WO2021074970A1 - Nucleic acid sample processing device and nucleic acid sample processing method - Google Patents

Nucleic acid sample processing device and nucleic acid sample processing method Download PDF

Info

Publication number
WO2021074970A1
WO2021074970A1 PCT/JP2019/040505 JP2019040505W WO2021074970A1 WO 2021074970 A1 WO2021074970 A1 WO 2021074970A1 JP 2019040505 W JP2019040505 W JP 2019040505W WO 2021074970 A1 WO2021074970 A1 WO 2021074970A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
nucleic acid
light source
reaction vessel
guide path
Prior art date
Application number
PCT/JP2019/040505
Other languages
French (fr)
Japanese (ja)
Inventor
瑶子 牧野
修孝 隈崎
貴之 野田
俊樹 山形
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/040505 priority Critical patent/WO2021074970A1/en
Publication of WO2021074970A1 publication Critical patent/WO2021074970A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present invention relates to a nucleic acid sample processing apparatus and a nucleic acid sample processing method.
  • Nucleic acid not subject to analysis refers to nucleic acid that is different from the nucleic acid in the reaction vessel that is originally the subject of analysis.
  • the nucleic acid amplification product after detection has a high amplification ability, scattering of the nucleic acid amplification product not to be analyzed after detection to the outside of the reaction vessel is the biggest factor causing false positives.
  • the nucleic acid By irradiating the nucleic acid with ultraviolet light having a wavelength of around 260 nm, which is the peak of the absorption spectrum of DNA, the nucleic acid is absorbed by the double bond of the thymine base and the cytosine base existing in the nucleic acid.
  • the double bond can open to form a dimer between the pyrimidine bases.
  • the method for preventing the occurrence of false positives is that pyrimidine dimerization deforms the original base pair structure of pyrimidine, making it impossible for DNA polymerase to perform a DNA synthesis reaction and losing the ability to amplify nucleic acids. That was the way it was.
  • Such a method of losing the amplification ability of nucleic acid by ultraviolet light irradiation is widely used for sterilizing microorganisms.
  • the reaction vessel containing the nucleic acid sample to be analyzed is exposed to ultraviolet light.
  • a nucleic acid reaction vessel installation part is prepared so as not to irradiate the whole, and the whole is irradiated with ultraviolet light.
  • an ultraviolet light source is installed in a movable part installed in the apparatus, and the reaction vessel containing the aerosol and the nucleic acid amplification substance in the apparatus is irradiated with ultraviolet light to be analyzed. It inactivates the outer nucleic acid.
  • the nucleic acid not to be analyzed scattered in the device and the nucleic acid amplification product in the reaction vessel are simultaneously irradiated with ultraviolet light, which is used to prevent contamination due to contamination of nucleic acid not to be analyzed.
  • the sample to be analyzed is housed in a reaction vessel, and the reaction vessel is installed in a nucleic acid reaction vessel installation unit mechanism having a light-shielding property against ultraviolet light.
  • Patent Document 2 is a biological sample analyzer, which purifies a target nucleic acid, amplifies the produced target nucleic acid, and inspects the nucleic acid amplification product by electrophoresis. Then, after the test is completed, the nucleic acid amplification product is inactivated by using an ultraviolet light source installed in the apparatus.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to effectively irradiate a nucleic acid amplification product contained in a reaction vessel with ultraviolet light, and to provide a component outside the reaction vessel. It is to realize a nucleic acid sample processing apparatus and a nucleic acid sample processing method capable of suppressing the irradiation of ultraviolet rays.
  • the present invention is configured as follows in order to achieve the above object.
  • the measurement light light source, the light receiving element that receives the light generated by irradiating the solution containing the nucleic acid contained in the reaction vessel with the light from the measurement light source, and the light received by the light receiving element are analyzed.
  • a nucleic acid sample processing apparatus including a data analysis unit and an ultraviolet light source that generates ultraviolet light, an ultraviolet light guide path that guides ultraviolet light generated from the ultraviolet light source into the reaction vessel and an ultraviolet light guide path in the reaction vessel. It includes at least the measurement light source and a filter for protecting the light receiving element from the reflected ultraviolet light.
  • the solution containing the nucleic acid contained in the reaction vessel is irradiated with light from the measurement light source, and the light generated by irradiating the solution with the light from the measurement light source is received by the light receiving element.
  • the ultraviolet light generated from the ultraviolet light source is guided into the reaction vessel, and the nucleic acid in the reaction vessel is inactivated, ultraviolet rays are emitted.
  • the ultraviolet light generated from the light source is guided into the reaction vessel by an ultraviolet light guide path, the nucleic acid in the reaction vessel is inactivated, and at least the measurement is performed from the reflected light of the ultraviolet light guided into the reaction vessel.
  • the light source and the light receiving element are protected by a filter.
  • a nucleic acid sample processing apparatus and a nucleic acid sample capable of effectively irradiating a nucleic acid amplification product contained in a reaction vessel with ultraviolet light and suppressing irradiation of a component outside the reaction vessel with ultraviolet rays.
  • the processing method can be realized.
  • FIG. 1 It is a schematic perspective view of the nucleic acid sample processing apparatus to which this invention is applied. It is a block diagram of the nucleic acid sample processing apparatus which concerns on Example 1 of this invention. It is a schematic internal block diagram of a nucleic acid sample processing apparatus 1000. It is a flowchart of the nucleic acid sample processing apparatus by this invention. It is a flowchart of the nucleic acid sample processing apparatus by this invention. It is a figure explaining the light receiving / receiving holder. It is a figure which shows the modification of the example shown in FIG. 5A. It is sectional drawing of the ferrule in Example 1.
  • FIG. FIG. 1 It is a schematic perspective view of the nucleic acid sample processing apparatus to which this invention is applied. It is a block diagram of the nucleic acid sample processing apparatus which concerns on Example 1 of this invention. It is a schematic internal block diagram of a nucleic acid sample processing apparatus 1000. It is a flowchart of the nucleic acid sample processing apparatus by this invention. It is
  • FIG. 5 is a schematic vertical sectional view of a detection head including a light receiving element, a light source, an ultraviolet light source, and a ferrule arranged on a substrate of the light measurement mechanism according to the first embodiment. It is sectional drawing of the ferrule in Example 2.
  • FIG. FIG. 5 is a schematic vertical cross-sectional view of a detection head including a light receiving element, a light source, an ultraviolet light source, and a ferrule arranged on a substrate of the light measurement mechanism according to the second embodiment.
  • FIG. 5 is a schematic vertical sectional view of a detection head including a component and a ferrule arranged on a substrate in the third embodiment. It is a cross-sectional view of a ferrule in Example 4.
  • FIG. FIG. 5 is a schematic vertical sectional view of a detection head including a component and a ferrule arranged on a substrate in the fourth embodiment.
  • the nucleic acid sample processing device is an automatic analyzer for biological samples. More specifically, a nucleic acid extract is purified from a biological sample, and the nucleic acid extract is transferred and introduced into a reaction vessel together with a reaction solution by a dispenser or the like. To do. Then, optical measurement is performed for amplification such as PCR, reverse transcription PCR (RT-PCR), and real-time quantitative PCR in which the above process is quantitatively performed, in which the reaction vessel is sealed and then reacted using a temperature control device for reaction.
  • a device that performs optical measurement using a device is a nucleic acid sample processing device.
  • an ultraviolet irradiator is provided in the optical measuring device in order to prevent false positives due to the nucleic acid amplification product. Then, after the light measurement is completed, all the processes of irradiating the nucleic acid amplification product in the reaction vessel without changing the positions of the light detection unit and the reaction vessel are performed in one device.
  • nucleic acids as test targets
  • present invention is not limited to this, and treatment of biological samples for fluorescence observation may also be targeted.
  • FIG. 1 is a schematic perspective view of a nucleic acid sample processing apparatus to which the present invention is applied.
  • the nucleic acid sample processing apparatus 1000 includes a main body 1003 and a PC 1002 having an operation unit 1001 (shown in FIG. 2).
  • FIG. 2 is a block diagram of the nucleic acid sample processing apparatus according to the first embodiment of the present invention.
  • the nucleic acid sample processing apparatus 1000 is provided with a stage 1100.
  • the stage 1100 includes a reaction container rack 1004 that spans the reaction vessel 7 (7 1 to 7 n), a lid rack 1022 that spans the lid 8 (8 1 to 8 n), the reaction reagent container 1005 (1005 1 - It is provided with a reaction reagent rack 1006 on which 1005 n) is erected.
  • the extraction reagent rack 1008 on which the extraction reagent cartridge 1007 (1007 1 to 1007 n ) is erected, the dispensing chip rack 1010 on which the dispensing chips 1009 (1009 1 to 1009 n ) are erected, and the biological sample are used. It has a biological sample erection rack 1012 on which the containing tube 1011 (1011 1 to 10011 n) is erected.
  • the nucleic acid sample processing device 1000 includes a dispenser moving mechanism 1020 and a dispenser 1014.
  • Dispenser 1014 has a nozzle 1013 for mounting the dispensing tip 1009 1 ⁇ 1009 n (1013 1 ⁇ 1013 n), and a Z-axis mechanism 1014 1 and the suction projection mechanism 1014 2.
  • the dispenser 1014 is moved in the x direction by the dispenser moving mechanism 1020.
  • the nucleic acid sample processing device 1000 includes an optical measurement moving mechanism 1021 and an optical measurement stand 1016.
  • the optical measurement stand 1016 includes a multiple presser foot 1017 in which lids 8 1 to 8 n are attached to reaction vessels 7 1 to 7 n , an optical measurement mechanism 1016 1 for measuring a chemical reaction between a nucleic acid extract and a reaction reagent, and a reaction vessel.
  • An ultraviolet light irradiation mechanism 1016 2 for effectively irradiating ultraviolet light into 7 1 to 7 n , a detection head 1 (1 1 to 1 n ) connected to an ultraviolet irradiation mechanism 1016 2 , and a lid mounting mechanism 1016 3 And have.
  • the optical measurement stand 1016 is moved in the x direction by the optical measurement moving mechanism 1021.
  • the nucleic acid sample processing device 1000 includes a control mechanism 1018.
  • the control mechanism 1018 includes an extraction control unit 1018 1 that performs predetermined control on the dispenser moving mechanism 1020, the dispenser 1014, and the extraction reagent rack 1008, and an amplification control unit 1018 that performs predetermined control on the reaction vessel rack 1004.
  • the extraction control unit 1018 1 instructs the dispenser moving mechanism 1020 and the dispenser 1014 to dispense the nucleic acid extract and the reaction reagent into the reaction vessels 7 1 to 7 n.
  • the control mechanism 1018 is provided with a lid attachment mechanism 1016 3 and the light measuring mechanism 1016 1 and the optical measurement controller 1018 2 for controlling the optical measuring moving mechanism 1021 in the light measurement frame 1016.
  • the control mechanism 1018 is provided with ultraviolet light controller 1018 5 that controls the ultraviolet light irradiation mechanism 1016 2, and an optical data analyzer 1018 4 for analyzing the light obtained from the light measurement mechanism 1018 2.
  • the control mechanism 1018 is connected to the operation unit 1001, and the operation unit 1001 has an operation panel having a display unit such as a liquid crystal display, operation keys, and an operation unit such as a touch panel.
  • FIG. 3 is a schematic internal configuration diagram of the nucleic acid sample processing apparatus 1000
  • FIGS. 4A and 4B are flowcharts of nucleic acid sample processing.
  • a nucleic acid sample processing method using the nucleic acid sample processing apparatus 1000 of the present invention will be described with reference to FIGS. 3 and 4A.
  • a nucleic acid extraction step S10 for obtaining nucleic acid from a biological sample, an amplification step S20 for amplifying a nucleic acid that has completed the nucleic acid extraction step S10, and a chemical reaction between the amplified nucleic acid and a reaction reagent are performed. It includes a light measurement step S30 for detection and an ultraviolet light irradiation step step S40 for irradiating the nucleic acid amplification product with ultraviolet light after completing the light measurement step S30.
  • the dispenser moving mechanism 1020 fixed to the gantry 1019 moves in the x direction shown in FIG.
  • the dispensing chip moving mechanism 1020 moves and the dispensing tip 1009 is mounted on the nozzle 1013 of the dispensing machine 1014, and the dispensing chip moving mechanism 1020 moves and contains the biological sample tube 1011.
  • a nucleic acid extraction step of obtaining a nucleic acid extraction solution by moving / mixing the reagents required for purification from the prepared biological sample and extraction reagent cartridge 1007 is included.
  • the dispenser moving mechanism 1020 moves, the dispensing chip 1010 is attached to the nozzle 1013 of the dispensing machine 1014, and the nucleic acid extraction step S10
  • the nucleic acid extraction solution obtained in 1) is transferred to the reaction vessel 7 held by the holder 11.
  • the reaction reagent is dispensed from the reaction reagent container 1005, discharged into the reaction container 7, and mixed with the nucleic acid extraction solution.
  • the optical measurement moving mechanism 1021 fixed to the gantry 1019 moves in the x direction, and the lid mounting mechanism 1017 acquires the lid 8 erected on the lid rack 1022 and installs it in the reaction vessel 7.
  • the holder 11 temperature-controls the reaction solution containing the nucleic acid inside the reaction vessel 7 by the temperature control element 12 to amplify the nucleic acid in the reaction solution.
  • the heater 13 is also temperature-controlled to prevent evaporation of the reaction solution.
  • the light measurement step S30 is performed from the time when the temperature control in the amplification step S20 is started.
  • the detection head 1 has a fluorescence light guide path 15, an irradiation light guide path 14, and an ultraviolet light light guide path 4, and is generated from a light source (measurement light light source) 2 arranged in a light receiving / receiving holder 1023 attached to the light measurement stand 1016.
  • the (emitted) measurement light is guided by the fluorescent light guide path 15 and irradiated into the reaction vessel 7.
  • the irradiated measurement light is used to excite the fluorescent substance contained in the reaction solution in the reaction solution 7, and the fluorescence generated from the fluorescent substance is guided to the fluorescent light guide path 15 through the fluorescent light guide path 15 for light measurement.
  • Light is received by the light receiving element 3 arranged in the light receiving / receiving holder 1023 attached to the gantry 1016.
  • the absorbance of the reaction solution of the received light can be determined from the light intensity.
  • Absorbance of the reaction solution is determined by light data analysis unit 1018 4.
  • the ultraviolet light generated (emitted) from the ultraviolet light source 9 arranged in the light receiving / receiving holder 1023 is emitted from the nucleic acid amplification product stored in the reaction vessel 7 after the light measurement step S30 is completed.
  • the reaction vessel 7 is irradiated through the ultraviolet light guide path 4 that guides ultraviolet light.
  • the ultraviolet light irradiated into the reaction vessel 7 inactivates the nucleic acid amplification product in the reaction solution by a photochemical reaction.
  • the temperature control element 12 controls the temperature of the reaction vessel 7 via the holder 11.
  • the temperature-controlled reaction vessel 7 controls the temperature of the reaction solution inside.
  • the heater 13 is kept warm at a temperature at which the sealing lid 8 does not condense. In this state, ultraviolet light may be irradiated.
  • the temperature control element 12 applies heat (95 ° C to 98 ° C) to the solution in the reaction vessel 7 to obtain the nucleic acid.
  • the inactivation speed can be increased and the inactivation processing time can be shortened.
  • FIG. 4B is a modified example of the nucleic acid sample processing method shown in FIG. 4A.
  • the method shown in FIG. 4B is a method in which the nucleic acid extraction step S10 of FIG. 4A is omitted, and the other steps are the same as the steps shown in FIG. 4A.
  • nucleic acid sample processing method that does not include the nucleic acid extraction step shown in FIG. 4B. This is a nucleic acid sample processing method when the nucleic acid extraction processing has already been performed by another device.
  • FIG. 5A is a diagram illustrating a light receiving / receiving holder 1023.
  • the light receiving / receiving holder 1023 is attached to the light measuring stand 1016.
  • the light emitting and receiving holder 1023, a light source 2 (2 1 ⁇ 2 n) , and the light receiving element 3 (3 1 ⁇ 3 n) , and a is arranged an ultraviolet light source 9 (9 1 ⁇ 9 n) , respectively irradiating light guide 14 and (14 1 ⁇ 14 n), and fluorescent light guiding path 15 (15 1 ⁇ 15 n) , ultraviolet light guiding path 4 and (4 1 ⁇ 4 n) are connected.
  • One end of the irradiation light guide path 14 1 to 14 n , the fluorescent light guide path 15 1 to 15 n, and the ultraviolet light light path 4 1 to 4 n is assembled to the ferrule 10 (10 1 to 10 n ) having a function of bundling the light guide path.
  • the ferrules 10 1 to 10 n are connected to the detection heads 1 1 to 1 n.
  • the detection heads 1 1 to 1 n are moved up and down by the vertical movement motor 17.
  • FIG. 5B is a diagram showing a modified example of the example shown in FIG. 5A.
  • the light receiving / receiving holder 1023 is not attached to the light measuring stand 1016.
  • the light measurement stand 1016 may not be attached to the light receiving / receiving holder 1023.
  • the light receiving / receiving holder 1023 can be attached to a position other than the light measuring stand 1016.
  • FIG. 6A is a cross-sectional view of the ferrule 10 according to the first embodiment
  • FIG. 6B includes a light receiving element 3, a light source 2, an ultraviolet light source 9, and a ferrule 10 arranged on a substrate 1015 of the optical measurement mechanism 1016 according to the first embodiment. It is a schematic vertical sectional view of the detection head 1.
  • an ultraviolet light guide path 4 an irradiation light guide path 14, and a fluorescence light guide path 15 made of a flexible material such as an optical fiber are bundled by a ferrule 10 inside the detection head 1, and a substrate 1015 is formed. It is provided in the housings 1025a, 1025b, and 1025c formed in.
  • the ultraviolet light light guide path 4 uses a material such as quartz that relatively transmits ultraviolet light.
  • the irradiation light guide path 14 and the fluorescence light guide path 15 use plastic fibers, quartz fibers, or the like that relatively transmit visible light.
  • the long pass filter 5 of the irradiation light guide path 14 and the fluorescence light guide path 15 prevents the reflected light of the ultraviolet light emitted through the ultraviolet light light guide path 4 from other parts from entering the irradiation light guide path 14 and the fluorescence light guide path 15. It is installed on the end face.
  • the end face of the ultraviolet light light guide path 4 on the sealing lid 8 side protrudes toward the sealing lid 8 side as compared with the end face where the irradiation light guide path 14 and the fluorescence light guide path 15 are in contact with the long pass filter 5.
  • the end face of the ultraviolet light light guide path 4 may be formed so as to be flush with the end face of the irradiation light guide path 14 and the end face of the fluorescence light guide path 15.
  • the light source 2, the light receiving element 3, and the ultraviolet light source 9 are arranged on the substrate 1015.
  • the light source 2 is provided in the housing 1025a, and the irradiation light guide path 14 is fixed by the single ferrule 1034a.
  • the single ferrule 1034a is fixed to the housing 1025a.
  • the housing 1025a and the single ferrule 1034a are mechanisms for aligning the optical axes of the light source 2 and the irradiation light guide path 14.
  • the light receiving element 3 is provided in the housing 1025b, and the fluorescent light guide path 15 is fixed by the single ferrule 1034b.
  • the single ferrule 1034b is connected to the housing 1025b.
  • the housing 1025b and the single ferrule 1034b are mechanisms for aligning the optical axes of the light receiving element 3 and the fluorescent light guide path 15.
  • the ultraviolet light source 9 is provided in the housing 1025c, and the ultraviolet light light path 4 is fixed by the single ferrule 1034c.
