WO2021070624A1 - Bonding device and bonding method - Google Patents

Bonding device and bonding method Download PDF

Info

Publication number
WO2021070624A1
WO2021070624A1 PCT/JP2020/036032 JP2020036032W WO2021070624A1 WO 2021070624 A1 WO2021070624 A1 WO 2021070624A1 JP 2020036032 W JP2020036032 W JP 2020036032W WO 2021070624 A1 WO2021070624 A1 WO 2021070624A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
space
wafer
substrate
unit
Prior art date
Application number
PCT/JP2020/036032
Other languages
French (fr)
Japanese (ja)
Inventor
幸浩 若元
浩史 前田
哲也 牧
克宏 飯野
憲雄 和田
英二 眞鍋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2021551158A priority Critical patent/JP7325519B2/en
Publication of WO2021070624A1 publication Critical patent/WO2021070624A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • This disclosure relates to a joining device and a joining method.
  • the surface to which the substrates are bonded is modified, the surface of the modified substrate is made hydrophilic, and the hydrophilic substrates are bonded to each other by van der Waals force and hydrogen bonding.
  • a method of joining by (intermolecular force) is known (see Patent Document 1).
  • the present disclosure provides a technique capable of reducing edge voids generated in a bonded substrate.
  • the joining device includes a first holding unit, a second holding unit, a gas discharge unit, a striker, and a control unit.
  • the first holding portion sucks and holds the first substrate from above.
  • the second holding portion sucks and holds the second substrate from below.
  • the gas discharge unit discharges gas.
  • the striker presses the central portion of the first substrate from above to bring it into contact with the second substrate.
  • the control unit controls each unit.
  • the gas discharge unit discharges at least one of a dew condensation suppressing gas that suppresses dew condensation and a low molecular size gas having a small molecular size into the space.
  • edge voids generated in the bonded substrate can be reduced.
  • FIG. 1 is a schematic plan view showing a configuration of a joining system according to an embodiment.
  • FIG. 2 is a schematic side view showing the configuration of the joining system according to the embodiment.
  • FIG. 3 is a schematic side view of the upper wafer and the lower wafer according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the surface modification device according to the embodiment.
  • FIG. 5 is a schematic plan view showing the configuration of the joining device according to the embodiment.
  • FIG. 6 is a schematic side view showing the configuration of the joining device according to the embodiment.
  • FIG. 7 is a schematic side view showing the configurations of the upper chuck and the lower chuck of the joining device according to the embodiment.
  • FIG. 8 is an enlarged side view showing the configuration of the void reduction mechanism according to the embodiment.
  • FIG. 9 is a flowchart showing a part of the processing procedure of the processing executed by the joining system according to the embodiment.
  • FIG. 10 is a timing chart showing the operation of each part in the joining process according to the embodiment.
  • FIG. 11 is a block diagram showing a configuration of a void reduction gas supply unit according to the embodiment.
  • FIG. 12 is an enlarged side view showing the configuration of the void reduction mechanism according to the first modification of the embodiment.
  • FIG. 13 is an enlarged side view showing the configuration of the void reduction mechanism according to the second modification of the embodiment.
  • FIG. 14 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 15 is a timing chart showing the operation of each part in the joining process according to the third modification of the embodiment.
  • FIG. 16 is a timing chart showing the operation of each part in the joining process according to the modified example 4 of the embodiment.
  • FIG. 17 is a timing chart showing the operation of each part in the joining process according to the modified example 5 of the embodiment.
  • FIG. 18 is a flowchart showing a processing procedure of a joining process executed by the joining device according to the embodiment.
  • FIG. 19 is a flowchart showing a processing procedure of a joining process executed by the joining device according to the third modification of the embodiment.
  • the surface to which the substrates are bonded is modified, the surface of the modified substrate is made hydrophilic, and the hydrophilic substrates are bonded to each other by van der Waals force and hydrogen bonding.
  • a method of joining by (intermolecular force) is known.
  • edge voids when joining hydrophilic substrates to each other, voids (hereinafter referred to as edge voids) may occur at the peripheral edge of the bonded substrates.
  • edge voids When such edge voids are generated, the generated portion cannot be used as a product, so that the yield may decrease.
  • FIG. 1 is a schematic plan view showing the configuration of the joining system 1 according to the embodiment
  • FIG. 2 is a schematic side view of the same
  • FIG. 3 is a schematic side view of the upper wafer and the lower wafer according to the embodiment.
  • an orthogonal coordinate system in which the vertical upward direction is the positive direction of the Z axis may be shown.
  • the bonding system 1 shown in FIG. 1 forms a polymerized wafer T by bonding the first substrate W1 and the second substrate W2.
  • the first substrate W1 is a substrate in which a plurality of electronic circuits are formed on a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer. Further, the second substrate W2 is, for example, a bare wafer on which no electronic circuit is formed. The first substrate W1 and the second substrate W2 have substantially the same diameter. An electronic circuit may be formed on the second substrate W2.
  • the first substrate W1 will be referred to as “upper wafer W1” and the second substrate W2 will be referred to as “lower wafer W2". That is, the upper wafer W1 is an example of the first substrate, and the lower wafer W2 is an example of the second substrate. Further, when the upper wafer W1 and the lower wafer W2 are collectively referred to, it may be described as "wafer W”.
  • the plate surface on the side to be bonded to the lower wafer W2 is described as “bonding surface W1j", which is opposite to the bonding surface W1j.
  • the plate surface is described as "non-bonded surface W1n”.
  • the plate surface on the side to be bonded to the upper wafer W1 is described as “bonding surface W2j”
  • the plate surface on the side opposite to the bonding surface W2j is referred to as "non-bonding surface W2n”.
  • the joining system 1 includes a loading / unloading station 2 and a processing station 3.
  • the carry-in / out station 2 and the processing station 3 are arranged side by side in the order of the carry-in / out station 2 and the processing station 3 along the positive direction of the X-axis. Further, the loading / unloading station 2 and the processing station 3 are integrally connected.
  • the loading / unloading station 2 includes a mounting table 10 and a transport area 20.
  • the mounting table 10 includes a plurality of mounting plates 11.
  • Cassettes C1, C2, and C3 for horizontally accommodating a plurality of (for example, 25) substrates are mounted on each mounting plate 11.
  • the cassette C1 is a cassette containing the upper wafer W1
  • the cassette C2 is a cassette containing the lower wafer W2
  • the cassette C3 is a cassette containing the polymerized wafer T.
  • the transport area 20 is arranged adjacent to the X-axis positive direction side of the mounting table 10.
  • the transport area 20 is provided with a transport path 21 extending in the Y-axis direction and a transport device 22 that can move along the transport path 21.
  • the transport device 22 can move not only in the Y-axis direction but also in the X-axis direction and can rotate around the Z-axis. Then, the transfer device 22 connects the upper wafer W1, the lower wafer W2, and the polymerization wafer T between the cassettes C1 to C3 mounted on the mounting plate 11 and the third processing block G3 of the processing station 3 described later. Perform transportation.
  • the number of cassettes C1 to C3 mounted on the mounting plate 11 is not limited to the one shown in the figure. Further, in addition to the cassettes C1, C2, and C3, a cassette or the like for collecting a defective substrate may be mounted on the mounting plate 11.
  • the processing station 3 is provided with a plurality of processing blocks equipped with various devices, for example, three processing blocks G1, G2, and G3.
  • the first processing block G1 is provided on the front side of the processing station 3 (the negative direction side of the Y axis in FIG. 1)
  • the first processing block G1 is provided on the back side of the processing station 3 (the positive direction side of the Y axis in FIG. 1).
  • Two processing blocks G2 are provided.
  • a third processing block G3 is provided on the loading / unloading station 2 side (X-axis negative direction side in FIG. 1) of the processing station 3.
  • a surface reforming device 30 for modifying the joint surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 with plasma of the processing gas is arranged.
  • the surface modifier 30 cuts the bond of SiO2 on the bonding surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 to form a single-bonded SiO, so that the bonding surface W1j can be easily hydrophilized thereafter. Modify W2j.
  • the surface modifier 30 for example, a given processing gas is excited to be turned into plasma and ionized in a reduced pressure atmosphere. Then, by irradiating the bonding surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 with the ion of the element contained in the processing gas, the bonding surfaces W1j and W2j are plasma-treated and modified. Details of the surface modification device 30 will be described later.
  • a surface hydrophilic device 40 and a joining device 41 are arranged in the second processing block G2.
  • the surface hydrophilization device 40 hydrophilizes the joint surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 with pure water, and cleans the joint surfaces W1j and W2j.
  • pure water is supplied onto the upper wafer W1 or the lower wafer W2 while rotating the upper wafer W1 or the lower wafer W2 held by the spin chuck, for example.
  • the pure water supplied on the upper wafer W1 or the lower wafer W2 diffuses on the bonding surfaces W1j and W2j of the upper wafer W1 or the lower wafer W2, and the bonding surfaces W1j and W2j are hydrophilized.
  • the joining device 41 joins the upper wafer W1 and the lower wafer W2. Details of the joining device 41 will be described later.
  • the third processing block G3 is provided with the transition (TRS) devices 50 and 51 of the upper wafer W1, the lower wafer W2 and the polymerization wafer T in two stages in order from the bottom.
  • TRS transition
  • a transport area 60 is formed in an area surrounded by the first processing block G1, the second processing block G2, and the third processing block G3.
  • a transport device 61 is arranged in the transport region 60.
  • the transport device 61 has, for example, a transport arm that is movable in the vertical direction, the horizontal direction, and around the vertical axis.
  • the transfer device 61 moves in the transfer area 60, and the upper wafer W1 and the lower wafer are placed on the given devices in the first processing block G1, the second processing block G2, and the third processing block G3 adjacent to the transport area 60. W2 and the polymerized wafer T are conveyed.
  • the joining system 1 includes a control device 4.
  • the control device 4 controls the operation of the joining system 1.
  • a control device 4 is, for example, a computer, and includes a control unit 5 and a storage unit 6.
  • the storage unit 6 stores a program that controls various processes such as a joining process.
  • the control unit 5 controls the operation of the joining system 1 by reading and executing the program stored in the storage unit 6.
  • Such a program may be recorded on a recording medium that can be read by a computer, and may be installed from the recording medium in the storage unit 6 of the control device 4.
  • Recording media that can be read by a computer include, for example, a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the surface modifier 30.
  • the surface modifier 30 has a processing container 70 whose inside can be sealed.
  • a carry-in outlet 71 for the upper wafer W1 or the lower wafer W2 is formed on the side surface of the processing container 70 on the transport region 60 (see FIG. 1) side, and a gate valve 72 is provided at the carry-in outlet 71.
  • the stage 80 is arranged inside the processing container 70.
  • the stage 80 is, for example, a lower electrode and is made of a conductive material such as aluminum.
  • a plurality of drive units 81 including, for example, a motor are provided below the stage 80.
  • the plurality of drive units 81 raise and lower the stage 80.
  • An exhaust ring 103 provided with a plurality of baffle holes is arranged between the stage 80 and the inner wall of the processing container 70.
  • the exhaust ring 103 uniformly exhausts the atmosphere inside the processing container 70 from the inside of the processing container 70.
  • a power feeding rod 104 formed of a conductor is connected to the lower surface of the stage 80.
  • a first high-frequency power supply 106 is connected to the feeding rod 104 via a matching unit 105 including, for example, a blocking capacitor.
  • a given high frequency voltage is applied to the stage 80 from the first high frequency power supply 106.
  • the upper electrode 110 is arranged inside the processing container 70.
  • the upper surface of the stage 80 and the lower surface of the upper electrode 110 are arranged parallel to each other and facing each other at a given distance.
  • the distance between the upper surface of the stage 80 and the lower surface of the upper electrode 110 is adjusted by the drive unit 81.
  • the upper electrode 110 is grounded and connected to the ground potential. Since the upper electrode 110 is grounded in this way, damage to the lower surface of the upper electrode 110 can be suppressed during the plasma treatment.
  • the stage 80, the feeding rod 104, the matching device 105, the first high frequency power supply 106, the upper electrode 110, and the matching device are examples of a plasma generation mechanism for generating plasma of the processing gas in the processing container 70. ..
  • the first high frequency power supply 106 is controlled by the control unit 5 of the control device 4 described above.
  • a hollow portion 120 is formed inside the upper electrode 110.
  • a gas supply pipe 121 is connected to the hollow portion 120.
  • the gas supply pipe 121 communicates with the gas supply source 122 that stores the processing gas and the static elimination gas inside. Further, the gas supply pipe 121 is provided with a supply equipment group 123 including a valve for controlling the flow of the processing gas and the static elimination gas, a flow rate adjusting unit, and the like.
  • the processing gas and the static elimination gas supplied from the gas supply source 122 are flow-controlled by the supply equipment group 123 and introduced into the hollow portion 120 of the upper electrode 110 via the gas supply pipe 121.
  • the processing gas for example, oxygen gas, nitrogen gas, argon gas and the like are used.
  • the static elimination gas for example, an inert gas such as nitrogen gas or argon gas is used.
  • a baffle plate 124 is provided inside the hollow portion 120 to promote uniform diffusion of the processing gas and the static elimination gas.
  • the baffle plate 124 is provided with a large number of small holes.
  • a large number of gas outlets 125 for ejecting the processing gas and the static elimination gas from the hollow portion 120 into the processing container 70 are formed.
  • An intake port 130 is formed in the processing container 70.
  • An intake pipe 132 communicating with a vacuum pump 131 that reduces the atmosphere inside the processing container 70 to a given degree of vacuum is connected to the intake port 130.
  • the upper surface of the stage 80 that is, the surface facing the upper electrode 110 is a horizontal horizontal plane having a diameter larger than that of the upper wafer W1 and the lower wafer W2.
  • a stage cover 90 is placed on the upper surface of the stage 80, and the upper wafer W1 or the lower wafer W2 is placed on the mounting portion 91 of the stage cover 90.
  • FIG. 5 is a schematic plan view showing the configuration of the joining device 41 according to the embodiment
  • FIG. 6 is a schematic side view showing the configuration of the joining device 41 according to the embodiment.
  • the joining device 41 has a processing container 190 whose inside can be sealed.
  • a carry-in outlet 191 for the upper wafer W1, a lower wafer W2, and a polymerized wafer T is formed on the side surface of the processing container 190 on the transport region 60 side, and an opening / closing shutter 192 is provided at the carry-in outlet 191.
  • the inside of the processing container 190 is divided into a transport area T1 and a processing area T2 by an inner wall 193.
  • the above-mentioned carry-in outlet 191 is formed on the side surface of the processing container 190 in the transport region T1. Further, the upper wafer W1, the lower wafer W2, and the carry-in outlet 194 of the polymerized wafer T are also formed on the inner wall 193.
  • a transition 200 for temporarily placing the upper wafer W1, the lower wafer W2, and the polymerized wafer T is provided on the Y-axis negative direction side of the transport region T1.
  • the transition 200 is formed in, for example, two stages, and any two of the upper wafer W1, the lower wafer W2, and the polymerization wafer T can be placed at the same time.
  • a transport mechanism 201 is provided in the transport region T1.
  • the transport mechanism 201 has, for example, a transport arm that is movable in the vertical direction, the horizontal direction, and around the vertical axis. Then, the transport mechanism 201 transports the upper wafer W1, the lower wafer W2, and the polymerized wafer T within the transport region T1 or between the transport region T1 and the processing region T2.
  • a position adjusting mechanism 210 for adjusting the horizontal orientation of the upper wafer W1 and the lower wafer W2 is provided on the Y-axis positive direction side of the transport region T1.
  • the positions of the notches of the upper wafer W1 and the lower wafer W2 are detected by a detection unit (not shown) while rotating the upper wafer W1 and the lower wafer W2 which are attracted and held by the holding portion (not shown).
  • the position adjusting mechanism 210 adjusts the position of the notch portion to adjust the horizontal orientation of the upper wafer W1 and the lower wafer W2. Further, the transport region T1 is provided with an inversion mechanism 220 that inverts the front and back surfaces of the upper wafer W1.
  • an upper chuck 230 and a lower chuck 231 are provided in the processing region T2.
  • the upper chuck 230 attracts and holds the upper wafer W1 from above.
  • the lower chuck 231 is provided below the upper chuck 230, and sucks and holds the lower wafer W2 from below.
  • the upper chuck 230 is an example of the first holding portion
  • the lower chuck 231 is an example of the second holding portion.
  • the upper chuck 230 is supported by a support member 300 provided on the ceiling surface of the processing container 190.
  • the support member 300 is provided with an upper imaging unit (not shown) that images the joint surface W2j of the lower wafer W2 held by the lower chuck 231.
  • Such an upper imaging unit is provided adjacent to the upper chuck 230.
  • the lower chuck 231 is supported by the first lower chuck moving portion 310 provided below the lower chuck 231.
  • the first lower chuck moving unit 310 moves the lower chuck 231 in the horizontal direction (Y-axis direction) as described later.
  • the first lower chuck moving portion 310 is configured so that the lower chuck 231 can be moved in the vertical direction and can be rotated around the vertical axis.
  • the first lower chuck moving portion 310 is provided with a lower imaging portion (not shown) that images the joint surface W1j of the upper wafer W1 held by the upper chuck 230.
  • a lower imaging unit is provided adjacent to the lower chuck 231.
  • the first lower chuck moving portion 310 is provided on the lower surface side of the first lower chuck moving portion 310, and a pair of rails 315 extending in the horizontal direction (Y-axis direction). Attached to.
  • the first lower chuck moving portion 310 is configured to be movable along the rail 315.
  • the pair of rails 315 are provided on the second lower chuck moving portion 316.
  • the second lower chuck moving portion 316 is provided on the lower surface side of the second lower chuck moving portion 316 and is attached to a pair of rails 317 extending in the horizontal direction (X-axis direction).
  • the second lower chuck moving portion 316 is configured to be movable along the rail 317, that is, to move the lower chuck 231 in the horizontal direction (X-axis direction).
  • the pair of rails 317 are provided on a mounting table 318 provided on the bottom surface of the processing container 190.
  • FIG. 7 is a schematic side view showing the configurations of the upper chuck 230 and the lower chuck 231 of the joining device 41 according to the embodiment.
  • the upper chuck 230 has a substantially disk shape, and as shown in FIG. 7, is divided into a plurality of, for example, three regions 230a, 230b, and 230c. These regions 230a, 230b, and 230c are provided in this order from the central portion of the upper chuck 230 toward the peripheral edge portion (outer peripheral portion).
  • the regions 230a have a circular shape in a plan view, and the regions 230b and 230c have an annular shape in a plan view.
  • each region 230a, 230b, 230c is independently provided with a central suction pipe 240a, an intermediate suction pipe 240b, and a peripheral suction pipe 240c for sucking and holding the upper wafer W1.
  • the intermediate suction pipe 240b is an example of a monitoring unit.
  • the central suction tube 240a sucks and holds the central portion of the upper wafer W1.
  • the peripheral edge suction pipe 240c sucks and holds the peripheral edge W1e of the upper wafer W1.
  • the intermediate suction tube 240b sucks and holds an intermediate portion between the central portion and the peripheral portion W1e of the upper wafer W1.
  • a vacuum pump 241a is connected to the central suction pipe 240a, a vacuum pump 241b is connected to the intermediate suction pipe 240b, and a vacuum pump 241c is connected to the peripheral suction pipe 240c.
  • the upper chuck 230 is configured so that the evacuation of the upper wafer W1 can be set for each of the regions 230a, 230b, and 230c.
  • the joining device 41 by monitoring the suction state of the suction pipe at each position, it is possible to determine whether or not the upper wafer W1 and the lower wafer W2 are joined at their respective positions. For example, when the vacuum pump 241b is operating and the inside of the intermediate suction pipe 240b changes from negative pressure to atmospheric pressure, it can be considered that the upper wafer W1 is separated from the intermediate suction pipe 240b.
  • control unit 5 can determine that the upper wafer W1 is joined to the lower wafer W2 in the intermediate portion of the wafer W.
  • a through hole 243 that penetrates the upper chuck 230 in the thickness direction is formed at the center of the upper chuck 230.
  • the central portion of the upper chuck 230 corresponds to the central portion W1c of the upper wafer W1 which is attracted and held by the upper chuck 230. Then, the pressing pin 253 of the striker 250 is inserted into the through hole 243.
  • the striker 250 is provided on the upper surface of the upper chuck 230, and presses the central portion W1c of the upper wafer W1 with the pressing pin 253.
  • the pressing pin 253 is provided so as to be linearly movable along the vertical axis by the cylinder portion 251 and the actuator portion 252, and presses the opposite substrate (upper wafer W1 in the embodiment) at the tip portion.
  • the pressing pin 253 serves as a starter that first brings the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 into contact with each other when the upper wafer W1 and the lower wafer W2, which will be described later, are joined.
  • the lower chuck 231 has a substantially disk shape, and is divided into a plurality of, for example, two regions 231a and 231b. These regions 231a and 231b are provided in this order from the central portion to the peripheral portion of the lower chuck 231.
  • the region 231a has a circular shape in a plan view
  • the region 231b has an annular shape in a plan view.
  • suction tubes 260a and 260b for sucking and holding the lower wafer W2 are independently provided in each of the regions 231a and 231b.
  • Different vacuum pumps 261a and 261b are connected to the suction pipes 260a and 260b, respectively.
  • the lower chuck 231 is configured so that the evacuation of the lower wafer W2 can be set for each of the regions 231a and 231b.
  • stopper members 263 for preventing the upper wafer W1, the lower wafer W2, and the polymerized wafer T from jumping out or sliding down from the lower chuck 231 are provided at a plurality of locations, for example, five locations. ..
  • the joining device 41 includes a void reduction mechanism 270 that reduces edge voids formed between the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2 facing each other.
  • the void reduction mechanism 270 has a gas discharge unit 271, a void reduction gas supply unit 272, and a low humidity gas supply unit 273.
  • the gas discharge portion 271 has, for example, an annular shape, and is arranged so as to surround the peripheral edge portion of the upper chuck 230.
  • the gas discharge unit 271 can selectively discharge the void reduction gas (details will be described later) supplied from the void reduction gas supply unit 272 and the low humidity gas supplied from the low humidity gas supply unit 273.
  • a plurality of discharge ports 281a are uniformly formed in the gas discharge unit 271 in the circumferential direction (for example, 12 locations at intervals of 30 °).
  • the void reduction mechanism 270 can discharge the gas substantially evenly in the circumferential direction around the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2 facing each other.
  • the detailed configuration of the gas discharge unit 271 will be described later.
  • the void reduction gas supply unit 272 supplies, for example, the dew condensation suppressing gas to the gas discharge unit 271.
  • the dew condensation suppressing gas is, for example, an inert gas such as He gas, Ar gas, or Ne gas, which has a high Joule-Thomson effect and is more effective in suppressing dew condensation than nitrogen gas or oxygen gas contained in the air. Including.
  • the void reduction gas supply unit 272 includes a gas supply source 272a, a valve 272b, and a flow rate regulator 272c. Then, the dew condensation suppressing gas supplied from the gas supply source 272a is flow-controlled by the valve 272b and the flow rate regulator 272c, and is supplied to the gas discharge unit 271.
  • the void reduction gas supply unit 272 may supply the low molecular size gas to the gas discharge unit 271.
  • the low molecular size gas includes, for example, He gas, H 2 gas, Ne gas, etc., which have a smaller molecular size than nitrogen gas and oxygen gas contained in air and are easily leaked.
  • the void reduction gas supply unit 272 supplies at least one of the dew condensation suppressing gas and the low molecular size gas (collectively referred to as “void reduction gas” in the present disclosure) to the gas discharge unit 271.
  • the low humidity gas supply unit 273 supplies the low humidity gas to the gas discharge unit 271.
  • the low humidity gas is an inert gas (eg, nitrogen gas) having a humidity below a given humidity.
  • the low humidity gas supply unit 273 includes a low humidity gas supply source 273a, a valve 273b, and a flow rate regulator 273c. Then, the low humidity gas supplied from the low humidity gas supply source 273a is flow-controlled by the valve 273b and the flow rate regulator 273c, and is supplied to the gas discharge unit 271.
  • FIG. 8 is an enlarged side view showing the configuration of the void reduction mechanism 270 according to the embodiment. Note that FIG. 8 shows a case where the distance between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 is brought close to a preset distance (for example, 80 to 100 ⁇ m). It is an enlarged sectional view.
  • a preset distance for example, 80 to 100 ⁇ m
  • the void reduction mechanism 270 has a gas discharge unit 271, a void reduction gas supply unit 272, and a low humidity gas supply unit 273. Further, the gas discharge unit 271 has a discharge nozzle 281, a recovery unit 282, a support unit 283, a sealing unit 284, a sensor unit 285, and a substrate constant temperature unit 286.
  • the discharge nozzle 281 has, for example, an annular shape, and is arranged so as to surround the peripheral edge of the upper chuck 230 while maintaining a given distance from the peripheral edge of the upper chuck 230. Further, a plurality of discharge ports 281a are uniformly formed in the discharge nozzle 281 in the circumferential direction.
  • the recovery unit 282 has, for example, an annular shape, and is arranged above the discharge nozzle 281 so as to cover the gap formed between the peripheral edge of the upper chuck 230 and the discharge nozzle 281.
  • the support portion 283 supports the discharge nozzle 281 and the recovery portion 282 on the upper chuck 230.
  • the sealing portion 284 has, for example, an annular shape and is attached to the lower surface of the discharge nozzle 281.
  • the sealing portion 284 is made of a material that can be elastically deformed.
  • a preset distance (for example, 80 to 100 ⁇ m) is provided between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231. Space S is formed when it is brought close to.
  • such a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2. Further, the space S is a region separated by an upper chuck 230, a lower chuck 231, a discharge nozzle 281, a collection portion 282, and a sealing portion 284.
  • sealing portion 284 is elastically deformed in the state shown in FIG. 8, when the upper wafer W1 and the lower wafer W2 are brought close to each other and the sealing portion 284 comes into contact with the lower chuck 231. 284 is not an inhibitory factor.
  • the gas discharge unit 271 can discharge the void reduction gas or the low humidity gas into the space S from the discharge port 281a formed in the discharge nozzle 281.
  • the effect of discharging the void reduction gas or the low humidity gas into the space S when the distance between the upper wafer W1 and the lower wafer W2 is brought close to a preset distance will be described later.
  • the sensor unit 285 is provided so as to be in contact with the above-mentioned space S.
  • the sensor unit 285 is provided at a position in contact with the space S in the collection unit 282.
  • the sensor unit 285 includes a temperature sensor, a humidity sensor, an oxygen sensor, a helium sensor, and the like.
  • the temperature sensor of the sensor unit 285 measures the temperature in the space S
  • the humidity sensor of the sensor unit 285 measures the humidity in the space S
  • the oxygen sensor of the sensor unit 285 measures the oxygen concentration in the space S.
  • the sensor unit 285 is not limited to the case where it is provided in the collection unit 282, and may be provided in the upper chuck 230, the discharge nozzle 281 or the like.
  • the substrate constant temperature portion 286 is provided so as to be in contact with the peripheral edge portion W2e of the lower wafer W2 in the lower chuck 231.
  • the substrate constant temperature portion 286 holds the temperature of the peripheral edge portion W2e on the lower wafer W2 at a given temperature (for example, room temperature).
  • a collection flow path 287 is connected to the collection unit 282.
  • the recovery flow path 287 connects the recovery section 282 and the upstream side of the valve 272b in the void reduction gas supply section 272. Further, a valve 288 is provided in the recovery flow path 287.
  • control unit 5 can recover the void reduction gas in the space S from the space S and return it to the void reduction gas supply unit 272 again.
  • vent flow path 289 is connected to the recovery unit 282.
  • the vent flow path 289 connects the recovery unit 282 and an external exhaust treatment facility (not shown).
  • a valve 290 is provided in the vent flow path 289.
  • control unit 5 can discharge (vent) the void reduction gas, the low humidity gas, etc. in the space S from the space S to the outside by controlling the recovery unit 282 and the valve 290.
  • FIG. 9 is a flowchart showing a part of the processing procedure of the processing executed by the joining system 1 according to the embodiment.
  • a cassette C1 containing a plurality of upper wafers W1 a cassette C2 containing a plurality of lower wafers W2, and an empty cassette C3 are placed on a given mounting plate 11 of the loading / unloading station 2. ..
  • the upper wafer W1 in the cassette C1 is taken out by the transfer device 22, and is transferred to the transition device 50 of the third processing block G3 of the processing station 3.
  • the upper wafer W1 is conveyed to the surface modification device 30 of the first processing block G1 by the transfer device 61.
  • the gate valve 72 is opened, and the inside of the processing container 70 is opened to atmospheric pressure.
  • the processing gas is excited, turned into plasma, and ionized in a given reduced pressure atmosphere.
  • the ions generated in this way are irradiated on the bonding surface W1j of the upper wafer W1, and the bonding surface W1j is plasma-treated. As a result, a dangling bond of silicon atoms is formed on the outermost surface of the bonding surface W1j, and the bonding surface W1j of the upper wafer W1 is modified (step S101).
  • the upper wafer W1 is conveyed to the surface hydrophilic device 40 of the second processing block G2 by the transfer device 61.
  • the surface hydrophilization apparatus 40 pure water is supplied onto the upper wafer W1 while rotating the upper wafer W1 held by the spin chuck.
  • the supplied pure water diffuses on the bonding surface W1j of the upper wafer W1.
  • the OH group sianol group
  • the pure water cleans the bonding surface W1j of the upper wafer W1.
  • the upper wafer W1 is conveyed to the joining device 41 of the second processing block G2 by the conveying device 61.
  • the upper wafer W1 carried into the joining device 41 is conveyed to the position adjusting mechanism 210 via the transition 200.
  • the position adjusting mechanism 210 adjusts the horizontal orientation of the upper wafer W1 (step S103).
  • the upper wafer W1 is delivered from the position adjusting mechanism 210 to the reversing mechanism 220. Subsequently, in the transport region T1, the front and back surfaces of the upper wafer W1 are inverted by operating the inversion mechanism 220 (step S104). That is, the bonding surface W1j of the upper wafer W1 is directed downward.
  • the reversing mechanism 220 rotates and moves below the upper chuck 230. Then, the upper wafer W1 is delivered from the reversing mechanism 220 to the upper chuck 230. The non-bonded surface W1n of the upper wafer W1 is adsorbed and held by the upper chuck 230 (step S105).
  • steps S101 to S105 described above is being performed on the upper wafer W1
  • the processing of the lower wafer W2 is performed.
  • the lower wafer W2 in the cassette C2 is taken out by the transfer device 22, and is transferred to the transition device 50 of the processing station 3.
  • step S106 is the same process as step S101 described above.
  • step S107 is the same process as step S102 described above.
  • the lower wafer W2 is conveyed to the joining device 41 by the conveying device 61.
  • the lower wafer W2 carried into the joining device 41 is conveyed to the position adjusting mechanism 210 via the transition 200.
  • the position adjusting mechanism 210 adjusts the horizontal orientation of the lower wafer W2 (step S108).
  • the lower wafer W2 is conveyed to the lower chuck 231 and is attracted and held by the lower chuck 231 (step S109).
  • the non-bonded surface W2n of the lower wafer W2 is adsorbed and held by the lower chuck 231 in a state where the notch portion is directed in a predetermined direction.
  • step S110 the horizontal position adjustment between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 is performed (step S110).
  • the lower chuck 231 is moved vertically upward by the first lower chuck moving unit 310 to adjust the vertical positions of the upper chuck 230 and the lower chuck 231.
  • the vertical positions of the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 are adjusted (step S111).
  • the distance between the bonding surface W2j of the lower wafer W2 and the bonding surface W1j of the upper wafer W1 is a preset distance, for example, 80 ⁇ m to 100 ⁇ m.
  • step S112 a joining process for joining the upper wafer W1 and the lower wafer W2 at a given interval is performed (step S112), and the joining process in the joining device 41 is completed.
  • FIG. 10 is a timing chart showing the operation of each part in the joining process according to the embodiment. Note that FIG. 10 shows a timing chart from the time when the above-mentioned step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) is completed.
  • control unit 5 raises the lower chuck 231 from the home position to the bond position to bring the lower wafer W2 closer to the upper wafer W1. Further, the control unit 5 operates the discharge nozzle 281 and the low humidity gas supply unit 273 from the time T11 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271.
  • control unit 5 controls the recovery unit 282 and the valves 288 and 290 from the time T11 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 from the vicinity of the lower wafer W2 to the outside (vent). ).
  • control unit 5 raises the lower chuck 231 to the bond position at time T12 so that the distance between the bonding surface W2j of the lower wafer W2 and the bonding surface W1j of the upper wafer W1 becomes a preset distance. Set the lower wafer W2.
  • a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2.
  • the gas discharge unit 271 continues to discharge the low humidity gas into the space S even during the time T12 when the space S is formed, and the recovery unit 282 discharges the atmosphere in the space S to the outside. to continue.
  • the joining device 41 can maintain the space S, that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 in a low humidity state.
  • control unit 5 lowers the pressing pin 253 of the striker 250 at time T13.
  • the striker 250 pushes down the central portion W1c of the upper wafer W1 and presses the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 with a given force.
  • the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are hydrophilized in steps S102 and S107, respectively, the OH groups between the bonding surfaces W1j and W2j are hydrogen-bonded, and the bonding surfaces W1j and W2j are bonded. They are firmly joined together.
  • the bonding region between the upper wafer W1 and the lower wafer W2 expands from the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 to the outer peripheral portion. That is, the van der Waals force between the above-mentioned bonding surfaces W1j and W2j and the bonding by hydrogen bonding gradually expand from the central portions W1c and W2c toward the outer peripheral portion.
  • the upper wafer W1 is separated from the central suction pipe 240a by pushing down the central portion W1c of the upper wafer W1 with the striker 250. That is, at time T13, the upper wafer W1 is joined to the lower wafer W2 at the central portion of the wafer W.
  • the upper wafer W1 is separated from the intermediate suction pipe 240b. That is, at time T14, the upper wafer W1 is joined to the lower wafer W2 at the intermediate portion of the wafer W.
  • control unit 5 stops the low humidity gas supply unit 273 and operates the void reduction gas supply unit 272 at the time T14. That is, the control unit 5 switches the gas discharged from the gas discharge unit 271 from the low humidity gas to the void reduction gas at time T14.
  • the space S that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 can be made into an atmosphere of void reduction gas.
  • control unit 5 controls the recovery unit 282 and the valves 288 and 290 at the time T15 when a given time elapses from the time T14, so that the atmosphere in the space S is controlled by the void reduction gas via the recovery flow path 287. It is collected in the supply unit 272.
  • the operation of the recovery unit 282 is switched from the vent mode to the recovery mode from the time T15 when a given time has elapsed from the time T14.
  • the void reduction gas can be recovered by the recovery unit 282 to the void reduction gas supply unit 272.
  • the upper wafer W1 is separated from the peripheral suction pipe 240c at the time T16 when the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral portions W1e and W2e.
  • the bonding region since the bonding region reaches the peripheral portions W1e and W2e of the wafer W, the upper wafer W1 and the lower wafer W2 are bonded on the entire surface to form the polymerized wafer T.
  • control unit 5 stops the void reduction gas supply unit 272 at the time T16. That is, the control unit 5 stops the gas discharge from the gas discharge unit 271 at the time T16. Further, the control unit 5 stops the collection unit 282 at the time T16.
  • control unit 5 lowers the position of the lower chuck 231 from the bond position to the home position at the time T17 when a given time has elapsed from the time T16. Then, by lowering the lower chuck 231 to the home position at time T18, the control unit 5 can take out the polymerized wafer T attracted and held by the lower chuck 231 from the joining device 41.
  • the void reducing gas for example, dew condensation
  • the peripheral edges W1e and W2e are joined.
  • the void reducing gas for example, dew condensation
  • the edge voids generated in the polymerized wafer T can be reduced.
  • the reason why such edge voids can be reduced will be described below.
  • the dew condensation suppressing gas is applied to the region (that is, the space S) where the dew condensation that causes the edge void is generated. Discharge.
  • the periphery of the peripheral edges W1e and W2e is also polymerized by creating an atmosphere of a low molecular size gas.
  • the edge voids generated in the wafer T can be reduced.
  • At least one of the dew condensation suppressing gas and the low molecular size gas is surrounded around the peripheral edges W1e and W2e. It is preferable to create an atmosphere of gas (that is, void reduction gas). Thereby, the edge voids generated in the polymerized wafer T can be reduced.
  • a dew condensation suppressing gas and a He gas which is a low molecular size gas as the void reducing gas supplied from the void reducing gas supply unit 272.
  • a He gas having a very high Joule-Thomson effect as the void reducing gas, it is further suppressed that the temperature of the space S suddenly drops even when a sudden pressure fluctuation occurs in the space S. can do.
  • the edge void once formed can be efficiently reduced or eliminated. Therefore, according to the embodiment, the generation of edge voids on the polymerized wafer T can be further suppressed.
  • the void reduction gas may be discharged from the gas discharge portion 271 into the space S.
  • the amount of void-reducing gas used can be reduced, so that the manufacturing cost of the polymerized wafer T can be reduced.
  • the space S it is preferable to discharge the low humidity gas from the gas discharge unit 271 to the space S before discharging the dew condensation suppressing gas from the gas discharge unit 271 to the space S.
  • discharging the low humidity gas into the space S in advance in this way the space S can be made low humidity even before the dew condensation suppressing gas is discharged, and the amount of the dew condensation suppressing gas used can be further reduced. ..
  • the low humidity gas may be discharged from the gas discharge unit 271 into the space S before the low molecular size gas is discharged from the gas discharge unit 271 into the space S.
  • the edge voids once formed on the polymerized wafer T can be effectively reduced or eliminated by the low molecular size gas discharged after the low humidity gas.
  • the humidity of the space S can be sufficiently low before the void reduction gas is discharged, and a sufficient time can be taken until the space S is replaced with the void reduction gas thereafter. Therefore, according to the embodiment, it is possible to further suppress the generation of edge voids generated in the polymerized wafer T.
  • the upper wafer W1 is joined to the lower wafer W2 in the intermediate portion of the wafer W by using a monitoring unit such as an intermediate suction pipe 240b.
  • a monitoring unit such as an intermediate suction pipe 240b.
  • the monitoring unit that monitors that the upper wafer W1 is joined to the lower wafer W2 in the middle portion of the wafer W is not limited to the suction pipe such as the intermediate suction pipe 240b.
  • the suction pipe such as the intermediate suction pipe 240b.
  • IR infrared
  • control unit 5 may control the discharge amount of the low humidity gas to the space S based on the humidity information of the space S output from the humidity sensor provided in the sensor unit 285.
  • the amount of low humidity gas used can be reduced.
  • the recovery unit 282 and the recovery flow path 287 it is preferable to use the recovery unit 282 and the recovery flow path 287 to collect the void reduction gas discharged into the space S to the void reduction gas supply unit 272. As a result, the amount of void-reducing gas used can be reduced.
  • control unit 5 may control the discharge amount of the low humidity gas to the space S based on the humidity information of the space S output from the humidity sensor provided in the sensor unit 285.
  • the amount of low humidity gas used can be reduced.
  • control unit 5 may control the discharge amount of the void reduction gas into the space S based on the oxygen concentration information of the space S output from the oxygen sensor provided in the sensor unit 285.
  • the amount of the void reducing gas used can be further reduced.
  • control unit 5 When an inert gas such as nitrogen gas is used as the low humidity gas, the control unit 5 has a low humidity in the space S based on the oxygen concentration information of the space S output from the oxygen sensor provided in the sensor unit 285. The amount of gas discharged may be controlled.
  • an inert gas such as nitrogen gas
  • the amount of low humidity gas used can be reduced.
  • control unit 5 may control the discharge amount of the void reduction gas into the space S based on the helium concentration information of the space S output from the helium sensor provided in the sensor unit 285.
  • the amount of the void reducing gas used can be further reduced.
  • the temperature of the peripheral portion W2e of the lower wafer W2 may be maintained at a given temperature by using the substrate constant temperature portion 286.
  • the generation of edge voids in the polymerized wafer T can be further suppressed.
  • the substrate constant temperature portion 286 is not limited to the case where the temperature of the peripheral edge portion of the lower wafer W2 is maintained at a given temperature, and the substrate constant temperature portion 286 may raise the temperature of the peripheral edge portion W2e of the lower wafer W2. Good.
  • FIG. 11 is a block diagram showing the configuration of the void reduction gas supply unit 272 according to the embodiment.
  • the void reduction gas supply unit 272 includes a gas supply source 272a, a regulator 272d, a gas constant temperature unit 272e, a valve 272b, a flow meter 272f, a flow rate regulator 272c, and a filter 272g from the upstream. And have.
  • the void reduction gas supplied from the gas supply source 272a is supplied to the gas discharge section 271 of the joining device 41 via the above-mentioned sections.
  • the void reduction gas supply unit 272 may have a gas constant temperature unit 272e that keeps the void reduction gas at a constant temperature.
  • the constant temperature gas portion 272e is composed of an extended pipe provided inside the joining system 1.
  • the temperature of the void reduction gas flowing through the extended pipe is given equal to the inside of the joining system 1. It can be kept at the temperature of (for example, room temperature).
  • the temperature of the void reducing gas particularly, the dew condensation suppressing gas
  • the temperature of the space S drops sharply even when a sudden pressure fluctuation occurs in the space S. It can be suppressed. Therefore, according to the embodiment, the generation of edge voids in the polymerized wafer T can be further suppressed.
  • the gas constant temperature portion 272e is not limited to the case where it is composed of an extended pipe provided inside the joining system 1, and any configuration can be used as long as the temperature of the void reduction gas can be kept constant. There may be.
  • the gas constant temperature section 272e is not limited to the case where the temperature of the void reduction gas is maintained at a given temperature, and the gas constant temperature section 272e may raise the temperature of the void reduction gas.
  • FIG. 12 is an enlarged side view showing the configuration of the void reduction mechanism 270 according to the first modification of the embodiment.
  • the gas discharge unit 271 according to the first modification is composed of a discharge nozzle 281 and a support portion 291.
  • such a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2. Further, the space S is a region separated by an upper chuck 230, a lower chuck 231 and a discharge nozzle 281 and a support portion 291.
  • the space S formed in the joining device 41 of the modified example 1 is an open space
  • a gap A1 is formed between the discharge nozzle 281 and the lower chuck 231, and the support portion 291 and the upper chuck 230 are formed.
  • a gap A2 is formed between the two.
  • the space S of the modified example 1 has a recess 292 composed of a discharge nozzle 281 and a support portion 291 at the upper portion. Since the recess 292 has a concave shape facing downward, it is possible to sufficiently hold the void reduction gas, which is lighter than the air discharged into the space S, in the space S.
  • the discharge port 281a of the discharge nozzle 281 may be directed to the non-bonded surface W1n of the peripheral edge portion W1e of the upper wafer W1.
  • the modified example 1 it is preferable to form a gap A2 between the support portion 291 and the upper chuck 230. As a result, the void reduction gas discharged into the space S can be discharged to the outside through the gap A2.
  • the concentration of the void reduction gas in the space S can be reset by the time the next joining process starts. Therefore, according to the first modification, the bonding process of the wafer W can be stably performed.
  • FIG. 13 is an enlarged side view showing the configuration of the void reduction mechanism 270 according to the second modification of the embodiment
  • FIG. 14 is a cross-sectional view taken along the line AA in FIG.
  • the hole 231d is formed below the space S in the lower chuck 231 and the void reduction gas supply section 272 is connected to the hole 231d. Further, in the second modification, the hole 230d is formed above the space S in the upper chuck 230, and the recovery flow path 287 is connected to the hole 230d.
  • the void reduction gas is supplied from the void reduction gas supply unit 272 to the space S, and the void reduction gas is recovered from the space S in the recovery flow path 287.
  • the void reduction gas lighter than air can be efficiently supplied to the space S, and the void reduction gas lighter than air can be efficiently recovered from the space S.
  • the void reduction gas is heavier than air, it is preferable to connect the void reduction gas supply unit 272 to the hole 230d and connect the recovery flow path 287 to the hole 231d.
  • FIG. 15 is a timing chart showing the operation of each part in the joining process according to the third modification of the embodiment. Note that FIG. 15 shows a timing chart from the time when step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) shown in FIG. 9 is completed.
  • control unit 5 raises the lower chuck 231 from the home position to the bond position to bring the lower wafer W2 closer to the upper wafer W1. Further, the control unit 5 operates the discharge nozzle 281 and the low humidity gas supply unit 273 from the time T21 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271.
  • control unit 5 controls the recovery unit 282 and the valves 288 and 290 from the time T21 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 from the vicinity of the lower wafer W2 to the outside (vent). ).
  • control unit 5 raises the lower chuck 231 to the bond position at time T22 so that the distance between the bonding surface W2j of the lower wafer W2 and the bonding surface W1j of the upper wafer W1 becomes a preset distance. Set the lower wafer W2.
  • a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2.
  • the gas discharge unit 271 continues to discharge the low humidity gas into the space S, and the recovery unit 282 discharges the atmosphere in the space S to the outside. to continue.
  • the joining device 41 can maintain the space S, that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 in a low humidity state.
  • control unit 5 lowers the pressing pin 253 of the striker 250 at time T23.
  • the striker 250 pushes down the central portion W1c of the upper wafer W1 and presses the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 with a given force.
  • bonding starts between the center portion W1c of the pressed upper wafer W1 and the center portion W2c of the lower wafer W2.
  • the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are modified in steps S101 and S106 (see FIG. 9), respectively, first, van der between the bonding surfaces W1j and W2j A Waals force is generated, and the joint surfaces W1j and W2j are joined to each other.
  • the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are hydrophilized in steps S102 and S107 (see FIG. 9), respectively, the OH groups between the bonding surfaces W1j and W2j are hydrogen-bonded.
  • the joint surfaces W1j and W2j are firmly joined to each other.
  • the bonding region between the upper wafer W1 and the lower wafer W2 expands from the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 to the outer peripheral portion. That is, the van der Waals force between the above-mentioned bonding surfaces W1j and W2j and the bonding by hydrogen bonding gradually expand from the central portions W1c and W2c toward the outer peripheral portion.
  • the upper wafer W1 is separated from the central suction pipe 240a by pushing down the central portion W1c of the upper wafer W1 with the striker 250. That is, at time T23, the upper wafer W1 is joined to the lower wafer W2 at the central portion of the wafer W.
  • the upper wafer W1 is separated from the intermediate suction pipe 240b. That is, at time T24, the upper wafer W1 is bonded to the lower wafer W2 at the intermediate portion of the wafer W.
  • control unit 5 stops the low humidity gas supply unit 273 and operates the void reduction gas supply unit 272 at the time T24. That is, the control unit 5 switches the gas discharged from the gas discharge unit 271 from the low humidity gas to the void reduction gas at time T24.
  • the control unit 5 controls the flow rate of the void reduction gas discharged from the gas discharge unit 271 to a high flow rate (High).
  • the space S that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 can be quickly made into the atmosphere of the void reduction gas.
  • control unit 5 changes the flow rate of the void reduction gas discharged from the gas discharge unit 271 from a high flow rate (High) to a low flow rate (Low) (for example, a high flow rate) at a time T25 when a given time has elapsed from the time T24.
  • the flow rate is reduced to about 1/3 of the above.
  • the periphery of the peripheral portions W1e and W2e which quickly became the atmosphere of the void reduction gas, can be maintained in the atmosphere of the void reduction gas, and the amount of the void reduction gas used can be reduced.
  • the control unit 5 is the void reduction gas supply unit. Stop 272. That is, the control unit 5 stops the gas discharge from the gas discharge unit 271 at the time T26.
  • the bonding region reaches the peripheral edges W1e and W2e of the wafer W, the upper wafer W1 and the lower wafer W2 are bonded on the entire surface to form the polymerized wafer T.
  • the fact that the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral portions W1e and W2e is an IR camera that directly detects the arrival position of the bonding wave separately provided in the bonding device 41 (FIG. 3). Detected by (not shown).
  • control unit 5 recovers the atmosphere in the space S to the void reduction gas supply unit 272 via the recovery flow path 287 by controlling the recovery unit 282 and the valves 288 and 290 at the time T26.
  • the operation of the recovery unit 282 is switched from the vent mode to the recovery mode from the time T26 when the gas discharge from the gas discharge unit 271 is stopped. As a result, it is possible to suppress the recovery of gas other than the void reduction gas from the space S due to the low discharge amount of the void reduction gas.
  • control unit 5 stops the peripheral suction pipe 240c and the recovery unit 282 at the time T27 when a given time has elapsed from the time T26.
  • control unit 5 lowers the position of the lower chuck 231 from the bond position to the home position at the time T28 when a given time has elapsed from the time T27. Then, by lowering the lower chuck 231 to the home position at time T29, the control unit 5 can take out the polymerized wafer T attracted and held by the lower chuck 231 from the joining device 41.
  • the control unit 5 makes the discharge amount of the void reduction gas into the space S variable. As a result, the generation of edge voids can be suppressed, and the amount of void-reducing gas used can be further reduced. Therefore, according to the third modification, it is possible to suppress the edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
  • FIG. 16 is a timing chart showing the operation of each part in the joining process according to the modified example 4 of the embodiment.
  • the control unit 5 controls the flow rate of the void reduction gas discharged from the gas discharge unit 271 to a low flow rate (Low). Then, the control unit 5 increases the flow rate of the void reduction gas discharged from the gas discharge unit 271 from a low flow rate (Low) to a high flow rate (High) at a time T35 when a given time has elapsed from the time T34.
  • a high flow rate is applied at the timing (immediately before the time T36) when the junction region reaches the peripheral portions W1e and W2e, where a high concentration of void reducing gas is most required around the peripheral portions W1e and W2e.
  • the void reduction gas can be supplied to the space S.
  • the void reduction gas is discharged from the gas discharge unit 271 to the space S in advance at a low flow rate prior to the time T36, so that the rise of the gas discharge unit 271 is delayed and the void reduction gas is satisfactorily released. It is possible to suppress the occurrence of the phenomenon of not being discharged.
  • the processing of the time T31 to the time T34 and the processing of the time T36 to the time T39 is the same as the processing of the time T21 to the time T24 and the time T26 to the time T29 in the above-mentioned modified example 3. Therefore, a detailed description will be omitted.
  • FIG. 17 is a timing chart showing the operation of each part in the joining process according to the modified example 5 of the embodiment.
  • the control unit 5 stops the low humidity gas supply unit 273 and operates the void reduction gas supply unit 272 at time T44. That is, the control unit 5 switches the gas discharged from the gas discharge unit 271 from the low humidity gas to the void reduction gas at time T44.
  • the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral edges W1e and W2e, and the time T45 when the upper wafer W1 and the lower wafer W2 are bonded on the entire surface is reached.
  • the void reduction gas is intermittently discharged from the gas discharge unit 271 into the space S.
  • the processing of the time T41 to the time T44 and the time T45 to the time T48 is the same as the processing of the time T21 to the time T24 and the time T26 to the time T29 in the above-mentioned modified example 3. Therefore, a detailed description will be omitted.
  • the joining device 41 includes a first holding unit (upper chuck 230), a second holding unit (lower chuck 231), a gas discharge unit 271, a striker 250, and a control unit 5.
  • the first holding portion (upper chuck 230) sucks and holds the first substrate (upper wafer W1) from above.
  • the second holding portion (lower chuck 231) sucks and holds the second substrate (lower wafer W2) from below.
  • the gas discharge unit 271 discharges gas.
  • the striker 250 presses the central portion W1c of the first substrate (upper wafer W1) from above to bring it into contact with the second substrate (lower wafer W2).
  • the control unit 5 controls each unit.
  • the gas discharge unit 271 discharges at least one gas (void reduction gas) of the dew condensation suppressing gas that suppresses dew condensation and the low molecular size gas having a small molecular size into the space S. Thereby, the edge voids generated in the bonded polymerized wafer T can be reduced.
  • the control unit 5 presses the central portion W1c of the first substrate (upper wafer W1) with the striker 250, and then the dew condensation suppressing gas and the low molecular size gas are released from the gas discharge unit 271. At least one gas (void reduction gas) is discharged into the space S. As a result, the amount of void-reducing gas used can be reduced, so that the manufacturing cost of the polymerized wafer T can be reduced.
  • the gas discharge unit 271 discharges a low humidity gas into the space S. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
  • the joining device 41 includes a humidity sensor that measures the humidity of the space S. Then, the control unit 5 controls the discharge amount of the low humidity gas to the space S based on the humidity information of the space S output from the humidity sensor. As a result, the amount of low humidity gas used can be reduced.
  • the gas discharge unit 271 is a dew condensation suppressing gas and a low molecular size gas before the striker 250 presses the central portion W1c of the first substrate (upper wafer W1).
  • the low-humidity gas is discharged from the gas discharge unit 271 into the space S until at least one of the gases (void-reducing gas) is discharged into the space S.
  • the joining device 41 has a first substrate (upper wafer W1) and a second substrate (lower wafer W2) in an intermediate portion between the central portion W1c and the peripheral portion W1e of the first substrate (upper wafer W1). ) Is provided with a monitoring unit (intermediate suction pipe 240b) for monitoring the contact state. Then, the control unit 5 sets the gas discharged into the space S from the low humidity gas to at least one of the dew condensation suppressing gas and the low molecular size gas based on the information output from the monitoring unit (intermediate suction pipe 240b). Switch to (void reduction gas). As a result, even when the traveling speed of the bonding region between the upper wafer W1 and the lower wafer W2 varies, the switching process from the low humidity gas to the void reduction gas can be satisfactorily performed.
  • the joining device 41 includes a recovery unit 282 that recovers at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular weight gas discharged into the space S from the space S.
  • void reduction gas at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular weight gas discharged into the space S from the space S.
  • the joining device 41 includes an oxygen sensor for measuring the oxygen concentration in the space S. Then, the control unit 5 controls the recovery operation of at least one of the dew condensation suppressing gas and the low molecular weight gas (void reduction gas) by the recovery unit 282 based on the oxygen concentration information of the space S output from the oxygen sensor. To do. As a result, the amount of void-reducing gas used can be further reduced.
  • the joining device 41 includes a substrate constant temperature portion 286 that keeps the peripheral portion W2e of the second substrate (lower wafer W2) at a constant temperature. As a result, the generation of edge voids on the polymerized wafer T can be further suppressed.
  • the joining device 41 includes a gas constant temperature section 272e that keeps at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas at a constant temperature. As a result, the generation of edge voids on the polymerized wafer T can be further suppressed.
  • a gas constant temperature section 272e that keeps at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas at a constant temperature.
  • control unit 5 makes the discharge amount of at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas into the space S variable. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
  • the control unit 5 gradually reduces the discharge amount of at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas into the space S.
  • void reduction gas at least one gas of the dew condensation suppressing gas and the low molecular size gas
  • the dew condensation suppressing gas includes at least one gas among He gas, Ar gas and Ne gas.
  • the low molecular weight gas contains at least one of He gas, H 2 gas, and Ne gas.
  • FIG. 18 is a flowchart showing a processing procedure of the joining process executed by the joining device 41 according to the embodiment.
  • FIG. 18 shows a flowchart from the time when step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) shown in FIG. 9 is completed.
  • control unit 5 controls the gas discharge unit 271 and the low humidity gas supply unit 273 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271 (step S201). Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 to the outside (step S202).
  • control unit 5 controls the upper chuck 230 and the lower chuck 231 to preset between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231. Get closer to the distance.
  • control unit 5 forms a space S around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2 (step S203).
  • control unit 5 presses the central portion of the upper wafer W1 with the striker 250 (step S204). Then, the control unit 5 determines whether or not the intermediate portion of the wafer W is joined (step S205).
  • step S205 when the intermediate portion of the wafer W is not joined (steps S205 and No), the process of step S205 is repeated.
  • step S205, Yes when the intermediate portion of the wafer W is joined (step S205, Yes), the control unit 5 stops the discharge of the low humidity gas from the gas discharge unit 271 and discharges the void reduction gas from the gas discharge unit 271. Discharge (step S206).
  • control unit 5 controls the recovery unit 282 and the valves 288 and 290 after a lapse of a given time from the start of discharging the dew condensation suppression void reduction gas from the gas discharge unit 271, and voids from the space S.
  • the reduced gas is recovered (step S207).
  • control unit 5 determines whether or not the peripheral edge portion of the wafer W is joined (step S208).
  • the process of step S208 is repeated.
  • control unit 5 stops the discharge of the void reduction gas from the gas discharge unit 271 and the void reduction gas from the recovery unit 282.
  • the collection is stopped (step S209), and a series of processes is completed.
  • FIG. 19 is a flowchart showing a processing procedure of the joining process executed by the joining device 41 according to the third modification of the embodiment. Note that FIG. 19 shows a flowchart from the time when step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) shown in FIG. 9 is completed.
  • control unit 5 controls the gas discharge unit 271 and the low humidity gas supply unit 273 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271 (step S301). Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 to the outside (step S302).
  • control unit 5 controls the upper chuck 230 and the lower chuck 231 to preset between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231. Get closer to the distance.
  • control unit 5 forms a space S around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2 (step S303).
  • control unit 5 presses the central portion of the upper wafer W1 with the striker 250 (step S304). Then, the control unit 5 determines whether or not the intermediate portion of the wafer W is joined (step S305).
  • step S305 when the intermediate portion of the wafer W is not joined (step S305, No), the process of step S305 is repeated.
  • step S305, Yes when the intermediate portion of the wafer W is joined (step S305, Yes), the control unit 5 stops the discharge of the low humidity gas from the gas discharge unit 271 and changes the discharge amount of the void reduction gas. Is discharged from the gas discharge unit 271 (step S306).
  • control unit 5 directly detects the arrival position of the bonding wave to determine whether or not the peripheral edge portion of the wafer W has been bonded (step S307).
  • the process of step S307 is repeated.
  • step S307 when the peripheral edge portion of the wafer W is joined (step S307, Yes), the control unit 5 stops the discharge of the void reduction gas from the gas discharge unit 271 (step S308). Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 to recover the void reduction gas from the space S (step S309).
  • control unit 5 stops the recovery of the void reduction gas from the space S after a lapse of a given time from the start of the recovery of the void reduction gas from the space S (step S310), and a series of series. End the process.
  • the joining method includes a first holding step (step S105), a second holding step (step S109), a space forming step (steps S203 and S303), and a void reduction gas discharge step (steps S206 and S306). And include.
  • the first holding step (step S105) the first substrate (upper wafer W1) is sucked and held from above by using the first holding portion (upper chuck 230) that sucks and holds the first substrate (upper wafer W1) from above. ..
  • the second substrate (lower wafer W2) is sucked and held from below by using the second holding portion (lower chuck 231) that sucks and holds the second substrate (lower wafer W2) from below. ..
  • the space forming step brings the distance between the first substrate held by the first holding portion and the second substrate held by the second holding portion close to a preset distance, and causes the first substrate.
  • a space S is formed around the peripheral edge of the second substrate and the peripheral edge of the second substrate.
  • the void reduction gas discharge step at least one gas (void reduction gas) of the dew condensation suppressing gas that suppresses dew condensation and the low molecular size gas having a small molecular size is discharged into the space S. Thereby, the edge voids generated in the bonded polymerized wafer T can be reduced.
  • the void reduction gas discharge step makes the discharge amount of at least one of the dew condensation suppressing gas and the low molecular size gas (void reduction gas) into the space S variable. .. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
  • the present disclosure is not limited to the above embodiments, and various changes can be made as long as the purpose is not deviated.
  • a He gas having a Joule-Thomson effect and a high leak performance is used as the void reducing gas, but if the gas has a Joule-Thomson effect or a high leak performance, it is other than the He gas. Gas may be used.
  • Control unit 41 Joining device 230 Upper chuck (an example of the first holding part) 231 Lower chuck (an example of the second holding part) 240b Intermediate suction pipe (an example of monitoring unit) 250 Striker 270 Void reduction mechanism 271 Gas discharge part 272 Void reduction gas supply part 272e Gas constant temperature part 273 Low humidity gas supply part 282 Recovery part 285 Sensor part 286 Board constant temperature part S Space W1 Upper wafer (example of the first substrate) W2 lower wafer (an example of the second substrate) W1c, W2c Central part W1e, W2e Peripheral part

