl radical (OH ·) and G-CYPMPO®, and in a hypoxanthine / xanthine oxidase system, that is, superoxide. anion radical (· O 2 -) and the ESR spectrum of the adduct of G-CYPMPO (R) shown in FIG. In the figure, the diamond mark (◆) superoxide anion radical (· O 2 -) peaks of adduct, inverse triangle (▼) indicates a peak of hydroxy radicals (OH ·) adduct. The peak-to-peak intensity of both peaks is used for measuring the amount of active oxygen.
 データ分析には代表的方法であるKohri‘s ESRスピントラップ法を用いた。前記フリーラジカル付加物の選択されたESRラインのピークtoピーク強度を抗酸化剤の存在下及び非存在下で追跡した。 The Kohri's ESR spin trap method, which is a typical method, was used for data analysis. The peak-to-peak intensity of the selected ESR line of the free radical adduct was followed in the presence and absence of antioxidants.
 スピントラップ剤(SP)及び抗酸化剤(AO)の存在下、以下のフリーラジカル(R)とラッピング反応が起こることが考えられる。
 R+SP→R付加物の速度定数:tksp(1)
 R+AO→生成物の速度定数:kAO(2)
 I及びIが、それぞれSTのみ及びST+AOの存在下のESRピーク高である場合、式(2)における生成物の量はI-Iである。したがって、I/I-1がフリーラジカル補足能力を定量するために算出される。
It is conceivable that a wrapping reaction with the following free radicals (R) occurs in the presence of a spin trapping agent (SP) and an antioxidant (AO).
R + SP → R adduct rate constant: tk sp (1)
R + AO → Product rate constant: k AO (2)
If I 0 and I are the ESR peak heights in the presence of ST only and ST + AO, respectively, the amount of product in formula (2) is I 0- I. Therefore, I 0 / I-1 is calculated to quantify the free radical capture capacity.
 フリーラジカル補足能力を定量するために、ESR測定の数時間前に酸化剤種をフリーラジカル生成系と混合する。I及びIが、それぞれSTのみ及びST+酸化剤の存在下のESRピーク高である場合、酸化剤種に酸化されるフリーラジカル生成系の量はI-Iである。したがって、I/I-1がフリーラジカル補足能力を定量するために算出される。 To quantify the free radical capture capacity, the oxidant species is mixed with the free radical generating system hours prior to ESR measurements. When I 0 and I have ESR peak heights in the presence of ST alone and ST + oxidant, respectively, the amount of free radical generation system oxidized to the oxidant species is I 0- I. Therefore, I 0 / I-1 is calculated to quantify the free radical capture capacity.
 (エタノール水溶液中におけるウルトラファインバブルの特性)
 前記有機溶媒と水との混合溶媒の一形態であるエタノール水溶液(50%、20%、10%)における水素ウルトラファインバブル、二酸化炭素ウルトラファインバブル、水素及び二酸化炭素ウルトラファインバブル(水素吹込みの次に二酸化炭素吹込み:H2 ⇒ CO2、及び二酸化炭素吹込みの次に水素吹込み:CO2 ⇒ H2)の活性酸素(ROS)消去作用を検討し、結果を表2に示した。
(Characteristics of ultrafine bubbles in aqueous ethanol solution)
Hydrogen ultrafine bubble, carbon dioxide ultrafine bubble, hydrogen and carbon dioxide ultrafine bubble (hydrogen blown) in an ethanol aqueous solution (50%, 20%, 10%) which is a form of a mixed solvent of the organic solvent and water. Next, the active oxygen (ROS) scavenging action of carbon dioxide injection: H2 ⇒ CO2, and then hydrogen injection: CO2 ⇒ H2) was examined, and the results are shown in Table 2.
 水中と同様に、エタノール水溶液においても、二酸化炭素ウルトラファインバブルは強いヒドロキシラジカル消去作用を示し(表2の3、8、13)、水素ウルトラファインバブルのヒドロキシラジカル(HO・)消去作用は二酸化炭素ウルトラファインバブルよりも弱いものであった(表2の2、7、12)。一方、スーパーオキシドアニオン消去作用については、いずれのウルトラファインバブルもエタノール低濃度(20%、10%)において弱い消去作用を示した(表2の22、23、27、28)。 As in water, carbon dioxide ultrafine bubbles show a strong hydroxyl radical scavenging effect (Table 2, 3, 8 and 13), and hydrogen ultrafine bubbles have a hydroxyl radical (HO) scavenging effect of carbon dioxide. It was weaker than the ultrafine bubble (Table 2, 2, 7, 12). On the other hand, regarding the superoxide anion scavenging action, all ultrafine bubbles showed a weak scavenging action at low ethanol concentrations (20%, 10%) (Table 2, 22, 23, 27, 28).
 エタノール水溶液において、二酸化炭素及び水素ウルトラファインバブルのヒドロキシラジカル消去作用は、水中とは異なり、水素吹込みの次に二酸化炭素吹込み(H2 ⇒ CO2)の方が二酸化炭素吹込みの次に水素吹込み(CO2 ⇒ H2)より強かった(表2の4、9、14)。 In an ethanol aqueous solution, the hydroxyl radical scavenging action of carbon dioxide and hydrogen ultrafine bubbles is different from that in water, and carbon dioxide blowing (H2⇒CO2) is next to hydrogen blowing and then hydrogen blowing. It was stronger than the inclusion (CO2⇒H2) (4, 9, 14 in Table 2).
 二酸化炭素及び水素ウルトラファインバブルの水素吹込みの次に二酸化炭素吹込み(H2 ⇒ CO2)においては、水素吹込み後の二酸化炭素吹込みでヒドロキシラジカル消去作用が増強される(表2の4、9、14)。一方、二酸化炭素吹込み後の水素吹込み(CO2 ⇒ H2)においは二酸化炭素吹込みでヒドロキシラジカルが消去されるが、水素吹込みでヒドロキシラジカルが再生成し、ヒドロキシラジカル消去作用が低減した(表2の5、10、15)。 Carbon dioxide and hydrogen In the carbon dioxide injection (H2⇒CO2) next to the hydrogen injection of the ultrafine bubble, the hydroxyl radical scavenging action is enhanced by the carbon dioxide injection after the hydrogen injection (Table 2, 4, 9, 14). On the other hand, in the hydrogen injection (CO2⇒H2) after carbon dioxide injection, hydroxyl radicals are eliminated by carbon dioxide injection, but hydroxyl radicals are regenerated by hydrogen injection, and the hydroxyl radical scavenging action is reduced ( Table 2, 5, 10, 15).
 すなわち、二酸化炭素及び水素ウルトラファインバブル(CO2 ⇒ H2)では、ヒドロキシラジカルの再上昇によりヒドロキシラジカル活性の増強及び持続が認められた。 That is, in carbon dioxide and hydrogen ultrafine bubbles (CO2⇒H2), the enhancement and persistence of hydroxyl radical activity was observed due to the re-elevation of hydroxyl radicals.
 二酸化炭素及び水素ウルトラファインバブルのスーパーオキシドアニオン再上昇も同様に認められたが、その作用は低濃度エタノール水溶液(10%、20%)においてのみ、弱く認められた(表2の25、30)。 A re-elevation of the superoxide anion of carbon dioxide and hydrogen ultrafine bubbles was also observed, but the effect was weakly observed only in the low-concentration ethanol aqueous solution (10%, 20%) (Table 2, 25, 30). ..
 以上より、エタノール水溶液において、二酸化炭素及び水素ウルトラファインバブル(CO2 ⇒ H2)は、ヒドロキシラジカルの増強作用を示し(表2の実験5、10、15)、弱いながらスーパーオキシドアニオンの増強作用も認められた(表2の25、30)。この点から、ウルトラファインバブルを含有するエタノール水溶液は、本発明にかかる殺菌剤の1つとして挙げることができる。 From the above, in an aqueous ethanol solution, carbon dioxide and hydrogen ultrafine bubbles (CO2⇒H2) showed a hydroxyl radical enhancing effect ( Experiments 5, 10 and 15 in Table 2), and a weak superoxide anion enhancing effect was also observed. (25, 30 in Table 2). From this point, the aqueous ethanol solution containing ultrafine bubbles can be mentioned as one of the fungicides according to the present invention.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (他の有機溶媒系におけるウルトラファインバブルの特性)
 本発明にかかる有機溶媒系の殺菌剤は、当該殺菌剤が有機溶媒と水との混合溶媒であることが好ましい。さらに、当該有機溶媒はアルコール系有機溶媒であることが好ましい。エタノール水溶液は前記アルコール系有機溶媒と水との混合溶液の一形態である。前記アルコール系有機溶媒としては、溶液中のROSが増強される点から、エタノールの他に、エチレングリコール、イソプロパノールなどを挙げることができる。