  • the single ferrule 1034c is connected to the housing 1025c.
  • the housing 1025c and the single ferrule 1034c are mechanisms for aligning the optical axes of the ultraviolet light source 9 and the ultraviolet light guide path 4.
  • the light emitted from the light source 2 passes through the irradiation light guide path 14, and then passes through the long pass filter 5 from the end face of the irradiation light guide path 14 fixed to the detection head 1.
  • the light is collected by the lens 16.
  • the light collected by the lens 16 passes through the airtight lid 8 and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7.
  • Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2.
  • the fluorescence is focused by the lens 16 of the detection head 1, passes through the long pass filter 5, and then enters the fluorescence waveguide 15 and irradiates the light receiving element 3 on the substrate 1015.
  • the ultraviolet light is emitted from the ultraviolet light source 9, passes through the ultraviolet light guide path 4, is condensed by the lens 16, passes through the airtight lid 8, and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7. Since the reaction vessel 7 has a light-shielding property against ultraviolet light, the ultraviolet light is scattered only inside the reaction vessel 7 and loses the ability to amplify the nucleic acid in the reaction vessel 7. Further, the scattered ultraviolet light is reflected inside the reaction vessel 7 by the ferrule 10 or reflected by the long pass filter 5, and the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are not irradiated with ultraviolet light.
  • the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are not affected by photoaging due to ultraviolet light.
  • the solution 6 in the reaction vessel 7 is irradiated with the light from the light source 2, and the fluorescence is emitted through the fluorescent light guide path 15.
  • ultraviolet light is irradiated into the reaction vessel 7 having a light-shielding property through the ultraviolet light light path 4.
  • the reaction vessel 7 has a light-shielding property, and the irradiation light guide path 14, the fluorescence light guide path 15, the measurement light source 2 and the light receiving element 3 are protected from the ultraviolet light scattered in the reaction vessel 7 by the long pass filter 5. ing.
  • the first embodiment of the present invention it is possible to effectively irradiate the nucleic acid amplification product contained in the reaction vessel with ultraviolet light and suppress the irradiation of the components outside the reaction vessel with ultraviolet rays. , A nucleic acid sample processing apparatus and a nucleic acid sample processing method capable of extending the life of parts can be realized.
  • the nucleic acid amplification ability of the nucleic acid amplification product can be reduced, and the contamination risk can be reduced.
  • the inactivation rate of the nucleic acid can be increased and the inactivation treatment time can be shortened by applying heat to the solution in the reaction vessel 7 by the temperature control element 12.
  • the above configuration suppresses the irradiation of ultraviolet rays to the outside of the ultraviolet light guide path 4, the lid 8, and the reaction vessel 7, so that the operator of the nucleic acid sample processing apparatus can be protected from ultraviolet rays.
  • Example 2 Next, Example 2 of the present invention will be described.
  • FIG. 7A is a cross-sectional view of the ferrule 10 in the second embodiment
  • FIG. 7B is a schematic vertical cross-sectional view of the detection head 1 including the ferrule 10 and the parts arranged on the substrate 1015 in the second embodiment.
  • the detection head 1 is provided with the ultraviolet light source 9, the light source 2, and the light receiving element 3, and the ultraviolet light source 9, the light source 2, and the light source 2.
  • the light receiving element 3 is connected to the substrate 1015 by an electric wire.
  • Example 1 Other configurations are the same as in Example 1 and Example 2.
  • an ultraviolet light guide path 4 an irradiation light guide path 14, and a fluorescence light guide path 15 are bundled by a ferrule 10 and provided in a housing 1025.
  • the detection head 1 supports a measurement light source 2, an irradiation light guide path 14, a light receiving element 3, a fluorescence light guide path 15, an ultraviolet light source 9, an ultraviolet light light path 4, and a long pass filter 5.
  • the ultraviolet light light guide path 4 uses an optical fiber or a light pipe made of a material that relatively transmits ultraviolet light such as quartz.
  • the irradiation light guide path 14 and the fluorescence light guide path 15 use a plastic fiber, a light pipe, or the like that relatively transmits visible light.
  • a long pass filter 5 is installed on the end faces of the irradiation light guide path 14 and the fluorescence light guide path 15 so that the reflection of ultraviolet light does not pass through. Similar to the first embodiment, the end surface of the ultraviolet light guide path 4 on the sealing lid 8 side protrudes toward the sealing lid 8 side as compared with the end surface where the irradiation light guide path 14 and the fluorescence light guide path 15 are in contact with the long pass filter 5. ..
  • the end face of the ultraviolet light light guide path 4 may be formed so as to be flush with the end face of the irradiation light guide path 14 and the end face of the fluorescence light guide path 15.
  • the light source 2, the light receiving element 3, and the ultraviolet light source 9 are arranged in the detection head 1.
  • the light source 2 is installed so as to be optically connected to the irradiation light guide path 14.
  • the light source 2 is connected to the light source plug 1026 arranged on the substrate 1015 via the light source electric wire cable 1024, and the light source receptacle 1027 arranged on the substrate 1015 and the light source plug 1026 are connected.
  • the light source 2 and the light source receptacle 1027 are electrically connected.
  • the light receiving element 3 is installed so as to be optically connected to the fluorescent light guide path 15. Further, the light receiving element 3 is connected to the light receiving element plug 1029 arranged on the substrate 1015 via the light receiving element electric wire cable 1028, and is connected to the light receiving element receptacle 1030 arranged on the substrate 1015.
  • the light receiving element 3 and the receptacle 1030 for the light receiving element are electrically connected.
  • the ultraviolet light source 9 is installed so as to be optically connected to the ultraviolet light guide path 4. Further, the ultraviolet light source 9 is connected to the ultraviolet light source plug 1032 arranged on the substrate 1015 via the ultraviolet light source electric wire cable 1031, and is connected to the ultraviolet light source receptacle 1033 arranged on the substrate 1015. ..
  • the ultraviolet light source 9 and the receptacle 1033 for the ultraviolet light source are connected.
  • the light emitted from the light source 2 passes through the irradiation light guide path 14, passes through the long pass filter 5 from the end face of the irradiation light guide path 14, is collected by the lens 16 and is collected by the sealing lid.
  • the solution 6 containing the nucleic acid that has passed through 8 and is contained in the reaction vessel 7 is irradiated.
  • Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2.
  • the fluorescence is condensed by the lens 16 of the detection head 1, enters the fluorescence waveguide 15, and is applied to the light receiving element 3 arranged in the detection head 1.
  • the ultraviolet light is emitted from the ultraviolet light source 9, passes through the ultraviolet light guide path 4, is focused by the lens 16, passes through the airtight lid 8, and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7.
  • the reaction vessel 7 Since the reaction vessel 7 has a light-shielding property against ultraviolet light, the ultraviolet light irradiated into the reaction vessel 7 is scattered only inside the reaction vessel 7. The scattered ultraviolet light is reflected inside the reaction vessel 7 by the ferrule 10 or reflected by the long pass filter 5, and the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are not irradiated with the ultraviolet light.
  • the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are configured not to be affected by photoaging due to ultraviolet light.
  • Example 1 ultraviolet light does not leak to the outside of the reaction vessel 7, so that the nucleic acid amplification ability in the vessel is lost by ultraviolet light irradiation without photoaging the parts in the nucleic acid sample processing apparatus. Can be made.
  • the second embodiment has the same effect as that of the first embodiment, and the detection head 1 and the substrate 1015 have a relatively flexible electric wire cable 1024 for a light source, an electric wire cable 1028 for a light receiving element, and electricity for an ultraviolet light source. Since it is connected by the wire cable 1031, the detection head 1 can be easily moved, and there is an effect that the degree of freedom in arranging the detection head 1 can be improved.
  • the detection head 1 is compared with the first embodiment. Cables such as 1024 have flexibility against torsional stress. Therefore, the second embodiment has a configuration effective for extending the life of the detection head 1.
  • Example 3 of the present invention will be described.
  • FIG. 8 is a schematic vertical cross-sectional view of the detection head 1 including the ferrule 10 which is a component arranged on the substrate 1015 in the third embodiment.
  • the difference between the first embodiment and the third embodiment is that there are a plurality of long pass filters 5 and that the arrangement positions of the plurality of long pass filters 5 are different.
  • the irradiation light guide path 14 and the fluorescence light guide path 15 are not included in the parts to be protected from photoaging due to ultraviolet light.
  • the components to be protected from photoaging due to ultraviolet light are the light source 2 and the light receiving element 3.
  • the irradiation light guide path 14 and the fluorescent light guide path 15 are made of a material (quartz fiber, quartz light pipe, etc.) that is extremely less affected by ultraviolet light, and the ferrule 10 Is also composed of materials such as zirconia, which are less affected by ultraviolet light.
  • Example 1 Other configurations are the same as in Example 1 and Example 3.
  • an ultraviolet light light guide path 4 an irradiation light guide path 14, and a fluorescent light guide path 15 are bundled by a ferrule 10 and arranged in a housing 1025, assuming a flexible member such as an optical fiber inside the detection head 1. ing.
  • the ultraviolet light light guide path 4, the irradiation light guide path 14, and the fluorescent light guide path 15 are made of a material that relatively transmits ultraviolet light such as quartz.
  • a long pass filter 5 is arranged on the end faces of the light source 2 and the light receiving element 3 so that the reflected light of ultraviolet light does not pass through.
  • the ultraviolet light guide path 4, the irradiation light guide path 14, and the fluorescence light guide path 15 are flush with the end face of the ferrule 10.
  • the light source 2, the light receiving element 3, and the ultraviolet light source 9 are arranged on the substrate 1015.
  • a housing 1025a is arranged in the light source 2, and the irradiation light guide path 14 is fixed by a single ferrule 1034a.
  • the single ferrule 1034a is connected to the housing 1025a.
  • the housing 1025a and the single ferrule 1034a are mechanisms for aligning the optical axes of the light source 2 and the irradiation light guide path 14.
  • the long pass filter 5 is arranged in the housing 1025a and is installed between the light source 2 and the irradiation light guide path 14.
  • a housing 1025b is arranged on the light receiving element 3, and the fluorescent light guide path 15 is fixed by a single ferrule 1034b.
  • the single ferrule 1034b is connected to the housing 1025b.
  • the housing 1025b and the single ferrule 1034b are mechanisms for aligning the optical axes of the light receiving element 3 and the fluorescent light guide path 15.
  • the long pass filter 5 is arranged in the housing 1025b and is installed between the light receiving element 2 and the fluorescent light guide path 14.
  • a housing 1025c is arranged in the ultraviolet light source 9, and the ultraviolet light guide path 4 is fixed by a single ferrule 1034c.
  • the single ferrule 1034c is connected to the housing 1025c.
  • the housing 1025c and the single ferrule 1034c are mechanisms for aligning the optical axes of the ultraviolet light source 9 and the ultraviolet light guide path 4.
  • the long pass filter 5 is arranged in the housing 1025c and is installed between the ultraviolet light source 9 and the ultraviolet light light guide path 4.
  • the light emitted from the light source 2 passes through the long pass filter 5, passes through the irradiation light guide path 14, and the lens 16 from the end face of the irradiation light guide path 14 arranged in the detection head 1.
  • the solution 6 containing the nucleic acid contained in the reaction vessel 7 is irradiated with the light collected by the light source and passed through the closed lid 8.
  • Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2.
  • the fluorescence is condensed by the lens 16 of the detection head 1, enters the fluorescence waveguide 15, and is irradiated to the light receiving element 3 through the long pass filter 5 on the substrate 1015.
  • the ultraviolet light is emitted from the ultraviolet light source 9, passes through the ultraviolet light guide path 4, is condensed by the lens 16, passes through the airtight lid 8, and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7. Since the reaction vessel 7 has a light-shielding property of ultraviolet light, the ultraviolet light is scattered only inside the reaction vessel 7. The scattered ultraviolet light is reflected inside the reaction vessel 7 by the ferrule 10, or passes through the irradiation light guide path 14 and the fluorescence light guide path 15 and is reflected by the long pass filter 5, and the light source 2 and the light receiving element 3 are not irradiated with the ultraviolet light. ..
  • the light source 2 and the light receiving element 3 are not affected by photoaging due to ultraviolet light. Since the ultraviolet light does not leak to the outside of the reaction vessel 7 as described above, the ability to amplify the nucleic acid in the vessel 7 can be lost by the ultraviolet light irradiation without photoaging the parts in the apparatus.
  • Example 3 a nucleic acid sample processing apparatus and a nucleic acid sample capable of effectively irradiating the nucleic acid amplification product contained in the reaction vessel with ultraviolet light and suppressing the irradiation of the components outside the reaction vessel with ultraviolet rays.
  • the processing method can be realized.
  • Example 4 of the present invention will be described.
  • FIG. 9A is a cross-sectional view of the ferrules 10a and 10b in the fourth embodiment
  • FIG. 9B is a schematic vertical cross-sectional view of the detection head 1 including the components, the ferrules 10a and 10b arranged on the substrate 1015 in the fourth embodiment. ..
  • Example 4 is a modification of Example 2.
  • FIGS. 9A and 9B a light source 2 and a light receiving element 3 are built in the detection head 1, and a ferrule 10b is mounted on their optical axes.
  • a long pass filter 5 is provided for each of the light source 2 and the light receiving / receiving element 3.
  • the ultraviolet light source 9 is arranged above the detection head 1, and the ultraviolet light source 9 is connected to an ultraviolet light guide path 4 such as a light pipe mounted on the detection head 1.
  • the ultraviolet light source 9, the light source 2, and the light receiving element 3 are electrically connected from the detection head 1 to the substrate 1015 outside through the electric wires 1031, 1024, and 1028.
  • the differences between the first embodiment and the fourth embodiment are that, in the fourth embodiment, the irradiation light guide path of the light source 2 and the fluorescence light guide path of the light receiving element 3 do not exist, and the light source 2, the light receiving element 3, and ultraviolet rays are present.
  • the point where the optical light source 9 is connected to the substrate 1015 by the electric wires 1031, 1024, and 1028, and the point where the ferrules 10a and 10b exist.
  • An ultraviolet light guide path 4 is fixed to the inside of the detection head 1 by a ferrule 10a, and the ferrule 10a is provided in the housing 1025.
  • the housing 1025 is provided with a ferrule 10b having a shape that captures the ferrule 10a, the ferrule 10b is provided with a light source 2 and a light receiving element 3, and a long pass filter 5 is provided on the optical axis of the light source 2.
  • the ultraviolet light light guide path 4 uses an optical fiber or a light pipe made of a material that relatively transmits ultraviolet light such as quartz.
  • the long pass filter 5 is installed on the end faces of the light source 2 and the light receiving element 3 so that the reflection of ultraviolet light does not pass through.
  • the end face of the ultraviolet light guide path 4 on the sealing lid 8 side protrudes toward the sealing lid 8 side as compared with the end face where the light source 2 and the light receiving element 3 are in contact with the long pass filter 5.
  • the end face of the ultraviolet light light guide path 4 on the sealing lid 8 side may be formed so as to be flush with the end face of the light source 2 and the end face of the light receiving element 3.
  • the light source 2 is connected to the light source electric wire cable 1024 and the light source plug 1026, and the light source plug 1026 is connected to the light source receptacle 1027 arranged on the substrate 1015.
  • the light source 2 and the light source receptacle 1027 arranged on the substrate 1015 are electrically connected.
  • the light receiving element 3 is connected to the electric wire cable 1028 for the light receiving element and the plug 1029 for the light receiving element, and the plug 1029 for the light receiving element is connected to the receptacle 1030 for the light receiving element arranged on the substrate 1015.
  • the light receiving element 3 and the light receiving element receptacle 1030 arranged on the substrate 1015 are electrically connected.
  • the ultraviolet light source 9 is installed so as to be optically connected to the ultraviolet light guide path 4.
  • the ultraviolet light source 9 is connected to the ultraviolet light source electric wire cable 1031 and the ultraviolet light source plug 1032, and the ultraviolet light source plug 1032 is connected to the ultraviolet light source receptacle 1033 arranged on the substrate 1015. ..
  • the ultraviolet light source 9 and the receptacle 1033 for the ultraviolet light source arranged on the substrate 1015 are electrically connected.
  • the light emitted from the light source 2 passes through the long pass filter 5, is condensed by the lens 16, passes through the closed lid 8, and is housed in the reaction vessel 7.
  • the solution 6 containing the nucleic acid is irradiated.
  • Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2.
  • the fluorescence is condensed by the lens 16 of the detection head 1 and irradiated to the light receiving element 3.
  • Ultraviolet light is emitted from an ultraviolet light source 9, passes through an ultraviolet light guide path 4, is condensed by a lens 16, passes through a closed lid 8, and is irradiated to a solution 6 containing a nucleic acid contained in a reaction vessel 7. Since the reaction vessel 7 has a light-shielding property of ultraviolet light, the ultraviolet light is scattered only inside the reaction vessel 7. The scattered ultraviolet light is reflected and absorbed inside the reaction vessel 7 by the ferrule 10a, or is reflected by the long pass filter 5, and the light source 2 and the light receiving element 3 are not irradiated with the ultraviolet light.
  • the light source 2 and the light receiving element 3 are not affected by photoaging due to ultraviolet light.
  • the nucleic acid amplification ability in the vessel can be lost by the ultraviolet light irradiation without photoaging the parts in the apparatus.
  • the same effect as that of the second embodiment can be obtained, and the irradiation light guide path of the light source 2 and the fluorescent light guide path of the light receiving element 3 can be omitted. Therefore, the nucleic acid sample processing apparatus according to the second embodiment. Further cost reduction is possible.
  • the portion of the airtight lid 8 that is optically connected to the reaction vessel 7 is formed of quartz so that ultraviolet rays can efficiently irradiate the sample in the reaction vessel 7.
  • a long-pass filter was used to protect the measurement light source 2 and the like from the reflected ultraviolet light, but it is not limited to the long-pass filter as long as it is possible to protect the measurement light source 2 and the like from the reflected ultraviolet light. , Other filters can also be used.
  • Extraction reagent cartridge 1008 ... Extraction reagent rack, 1009 ... Dispensing chip, 1010 ... Dispensing Chip rack, 1011 ... Tube, 1012 ... Biological sample erection rack, 1013 ... Nozzle, 1014 ... Dispenser, 1015 ... Substrate, 1016 ... Optical measurement stand, 1017 ... Multiple pressers, 1018 ... control mechanism, 1019 ... gantry, 1020 ... dispenser moving mechanism, 1021 ... light measurement moving mechanism, 1022 ... lid rack, 1023 ... light receiving / receiving holder 1024 ... Electric wire cable for light source, 1025 ... Housing, 1026 ... Plug for light source, 1027 ... Receptacle for light source, 1028 ...
  • Electric wire cable for light receiving element 1029 ... Light receiving element Plug, 1030 ... Receptacle for light receiving element, 1031 ... Electric wire cable for ultraviolet light source, 1032 ... Plug for ultraviolet light source, 1033 ... Receptacle for ultraviolet light source, 1034 ... Single ferrule