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A bonding device (41) according to an aspect of the present disclosure comprises a first holding part, a second holding part, a gas discharging part (271), a striker (250) and a control unit (5). The first holding part adsorptively holds a first substrate from above. The second holding part adsorptively holds a second substrate from below. The gas discharging part (271) discharges gas. The striker (250) presses a central portion (W1c) of the first substrate from above to bring the central portion (W1c) into contact with the second substrate. The control unit (5) controls each part. According to the bonding device (41), when the spacing between the first substrate held by the first holding part and the second substrate held by the second holding part is caused to reach a predetermined distance, a space (S) is formed around the circumferential edge (W1e) of the first substrate and the circumferential edge (W2e) of the second substrate. In addition, the gas discharging part (271) discharges at least one of condensation suppression gas for suppressing condensation and low-molecular size gas the molecular size of which is small into the space (S).

Description

接合装置および接合方法Joining device and joining method
 本開示は、接合装置および接合方法に関する。 This disclosure relates to a joining device and a joining method.
 従来、半導体ウェハなどの基板同士を接合する手法として、基板の接合される表面を改質し、改質された基板の表面を親水化し、親水化された基板同士をファンデルワールス力および水素結合(分子間力)によって接合する手法が知られている(特許文献1参照)。 Conventionally, as a method of joining substrates such as semiconductor wafers, the surface to which the substrates are bonded is modified, the surface of the modified substrate is made hydrophilic, and the hydrophilic substrates are bonded to each other by van der Waals force and hydrogen bonding. A method of joining by (intermolecular force) is known (see Patent Document 1).
特開2017-005058号公報Japanese Unexamined Patent Publication No. 2017-005058
 本開示は、接合された基板に発生するエッジボイドを低減することができる技術を提供する。 The present disclosure provides a technique capable of reducing edge voids generated in a bonded substrate.
 本開示の一態様による接合装置は、第1保持部と、第2保持部と、ガス吐出部と、ストライカーと、制御部とを備える。第1保持部は、第1基板を上方から吸着保持する。第2保持部は、第2基板を下方から吸着保持する。ガス吐出部は、ガスを吐出する。ストライカーは、前記第1基板の中心部を上方から押圧して前記第2基板に接触させる。制御部は、各部を制御する。接合装置では、前記第1保持部に保持された前記第1基板と前記第2保持部に保持された前記第2基板との間が予め設定された距離に近づけられた場合に、前記第1基板の周縁部および前記第2基板の周縁部の周囲に空間が形成される。また、前記ガス吐出部は、結露を抑制する結露抑制ガスおよび分子サイズの小さい低分子サイズガスの少なくとも一方のガスを前記空間に吐出する。 The joining device according to one aspect of the present disclosure includes a first holding unit, a second holding unit, a gas discharge unit, a striker, and a control unit. The first holding portion sucks and holds the first substrate from above. The second holding portion sucks and holds the second substrate from below. The gas discharge unit discharges gas. The striker presses the central portion of the first substrate from above to bring it into contact with the second substrate. The control unit controls each unit. In the joining device, when the distance between the first substrate held by the first holding portion and the second substrate held by the second holding portion is brought close to a preset distance, the first A space is formed around the peripheral edge of the substrate and the peripheral edge of the second substrate. Further, the gas discharge unit discharges at least one of a dew condensation suppressing gas that suppresses dew condensation and a low molecular size gas having a small molecular size into the space.
 本開示によれば、接合された基板に発生するエッジボイドを低減することができる。 According to the present disclosure, edge voids generated in the bonded substrate can be reduced.
図1は、実施形態に係る接合システムの構成を示す模式平面図である。FIG. 1 is a schematic plan view showing a configuration of a joining system according to an embodiment. 図2は、実施形態に係る接合システムの構成を示す模式側面図である。FIG. 2 is a schematic side view showing the configuration of the joining system according to the embodiment. 図3は、実施形態に係る上ウェハおよび下ウェハの模式側面図である。FIG. 3 is a schematic side view of the upper wafer and the lower wafer according to the embodiment. 図4は、実施形態に係る表面改質装置の構成を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing the configuration of the surface modification device according to the embodiment. 図5は、実施形態に係る接合装置の構成を示す模式平面図である。FIG. 5 is a schematic plan view showing the configuration of the joining device according to the embodiment. 図6は、実施形態に係る接合装置の構成を示す模式側面図である。FIG. 6 is a schematic side view showing the configuration of the joining device according to the embodiment. 図7は、実施形態に係る接合装置の上チャックおよび下チャックの構成を示す模式側面図である。FIG. 7 is a schematic side view showing the configurations of the upper chuck and the lower chuck of the joining device according to the embodiment. 図8は、実施形態に係るボイド低減機構の構成を示す拡大側面図である。FIG. 8 is an enlarged side view showing the configuration of the void reduction mechanism according to the embodiment. 図9は、実施形態に係る接合システムが実行する処理の処理手順の一部を示すフローチャートである。FIG. 9 is a flowchart showing a part of the processing procedure of the processing executed by the joining system according to the embodiment. 図10は、実施形態に係る接合処理における各部の動作を示すタイミングチャートである。FIG. 10 is a timing chart showing the operation of each part in the joining process according to the embodiment. 図11は、実施形態に係るボイド低減ガス供給部の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of a void reduction gas supply unit according to the embodiment. 図12は、実施形態の変形例1に係るボイド低減機構の構成を示す拡大側面図である。FIG. 12 is an enlarged side view showing the configuration of the void reduction mechanism according to the first modification of the embodiment. 図13は、実施形態の変形例2に係るボイド低減機構の構成を示す拡大側面図である。FIG. 13 is an enlarged side view showing the configuration of the void reduction mechanism according to the second modification of the embodiment. 図14は、図13におけるA-A線の矢視断面図である。FIG. 14 is a cross-sectional view taken along the line AA in FIG. 図15は、実施形態の変形例3に係る接合処理における各部の動作を示すタイミングチャートである。FIG. 15 is a timing chart showing the operation of each part in the joining process according to the third modification of the embodiment. 図16は、実施形態の変形例4に係る接合処理における各部の動作を示すタイミングチャートである。FIG. 16 is a timing chart showing the operation of each part in the joining process according to the modified example 4 of the embodiment. 図17は、実施形態の変形例5に係る接合処理における各部の動作を示すタイミングチャートである。FIG. 17 is a timing chart showing the operation of each part in the joining process according to the modified example 5 of the embodiment. 図18は、実施形態に係る接合装置が実行する接合処理の処理手順を示すフローチャートである。FIG. 18 is a flowchart showing a processing procedure of a joining process executed by the joining device according to the embodiment. 図19は、実施形態の変形例3に係る接合装置が実行する接合処理の処理手順を示すフローチャートである。FIG. 19 is a flowchart showing a processing procedure of a joining process executed by the joining device according to the third modification of the embodiment.
 以下、添付図面を参照して、本願の開示する接合装置および接合方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of the joining apparatus and joining method disclosed in the present application will be described in detail with reference to the attached drawings. The present disclosure is not limited by the embodiments shown below. In addition, it should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the reality. Further, even between the drawings, there may be a portion where the relationship and ratio of the dimensions of the drawings are different from each other.
 従来、半導体ウェハなどの基板同士を接合する手法として、基板の接合される表面を改質し、改質された基板の表面を親水化し、親水化された基板同士をファンデルワールス力および水素結合(分子間力)によって接合する手法が知られている。 Conventionally, as a method of joining substrates such as semiconductor wafers, the surface to which the substrates are bonded is modified, the surface of the modified substrate is made hydrophilic, and the hydrophilic substrates are bonded to each other by van der Waals force and hydrogen bonding. A method of joining by (intermolecular force) is known.
 一方で、親水化された基板同士を接合する際に、接合された基板の周縁部にボイド(以下、エッジボイドと呼称する。)が発生する場合がある。かかるエッジボイドが発生すると、発生した部分を製品として使用することができなくなることから、歩留まりが低下する恐れがある。 On the other hand, when joining hydrophilic substrates to each other, voids (hereinafter referred to as edge voids) may occur at the peripheral edge of the bonded substrates. When such edge voids are generated, the generated portion cannot be used as a product, so that the yield may decrease.
 そこで、上述の問題点を克服し、接合された基板に発生するエッジボイドを低減することができる技術の実現が期待されている。 Therefore, it is expected to realize a technology that can overcome the above-mentioned problems and reduce the edge voids generated in the bonded substrate.
<接合システムの構成>
 まず、実施形態に係る接合システム1の構成について、図1~図3を参照しながら説明する。図1は、実施形態に係る接合システム1の構成を示す模式平面図であり、図2は、同模式側面図である。また、図3は、実施形態に係る上ウェハおよび下ウェハの模式側面図である。なお、以下参照する各図面では、説明を分かりやすくするために、鉛直上向きをZ軸の正方向とする直交座標系を示す場合がある。
<Structure of joining system>
First, the configuration of the joining system 1 according to the embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic plan view showing the configuration of the joining system 1 according to the embodiment, and FIG. 2 is a schematic side view of the same. Further, FIG. 3 is a schematic side view of the upper wafer and the lower wafer according to the embodiment. In each drawing referred to below, in order to make the explanation easy to understand, an orthogonal coordinate system in which the vertical upward direction is the positive direction of the Z axis may be shown.
 図1に示す接合システム1は、第1基板W1と第2基板W2とを接合することによって重合ウェハTを形成する。 The bonding system 1 shown in FIG. 1 forms a polymerized wafer T by bonding the first substrate W1 and the second substrate W2.
 第1基板W1は、たとえばシリコンウェハや化合物半導体ウェハなどの半導体基板に複数の電子回路が形成された基板である。また、第2基板W2は、たとえば電子回路が形成されていないベアウェハである。第1基板W1と第2基板W2とは、略同径を有する。なお、第2基板W2に電子回路が形成されていてもよい。 The first substrate W1 is a substrate in which a plurality of electronic circuits are formed on a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer. Further, the second substrate W2 is, for example, a bare wafer on which no electronic circuit is formed. The first substrate W1 and the second substrate W2 have substantially the same diameter. An electronic circuit may be formed on the second substrate W2.
 以下では、第1基板W1を「上ウェハW1」と記載し、第2基板W2を「下ウェハW2」と記載する。すなわち、上ウェハW1は第1基板の一例であり、下ウェハW2は第2基板の一例である。また、上ウェハW1と下ウェハW2とを総称する場合、「ウェハW」と記載する場合がある。 In the following, the first substrate W1 will be referred to as "upper wafer W1" and the second substrate W2 will be referred to as "lower wafer W2". That is, the upper wafer W1 is an example of the first substrate, and the lower wafer W2 is an example of the second substrate. Further, when the upper wafer W1 and the lower wafer W2 are collectively referred to, it may be described as "wafer W".
 また、以下では、図3に示すように、上ウェハW1の板面のうち、下ウェハW2と接合される側の板面を「接合面W1j」と記載し、接合面W1jとは反対側の板面を「非接合面W1n」と記載する。また、下ウェハW2の板面のうち、上ウェハW1と接合される側の板面を「接合面W2j」と記載し、接合面W2jとは反対側の板面を「非接合面W2n」と記載する。 Further, in the following, as shown in FIG. 3, among the plate surfaces of the upper wafer W1, the plate surface on the side to be bonded to the lower wafer W2 is described as "bonding surface W1j", which is opposite to the bonding surface W1j. The plate surface is described as "non-bonded surface W1n". Further, among the plate surfaces of the lower wafer W2, the plate surface on the side to be bonded to the upper wafer W1 is described as "bonding surface W2j", and the plate surface on the side opposite to the bonding surface W2j is referred to as "non-bonding surface W2n". Describe.
 図1に示すように、接合システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2および処理ステーション3は、X軸正方向に沿って、搬入出ステーション2および処理ステーション3の順番で並べて配置される。また、搬入出ステーション2および処理ステーション3は、一体的に接続される。 As shown in FIG. 1, the joining system 1 includes a loading / unloading station 2 and a processing station 3. The carry-in / out station 2 and the processing station 3 are arranged side by side in the order of the carry-in / out station 2 and the processing station 3 along the positive direction of the X-axis. Further, the loading / unloading station 2 and the processing station 3 are integrally connected.
 搬入出ステーション2は、載置台10と、搬送領域20とを備える。載置台10は、複数の載置板11を備える。各載置板11には、複数枚(たとえば、25枚)の基板を水平状態で収容するカセットC1、C2、C3がそれぞれ載置される。たとえば、カセットC1は上ウェハW1を収容するカセットであり、カセットC2は下ウェハW2を収容するカセットであり、カセットC3は重合ウェハTを収容するカセットである。 The loading / unloading station 2 includes a mounting table 10 and a transport area 20. The mounting table 10 includes a plurality of mounting plates 11. Cassettes C1, C2, and C3 for horizontally accommodating a plurality of (for example, 25) substrates are mounted on each mounting plate 11. For example, the cassette C1 is a cassette containing the upper wafer W1, the cassette C2 is a cassette containing the lower wafer W2, and the cassette C3 is a cassette containing the polymerized wafer T.
 搬送領域20は、載置台10のX軸正方向側に隣接して配置される。かかる搬送領域20には、Y軸方向に延在する搬送路21と、この搬送路21に沿って移動可能な搬送装置22とが設けられる。 The transport area 20 is arranged adjacent to the X-axis positive direction side of the mounting table 10. The transport area 20 is provided with a transport path 21 extending in the Y-axis direction and a transport device 22 that can move along the transport path 21.
 搬送装置22は、Y軸方向だけでなく、X軸方向にも移動可能かつZ軸周りに旋回可能である。そして、搬送装置22は、載置板11に載置されたカセットC1~C3と、後述する処理ステーション3の第3処理ブロックG3との間で、上ウェハW1、下ウェハW2および重合ウェハTの搬送を行う。 The transport device 22 can move not only in the Y-axis direction but also in the X-axis direction and can rotate around the Z-axis. Then, the transfer device 22 connects the upper wafer W1, the lower wafer W2, and the polymerization wafer T between the cassettes C1 to C3 mounted on the mounting plate 11 and the third processing block G3 of the processing station 3 described later. Perform transportation.
 なお、載置板11に載置されるカセットC1~C3の個数は、図示のものに限定されない。また、載置板11には、カセットC1、C2、C3以外に、不具合が生じた基板を回収するためのカセットなどが載置されてもよい。 The number of cassettes C1 to C3 mounted on the mounting plate 11 is not limited to the one shown in the figure. Further, in addition to the cassettes C1, C2, and C3, a cassette or the like for collecting a defective substrate may be mounted on the mounting plate 11.
 処理ステーション3には、各種装置を備えた複数の処理ブロック、たとえば3つの処理ブロックG1、G2、G3が設けられる。たとえば、処理ステーション3の正面側(図1のY軸負方向側)には、第1処理ブロックG1が設けられ、処理ステーション3の背面側(図1のY軸正方向側)には、第2処理ブロックG2が設けられる。また、処理ステーション3の搬入出ステーション2側(図1のX軸負方向側)には、第3処理ブロックG3が設けられる。 The processing station 3 is provided with a plurality of processing blocks equipped with various devices, for example, three processing blocks G1, G2, and G3. For example, the first processing block G1 is provided on the front side of the processing station 3 (the negative direction side of the Y axis in FIG. 1), and the first processing block G1 is provided on the back side of the processing station 3 (the positive direction side of the Y axis in FIG. 1). Two processing blocks G2 are provided. Further, a third processing block G3 is provided on the loading / unloading station 2 side (X-axis negative direction side in FIG. 1) of the processing station 3.
 第1処理ブロックG1には、上ウェハW1および下ウェハW2の接合面W1j、W2jを処理ガスのプラズマによって改質する表面改質装置30が配置される。表面改質装置30は、上ウェハW1および下ウェハW2の接合面W1j、W2jにおけるSiO2の結合を切断して単結合のSiOとすることで、その後親水化されやすくするように当該接合面W1j、W2jを改質する。 In the first processing block G1, a surface reforming device 30 for modifying the joint surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 with plasma of the processing gas is arranged. The surface modifier 30 cuts the bond of SiO2 on the bonding surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 to form a single-bonded SiO, so that the bonding surface W1j can be easily hydrophilized thereafter. Modify W2j.
 なお、表面改質装置30では、たとえば、減圧雰囲気下において所与の処理ガスが励起されてプラズマ化され、イオン化される。そして、かかる処理ガスに含まれる元素のイオンが、上ウェハW1および下ウェハW2の接合面W1j、W2jに照射されることにより、接合面W1j、W2jがプラズマ処理されて改質される。かかる表面改質装置30の詳細については後述する。 In the surface modifier 30, for example, a given processing gas is excited to be turned into plasma and ionized in a reduced pressure atmosphere. Then, by irradiating the bonding surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 with the ion of the element contained in the processing gas, the bonding surfaces W1j and W2j are plasma-treated and modified. Details of the surface modification device 30 will be described later.
 第2処理ブロックG2には、表面親水化装置40と、接合装置41とが配置される。表面親水化装置40は、たとえば純水によって上ウェハW1および下ウェハW2の接合面W1j、W2jを親水化するとともに、接合面W1j、W2jを洗浄する。 A surface hydrophilic device 40 and a joining device 41 are arranged in the second processing block G2. The surface hydrophilization device 40 hydrophilizes the joint surfaces W1j and W2j of the upper wafer W1 and the lower wafer W2 with pure water, and cleans the joint surfaces W1j and W2j.
 表面親水化装置40では、たとえばスピンチャックに保持された上ウェハW1または下ウェハW2を回転させながら、当該上ウェハW1または下ウェハW2上に純水を供給する。これにより、上ウェハW1または下ウェハW2上に供給された純水が上ウェハW1または下ウェハW2の接合面W1j、W2j上を拡散し、接合面W1j、W2jが親水化される。 In the surface hydrophilization apparatus 40, pure water is supplied onto the upper wafer W1 or the lower wafer W2 while rotating the upper wafer W1 or the lower wafer W2 held by the spin chuck, for example. As a result, the pure water supplied on the upper wafer W1 or the lower wafer W2 diffuses on the bonding surfaces W1j and W2j of the upper wafer W1 or the lower wafer W2, and the bonding surfaces W1j and W2j are hydrophilized.
 接合装置41は、上ウェハW1と下ウェハW2とを接合する。かかる接合装置41の詳細については後述する。 The joining device 41 joins the upper wafer W1 and the lower wafer W2. Details of the joining device 41 will be described later.
 第3処理ブロックG3には、図2に示すように、上ウェハW1、下ウェハW2および重合ウェハTのトランジション(TRS)装置50、51が下から順に2段に設けられる。 As shown in FIG. 2, the third processing block G3 is provided with the transition (TRS) devices 50 and 51 of the upper wafer W1, the lower wafer W2 and the polymerization wafer T in two stages in order from the bottom.
 また、図1に示すように、第1処理ブロックG1、第2処理ブロックG2および第3処理ブロックG3に囲まれた領域には、搬送領域60が形成される。搬送領域60には、搬送装置61が配置される。搬送装置61は、たとえば鉛直方向、水平方向および鉛直軸周りに移動自在な搬送アームを有する。 Further, as shown in FIG. 1, a transport area 60 is formed in an area surrounded by the first processing block G1, the second processing block G2, and the third processing block G3. A transport device 61 is arranged in the transport region 60. The transport device 61 has, for example, a transport arm that is movable in the vertical direction, the horizontal direction, and around the vertical axis.
 かかる搬送装置61は、搬送領域60内を移動し、搬送領域60に隣接する第1処理ブロックG1、第2処理ブロックG2および第3処理ブロックG3内の所与の装置に上ウェハW1、下ウェハW2および重合ウェハTを搬送する。 The transfer device 61 moves in the transfer area 60, and the upper wafer W1 and the lower wafer are placed on the given devices in the first processing block G1, the second processing block G2, and the third processing block G3 adjacent to the transport area 60. W2 and the polymerized wafer T are conveyed.
 また、接合システム1は、制御装置4を備える。制御装置4は、接合システム1の動作を制御する。かかる制御装置4は、たとえばコンピュータであり、制御部5および記憶部6を備える。記憶部6には、接合処理などの各種処理を制御するプログラムが格納される。制御部5は、記憶部6に記憶されたプログラムを読み出して実行することによって接合システム1の動作を制御する。 Further, the joining system 1 includes a control device 4. The control device 4 controls the operation of the joining system 1. Such a control device 4 is, for example, a computer, and includes a control unit 5 and a storage unit 6. The storage unit 6 stores a program that controls various processes such as a joining process. The control unit 5 controls the operation of the joining system 1 by reading and executing the program stored in the storage unit 6.
 なお、かかるプログラムは、コンピュータによって読み取り可能な記録媒体に記録されていたものであって、その記録媒体から制御装置4の記憶部6にインストールされたものであってもよい。コンピュータによって読み取り可能な記録媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may be recorded on a recording medium that can be read by a computer, and may be installed from the recording medium in the storage unit 6 of the control device 4. Recording media that can be read by a computer include, for example, a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
<表面改質装置の構成>
 次に、表面改質装置30の構成について、図4を参照しながら説明する。図4は、表面改質装置30の構成を示す模式断面図である。
<Structure of surface modifier>
Next, the configuration of the surface modifier 30 will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the configuration of the surface modifier 30.
 図4に示すように、表面改質装置30は、内部を密閉可能な処理容器70を有する。処理容器70の搬送領域60(図1参照)側の側面には、上ウェハW1または下ウェハW2の搬入出口71が形成され、当該搬入出口71にはゲートバルブ72が設けられる。 As shown in FIG. 4, the surface modifier 30 has a processing container 70 whose inside can be sealed. A carry-in outlet 71 for the upper wafer W1 or the lower wafer W2 is formed on the side surface of the processing container 70 on the transport region 60 (see FIG. 1) side, and a gate valve 72 is provided at the carry-in outlet 71.
 処理容器70の内部には、ステージ80が配置される。ステージ80は、たとえば下部電極であり、たとえばアルミニウムなどの導電性材料で構成される。ステージ80の下方には、たとえばモータなどを備えた複数の駆動部81が設けられる。複数の駆動部81は、ステージ80を昇降させる。 The stage 80 is arranged inside the processing container 70. The stage 80 is, for example, a lower electrode and is made of a conductive material such as aluminum. Below the stage 80, a plurality of drive units 81 including, for example, a motor are provided. The plurality of drive units 81 raise and lower the stage 80.
 ステージ80と処理容器70の内壁との間には、複数のバッフル孔が設けられた排気リング103が配置される。排気リング103により、処理容器70内の雰囲気が処理容器70内から均一に排気される。 An exhaust ring 103 provided with a plurality of baffle holes is arranged between the stage 80 and the inner wall of the processing container 70. The exhaust ring 103 uniformly exhausts the atmosphere inside the processing container 70 from the inside of the processing container 70.
 ステージ80の下面には、導体で形成された給電棒104が接続される。給電棒104には、たとえばブロッキングコンデンサなどからなる整合器105を介して、第1の高周波電源106が接続される。プラズマ処理時には、第1の高周波電源106から所与の高周波電圧がステージ80に印加される。 A power feeding rod 104 formed of a conductor is connected to the lower surface of the stage 80. A first high-frequency power supply 106 is connected to the feeding rod 104 via a matching unit 105 including, for example, a blocking capacitor. During plasma processing, a given high frequency voltage is applied to the stage 80 from the first high frequency power supply 106.
 処理容器70の内部には、上部電極110が配置される。ステージ80の上面と上部電極110の下面とは、互いに平行に、所与の間隔をあけて対向して配置されている。ステージ80の上面と上部電極110の下面との間隔は、駆動部81により調整される。 The upper electrode 110 is arranged inside the processing container 70. The upper surface of the stage 80 and the lower surface of the upper electrode 110 are arranged parallel to each other and facing each other at a given distance. The distance between the upper surface of the stage 80 and the lower surface of the upper electrode 110 is adjusted by the drive unit 81.
 上部電極110は接地され、グランド電位に接続されている。このように上部電極110が接地されているため、プラズマ処理中、上部電極110の下面の損傷を抑制することができる。 The upper electrode 110 is grounded and connected to the ground potential. Since the upper electrode 110 is grounded in this way, damage to the lower surface of the upper electrode 110 can be suppressed during the plasma treatment.
 このように、第1の高周波電源106から下部電極であるステージ80に、高周波電圧が印加されることにより、処理容器70の内部にプラズマが発生する。 As described above, when the high frequency voltage is applied from the first high frequency power source 106 to the stage 80 which is the lower electrode, plasma is generated inside the processing container 70.
 実施形態において、ステージ80、給電棒104、整合器105、第1の高周波電源106、上部電極110、および整合器は、処理容器70内に処理ガスのプラズマを発生させるプラズマ発生機構の一例である。なお、第1の高周波電源106は、上述の制御装置4の制御部5によって制御される。 In the embodiment, the stage 80, the feeding rod 104, the matching device 105, the first high frequency power supply 106, the upper electrode 110, and the matching device are examples of a plasma generation mechanism for generating plasma of the processing gas in the processing container 70. .. The first high frequency power supply 106 is controlled by the control unit 5 of the control device 4 described above.
 上部電極110の内部には中空部120が形成されている。中空部120には、ガス供給管121が接続されている。ガス供給管121は、内部に処理ガスや除電用ガスを貯留するガス供給源122に連通している。また、ガス供給管121には、処理ガスや除電用ガスの流れを制御するバルブや流量調整部などを含む供給機器群123が設けられている。 A hollow portion 120 is formed inside the upper electrode 110. A gas supply pipe 121 is connected to the hollow portion 120. The gas supply pipe 121 communicates with the gas supply source 122 that stores the processing gas and the static elimination gas inside. Further, the gas supply pipe 121 is provided with a supply equipment group 123 including a valve for controlling the flow of the processing gas and the static elimination gas, a flow rate adjusting unit, and the like.
 そして、ガス供給源122から供給された処理ガスや除電用ガスは、供給機器群123で流量制御され、ガス供給管121を介して、上部電極110の中空部120に導入される。処理ガスには、たとえば酸素ガス、窒素ガス、アルゴンガスなどが用いられる。また、除電用ガスには、たとえば窒素ガスやアルゴンガスなどの不活性ガスが用いられる。 Then, the processing gas and the static elimination gas supplied from the gas supply source 122 are flow-controlled by the supply equipment group 123 and introduced into the hollow portion 120 of the upper electrode 110 via the gas supply pipe 121. As the processing gas, for example, oxygen gas, nitrogen gas, argon gas and the like are used. Further, as the static elimination gas, for example, an inert gas such as nitrogen gas or argon gas is used.
 中空部120の内部には、処理ガスや除電用ガスの均一拡散を促進するためのバッフル板124が設けられている。バッフル板124には、多数の小孔が設けられている。上部電極110の下面には、中空部120から処理容器70の内部に処理ガスや除電用ガスを噴出させる多数のガス噴出口125が形成されている。 Inside the hollow portion 120, a baffle plate 124 is provided to promote uniform diffusion of the processing gas and the static elimination gas. The baffle plate 124 is provided with a large number of small holes. On the lower surface of the upper electrode 110, a large number of gas outlets 125 for ejecting the processing gas and the static elimination gas from the hollow portion 120 into the processing container 70 are formed.
 処理容器70には、吸気口130が形成される。吸気口130には、処理容器70の内部の雰囲気を所与の真空度まで減圧する真空ポンプ131に連通する吸気管132が接続される。 An intake port 130 is formed in the processing container 70. An intake pipe 132 communicating with a vacuum pump 131 that reduces the atmosphere inside the processing container 70 to a given degree of vacuum is connected to the intake port 130.