(Characteristics of ultrafine bubbles in other organic solvent systems)
The organic solvent-based disinfectant according to the present invention preferably contains the disinfectant as a mixed solvent of an organic solvent and water. Further, the organic solvent is preferably an alcohol-based organic solvent. The ethanol aqueous solution is a form of a mixed solution of the alcohol-based organic solvent and water. Examples of the alcohol-based organic solvent include ethylene glycol and isopropanol in addition to ethanol because ROS in the solution is enhanced.
 本発明における有機溶媒系は、二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブルが存在可能であり、溶液中のROSが増強されるものであれば、特に限定されない。 The organic solvent system in the present invention is not particularly limited as long as carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles can exist and ROS in the solution is enhanced.
 前記アルコール系有機溶媒と水との混合溶液としても、同様に、当該溶液において、二酸化炭素ウルトラファインバブル及び水素ウルトラファインバブルが存在可能であり、溶液中のROSが増強されるものであれば、特に限定されない。前記アルコール系有機溶媒においては、ROSにより更にヒドロキシラジカル(HO・)が生成されることが考えられる。 Similarly, as the mixed solution of the alcohol-based organic solvent and water, carbon dioxide ultrafine bubbles and hydrogen ultrafine bubbles can be present in the solution, as long as the ROS in the solution is enhanced. There is no particular limitation. In the alcohol-based organic solvent, it is considered that hydroxyl radical (HO ·) is further generated by ROS.
 前記アルコール系有機溶媒としては、エチレングリコールが好ましい。この場合、活性酸素、特にヒドロキシラジカルの再生成の点から、エチレングリコールと水との混合溶媒におけるエチレングリコール含量は25%~55%であることが好ましい。 Ethylene glycol is preferable as the alcohol-based organic solvent. In this case, the ethylene glycol content in the mixed solvent of ethylene glycol and water is preferably 25% to 55% from the viewpoint of regeneration of active oxygen, particularly hydroxyl radical.
 本発明における前記有機溶媒系溶液としては、イソプロパノールとケロセンとの混合溶媒を挙げることができる。本溶液は水を含有しないが、ウルトラファインバブルが存在可能である。当該混合溶媒においては、活性酸素、特にヒドロキシラジカルの再生成の点から、イソプロパノール含量は25%~55%であることが好ましい。 Examples of the organic solvent-based solution in the present invention include a mixed solvent of isopropanol and kerosene. This solution does not contain water, but ultrafine bubbles can be present. In the mixed solvent, the isopropanol content is preferably 25% to 55% from the viewpoint of regeneration of active oxygen, particularly hydroxyl radical.
 前記有機溶媒系における活性酸素、特にヒドロキシラジカルの再生成は、下記の化2のメカニズムを想定することができる。 For the regeneration of active oxygen, especially hydroxyl radical, in the organic solvent system, the following mechanism of Chemical formula 2 can be assumed.
 エタノール、エチレングリコールのようなアルコール系有機溶媒において、過酸化水素H2O2が存在すると光によりヒドロキシラジカルが生成する。二酸化炭素の溶液への吹込みにより、化2の(2)、(3)、(4)の反応により過酸化水素H2O2を減少させる。更に、水素を溶液に吹き込むことにより、(1)の反応により光で生成したヒドロキシラジカルと残存する過酸化水素H2O2とが、(7)、(8)の反応によりスーパーオキシドアニオンを生成させる。ここで、エタノール、エチレングリコールのようなアルコール系有機溶媒とスーパーオキシドアニオンが共存すると、水素の吹込みにより(12)、(13)の反応により、更に多くの過酸化水素が生成する、とのメカニズムが考えられる。 Hydroxyl radicals are generated by light in the presence of hydrogen peroxide H2O2 in alcohol-based organic solvents such as ethanol and ethylene glycol. By blowing carbon dioxide into a solution, hydrogen peroxide H2O2 is reduced by the reactions of (2), (3) and (4) of Chemical formula 2. Further, by blowing hydrogen into the solution, the hydroxyl radical generated by light by the reaction (1) and the remaining hydrogen peroxide H2O2 generate a superoxide anion by the reactions (7) and (8). Here, when an alcohol-based organic solvent such as ethanol or ethylene glycol and a superoxide anion coexist, more hydrogen peroxide is generated by the reactions (12) and (13) by blowing hydrogen. A mechanism is conceivable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (ウルトラファインバブル含有殺菌剤)
 本発明にかかる殺菌剤は、水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する、上述の有機溶媒系溶液としての殺菌剤であることを特徴とする。前記水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系で再生成される活性酸素、特にヒドロキシラジカルの細菌、微生物などに対する抗菌作用、除菌作用、殺菌作用などが期待される。
(Fungicide containing ultrafine bubbles)
The disinfectant according to the present invention is characterized by being a disinfectant as the above-mentioned organic solvent-based solution containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles. Active oxygen regenerated in an organic solvent system containing the hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles, particularly hydroxyl radicals, is expected to have antibacterial, sterilizing, and bactericidal effects on bacteria and microorganisms.
 さらに、次亜塩素酸のような殺菌性化学物質などの含有が必要ではないため、本発明にかかる殺菌剤は、高い安全性、少ない環境への負荷の点から好ましい。 Furthermore, since it is not necessary to contain a bactericidal chemical substance such as hypochlorous acid, the bactericidal agent according to the present invention is preferable from the viewpoint of high safety and low environmental load.
 本発明にかかる殺菌剤は、水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系の殺菌剤であり、さらに、二酸化炭素吹込みの次に水素吹込み(CO2 ⇒ H2)で調製することに特徴がある。 The disinfectant according to the present invention is an organic solvent-based disinfectant containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles, and is further prepared by hydrogen injection (CO2⇒H2) after carbon dioxide injection. It is unique in that.
 (本発明にかかる殺菌剤の製造方法)
 本発明にかかる殺菌剤の製造方法は、水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含む、ウルトラファインバブル含有殺菌剤の製造方法であって、二酸化炭素ウルトラファインバブルを含むウルトラファインバブル含有有機溶媒に、さらに水素を吹き込んで、水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブル含有有機溶媒を製造する、方法である。
(Method for producing a fungicide according to the present invention)
The method for producing a bactericide according to the present invention is a method for producing an ultrafine bubble-containing bactericide containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles, and is an ultrafine bubble-containing organic solvent containing carbon dioxide ultrafine bubbles. This is a method of producing an organic solvent containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles by further injecting hydrogen into the water.