Abstract

A nucleic acid sample processing device capable of effectively irradiating a nucleic acid amplification product housed in a reaction vessel with ultraviolet light and suppressing irradiation of ultraviolet light on parts outside the reaction vessel is achieved. The nucleic acid sample processing device 1000 is equipped with a measurement light light source 2, a light receiving element 3 that receives light generated by irradiating a solution containing a nucleic acid housed in a reaction vessel 7 with light from the light source for measurement 2, and a data analysis unit 10184 for analyzing the light received by the light receiving element 2. Furthermore, the nucleic acid sample processing device 1000 is equipped with an ultraviolet light light source 9 that generates ultraviolet light, an ultraviolet light light guide path 4 that guides the ultraviolet light generated from the ultraviolet light light source 9 into the reaction vessel 7, and a filter 5 for protecting at least the light source for measurement 2 and the light receiving element 3 from reflected light from the ultraviolet light guided into the reaction vessel 7.

Description

核酸試料処理装置および核酸試料処理方法Nucleic acid sample processing device and nucleic acid sample processing method
 本発明は、核酸試料処理装置および核酸試料処理方法に関する。 The present invention relates to a nucleic acid sample processing apparatus and a nucleic acid sample processing method.
 遺伝子検査装置では、解析対象外の核酸の反応容器への混入による偽陽性の発生が問題となっている。 In genetic testing equipment, the occurrence of false positives due to contamination of nucleic acids not subject to analysis into the reaction vessel has become a problem.
 解析対象外の核酸とは、本来解析の対象としている反応容器内の核酸とは異なる核酸のことを示す。特に、検出後の核酸増幅産物は増幅能力が高いため、検出後の解析対象外の核酸増幅物が反応容器の外に飛散することは偽陽性を引き起こす最大の要因となる。 Nucleic acid not subject to analysis refers to nucleic acid that is different from the nucleic acid in the reaction vessel that is originally the subject of analysis. In particular, since the nucleic acid amplification product after detection has a high amplification ability, scattering of the nucleic acid amplification product not to be analyzed after detection to the outside of the reaction vessel is the biggest factor causing false positives.
 よって、偽陽性の発生を防ぐために、遺伝子検査装置では、解析対象外の核酸の増幅能力を失わせる技術が強く求められている。 Therefore, in order to prevent the occurrence of false positives, there is a strong demand for a technique for losing the amplification ability of nucleic acids not to be analyzed in genetic testing equipment.
 核酸検出反応および核酸増幅反応における偽陽性の発生を防止する方法として、解析対象外の核酸の増幅能力を紫外光照射によって失わせる方法がある。 As a method of preventing the occurrence of false positives in the nucleic acid detection reaction and the nucleic acid amplification reaction, there is a method of losing the amplification ability of nucleic acids not to be analyzed by ultraviolet light irradiation.
 DNAの吸収スペクトルのピークである波長260nm付近の紫外光を核酸に照射することで、核酸中に存在するチミン塩基とシトシン塩基が持つ二重結合によって吸収される。紫外光が吸収されてエネルギーが与えられると、二重結合は開いてピリミジン塩基間に二量体を形成させることができる。偽陽性の発生を防止する方法は、ピリミジン二量体化により、ピリミジン本来の塩基対構造が変形して、DNAポリメラーゼによるDNA合成反応が不可能になり、核酸の増幅能力が失われることを用いた方法である。 By irradiating the nucleic acid with ultraviolet light having a wavelength of around 260 nm, which is the peak of the absorption spectrum of DNA, the nucleic acid is absorbed by the double bond of the thymine base and the cytosine base existing in the nucleic acid. When the ultraviolet light is absorbed and energized, the double bond can open to form a dimer between the pyrimidine bases. The method for preventing the occurrence of false positives is that pyrimidine dimerization deforms the original base pair structure of pyrimidine, making it impossible for DNA polymerase to perform a DNA synthesis reaction and losing the ability to amplify nucleic acids. That was the way it was.
 このような紫外光照射によって核酸の増幅能力を失わせる方法は微生物の殺菌に広く利用されている。 Such a method of losing the amplification ability of nucleic acid by ultraviolet light irradiation is widely used for sterilizing microorganisms.
 例えば、バイオハザード対策用安全キャビネでは、処理時間外に装置内部空間全体に対して紫外光照射を行うことで、装置内部に存在するエアロゾルや付着物内に含まれた核酸の増幅能力を失わせ、核酸や微生物を不活化することができる。その結果、コンタミネーションの発生を防止している。 For example, in a safety cabinet for biohazard countermeasures, by irradiating the entire internal space of the device with ultraviolet light outside the processing time, the ability to amplify the nucleic acids contained in the aerosols and deposits inside the device is lost. , Can inactivate nucleic acids and microorganisms. As a result, the occurrence of contamination is prevented.
 また、例えば、特許文献1に記載の核酸試料処理装置では反応容器外へ飛散した解析対象外の核酸の増幅能力を不活化するために、解析対象の核酸試料が入った反応容器には紫外光を照射しないような核酸反応容器設置部を用意し全体に紫外光を照射している。 Further, for example, in the nucleic acid sample processing apparatus described in Patent Document 1, in order to inactivate the amplification ability of the nucleic acid not to be analyzed scattered outside the reaction vessel, the reaction vessel containing the nucleic acid sample to be analyzed is exposed to ultraviolet light. A nucleic acid reaction vessel installation part is prepared so as not to irradiate the whole, and the whole is irradiated with ultraviolet light.
 これにより飛散した解析対象外の核酸の混入によるコンタミネーションの防止に利用している。 This is used to prevent contamination due to contamination of scattered nucleic acids that are not subject to analysis.
 また、特許文献2では、装置内に設置された可動部に紫外光光源を設置して装置内のエアロゾルと核酸増幅物が含まれた反応容器に対して紫外光を照射することで、解析対象外の核酸の不活化を行っている。 Further, in Patent Document 2, an ultraviolet light source is installed in a movable part installed in the apparatus, and the reaction vessel containing the aerosol and the nucleic acid amplification substance in the apparatus is irradiated with ultraviolet light to be analyzed. It inactivates the outer nucleic acid.
 これにより装置内に飛散した解析対象外の核酸と、反応容器内の核酸増幅物に同時に紫外光の照射を行うことで、解析対象外の核酸の混入によるコンタミネーションの防止に利用している。 As a result, the nucleic acid not to be analyzed scattered in the device and the nucleic acid amplification product in the reaction vessel are simultaneously irradiated with ultraviolet light, which is used to prevent contamination due to contamination of nucleic acid not to be analyzed.
特許第5014078号公報Japanese Patent No. 5014078 特許第5908613号公報Japanese Patent No. 5908613
 特許文献1に記載の技術においては、解析対象の試料は反応容器に収容され、反応容器は紫外光への遮光性を有する核酸反応容器設置部機構に設置されている。 In the technique described in Patent Document 1, the sample to be analyzed is housed in a reaction vessel, and the reaction vessel is installed in a nucleic acid reaction vessel installation unit mechanism having a light-shielding property against ultraviolet light.
 しかし、特許文献1に記載の技術においては、核酸試料処理装置の下方から紫外線を核酸試料処理装置全体に向けて紫外線を照射しているため、遮光性を有する試料容器設置部に設置された試料容器内部に効果的に紫外腺を照射することは困難である。 However, in the technique described in Patent Document 1, since ultraviolet rays are irradiated from below the nucleic acid sample processing apparatus toward the entire nucleic acid sample processing apparatus, the sample installed in the sample container installation portion having a light-shielding property. It is difficult to effectively irradiate the inside of the container with ultraviolet glands.
 このため、特許文献1に記載の技術では、試料容器内部に収容された核酸増幅物に効果的に紫外線を照射することが困難であった。 Therefore, with the technique described in Patent Document 1, it is difficult to effectively irradiate the nucleic acid amplification product contained in the sample container with ultraviolet rays.
 また、特許文献2に記載の技術は、生体試料分析装置であり、標的核酸を精製して、生成された標的核酸を増幅させ、電気泳動にて核酸増幅産物を検査する。そして、検査終了後に核酸増幅物に対し装置内に設置された紫外光光源を用いて核酸の不活化を実施する。 Further, the technique described in Patent Document 2 is a biological sample analyzer, which purifies a target nucleic acid, amplifies the produced target nucleic acid, and inspects the nucleic acid amplification product by electrophoresis. Then, after the test is completed, the nucleic acid amplification product is inactivated by using an ultraviolet light source installed in the apparatus.
 しかし、特許文献2に記載の技術においては、移動部に設置された紫外線ランプが反応容器に近接して使用される構成となっている。このため、核酸増幅物以外の、紫外光を吸収する部品(例えば、プラスチック製のCリング等)にも紫外光が照射され、これらの部品の光老化を生じさせて、短寿命化させる恐れがあった。 However, in the technique described in Patent Document 2, the ultraviolet lamp installed in the moving portion is used in close proximity to the reaction vessel. For this reason, parts other than nucleic acid amplification products that absorb ultraviolet light (for example, plastic C-rings) are also irradiated with ultraviolet light, which may cause photoaging of these parts and shorten their lifespan. there were.
 本発明は、上記のような課題を解決するためになされたものであって、その目的は、紫外光を反応容器内部に収容された核酸増幅物に効果的に照射し、反応容器外部の部品への紫外線の照射を抑制することが可能な核酸試料処理装置および核酸試料処理方法を実現することである。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to effectively irradiate a nucleic acid amplification product contained in a reaction vessel with ultraviolet light, and to provide a component outside the reaction vessel. It is to realize a nucleic acid sample processing apparatus and a nucleic acid sample processing method capable of suppressing the irradiation of ultraviolet rays.
 本発明は、上記目的を達成するため、次のように構成される。 The present invention is configured as follows in order to achieve the above object.
 測定光光源と、反応容器内に収容された核酸を含む溶液に前記測定用光源からの光が照射されることによって発生する光を受光する受光素子と、前記受光素子が受光した光を解析するデータ解析部と、紫外光を発生する紫外光光源とを備える核酸試料処理装置において、前記紫外光光源から発生された紫外光を、前記反応容器内に導く紫外光導光路と、前記反応容器内に導かれた紫外光の反射光から、少なくとも前記測定用光源及び前記受光素子を保護するためのフィルタとを備える。 The measurement light light source, the light receiving element that receives the light generated by irradiating the solution containing the nucleic acid contained in the reaction vessel with the light from the measurement light source, and the light received by the light receiving element are analyzed. In a nucleic acid sample processing apparatus including a data analysis unit and an ultraviolet light source that generates ultraviolet light, an ultraviolet light guide path that guides ultraviolet light generated from the ultraviolet light source into the reaction vessel and an ultraviolet light guide path in the reaction vessel. It includes at least the measurement light source and a filter for protecting the light receiving element from the reflected ultraviolet light.
 また、反応容器内に収容された核酸を含む溶液に測定用光源からの光を照射し、前記測定用光源からの光が前記溶液に照射されることによって発生する光を受光素子により受光し、前記受光素子が受光した光をデータ解析部により解析し、紫外光光源から発生された紫外光を、前記反応容器内に導き、前記反応容器内の核酸を不活化する核酸試料処理方法において、紫外光光源から発生された紫外光を、紫外光導光路により前記反応容器内に導き、前記反応容器内の核酸を不活化し、前記反応容器内に導かれた紫外光の反射光から、少なくとも前記測定用光源及び前記受光素子をフィルタにより保護する。 Further, the solution containing the nucleic acid contained in the reaction vessel is irradiated with light from the measurement light source, and the light generated by irradiating the solution with the light from the measurement light source is received by the light receiving element. In a nucleic acid sample processing method in which the light received by the light receiving element is analyzed by a data analysis unit, the ultraviolet light generated from the ultraviolet light source is guided into the reaction vessel, and the nucleic acid in the reaction vessel is inactivated, ultraviolet rays are emitted. The ultraviolet light generated from the light source is guided into the reaction vessel by an ultraviolet light guide path, the nucleic acid in the reaction vessel is inactivated, and at least the measurement is performed from the reflected light of the ultraviolet light guided into the reaction vessel. The light source and the light receiving element are protected by a filter.
 本発明によれば、紫外光を反応容器内部に収容された核酸増幅物に効果的に照射し、反応容器外部の部品への紫外線の照射を抑制することが可能な核酸試料処理装置および核酸試料処理方法を実現することができる。 According to the present invention, a nucleic acid sample processing apparatus and a nucleic acid sample capable of effectively irradiating a nucleic acid amplification product contained in a reaction vessel with ultraviolet light and suppressing irradiation of a component outside the reaction vessel with ultraviolet rays. The processing method can be realized.
本発明が適用される核酸試料処理装置の概略斜視図である。It is a schematic perspective view of the nucleic acid sample processing apparatus to which this invention is applied. 本発明の実施例1に係る核酸試料処理装置のブロック図である。It is a block diagram of the nucleic acid sample processing apparatus which concerns on Example 1 of this invention. 核酸試料処理装置1000の概略内部構成図である。It is a schematic internal block diagram of a nucleic acid sample processing apparatus 1000. 本発明による核酸試料処理装置フローチャートである。It is a flowchart of the nucleic acid sample processing apparatus by this invention. 本発明による核酸試料処理装置フローチャートである。It is a flowchart of the nucleic acid sample processing apparatus by this invention. 受発光ホルダを説明する図である。It is a figure explaining the light receiving / receiving holder. 図5Aに示した例の変形例を示す図である。It is a figure which shows the modification of the example shown in FIG. 5A. 実施例1におけるフェルールの横断面図である。It is sectional drawing of the ferrule in Example 1. FIG. 実施例1における光測定機構の基板に配置された受光素子、光源、紫外光源、フェルールを含む検出ヘッドの概略縦断面図である。FIG. 5 is a schematic vertical sectional view of a detection head including a light receiving element, a light source, an ultraviolet light source, and a ferrule arranged on a substrate of the light measurement mechanism according to the first embodiment. 実施例2におけるフェルールの横断面図である。It is sectional drawing of the ferrule in Example 2. FIG. 実施例2における光測定機構の基板に配置された受光素子、光源、紫外光源、フェルールを含む検出ヘッドの概略縦断面図である。FIG. 5 is a schematic vertical cross-sectional view of a detection head including a light receiving element, a light source, an ultraviolet light source, and a ferrule arranged on a substrate of the light measurement mechanism according to the second embodiment. 実施例3における基板に配置された部品、フェルールを含む検出ヘッドの概略縦断面図である。FIG. 5 is a schematic vertical sectional view of a detection head including a component and a ferrule arranged on a substrate in the third embodiment. 実施例4におけるフェルール横断面図である。It is a cross-sectional view of a ferrule in Example 4. FIG. 実施例4における基板に配置された部品、フェルールを含む検出ヘッドの概略縦断面図である。FIG. 5 is a schematic vertical sectional view of a detection head including a component and a ferrule arranged on a substrate in the fourth embodiment.
 核酸試料処理装置とは生体試料の自動分析装置に関し、より詳細には、生体試料から核酸抽出物を精製し、その核酸抽出物は反応用溶液とともに反応容器内に分注機等で移送かつ導入する。そして、反応容器を密閉した上で反応用の温度制御装置を用いて反応する、PCR、逆転写PCR(RT-PCR)、及び上記の過程を定量的に行うリアルタイム定量PCRなどの増幅について光測定器を用いて光学的な測定を行う装置が核酸試料処理装置である。 The nucleic acid sample processing device is an automatic analyzer for biological samples. More specifically, a nucleic acid extract is purified from a biological sample, and the nucleic acid extract is transferred and introduced into a reaction vessel together with a reaction solution by a dispenser or the like. To do. Then, optical measurement is performed for amplification such as PCR, reverse transcription PCR (RT-PCR), and real-time quantitative PCR in which the above process is quantitatively performed, in which the reaction vessel is sealed and then reacted using a temperature control device for reaction. A device that performs optical measurement using a device is a nucleic acid sample processing device.
 核酸試料処理装置において、核酸増幅産物による偽陽性を防止するために、紫外線照射器を光測定器に備える。そして、光測定が終了後に光検出部と反応容器の位置を変えずに反応容器内の核酸増幅産物に照射する全ての過程を一つの装備内で行う装置である。 In the nucleic acid sample processing device, an ultraviolet irradiator is provided in the optical measuring device in order to prevent false positives due to the nucleic acid amplification product. Then, after the light measurement is completed, all the processes of irradiating the nucleic acid amplification product in the reaction vessel without changing the positions of the light detection unit and the reaction vessel are performed in one device.
 以下、添付図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本発明の原理に則った具体的な実施形態を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 In the attached drawing, functionally the same elements may be displayed with the same number. The accompanying drawings show specific embodiments based on the principles of the present invention, but these are for the purpose of understanding the present invention and are never used for a limited interpretation of the present invention. is not it.
 本実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 In the present embodiment, the description is given in sufficient detail for those skilled in the art to carry out the present invention, but other implementations and embodiments are also possible, without departing from the scope and spirit of the technical idea of the present invention. It is necessary to understand that it is possible to change the structure and structure and replace various elements. Therefore, the following description should not be construed as limited to this.
 なお、以下では核酸を検査対象として実施形態及び実施例を説明しているが、これに限られず、蛍光観察を行う生体試料の処理も対象としても良い。 Although the embodiments and examples are described below with nucleic acids as test targets, the present invention is not limited to this, and treatment of biological samples for fluorescence observation may also be targeted.
 (実施例1)
 図1は、本発明が適用される核酸試料処理装置の概略斜視図である。図1において、核酸試料処理装置1000は、本体1003と操作部1001(図2に示す)を有するPC1002とを備える。
(Example 1)
FIG. 1 is a schematic perspective view of a nucleic acid sample processing apparatus to which the present invention is applied. In FIG. 1, the nucleic acid sample processing apparatus 1000 includes a main body 1003 and a PC 1002 having an operation unit 1001 (shown in FIG. 2).
 図2は、本発明の実施例1に係る核酸試料処理装置のブロック図である。 FIG. 2 is a block diagram of the nucleic acid sample processing apparatus according to the first embodiment of the present invention.