 ステージ80の上面、すなわち上部電極110との対向面は、上ウェハW1および下ウェハW2よりも大きい径を有する平面視円形の水平面である。かかるステージ80の上面にはステージカバー90が載置され、上ウェハW1または下ウェハW2は、かかるステージカバー90の載置部91上に載置される。 The upper surface of the stage 80, that is, the surface facing the upper electrode 110 is a horizontal horizontal plane having a diameter larger than that of the upper wafer W1 and the lower wafer W2. A stage cover 90 is placed on the upper surface of the stage 80, and the upper wafer W1 or the lower wafer W2 is placed on the mounting portion 91 of the stage cover 90.
<接合装置の構成>
 次に、接合装置41の構成について、図5および図6を参照しながら説明する。図5は、実施形態に係る接合装置41の構成を示す模式平面図であり、図6は、実施形態に係る接合装置41の構成を示す模式側面図である。
<Structure of joining device>
Next, the configuration of the joining device 41 will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic plan view showing the configuration of the joining device 41 according to the embodiment, and FIG. 6 is a schematic side view showing the configuration of the joining device 41 according to the embodiment.
 図5に示すように、接合装置41は、内部を密閉可能な処理容器190を有する。処理容器190における搬送領域60側の側面には、上ウェハW1、下ウェハW2および重合ウェハTの搬入出口191が形成され、当該搬入出口191には開閉シャッタ192が設けられる。 As shown in FIG. 5, the joining device 41 has a processing container 190 whose inside can be sealed. A carry-in outlet 191 for the upper wafer W1, a lower wafer W2, and a polymerized wafer T is formed on the side surface of the processing container 190 on the transport region 60 side, and an opening / closing shutter 192 is provided at the carry-in outlet 191.
 処理容器190の内部は、内壁193によって搬送領域T1と処理領域T2に区画される。上述した搬入出口191は、搬送領域T1における処理容器190の側面に形成される。また、内壁193にも、上ウェハW1、下ウェハW2および重合ウェハTの搬入出口194が形成される。 The inside of the processing container 190 is divided into a transport area T1 and a processing area T2 by an inner wall 193. The above-mentioned carry-in outlet 191 is formed on the side surface of the processing container 190 in the transport region T1. Further, the upper wafer W1, the lower wafer W2, and the carry-in outlet 194 of the polymerized wafer T are also formed on the inner wall 193.
 搬送領域T1のY軸負方向側には、上ウェハW1、下ウェハW2および重合ウェハTを一時的に載置するためのトランジション200が設けられる。トランジション200は、たとえば2段に形成され、上ウェハW1、下ウェハW2および重合ウェハTのいずれか2つを同時に載置することができる。 A transition 200 for temporarily placing the upper wafer W1, the lower wafer W2, and the polymerized wafer T is provided on the Y-axis negative direction side of the transport region T1. The transition 200 is formed in, for example, two stages, and any two of the upper wafer W1, the lower wafer W2, and the polymerization wafer T can be placed at the same time.
 搬送領域T1には、搬送機構201が設けられる。搬送機構201は、たとえば鉛直方向、水平方向および鉛直軸周りに移動自在な搬送アームを有する。そして、搬送機構201は、搬送領域T1内、または搬送領域T1と処理領域T2との間で上ウェハW1、下ウェハW2および重合ウェハTを搬送する。 A transport mechanism 201 is provided in the transport region T1. The transport mechanism 201 has, for example, a transport arm that is movable in the vertical direction, the horizontal direction, and around the vertical axis. Then, the transport mechanism 201 transports the upper wafer W1, the lower wafer W2, and the polymerized wafer T within the transport region T1 or between the transport region T1 and the processing region T2.
 搬送領域T1のY軸正方向側には、上ウェハW1および下ウェハW2の水平方向の向きを調整する位置調整機構210が設けられる。かかる位置調整機構210では、図示しない保持部に吸着保持された上ウェハW1および下ウェハW2を回転させながら図示しない検出部で上ウェハW1および下ウェハW2のノッチ部の位置を検出する。 A position adjusting mechanism 210 for adjusting the horizontal orientation of the upper wafer W1 and the lower wafer W2 is provided on the Y-axis positive direction side of the transport region T1. In such a position adjusting mechanism 210, the positions of the notches of the upper wafer W1 and the lower wafer W2 are detected by a detection unit (not shown) while rotating the upper wafer W1 and the lower wafer W2 which are attracted and held by the holding portion (not shown).
 これにより、位置調整機構210は、当該ノッチ部の位置を調整して上ウェハW1および下ウェハW2の水平方向の向きを調整する。また、搬送領域T1には、上ウェハW1の表裏面を反転させる反転機構220が設けられる。 As a result, the position adjusting mechanism 210 adjusts the position of the notch portion to adjust the horizontal orientation of the upper wafer W1 and the lower wafer W2. Further, the transport region T1 is provided with an inversion mechanism 220 that inverts the front and back surfaces of the upper wafer W1.
 また、図6に示すように、処理領域T2には、上チャック230と下チャック231とが設けられる。上チャック230は、上ウェハW1を上方から吸着保持する。また、下チャック231は、上チャック230の下方に設けられ、下ウェハW2を下方から吸着保持する。上チャック230は第1保持部の一例であり、下チャック231は第2保持部の一例である。 Further, as shown in FIG. 6, an upper chuck 230 and a lower chuck 231 are provided in the processing region T2. The upper chuck 230 attracts and holds the upper wafer W1 from above. Further, the lower chuck 231 is provided below the upper chuck 230, and sucks and holds the lower wafer W2 from below. The upper chuck 230 is an example of the first holding portion, and the lower chuck 231 is an example of the second holding portion.
 上チャック230は、図6に示すように、処理容器190の天井面に設けられた支持部材300に支持される。支持部材300には、下チャック231に保持された下ウェハW2の接合面W2jを撮像する図示しない上部撮像部が設けられる。かかる上部撮像部は、上チャック230に隣接して設けられる。 As shown in FIG. 6, the upper chuck 230 is supported by a support member 300 provided on the ceiling surface of the processing container 190. The support member 300 is provided with an upper imaging unit (not shown) that images the joint surface W2j of the lower wafer W2 held by the lower chuck 231. Such an upper imaging unit is provided adjacent to the upper chuck 230.
 また、図5および図6に示すように、下チャック231は、当該下チャック231の下方に設けられた第1下チャック移動部310に支持される。第1下チャック移動部310は、後述するように下チャック231を水平方向(Y軸方向)に移動させる。また、第1下チャック移動部310は、下チャック231を鉛直方向に移動自在、且つ鉛直軸回りに回転可能に構成される。 Further, as shown in FIGS. 5 and 6, the lower chuck 231 is supported by the first lower chuck moving portion 310 provided below the lower chuck 231. The first lower chuck moving unit 310 moves the lower chuck 231 in the horizontal direction (Y-axis direction) as described later. Further, the first lower chuck moving portion 310 is configured so that the lower chuck 231 can be moved in the vertical direction and can be rotated around the vertical axis.
 図5に示すように、第1下チャック移動部310には、上チャック230に保持された上ウェハW1の接合面W1jを撮像する図示しない下部撮像部が設けられている。かかる下部撮像部は、下チャック231に隣接して設けられる。 As shown in FIG. 5, the first lower chuck moving portion 310 is provided with a lower imaging portion (not shown) that images the joint surface W1j of the upper wafer W1 held by the upper chuck 230. Such a lower imaging unit is provided adjacent to the lower chuck 231.
 また、図5および図6に示すように、第1下チャック移動部310は、当該第1下チャック移動部310の下面側に設けられ、水平方向(Y軸方向)に延伸する一対のレール315に取り付けられる。第1下チャック移動部310は、レール315に沿って移動自在に構成される。 Further, as shown in FIGS. 5 and 6, the first lower chuck moving portion 310 is provided on the lower surface side of the first lower chuck moving portion 310, and a pair of rails 315 extending in the horizontal direction (Y-axis direction). Attached to. The first lower chuck moving portion 310 is configured to be movable along the rail 315.
 一対のレール315は、第2下チャック移動部316に設けられる。第2下チャック移動部316は、当該第2下チャック移動部316の下面側に設けられ、水平方向(X軸方向)に延伸する一対のレール317に取り付けられる。 The pair of rails 315 are provided on the second lower chuck moving portion 316. The second lower chuck moving portion 316 is provided on the lower surface side of the second lower chuck moving portion 316 and is attached to a pair of rails 317 extending in the horizontal direction (X-axis direction).
 そして、第2下チャック移動部316は、レール317に沿って移動自在に、すなわち下チャック231を水平方向(X軸方向)に移動させるように構成される。なお、一対のレール317は、処理容器190の底面に設けられた載置台318上に設けられる。 Then, the second lower chuck moving portion 316 is configured to be movable along the rail 317, that is, to move the lower chuck 231 in the horizontal direction (X-axis direction). The pair of rails 317 are provided on a mounting table 318 provided on the bottom surface of the processing container 190.
 次に、接合装置41における上チャック230と下チャック231の構成について、図7を参照しながら説明する。図7は、実施形態に係る接合装置41の上チャック230および下チャック231の構成を示す模式側面図である。 Next, the configuration of the upper chuck 230 and the lower chuck 231 in the joining device 41 will be described with reference to FIG. 7. FIG. 7 is a schematic side view showing the configurations of the upper chuck 230 and the lower chuck 231 of the joining device 41 according to the embodiment.
 上チャック230は、略円板状であり、図7に示すように、複数、たとえば3つの領域230a、230b、230cに区画される。これらの領域230a、230b、230cは、上チャック230の中心部から周縁部(外周部)に向けてこの順で設けられる。領域230aは平面視において円形状を有し、領域230b、230cは平面視において環状形状を有する。 The upper chuck 230 has a substantially disk shape, and as shown in FIG. 7, is divided into a plurality of, for example, three regions 230a, 230b, and 230c. These regions 230a, 230b, and 230c are provided in this order from the central portion of the upper chuck 230 toward the peripheral edge portion (outer peripheral portion). The regions 230a have a circular shape in a plan view, and the regions 230b and 230c have an annular shape in a plan view.
 各領域230a、230b、230cには、図7に示すように上ウェハW1を吸着保持するための中央部吸引管240a、中間部吸引管240b、周縁部吸引管240cがそれぞれ独立して設けられる。中間部吸引管240bは、監視部の一例である。 As shown in FIG. 7, each region 230a, 230b, 230c is independently provided with a central suction pipe 240a, an intermediate suction pipe 240b, and a peripheral suction pipe 240c for sucking and holding the upper wafer W1. The intermediate suction pipe 240b is an example of a monitoring unit.
 中央部吸引管240aは、上ウェハW1の中央部を吸着保持する。周縁部吸引管240cは、上ウェハW1の周縁部W1eを吸着保持する。中間部吸引管240bは、上ウェハW1の中央部と周縁部W1eとの中間にあたる中間部を吸着保持する。 The central suction tube 240a sucks and holds the central portion of the upper wafer W1. The peripheral edge suction pipe 240c sucks and holds the peripheral edge W1e of the upper wafer W1. The intermediate suction tube 240b sucks and holds an intermediate portion between the central portion and the peripheral portion W1e of the upper wafer W1.
 中央部吸引管240aには、真空ポンプ241aが接続され、中間部吸引管240bには、真空ポンプ241bが接続され、周縁部吸引管240cには、真空ポンプ241cが接続される。このように、上チャック230は、各領域230a、230b、230c毎に上ウェハW1の真空引きを設定可能に構成されている。 A vacuum pump 241a is connected to the central suction pipe 240a, a vacuum pump 241b is connected to the intermediate suction pipe 240b, and a vacuum pump 241c is connected to the peripheral suction pipe 240c. As described above, the upper chuck 230 is configured so that the evacuation of the upper wafer W1 can be set for each of the regions 230a, 230b, and 230c.
 また、接合装置41では、それぞれの位置の吸引管の吸引状況を監視することにより、上ウェハW1と下ウェハW2とがそれぞれの位置で接合されているか否かを判定することができる。たとえば、真空ポンプ241bを動作させている場合に、中間部吸引管240b内が負圧から大気圧に変化すると、中間部吸引管240bから上ウェハW1が離間したとみなすことができる。 Further, in the joining device 41, by monitoring the suction state of the suction pipe at each position, it is possible to determine whether or not the upper wafer W1 and the lower wafer W2 are joined at their respective positions. For example, when the vacuum pump 241b is operating and the inside of the intermediate suction pipe 240b changes from negative pressure to atmospheric pressure, it can be considered that the upper wafer W1 is separated from the intermediate suction pipe 240b.
 そして、制御部5は、中間部吸引管240bから上ウェハW1が離間したことから、ウェハWの中間部において上ウェハW1が下ウェハW2に接合されたと判定することができる。 Then, since the upper wafer W1 is separated from the intermediate suction pipe 240b, the control unit 5 can determine that the upper wafer W1 is joined to the lower wafer W2 in the intermediate portion of the wafer W.
 上チャック230の中心部には、当該上チャック230を厚み方向に貫通する貫通孔243が形成される。この上チャック230の中心部は、当該上チャック230に吸着保持される上ウェハW1の中心部W1cに対応している。そして、貫通孔243には、ストライカー250の押圧ピン253が挿通するようになっている。 A through hole 243 that penetrates the upper chuck 230 in the thickness direction is formed at the center of the upper chuck 230. The central portion of the upper chuck 230 corresponds to the central portion W1c of the upper wafer W1 which is attracted and held by the upper chuck 230. Then, the pressing pin 253 of the striker 250 is inserted into the through hole 243.
 ストライカー250は、上チャック230の上面に設けられ、押圧ピン253によって上ウェハW1の中心部W1cを押圧する。押圧ピン253は、シリンダ部251およびアクチュエータ部252によって鉛直軸沿いに直動可能に設けられ、先端部において対向する基板(実施形態では上ウェハW1)をかかる先端部で押圧する。 The striker 250 is provided on the upper surface of the upper chuck 230, and presses the central portion W1c of the upper wafer W1 with the pressing pin 253. The pressing pin 253 is provided so as to be linearly movable along the vertical axis by the cylinder portion 251 and the actuator portion 252, and presses the opposite substrate (upper wafer W1 in the embodiment) at the tip portion.
 具体的には、押圧ピン253は、後述する上ウェハW1および下ウェハW2の接合時に、まず上ウェハW1の中心部W1cと下ウェハW2の中心部W2cとを当接させるスタータとなる。 Specifically, the pressing pin 253 serves as a starter that first brings the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 into contact with each other when the upper wafer W1 and the lower wafer W2, which will be described later, are joined.
 下チャック231は、略円板状であり、複数、たとえば2つの領域231a、231bに区画される。これらの領域231a、231bは、下チャック231の中心部から周縁部に向けてこの順で設けられる。そして、領域231aは平面視において円形状を有し、領域231bは平面視において環状形状を有する。 The lower chuck 231 has a substantially disk shape, and is divided into a plurality of, for example, two regions 231a and 231b. These regions 231a and 231b are provided in this order from the central portion to the peripheral portion of the lower chuck 231. The region 231a has a circular shape in a plan view, and the region 231b has an annular shape in a plan view.
 各領域231a、231bには、図7に示すように下ウェハW2を吸着保持するための吸引管260a、260bがそれぞれ独立して設けられる。各吸引管260a、260bには、異なる真空ポンプ261a、261bがそれぞれ接続される。このように、下チャック231は、各領域231a、231b毎に下ウェハW2の真空引きを設定可能に構成されている。 As shown in FIG. 7, suction tubes 260a and 260b for sucking and holding the lower wafer W2 are independently provided in each of the regions 231a and 231b. Different vacuum pumps 261a and 261b are connected to the suction pipes 260a and 260b, respectively. As described above, the lower chuck 231 is configured so that the evacuation of the lower wafer W2 can be set for each of the regions 231a and 231b.
 下チャック231の周縁部には、上ウェハW1、下ウェハW2および重合ウェハTが当該下チャック231から飛び出したり、滑落したりすることを防止するストッパ部材263が複数箇所、たとえば5箇所に設けられる。 On the peripheral edge of the lower chuck 231, stopper members 263 for preventing the upper wafer W1, the lower wafer W2, and the polymerized wafer T from jumping out or sliding down from the lower chuck 231 are provided at a plurality of locations, for example, five locations. ..
 また、接合装置41は、互いに向かい合う上ウェハW1の周縁部W1eと下ウェハW2の周縁部W2eとの間に形成されるエッジボイドを低減するボイド低減機構270を備える。 Further, the joining device 41 includes a void reduction mechanism 270 that reduces edge voids formed between the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2 facing each other.
 ボイド低減機構270は、ガス吐出部271と、ボイド低減ガス供給部272と、低湿度ガス供給部273とを有する。ガス吐出部271は、たとえば円環形状を有し、上チャック230の周縁部を取り囲むように配置される。 The void reduction mechanism 270 has a gas discharge unit 271, a void reduction gas supply unit 272, and a low humidity gas supply unit 273. The gas discharge portion 271 has, for example, an annular shape, and is arranged so as to surround the peripheral edge portion of the upper chuck 230.
 ガス吐出部271は、ボイド低減ガス供給部272から供給されるボイド低減ガス(詳細は後述)、および低湿度ガス供給部273から供給される低湿度ガスを選択的に吐出することができる。 The gas discharge unit 271 can selectively discharge the void reduction gas (details will be described later) supplied from the void reduction gas supply unit 272 and the low humidity gas supplied from the low humidity gas supply unit 273.
 また、ガス吐出部271には、複数の吐出口281a(図8参照)が周方向に均等に複数(たとえば、30°間隔で12箇所)形成されている。これにより、ボイド低減機構270は、互いに向かい合う上ウェハW1の周縁部W1eおよび下ウェハW2の周縁部W2eの周囲に、ガスを周方向に略均等に吐出することができる。かかるガス吐出部271の詳細な構成については後述する。 Further, a plurality of discharge ports 281a (see FIG. 8) are uniformly formed in the gas discharge unit 271 in the circumferential direction (for example, 12 locations at intervals of 30 °). As a result, the void reduction mechanism 270 can discharge the gas substantially evenly in the circumferential direction around the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2 facing each other. The detailed configuration of the gas discharge unit 271 will be described later.
 ボイド低減ガス供給部272は、たとえば、結露抑制ガスをガス吐出部271に供給する。実施形態において、結露抑制ガスは、たとえば、ジュール・トムソン効果が高く、空気に含まれる窒素ガスや酸素ガスよりも結露を抑制する効果の高いHeガスやArガス、Neガスなどの不活性ガスを含む。 The void reduction gas supply unit 272 supplies, for example, the dew condensation suppressing gas to the gas discharge unit 271. In the embodiment, the dew condensation suppressing gas is, for example, an inert gas such as He gas, Ar gas, or Ne gas, which has a high Joule-Thomson effect and is more effective in suppressing dew condensation than nitrogen gas or oxygen gas contained in the air. Including.
 ボイド低減ガス供給部272は、ガス供給源272aと、バルブ272bと、流量調整器272cとを有する。そして、ガス供給源272aから供給された結露抑制ガスは、バルブ272bおよび流量調整器272cで流量制御され、ガス吐出部271に供給される。 The void reduction gas supply unit 272 includes a gas supply source 272a, a valve 272b, and a flow rate regulator 272c. Then, the dew condensation suppressing gas supplied from the gas supply source 272a is flow-controlled by the valve 272b and the flow rate regulator 272c, and is supplied to the gas discharge unit 271.
 また、実施形態では、ボイド低減ガス供給部272が、低分子サイズガスをガス吐出部271に供給してもよい。実施形態において、低分子サイズガスは、たとえば、空気に含まれる窒素ガスや酸素ガスよりも分子サイズが小さく、リークしやすいHeガスやHガス、Neガスなどを含む。 Further, in the embodiment, the void reduction gas supply unit 272 may supply the low molecular size gas to the gas discharge unit 271. In the embodiment, the low molecular size gas includes, for example, He gas, H 2 gas, Ne gas, etc., which have a smaller molecular size than nitrogen gas and oxygen gas contained in air and are easily leaked.
 すなわち、実施形態において、ボイド低減ガス供給部272は、結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(本開示では「ボイド低減ガス」と総称する。)をガス吐出部271に供給する。 That is, in the embodiment, the void reduction gas supply unit 272 supplies at least one of the dew condensation suppressing gas and the low molecular size gas (collectively referred to as “void reduction gas” in the present disclosure) to the gas discharge unit 271.
 低湿度ガス供給部273は、低湿度ガスをガス吐出部271に供給する。実施形態において、低湿度ガスは、所与の湿度以下の湿度である不活性ガス(たとえば、窒素ガスなど)である。 The low humidity gas supply unit 273 supplies the low humidity gas to the gas discharge unit 271. In embodiments, the low humidity gas is an inert gas (eg, nitrogen gas) having a humidity below a given humidity.
 低湿度ガス供給部273は、低湿度ガス供給源273aと、バルブ273bと、流量調整器273cとを有する。そして、低湿度ガス供給源273aから供給された低湿度ガスは、バルブ273bおよび流量調整器273cで流量制御され、ガス吐出部271に供給される。 The low humidity gas supply unit 273 includes a low humidity gas supply source 273a, a valve 273b, and a flow rate regulator 273c. Then, the low humidity gas supplied from the low humidity gas supply source 273a is flow-controlled by the valve 273b and the flow rate regulator 273c, and is supplied to the gas discharge unit 271.
<ボイド低減機構の構成>
 つづいて、ボイド低減機構270の詳細な構成について、図8を参照しながら説明する。図8は、実施形態に係るボイド低減機構270の構成を示す拡大側面図である。なお、図8は、上チャック230に保持された上ウェハW1と、下チャック231に保持された下ウェハW2との間が予め設定された距離(たとえば、80~100μm)に近づけられた場合の拡大断面図である。
<Structure of void reduction mechanism>
Subsequently, the detailed configuration of the void reduction mechanism 270 will be described with reference to FIG. FIG. 8 is an enlarged side view showing the configuration of the void reduction mechanism 270 according to the embodiment. Note that FIG. 8 shows a case where the distance between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 is brought close to a preset distance (for example, 80 to 100 μm). It is an enlarged sectional view.
 上述のように、ボイド低減機構270は、ガス吐出部271と、ボイド低減ガス供給部272と、低湿度ガス供給部273とを有する。また、ガス吐出部271は、吐出ノズル281と、回収部282と、支持部283と、封止部284と、センサ部285と、基板恒温部286とを有する。 As described above, the void reduction mechanism 270 has a gas discharge unit 271, a void reduction gas supply unit 272, and a low humidity gas supply unit 273. Further, the gas discharge unit 271 has a discharge nozzle 281, a recovery unit 282, a support unit 283, a sealing unit 284, a sensor unit 285, and a substrate constant temperature unit 286.
 吐出ノズル281は、たとえば円環形状を有し、上チャック230の周縁部と所与の距離を保ちながら、かかる上チャック230の周縁部を取り囲むように配置される。また、吐出ノズル281には、複数の吐出口281aが周方向に均等に複数形成されている。 The discharge nozzle 281 has, for example, an annular shape, and is arranged so as to surround the peripheral edge of the upper chuck 230 while maintaining a given distance from the peripheral edge of the upper chuck 230. Further, a plurality of discharge ports 281a are uniformly formed in the discharge nozzle 281 in the circumferential direction.
 回収部282は、たとえば円環形状を有し、上チャック230の周縁部と吐出ノズル281との間に形成される隙間を覆うように、吐出ノズル281の上方に配置される。支持部283は、吐出ノズル281および回収部282を上チャック230に支持する。 The recovery unit 282 has, for example, an annular shape, and is arranged above the discharge nozzle 281 so as to cover the gap formed between the peripheral edge of the upper chuck 230 and the discharge nozzle 281. The support portion 283 supports the discharge nozzle 281 and the recovery portion 282 on the upper chuck 230.
 封止部284は、たとえば円環形状を有し、吐出ノズル281の下面に取り付けられる。封止部284は、弾性変形が可能な材料で構成される。 The sealing portion 284 has, for example, an annular shape and is attached to the lower surface of the discharge nozzle 281. The sealing portion 284 is made of a material that can be elastically deformed.
 ここで、実施形態に係る接合装置41では、上チャック230に保持された上ウェハW1と、下チャック231に保持された下ウェハW2との間が予め設定された距離(たとえば、80~100μm)に近づけられた場合に、空間Sが形成される。 Here, in the joining device 41 according to the embodiment, a preset distance (for example, 80 to 100 μm) is provided between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231. Space S is formed when it is brought close to.
 かかる空間Sは、図8に示すように、上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲に形成される。また、空間Sは、上チャック230と、下チャック231と、吐出ノズル281と、回収部282と、封止部284とで区切られる領域である。 As shown in FIG. 8, such a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2. Further, the space S is a region separated by an upper chuck 230, a lower chuck 231, a discharge nozzle 281, a collection portion 282, and a sealing portion 284.
 なお、図8に示す状態において、封止部284は弾性変形することから、上ウェハW1と下ウェハW2とが近づけられて封止部284が下チャック231と当接する際に、かかる封止部284が阻害要因となることはない。 Since the sealing portion 284 is elastically deformed in the state shown in FIG. 8, when the upper wafer W1 and the lower wafer W2 are brought close to each other and the sealing portion 284 comes into contact with the lower chuck 231. 284 is not an inhibitory factor.
 そして、ガス吐出部271は、吐出ノズル281に形成される吐出口281aから、空間Sにボイド低減ガスや低湿度ガスを吐出することができる。このように、上ウェハW1と下ウェハW2との間が予め設定された距離に近づけられた場合に、空間Sにボイド低減ガスや低湿度ガスを吐出することによる効果については後述する。 Then, the gas discharge unit 271 can discharge the void reduction gas or the low humidity gas into the space S from the discharge port 281a formed in the discharge nozzle 281. The effect of discharging the void reduction gas or the low humidity gas into the space S when the distance between the upper wafer W1 and the lower wafer W2 is brought close to a preset distance will be described later.
 センサ部285は、上述した空間Sに接するように設けられる。たとえば、センサ部285は、回収部282において空間Sに接する位置に設けられる。センサ部285は、温度センサや湿度センサ、酸素センサ、ヘリウムセンサなどを有する。 The sensor unit 285 is provided so as to be in contact with the above-mentioned space S. For example, the sensor unit 285 is provided at a position in contact with the space S in the collection unit 282. The sensor unit 285 includes a temperature sensor, a humidity sensor, an oxygen sensor, a helium sensor, and the like.
 センサ部285の温度センサは空間S内の温度を計測し、センサ部285の湿度センサは空間S内の湿度を計測し、センサ部285の酸素センサは空間S内の酸素濃度を計測する。なお、センサ部285は、回収部282に設けられる場合に限られず、上チャック230や吐出ノズル281などに設けられてもよい。 The temperature sensor of the sensor unit 285 measures the temperature in the space S, the humidity sensor of the sensor unit 285 measures the humidity in the space S, and the oxygen sensor of the sensor unit 285 measures the oxygen concentration in the space S. The sensor unit 285 is not limited to the case where it is provided in the collection unit 282, and may be provided in the upper chuck 230, the discharge nozzle 281 or the like.
 基板恒温部286は、下チャック231における下ウェハW2の周縁部W2eに接するように設けられる。基板恒温部286は、下ウェハW2における周縁部W2eの温度を所与の温度(たとえば、室温)で保持する。 The substrate constant temperature portion 286 is provided so as to be in contact with the peripheral edge portion W2e of the lower wafer W2 in the lower chuck 231. The substrate constant temperature portion 286 holds the temperature of the peripheral edge portion W2e on the lower wafer W2 at a given temperature (for example, room temperature).
 回収部282には、回収流路287が接続される。かかる回収流路287は、回収部282とボイド低減ガス供給部272におけるバルブ272bの上流側との間を接続する。また、回収流路287にはバルブ288が設けられる。 A collection flow path 287 is connected to the collection unit 282. The recovery flow path 287 connects the recovery section 282 and the upstream side of the valve 272b in the void reduction gas supply section 272. Further, a valve 288 is provided in the recovery flow path 287.
 そして、制御部5は、回収部282およびバルブ288を制御することにより、空間S内のボイド低減ガスをかかる空間Sから回収して、再びボイド低減ガス供給部272に戻すことができる。 Then, by controlling the recovery unit 282 and the valve 288, the control unit 5 can recover the void reduction gas in the space S from the space S and return it to the void reduction gas supply unit 272 again.
 また、回収部282には、ベント流路289が接続される。かかるベント流路289は、回収部282と外部の排気処理設備(図示せず)との間を接続する。また、ベント流路289にはバルブ290が設けられる。 Further, a vent flow path 289 is connected to the recovery unit 282. The vent flow path 289 connects the recovery unit 282 and an external exhaust treatment facility (not shown). Further, a valve 290 is provided in the vent flow path 289.
 そして、制御部5は、回収部282およびバルブ290を制御することにより、空間S内のボイド低減ガスや低湿度ガスなどをかかる空間Sから外部に排出(ベント)することができる。 Then, the control unit 5 can discharge (vent) the void reduction gas, the low humidity gas, etc. in the space S from the space S to the outside by controlling the recovery unit 282 and the valve 290.
<接合システムが実行する処理>
 つづいて、図9~図11を参照しながら、実施形態に係る接合システム1が実行する処理の詳細について説明する。なお、以下に示す各種処理は、制御装置4の制御部5による制御に基づいて実行される。
<Processing performed by the joining system>
Subsequently, the details of the processing executed by the joining system 1 according to the embodiment will be described with reference to FIGS. 9 to 11. The various processes shown below are executed based on the control by the control unit 5 of the control device 4.