 本発明にかかる殺菌剤においては、前記水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系で再生成される活性酸素、特にヒドロキシラジカルの細菌、微生物などに対する抗菌作用、除菌作用、殺菌作用などが期待される。この殺菌作用は、以下の実施例において大腸菌に対する殺菌作用で確認された(図14)。 In the bactericidal agent according to the present invention, active oxygen regenerated in an organic solvent system containing the hydrogen ultrafine bubble and carbon dioxide ultrafine bubble, particularly hydroxyl radical, has an antibacterial action and a sterilizing action against bacteria, microorganisms and the like. Expected to have bactericidal action. This bactericidal action was confirmed by the bactericidal action against Escherichia coli in the following examples (Fig. 14).
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 (1)ウルトラファインバブル含有水溶液の調製
 実験例1:ウルトラファインバブル二酸化炭素の含有溶液の調製
 前記二酸化炭素ウルトラファインバブルの含有溶液(水溶液)を、図1のように、磁性撹拌機を用いて撹拌しながら、0.4L/分の速度で30分間、加圧タンクからのアルゴンガス中の二酸化炭素(CO,99.5%)を200mLの水を入れたビーカー中の多孔質セラミクスを通過(前記多孔質セラミクス通過法)させて調製した(以下、「含有溶液CO」ともいう)。含有溶液中のウルトラファインバブル二酸化炭素は、以下、「UFB/CO」ともいう
(1) Preparation of Ultrafine Bubble-Containing Aqueous Solution Experimental Example 1: Preparation of Ultrafine Bubble Carbon Dioxide Containing Solution The carbon dioxide ultrafine bubble-containing solution (aqueous solution) is prepared using a magnetic stirrer as shown in FIG. With stirring, carbon dioxide (CO 2 , 99.5%) in argon gas from a pressurized tank passes through porous ceramics in a beaker containing 200 mL of water at a rate of 0.4 L / min for 30 minutes. (The above-mentioned porous ceramics passing method) was prepared (hereinafter, also referred to as "containing solution CO 2"). The ultrafine bubble carbon dioxide in the contained solution is also hereinafter referred to as "UFB / CO 2 ".
 実験例2:水素ウルトラファインバブルの含有溶液の調製
 前記水素ウルトラファインバブルの含有溶液(水溶液)を、図2のように、ダブルボトル水素発生装置(Woo社製、Gas & Water Double Hydrogen Bottle(登録商標))を使用した電解(前記ファインバブル製造用電解法)により生成した(以下、「UFB/EH」ともいう)。水素ウルトラファインバブルの含有溶液(水溶液)は、200mLの水に30分間で調製した(以下、「含有溶液EH」ともいう)。電解によるウルトラファインバブル水素の濃度は0.15容量%で、比重瓶を用いて定量した。
Experimental Example 2: Preparation of hydrogen ultrafine bubble-containing solution The hydrogen ultrafine bubble-containing solution (aqueous solution) is subjected to a double bottle hydrogen generator (manufactured by Woo, Gas & Water Double Hydrogen Bottle) as shown in FIG. It was produced by electrolysis using (trademark)) (hereinafter, also referred to as “UFB / EH 2”). The hydrogen ultrafine bubble-containing solution (aqueous solution) was prepared in 200 mL of water for 30 minutes (hereinafter, also referred to as “containing solution EH 2”). The concentration of ultrafine bubble hydrogen by electrolysis was 0.15% by volume, and was quantified using a specific gravity bottle.
 実験例3:本発明にかかる二酸化炭素及び水素ウルトラファインバブルの調製
 前記ウルトラファインバブル二酸化炭素及び水素混合溶液は、前記ウルトラファインバブル水素の含有溶液(前項(2)で作成)に、前項(1)の方法のとおり、磁性撹拌機を用いて撹拌しながら、0.4L/分の速度で30分間、加圧タンクからのアルゴンガス中の二酸化炭素(CO,99.5%)を吹き込むことにより作成した(以下、「混合溶液CO/EH」ともいう)。又は、前記ウルトラファインバブル二酸化炭素及び水素混合溶液は、前記二酸化炭素ウルトラファインバブルの含有溶液(前項(1)で作成)に、前項(2)の方法のとおり、30分間の電気分解を行うことにより調製した(以下、「混合溶液EH/CO」ともいう)。
Experimental Example 3: Preparation of carbon dioxide and hydrogen ultrafine bubbles according to the present invention The ultrafine bubble carbon dioxide and hydrogen mixed solution is added to the solution containing ultrafine bubble hydrogen (prepared in the previous item (2)) in the previous item (1). ), While stirring using a magnetic stirrer, blow carbon dioxide (CO 2 , 99.5%) in argon gas from the pressurized tank for 30 minutes at a rate of 0.4 L / min. (Hereinafter, also referred to as "mixed solution CO 2 / EH 2"). Alternatively, the ultrafine bubble carbon dioxide and hydrogen mixed solution is electrolyzed into the carbon dioxide ultrafine bubble-containing solution (prepared in the previous item (1)) for 30 minutes according to the method in the previous item (2). (Hereinafter, also referred to as "mixed solution EH 2 / CO 2").
 (2)ウルトラファインバブルのIFA測定装置による測定
 前記ウルトラファインバブルは、水中で、図3のIFA測定装置を用いて、特開2016-109453公報「ファインバブルの粒度分布測定方法及び測定装置」に示されるIFA法により、その粒径サイズ分布を測定した(図4参照)。
(2) Measurement of Ultra Fine Bubble by IFA Measuring Device The ultra fine bubble is measured in water using the IFA measuring device of FIG. 3, according to JP-A-2016-109453, "Fine Bubble Particle Size Distribution Measuring Method and Measuring Device". The particle size distribution was measured by the indicated IFA method (see FIG. 4).
 (2)ウルトラファインバブル含有水溶液のROS消去作用
 実験例4:活性酸素(ROS)の生成
 ヒドロキシラジカル(OH・)は、UV放射器(UV LIGHTSOURCE製、SUPERCURE-203S)の5s紫外放射下、0.1w/t%過酸化水素(H)の分解により生成させた。0.2w/t%の過酸化水素90μL及び100mMのG-CYPMPO20μLの混合液をディスポーザブル硼珪酸ESRセルに移し、ヒドロキシラジカルとG-CYPMPOとの付加物のESRスペクトルを分析した。
(2) ROS scavenging action of ultrafine bubble-containing aqueous solution Experimental example 4: Generation of active oxygen (ROS) Hydroxyl radical (OH ·) is 0 under 5s ultraviolet radiation of a UV radiator (made by UV LIGHTSOURCE, SUPERCURE-203S). It was produced by decomposition of 1 w / t% hydrogen peroxide (H 2 O 2). A mixture of 90 μL of 0.2 w / t% hydrogen peroxide and 20 μL of 100 mM G-CYPMPO was transferred to a disposable borosilicate ESR cell, and the ESR spectrum of the adduct of hydroxyl radical and G-CYPMPO was analyzed.
 スーパーオキシドアニオンラジカル(・O )は、ヒポキサンチン/キサンチン(HX/XO)系において生成させた。10.970単位/mLのXO、20mMのHX20μL、及び100mMのG-CYPMPO20μLの混合液をディスポーザブル硼珪酸ESRセルに移し、ヒドロキシラジカルとG-CYPMPOとの付加物のESRスペクトルを分析した。 Superoxide anion radical (· O 2 -) it is, was generated in hypoxanthine / xanthine (HX / XO) system. A mixture of 10.970 units / mL XO, 20 mM HX 20 μL, and 100 mM G-CYPMPO 20 μL was transferred to a disposable borosilicate ESR cell and the ESR spectrum of the adduct of hydroxyl radicals and G-CYPMPO was analyzed.
 実験例5:活性酸素のESRによる測定
 新規のラジカル・トラッパーである2-(5,5-dimethyl-2-oxo-2-l5-[1,3,2] dioxaphosphinan-2-yl)-2-methyl-3,4-dihydro-2H-pyrro-line N-oxide {2-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphinan-2-yl)-3,4-dihydro-2-methyl-2H-pyrrole N-oxide, G-CYPMPO(登録商標)を活性酸素のフリーラジカルを補足するために用いた。25mgのG-CYPMPO(登録商標)(100mL)を2mLの超純水に溶解した。
Experimental Example 5: Measurement of active oxygen by ESR A novel radical trapper 2- (5,5-dimethyl-2-oxo-2-l5-[1,3,2] dioxaphosphinan-2-yl) -2- methyl-3,4-dihydro-2H-pyrro-line N-oxide {2-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphinan-2-yl) -3,4-dihydro-2 -Methyl-2H-pyrrole N-oxide, G-CYPMPO® was used to capture the free radicals of reactive oxygen species. 25 mg of G-CYPMPO® (100 mL) was dissolved in 2 mL of ultrapure water.