 図2において、核酸試料処理装置1000にステージ1100を備えている。そして、ステージ1100は、反応容器7(7~7)を架設する反応容器ラック1004と、蓋8(8~8)を架設する蓋ラック1022と、反応試薬容器1005(1005~1005)を架設する反応試薬ラック1006とを備える。 In FIG. 2, the nucleic acid sample processing apparatus 1000 is provided with a stage 1100. The stage 1100 includes a reaction container rack 1004 that spans the reaction vessel 7 (7 1 to 7 n), a lid rack 1022 that spans the lid 8 (8 1 to 8 n), the reaction reagent container 1005 (1005 1 - It is provided with a reaction reagent rack 1006 on which 1005 n) is erected.
 また、ステージ1100は、抽出試薬カートリッジ1007(1007~1007)を架設する抽出試薬ラック1008と、分注チップ1009(1009~1009)を架設する分注チップラック1010と、生体試料が入ったチューブ1011(1011~10011)を架設する生体試料架設ラック1012を有する。 Further, in the stage 1100, the extraction reagent rack 1008 on which the extraction reagent cartridge 1007 (1007 1 to 1007 n ) is erected, the dispensing chip rack 1010 on which the dispensing chips 1009 (1009 1 to 1009 n ) are erected, and the biological sample are used. It has a biological sample erection rack 1012 on which the containing tube 1011 (1011 1 to 10011 n) is erected.
 また、核酸試料処理装置1000は、分注機移動機構1020と、分注機1014とを備える。分注機1014は、分注チップ1009~1009を装着するノズル1013(1013~1013)と、Z軸機構1014と吸引突出機構1014とを有する。分注機移動機構1020によって分注機1014はx方向に移動される。 Further, the nucleic acid sample processing device 1000 includes a dispenser moving mechanism 1020 and a dispenser 1014. Dispenser 1014 has a nozzle 1013 for mounting the dispensing tip 1009 1 ~ 1009 n (1013 1 ~ 1013 n), and a Z-axis mechanism 1014 1 and the suction projection mechanism 1014 2. The dispenser 1014 is moved in the x direction by the dispenser moving mechanism 1020.
 また、核酸試料処理装置1000は、光測定移動機構1021と、光測定架台1016とを備える。 Further, the nucleic acid sample processing device 1000 includes an optical measurement moving mechanism 1021 and an optical measurement stand 1016.
 光測定架台1016は、反応容器7~7に蓋8~8を装着する多連押え1017と、核酸抽出物と反応試薬の化学反応を測定する光測定機構1016と、反応容器7~7内に効果的に紫外光を照射するための紫外光照射機構1016と、紫外線照射機構1016と接続する検出ヘッド1(1~1)と、蓋装着機構1016とを有する。 The optical measurement stand 1016 includes a multiple presser foot 1017 in which lids 8 1 to 8 n are attached to reaction vessels 7 1 to 7 n , an optical measurement mechanism 1016 1 for measuring a chemical reaction between a nucleic acid extract and a reaction reagent, and a reaction vessel. An ultraviolet light irradiation mechanism 1016 2 for effectively irradiating ultraviolet light into 7 1 to 7 n , a detection head 1 (1 1 to 1 n ) connected to an ultraviolet irradiation mechanism 1016 2 , and a lid mounting mechanism 1016 3 And have.
 光測定移動機構1021によって光測定架台1016がx方向に移動される。 The optical measurement stand 1016 is moved in the x direction by the optical measurement moving mechanism 1021.
 核酸試料処理装置1000は、制御機構1018を備える。制御機構1018は、分注機移動機構1020と分注機1014と抽出試薬ラック1008に対して所定の制御を行う抽出制御部1018と、反応容器ラック1004に対する所定の制御を行う増幅制御部1018と、を有し、抽出制御部1018は、分注機移動機構1020と分注機1014に、反応容器7~7に核酸抽出物と反応試薬を分注することを指令する。 The nucleic acid sample processing device 1000 includes a control mechanism 1018. The control mechanism 1018 includes an extraction control unit 1018 1 that performs predetermined control on the dispenser moving mechanism 1020, the dispenser 1014, and the extraction reagent rack 1008, and an amplification control unit 1018 that performs predetermined control on the reaction vessel rack 1004. The extraction control unit 1018 1 instructs the dispenser moving mechanism 1020 and the dispenser 1014 to dispense the nucleic acid extract and the reaction reagent into the reaction vessels 7 1 to 7 n.
 また、制御機構1018は、光測定架台1016にある蓋装着機構1016と光測定機構1016と光測定移動機構1021とを制御する光測定制御部1018を備える。また、制御機構1018は、紫外光照射機構1016を制御する紫外光制御部1018と、光測定機構1018から得られた光を解析する光データ解析部1018とを備える。 The control mechanism 1018 is provided with a lid attachment mechanism 1016 3 and the light measuring mechanism 1016 1 and the optical measurement controller 1018 2 for controlling the optical measuring moving mechanism 1021 in the light measurement frame 1016. The control mechanism 1018 is provided with ultraviolet light controller 1018 5 that controls the ultraviolet light irradiation mechanism 1016 2, and an optical data analyzer 1018 4 for analyzing the light obtained from the light measurement mechanism 1018 2.
 制御機構1018は操作部1001と接続され、操作部1001は液晶ディスプレイ等の表示部や操作キー、タッチパネル等の操作部を有する操作パネルを有する。 The control mechanism 1018 is connected to the operation unit 1001, and the operation unit 1001 has an operation panel having a display unit such as a liquid crystal display, operation keys, and an operation unit such as a touch panel.
 図3は、核酸試料処理装置1000の概略内部構成図であり、図4A及び図4Bは核酸試料処理フローチャートである。 FIG. 3 is a schematic internal configuration diagram of the nucleic acid sample processing apparatus 1000, and FIGS. 4A and 4B are flowcharts of nucleic acid sample processing.
 図3及び図4Aを参照して、本発明の核酸試料処理装置1000を用いた核酸試料処理方法を説明する。 A nucleic acid sample processing method using the nucleic acid sample processing apparatus 1000 of the present invention will be described with reference to FIGS. 3 and 4A.
 本発明の核酸試料処理方法は、生体試料から核酸を得る核酸抽出ステップS10と、核酸抽出ステップS10を完了した核酸を増幅する増幅ステップS20と、増幅している核酸と反応試薬との化学反応を検出する光測定ステップS30と、光測定ステップS30を完了した後に核酸増幅物に紫外光を照射する紫外光照射ステップ階S40を含む。 In the nucleic acid sample processing method of the present invention, a nucleic acid extraction step S10 for obtaining nucleic acid from a biological sample, an amplification step S20 for amplifying a nucleic acid that has completed the nucleic acid extraction step S10, and a chemical reaction between the amplified nucleic acid and a reaction reagent are performed. It includes a light measurement step S30 for detection and an ultraviolet light irradiation step step S40 for irradiating the nucleic acid amplification product with ultraviolet light after completing the light measurement step S30.
 核酸抽出ステップS10において、ガントリ1019に固定された分注機移動機構1020が図3に示すx方向に移動する。分注機移動機構1020が移動して、分注機1014のノズル1013に分注チップ1009を装着する分注チップ装着段階と、分注機移動機構1020が移動して、生体試料チューブ1011に含有された生体試料及び抽出試薬カートリッジ1007から精製に必要な試薬を移動/混合することで、核酸抽出溶液を得る核酸抽出段階を含む。 In the nucleic acid extraction step S10, the dispenser moving mechanism 1020 fixed to the gantry 1019 moves in the x direction shown in FIG. The dispensing chip moving mechanism 1020 moves and the dispensing tip 1009 is mounted on the nozzle 1013 of the dispensing machine 1014, and the dispensing chip moving mechanism 1020 moves and contains the biological sample tube 1011. A nucleic acid extraction step of obtaining a nucleic acid extraction solution by moving / mixing the reagents required for purification from the prepared biological sample and extraction reagent cartridge 1007 is included.
 増幅ステップS20について、核酸抽出ステップS10の生体試料及び試薬の混合段階は、分注機移動機構1020が移動して、分注機1014のノズル1013に分注チップ1010を装着し、核酸抽出ステップS10により得られた核酸抽出溶液をホルダ11によって保持された反応容器7に移送させる。その後、反応試薬容器1005から反応試薬を分注して反応容器7に吐出し核酸抽出溶液と混合する。そして、ガントリ1019に固定された光測定移動機構1021がx方向に移動し、蓋装着機構1017が蓋ラック1022に架設された蓋8を取得し、反応容器7に設置する。 Regarding the amplification step S20, in the mixing step of the biological sample and the reagent in the nucleic acid extraction step S10, the dispenser moving mechanism 1020 moves, the dispensing chip 1010 is attached to the nozzle 1013 of the dispensing machine 1014, and the nucleic acid extraction step S10 The nucleic acid extraction solution obtained in 1) is transferred to the reaction vessel 7 held by the holder 11. Then, the reaction reagent is dispensed from the reaction reagent container 1005, discharged into the reaction container 7, and mixed with the nucleic acid extraction solution. Then, the optical measurement moving mechanism 1021 fixed to the gantry 1019 moves in the x direction, and the lid mounting mechanism 1017 acquires the lid 8 erected on the lid rack 1022 and installs it in the reaction vessel 7.
 そして、蓋装着の完了後に行う温度調節段階は、温調素子12によってホルダ11が反応容器7内部にある核酸を含む反応溶液を温調して、反応溶液中の核酸を増幅する。この際、反応溶液の蒸発を防止するためにヒータ13も温度調節される段階を含んで行われる。 Then, in the temperature control step performed after the lid attachment is completed, the holder 11 temperature-controls the reaction solution containing the nucleic acid inside the reaction vessel 7 by the temperature control element 12 to amplify the nucleic acid in the reaction solution. At this time, the heater 13 is also temperature-controlled to prevent evaporation of the reaction solution.
 光測定ステップS30は増幅ステップS20の温度調節が開始された時点から行う。検出ヘッド1は蛍光導光路15と照射導光路14と紫外光導光路4とを有しており、光測定架台1016に取り付けられた受発光ホルダ1023に配置された光源(測定光光源)2から発生(出射)された測定用の光は、蛍光導光路15に導かれて反応容器7内に照射される。 The light measurement step S30 is performed from the time when the temperature control in the amplification step S20 is started. The detection head 1 has a fluorescence light guide path 15, an irradiation light guide path 14, and an ultraviolet light light guide path 4, and is generated from a light source (measurement light light source) 2 arranged in a light receiving / receiving holder 1023 attached to the light measurement stand 1016. The (emitted) measurement light is guided by the fluorescent light guide path 15 and irradiated into the reaction vessel 7.
 照射された測定用の光は反応溶7内の反応溶液に含まれた蛍光物質の励起に使用され、蛍光物質から生じた蛍光は蛍光導光路15を通り蛍光導光路15に導かれて光測定架台1016に取り付けられた受発光ホルダ1023に配置された受光素子3に受光される。受光された光はその光強度から反応溶液の吸光度が求められる。反応溶液の吸光度は、光データ解析部1018により求められる。 The irradiated measurement light is used to excite the fluorescent substance contained in the reaction solution in the reaction solution 7, and the fluorescence generated from the fluorescent substance is guided to the fluorescent light guide path 15 through the fluorescent light guide path 15 for light measurement. Light is received by the light receiving element 3 arranged in the light receiving / receiving holder 1023 attached to the gantry 1016. The absorbance of the reaction solution of the received light can be determined from the light intensity. Absorbance of the reaction solution is determined by light data analysis unit 1018 4.
 紫外光照射ステップS40において、光測定ステップS30が完了した後に反応容器7に収納された核酸増幅物に対し、受発光ホルダ1023に配置された紫外光光源9から発生(出射)された紫外光が、紫外光を導く紫外光導光路4を通過して反応容器7内に照射される。反応容器7内に照射された紫外光は反応溶液内の核酸増幅産物を光化学反応で不活化させる。 In the ultraviolet light irradiation step S40, the ultraviolet light generated (emitted) from the ultraviolet light source 9 arranged in the light receiving / receiving holder 1023 is emitted from the nucleic acid amplification product stored in the reaction vessel 7 after the light measurement step S30 is completed. , The reaction vessel 7 is irradiated through the ultraviolet light guide path 4 that guides ultraviolet light. The ultraviolet light irradiated into the reaction vessel 7 inactivates the nucleic acid amplification product in the reaction solution by a photochemical reaction.
 温調素子12によってホルダ11を介して反応容器7を温調する。温調された反応容器7は内部にある反応溶液の温度を温調させる。ヒータ13は密閉蓋8が結露しない温度に保温される。この状態で紫外光を照射してもよい。 The temperature control element 12 controls the temperature of the reaction vessel 7 via the holder 11. The temperature-controlled reaction vessel 7 controls the temperature of the reaction solution inside. The heater 13 is kept warm at a temperature at which the sealing lid 8 does not condense. In this state, ultraviolet light may be irradiated.
 紫外光源9からの紫外光を反応容器7内の溶液に照射する状態において、温調素子12により、反応容器7内の溶液に熱(95°C~98°C)を加えることにより、核酸の不活化速度を上昇させ、不活化処理の時間短縮を行うことができる。 In a state where the solution in the reaction vessel 7 is irradiated with ultraviolet light from the ultraviolet light source 9, the temperature control element 12 applies heat (95 ° C to 98 ° C) to the solution in the reaction vessel 7 to obtain the nucleic acid. The inactivation speed can be increased and the inactivation processing time can be shortened.
 図4Bは、図4Aに示した核酸試料処理方法の変形例である。図4Bに示した方法は、図4Aの核酸抽出ステップS10を省略した方法であり、他のステップは図4Aに示したステップと同様である。 FIG. 4B is a modified example of the nucleic acid sample processing method shown in FIG. 4A. The method shown in FIG. 4B is a method in which the nucleic acid extraction step S10 of FIG. 4A is omitted, and the other steps are the same as the steps shown in FIG. 4A.
 図4Bに示した核酸抽出ステップを含まない核酸試料処理方法もありうる。これは、他の装置により、既に核酸抽出処理がなされている場合の核酸試料処理方法である。 There may be a nucleic acid sample processing method that does not include the nucleic acid extraction step shown in FIG. 4B. This is a nucleic acid sample processing method when the nucleic acid extraction processing has already been performed by another device.
 図5Aは受発光ホルダ1023を説明する図である。図5Aにおいて、受発光ホルダ1023は光測定架台1016に取り付けられている。受発光ホルダ1023には、光源2(2~2)と、受光素子3(3~3)と、紫外光光源9(9~9)とが配置されており、それぞれには照射導光路14(14~14)と、蛍光導光路15(15~15)と、紫外光導光路4(4~4)とが接続されている。 FIG. 5A is a diagram illustrating a light receiving / receiving holder 1023. In FIG. 5A, the light receiving / receiving holder 1023 is attached to the light measuring stand 1016. The light emitting and receiving holder 1023, a light source 2 (2 1 ~ 2 n) , and the light receiving element 3 (3 1 ~ 3 n) , and a is arranged an ultraviolet light source 9 (9 1 ~ 9 n) , respectively irradiating light guide 14 and (14 1 ~ 14 n), and fluorescent light guiding path 15 (15 1 ~ 15 n) , ultraviolet light guiding path 4 and (4 1 ~ 4 n) are connected.
 照射導光路14~14と、蛍光導光路15~15と、紫外光導光路4~4の片端は導光路を束ねる機能を有すフェルール10(10~10)に組み付けられ、フェルール10~10は検出ヘッド1~1に接続されている。検出ヘッド1~1は上下移動モータ17により、上下移動が行われる。 One end of the irradiation light guide path 14 1 to 14 n , the fluorescent light guide path 15 1 to 15 n, and the ultraviolet light light path 4 1 to 4 n is assembled to the ferrule 10 (10 1 to 10 n ) having a function of bundling the light guide path. The ferrules 10 1 to 10 n are connected to the detection heads 1 1 to 1 n. The detection heads 1 1 to 1 n are moved up and down by the vertical movement motor 17.
 図5Bは図5Aに示した例の変形例を示す図である。図5Bに示した例は、受発光ホルダ1023は光測定架台1016には、取り付けられていない。このように、受発光ホルダ1023に光測定架台1016が取り付けられていなくてもよい。このように構成すれば、受発光ホルダ1023を、光測定架台1016以外の他の位置に取り付けることが可能となる。 FIG. 5B is a diagram showing a modified example of the example shown in FIG. 5A. In the example shown in FIG. 5B, the light receiving / receiving holder 1023 is not attached to the light measuring stand 1016. As described above, the light measurement stand 1016 may not be attached to the light receiving / receiving holder 1023. With this configuration, the light receiving / receiving holder 1023 can be attached to a position other than the light measuring stand 1016.
 図6Aは、実施例1におけるフェルール10の横断面図であり、図6Bは実施例1における光測定機構1016の基板1015に配置された受光素子3、光源2、紫外光源9、フェルール10を含む検出ヘッド1の概略縦断面図である。 FIG. 6A is a cross-sectional view of the ferrule 10 according to the first embodiment, and FIG. 6B includes a light receiving element 3, a light source 2, an ultraviolet light source 9, and a ferrule 10 arranged on a substrate 1015 of the optical measurement mechanism 1016 according to the first embodiment. It is a schematic vertical sectional view of the detection head 1.
 図6A及び図6Bにおいて、検出ヘッド1の内部には光ファイバなどのフレキシビリティのある素材で構成された紫外光導光路4、照射導光路14、蛍光導光路15がフェルール10によって束ねられ、基板1015に形成されたハウジング1025a、1025b、1025cに備えられている。 In FIGS. 6A and 6B, an ultraviolet light guide path 4, an irradiation light guide path 14, and a fluorescence light guide path 15 made of a flexible material such as an optical fiber are bundled by a ferrule 10 inside the detection head 1, and a substrate 1015 is formed. It is provided in the housings 1025a, 1025b, and 1025c formed in.
 紫外光導光路4は石英などの紫外光を比較的透過させる素材を用いる。照射導光路14、蛍光導光路15は比較的可視光を透過させるプラスチックファイバや石英ファイバなどを用いる。 The ultraviolet light light guide path 4 uses a material such as quartz that relatively transmits ultraviolet light. The irradiation light guide path 14 and the fluorescence light guide path 15 use plastic fibers, quartz fibers, or the like that relatively transmit visible light.
 紫外光導光路4を通過して出射した紫外光の、他の部位による反射光が、照射導光路14及び蛍光導光路15に入射しないようにロングパスフィルタ5が照射導光路14、蛍光導光路15の端面に設置されている。密閉蓋8側の紫外光導光路4の端面は、照射導光路14、蛍光導光路15がロングパスフィルタ5と接触している端面と比べて密閉蓋8側に出っ張っている。もしくは、紫外光導光路4の端面は、照射導光路14の端面及び蛍光導光路15の端面と同一面となるように形成されていてもよい。 The long pass filter 5 of the irradiation light guide path 14 and the fluorescence light guide path 15 prevents the reflected light of the ultraviolet light emitted through the ultraviolet light light guide path 4 from other parts from entering the irradiation light guide path 14 and the fluorescence light guide path 15. It is installed on the end face. The end face of the ultraviolet light light guide path 4 on the sealing lid 8 side protrudes toward the sealing lid 8 side as compared with the end face where the irradiation light guide path 14 and the fluorescence light guide path 15 are in contact with the long pass filter 5. Alternatively, the end face of the ultraviolet light light guide path 4 may be formed so as to be flush with the end face of the irradiation light guide path 14 and the end face of the fluorescence light guide path 15.
 光源2と受光素子3と紫外光光源9は基板1015上に配置されている。 The light source 2, the light receiving element 3, and the ultraviolet light source 9 are arranged on the substrate 1015.
 光源2はハウジング1025aに備えられており、照射導光路14はシングルフェルール1034aによって固定されている。そして、シングルフェルール1034aはハウジング1025aに固定されている。ハウジング1025aとシングルフェルール1034aは光源2と照射導光路14の光軸を合わせるための機構である。 The light source 2 is provided in the housing 1025a, and the irradiation light guide path 14 is fixed by the single ferrule 1034a. The single ferrule 1034a is fixed to the housing 1025a. The housing 1025a and the single ferrule 1034a are mechanisms for aligning the optical axes of the light source 2 and the irradiation light guide path 14.