 図9は、実施形態に係る接合システム1が実行する処理の処理手順の一部を示すフローチャートである。まず、複数枚の上ウェハW1を収容したカセットC1、複数枚の下ウェハW2を収容したカセットC2、および空のカセットC3が、搬入出ステーション2の所与の載置板11に載置される。 FIG. 9 is a flowchart showing a part of the processing procedure of the processing executed by the joining system 1 according to the embodiment. First, a cassette C1 containing a plurality of upper wafers W1, a cassette C2 containing a plurality of lower wafers W2, and an empty cassette C3 are placed on a given mounting plate 11 of the loading / unloading station 2. ..
 その後、搬送装置22によりカセットC1内の上ウェハW1が取り出され、処理ステーション3の第3処理ブロックG3のトランジション装置50に搬送される。 After that, the upper wafer W1 in the cassette C1 is taken out by the transfer device 22, and is transferred to the transition device 50 of the third processing block G3 of the processing station 3.
 次に、上ウェハW1は、搬送装置61によって第1処理ブロックG1の表面改質装置30に搬送される。このとき、ゲートバルブ72が開かれており、処理容器70内が大気圧に開放されている。表面改質装置30では、所与の減圧雰囲気下において、処理ガスが励起されてプラズマ化され、イオン化される。 Next, the upper wafer W1 is conveyed to the surface modification device 30 of the first processing block G1 by the transfer device 61. At this time, the gate valve 72 is opened, and the inside of the processing container 70 is opened to atmospheric pressure. In the surface modifier 30, the processing gas is excited, turned into plasma, and ionized in a given reduced pressure atmosphere.
 このように発生したイオンが上ウェハW1の接合面W1jに照射されて、当該接合面W1jがプラズマ処理される。これにより、接合面W1jの最表面にシリコン原子のダングリングボンドが形成され、上ウェハW1の接合面W1jが改質される(ステップS101)。 The ions generated in this way are irradiated on the bonding surface W1j of the upper wafer W1, and the bonding surface W1j is plasma-treated. As a result, a dangling bond of silicon atoms is formed on the outermost surface of the bonding surface W1j, and the bonding surface W1j of the upper wafer W1 is modified (step S101).
 次に、上ウェハW1は、搬送装置61によって第2処理ブロックG2の表面親水化装置40に搬送される。表面親水化装置40では、スピンチャックに保持された上ウェハW1を回転させながら、当該上ウェハW1上に純水を供給する。 Next, the upper wafer W1 is conveyed to the surface hydrophilic device 40 of the second processing block G2 by the transfer device 61. In the surface hydrophilization apparatus 40, pure water is supplied onto the upper wafer W1 while rotating the upper wafer W1 held by the spin chuck.
 そうすると、供給された純水は上ウェハW1の接合面W1j上を拡散する。これにより、表面改質装置30では、改質された上ウェハW1の接合面W1jにおけるシリコン原子のダングリングボンドにOH基(シラノール基)が付着して当該接合面W1jが親水化される(ステップS102)。また、当該純水によって、上ウェハW1の接合面W1jが洗浄される。 Then, the supplied pure water diffuses on the bonding surface W1j of the upper wafer W1. As a result, in the surface modifier 30, the OH group (silanol group) adheres to the dangling bond of the silicon atom on the junction surface W1j of the modified upper wafer W1 to make the junction surface W1j hydrophilic (step). S102). Further, the pure water cleans the bonding surface W1j of the upper wafer W1.
 次に、上ウェハW1は、搬送装置61によって第2処理ブロックG2の接合装置41に搬送される。接合装置41に搬入された上ウェハW1は、トランジション200を介して位置調整機構210に搬送される。そして位置調整機構210によって、上ウェハW1の水平方向の向きが調整される(ステップS103)。 Next, the upper wafer W1 is conveyed to the joining device 41 of the second processing block G2 by the conveying device 61. The upper wafer W1 carried into the joining device 41 is conveyed to the position adjusting mechanism 210 via the transition 200. Then, the position adjusting mechanism 210 adjusts the horizontal orientation of the upper wafer W1 (step S103).
 その後、位置調整機構210から反転機構220に上ウェハW1が受け渡される。続いて搬送領域T1において、反転機構220を動作させることにより、上ウェハW1の表裏面が反転される(ステップS104)。すなわち、上ウェハW1の接合面W1jが下方に向けられる。 After that, the upper wafer W1 is delivered from the position adjusting mechanism 210 to the reversing mechanism 220. Subsequently, in the transport region T1, the front and back surfaces of the upper wafer W1 are inverted by operating the inversion mechanism 220 (step S104). That is, the bonding surface W1j of the upper wafer W1 is directed downward.
 その後、反転機構220が回動して上チャック230の下方に移動する。そして、反転機構220から上チャック230に上ウェハW1が受け渡される。上ウェハW1は、上チャック230にその非接合面W1nが吸着保持される(ステップS105)。 After that, the reversing mechanism 220 rotates and moves below the upper chuck 230. Then, the upper wafer W1 is delivered from the reversing mechanism 220 to the upper chuck 230. The non-bonded surface W1n of the upper wafer W1 is adsorbed and held by the upper chuck 230 (step S105).
 上ウェハW1に上述したステップS101~S105の処理が行われている間、下ウェハW2の処理が行われる。まず、搬送装置22によりカセットC2内の下ウェハW2が取り出され、処理ステーション3のトランジション装置50に搬送される。 While the processing of steps S101 to S105 described above is being performed on the upper wafer W1, the processing of the lower wafer W2 is performed. First, the lower wafer W2 in the cassette C2 is taken out by the transfer device 22, and is transferred to the transition device 50 of the processing station 3.
 次に、下ウェハW2は、搬送装置61によって表面改質装置30に搬送され、下ウェハW2の接合面W2jが改質される(ステップS106)。なお、かかるステップS106は、上述のステップS101と同様の処理である。 Next, the lower wafer W2 is conveyed to the surface modifying device 30 by the conveying device 61, and the bonding surface W2j of the lower wafer W2 is modified (step S106). Note that step S106 is the same process as step S101 described above.
 その後、下ウェハW2は、搬送装置61によって表面親水化装置40に搬送され、下ウェハW2の接合面W2jが親水化される(ステップS107)。なお、かかるステップS107は、上述のステップS102と同様の処理である。 After that, the lower wafer W2 is conveyed to the surface hydrophilization device 40 by the transfer device 61, and the bonding surface W2j of the lower wafer W2 is hydrophilized (step S107). Note that step S107 is the same process as step S102 described above.
 その後、下ウェハW2は、搬送装置61によって接合装置41に搬送される。接合装置41に搬入された下ウェハW2は、トランジション200を介して位置調整機構210に搬送される。そして位置調整機構210によって、下ウェハW2の水平方向の向きが調整される(ステップS108)。 After that, the lower wafer W2 is conveyed to the joining device 41 by the conveying device 61. The lower wafer W2 carried into the joining device 41 is conveyed to the position adjusting mechanism 210 via the transition 200. Then, the position adjusting mechanism 210 adjusts the horizontal orientation of the lower wafer W2 (step S108).
 その後、下ウェハW2は、下チャック231に搬送され、下チャック231に吸着保持される(ステップS109)。下ウェハW2は、ノッチ部を予め決められた方向に向けた状態で、下チャック231にその非接合面W2nが吸着保持される。 After that, the lower wafer W2 is conveyed to the lower chuck 231 and is attracted and held by the lower chuck 231 (step S109). The non-bonded surface W2n of the lower wafer W2 is adsorbed and held by the lower chuck 231 in a state where the notch portion is directed in a predetermined direction.
 次に、上チャック230に保持された上ウェハW1と下チャック231に保持された下ウェハW2との水平方向の位置調整が行われる(ステップS110)。 Next, the horizontal position adjustment between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 is performed (step S110).
 次に、第1下チャック移動部310によって下チャック231を鉛直上方に移動させて、上チャック230と下チャック231の鉛直方向位置の調整を行う。これにより、当該上チャック230に保持された上ウェハW1と下チャック231に保持された下ウェハW2との鉛直方向位置の調整が行われる(ステップS111)。 Next, the lower chuck 231 is moved vertically upward by the first lower chuck moving unit 310 to adjust the vertical positions of the upper chuck 230 and the lower chuck 231. As a result, the vertical positions of the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 are adjusted (step S111).
 このとき、下ウェハW2の接合面W2jと上ウェハW1の接合面W1jとの間の間隔は予め設定された距離、たとえば80μm~100μmになっている。 At this time, the distance between the bonding surface W2j of the lower wafer W2 and the bonding surface W1j of the upper wafer W1 is a preset distance, for example, 80 μm to 100 μm.
 そして、所与の間隔が保たれた上ウェハW1と下ウェハW2とを接合する接合処理が行われ(ステップS112)、接合装置41での接合処理が終了する。 Then, a joining process for joining the upper wafer W1 and the lower wafer W2 at a given interval is performed (step S112), and the joining process in the joining device 41 is completed.
 図10は、実施形態に係る接合処理における各部の動作を示すタイミングチャートである。なお、図10には、上述のステップS110(上ウェハW1と下ウェハW2との水平方向の位置調整)が終了した時点からのタイミングチャートを示している。 FIG. 10 is a timing chart showing the operation of each part in the joining process according to the embodiment. Note that FIG. 10 shows a timing chart from the time when the above-mentioned step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) is completed.
 最初に、制御部5は、時間T11から、下チャック231をホーム位置からボンド位置に上昇させて、下ウェハW2を上ウェハW1に近づける。また、制御部5は、時間T11から吐出ノズル281および低湿度ガス供給部273を動作させて、ガス吐出部271の吐出ノズル281から低湿度ガスを吐出させる。 First, from time T11, the control unit 5 raises the lower chuck 231 from the home position to the bond position to bring the lower wafer W2 closer to the upper wafer W1. Further, the control unit 5 operates the discharge nozzle 281 and the low humidity gas supply unit 273 from the time T11 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271.
 さらに、制御部5は、時間T11から、回収部282およびバルブ288、290を制御することにより、大気雰囲気や吐出ノズル281から吐出される低湿度ガスを下ウェハW2の近傍から外部に排出(ベント)する。 Further, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 from the time T11 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 from the vicinity of the lower wafer W2 to the outside (vent). ).
 そして、制御部5は、時間T12で下チャック231をボンド位置まで上昇させ、下ウェハW2の接合面W2jと上ウェハW1の接合面W1jとの間の間隔が予め設定された距離になるように下ウェハW2をセットする。 Then, the control unit 5 raises the lower chuck 231 to the bond position at time T12 so that the distance between the bonding surface W2j of the lower wafer W2 and the bonding surface W1j of the upper wafer W1 becomes a preset distance. Set the lower wafer W2.
 すると、図8に示したように、上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲に空間Sが形成される。 Then, as shown in FIG. 8, a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2.
 かかる空間Sが形成された時間T12においても、図10に示すように、ガス吐出部271は低湿度ガスを空間Sに吐出し続けるとともに、回収部282は空間S内の雰囲気を外部に排出し続ける。 As shown in FIG. 10, the gas discharge unit 271 continues to discharge the low humidity gas into the space S even during the time T12 when the space S is formed, and the recovery unit 282 discharges the atmosphere in the space S to the outside. to continue.
 これにより、接合装置41は、空間S、すなわち上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲を低湿度状態で維持することができる。 As a result, the joining device 41 can maintain the space S, that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 in a low humidity state.
 次に、制御部5は、時間T13でストライカー250の押圧ピン253を下降させる。これにより、ストライカー250は、上ウェハW1の中心部W1cを押し下げて、上ウェハW1の中心部W1cと下ウェハW2の中心部W2cとを所与の力で押圧する。 Next, the control unit 5 lowers the pressing pin 253 of the striker 250 at time T13. As a result, the striker 250 pushes down the central portion W1c of the upper wafer W1 and presses the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 with a given force.
 これにより、押圧された上ウェハW1の中心部W1cと下ウェハW2の中心部W2cとの間で接合が開始される。具体的には、上ウェハW1の接合面W1jと下ウェハW2の接合面W2jはそれぞれステップS101、S106において改質されているため、まず、接合面W1j、W2j間にファンデルワールス力(分子間力)が生じ、当該接合面W1j、W2j同士が接合される。 As a result, joining is started between the center portion W1c of the pressed upper wafer W1 and the center portion W2c of the lower wafer W2. Specifically, since the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are modified in steps S101 and S106, respectively, first, a van der Waals force (intermolecular) is formed between the bonding surfaces W1j and W2j. Force) is generated, and the joint surfaces W1j and W2j are joined to each other.
 さらに、上ウェハW1の接合面W1jと下ウェハW2の接合面W2jはそれぞれステップS102、S107において親水化されているため、接合面W1j、W2j間のOH基が水素結合し、接合面W1j、W2j同士が強固に接合される。 Further, since the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are hydrophilized in steps S102 and S107, respectively, the OH groups between the bonding surfaces W1j and W2j are hydrogen-bonded, and the bonding surfaces W1j and W2j are bonded. They are firmly joined together.
 その後、上ウェハW1と下ウェハW2との接合領域は、上ウェハW1の中心部W1cおよび下ウェハW2の中心部W2cから外周部へ拡大していく。すなわち、上述した接合面W1j、W2j間のファンデルワールス力と水素結合による接合が中心部W1c、W2cから外周部に向けて順次拡がる。 After that, the bonding region between the upper wafer W1 and the lower wafer W2 expands from the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 to the outer peripheral portion. That is, the van der Waals force between the above-mentioned bonding surfaces W1j and W2j and the bonding by hydrogen bonding gradually expand from the central portions W1c and W2c toward the outer peripheral portion.
 最初に、時間T13で、ストライカー250で上ウェハW1の中心部W1cを押し下げることにより、中央部吸引管240aから上ウェハW1が離間する。すなわち、時間T13で、ウェハWの中央部において上ウェハW1が下ウェハW2に接合される。 First, at time T13, the upper wafer W1 is separated from the central suction pipe 240a by pushing down the central portion W1c of the upper wafer W1 with the striker 250. That is, at time T13, the upper wafer W1 is joined to the lower wafer W2 at the central portion of the wafer W.
 次に、時間T14で、中間部吸引管240bから上ウェハW1が離間する。すなわち、時間T14で、ウェハWの中間部において上ウェハW1が下ウェハW2に接合される。 Next, at time T14, the upper wafer W1 is separated from the intermediate suction pipe 240b. That is, at time T14, the upper wafer W1 is joined to the lower wafer W2 at the intermediate portion of the wafer W.
 ここで、制御部5は、かかる時間T14で、低湿度ガス供給部273を停止させるとともに、ボイド低減ガス供給部272を動作させる。すなわち、制御部5は、時間T14で、ガス吐出部271から吐出されるガスを低湿度ガスからボイド低減ガスに切り替える。 Here, the control unit 5 stops the low humidity gas supply unit 273 and operates the void reduction gas supply unit 272 at the time T14. That is, the control unit 5 switches the gas discharged from the gas discharge unit 271 from the low humidity gas to the void reduction gas at time T14.
 これにより、時間T14から、空間S、すなわち上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲をボイド低減ガスの雰囲気にすることができる。 Thereby, from the time T14, the space S, that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 can be made into an atmosphere of void reduction gas.
 そして、制御部5は、時間T14から所与の時間経過した時間T15で、回収部282およびバルブ288、290を制御することにより、空間S内の雰囲気を回収流路287を介してボイド低減ガス供給部272に回収する。 Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 at the time T15 when a given time elapses from the time T14, so that the atmosphere in the space S is controlled by the void reduction gas via the recovery flow path 287. It is collected in the supply unit 272.
 このように、実施形態では、時間T14から所与の時間経過した時間T15から、回収部282の動作をベントモードから回収モードに切り替える。これにより、空間Sがボイド低減ガスで満たされた時点から、かかるボイド低減ガスを回収部282でボイド低減ガス供給部272に回収することができる。 As described above, in the embodiment, the operation of the recovery unit 282 is switched from the vent mode to the recovery mode from the time T15 when a given time has elapsed from the time T14. As a result, from the time when the space S is filled with the void reduction gas, the void reduction gas can be recovered by the recovery unit 282 to the void reduction gas supply unit 272.
 したがって、実施形態によれば、ボイド低減ガス以外のガスが回収されることを抑制することができる。 Therefore, according to the embodiment, it is possible to suppress the recovery of gas other than the void reduction gas.
 その後、上ウェハW1と下ウェハW2との接合領域が周縁部W1e、W2eに達した時間T16で、周縁部吸引管240cから上ウェハW1が離間する。この時点では、ウェハWの周縁部W1e、W2eまで接合領域が達していることから、上ウェハW1と下ウェハW2とは全面で接合され、重合ウェハTが形成されている。 After that, the upper wafer W1 is separated from the peripheral suction pipe 240c at the time T16 when the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral portions W1e and W2e. At this point, since the bonding region reaches the peripheral portions W1e and W2e of the wafer W, the upper wafer W1 and the lower wafer W2 are bonded on the entire surface to form the polymerized wafer T.
 そして、制御部5は、かかる時間T16で、ボイド低減ガス供給部272を停止させる。すなわち、制御部5は、時間T16で、ガス吐出部271からのガスの吐出を停止する。また、制御部5は、時間T16で、回収部282を停止させる。 Then, the control unit 5 stops the void reduction gas supply unit 272 at the time T16. That is, the control unit 5 stops the gas discharge from the gas discharge unit 271 at the time T16. Further, the control unit 5 stops the collection unit 282 at the time T16.
 次に、制御部5は、時間T16から所与の時間経過した時間T17で、下チャック231の位置をボンド位置からホーム位置に下降させる。そして、時間T18で、下チャック231をホーム位置まで下降させることにより、制御部5は、下チャック231に吸着保持された重合ウェハTを接合装置41から取り出すことができる。 Next, the control unit 5 lowers the position of the lower chuck 231 from the bond position to the home position at the time T17 when a given time has elapsed from the time T16. Then, by lowering the lower chuck 231 to the home position at time T18, the control unit 5 can take out the polymerized wafer T attracted and held by the lower chuck 231 from the joining device 41.
 ここまで説明したように、実施形態では、上ウェハW1の周縁部W1eと、下ウェハW2の周縁部W2eとを接合する前に、かかる周縁部W1e、W2eの周囲をボイド低減ガス(たとえば、結露抑制ガス)の雰囲気にする。 As described above, in the embodiment, before joining the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2, the void reducing gas (for example, dew condensation) surrounds the peripheral edges W1e and W2e. Create an atmosphere of (suppressing gas).
 これにより、実施形態によれば、重合ウェハTに発生するエッジボイドを低減することができる。かかるエッジボイドを低減することができる理由について、以下に説明する。 Thereby, according to the embodiment, the edge voids generated in the polymerized wafer T can be reduced. The reason why such edge voids can be reduced will be described below.
 上ウェハW1と下ウェハW2とを接合する際に、中心部W1cと中心部W2cとが分子間力によって接合し接合領域が形成された後、ウェハWの周縁部W1e、W2eに向けて接合領域が拡大していく際に波(いわゆるボンディングウェーブ)が発生する。 When the upper wafer W1 and the lower wafer W2 are bonded, the central portion W1c and the central portion W2c are bonded by an intermolecular force to form a bonding region, and then the bonding region is directed toward the peripheral portions W1e and W2e of the wafer W. Waves (so-called bonding waves) are generated as the wafer expands.
 ここで、エッジボイドの発生要因の1つとして、かかるボンディングウェーブがウェハWの周縁部W1e、W2eに到達した場合に、ウェハWの周縁部W1e、W2eにおいて急激な圧力の変動が起こることが考えられる。 Here, as one of the causes of edge voids, when the bonding wave reaches the peripheral portions W1e and W2e of the wafer W, it is conceivable that a sudden pressure fluctuation occurs at the peripheral portions W1e and W2e of the wafer W. ..
 なぜなら、かかる急激な圧力の変動により周縁部W1e、W2e近傍の雰囲気温度が急激に低下することから、上ウェハW1の周縁部W1eと下ウェハW2の周縁部W2eとで結露が発生し、かかる発生した結露に起因してエッジボイドが形成されるからである。 This is because the atmospheric temperature in the vicinity of the peripheral portions W1e and W2e drops sharply due to the sudden fluctuation of the pressure, so that dew condensation occurs on the peripheral portion W1e of the upper wafer W1 and the peripheral portion W2e of the lower wafer W2. This is because edge voids are formed due to the dew condensation.
 そこで、実施形態では、上ウェハW1の周縁部W1eと、下ウェハW2の周縁部W2eとを接合する前に、エッジボイドの原因となる結露が発生する領域(すなわち、空間S)に結露抑制ガスの吐出を行う。 Therefore, in the embodiment, before the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2 are joined, the dew condensation suppressing gas is applied to the region (that is, the space S) where the dew condensation that causes the edge void is generated. Discharge.
 これにより、ウェハWの周縁部W1e、W2e近傍(すなわち、空間S)において急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することを抑制することができる。したがって、実施形態によれば、上ウェハW1の周縁部W1eおよび下ウェハW2の周縁部W2eにおいて、結露の発生を抑制することができる。 As a result, even if a sudden pressure fluctuation occurs in the vicinity of the peripheral portions W1e and W2e of the wafer W (that is, the space S), it is possible to suppress the temperature of the space S from dropping sharply. Therefore, according to the embodiment, it is possible to suppress the occurrence of dew condensation on the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2.
 また、実施形態では、上ウェハW1の周縁部W1eと、下ウェハW2の周縁部W2eとを接合する前に、周縁部W1e、W2eの周囲を低分子サイズガスの雰囲気にすることによっても、重合ウェハTに発生するエッジボイドを低減することができる。 Further, in the embodiment, before joining the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2, the periphery of the peripheral edges W1e and W2e is also polymerized by creating an atmosphere of a low molecular size gas. The edge voids generated in the wafer T can be reduced.
 なぜなら、重合ウェハTに低分子サイズガスを含有するエッジボイドが形成された場合、リーク性能の高い低分子サイズガスはこのエッジボイドから抜けることから、一旦は形成されたエッジボイドが縮小または消滅するからである。 This is because when an edge void containing a low molecular size gas is formed on the polymerized wafer T, the low molecular size gas having high leakage performance escapes from this edge void, so that the once formed edge void shrinks or disappears. ..
 このように、実施形態では、上ウェハW1の周縁部W1eと、下ウェハW2の周縁部W2eとを接合する前に、周縁部W1e、W2eの周囲を結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(すなわち、ボイド低減ガス)の雰囲気にするとよい。これにより、重合ウェハTに発生するエッジボイドを低減することができる As described above, in the embodiment, before joining the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2, at least one of the dew condensation suppressing gas and the low molecular size gas is surrounded around the peripheral edges W1e and W2e. It is preferable to create an atmosphere of gas (that is, void reduction gas). Thereby, the edge voids generated in the polymerized wafer T can be reduced.
 また、実施形態では、ボイド低減ガス供給部272から供給されるボイド低減ガスとして、結露抑制ガスおよび低分子サイズガスであるHeガスを用いることが好ましい。このように、ボイド低減ガスとしてジュール・トムソン効果が非常に高いHeガスを用いることにより、空間Sにおいて急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することをさらに抑制することができる。 Further, in the embodiment, it is preferable to use a dew condensation suppressing gas and a He gas which is a low molecular size gas as the void reducing gas supplied from the void reducing gas supply unit 272. In this way, by using a He gas having a very high Joule-Thomson effect as the void reducing gas, it is further suppressed that the temperature of the space S suddenly drops even when a sudden pressure fluctuation occurs in the space S. can do.
 さらに、ボイド低減ガスとしてリーク性能が高いHeガスを用いることにより、一旦は形成されたエッジボイドを効率よく縮小または消滅させることができる。したがって、実施形態によれば、重合ウェハTにでのエッジボイドの発生をさらに抑制することができる。 Furthermore, by using a He gas having a high leak performance as the void reducing gas, the edge void once formed can be efficiently reduced or eliminated. Therefore, according to the embodiment, the generation of edge voids on the polymerized wafer T can be further suppressed.
 また、実施形態では、ストライカー250で上ウェハW1の中心部W1cを押圧した後に、ガス吐出部271からボイド低減ガスを空間Sに吐出するとよい。これにより、ボイド低減ガスの使用量を削減することができることから、重合ウェハTの製造コストを低減することができる。 Further, in the embodiment, after pressing the central portion W1c of the upper wafer W1 with the striker 250, the void reduction gas may be discharged from the gas discharge portion 271 into the space S. As a result, the amount of void-reducing gas used can be reduced, so that the manufacturing cost of the polymerized wafer T can be reduced.
 また、実施形態では、ガス吐出部271から空間Sに結露抑制ガスを吐出する前に、低湿度ガスをガス吐出部271から空間Sに吐出するとよい。このように、あらかじめ低湿度ガスを空間Sに吐出することにより、結露抑制ガスを吐出する前から空間Sを低湿度にすることができるとともに、結露抑制ガスの使用量をさらに削減することができる。 Further, in the embodiment, it is preferable to discharge the low humidity gas from the gas discharge unit 271 to the space S before discharging the dew condensation suppressing gas from the gas discharge unit 271 to the space S. By discharging the low humidity gas into the space S in advance in this way, the space S can be made low humidity even before the dew condensation suppressing gas is discharged, and the amount of the dew condensation suppressing gas used can be further reduced. ..
 したがって、実施形態によれば、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 Therefore, according to the embodiment, it is possible to suppress the edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 なお、実施形態では、ガス吐出部271から空間Sに低分子サイズガスを吐出する前に、低湿度ガスをガス吐出部271から空間Sに吐出してもよい。これにより、重合ウェハTに形成されたエッジボイドに、リーク性能が低い水分が多く含まれることを抑制することができる。 In the embodiment, the low humidity gas may be discharged from the gas discharge unit 271 into the space S before the low molecular size gas is discharged from the gas discharge unit 271 into the space S. As a result, it is possible to prevent the edge voids formed on the polymerized wafer T from containing a large amount of water having a low leak performance.
 したがって、実施形態によれば、低湿度ガスの後に吐出される低分子サイズガスによって、一旦は重合ウェハTに形成されたエッジボイドを効果的に縮小または消滅させることができる。 Therefore, according to the embodiment, the edge voids once formed on the polymerized wafer T can be effectively reduced or eliminated by the low molecular size gas discharged after the low humidity gas.
 このように、あらかじめ低湿度ガスを吐出する場合、ストライカー250で上ウェハW1の中心部W1cを押圧する前から、ウェハWの中間部において上ウェハW1が下ウェハW2に接合されるまでの間、空間Sに低湿度ガスを吐出するとよい。 In this way, when the low humidity gas is discharged in advance, from before the striker 250 presses the central portion W1c of the upper wafer W1 until the upper wafer W1 is joined to the lower wafer W2 in the middle portion of the wafer W. It is preferable to discharge the low humidity gas into the space S.
 これにより、ボイド低減ガスを吐出する前から空間Sを十分に低湿度にすることができるとともに、その後空間Sがボイド低減ガスで置換されるまでの時間を十分に取ることができる。したがって、実施形態によれば、重合ウェハTに発生するエッジボイドの発生をさらに抑制することができる。 As a result, the humidity of the space S can be sufficiently low before the void reduction gas is discharged, and a sufficient time can be taken until the space S is replaced with the void reduction gas thereafter. Therefore, according to the embodiment, it is possible to further suppress the generation of edge voids generated in the polymerized wafer T.
 なお、上記の処理を行う場合、ウェハWの中間部において上ウェハW1が下ウェハW2に接合されたことを、中間部吸引管240bなどの監視部を用いて監視するとよい。これにより、上ウェハW1と下ウェハW2との接合領域の進行速度にばらつきが生じた場合でも、低湿度ガスからボイド低減ガスへの切換処理を良好に実施することができる。 When performing the above processing, it is preferable to monitor that the upper wafer W1 is joined to the lower wafer W2 in the intermediate portion of the wafer W by using a monitoring unit such as an intermediate suction pipe 240b. As a result, even when the traveling speed of the bonding region between the upper wafer W1 and the lower wafer W2 varies, the switching process from the low humidity gas to the void reduction gas can be satisfactorily performed.
 ウェハWの中間部において上ウェハW1が下ウェハW2に接合されたことを監視する監視部は、中間部吸引管240bなどの吸引管に限られない。たとえば、IR(赤外線)カメラなどを用いて上ウェハW1と下ウェハW2との接合状態を直接観察することにより、ウェハWの中間部において上ウェハW1が下ウェハW2に接合されたことを監視することができる。 The monitoring unit that monitors that the upper wafer W1 is joined to the lower wafer W2 in the middle portion of the wafer W is not limited to the suction pipe such as the intermediate suction pipe 240b. For example, by directly observing the bonding state between the upper wafer W1 and the lower wafer W2 using an IR (infrared) camera or the like, it is monitored that the upper wafer W1 is bonded to the lower wafer W2 in the middle portion of the wafer W. be able to.