 ESR分光器(JEOL製JES-TE25X)を用いて、スピン・トラッピング付加物のESRスペクトルを記録した。代表的なESR測定条件は以下のとおりであった。
 マイクロ波電力:4mW、マイクロ波周波数:9.2GHz、磁場:328.0mT、フィールド掃引(field sweep with):±7.5mT、フィールド変調:0.16mT、掃引時間:1分、0.003663mT/ポイント、全4096ポイント、ESR測定は室温で実施した。
The ESR spectrum of the spin trapping adduct was recorded using an ESR spectrometer (JES-TE25X manufactured by JEOL). Typical ESR measurement conditions were as follows.
Microwave power: 4 mW, microwave frequency: 9.2 GHz, magnetic field: 328.0 mT, field sweep with: ± 7.5 mT, field modulation: 0.16 mT, sweep time: 1 minute, 0.003663 mT / Points, all 4096 points, ESR measurements were performed at room temperature.
 代表的方法であるKohri‘s ESRスピントラップ法をデータ分析に用いた。前記フリーラジカル付加物の選択されたESRラインのピークtoピーク強度を抗酸化剤の存在下及び非存在下で追跡した。 The Kohri's ESR spin trap method, which is a typical method, was used for data analysis. The peak-to-peak intensity of the selected ESR line of the free radical adduct was followed in the presence and absence of antioxidants.
 スピントラップ剤(SP)及び抗酸化剤(AO)の存在下、以下のフリーラジカル(R)とラッピング反応が起こる。
 R+SP→R付加物の速度定数:tksp(1)
 R+AO→生成物の速度定数:kAO(2)
 I及びIが、それぞれSTのみ及びST+AOの存在下のESRピーク高である場合、式(2)における生成物の量はI-Iである。したがって、I/I-1をフリーラジカル補足能力を定量するために算出した。
In the presence of the spin trapping agent (SP) and the antioxidant (AO), a wrapping reaction with the following free radicals (R) occurs.
R + SP → R adduct rate constant: tk sp (1)
R + AO → Product rate constant: k AO (2)
If I 0 and I are the ESR peak heights in the presence of ST only and ST + AO, respectively, the amount of product in formula (2) is I 0- I. Therefore, I 0 / I-1 was calculated to quantify the free radical capture capacity.
 フリーラジカル捕捉能力を定量するために、ESR測定の数時間前に酸化剤種がフリーラジカル生成系と混合される。I及びIが、それぞれSTのみ及びST+酸化剤の存在下のESRピーク高である場合、酸化剤種に酸化されるフリーラジカル生成系の量はI-Iである。したがって、I/I-1をフリーラジカル補足能力を定量するために算出した。 To quantify the free radical capture capacity, the oxidant species is mixed with the free radical generating system hours prior to ESR measurement. When I 0 and I have ESR peak heights in the presence of ST alone and ST + oxidant, respectively, the amount of free radical generation system oxidized to the oxidant species is I 0- I. Therefore, I 0 / I-1 was calculated to quantify the free radical capture capacity.
 実施例等1~5:本発明にかかるウルトラファインバブル含有エチレングリコール(EG)溶液(50%)のヒドロキシラジカル(OH・)の強度
 対照例1:ウルトラファインバブル非含有、参考例2:水素ウルトラファインバブル含有、参考例3:二酸化炭素ウルトラファインバブル含有、参考例4:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)、及び実施例5:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)のそれぞれの50%エチレングリコール溶液のヒドロキシラジカル(OH・)強度をESR測定により検討した。ウルトラファインバブル含有溶液のG-CYPMPO(登録商標)付加物のESRスペクトルより得られたI/I-1について図10及び11に示した。
Examples 1 to 5: Intensity of hydroxyl radical (OH ·) of the ultrafine bubble-containing ethylene glycol (EG) solution (50%) according to the present invention Control Example 1: Ultrafine bubble-free, Reference Example 2: Hydrogen Ultra Fine bubble containing, Reference Example 3: Carbon dioxide ultrafine bubble containing, Reference Example 4: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing hydrogen to carbon dioxide in order), and Example 5: Carbon dioxide and hydrogen ultrafine The hydroxyl radical (OH ·) strength of each 50% ethylene glycol solution containing bubbles (prepared by blowing in the order of carbon dioxide to hydrogen) was examined by ESR measurement. The I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 10 and 11.
 図10及び11に基づき、表3にはヒドロキシラジカルの強度を、強い◎、中程度○、弱い△、及びほとんどないか認められない×で示した。実施例5:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)では、参考例4:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)に比べて、より強度のヒドロキシラジカル(実施例5:○、参考例4:×)が認められた。 Based on FIGS. 10 and 11, the intensities of hydroxyl radicals are shown in Table 3 with strong ⊚, moderate ◯, weak Δ, and x with little or no recognition. Example 5: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of carbon dioxide to hydrogen) is compared with Reference Example 4: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of hydrogen to carbon dioxide). Therefore, stronger hydroxyl radicals (Example 5: ○, Reference Example 4: ×) were observed.
 実施例等6~10:本発明にかかるウルトラファインバブル含有エチレングリコール水溶液(30%)のヒドロキシラジカル(OH・)の強度
 対照例6:ウルトラファインバブル非含有、参考例7:水素ウルトラファインバブル含有、参考例8:二酸化炭素ウルトラファインバブル含有、参考例9:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)、及び実施例10:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)のそれぞれの30%エチレングリコール水溶液のヒドロキシラジカル(OH・)強度をESR測定により検討した。ウルトラファインバブル含有溶液のG-CYPMPO(登録商標)付加物のESRスペクトルより得られたI/I-1について図10及び11に示した。
Examples 6 to 10: Strength of hydroxyl radical (OH ·) of ultrafine bubble-containing ethylene glycol aqueous solution (30%) according to the present invention Control example 6: Ultrafine bubble free, Reference example 7: Hydrogen ultrafine bubble content , Reference Example 8: Carbon dioxide ultrafine bubble containing, Reference Example 9: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing hydrogen to carbon dioxide in order), and Example 10: Carbon dioxide and hydrogen ultrafine bubble containing ( The hydroxyl radical (OH ·) strength of each 30% ethylene glycol aqueous solution (prepared by blowing in the order of carbon dioxide to hydrogen) was examined by ESR measurement. The I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 10 and 11.
 図10及び11に基づき、表3にはヒドロキシラジカルの強度を、強い◎、中程度○、弱い△、及びほとんどないか認められない×で示した。実施例10:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)では、参考例9:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)に比べて、より強度のヒドロキシラジカル(実施例10:◎、参考例9:×)が認められた。 Based on FIGS. 10 and 11, the intensities of hydroxyl radicals are shown in Table 3 with strong ⊚, moderate ◯, weak Δ, and x with little or no recognition. Example 10: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of carbon dioxide to hydrogen) is compared with Reference Example 9: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of hydrogen to carbon dioxide). Therefore, stronger hydroxyl radicals (Example 10: ⊚, Reference Example 9: ×) were observed.
 実施例等11~15:本発明にかかるウルトラファインバブル含有エチレングリコール水溶液(50%)のスーパーオキシドアニオン(O2・-)の強度
 対照例11:ウルトラファインバブル非含有、参考例12:水素ウルトラファインバブル含有、参考例13:二酸化炭素ウルトラファインバブル含有、参考例14:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)、及び実施例15:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)のそれぞれの50%エチレングリコール水溶液のスーパーオキシドアニオン(O2・-)消去作用をESR測定により検討した。ウルトラファインバブル含有溶液のG-CYPMPO(登録商標)付加物のESRスペクトルより得られたI/I-1について図12及び13に示した。