 受光素子3はハウジング1025bに備えられており、蛍光導光路15はシングルフェルール1034bによって固定されている。そして、シングルフェルール1034bはハウジング1025bに接続している。ハウジング1025bとシングルフェルール1034bは、受光素子3と蛍光導光路15の光軸を合わせるための機構である。 The light receiving element 3 is provided in the housing 1025b, and the fluorescent light guide path 15 is fixed by the single ferrule 1034b. The single ferrule 1034b is connected to the housing 1025b. The housing 1025b and the single ferrule 1034b are mechanisms for aligning the optical axes of the light receiving element 3 and the fluorescent light guide path 15.
 紫外光光源9はハウジング1025cに備えられており、紫外光導光路4はシングルフェルール1034cによって固定されている。そして、シングルフェルール1034cはハウジング1025cに接続している。ハウジング1025cとシングルフェルール1034cは、紫外光光源9と、紫外光導光路4の光軸を合わせるための機構である。 The ultraviolet light source 9 is provided in the housing 1025c, and the ultraviolet light light path 4 is fixed by the single ferrule 1034c. The single ferrule 1034c is connected to the housing 1025c. The housing 1025c and the single ferrule 1034c are mechanisms for aligning the optical axes of the ultraviolet light source 9 and the ultraviolet light guide path 4.
 核酸を含む溶液6の蛍光検出を行う場合は、光源2から発した光が照射導光路14を通り、その後、検出ヘッド1に固定された照射導光路14の端面からロングパスフィルタ5を通過してレンズ16で集光される。そして、レンズ16で集光された光は密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。 When the fluorescence of the solution 6 containing nucleic acid is detected, the light emitted from the light source 2 passes through the irradiation light guide path 14, and then passes through the long pass filter 5 from the end face of the irradiation light guide path 14 fixed to the detection head 1. The light is collected by the lens 16. Then, the light collected by the lens 16 passes through the airtight lid 8 and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7.
 光源2から発せられた光によって核酸を含む溶液6の対象物質から蛍光が発せられる。その蛍光は検出ヘッド1のレンズ16によって集光され、ロングパスフィルタ5を通過した後に、蛍光導波路15に入射して基板1015上にある受光素子3に照射される。 Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2. The fluorescence is focused by the lens 16 of the detection head 1, passes through the long pass filter 5, and then enters the fluorescence waveguide 15 and irradiates the light receiving element 3 on the substrate 1015.
 紫外光は、紫外光光源9から発せられ、紫外光導光路4を通りレンズ16で集光され密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。反応容器7は紫外光に対して遮光性を有するので紫外光は反応容器7内部のみに散乱し、反応容器7内の核酸の増幅能力を失わせる。また、散乱した紫外光はフェルール10で反応容器7の内部に反射しもしくはロングパスフィルタ5で反射され、照射導光路14と蛍光導光路15と光源2と受光素子3には紫外光は照射されない。 The ultraviolet light is emitted from the ultraviolet light source 9, passes through the ultraviolet light guide path 4, is condensed by the lens 16, passes through the airtight lid 8, and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7. Since the reaction vessel 7 has a light-shielding property against ultraviolet light, the ultraviolet light is scattered only inside the reaction vessel 7 and loses the ability to amplify the nucleic acid in the reaction vessel 7. Further, the scattered ultraviolet light is reflected inside the reaction vessel 7 by the ferrule 10 or reflected by the long pass filter 5, and the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are not irradiated with ultraviolet light.
 よって、照射導光路14と蛍光導光路15と光源2と受光素子3は、紫外光による光老化の影響を与えられることはない。 Therefore, the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are not affected by photoaging due to ultraviolet light.
 以上のように、本発明の実施例1によれば、吸光度を求めるため、光源2からの光を反応容器7内の溶液6に照射して、蛍光を、蛍光導光路15を介して受光素子3に照射し、反応容器7内の核酸の増幅能力を失わせるために、 紫外光を、紫外光導光路4を介して遮光性を有する反応容器7内に照射する構成となっている。 As described above, according to the first embodiment of the present invention, in order to obtain the absorbance, the solution 6 in the reaction vessel 7 is irradiated with the light from the light source 2, and the fluorescence is emitted through the fluorescent light guide path 15. In order to irradiate No. 3 and lose the ability to amplify the nucleic acid in the reaction vessel 7, ultraviolet light is irradiated into the reaction vessel 7 having a light-shielding property through the ultraviolet light light path 4.
 反応容器7は遮光性を有し、照射導光路14、蛍光導光路15、測定用光源2及び受光素子3は、ロングパスフィルタ5により、反応容器7で散乱する紫外光から保護される構成となっている。 The reaction vessel 7 has a light-shielding property, and the irradiation light guide path 14, the fluorescence light guide path 15, the measurement light source 2 and the light receiving element 3 are protected from the ultraviolet light scattered in the reaction vessel 7 by the long pass filter 5. ing.
 上記構成により、反応容器7の外部に紫外光が漏れることが抑制され、核酸試料処理装置内における部品の光老化を抑制し、かつ紫外光照射により容器内の核酸の増幅能力を失わせることができる。 With the above configuration, it is possible to suppress leakage of ultraviolet light to the outside of the reaction vessel 7, suppress photoaging of parts in the nucleic acid sample processing apparatus, and lose the ability to amplify nucleic acid in the vessel by irradiation with ultraviolet light. it can.
 つまり、本発明の実施例1によれば、紫外光を反応容器内部に収容された核酸増幅物に効果的に照射し、反応容器外部の部品への紫外線の照射を抑制することが可能であり、部品の長寿命化が可能な核酸試料処理装置および核酸試料処理方法を実現することができる。 That is, according to the first embodiment of the present invention, it is possible to effectively irradiate the nucleic acid amplification product contained in the reaction vessel with ultraviolet light and suppress the irradiation of the components outside the reaction vessel with ultraviolet rays. , A nucleic acid sample processing apparatus and a nucleic acid sample processing method capable of extending the life of parts can be realized.
 また、標的核酸の検出後、核酸増幅物の核酸増幅能力の低減が可能であり、コンタミネーションリスクの低減が可能となる。 Further, after the detection of the target nucleic acid, the nucleic acid amplification ability of the nucleic acid amplification product can be reduced, and the contamination risk can be reduced.
 また、核酸の不活化処理において、温調素子12により、反応容器7内の溶液に熱を加えることにより、核酸の不活化速度を上昇させ、不活化処理の時間短縮を行うことができる。 Further, in the nucleic acid inactivation treatment, the inactivation rate of the nucleic acid can be increased and the inactivation treatment time can be shortened by applying heat to the solution in the reaction vessel 7 by the temperature control element 12.
 さらに、上記構成により、紫外線が紫外光導光路4、蓋8、反応容器7外に照射されることが抑制されるので、核酸試料処理装置の操作者を紫外線から保護することができる。 Further, the above configuration suppresses the irradiation of ultraviolet rays to the outside of the ultraviolet light guide path 4, the lid 8, and the reaction vessel 7, so that the operator of the nucleic acid sample processing apparatus can be protected from ultraviolet rays.
 (実施例2)
 次に、本発明の実施例2について説明する。
(Example 2)
Next, Example 2 of the present invention will be described.
 図7Aは、実施例2におけるフェルール10の横断面図であり、図7Bは実施例2における基板1015に配置された部品、フェルール10を含む検出ヘッド1の概略縦断面図である。 FIG. 7A is a cross-sectional view of the ferrule 10 in the second embodiment, and FIG. 7B is a schematic vertical cross-sectional view of the detection head 1 including the ferrule 10 and the parts arranged on the substrate 1015 in the second embodiment.
 実施例1と実施例2との相違点は、実施例2においては、検出ヘッド1に紫外光光源9、光源2、受光素子3が備わっている点と、紫外光光源9、光源2、及び受光素子3は、基板1015と電気線で接続されているところである。 The difference between the first embodiment and the second embodiment is that, in the second embodiment, the detection head 1 is provided with the ultraviolet light source 9, the light source 2, and the light receiving element 3, and the ultraviolet light source 9, the light source 2, and the light source 2. The light receiving element 3 is connected to the substrate 1015 by an electric wire.
 その他の構成は、実施例1と実施例2とは同様となっている。 Other configurations are the same as in Example 1 and Example 2.
 図7Aにおいて、検出ヘッド1の内部には、紫外光導光路4、照射導光路14、蛍光導光路15がフェルール10によって束ねられ、ハウジング1025に備わっている。 In FIG. 7A, inside the detection head 1, an ultraviolet light guide path 4, an irradiation light guide path 14, and a fluorescence light guide path 15 are bundled by a ferrule 10 and provided in a housing 1025.
 検出ヘッド1は、測定用光源2、照射導光路14、受光素子3、蛍光導光路15、紫外光光源9、紫外光導光路4及びロングパスフィルタ5を支持する。 The detection head 1 supports a measurement light source 2, an irradiation light guide path 14, a light receiving element 3, a fluorescence light guide path 15, an ultraviolet light source 9, an ultraviolet light light path 4, and a long pass filter 5.
 紫外光導光路4は石英などの紫外光を比較的透過させる素材の光ファイバやライトパイプを用いる。照射導光路14、蛍光導光路15は比較的可視光を透過させるプラスチックファイバやライトパイプなどを使用する。 The ultraviolet light light guide path 4 uses an optical fiber or a light pipe made of a material that relatively transmits ultraviolet light such as quartz. The irradiation light guide path 14 and the fluorescence light guide path 15 use a plastic fiber, a light pipe, or the like that relatively transmits visible light.
 紫外光の反射が通過しないようにロングパスフィルタ5が照射導光路14、蛍光導光路15の端面に設置されている。実施例1と同様に、密閉蓋8側の紫外光導光路4の端面は、照射導光路14、蛍光導光路15がロングパスフィルタ5と接触している端面と比べて密閉蓋8側に出っ張っている。もしくは、紫外光導光路4の端面は、照射導光路14の端面及び蛍光導光路15の端面と同一面となるように形成されていてもよい。 A long pass filter 5 is installed on the end faces of the irradiation light guide path 14 and the fluorescence light guide path 15 so that the reflection of ultraviolet light does not pass through. Similar to the first embodiment, the end surface of the ultraviolet light guide path 4 on the sealing lid 8 side protrudes toward the sealing lid 8 side as compared with the end surface where the irradiation light guide path 14 and the fluorescence light guide path 15 are in contact with the long pass filter 5. .. Alternatively, the end face of the ultraviolet light light guide path 4 may be formed so as to be flush with the end face of the irradiation light guide path 14 and the end face of the fluorescence light guide path 15.
 光源2と受光素子3と紫外光光源9は検出ヘッド1に配置されている。 The light source 2, the light receiving element 3, and the ultraviolet light source 9 are arranged in the detection head 1.
 光源2は、照射導光路14と光学的に接続するように設置する。光源2は光源用電気線ケーブル1024を介して基板1015に配置された光源用プラグ1026に接続され、基板1015に配置された光源用レセプタクル1027と光源用プラグ1026とが接続される。 The light source 2 is installed so as to be optically connected to the irradiation light guide path 14. The light source 2 is connected to the light source plug 1026 arranged on the substrate 1015 via the light source electric wire cable 1024, and the light source receptacle 1027 arranged on the substrate 1015 and the light source plug 1026 are connected.
 これにより、光源2と光源用レセプタクル1027とは電気的に接続される。 As a result, the light source 2 and the light source receptacle 1027 are electrically connected.
 受光素子3は、蛍光導光路15と光学的に接続するように設置する。また、受光素子3は受光素子用電気線ケーブル1028を介して基板1015に配置された受光素子用プラグ1029に接続され、基板1015に配置された受光素子用レセプタクル1030と接続される。 The light receiving element 3 is installed so as to be optically connected to the fluorescent light guide path 15. Further, the light receiving element 3 is connected to the light receiving element plug 1029 arranged on the substrate 1015 via the light receiving element electric wire cable 1028, and is connected to the light receiving element receptacle 1030 arranged on the substrate 1015.
 これにより、受光素子3と受光素子用レセプタクル1030とが電気的に接続される。 As a result, the light receiving element 3 and the receptacle 1030 for the light receiving element are electrically connected.
 紫外光光源9は、紫外光導光路4と光学的に接続するように設置する。また、紫外光光源9は紫外光光源用電気線ケーブル1031を介して基板1015に配置された紫外光光源用プラグ1032に接続され、基板1015に配置された紫外光光源用レセプタクル1033に接続される。 The ultraviolet light source 9 is installed so as to be optically connected to the ultraviolet light guide path 4. Further, the ultraviolet light source 9 is connected to the ultraviolet light source plug 1032 arranged on the substrate 1015 via the ultraviolet light source electric wire cable 1031, and is connected to the ultraviolet light source receptacle 1033 arranged on the substrate 1015. ..
 これにより、紫外光光源9と紫外光光源用レセプタクル1033とが接続される。 As a result, the ultraviolet light source 9 and the receptacle 1033 for the ultraviolet light source are connected.
 核酸を含む溶液6の蛍光検出を行う場合は、光源2から発した光が照射導光路14を通り、照射導光路14の端面からロングパスフィルタ5を通過し、レンズ16で集光されて密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。 When the fluorescence of the solution 6 containing nucleic acid is detected, the light emitted from the light source 2 passes through the irradiation light guide path 14, passes through the long pass filter 5 from the end face of the irradiation light guide path 14, is collected by the lens 16 and is collected by the sealing lid. The solution 6 containing the nucleic acid that has passed through 8 and is contained in the reaction vessel 7 is irradiated.
 光源2から発せられた光によって核酸を含む溶液6の対象物質から蛍光が発せられる。その蛍光は検出ヘッド1のレンズ16によって集光され、蛍光導波路15に入射して検出ヘッド1に配置された受光素子3に照射される。 Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2. The fluorescence is condensed by the lens 16 of the detection head 1, enters the fluorescence waveguide 15, and is applied to the light receiving element 3 arranged in the detection head 1.
 紫外光は、紫外光光源9から発せられ、紫外光導光路4を通りレンズ16で集光され、密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。 The ultraviolet light is emitted from the ultraviolet light source 9, passes through the ultraviolet light guide path 4, is focused by the lens 16, passes through the airtight lid 8, and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7.
 反応容器7は紫外光に対して遮光性を有するので、反応容器7内に照射された紫外光は反応容器7の内部のみに散乱する。散乱した紫外光はフェルール10で反応容器7の内部に反射するか、ロングパスフィルタ5で反射され、照射導光路14と蛍光導光路15と光源2と受光素子3には紫外光に照射されない。 Since the reaction vessel 7 has a light-shielding property against ultraviolet light, the ultraviolet light irradiated into the reaction vessel 7 is scattered only inside the reaction vessel 7. The scattered ultraviolet light is reflected inside the reaction vessel 7 by the ferrule 10 or reflected by the long pass filter 5, and the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are not irradiated with the ultraviolet light.
 よって、照射導光路14と蛍光導光路15と光源2と受光素子3に紫外光による光老化の影響を与えない構成となっている。 Therefore, the irradiation light guide path 14, the fluorescence light guide path 15, the light source 2, and the light receiving element 3 are configured not to be affected by photoaging due to ultraviolet light.
 上記構成により、実施例1と同様に、反応容器7の外部に紫外光が漏れないので、核酸試料処理装置内の部品を光老化させずに紫外光照射により容器内の核酸の増幅能力を失わせることができる。 With the above configuration, as in Example 1, ultraviolet light does not leak to the outside of the reaction vessel 7, so that the nucleic acid amplification ability in the vessel is lost by ultraviolet light irradiation without photoaging the parts in the nucleic acid sample processing apparatus. Can be made.
 実施例2は、実施例1と同様な効果を有する他、検出ヘッド1と基板1015とは、比較的に柔軟な光源用電気線ケーブル1024、受光素子用電気線ケーブル1028、及び紫外線光源用電気線ケーブル1031により接続されているため、検出ヘッド1の移動が容易であり、検出ヘッド1の配置の自由度を向上することができるという効果がある。 The second embodiment has the same effect as that of the first embodiment, and the detection head 1 and the substrate 1015 have a relatively flexible electric wire cable 1024 for a light source, an electric wire cable 1028 for a light receiving element, and electricity for an ultraviolet light source. Since it is connected by the wire cable 1031, the detection head 1 can be easily moved, and there is an effect that the degree of freedom in arranging the detection head 1 can be improved.
 さらに、実施例2は、柔軟な光源用電気線ケーブル1024、受光素子用電気線ケーブル1028、及び紫外線光源用電気線ケーブル1031を用いているため、実施例1に比較して、検出ヘッド1のねじれ応力に対して、ケーブル1024等は柔軟性を有する。よって、実施例2は、検出ヘッド1の長寿命化に有効な構成である。 Further, in the second embodiment, since the flexible electric wire cable 1024 for the light source, the electric wire cable 1028 for the light receiving element, and the electric wire cable 1031 for the ultraviolet light source are used, the detection head 1 is compared with the first embodiment. Cables such as 1024 have flexibility against torsional stress. Therefore, the second embodiment has a configuration effective for extending the life of the detection head 1.
 (実施例3)
 次に、本発明の実施例3について説明する。
(Example 3)
Next, Example 3 of the present invention will be described.
 図8は、実施例3における基板1015に配置された部品、フェルール10を含む検出ヘッド1の概略縦断面図である。 FIG. 8 is a schematic vertical cross-sectional view of the detection head 1 including the ferrule 10 which is a component arranged on the substrate 1015 in the third embodiment.
 実施例1と実施例3との相違点は、ロングパスフィルタ5が複数であることと、複数のロングパスフィルタ5の配置位置が異なっていることである。実施例3においては、紫外光による光老化から守るべき部品には、照射導光路14と蛍光導光路15は含めない。実施例3においては、紫外光による光老化から守るべき部品は光源2と受光素子3とである。 The difference between the first embodiment and the third embodiment is that there are a plurality of long pass filters 5 and that the arrangement positions of the plurality of long pass filters 5 are different. In the third embodiment, the irradiation light guide path 14 and the fluorescence light guide path 15 are not included in the parts to be protected from photoaging due to ultraviolet light. In the third embodiment, the components to be protected from photoaging due to ultraviolet light are the light source 2 and the light receiving element 3.
 複数のロングパスフィルタ5のうちの一つは光源2の近傍に配置され、複数のロングパスフィルタ5のうちの他の一つは受光素子3の近傍に配置される。この場合、紫外光からの劣化を避けるために、照射導光路14、蛍光導光路15は紫外光の影響が極めて少ない素材(石英製のファイバ、石英製のライトパイプ等)で構成され、フェルール10も紫外光の影響が少ないジルコニア等の素材で構成される。 One of the plurality of long pass filters 5 is arranged in the vicinity of the light source 2, and the other one of the plurality of long pass filters 5 is arranged in the vicinity of the light receiving element 3. In this case, in order to avoid deterioration from ultraviolet light, the irradiation light guide path 14 and the fluorescent light guide path 15 are made of a material (quartz fiber, quartz light pipe, etc.) that is extremely less affected by ultraviolet light, and the ferrule 10 Is also composed of materials such as zirconia, which are less affected by ultraviolet light.
 その他の構成は、実施例1と実施例3とは同様となっている。 Other configurations are the same as in Example 1 and Example 3.
 図8において、検出ヘッド1の内部には光ファイバなどのフレキシビリティのある部材を想定した、紫外光導光路4、照射導光路14、蛍光導光路15がフェルール10によって束ねられ、ハウジング1025に配置されている。 In FIG. 8, an ultraviolet light light guide path 4, an irradiation light guide path 14, and a fluorescent light guide path 15 are bundled by a ferrule 10 and arranged in a housing 1025, assuming a flexible member such as an optical fiber inside the detection head 1. ing.