 また、実施形態では、制御部5が、センサ部285に設けられる湿度センサから出力される空間Sの湿度情報に基づいて、空間Sへの低湿度ガスの吐出量を制御するとよい。 Further, in the embodiment, the control unit 5 may control the discharge amount of the low humidity gas to the space S based on the humidity information of the space S output from the humidity sensor provided in the sensor unit 285.
 これにより、空間Sが過剰に低湿度になった場合に、かかる空間Sへの低湿度ガスの供給を抑えることができる。したがって、実施形態によれば、低湿度ガスの使用量を削減することができる。 As a result, when the space S becomes excessively low humidity, the supply of the low humidity gas to the space S can be suppressed. Therefore, according to the embodiment, the amount of low humidity gas used can be reduced.
 また、実施形態では、回収部282および回収流路287を用いて、空間Sに吐出されるボイド低減ガスをボイド低減ガス供給部272に回収するとよい。これにより、ボイド低減ガスの使用量を削減することができる。 Further, in the embodiment, it is preferable to use the recovery unit 282 and the recovery flow path 287 to collect the void reduction gas discharged into the space S to the void reduction gas supply unit 272. As a result, the amount of void-reducing gas used can be reduced.
 また、実施形態では、制御部5が、センサ部285に設けられる湿度センサから出力される空間Sの湿度情報に基づいて、空間Sへの低湿度ガスの吐出量を制御するとよい。 Further, in the embodiment, the control unit 5 may control the discharge amount of the low humidity gas to the space S based on the humidity information of the space S output from the humidity sensor provided in the sensor unit 285.
 これにより、空間Sが過剰に低湿度になった場合に、かかる空間Sへの低湿度ガスの供給を抑えることができる。したがって、実施形態によれば、低湿度ガスの使用量を削減することができる。 As a result, when the space S becomes excessively low humidity, the supply of the low humidity gas to the space S can be suppressed. Therefore, according to the embodiment, the amount of low humidity gas used can be reduced.
 また、実施形態では、制御部5が、センサ部285に設けられる酸素センサから出力される空間Sの酸素濃度情報に基づいて、空間Sへのボイド低減ガスの吐出量を制御するとよい。 Further, in the embodiment, the control unit 5 may control the discharge amount of the void reduction gas into the space S based on the oxygen concentration information of the space S output from the oxygen sensor provided in the sensor unit 285.
 これにより、空間Sがボイド低減ガスで過剰に満たされた場合に、空間Sの酸素濃度が過剰に低下することから、かかる空間Sへのボイド低減ガスの供給を抑えることができる。したがって、実施形態によれば、ボイド低減ガスの使用量をさらに削減することができる。 As a result, when the space S is excessively filled with the void reducing gas, the oxygen concentration in the space S is excessively lowered, so that the supply of the void reducing gas to the space S can be suppressed. Therefore, according to the embodiment, the amount of the void reducing gas used can be further reduced.
 また、低湿度ガスとして窒素ガスなどの不活性ガスを用いる場合、制御部5は、センサ部285に設けられる酸素センサから出力される空間Sの酸素濃度情報に基づいて、空間Sへの低湿度ガスの吐出量を制御してもよい。 When an inert gas such as nitrogen gas is used as the low humidity gas, the control unit 5 has a low humidity in the space S based on the oxygen concentration information of the space S output from the oxygen sensor provided in the sensor unit 285. The amount of gas discharged may be controlled.
 これにより、空間Sが不活性の低湿度ガスで過剰に満たされた場合に、空間Sの酸素濃度が過剰に低下することから、かかる空間Sへの低湿度ガスの供給を抑えることができる。したがって、実施形態によれば、低湿度ガスの使用量を削減することができる。 As a result, when the space S is excessively filled with the inert low-humidity gas, the oxygen concentration in the space S is excessively lowered, so that the supply of the low-humidity gas to the space S can be suppressed. Therefore, according to the embodiment, the amount of low humidity gas used can be reduced.
 また、実施形態では、制御部5が、センサ部285に設けられるヘリウムセンサから出力される空間Sのヘリウム濃度情報に基づいて、空間Sへのボイド低減ガスの吐出量を制御してもよい。 Further, in the embodiment, the control unit 5 may control the discharge amount of the void reduction gas into the space S based on the helium concentration information of the space S output from the helium sensor provided in the sensor unit 285.
 これにより、空間Sがボイド低減ガスで過剰に満たされた場合に、空間Sのヘリウム濃度が過剰に増加することから、かかる空間Sへのボイド低減ガスの供給を抑えることができる。したがって、実施形態によれば、ボイド低減ガスの使用量をさらに削減することができる。 As a result, when the space S is excessively filled with the void reducing gas, the helium concentration in the space S is excessively increased, so that the supply of the void reducing gas to the space S can be suppressed. Therefore, according to the embodiment, the amount of the void reducing gas used can be further reduced.
 また、実施形態では、基板恒温部286を用いて、下ウェハW2における周縁部W2eの温度を所与の温度で保持するとよい。これにより、ボンディングウェーブがウェハWの周縁部W1e、W2eに到達し、空間Sにおいて急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することを抑制することができる。 Further, in the embodiment, the temperature of the peripheral portion W2e of the lower wafer W2 may be maintained at a given temperature by using the substrate constant temperature portion 286. As a result, even when the bonding wave reaches the peripheral portions W1e and W2e of the wafer W and a sudden pressure fluctuation occurs in the space S, it is possible to suppress the temperature of the space S from dropping sharply.
 したがって、実施形態によれば、重合ウェハTでのエッジボイドの発生をさらに抑制することができる。 Therefore, according to the embodiment, the generation of edge voids in the polymerized wafer T can be further suppressed.
 なお、実施形態では、基板恒温部286が下ウェハW2における周縁部の温度を所与の温度で保持する場合に限られず、基板恒温部286が下ウェハW2における周縁部W2eを昇温してもよい。 In the embodiment, the substrate constant temperature portion 286 is not limited to the case where the temperature of the peripheral edge portion of the lower wafer W2 is maintained at a given temperature, and the substrate constant temperature portion 286 may raise the temperature of the peripheral edge portion W2e of the lower wafer W2. Good.
 これにより、空間Sにおいて急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することをさらに抑制することができることから、重合ウェハTでのエッジボイドの発生をさらに抑制することができる。 As a result, even when a sudden pressure fluctuation occurs in the space S, it is possible to further suppress the sudden decrease in the temperature of the space S, so that the generation of edge voids in the polymerized wafer T can be further suppressed. it can.
 図11は、実施形態に係るボイド低減ガス供給部272の構成を示すブロック図である。図11に示すように、ボイド低減ガス供給部272は、上流からガス供給源272aと、レギュレータ272dと、ガス恒温部272eと、バルブ272bと、流量計272fと、流量調整器272cと、フィルタ272gとを有する。 FIG. 11 is a block diagram showing the configuration of the void reduction gas supply unit 272 according to the embodiment. As shown in FIG. 11, the void reduction gas supply unit 272 includes a gas supply source 272a, a regulator 272d, a gas constant temperature unit 272e, a valve 272b, a flow meter 272f, a flow rate regulator 272c, and a filter 272g from the upstream. And have.
 そして、ガス供給源272aから供給されるボイド低減ガスは、上述の各部を介して接合装置41のガス吐出部271に供給される。 Then, the void reduction gas supplied from the gas supply source 272a is supplied to the gas discharge section 271 of the joining device 41 via the above-mentioned sections.
 ここで、実施形態に係るボイド低減ガス供給部272は、ボイド低減ガスを一定の温度に保つガス恒温部272eを有するとよい。たとえば、図11に示すように、ガス恒温部272eは、接合システム1の内部に設けられる延長された配管で構成される。 Here, the void reduction gas supply unit 272 according to the embodiment may have a gas constant temperature unit 272e that keeps the void reduction gas at a constant temperature. For example, as shown in FIG. 11, the constant temperature gas portion 272e is composed of an extended pipe provided inside the joining system 1.
 このように、温度が一定に保たれる接合システム1の内部に延長された配管を設けることにより、かかる延長された配管を通流するボイド低減ガスの温度を接合システム1の内部と等しい所与の温度(たとえば、室温)に保つことができる。 In this way, by providing the extended pipe inside the joining system 1 in which the temperature is kept constant, the temperature of the void reduction gas flowing through the extended pipe is given equal to the inside of the joining system 1. It can be kept at the temperature of (for example, room temperature).
 そして、実施形態では、ボイド低減ガス(特に、結露抑制ガス)の温度を一定に保つことにより、空間Sにおいて急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することを抑制することができる。したがって、実施形態によれば、重合ウェハTでのエッジボイドの発生をさらに抑制することができる。 Then, in the embodiment, by keeping the temperature of the void reducing gas (particularly, the dew condensation suppressing gas) constant, the temperature of the space S drops sharply even when a sudden pressure fluctuation occurs in the space S. It can be suppressed. Therefore, according to the embodiment, the generation of edge voids in the polymerized wafer T can be further suppressed.
 なお、ガス恒温部272eは、接合システム1の内部に設けられる延長された配管で構成される場合に限られず、ボイド低減ガスの温度を一定に保つことができるものであればどのような構成であってもよい。 The gas constant temperature portion 272e is not limited to the case where it is composed of an extended pipe provided inside the joining system 1, and any configuration can be used as long as the temperature of the void reduction gas can be kept constant. There may be.
 また、実施形態では、ガス恒温部272eがボイド低減ガスの温度を所与の温度で保持する場合に限られず、ガス恒温部272eがボイド低減ガスを昇温してもよい。 Further, in the embodiment, the gas constant temperature section 272e is not limited to the case where the temperature of the void reduction gas is maintained at a given temperature, and the gas constant temperature section 272e may raise the temperature of the void reduction gas.
 これにより、空間Sにおいて急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することをさらに抑制することができることから、重合ウェハTでのエッジボイドの発生をさらに抑制することができる。 As a result, even when a sudden pressure fluctuation occurs in the space S, it is possible to further suppress the sudden decrease in the temperature of the space S, so that the generation of edge voids in the polymerized wafer T can be further suppressed. it can.
<各種変形例>
 つづいて、図12~図17を参照しながら、実施形態の各種変形例について説明する。図12は、実施形態の変形例1に係るボイド低減機構270の構成を示す拡大側面図である。
<Various deformation examples>
Subsequently, various modifications of the embodiment will be described with reference to FIGS. 12 to 17. FIG. 12 is an enlarged side view showing the configuration of the void reduction mechanism 270 according to the first modification of the embodiment.
 図12に示すように、変形例1に係るガス吐出部271は、吐出ノズル281と、支持部291とで構成される。 As shown in FIG. 12, the gas discharge unit 271 according to the first modification is composed of a discharge nozzle 281 and a support portion 291.
 そして、変形例1でも、上チャック230に保持された上ウェハW1と、下チャック231に保持された下ウェハW2との間が予め設定された距離(たとえば、80~100μm)に近づけられた場合に、空間Sが形成される。 Further, also in the first modification, when the distance between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231 is brought close to a preset distance (for example, 80 to 100 μm). Space S is formed in.
 かかる空間Sは、図12に示すように、上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲に形成される。また、空間Sは、上チャック230と、下チャック231と、吐出ノズル281と、支持部291で区切られる領域である。 As shown in FIG. 12, such a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2. Further, the space S is a region separated by an upper chuck 230, a lower chuck 231 and a discharge nozzle 281 and a support portion 291.
 図12に示すように、変形例1の接合装置41に形成される空間Sは開空間であり、吐出ノズル281と下チャック231との間に隙間A1が形成され、支持部291と上チャック230との間に隙間A2が形成される。 As shown in FIG. 12, the space S formed in the joining device 41 of the modified example 1 is an open space, a gap A1 is formed between the discharge nozzle 281 and the lower chuck 231, and the support portion 291 and the upper chuck 230 are formed. A gap A2 is formed between the two.
 しかしながら、変形例1の空間Sは、上部に吐出ノズル281および支持部291で構成される凹部292を有する。かかる凹部292は、下に向いた凹形状であることから、空間Sに吐出された空気よりも軽いボイド低減ガスを、空間Sに十分に保持することができる。 However, the space S of the modified example 1 has a recess 292 composed of a discharge nozzle 281 and a support portion 291 at the upper portion. Since the recess 292 has a concave shape facing downward, it is possible to sufficiently hold the void reduction gas, which is lighter than the air discharged into the space S, in the space S.
 これにより、上述の実施形態と同様に、変形例1でも、上ウェハW1の周縁部W1eと下ウェハW2の周縁部W2eとの間に形成されるエッジボイドの発生を抑制することができる。 Thereby, similarly to the above-described embodiment, it is possible to suppress the generation of edge voids formed between the peripheral edge portion W1e of the upper wafer W1 and the peripheral edge portion W2e of the lower wafer W2 in the modified example 1.
 また、変形例1では、図12に示すように、吐出ノズル281の吐出口281aを上ウェハW1における周縁部W1eの非接合面W1nに向けるとよい。これにより、ウェハWの周縁部W1e、W2eに到達したボンディングウェーブがウェハWの外部に放出される際に、吐出ノズル281から吐出されるボイド低減ガスが阻害要因となることを抑制することができる。 Further, in the first modification, as shown in FIG. 12, the discharge port 281a of the discharge nozzle 281 may be directed to the non-bonded surface W1n of the peripheral edge portion W1e of the upper wafer W1. Thereby, when the bonding wave reaching the peripheral portions W1e and W2e of the wafer W is discharged to the outside of the wafer W, it is possible to suppress that the void reduction gas discharged from the discharge nozzle 281 becomes an obstructive factor. ..
 また、変形例1では、支持部291と上チャック230との間に隙間A2を形成するとよい。これにより、空間Sに吐出されたボイド低減ガスをかかる隙間A2から外部に放出することができる。 Further, in the modified example 1, it is preferable to form a gap A2 between the support portion 291 and the upper chuck 230. As a result, the void reduction gas discharged into the space S can be discharged to the outside through the gap A2.
 すなわち、変形例1では、次の接合処理が始まるまでに、空間Sのボイド低減ガスの濃度をリセットすることができる。したがって、変形例1によれば、ウェハWの接合処理を安定して実施することができる。 That is, in the first modification, the concentration of the void reduction gas in the space S can be reset by the time the next joining process starts. Therefore, according to the first modification, the bonding process of the wafer W can be stably performed.
 図13は、実施形態の変形例2に係るボイド低減機構270の構成を示す拡大側面図であり、図14は、図13におけるA-A線の矢視断面図である。 FIG. 13 is an enlarged side view showing the configuration of the void reduction mechanism 270 according to the second modification of the embodiment, and FIG. 14 is a cross-sectional view taken along the line AA in FIG.
 図13および図14に示すように、変形例2では、下チャック231における空間Sの下方に孔部231dを形成し、かかる孔部231dにボイド低減ガス供給部272を接続する。また、変形例2では、上チャック230における空間Sの上方に孔部230dを形成し、かかる孔部230dに回収流路287を接続する。 As shown in FIGS. 13 and 14, in the second modification, the hole 231d is formed below the space S in the lower chuck 231 and the void reduction gas supply section 272 is connected to the hole 231d. Further, in the second modification, the hole 230d is formed above the space S in the upper chuck 230, and the recovery flow path 287 is connected to the hole 230d.
 そして、変形例2では、ボイド低減ガス供給部272から空間Sにボイド低減ガスを供給し、空間Sからボイド低減ガスを回収流路287で回収する。これにより、空気より軽いボイド低減ガスを効率よく空間Sに供給することができるとともに、空気より軽いボイド低減ガスを効率よく空間Sから回収することができる。 Then, in the second modification, the void reduction gas is supplied from the void reduction gas supply unit 272 to the space S, and the void reduction gas is recovered from the space S in the recovery flow path 287. As a result, the void reduction gas lighter than air can be efficiently supplied to the space S, and the void reduction gas lighter than air can be efficiently recovered from the space S.
 なお、ボイド低減ガスが空気よりも重い場合には、孔部230dにボイド低減ガス供給部272を接続し、孔部231dに回収流路287を接続するとよい。 When the void reduction gas is heavier than air, it is preferable to connect the void reduction gas supply unit 272 to the hole 230d and connect the recovery flow path 287 to the hole 231d.
 図15は、実施形態の変形例3に係る接合処理における各部の動作を示すタイミングチャートである。なお、図15には、図9に示したステップS110(上ウェハW1と下ウェハW2との水平方向の位置調整)が終了した時点からのタイミングチャートを示している。 FIG. 15 is a timing chart showing the operation of each part in the joining process according to the third modification of the embodiment. Note that FIG. 15 shows a timing chart from the time when step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) shown in FIG. 9 is completed.
 最初に、制御部5は、時間T21から、下チャック231をホーム位置からボンド位置に上昇させて、下ウェハW2を上ウェハW1に近づける。また、制御部5は、時間T21から吐出ノズル281および低湿度ガス供給部273を動作させて、ガス吐出部271の吐出ノズル281から低湿度ガスを吐出させる。 First, from time T21, the control unit 5 raises the lower chuck 231 from the home position to the bond position to bring the lower wafer W2 closer to the upper wafer W1. Further, the control unit 5 operates the discharge nozzle 281 and the low humidity gas supply unit 273 from the time T21 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271.
 さらに、制御部5は、時間T21から、回収部282およびバルブ288、290を制御することにより、大気雰囲気や吐出ノズル281から吐出される低湿度ガスを下ウェハW2の近傍から外部に排出(ベント)する。 Further, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 from the time T21 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 from the vicinity of the lower wafer W2 to the outside (vent). ).
 そして、制御部5は、時間T22で下チャック231をボンド位置まで上昇させ、下ウェハW2の接合面W2jと上ウェハW1の接合面W1jとの間の間隔が予め設定された距離になるように下ウェハW2をセットする。 Then, the control unit 5 raises the lower chuck 231 to the bond position at time T22 so that the distance between the bonding surface W2j of the lower wafer W2 and the bonding surface W1j of the upper wafer W1 becomes a preset distance. Set the lower wafer W2.
 すると、図8に示したように、上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲に空間Sが形成される。 Then, as shown in FIG. 8, a space S is formed around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2.
 かかる空間Sが形成された時間T22においても、図15に示すように、ガス吐出部271は低湿度ガスを空間Sに吐出し続けるとともに、回収部282は空間S内の雰囲気を外部に排出し続ける。 Even during the time T22 when the space S is formed, as shown in FIG. 15, the gas discharge unit 271 continues to discharge the low humidity gas into the space S, and the recovery unit 282 discharges the atmosphere in the space S to the outside. to continue.
 これにより、接合装置41は、空間S、すなわち上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲を低湿度状態で維持することができる。 As a result, the joining device 41 can maintain the space S, that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 in a low humidity state.
 次に、制御部5は、時間T23でストライカー250の押圧ピン253を下降させる。これにより、ストライカー250は、上ウェハW1の中心部W1cを押し下げて、上ウェハW1の中心部W1cと下ウェハW2の中心部W2cとを所与の力で押圧する。 Next, the control unit 5 lowers the pressing pin 253 of the striker 250 at time T23. As a result, the striker 250 pushes down the central portion W1c of the upper wafer W1 and presses the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 with a given force.
 これにより、押圧された上ウェハW1の中心部W1cと下ウェハW2の中心部W2cとの間で接合が開始する。具体的には、上ウェハW1の接合面W1jと下ウェハW2の接合面W2jはそれぞれステップS101、S106(図9参照)において改質されているため、まず、接合面W1j、W2j間にファンデルワールス力が生じ、当該接合面W1j、W2j同士が接合される。 As a result, bonding starts between the center portion W1c of the pressed upper wafer W1 and the center portion W2c of the lower wafer W2. Specifically, since the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are modified in steps S101 and S106 (see FIG. 9), respectively, first, van der between the bonding surfaces W1j and W2j A Waals force is generated, and the joint surfaces W1j and W2j are joined to each other.
 さらに、上ウェハW1の接合面W1jと下ウェハW2の接合面W2jはそれぞれステップS102、S107(図9参照)において親水化されているため、接合面W1j、W2j間のOH基が水素結合し、接合面W1j、W2j同士が強固に接合される。 Further, since the bonding surface W1j of the upper wafer W1 and the bonding surface W2j of the lower wafer W2 are hydrophilized in steps S102 and S107 (see FIG. 9), respectively, the OH groups between the bonding surfaces W1j and W2j are hydrogen-bonded. The joint surfaces W1j and W2j are firmly joined to each other.
 その後、上ウェハW1と下ウェハW2との接合領域は、上ウェハW1の中心部W1cおよび下ウェハW2の中心部W2cから外周部へ拡大していく。すなわち、上述した接合面W1j、W2j間のファンデルワールス力と水素結合による接合が中心部W1c、W2cから外周部に向けて順次拡がる。 After that, the bonding region between the upper wafer W1 and the lower wafer W2 expands from the central portion W1c of the upper wafer W1 and the central portion W2c of the lower wafer W2 to the outer peripheral portion. That is, the van der Waals force between the above-mentioned bonding surfaces W1j and W2j and the bonding by hydrogen bonding gradually expand from the central portions W1c and W2c toward the outer peripheral portion.
 最初に、時間T23で、ストライカー250で上ウェハW1の中心部W1cを押し下げることにより、中央部吸引管240aから上ウェハW1が離間する。すなわち、時間T23で、ウェハWの中央部において上ウェハW1が下ウェハW2に接合される。 First, at time T23, the upper wafer W1 is separated from the central suction pipe 240a by pushing down the central portion W1c of the upper wafer W1 with the striker 250. That is, at time T23, the upper wafer W1 is joined to the lower wafer W2 at the central portion of the wafer W.
 次に、時間T24で、中間部吸引管240bから上ウェハW1が離間する。すなわち、時間T24で、ウェハWの中間部において上ウェハW1が下ウェハW2に接合される。 Next, at time T24, the upper wafer W1 is separated from the intermediate suction pipe 240b. That is, at time T24, the upper wafer W1 is bonded to the lower wafer W2 at the intermediate portion of the wafer W.
 ここで、制御部5は、かかる時間T24で、低湿度ガス供給部273を停止させるとともに、ボイド低減ガス供給部272を動作させる。すなわち、制御部5は、時間T24で、ガス吐出部271から吐出されるガスを低湿度ガスからボイド低減ガスに切り替える。 Here, the control unit 5 stops the low humidity gas supply unit 273 and operates the void reduction gas supply unit 272 at the time T24. That is, the control unit 5 switches the gas discharged from the gas discharge unit 271 from the low humidity gas to the void reduction gas at time T24.
 ここで、変形例3では、制御部5が、ガス吐出部271から吐出されるボイド低減ガスの流量を高い流量(High)に制御する。これにより、変形例3では、時間T24から、空間S、すなわち上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲を素早くボイド低減ガスの雰囲気にすることができる。 Here, in the modification 3, the control unit 5 controls the flow rate of the void reduction gas discharged from the gas discharge unit 271 to a high flow rate (High). As a result, in the modified example 3, from the time T24, the space S, that is, the periphery of the peripheral edge portion W1e of the upper wafer W1 and the periphery of the peripheral edge portion W2e of the lower wafer W2 can be quickly made into the atmosphere of the void reduction gas.
 そして、制御部5は、時間T24から所与の時間経過した時間T25で、ガス吐出部271から吐出されるボイド低減ガスの流量を高い流量(High)から低い流量(Low)(たとえば、高い流量の1/3程度の流量)に減少させる。 Then, the control unit 5 changes the flow rate of the void reduction gas discharged from the gas discharge unit 271 from a high flow rate (High) to a low flow rate (Low) (for example, a high flow rate) at a time T25 when a given time has elapsed from the time T24. The flow rate is reduced to about 1/3 of the above.
 これにより、素早くボイド低減ガスの雰囲気となった周縁部W1e、W2eの周囲をボイド低減ガスの雰囲気で維持することができるとともに、ボイド低減ガスの使用量を低減することができる。 As a result, the periphery of the peripheral portions W1e and W2e, which quickly became the atmosphere of the void reduction gas, can be maintained in the atmosphere of the void reduction gas, and the amount of the void reduction gas used can be reduced.
 その後、上ウェハW1と下ウェハW2との接合領域が周縁部W1e、W2eに達し、上ウェハW1と下ウェハW2とが全面で接合された時間T26で、制御部5は、ボイド低減ガス供給部272を停止させる。すなわち、制御部5は、時間T26で、ガス吐出部271からのガスの吐出を停止する。 After that, the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral portions W1e and W2e, and at the time T26 when the upper wafer W1 and the lower wafer W2 are bonded on the entire surface, the control unit 5 is the void reduction gas supply unit. Stop 272. That is, the control unit 5 stops the gas discharge from the gas discharge unit 271 at the time T26.
 そして、この時点では、ウェハWの周縁部W1e、W2eまで接合領域が達していることから、上ウェハW1と下ウェハW2とは全面で接合され、重合ウェハTが形成されている。 At this point, since the bonding region reaches the peripheral edges W1e and W2e of the wafer W, the upper wafer W1 and the lower wafer W2 are bonded on the entire surface to form the polymerized wafer T.
 なお、変形例3において、上ウェハW1と下ウェハW2との接合領域が周縁部W1e、W2eに達したことは、接合装置41に別途設けられるボンディングウェーブの到達位置を直接検出するIRカメラ(図示せず)などによって検知する。 In the third modification, the fact that the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral portions W1e and W2e is an IR camera that directly detects the arrival position of the bonding wave separately provided in the bonding device 41 (FIG. 3). Detected by (not shown).
 そして、制御部5は、時間T26で、回収部282およびバルブ288、290を制御することにより、空間S内の雰囲気を回収流路287を介してボイド低減ガス供給部272に回収する。 Then, the control unit 5 recovers the atmosphere in the space S to the void reduction gas supply unit 272 via the recovery flow path 287 by controlling the recovery unit 282 and the valves 288 and 290 at the time T26.
 このように、実施形態では、ガス吐出部271からのガスの吐出を停止した時間T26から、回収部282の動作をベントモードから回収モードに切り替える。これにより、ボイド低減ガスの吐出量を低い流量(Low)にすることに起因して、ボイド低減ガス以外のガスが空間Sから回収されることを抑制することができる。 As described above, in the embodiment, the operation of the recovery unit 282 is switched from the vent mode to the recovery mode from the time T26 when the gas discharge from the gas discharge unit 271 is stopped. As a result, it is possible to suppress the recovery of gas other than the void reduction gas from the space S due to the low discharge amount of the void reduction gas.
 次に、制御部5は、時間T26から所与の時間経過した時間T27で、周縁部吸引管240cを停止させるとともに、回収部282を停止させる。 Next, the control unit 5 stops the peripheral suction pipe 240c and the recovery unit 282 at the time T27 when a given time has elapsed from the time T26.
 次に、制御部5は、時間T27から所与の時間経過した時間T28で、下チャック231の位置をボンド位置からホーム位置に下降させる。そして、時間T29で、下チャック231をホーム位置まで下降させることにより、制御部5は、下チャック231に吸着保持された重合ウェハTを接合装置41から取り出すことができる。 Next, the control unit 5 lowers the position of the lower chuck 231 from the bond position to the home position at the time T28 when a given time has elapsed from the time T27. Then, by lowering the lower chuck 231 to the home position at time T29, the control unit 5 can take out the polymerized wafer T attracted and held by the lower chuck 231 from the joining device 41.
 ここまで説明したように、変形例3において、制御部5は、空間Sへのボイド低減ガスの吐出量を可変にしている。これにより、エッジボイドの発生を抑制することができるとともに、ボイド低減ガスの使用量をさらに削減することができる。したがって、変形例3によれば、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 As described so far, in the modification 3, the control unit 5 makes the discharge amount of the void reduction gas into the space S variable. As a result, the generation of edge voids can be suppressed, and the amount of void-reducing gas used can be further reduced. Therefore, according to the third modification, it is possible to suppress the edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 なお、図15の例では、空間Sへのボイド低減ガスの吐出量を徐々に減らすように制御しているが、空間Sへのボイド低減ガスの吐出量は徐々に減らす場合に限られない。図16は、実施形態の変形例4に係る接合処理における各部の動作を示すタイミングチャートである。 In the example of FIG. 15, the discharge amount of the void reduction gas to the space S is controlled to be gradually reduced, but the discharge amount of the void reduction gas to the space S is not limited to the case of gradually reducing. FIG. 16 is a timing chart showing the operation of each part in the joining process according to the modified example 4 of the embodiment.