Examples 11 to 15: Strength of super oxide anion (O2 ·-) of ultrafine bubble-containing ethylene glycol aqueous solution (50%) according to the present invention Control example 11: Ultrafine bubble-free, Reference example 12: Hydrogen Ultrafine Bubble containing, Reference Example 13: Carbon dioxide ultrafine bubble containing, Reference Example 14: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of hydrogen to hydrogen), and Example 15: Carbon dioxide and hydrogen ultrafine bubble The superoxide anion (O2-) scavenging action of each 50% ethylene glycol aqueous solution of the content (prepared by blowing in the order of carbon dioxide to hydrogen) was examined by ESR measurement. The I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 12 and 13.
 図12及び13に基づき、表3にはスーパーオキシドアニオンの強度を、強い◎、中程度○、弱い△、及びほとんどないか認められない×で示した。実施例15:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)では、参考例14:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)と比べると、スーパーオキシドアニオン(実施例15:○、参考例14:◎)は若干後者が強かった。 Based on FIGS. 12 and 13, the intensities of superoxide anions are shown in Table 3 with strong ⊚, moderate ◯, weak Δ, and little or no x. Example 15: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of carbon dioxide to hydrogen) is compared with Reference Example 14: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of hydrogen to carbon dioxide). The latter was slightly stronger in the superoxide anion (Example 15: ○, Reference example 14: ⊚).
 実施例等16~20:本発明にかかるウルトラファインバブル含有エチレングリコール水溶液(30%)のスーパーオキシドアニオン(O2・-)の強度
 対照例16:ウルトラファインバブル非含有、参考例17:水素ウルトラファインバブル含有、参考例18:二酸化炭素ウルトラファインバブル含有、参考例19:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)、及び実施例20:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)のそれぞれの30%エチレングリコール水溶液のスーパーオキシドアニオン(O2・-)の強度をESR測定により検討した。ウルトラファインバブル含有溶液のG-CYPMPO(登録商標)付加物のESRスペクトルより得られたI/I-1について図12及び13に示した。
Examples 16 to 20: Strength of super oxide anion (O2 ·-) of ultrafine bubble-containing ethylene glycol aqueous solution (30%) according to the present invention Control example 16: Ultrafine bubble-free, Reference example 17: Hydrogen Ultrafine Bubble containing, Reference Example 18: Carbon dioxide ultrafine bubble containing, Reference Example 19: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in the order of hydrogen to carbon dioxide), and Example 20: Carbon dioxide and hydrogen ultrafine bubble The strength of the superoxide anion (O2 ·-) of each 30% ethylene glycol aqueous solution containing (prepared by blowing in the order of carbon dioxide to hydrogen) was examined by ESR measurement. The I 0 / I-1 obtained from the ESR spectrum of the G-CYPMPO® adduct of the ultrafine bubble-containing solution is shown in FIGS. 12 and 13.
 図12及び13に基づき、表3にはスーパーオキシドアニオンの強度を、強い◎、中程度○、弱い△、及び消去作用がほとんどないか認められない×で示した。参考例20:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)と、参考例19:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)と比べると、スーパーオキシドアニオン(実施例20:○、参考例19:◎)は若干後者が強かった。 Based on FIGS. 12 and 13, the intensities of superoxide anions are shown in Table 3 with strong ⊚, moderate ◯, weak Δ, and x with little or no scavenging effect. Reference Example 20: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in order from carbon dioxide to hydrogen) and Reference Example 19: Carbon dioxide and hydrogen ultrafine bubble containing (prepared by blowing in order from hydrogen to carbon dioxide) The latter was slightly stronger in the superoxide anion (Example 20: ○, Reference example 19: ⊚).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図10~13及び表3に示されるように、本発明にかかるウルトラファインバブル含有エチレングリコール水溶液のヒドロキシラジカル強度については、二酸化炭素及び水素ウルトラファインバブル(二酸化炭素から水素の順に吹込み調製)を用いることが好ましいことがわかった。 As shown in FIGS. 10 to 13 and Table 3, regarding the hydroxyl radical intensity of the ultrafine bubble-containing ethylene glycol aqueous solution according to the present invention, carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing carbon dioxide to hydrogen in this order) are used. It turned out to be preferable to use.
 実施例等1~5:本発明にかかるウルトラファインバブル含有エチレングリコール(EG)溶液(50%)の殺菌効果
 対照例1:添加物なし、対照例2:ウルトラファインバブル非含有、参考例4:二酸化炭素及び水素ウルトラファインバブル含有(水素から二酸化炭素の順に吹込み調製)、及び実施例5:二酸化炭素及び水素ウルトラファインバブル含有(二酸化炭素から水素の順に吹込み調製)のそれぞれの50%エチレングリコール溶液の殺菌効果を、大腸菌を用いて48時間インキュベーション後の生存を観察して評価した(図14)。
Examples 1 to 5: Bactericidal effect of the ultrafine bubble-containing ethylene glycol (EG) solution (50%) according to the present invention Control Example 1: No additive, Control Example 2: Ultrafine bubble-free, Reference Example 4: 50% ethylene each containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of carbon dioxide to carbon dioxide), and Example 5: containing carbon dioxide and hydrogen ultrafine bubbles (prepared by blowing in the order of carbon dioxide to hydrogen) The bactericidal effect of the glycol solution was evaluated by observing survival after 48 hours of incubation using Escherichia coli (Fig. 14).
 実施例5(図14ウ)では、対照例2(図14ア)と同様に、対照例1(図14エ)と比較して大腸菌の生存が大きく抑制された。また、参考例4(図14イ)と比較しても大腸菌の生存がより抑制された(表3:実施例5)。以上より、本発明にかかるウルトラファインバブル含有殺菌剤の再生成されたヒドロキシラジカルによる殺菌効果が確認された。 In Example 5 (FIG. 14C), the survival of Escherichia coli was significantly suppressed as compared with Control Example 1 (FIG. 14D), as in Control Example 2 (FIG. 14A). In addition, the survival of Escherichia coli was further suppressed as compared with Reference Example 4 (FIG. 14a) (Table 3: Example 5). From the above, the bactericidal effect of the regenerated hydroxyl radical of the ultrafine bubble-containing bactericidal agent according to the present invention was confirmed.
 以上、実施形態及び実施例を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments and examples, it goes without saying that the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. Further, it is clear from the description of the scope of claims that the form to which such a modification or improvement is added may be included in the technical scope of the present invention.
 310  電気天秤
 320  プラチナ
 330  試料溶液
 340  粒子挙動部
 341  半球
 342  平板
 343  ピエゾステージ