 紫外光導光路4、照射導光路14、蛍光導光路15は石英などの紫外光を比較的透過させる素材が用いられている。 The ultraviolet light light guide path 4, the irradiation light guide path 14, and the fluorescent light guide path 15 are made of a material that relatively transmits ultraviolet light such as quartz.
 また、紫外光の反射光が通過しないようにロングパスフィルタ5が光源2、受光素子3の端面に配置されている。 Further, a long pass filter 5 is arranged on the end faces of the light source 2 and the light receiving element 3 so that the reflected light of ultraviolet light does not pass through.
 紫外光導光路4、照射導光路14、蛍光導光路15はフェルール10の端面と面一となっている。 The ultraviolet light guide path 4, the irradiation light guide path 14, and the fluorescence light guide path 15 are flush with the end face of the ferrule 10.
 光源2と受光素子3と紫外光光源9は基板1015上に配置されている。 The light source 2, the light receiving element 3, and the ultraviolet light source 9 are arranged on the substrate 1015.
 光源2にはハウジング1025aが配置されており、照射導光路14はシングルフェルール1034aによって固定されている。シングルフェルール1034aはハウジング1025aに接続している。ハウジング1025aとシングルフェルール1034aは光源2と照射導光路14の光軸を合わせるための機構である。ロングパスフィルタ5はハウジング1025aに配置されており光源2と照射導光路14の間に設置される。 A housing 1025a is arranged in the light source 2, and the irradiation light guide path 14 is fixed by a single ferrule 1034a. The single ferrule 1034a is connected to the housing 1025a. The housing 1025a and the single ferrule 1034a are mechanisms for aligning the optical axes of the light source 2 and the irradiation light guide path 14. The long pass filter 5 is arranged in the housing 1025a and is installed between the light source 2 and the irradiation light guide path 14.
 受光素子3にはハウジング1025bが配置され、蛍光導光路15はシングルフェルール1034bによって固定されている。シングルフェルール1034bはハウジング1025bに接続されている。ハウジング1025bとシングルフェルール1034bは受光素子3と蛍光導光路15の光軸を合わせるための機構である。 A housing 1025b is arranged on the light receiving element 3, and the fluorescent light guide path 15 is fixed by a single ferrule 1034b. The single ferrule 1034b is connected to the housing 1025b. The housing 1025b and the single ferrule 1034b are mechanisms for aligning the optical axes of the light receiving element 3 and the fluorescent light guide path 15.
 ロングパスフィルタ5はハウジング1025bに配置されており受光素子2と、蛍光導光路14の間に設置される。 The long pass filter 5 is arranged in the housing 1025b and is installed between the light receiving element 2 and the fluorescent light guide path 14.
 紫外光光源9にはハウジング1025cが配置され、紫外光導光路4はシングルフェルール1034cによって固定されている。シングルフェルール1034cはハウジング1025cに接続されている。 A housing 1025c is arranged in the ultraviolet light source 9, and the ultraviolet light guide path 4 is fixed by a single ferrule 1034c. The single ferrule 1034c is connected to the housing 1025c.
 ハウジング1025cとシングルフェルール1034cは紫外光光源9と、紫外光導光路4の光軸を合わせるための機構である。ロングパスフィルタ5はハウジング1025cに配置されており紫外光光源9と、紫外光導光路4の間に設置される。 The housing 1025c and the single ferrule 1034c are mechanisms for aligning the optical axes of the ultraviolet light source 9 and the ultraviolet light guide path 4. The long pass filter 5 is arranged in the housing 1025c and is installed between the ultraviolet light source 9 and the ultraviolet light light guide path 4.
 核酸を含む溶液6の蛍光検出を行う場合は、光源2から発した光はロングパスフィルタ5を通過し、照射導光路14を通り、検出ヘッド1に配置された照射導光路14の端面からレンズ16で集光されて密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射する。 When the fluorescence of the solution 6 containing nucleic acid is detected, the light emitted from the light source 2 passes through the long pass filter 5, passes through the irradiation light guide path 14, and the lens 16 from the end face of the irradiation light guide path 14 arranged in the detection head 1. The solution 6 containing the nucleic acid contained in the reaction vessel 7 is irradiated with the light collected by the light source and passed through the closed lid 8.
 光源2から発せられた光によって核酸を含む溶液6の対象物質から蛍光が発せられる。その蛍光は検出ヘッド1のレンズ16によって集光され、蛍光導波路15に入射して、基板1015上にあるロングパスフィルタ5を介して受光素子3に照射される。 Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2. The fluorescence is condensed by the lens 16 of the detection head 1, enters the fluorescence waveguide 15, and is irradiated to the light receiving element 3 through the long pass filter 5 on the substrate 1015.
 紫外光は、紫外光光源9から発せられ、紫外光導光路4を通りレンズ16で集光され密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。反応容器7は紫外光の遮光性を有するので紫外光は反応容器7内部のみに散乱する。散乱した紫外光はフェルール10で反応容器7の内部に反射するか、照射導光路14と蛍光導光路15を通過しロングパスフィルタ5で反射され、光源2と受光素子3には紫外光に照射されない。 The ultraviolet light is emitted from the ultraviolet light source 9, passes through the ultraviolet light guide path 4, is condensed by the lens 16, passes through the airtight lid 8, and is irradiated to the solution 6 containing the nucleic acid contained in the reaction vessel 7. Since the reaction vessel 7 has a light-shielding property of ultraviolet light, the ultraviolet light is scattered only inside the reaction vessel 7. The scattered ultraviolet light is reflected inside the reaction vessel 7 by the ferrule 10, or passes through the irradiation light guide path 14 and the fluorescence light guide path 15 and is reflected by the long pass filter 5, and the light source 2 and the light receiving element 3 are not irradiated with the ultraviolet light. ..
 よって、光源2と受光素子3に紫外光による光老化の影響を与えない。上記により反応容器7の外部に紫外光が漏れないので、装置内の部品を光老化させずに紫外光照射により容器7内の核酸の増幅能力を失わせることができる。 Therefore, the light source 2 and the light receiving element 3 are not affected by photoaging due to ultraviolet light. Since the ultraviolet light does not leak to the outside of the reaction vessel 7 as described above, the ability to amplify the nucleic acid in the vessel 7 can be lost by the ultraviolet light irradiation without photoaging the parts in the apparatus.
 実施例3によっても、紫外光を反応容器内部に収容された核酸増幅物に効果的に照射し、反応容器外部の部品への紫外線の照射を抑制することが可能な核酸試料処理装置および核酸試料処理方法を実現することができる。 Also in Example 3, a nucleic acid sample processing apparatus and a nucleic acid sample capable of effectively irradiating the nucleic acid amplification product contained in the reaction vessel with ultraviolet light and suppressing the irradiation of the components outside the reaction vessel with ultraviolet rays. The processing method can be realized.
 (実施例4)
 次に、本発明の実施例4について説明する。
(Example 4)
Next, Example 4 of the present invention will be described.
 図9Aは、実施例4におけるフェルール10a及び10bの横断面図であり、図9Bは実施例4における基板1015に配置された部品、フェルール10a及び10bを含む検出ヘッド1の概略縦断面図である。 9A is a cross-sectional view of the ferrules 10a and 10b in the fourth embodiment, and FIG. 9B is a schematic vertical cross-sectional view of the detection head 1 including the components, the ferrules 10a and 10b arranged on the substrate 1015 in the fourth embodiment. ..
 実施例4は実施例2の変形例である。 Example 4 is a modification of Example 2.
 図9A及び図9Bにおいて、検出ヘッド1内部に光源2と受光素子3が内蔵され、それらの光軸上にはフェルール10bが取り付けられている。そして、光源2、受発光素子3のそれぞれに対してロングパスフィルタ5が備えられている。 In FIGS. 9A and 9B, a light source 2 and a light receiving element 3 are built in the detection head 1, and a ferrule 10b is mounted on their optical axes. A long pass filter 5 is provided for each of the light source 2 and the light receiving / receiving element 3.
 紫外光光源9は、検出ヘッド1の上部に配置され、紫外光光源9は検出ヘッド1に搭載したライトパイプ等の紫外光導光路4と接続している。 The ultraviolet light source 9 is arranged above the detection head 1, and the ultraviolet light source 9 is connected to an ultraviolet light guide path 4 such as a light pipe mounted on the detection head 1.
 紫外光光源9、光源2、受光素子3は、電気線1031、1024、1028を通して検出ヘッド1から外部にある基板1015に電気的に接続される。 The ultraviolet light source 9, the light source 2, and the light receiving element 3 are electrically connected from the detection head 1 to the substrate 1015 outside through the electric wires 1031, 1024, and 1028.
 実施例1と実施例4との相違点は、実施例4においては、光源2の照射導光路と受光素子3の蛍光導光路とが存在していない点と、光源2、受光素子3、紫外光光源9が、電気線1031、1024、1028で基板1015に接続されている点と、フェルール10aと10bとが存在する点である。 The differences between the first embodiment and the fourth embodiment are that, in the fourth embodiment, the irradiation light guide path of the light source 2 and the fluorescence light guide path of the light receiving element 3 do not exist, and the light source 2, the light receiving element 3, and ultraviolet rays are present. The point where the optical light source 9 is connected to the substrate 1015 by the electric wires 1031, 1024, and 1028, and the point where the ferrules 10a and 10b exist.
 検出ヘッド1の内部には紫外光導光路4がフェルール10aによって固定され、フェルール10aはハウジング1025に備わっている。 An ultraviolet light guide path 4 is fixed to the inside of the detection head 1 by a ferrule 10a, and the ferrule 10a is provided in the housing 1025.
 ハウジング1025はフェルール10aを取り込む形状のフェルール10bを備えており、フェルール10bには光源2と受光素子3が備わっており、光源2の光軸上にはロングパスフィルタ5が備わっている。 The housing 1025 is provided with a ferrule 10b having a shape that captures the ferrule 10a, the ferrule 10b is provided with a light source 2 and a light receiving element 3, and a long pass filter 5 is provided on the optical axis of the light source 2.
 紫外光導光路4は石英などの紫外光を比較的透過させる素材の光ファイバやライトパイプを用いる。 The ultraviolet light light guide path 4 uses an optical fiber or a light pipe made of a material that relatively transmits ultraviolet light such as quartz.
 紫外光の反射が通過しないようにロングパスフィルタ5は光源2と受光素子3の端面に設置している。密閉蓋8側の紫外光導光路4の端面は、光源2、受光素子3がロングパスフィルタ5と接触している端面と比べて密閉蓋8側に出っ張っている。もしくは、密閉蓋8側の紫外光導光路4の端面は、光源2の端面及び受光素子3端面と同一面となるように形成されていてもよい。 The long pass filter 5 is installed on the end faces of the light source 2 and the light receiving element 3 so that the reflection of ultraviolet light does not pass through. The end face of the ultraviolet light guide path 4 on the sealing lid 8 side protrudes toward the sealing lid 8 side as compared with the end face where the light source 2 and the light receiving element 3 are in contact with the long pass filter 5. Alternatively, the end face of the ultraviolet light light guide path 4 on the sealing lid 8 side may be formed so as to be flush with the end face of the light source 2 and the end face of the light receiving element 3.
 光源2は光源用電気線ケーブル1024と光源用プラグ1026に接続され、光源用プラグ1026は、基板1015に配置された光源用レセプタクル1027に接続される。 The light source 2 is connected to the light source electric wire cable 1024 and the light source plug 1026, and the light source plug 1026 is connected to the light source receptacle 1027 arranged on the substrate 1015.
 これにより、光源2と基板1015に配置された光源用レセプタクル1027は電気的に接続される。 As a result, the light source 2 and the light source receptacle 1027 arranged on the substrate 1015 are electrically connected.
 受光素子3は受光素子用電気線ケーブル1028と受光素子用プラグ1029に接続され、受光素子用プラグ1029は、基板1015に配置された受光素子用レセプタクル1030に接続される。 The light receiving element 3 is connected to the electric wire cable 1028 for the light receiving element and the plug 1029 for the light receiving element, and the plug 1029 for the light receiving element is connected to the receptacle 1030 for the light receiving element arranged on the substrate 1015.
 これにより、受光素子3と基板1015に配置された受光素子用レセプタクル1030は電気的に接続される。 As a result, the light receiving element 3 and the light receiving element receptacle 1030 arranged on the substrate 1015 are electrically connected.
 紫外光光源9は紫外光導光路4と光学的に接続するように設置される。紫外光光源9は、紫外光光源用電気線ケーブル1031と紫外光光源用プラグ1032とに接続され、紫外光光源用プラグ1032は、基板1015に配置された紫外光光源用レセプタクル1033に接続される。 The ultraviolet light source 9 is installed so as to be optically connected to the ultraviolet light guide path 4. The ultraviolet light source 9 is connected to the ultraviolet light source electric wire cable 1031 and the ultraviolet light source plug 1032, and the ultraviolet light source plug 1032 is connected to the ultraviolet light source receptacle 1033 arranged on the substrate 1015. ..
 これにより、紫外光光源9と基板1015に配置された紫外光光源用レセプタクル1033は電気的に接続される。 As a result, the ultraviolet light source 9 and the receptacle 1033 for the ultraviolet light source arranged on the substrate 1015 are electrically connected.
 反応容器7内の核酸を含む溶液6の蛍光検出を行う場合は、光源2から発した光がロングパスフィルタ5を通過し、レンズ16で集光されて密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。 When the fluorescence of the solution 6 containing the nucleic acid in the reaction vessel 7 is detected, the light emitted from the light source 2 passes through the long pass filter 5, is condensed by the lens 16, passes through the closed lid 8, and is housed in the reaction vessel 7. The solution 6 containing the nucleic acid is irradiated.
 光源2から発せられた光によって核酸を含む溶液6の対象物質から蛍光が発せられる。その蛍光は検出ヘッド1のレンズ16によって集光され、受光素子3に照射される。 Fluorescence is emitted from the target substance of the solution 6 containing nucleic acid by the light emitted from the light source 2. The fluorescence is condensed by the lens 16 of the detection head 1 and irradiated to the light receiving element 3.
 紫外光は紫外光光源9から発せられ、紫外光導光路4を通りレンズ16で集光され密閉蓋8を通過し反応容器7に収容された核酸を含む溶液6に照射される。反応容器7は紫外光の遮光性を有するので紫外光は反応容器7の内部のみに散乱する。散乱した紫外光はフェルール10aで反応容器7の内部に反射、吸収されるか、ロングパスフィルタ5で反射され、光源2と受光素子3は紫外光に照射されない。 Ultraviolet light is emitted from an ultraviolet light source 9, passes through an ultraviolet light guide path 4, is condensed by a lens 16, passes through a closed lid 8, and is irradiated to a solution 6 containing a nucleic acid contained in a reaction vessel 7. Since the reaction vessel 7 has a light-shielding property of ultraviolet light, the ultraviolet light is scattered only inside the reaction vessel 7. The scattered ultraviolet light is reflected and absorbed inside the reaction vessel 7 by the ferrule 10a, or is reflected by the long pass filter 5, and the light source 2 and the light receiving element 3 are not irradiated with the ultraviolet light.
 よって、光源2と受光素子3に紫外光による光老化の影響を与えない。 Therefore, the light source 2 and the light receiving element 3 are not affected by photoaging due to ultraviolet light.
 上記により反応容器7の外部に紫外光が漏れないので、装置内の部品を光老化させずに紫外光照射により容器内の核酸の増幅能力を失わせることができる。 Since the ultraviolet light does not leak to the outside of the reaction vessel 7 due to the above, the nucleic acid amplification ability in the vessel can be lost by the ultraviolet light irradiation without photoaging the parts in the apparatus.
 本発明の実施例4は、実施例2と同様な効果を得ることができる他、光源2の照射導光路と受光素子3の蛍光導光路とが省略できることから、実施例2による核酸試料処理装置よりコストダウンが可能である。 In the fourth embodiment of the present invention, the same effect as that of the second embodiment can be obtained, and the irradiation light guide path of the light source 2 and the fluorescent light guide path of the light receiving element 3 can be omitted. Therefore, the nucleic acid sample processing apparatus according to the second embodiment. Further cost reduction is possible.
 密閉蓋8の反応容器7と光学的に接続する部分を石英で形成し、紫外線が反応容器7内の試料に効率良く照射可能とすることができる。 The portion of the airtight lid 8 that is optically connected to the reaction vessel 7 is formed of quartz so that ultraviolet rays can efficiently irradiate the sample in the reaction vessel 7.
 なお、測定用光源2等を反射した紫外光から保護するために、ロングパスフィルタを用いたが、反射した紫外光から測定用光源2等を保護することが可能であれば、ロングパスフィルタに限らず、他のフィルタを用いることも可能である。 A long-pass filter was used to protect the measurement light source 2 and the like from the reflected ultraviolet light, but it is not limited to the long-pass filter as long as it is possible to protect the measurement light source 2 and the like from the reflected ultraviolet light. , Other filters can also be used.
 1・・・検出ヘッド、2・・・光源、3・・・受光素子、4・・・紫外光導光路、5・・・ロングパスフィルタ、6・・・核酸を含む溶液、7・・・反応容器、8・・・密閉蓋、9・・・紫外光光源、10、10a、10b・・・フェルール、11・・・ホルダ、12・・・温調素子、13・・・ヒータ、14・・・照射導光路、15・・・蛍光導光路、16・・・レンズ、1000・・・核酸試料処理装置、1001・・・操作部、1002・・・PC、1003・・・本体、1004・・・反応容器ラック、1005・・・反応試薬容器、1006・・・反応試薬ラック、1007・・・抽出試薬カートリッジ、1008・・・抽出試薬ラック、1009・・・分注チップ、1010・・・分注チップラック、1011・・・チューブ、1012・・・生体試料架設ラック、1013・・・ノズル、1014・・・分注機、1015・・・基板、1016・・・光測定架台、1017・・・多連押え、1018・・・制御機構、1019・・・ガントリ、1020・・・分注機移動機構、1021・・・光測定移動機構、1022・・・蓋ラック、1023・・・受発光ホルダ、1024・・・光源用電気線ケーブル、1025・・・ハウジング、1026・・・光源用プラグ、1027・・・光源用レセプタクル、1028・・・受光素子用電気線ケーブル、1029・・・受光素子用プラグ、1030・・・受光素子用レセプタクル、1031・・・紫外光光源用電気線ケーブル、1032・・・紫外光光源用プラグ、1033・・・紫外光光源用レセプタクル、1034・・・シングルフェルール 1 ... detection head, 2 ... light source, 3 ... light receiving element, 4 ... ultraviolet light guide path, 5 ... long pass filter, 6 ... solution containing nucleic acid, 7 ... reaction vessel , 8 ... Sealed lid, 9 ... Ultraviolet light source, 10, 10a, 10b ... Ferrule, 11 ... Holder, 12 ... Temperature control element, 13 ... Heater, 14 ... Irradiation light guide path, 15 ... Fluorescent light guide path, 16 ... lens, 1000 ... nucleic acid sample processing device, 1001 ... operation unit, 1002 ... PC, 1003 ... main body, 1004 ... Reaction vessel rack, 1005 ... Reaction reagent container, 1006 ... Reaction reagent rack, 1007 ... Extraction reagent cartridge, 1008 ... Extraction reagent rack, 1009 ... Dispensing chip, 1010 ... Dispensing Chip rack, 1011 ... Tube, 1012 ... Biological sample erection rack, 1013 ... Nozzle, 1014 ... Dispenser, 1015 ... Substrate, 1016 ... Optical measurement stand, 1017 ... Multiple pressers, 1018 ... control mechanism, 1019 ... gantry, 1020 ... dispenser moving mechanism, 1021 ... light measurement moving mechanism, 1022 ... lid rack, 1023 ... light receiving / receiving holder 1024 ... Electric wire cable for light source, 1025 ... Housing, 1026 ... Plug for light source, 1027 ... Receptacle for light source, 1028 ... Electric wire cable for light receiving element, 1029 ... Light receiving element Plug, 1030 ... Receptacle for light receiving element, 1031 ... Electric wire cable for ultraviolet light source, 1032 ... Plug for ultraviolet light source, 1033 ... Receptacle for ultraviolet light source, 1034 ... Single ferrule