 図16に示すように、変形例4では、時間T34において、制御部5が、ガス吐出部271から吐出されるボイド低減ガスの流量を低い流量(Low)に制御する。そして、制御部5は、時間T34から所与の時間経過した時間T35で、ガス吐出部271から吐出されるボイド低減ガスの流量を低い流量(Low)から高い流量(High)に増加させる。 As shown in FIG. 16, in the modified example 4, at the time T34, the control unit 5 controls the flow rate of the void reduction gas discharged from the gas discharge unit 271 to a low flow rate (Low). Then, the control unit 5 increases the flow rate of the void reduction gas discharged from the gas discharge unit 271 from a low flow rate (Low) to a high flow rate (High) at a time T35 when a given time has elapsed from the time T34.
 これにより、変形例4では、周縁部W1e、W2eの周囲において高い濃度のボイド低減ガスがもっとも必要となる、接合領域が周縁部W1e、W2eに達するタイミング(時間T36の直前)において、高い流量のボイド低減ガスを空間Sに供給することができる。 As a result, in the modified example 4, a high flow rate is applied at the timing (immediately before the time T36) when the junction region reaches the peripheral portions W1e and W2e, where a high concentration of void reducing gas is most required around the peripheral portions W1e and W2e. The void reduction gas can be supplied to the space S.
 また、変形例4では、時間T36に先だって、ガス吐出部271からあらかじめボイド低減ガスを低い流量で空間Sに吐出しておくことにより、ガス吐出部271の立ち上がりが遅れて良好にボイド低減ガスが吐出されない現象の発生を抑制することができる。 Further, in the modified example 4, the void reduction gas is discharged from the gas discharge unit 271 to the space S in advance at a low flow rate prior to the time T36, so that the rise of the gas discharge unit 271 is delayed and the void reduction gas is satisfactorily released. It is possible to suppress the occurrence of the phenomenon of not being discharged.
 なお、図16に示した変形例4において、時間T31~時間T34および時間T36~時間T39の処理は、上述の変形例3における時間T21~時間T24および時間T26~時間T29の処理と同様であることから、詳細な説明は省略する。 In the modified example 4 shown in FIG. 16, the processing of the time T31 to the time T34 and the processing of the time T36 to the time T39 is the same as the processing of the time T21 to the time T24 and the time T26 to the time T29 in the above-mentioned modified example 3. Therefore, a detailed description will be omitted.
 また、図15の例および図16の例では、空間Sへのボイド低減ガスの吐出量を2段階(High、Low)に制御する例について示しているが、制御されるボイド低減ガスの吐出量は2段階に限られず、3段階以上に制御されてもよい。 Further, in the example of FIG. 15 and the example of FIG. 16, an example in which the discharge amount of the void reduction gas into the space S is controlled in two stages (High, Low) is shown, but the discharge amount of the controlled void reduction gas is shown. Is not limited to two stages, and may be controlled in three or more stages.
 図17は、実施形態の変形例5に係る接合処理における各部の動作を示すタイミングチャートである。図17に示すように、制御部5は、時間T44で、低湿度ガス供給部273を停止させるとともに、ボイド低減ガス供給部272を動作させる。すなわち、制御部5は、時間T44で、ガス吐出部271から吐出されるガスを低湿度ガスからボイド低減ガスに切り替える。 FIG. 17 is a timing chart showing the operation of each part in the joining process according to the modified example 5 of the embodiment. As shown in FIG. 17, the control unit 5 stops the low humidity gas supply unit 273 and operates the void reduction gas supply unit 272 at time T44. That is, the control unit 5 switches the gas discharged from the gas discharge unit 271 from the low humidity gas to the void reduction gas at time T44.
 そして、変形例5では、時間T44から、上ウェハW1と下ウェハW2との接合領域が周縁部W1e、W2eに達し、上ウェハW1と下ウェハW2とが全面で接合された時間T45までの間、ガス吐出部271から間欠的にボイド低減ガスを空間Sに吐出する。 Then, in the modification 5, from the time T44, the bonding region between the upper wafer W1 and the lower wafer W2 reaches the peripheral edges W1e and W2e, and the time T45 when the upper wafer W1 and the lower wafer W2 are bonded on the entire surface is reached. , The void reduction gas is intermittently discharged from the gas discharge unit 271 into the space S.
 これによっても、エッジボイドの発生を抑制することができるとともに、ボイド低減ガスの使用量をさらに削減することができる。したがって、変形例5によれば、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 This also makes it possible to suppress the generation of edge voids and further reduce the amount of void reduction gas used. Therefore, according to the modified example 5, it is possible to suppress the edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 なお、図17に示した変形例5において、時間T41~時間T44および時間T45~時間T48の処理は、上述の変形例3における時間T21~時間T24および時間T26~時間T29の処理と同様であることから、詳細な説明は省略する。 In the modified example 5 shown in FIG. 17, the processing of the time T41 to the time T44 and the time T45 to the time T48 is the same as the processing of the time T21 to the time T24 and the time T26 to the time T29 in the above-mentioned modified example 3. Therefore, a detailed description will be omitted.
 実施形態に係る接合装置41は、第1保持部(上チャック230)と、第2保持部(下チャック231)と、ガス吐出部271と、ストライカー250と、制御部5とを備える。第1保持部(上チャック230)は、第1基板(上ウェハW1)を上方から吸着保持する。第2保持部(下チャック231)は、第2基板(下ウェハW2)を下方から吸着保持する。ガス吐出部271は、ガスを吐出する。ストライカー250は、第1基板(上ウェハW1)の中心部W1cを上方から押圧して第2基板(下ウェハW2)に接触させる。制御部5は、各部を制御する。接合装置41では、第1保持部に保持された第1基板と第2保持部に保持された第2基板との間が予め設定された距離に近づけられた場合に、第1基板の周縁部W1eおよび第2基板の周縁部W2eの周囲に空間Sが形成される。また、ガス吐出部271は、結露を抑制する結露抑制ガスおよび分子サイズの小さい低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)を空間Sに吐出する。これにより、接合された重合ウェハTに発生するエッジボイドを低減することができる。 The joining device 41 according to the embodiment includes a first holding unit (upper chuck 230), a second holding unit (lower chuck 231), a gas discharge unit 271, a striker 250, and a control unit 5. The first holding portion (upper chuck 230) sucks and holds the first substrate (upper wafer W1) from above. The second holding portion (lower chuck 231) sucks and holds the second substrate (lower wafer W2) from below. The gas discharge unit 271 discharges gas. The striker 250 presses the central portion W1c of the first substrate (upper wafer W1) from above to bring it into contact with the second substrate (lower wafer W2). The control unit 5 controls each unit. In the joining device 41, when the distance between the first substrate held by the first holding portion and the second substrate held by the second holding portion is brought close to a preset distance, the peripheral portion of the first substrate A space S is formed around W1e and the peripheral edge portion W2e of the second substrate. Further, the gas discharge unit 271 discharges at least one gas (void reduction gas) of the dew condensation suppressing gas that suppresses dew condensation and the low molecular size gas having a small molecular size into the space S. Thereby, the edge voids generated in the bonded polymerized wafer T can be reduced.
 また、実施形態に係る接合装置41において、制御部5は、ストライカー250で第1基板(上ウェハW1)の中心部W1cを押圧した後に、ガス吐出部271から結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)を空間Sに吐出する。これにより、ボイド低減ガスの使用量を削減することができることから、重合ウェハTの製造コストを低減することができる。 Further, in the joining device 41 according to the embodiment, the control unit 5 presses the central portion W1c of the first substrate (upper wafer W1) with the striker 250, and then the dew condensation suppressing gas and the low molecular size gas are released from the gas discharge unit 271. At least one gas (void reduction gas) is discharged into the space S. As a result, the amount of void-reducing gas used can be reduced, so that the manufacturing cost of the polymerized wafer T can be reduced.
 また、実施形態に係る接合装置41において、ガス吐出部271は、空間Sに低湿度ガスを吐出する。これにより、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 Further, in the joining device 41 according to the embodiment, the gas discharge unit 271 discharges a low humidity gas into the space S. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 また、実施形態に係る接合装置41は、空間Sの湿度を測定する湿度センサを備える。そして、制御部5は、湿度センサから出力される空間Sの湿度情報に基づいて、空間Sへの低湿度ガスの吐出量を制御する。これにより、低湿度ガスの使用量を削減することができる。 Further, the joining device 41 according to the embodiment includes a humidity sensor that measures the humidity of the space S. Then, the control unit 5 controls the discharge amount of the low humidity gas to the space S based on the humidity information of the space S output from the humidity sensor. As a result, the amount of low humidity gas used can be reduced.
 また、実施形態に係る接合装置41において、制御部5は、ストライカー250で第1基板(上ウェハW1)の中心部W1cを押圧する前から、ガス吐出部271が結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)を空間Sに吐出するまでの間、ガス吐出部271から低湿度ガスを空間Sに吐出する。これにより、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 Further, in the joining device 41 according to the embodiment, in the control unit 5, the gas discharge unit 271 is a dew condensation suppressing gas and a low molecular size gas before the striker 250 presses the central portion W1c of the first substrate (upper wafer W1). The low-humidity gas is discharged from the gas discharge unit 271 into the space S until at least one of the gases (void-reducing gas) is discharged into the space S. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 また、実施形態に係る接合装置41は、第1基板(上ウェハW1)の中心部W1cと周縁部W1eとの間の中間部における第1基板(上ウェハW1)と第2基板(下ウェハW2)との接触状態を監視する監視部(中間部吸引管240b)を備える。そして、制御部5は、監視部(中間部吸引管240b)から出力される情報に基づいて、空間Sに吐出されるガスを低湿度ガスから結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)に切り替える。これにより、上ウェハW1と下ウェハW2との接合領域の進行速度にばらつきが生じた場合でも、低湿度ガスからボイド低減ガスへの切換処理を良好に実施することができる。 Further, the joining device 41 according to the embodiment has a first substrate (upper wafer W1) and a second substrate (lower wafer W2) in an intermediate portion between the central portion W1c and the peripheral portion W1e of the first substrate (upper wafer W1). ) Is provided with a monitoring unit (intermediate suction pipe 240b) for monitoring the contact state. Then, the control unit 5 sets the gas discharged into the space S from the low humidity gas to at least one of the dew condensation suppressing gas and the low molecular size gas based on the information output from the monitoring unit (intermediate suction pipe 240b). Switch to (void reduction gas). As a result, even when the traveling speed of the bonding region between the upper wafer W1 and the lower wafer W2 varies, the switching process from the low humidity gas to the void reduction gas can be satisfactorily performed.
 また、実施形態に係る接合装置41は、空間Sに吐出された結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)を空間Sから回収する回収部282を備える。これにより、ボイド低減ガスの使用量を削減することができる。 Further, the joining device 41 according to the embodiment includes a recovery unit 282 that recovers at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular weight gas discharged into the space S from the space S. As a result, the amount of void-reducing gas used can be reduced.
 また、実施形態に係る接合装置41は、空間Sの酸素濃度を測定する酸素センサを備える。そして、制御部5は、酸素センサから出力される空間Sの酸素濃度情報に基づいて、回収部282による結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)の回収動作を制御する。これにより、ボイド低減ガスの使用量をさらに削減することができる。 Further, the joining device 41 according to the embodiment includes an oxygen sensor for measuring the oxygen concentration in the space S. Then, the control unit 5 controls the recovery operation of at least one of the dew condensation suppressing gas and the low molecular weight gas (void reduction gas) by the recovery unit 282 based on the oxygen concentration information of the space S output from the oxygen sensor. To do. As a result, the amount of void-reducing gas used can be further reduced.
 また、実施形態に係る接合装置41は、第2基板(下ウェハW2)の周縁部W2eを一定の温度に保つ基板恒温部286を備える。これにより、重合ウェハTでのエッジボイドの発生をさらに抑制することができる。 Further, the joining device 41 according to the embodiment includes a substrate constant temperature portion 286 that keeps the peripheral portion W2e of the second substrate (lower wafer W2) at a constant temperature. As a result, the generation of edge voids on the polymerized wafer T can be further suppressed.
 また、実施形態に係る接合装置41は、結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)を一定の温度に保つガス恒温部272eを備える。これにより、重合ウェハTでのエッジボイドの発生をさらに抑制することができる。 Further, the joining device 41 according to the embodiment includes a gas constant temperature section 272e that keeps at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas at a constant temperature. As a result, the generation of edge voids on the polymerized wafer T can be further suppressed.
 また、実施形態に係る接合装置41において、制御部5は、空間Sへの結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)の吐出量を可変にする。これにより、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 Further, in the joining device 41 according to the embodiment, the control unit 5 makes the discharge amount of at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas into the space S variable. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 また、実施形態に係る接合装置41において、制御部5は、空間Sへの結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)の吐出量を徐々に減らす。これにより、素早くボイド低減ガスの雰囲気となった周縁部W1e、W2eの周囲をボイド低減ガスの雰囲気で維持することができるとともに、ボイド低減ガスの使用量を低減することができる。 Further, in the joining device 41 according to the embodiment, the control unit 5 gradually reduces the discharge amount of at least one gas (void reduction gas) of the dew condensation suppressing gas and the low molecular size gas into the space S. As a result, the periphery of the peripheral portions W1e and W2e, which quickly become the atmosphere of the void reduction gas, can be maintained in the atmosphere of the void reduction gas, and the amount of the void reduction gas used can be reduced.
 また、実施形態に係る接合装置41において、結露抑制ガスは、Heガス、ArガスおよびNeガスのうち少なくとも1種のガスを含む。これにより、ウェハWの周縁部W1e、W2e近傍において急激な圧力の変動が起こった場合でも、空間Sの温度が急激に低下することを抑制することができる。 Further, in the joining device 41 according to the embodiment, the dew condensation suppressing gas includes at least one gas among He gas, Ar gas and Ne gas. As a result, even when a sudden pressure fluctuation occurs in the vicinity of the peripheral portions W1e and W2e of the wafer W, it is possible to suppress the temperature of the space S from dropping sharply.
 また、実施形態に係る接合装置41において、低分子サイズガスは、Heガス、HガスおよびNeガスのうち少なくとも1種のガスを含む。これにより、一旦は重合ウェハTにエッジボイドが形成された場合でも、かかるエッジボイドを縮小または消滅させることができる。 Further, in the joining device 41 according to the embodiment, the low molecular weight gas contains at least one of He gas, H 2 gas, and Ne gas. As a result, even if an edge void is once formed on the polymerized wafer T, the edge void can be reduced or eliminated.
<接合処理の詳細>
 つづいて、図18および図19を参照しながら、実施形態および変形例3に係る接合装置41が実行する接合処理の詳細について説明する。図18は、実施形態に係る接合装置41が実行する接合処理の処理手順を示すフローチャートである。
<Details of joining process>
Subsequently, with reference to FIGS. 18 and 19, details of the joining process executed by the joining device 41 according to the embodiment and the third modification will be described. FIG. 18 is a flowchart showing a processing procedure of the joining process executed by the joining device 41 according to the embodiment.
 なお、図18には、図9に示したステップS110(上ウェハW1と下ウェハW2との水平方向の位置調整)が終了した時点からのフローチャートを示している。 Note that FIG. 18 shows a flowchart from the time when step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) shown in FIG. 9 is completed.
 最初に、制御部5は、ガス吐出部271および低湿度ガス供給部273を制御して、ガス吐出部271の吐出ノズル281から低湿度ガスを吐出する(ステップS201)。そして、制御部5は、回収部282およびバルブ288、290を制御して、大気雰囲気および吐出ノズル281から吐出される低湿度ガスを外部に排出する(ステップS202)。 First, the control unit 5 controls the gas discharge unit 271 and the low humidity gas supply unit 273 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271 (step S201). Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 to the outside (step S202).
 次に、制御部5は、上チャック230および下チャック231を制御して、上チャック230に保持された上ウェハW1と、下チャック231に保持された下ウェハW2との間を予め設定された距離に近づける。 Next, the control unit 5 controls the upper chuck 230 and the lower chuck 231 to preset between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231. Get closer to the distance.
 これにより、制御部5は、上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲に空間Sを形成する(ステップS203)。 As a result, the control unit 5 forms a space S around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2 (step S203).
 次に、制御部5は、ストライカー250で上ウェハW1の中心部を押圧する(ステップS204)。そして、制御部5は、ウェハWの中間部が接合されたか否かを判定する(ステップS205)。 Next, the control unit 5 presses the central portion of the upper wafer W1 with the striker 250 (step S204). Then, the control unit 5 determines whether or not the intermediate portion of the wafer W is joined (step S205).
 ここで、ウェハWの中間部が接合されていない場合(ステップS205,No)、かかるステップS205の処理を繰り返す。一方で、ウェハWの中間部が接合された場合(ステップS205,Yes)、制御部5は、ガス吐出部271からの低湿度ガスの吐出を停止するとともに、ガス吐出部271からボイド低減ガスを吐出する(ステップS206)。 Here, when the intermediate portion of the wafer W is not joined (steps S205 and No), the process of step S205 is repeated. On the other hand, when the intermediate portion of the wafer W is joined (step S205, Yes), the control unit 5 stops the discharge of the low humidity gas from the gas discharge unit 271 and discharges the void reduction gas from the gas discharge unit 271. Discharge (step S206).
 次に、制御部5は、ガス吐出部271から結露抑制ボイド低減ガスの吐出を開始してから所与の時間経過した後に、回収部282およびバルブ288、290を制御して、空間Sからボイド低減ガスを回収する(ステップS207)。 Next, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 after a lapse of a given time from the start of discharging the dew condensation suppression void reduction gas from the gas discharge unit 271, and voids from the space S. The reduced gas is recovered (step S207).
 次に、制御部5は、ウェハWの周縁部が接合されたか否かを判定する(ステップS208)。ここで、ウェハWの周縁部が接合されていない場合(ステップS208,No)、かかるステップS208の処理を繰り返す。 Next, the control unit 5 determines whether or not the peripheral edge portion of the wafer W is joined (step S208). Here, when the peripheral edge portion of the wafer W is not joined (steps S208 and No), the process of step S208 is repeated.
 一方で、ウェハWの周縁部が接合された場合(ステップS208,Yes)、制御部5は、ガス吐出部271からのボイド低減ガスの吐出を停止するとともに、回収部282からのボイド低減ガスの回収を停止して(ステップS209)、一連の処理を終了する。 On the other hand, when the peripheral edges of the wafer W are joined (steps S208, Yes), the control unit 5 stops the discharge of the void reduction gas from the gas discharge unit 271 and the void reduction gas from the recovery unit 282. The collection is stopped (step S209), and a series of processes is completed.
 図19は、実施形態の変形例3に係る接合装置41が実行する接合処理の処理手順を示すフローチャートである。なお、図19には、図9に示したステップS110(上ウェハW1と下ウェハW2との水平方向の位置調整)が終了した時点からのフローチャートを示している。 FIG. 19 is a flowchart showing a processing procedure of the joining process executed by the joining device 41 according to the third modification of the embodiment. Note that FIG. 19 shows a flowchart from the time when step S110 (horizontal position adjustment between the upper wafer W1 and the lower wafer W2) shown in FIG. 9 is completed.
 最初に、制御部5は、ガス吐出部271および低湿度ガス供給部273を制御して、ガス吐出部271の吐出ノズル281から低湿度ガスを吐出する(ステップS301)。そして、制御部5は、回収部282およびバルブ288、290を制御して、大気雰囲気および吐出ノズル281から吐出される低湿度ガスを外部に排出する(ステップS302)。 First, the control unit 5 controls the gas discharge unit 271 and the low humidity gas supply unit 273 to discharge the low humidity gas from the discharge nozzle 281 of the gas discharge unit 271 (step S301). Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 to discharge the low humidity gas discharged from the atmospheric atmosphere and the discharge nozzle 281 to the outside (step S302).
 次に、制御部5は、上チャック230および下チャック231を制御して、上チャック230に保持された上ウェハW1と、下チャック231に保持された下ウェハW2との間を予め設定された距離に近づける。 Next, the control unit 5 controls the upper chuck 230 and the lower chuck 231 to preset between the upper wafer W1 held by the upper chuck 230 and the lower wafer W2 held by the lower chuck 231. Get closer to the distance.
 これにより、制御部5は、上ウェハW1の周縁部W1eの周囲、および下ウェハW2の周縁部W2eの周囲に空間Sを形成する(ステップS303)。 As a result, the control unit 5 forms a space S around the peripheral edge portion W1e of the upper wafer W1 and around the peripheral edge portion W2e of the lower wafer W2 (step S303).
 次に、制御部5は、ストライカー250で上ウェハW1の中心部を押圧する(ステップS304)。そして、制御部5は、ウェハWの中間部が接合されたか否かを判定する(ステップS305)。 Next, the control unit 5 presses the central portion of the upper wafer W1 with the striker 250 (step S304). Then, the control unit 5 determines whether or not the intermediate portion of the wafer W is joined (step S305).
 ここで、ウェハWの中間部が接合されていない場合(ステップS305,No)、かかるステップS305の処理を繰り返す。一方で、ウェハWの中間部が接合された場合(ステップS305,Yes)、制御部5は、ガス吐出部271からの低湿度ガスの吐出を停止するとともに、吐出量を可変にしながらボイド低減ガスをガス吐出部271から吐出する(ステップS306)。 Here, when the intermediate portion of the wafer W is not joined (step S305, No), the process of step S305 is repeated. On the other hand, when the intermediate portion of the wafer W is joined (step S305, Yes), the control unit 5 stops the discharge of the low humidity gas from the gas discharge unit 271 and changes the discharge amount of the void reduction gas. Is discharged from the gas discharge unit 271 (step S306).
 次に、制御部5は、ボンディングウェーブの到達位置を直接検出することにより、ウェハWの周縁部が接合されたか否かを判定する(ステップS307)。ここで、ウェハWの周縁部が接合されていない場合(ステップS307,No)、かかるステップS307の処理を繰り返す。 Next, the control unit 5 directly detects the arrival position of the bonding wave to determine whether or not the peripheral edge portion of the wafer W has been bonded (step S307). Here, when the peripheral edge portion of the wafer W is not bonded (step S307, No), the process of step S307 is repeated.
 一方で、ウェハWの周縁部が接合された場合(ステップS307,Yes)、制御部5は、ガス吐出部271からのボイド低減ガスの吐出を停止する(ステップS308)。そして、制御部5は、回収部282およびバルブ288、290を制御して、空間Sからボイド低減ガスを回収する(ステップS309)。 On the other hand, when the peripheral edge portion of the wafer W is joined (step S307, Yes), the control unit 5 stops the discharge of the void reduction gas from the gas discharge unit 271 (step S308). Then, the control unit 5 controls the recovery unit 282 and the valves 288 and 290 to recover the void reduction gas from the space S (step S309).
 次に、制御部5は、空間Sからのボイド低減ガスの回収を開始してから所与の時間経過した後に、空間Sからのボイド低減ガスの回収を停止して(ステップS310)、一連の処理を終了する。 Next, the control unit 5 stops the recovery of the void reduction gas from the space S after a lapse of a given time from the start of the recovery of the void reduction gas from the space S (step S310), and a series of series. End the process.
 実施形態に係る接合方法は、第1保持工程(ステップS105)と、第2保持工程(ステップS109)と、空間形成工程(ステップS203、S303)と、ボイド低減ガス吐出工程(ステップS206、S306)とを含む。第1保持工程(ステップS105)は、第1基板(上ウェハW1)を上方から吸着保持する第1保持部(上チャック230)を用い、第1基板(上ウェハW1)を上方から吸着保持する。第2保持工程(ステップS109)は、第2基板(下ウェハW2)を下方から吸着保持する第2保持部(下チャック231)を用い、第2基板(下ウェハW2)を下方から吸着保持する。空間形成工程(ステップS203、S303)は、第1保持部に保持された第1基板と第2保持部に保持された第2基板との間を予め設定された距離に近づけて、第1基板の周縁部および第2基板の周縁部の周囲に空間Sを形成する。ボイド低減ガス吐出工程(ステップS206、S306)は、結露を抑制する結露抑制ガスおよび分子サイズの小さい低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)を空間Sに吐出する。これにより、接合された重合ウェハTに発生するエッジボイドを低減することができる。 The joining method according to the embodiment includes a first holding step (step S105), a second holding step (step S109), a space forming step (steps S203 and S303), and a void reduction gas discharge step (steps S206 and S306). And include. In the first holding step (step S105), the first substrate (upper wafer W1) is sucked and held from above by using the first holding portion (upper chuck 230) that sucks and holds the first substrate (upper wafer W1) from above. .. In the second holding step (step S109), the second substrate (lower wafer W2) is sucked and held from below by using the second holding portion (lower chuck 231) that sucks and holds the second substrate (lower wafer W2) from below. .. In the space forming step (steps S203 and S303), the space forming step (steps S203, S303) brings the distance between the first substrate held by the first holding portion and the second substrate held by the second holding portion close to a preset distance, and causes the first substrate. A space S is formed around the peripheral edge of the second substrate and the peripheral edge of the second substrate. In the void reduction gas discharge step (steps S206 and S306), at least one gas (void reduction gas) of the dew condensation suppressing gas that suppresses dew condensation and the low molecular size gas having a small molecular size is discharged into the space S. Thereby, the edge voids generated in the bonded polymerized wafer T can be reduced.
 また、実施形態に係る接合方法において、ボイド低減ガス吐出工程(ステップS306)は、空間Sへの結露抑制ガスおよび低分子サイズガスの少なくとも一方のガス(ボイド低減ガス)の吐出量を可変にする。これにより、重合ウェハTに発生するエッジボイドの抑制と製造コストの低減とを両立させることができる。 Further, in the joining method according to the embodiment, the void reduction gas discharge step (step S306) makes the discharge amount of at least one of the dew condensation suppressing gas and the low molecular size gas (void reduction gas) into the space S variable. .. As a result, it is possible to suppress edge voids generated in the polymerized wafer T and reduce the manufacturing cost at the same time.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上述の実施形態では、ボイド低減ガスとして、ジュール・トムソン効果およびリーク性能の高いHeガスを用いた例について示したが、ジュール・トムソン効果またはリーク性能の高いガスであればHeガス以外のガスを用いてもよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made as long as the purpose is not deviated. For example, in the above-described embodiment, an example in which a He gas having a Joule-Thomson effect and a high leak performance is used as the void reducing gas has been shown, but if the gas has a Joule-Thomson effect or a high leak performance, it is other than the He gas. Gas may be used.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. Indeed, the above embodiments can be embodied in a variety of forms. Further, the above-described embodiment may be omitted, replaced or changed in various forms without departing from the scope of the appended claims and the purpose thereof.
 1    接合システム
 5    制御部
 41   接合装置
 230  上チャック(第1保持部の一例)
 231  下チャック(第2保持部の一例)
 240b 中間部吸引管(監視部の一例)
 250  ストライカー
 270  ボイド低減機構
 271  ガス吐出部
 272  ボイド低減ガス供給部
 272e ガス恒温部
 273  低湿度ガス供給部
 282  回収部
 285  センサ部
 286  基板恒温部
 S    空間
 W1   上ウェハ(第1基板の一例)
 W2   下ウェハ(第2基板の一例)
 W1c、W2c 中心部
 W1e、W2e 周縁部
1 Joining system 5 Control unit 41 Joining device 230 Upper chuck (an example of the first holding part)
231 Lower chuck (an example of the second holding part)
240b Intermediate suction pipe (an example of monitoring unit)
250 Striker 270 Void reduction mechanism 271 Gas discharge part 272 Void reduction gas supply part 272e Gas constant temperature part 273 Low humidity gas supply part 282 Recovery part 285 Sensor part 286 Board constant temperature part S Space W1 Upper wafer (example of the first substrate)
W2 lower wafer (an example of the second substrate)
W1c, W2c Central part W1e, W2e Peripheral part