 
310 Electric balance 320 Platinum 330 Sample solution 340 Particle behavior part 341 Hemisphere 342 Flat plate 343 Piezo stage

Claims (11)

  1.  水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系溶液の殺菌剤。 A disinfectant for organic solvent-based solutions containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles.
  2.  前記有機溶媒系溶液が有機溶媒と水との混合溶液である、請求項1に記載の殺菌剤。 The bactericidal agent according to claim 1, wherein the organic solvent-based solution is a mixed solution of an organic solvent and water.
  3.  前記有機溶媒がアルコール系有機溶媒である、請求項2に記載の殺菌剤。 The bactericidal agent according to claim 2, wherein the organic solvent is an alcohol-based organic solvent.
  4.  前記アルコール系有機溶媒が、エタノール、エチレングリコール、及びイソプロパノールからなる群から選択される少なくともいずれか1つである、請求項3に記載の殺菌剤。 The bactericidal agent according to claim 3, wherein the alcohol-based organic solvent is at least one selected from the group consisting of ethanol, ethylene glycol, and isopropanol.
  5.  前記アルコール系有機溶媒がエチレングリコールである、請求項3又は4に記載の殺菌剤。 The bactericidal agent according to claim 3 or 4, wherein the alcohol-based organic solvent is ethylene glycol.
  6.  前記エチレングリコールの含量が25%~55%である、請求項5に記載の殺菌剤。 The bactericidal agent according to claim 5, wherein the ethylene glycol content is 25% to 55%.
  7.  前記有機溶媒系溶液が1又は複数の有機溶媒からなる、請求項1に記載の殺菌剤。 The bactericidal agent according to claim 1, wherein the organic solvent-based solution comprises one or a plurality of organic solvents.
  8.  前記複数の有機溶媒がイソプロパノールとケロセンである、請求項7に記載の殺菌剤。 The fungicide according to claim 7, wherein the plurality of organic solvents are isopropanol and kerosene.
  9.  前記イソプロパノールの含量が25%~35%である、請求項8に記載の殺菌剤。 The bactericidal agent according to claim 8, wherein the content of the isopropanol is 25% to 35%.
  10.  二酸化炭素ウルトラファインバブルを含むウルトラファインバブル含有水溶液に、さらに水素を吹き込んで水素ウルトラファインバブルを生成して調製される、請求項1~9のいずれかに1つに記載の殺菌剤。 The bactericidal agent according to any one of claims 1 to 9, which is prepared by further blowing hydrogen into an aqueous solution containing carbon dioxide ultrafine bubbles to generate hydrogen ultrafine bubbles.
  11.  水素ウルトラファインバブル及び二酸化炭素ウルトラファインバブルを含有する有機溶媒系溶液の殺菌剤の製造方法であって、二酸化炭素ウルトラファインバブルを含むウルトラファインバブル含有溶液に、さらに水素を吹き込んで、水素ウルトラファインバブルを生成して前記殺菌剤を製造する、方法。
     