Claims (15)

  1.  測定光光源と、反応容器内に収容された核酸を含む溶液に前記測定用光源からの光が照射されることによって発生する光を受光する受光素子と、前記受光素子が受光した光を解析するデータ解析部と、紫外光を発生する紫外光光源とを備える核酸試料処理装置において、
     前記紫外光光源から発生された紫外光を、前記反応容器内に導く紫外光導光路と、
     前記反応容器内に導かれた紫外光の反射光から、少なくとも前記測定用光源及び前記受光素子を保護するためのフィルタと、
     を備えることを特徴とする核酸試料処理装置。
    The measurement light source, the light receiving element that receives the light generated by irradiating the solution containing the nucleic acid contained in the reaction vessel with the light from the measurement light source, and the light received by the light receiving element are analyzed. In a nucleic acid sample processing apparatus including a data analysis unit and an ultraviolet light source that generates ultraviolet light,
    An ultraviolet light guide path that guides ultraviolet light generated from the ultraviolet light source into the reaction vessel, and an ultraviolet light guide path.
    A filter for protecting at least the measurement light source and the light receiving element from the reflected light of ultraviolet light guided into the reaction vessel.
    A nucleic acid sample processing apparatus comprising.
  2.  請求項1に記載の核酸試料処理装置において、
     前記測定光光源、前記受光素子及び前記紫外光光源が配置される基板と、
     前記測定用光源から発生された測定用光を、前記フィルタを介して前記反応容器内に導く照射導光路と、
     前記溶液に前記測定用光源からの光が照射されることによって発生する光を、前記フィルタを介して前記受光素子に導く蛍光導光路と、
     を備え、前記照射導光路及び前記蛍光導光路は、前記フィルタにより前記反応容器内に導かれた紫外光の反射光から保護されることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    A substrate on which the measurement light source, the light receiving element, and the ultraviolet light source are arranged,
    An irradiation light guide path that guides the measurement light generated from the measurement light source into the reaction vessel via the filter, and an irradiation light guide path.
    A fluorescent light guide path that guides the light generated by irradiating the solution with light from the measurement light source to the light receiving element via the filter.
    The nucleic acid sample processing apparatus comprising the irradiation light guide path and the fluorescent light guide path are protected from the reflected light of ultraviolet light guided into the reaction vessel by the filter.
  3.  請求項1に記載の核酸試料処理装置において、
     前記測定用光源から発生された測定用光を、前記フィルタを介して前記反応容器内に導く照射導光路と、
     前記溶液に前記測定用光源からの光が照射されることによって発生する光を、前記フィルタを介して前記受光素子に導く蛍光導光路と、
     前記測定用光源、前記照射導光路、前記受光素子、前記蛍光導光路、前記紫外光光源、前記紫外光導光路及び前記フィルタを支持する検出ヘッドと、
     測定光源用レセプタクル、受光素子用レセプタクル及び紫外光光源用レセプタクルが配置される基板と、
     前記測定用光源と前記測定光源用レセプタクルとを接続する光源用電気線ケーブルと、
     前記測定用光源と前記受光素子用レセプタクルとを接続する受光素子用電気線ケーブルと、
     前記紫外光光源と前記紫外光光源レセプタクルとを接続する紫外光光源用電気線ケーブルと、
     を備え、前記照射導光路及び前記蛍光導光路は、前記フィルタにより前記反応容器内に導かれた紫外光の反射光から保護されることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    An irradiation light guide path that guides the measurement light generated from the measurement light source into the reaction vessel via the filter, and an irradiation light guide path.
    A fluorescent light guide path that guides the light generated by irradiating the solution with light from the measurement light source to the light receiving element via the filter.
    The measurement light source, the irradiation light guide path, the light receiving element, the fluorescence light guide path, the ultraviolet light light source, the ultraviolet light light path, and the detection head supporting the filter.
    A substrate on which a receptacle for a measurement light source, a receptacle for a light receiving element, and a receptacle for an ultraviolet light source are arranged, and
    An electric wire cable for a light source that connects the light source for measurement and the receptacle for the measurement light source,
    An electric wire cable for a light receiving element that connects the light source for measurement and the receptacle for the light receiving element,
    An electric wire cable for an ultraviolet light source that connects the ultraviolet light source and the ultraviolet light source receptacle.
    The nucleic acid sample processing apparatus comprising the irradiation light guide path and the fluorescent light guide path are protected from the reflected light of ultraviolet light guided into the reaction vessel by the filter.
  4.  請求項1に記載の核酸試料処理装置において、
     前記フィルタは複数のフィルタであり、
     前記複数のフィルタのうちの一つが配置された前記測定光光源、前記複数のフィルタのうちの他の一つが配置された受光素子及び前記紫外光光源が配置される基板と、
     前記測定用光源から発生された測定用光を、前記フィルタを介して前記反応容器内に導く照射導光路と、
     前記溶液に前記測定用光源からの光が照射されることによって発生する光を、前記フィルタを介して前記受光素子に導く蛍光導光路と、
     を備えることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    The filter is a plurality of filters.
    The measurement light source in which one of the plurality of filters is arranged, the light receiving element in which the other one of the plurality of filters is arranged, and the substrate on which the ultraviolet light source is arranged.
    An irradiation light guide path that guides the measurement light generated from the measurement light source into the reaction vessel via the filter, and an irradiation light guide path.
    A fluorescent light guide path that guides the light generated by irradiating the solution with light from the measurement light source to the light receiving element via the filter.
    A nucleic acid sample processing apparatus comprising.
  5.  請求項4に記載の核酸試料処理装置において、
     前記照射導光路及び前記蛍光導光路は、紫外光の影響が少ない素材で形成されることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 4.
    The nucleic acid sample processing apparatus, wherein the irradiation light guide path and the fluorescent light guide path are formed of a material that is less affected by ultraviolet light.
  6.  請求項1に記載の核酸試料処理装置において、
     前記測定用光源、前記受光素子、前記紫外光光源、前記紫外光導光路及び前記フィルタを支持する検出ヘッドと、
     測定光源用レセプタクル、受光素子用レセプタクル及び紫外光光源用レセプタクルが配置される基板と、
     前記測定用光源と前記測定光源用レセプタクルとを接続する光源用電気線ケーブルと、
     前記測定用光源と前記受光素子用レセプタクルとを接続する受光素子用電気線ケーブルと、
     前記紫外光光源と前記紫外光光源レセプタクルとを接続する紫外光光源用電気線ケーブルと、
     を備え、前記測定用光源及び前記受光素子は、前記フィルタにより前記反応容器内に導かれた紫外光の反射光から保護されることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    A light source for measurement, a light receiving element, an ultraviolet light source, an ultraviolet light guide path, and a detection head that supports the filter.
    A substrate on which a receptacle for a measurement light source, a receptacle for a light receiving element, and a receptacle for an ultraviolet light source are arranged, and
    An electric wire cable for a light source that connects the light source for measurement and the receptacle for the measurement light source,
    An electric wire cable for a light receiving element that connects the light source for measurement and the receptacle for the light receiving element,
    An electric wire cable for an ultraviolet light source that connects the ultraviolet light source and the ultraviolet light source receptacle.
    A nucleic acid sample processing apparatus comprising: The measuring light source and the light receiving element are protected from the reflected light of ultraviolet light guided into the reaction vessel by the filter.
  7.  請求項1に記載の核酸試料処理装置において、
     前記反応容器を保持するホルダと、前記ホルダを介して前記反応容器を温調する温調素子とを備えることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    A nucleic acid sample processing apparatus comprising a holder for holding the reaction vessel and a temperature control element for controlling the temperature of the reaction vessel via the holder.
  8.  請求項1に記載の核酸試料処理装置において、
     前記紫外光、前記測定用光源からの光を集光して前記反応容器内の前記溶液に照射させ、前記測定用光源からの光が照射されることによって発生する光を集光して前記受光素子に照射させるレンズを備えることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    The ultraviolet light and the light from the measurement light source are condensed and irradiated to the solution in the reaction vessel, and the light generated by irradiating the light from the measurement light source is condensed and received. A nucleic acid sample processing apparatus comprising a lens for irradiating an element.
  9.  請求項1に記載の核酸試料処理装置において、
     前記反応容器の開口部と嵌合可能な密閉蓋を備え、前記密閉蓋が前記反応容器と光学的に接続する部分は石英で形成されていることを特徴とする核酸試料処理装置。
    In the nucleic acid sample processing apparatus according to claim 1,
    A nucleic acid sample processing apparatus comprising a sealing lid that can be fitted to an opening of the reaction vessel, and a portion of the sealing lid that is optically connected to the reaction vessel is formed of quartz.
  10.  反応容器内に収容された核酸を含む溶液に測定用光源からの光を照射し、前記測定用光源からの光が前記溶液に照射されることによって発生する光を受光素子により受光し、前記受光素子が受光した光をデータ解析部により解析し、紫外光光源から発生された紫外光を前記反応容器内に導き、前記反応容器内の核酸を不活化する核酸試料処理方法において、
     紫外光光源から発生された紫外光を、紫外光導光路により前記反応容器内に導き、前記反応容器内の核酸を不活化し、
     前記反応容器内に導かれた紫外光の反射光から、少なくとも前記測定用光源及び前記受光素子をフィルタにより保護することを特徴とする核酸試料処理方法。
    The solution containing the nucleic acid contained in the reaction vessel is irradiated with light from the measurement light source, and the light generated by irradiating the solution with the light from the measurement light source is received by the light receiving element, and the light is received. In the nucleic acid sample processing method in which the light received by the element is analyzed by the data analysis unit, the ultraviolet light generated from the ultraviolet light source is guided into the reaction vessel, and the nucleic acid in the reaction vessel is inactivated.
    The ultraviolet light generated from the ultraviolet light source is guided into the reaction vessel by the ultraviolet light light guide path, and the nucleic acid in the reaction vessel is inactivated.
    A nucleic acid sample processing method comprising protecting at least the measurement light source and the light receiving element with a filter from the reflected light of ultraviolet light guided into the reaction vessel.
  11.  請求項10に記載の核酸試料処理方法において、
     前記測定用光源から発生された測定用光を照射導光路に通過させた後に、前記フィルタを介して前記反応容器内に導き、
     前記溶液に前記測定用光源からの光が照射されることによって発生する光を前記フィルタに通過させた後に、蛍光導光路を介して前記受光素子に導き、
     前記照射導光路及び前記蛍光導光路を、前記フィルタにより前記反応容器内に導かれた紫外光の反射光から保護することを特徴とする核酸試料処理方法。
    In the nucleic acid sample processing method according to claim 10,
    After passing the measurement light generated from the measurement light source through the irradiation light guide path, the light is guided into the reaction vessel through the filter.
    After passing the light generated by irradiating the solution with the light from the measurement light source through the filter, the solution is guided to the light receiving element via the fluorescence light guide path.
    A nucleic acid sample processing method comprising protecting the irradiation light guide path and the fluorescent light guide path from reflected light of ultraviolet light guided into the reaction vessel by the filter.
  12.  請求項10に記載の核酸試料処理方法において、
     前記フィルタは複数のフィルタからなり、
     前記測定用光源から発生された測定用光を前記複数のフィルタのうちの一つのフィルタに通過させた後に、照射導光路を介して前記反応容器内に導き、
     前記溶液に前記測定用光源からの光が照射されることによって発生する光を蛍光導光路に通過させた後に、前記フィルタのうちの他の一つのフィルタを介して前記受光素子に導くことを特徴とする核酸試料処理方法。
    In the nucleic acid sample processing method according to claim 10,
    The filter consists of a plurality of filters
    After passing the measurement light generated from the measurement light source through one of the plurality of filters, the light is guided into the reaction vessel through the irradiation light guide path.
    After passing the light generated by irradiating the solution with the light from the measurement light source through the fluorescence light guide path, the solution is guided to the light receiving element through the other filter of the filters. Nucleic acid sample processing method.
  13.  請求項10に記載の核酸試料処理方法において、
     前記測定用光源から発生された測定用光を、前記フィルタを介して前記反応容器内に導き、
     前記溶液に前記測定用光源からの光が照射されることによって発生する光を、前記フィルタを介して前記受光素子に導くことを特徴とする核酸試料処理方法。
    In the nucleic acid sample processing method according to claim 10,
    The measurement light generated from the measurement light source is guided into the reaction vessel through the filter.
    A nucleic acid sample processing method, characterized in that light generated by irradiating the solution with light from the measurement light source is guided to the light receiving element via the filter.
  14.  請求項10に記載の核酸試料処理方法において、
     前記反応容器は、ホルダにより保持され、前記ホルダを介して温調素子により前記反応容器を温調することを特徴とする核酸試料処理方法。
    In the nucleic acid sample processing method according to claim 10,
    A nucleic acid sample processing method, wherein the reaction vessel is held by a holder, and the reaction vessel is temperature-controlled by a temperature control element via the holder.
  15.  請求項10に記載の核酸試料処理方法において、
     前記紫外光、前記測定用光源からの光をレンズにより集光して前記反応容器内の前記溶液に照射させ、前記測定用光源からの光が照射されることによって発生する光を前記レンズにより集光して前記受光素子に照射させることを特徴とする核酸試料処理方法。
    In the nucleic acid sample processing method according to claim 10,
    The ultraviolet light and the light from the measurement light source are condensed by the lens and irradiated to the solution in the reaction vessel, and the light generated by irradiating the light from the measurement light source is collected by the lens. A method for processing a nucleic acid sample, which comprises irradiating the light receiving element with light.
PCT/JP2019/040505 2019-10-15 2019-10-15 Nucleic acid sample processing device and nucleic acid sample processing method WO2021074970A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040505 WO2021074970A1 (en) 2019-10-15 2019-10-15 Nucleic acid sample processing device and nucleic acid sample processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040505 WO2021074970A1 (en) 2019-10-15 2019-10-15 Nucleic acid sample processing device and nucleic acid sample processing method