Claims (16)

  1.  第1基板を上方から吸着保持する第1保持部と、
     第2基板を下方から吸着保持する第2保持部と、
     ガスを吐出するガス吐出部と、
     前記第1基板の中心部を上方から押圧して前記第2基板に接触させるストライカーと、
     各部を制御する制御部と、
     を備え、
     前記第1保持部に保持された前記第1基板と前記第2保持部に保持された前記第2基板との間が予め設定された距離に近づけられた場合に、前記第1基板の周縁部および前記第2基板の周縁部の周囲に空間が形成され、
     前記ガス吐出部は、結露を抑制する結露抑制ガスおよび分子サイズの小さい低分子サイズガスの少なくとも一方のガスを前記空間に吐出する
     接合装置。
    A first holding part that sucks and holds the first substrate from above,
    A second holding part that sucks and holds the second substrate from below,
    A gas discharge part that discharges gas and
    A striker that presses the central portion of the first substrate from above to bring it into contact with the second substrate.
    A control unit that controls each unit and
    With
    When the distance between the first substrate held by the first holding portion and the second substrate held by the second holding portion is brought close to a preset distance, the peripheral edge portion of the first substrate. And a space is formed around the peripheral edge of the second substrate.
    The gas discharge unit is a bonding device that discharges at least one of a dew condensation suppressing gas that suppresses dew condensation and a low molecular size gas having a small molecular size into the space.
  2.  前記制御部は、前記ストライカーで前記第1基板の中心部を押圧した後に、前記ガス吐出部から前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスを前記空間に吐出する
     請求項1に記載の接合装置。
    According to claim 1, the control unit presses the central portion of the first substrate with the striker, and then discharges at least one of the dew condensation suppressing gas and the low molecular weight gas from the gas discharge unit into the space. The joining device described.
  3.  前記ガス吐出部は、前記空間に低湿度ガスを吐出する
     請求項1または2に記載の接合装置。
    The joining device according to claim 1 or 2, wherein the gas discharge unit discharges a low humidity gas into the space.
  4.  前記空間の湿度を測定する湿度センサを備え、
     前記制御部は、前記湿度センサから出力される前記空間の湿度情報に基づいて、前記空間への前記低湿度ガスの吐出量を制御する
     請求項3に記載の接合装置。
    A humidity sensor for measuring the humidity of the space is provided.
    The joining device according to claim 3, wherein the control unit controls the discharge amount of the low humidity gas into the space based on the humidity information of the space output from the humidity sensor.
  5.  前記制御部は、前記ストライカーで前記第1基板の中心部を押圧する前から、前記ガス吐出部が前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスを前記空間に吐出するまでの間、前記ガス吐出部から前記低湿度ガスを前記空間に吐出する
     請求項3または4に記載の接合装置。
    The control unit is from before the striker presses the central portion of the first substrate until the gas discharge unit discharges at least one of the dew condensation suppressing gas and the low molecular weight gas into the space. The joining device according to claim 3 or 4, wherein the low humidity gas is discharged from the gas discharge unit into the space.
  6.  前記第1基板の中心部と周縁部との間の中間部における前記第1基板と前記第2基板との接触状態を監視する監視部を備え、
     前記制御部は、前記監視部から出力される情報に基づいて、前記空間に吐出されるガスを前記低湿度ガスから前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスに切り替える
     請求項5に記載の接合装置。
    A monitoring unit for monitoring the contact state between the first substrate and the second substrate in the intermediate portion between the central portion and the peripheral portion of the first substrate is provided.
    5. The control unit switches the gas discharged into the space from the low humidity gas to at least one of the dew condensation suppressing gas and the low molecular size gas based on the information output from the monitoring unit. The joining device described in 1.
  7.  前記空間に吐出された前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスを前記空間から回収する回収部を備える
     請求項1~6のいずれか一つに記載の接合装置。
    The joining device according to any one of claims 1 to 6, further comprising a recovery unit that recovers at least one of the dew condensation suppressing gas and the low molecular weight gas discharged into the space.
  8.  前記空間の酸素濃度を測定する酸素センサを備え、
     前記制御部は、前記酸素センサから出力される前記空間の酸素濃度情報に基づいて、前記回収部による前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスの回収動作を制御する
     請求項7に記載の接合装置。
    It is equipped with an oxygen sensor that measures the oxygen concentration in the space.
    7. The control unit controls the recovery operation of at least one of the dew condensation suppressing gas and the low molecular weight gas by the recovery unit based on the oxygen concentration information in the space output from the oxygen sensor. The joining device described in 1.
  9.  前記第2基板の周縁部を一定の温度に保つ基板恒温部を備える
     請求項1~8のいずれか一つに記載の接合装置。
    The joining device according to any one of claims 1 to 8, further comprising a substrate constant temperature portion that keeps the peripheral edge portion of the second substrate at a constant temperature.
  10.  前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスを一定の温度に保つガス恒温部を備える
     請求項1~9のいずれか一つに記載の接合装置。
    The joining device according to any one of claims 1 to 9, further comprising a gas constant temperature portion that keeps at least one of the dew condensation suppressing gas and the low molecular weight gas at a constant temperature.
  11.  前記制御部は、前記空間への前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスの吐出量を可変にする
     請求項1~10のいずれか一つに記載の接合装置。
    The joining device according to any one of claims 1 to 10, wherein the control unit makes the discharge amount of at least one of the dew condensation suppressing gas and the low molecular size gas into the space variable.
  12.  前記制御部は、前記空間への前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスの吐出量を徐々に減らす
     請求項11に記載の接合装置。
    The joining device according to claim 11, wherein the control unit gradually reduces the amount of at least one of the dew condensation suppressing gas and the low molecular size gas discharged into the space.
  13.  前記結露抑制ガスは、Heガス、ArガスおよびNeガスのうち少なくとも1種のガスを含む
     請求項1~12のいずれか一つに記載の接合装置。
    The joining device according to any one of claims 1 to 12, wherein the dew condensation suppressing gas contains at least one gas among He gas, Ar gas and Ne gas.
  14.  前記低分子サイズガスは、Heガス、HガスおよびNeガスのうち少なくとも1種のガスを含む
     請求項1~13のいずれか一つに記載の接合装置。
    The joining apparatus according to any one of claims 1 to 13, wherein the low molecular weight gas contains at least one gas among He gas, H 2 gas and Ne gas.
  15.  第1基板を上方から吸着保持する第1保持部を用い、前記第1基板を上方から吸着保持する第1保持工程と、
     第2基板を下方から吸着保持する第2保持部を用い、前記第2基板を下方から吸着保持する第2保持工程と、
     前記第1保持部に保持された前記第1基板と前記第2保持部に保持された前記第2基板との間を予め設定された距離に近づけて、前記第1基板の周縁部および前記第2基板の周縁部の周囲に空間を形成する空間形成工程と、
     結露を抑制する結露抑制ガスおよび分子サイズの小さい低分子サイズガスの少なくとも一方のガスを前記空間に吐出するボイド低減ガス吐出工程と、
     を含む接合方法。
    A first holding step of sucking and holding the first substrate from above using a first holding portion that sucks and holds the first substrate from above.
    A second holding step of sucking and holding the second substrate from below using a second holding portion that sucks and holds the second substrate from below.
    The peripheral portion of the first substrate and the first substrate are brought close to a preset distance between the first substrate held by the first holding portion and the second substrate held by the second holding portion. 2 Space formation process that forms a space around the peripheral edge of the substrate,
    A void reduction gas discharge step of discharging at least one of a dew condensation suppressing gas and a low molecular size gas having a small molecular size into the space.
    Joining method including.
  16.  前記ボイド低減ガス吐出工程は、前記空間への前記結露抑制ガスおよび前記低分子サイズガスの少なくとも一方のガスの吐出量を可変にする
     請求項15に記載の接合方法。
    The joining method according to claim 15, wherein the void reduction gas discharge step changes the discharge amount of at least one of the dew condensation suppressing gas and the low molecular size gas into the space.
PCT/JP2020/036032 2019-10-08 2020-09-24 Bonding device and bonding method WO2021070624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551158A JP7325519B2 (en) 2019-10-08 2020-09-24 Joining device and joining method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019184978 2019-10-08
JP2019-184978 2019-10-08
JP2020124700 2020-07-21
JP2020-124700 2020-07-21

Publications (1)

Publication Number Publication Date
WO2021070624A1 true WO2021070624A1 (en) 2021-04-15

Family

ID=75437287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036032 WO2021070624A1 (en) 2019-10-08 2020-09-24 Bonding device and bonding method

Country Status (3)

Country Link
JP (1) JP7325519B2 (en)
TW (1) TW202131385A (en)
WO (1) WO2021070624A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799989B (en) * 2021-09-13 2023-04-21 日商雅馬哈智能機器控股股份有限公司 Surface treatment equipment and semiconductor device manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018926A (en) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 Joining device, joining system, joining method, program and computer storage medium
WO2017168534A1 (en) * 2016-03-28 2017-10-05 株式会社ニコン Substrate bonding device and substrate bonding method
JP2018026413A (en) * 2016-08-09 2018-02-15 東京エレクトロン株式会社 Bonding device and bonding system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018926A (en) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 Joining device, joining system, joining method, program and computer storage medium
WO2017168534A1 (en) * 2016-03-28 2017-10-05 株式会社ニコン Substrate bonding device and substrate bonding method
JP2018026413A (en) * 2016-08-09 2018-02-15 東京エレクトロン株式会社 Bonding device and bonding system

Also Published As

Publication number Publication date
JP7325519B2 (en) 2023-08-14
JPWO2021070624A1 (en) 2021-04-15
TW202131385A (en) 2021-08-16

Similar Documents

Publication Publication Date Title
WO2012114826A1 (en) Junction device, junction system and junction method
JP5389847B2 (en) Joining method, program, computer storage medium, joining apparatus and joining system
WO2013137002A1 (en) Bonding device, bonding system and bonding method
JP6707420B2 (en) Joining device and joining system
WO2012121046A1 (en) Bonding device, bonding system and bonding method
JP5352609B2 (en) Joining method, program, computer storage medium, joining apparatus and joining system
JP6640546B2 (en) Joining apparatus, joining system and joining method
JP5411177B2 (en) Joining apparatus, joining system, joining method, program, and computer storage medium
WO2021070624A1 (en) Bonding device and bonding method
JP6685154B2 (en) Joining device and joining method
JP6813816B2 (en) Joining system and joining method
JP6685153B2 (en) Joining device and joining system
JP6895770B2 (en) Joining equipment and joining system
JP2015138929A (en) Bonding system, bonding method, program, computer storage medium
JP2017073455A (en) Joint system
JP2022029031A (en) Bonding device and bonding method
JP2019186288A (en) Bonding method and bonding system
WO2022158361A1 (en) Surface modification method and surface modification device
TW202303808A (en) Joining system and surface modification method
JP6752134B2 (en) Surface modifier and joining system
JP2021180202A (en) Inspection device, bonding system, and inspection method
US11894246B2 (en) Bonding apparatus and bonding method
JP6382764B2 (en) Joining apparatus and joining system
JP2016225506A (en) Surface modification device, bonding system, surface modification method, program, and computer storage medium
JP2015109360A (en) Substrate holding mechanism and peeling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873657

Country of ref document: EP

Kind code of ref document: A1