     
    A method for producing a disinfectant for an organic solvent-based solution containing hydrogen ultrafine bubbles and carbon dioxide ultrafine bubbles. Hydrogen ultrafine is further blown into an ultrafine bubble-containing solution containing carbon dioxide ultrafine bubbles. A method of producing bubbles to produce the disinfectant.


PCT/JP2020/038631 2019-10-18 2020-10-13 Disinfectant including ultrafine-bubble-containing solution WO2021075425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021552395A JP7450849B2 (en) 2019-10-18 2020-10-13 Disinfectants containing solutions containing ultra-fine bubbles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/041060 WO2021075043A1 (en) 2019-10-18 2019-10-18 Ultrafine bubble-containing solution, beverage containing this, and drug
JPPCT/JP2019/041060 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075425A1 true WO2021075425A1 (en) 2021-04-22

Family

ID=75537454

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2019/041060 WO2021075043A1 (en) 2019-10-18 2019-10-18 Ultrafine bubble-containing solution, beverage containing this, and drug
PCT/JP2020/038034 WO2021075332A1 (en) 2019-10-18 2020-10-07 Ultrafine bubble-containing aqueous solution and beverage containing said aqueous solution
PCT/JP2020/038631 WO2021075425A1 (en) 2019-10-18 2020-10-13 Disinfectant including ultrafine-bubble-containing solution

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/041060 WO2021075043A1 (en) 2019-10-18 2019-10-18 Ultrafine bubble-containing solution, beverage containing this, and drug
PCT/JP2020/038034 WO2021075332A1 (en) 2019-10-18 2020-10-07 Ultrafine bubble-containing aqueous solution and beverage containing said aqueous solution

Country Status (2)

Country Link
JP (3) JPWO2021075043A1 (en)
WO (3) WO2021075043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169016B1 (en) 2021-07-05 2022-11-10 アイオーン株式会社 Active oxygen water and method for producing active oxygen water
JP7490901B1 (en) 2024-01-05 2024-05-27 竹本容器株式会社 Carbon dioxide nanobubble water or carbon dioxide nanobubble mist, and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096216A (en) * 2010-11-04 2012-05-24 Yasutaka Sakamoto Bubble micronizing nozzle, microbubble generator using the same, method for producing microbubble-containing water, article washing apparatus, article washing method, method for culturing marine product, hydroponic culture method, and shower apparatus
JP2018090514A (en) * 2016-12-01 2018-06-14 日新技研株式会社 Fine bubble mixed liquid having bactericidal effect
JP2018090547A (en) * 2016-12-06 2018-06-14 株式会社ピーズガード Bactericidal agent and method of manufacturing the same
JP2019042732A (en) * 2017-08-31 2019-03-22 キヤノン株式会社 Generation method of ultrafine bubble, production device of ultrafine bubble containing liquid, production method and ultrafine bubble containing liquid
JP2019048793A (en) * 2017-09-12 2019-03-28 地方独立行政法人山口県立病院機構 Hydrogen carbonated water

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156320A (en) * 2006-12-26 2008-07-10 Hydrox Kk Antioxidative functional water
JP6342685B2 (en) * 2014-03-27 2018-06-13 岩谷産業株式会社 Method and apparatus for producing hydrogen-containing water
WO2015182606A1 (en) * 2014-05-27 2015-12-03 株式会社光未来 Gas-dissolving device and gas-dissolving method
JP2016104474A (en) * 2014-08-22 2016-06-09 有限会社情報科学研究所 Ultrafine bubble manufacturing method and ultrafine bubble water manufacturing device by resonance forming and vacuum cavitation
JP5845504B1 (en) * 2015-01-21 2016-01-20 有限会社情報科学研究所 Low-temperature aldehyde removal from alcoholic beverages and antioxidant functional liquor and method for producing the same.
JP3198704U (en) * 2015-05-01 2015-07-16 株式会社日省エンジニアリング Portable electrolyzer
WO2016178436A2 (en) * 2015-05-07 2016-11-10 株式会社ウォーターデザイン Liquid processing nozzle, liquid processing method using same, gas dissolution method, and gas dissolution device
JP2017131822A (en) * 2016-01-26 2017-08-03 株式会社光未来 Hydrogen water generator and hydrogen water generation method
JP2018008230A (en) * 2016-07-14 2018-01-18 株式会社Tssアクア Hydrogen-containing water and method of producing the same
JP6837351B2 (en) * 2017-02-28 2021-03-03 シャープ株式会社 Mixing aqueous solution manufacturing equipment and manufacturing method
JP6482592B2 (en) * 2017-04-27 2019-03-13 学 大林 餅 and its manufacturing method
JP2018202363A (en) * 2017-06-08 2018-12-27 株式会社ピーズガード Sterilization water generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096216A (en) * 2010-11-04 2012-05-24 Yasutaka Sakamoto Bubble micronizing nozzle, microbubble generator using the same, method for producing microbubble-containing water, article washing apparatus, article washing method, method for culturing marine product, hydroponic culture method, and shower apparatus
JP2018090514A (en) * 2016-12-01 2018-06-14 日新技研株式会社 Fine bubble mixed liquid having bactericidal effect
JP2018090547A (en) * 2016-12-06 2018-06-14 株式会社ピーズガード Bactericidal agent and method of manufacturing the same
JP2019042732A (en) * 2017-08-31 2019-03-22 キヤノン株式会社 Generation method of ultrafine bubble, production device of ultrafine bubble containing liquid, production method and ultrafine bubble containing liquid
JP2019048793A (en) * 2017-09-12 2019-03-28 地方独立行政法人山口県立病院機構 Hydrogen carbonated water

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Research and development business of fine bubble fundamental technology, outline of posterior evaluation", INTERNATIONAL STANDARDS DIVISION, INDUSTRIAL TECHNOLOGY AND ENVIRONMENT BUREAU, SECTION, 26 January 2016 (2016-01-26) *
KOBAYASHII FUMIYUKI, IKEURA2 HIREMI, OHSATO2 SHUJCHI, TAMAKI2 MASAHIKO: "Microbicidal Effect of Microbubbles with Ozone, Oxygen, and Carbon Dioxide against Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum", JOURNAL OF THE JAPANESE SOCIETY OF AGRICULTURAL TECHNOLOGY MANAGEMENT, vol. 18, no. 3, 2011, pages 123 - 128, XP055818985 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169016B1 (en) 2021-07-05 2022-11-10 アイオーン株式会社 Active oxygen water and method for producing active oxygen water
JP2023008228A (en) * 2021-07-05 2023-01-19 アイオーン株式会社 Active oxygen water and manufacturing method of active oxygen water
JP7490901B1 (en) 2024-01-05 2024-05-27 竹本容器株式会社 Carbon dioxide nanobubble water or carbon dioxide nanobubble mist, and its manufacturing method

Also Published As

Publication number Publication date
JPWO2021075425A1 (en) 2021-04-22
WO2021075043A1 (en) 2021-04-22
JP7450849B2 (en) 2024-03-18
WO2021075332A1 (en) 2021-04-22
JPWO2021075332A1 (en) 2021-04-22
JPWO2021075043A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US11007496B2 (en) Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
Seridou et al. Disinfection applications of ozone micro-and nanobubbles
EP0019211B1 (en) Process for purifying aqueous liquids
JP4825434B2 (en) How to kill aquatic life
WO2021075425A1 (en) Disinfectant including ultrafine-bubble-containing solution
Karunakaran et al. Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection
Thiyagarajan et al. Reusable sunlight activated photocatalyst Ag3PO4 and its significant antibacterial activity
US20160198705A1 (en) Application of bisphenol salt in preparing disinfectant used for sterilization or formaldehyde removal
Hwang et al. White light-activated antimicrobial surfaces: effect of nanoparticles type on activity
Zhang et al. Dose‐dependent cytotoxicity induced by pristine graphene oxide nanosheets for potential bone tissue regeneration
Li et al. UV/ozone induced physicochemical transformations of polystyrene nanoparticles and their aggregation tendency and kinetics with natural organic matter in aqueous systems
JP2023171397A (en) Method for producing chlorous acid water using material obtained by salt electrolysis as raw material
Zhang et al. UV-induced toxicity of cerium oxide nanoparticles (CeO 2 NPs) and the protective properties of natural organic matter (NOM) from the Rio Negro Amazon River
CA2956891C (en) Water containing permanganate ions and method for producing the same
Deng et al. Facile synthesis of long-term stable silver nanoparticles by kaempferol and their enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus
PL229207B1 (en) Liquid composition for contact lens and medical materials care
JP2015093864A (en) Radical functional solution, method for manufacturing the same and method for using radical functional solution
EP1272431B1 (en) Use of ozonated solutions of tetrasilver tetroxide
Popova et al. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression
JP5030089B2 (en) Cleaning method by sterilization or particle removal, and apparatus used therefor
Dong et al. Essential oil-incorporated carbon nanotubes filters for bacterial removal and inactivation
CN112915779A (en) Photocatalyst formaldehyde removal freshener and preparation method thereof
KR20100097512A (en) Method for preparing fullerene-silica nanocomplex using microemulsion and composition for uv blcoking containing fullerene-silica nanocomplex thereof
JP5357855B2 (en) Disinfectant, oral disinfectant, disinfecting method, disinfecting apparatus and disinfectant evaluation method
Tachibana et al. Enhanced mechanical damage to in vitro cancer cells by high-intensity-focused ultrasound in the presence of microbubbles and titanium dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876021

Country of ref document: EP

Kind code of ref document: A1