Publications (1)

Publication Number Publication Date
WO2021074970A1 true WO2021074970A1 (en) 2021-04-22

Family

ID=75538711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040505 WO2021074970A1 (en) 2019-10-15 2019-10-15 Nucleic acid sample processing device and nucleic acid sample processing method

Country Status (1)

Country Link
WO (1) WO2021074970A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509773A (en) * 1992-01-27 2001-07-24 バックスター インターナショナル インコーポレーテッド Methods for inactivating viral and bacterial blood pollutants
JP2010275841A (en) * 2009-06-01 2010-12-09 Panasonic Electric Works Co Ltd Drainage device for sanitary fixture
US20120014835A1 (en) * 2009-01-08 2012-01-19 It-Is International Limited Optical system for chemical and/or biochemical reactions
JP2015506710A (en) * 2012-02-10 2015-03-05 バイオニア コーポレーション Apparatus and method for automatic analysis of biological sample
JP2016064111A (en) * 2014-09-24 2016-04-28 株式会社トクヤマ Ultraviolet sterilizing device
JP2018524783A (en) * 2015-07-23 2018-08-30 フィリップス ライティング ホールディング ビー ヴィ Illumination assembly having a UV-protected light source that emits visible light
JP2018187651A (en) * 2017-05-09 2018-11-29 和正 佐々木 System of photographing and utilization of mig/mag welding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509773A (en) * 1992-01-27 2001-07-24 バックスター インターナショナル インコーポレーテッド Methods for inactivating viral and bacterial blood pollutants
US20120014835A1 (en) * 2009-01-08 2012-01-19 It-Is International Limited Optical system for chemical and/or biochemical reactions
JP2016095315A (en) * 2009-01-08 2016-05-26 アイティ−アイエス インターナショナル リミテッドIt−Is International Ltd Optical system for chemical and/or biochemical reactions
JP2010275841A (en) * 2009-06-01 2010-12-09 Panasonic Electric Works Co Ltd Drainage device for sanitary fixture
JP2015506710A (en) * 2012-02-10 2015-03-05 バイオニア コーポレーション Apparatus and method for automatic analysis of biological sample
JP2016064111A (en) * 2014-09-24 2016-04-28 株式会社トクヤマ Ultraviolet sterilizing device
JP2018524783A (en) * 2015-07-23 2018-08-30 フィリップス ライティング ホールディング ビー ヴィ Illumination assembly having a UV-protected light source that emits visible light
JP2018187651A (en) * 2017-05-09 2018-11-29 和正 佐々木 System of photographing and utilization of mig/mag welding

Similar Documents

Publication Publication Date Title
EP3550285B1 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
CN108700518B (en) Automated analysis tool for biological samples
US10670454B2 (en) System for optically monitoring operating conditions in a sample analyzing apparatus
US9488579B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP2007218875A (en) Reaction kit treating device
US9488576B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
CA2748450C (en) A body module for an optical measurement instrument
WO2021074970A1 (en) Nucleic acid sample processing device and nucleic acid sample processing method
US7419836B2 (en) Device and method for observing reactions in samples
JP6820122B2 (en) Methods and systems for optical-based measurements with selectable excitation light paths
JP2007322290A (en) Reaction kit
JP4591410B2 (en) Dispensing tip driving mechanism and reaction kit processing apparatus having the same
JP2006266868A (en) Absorption analyzer and absorption analysis method
US20230073005A1 (en) Pipetting device and a method of processing a fluid sample
US8570508B2 (en) Pressure-proof probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949174

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP