WO2021065702A1 - Probe - Google Patents

Probe Download PDF

Info

Publication number
WO2021065702A1
WO2021065702A1 PCT/JP2020/036221 JP2020036221W WO2021065702A1 WO 2021065702 A1 WO2021065702 A1 WO 2021065702A1 JP 2020036221 W JP2020036221 W JP 2020036221W WO 2021065702 A1 WO2021065702 A1 WO 2021065702A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic body
plunger
probe
flange
housing
Prior art date
Application number
PCT/JP2020/036221
Other languages
French (fr)
Japanese (ja)
Inventor
光代 村中
聖人 荒木
真一 剱崎
幸裕 北市
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080057124.7A priority Critical patent/CN114223098B/en
Priority to JP2021551177A priority patent/JP7136362B2/en
Publication of WO2021065702A1 publication Critical patent/WO2021065702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to a probe for inspecting the characteristics of a connector.
  • Patent Document 1 a probe for inspecting the characteristics of a connector to be inspected has been disclosed (see, for example, Patent Document 1).
  • the probe of Patent Document 1 is a probe for inspecting the characteristics of a connector, and in particular, inspects the characteristics of a multi-pole connector provided with a plurality of terminals so as to pass a plurality of signals.
  • the probe of Patent Document 1 includes a plurality of probe pins capable of simultaneously contacting a plurality of terminals of a multi-pole connector.
  • An object of the present invention is to provide a probe capable of more accurately inspecting the characteristics of connector terminals.
  • the probe of one aspect of the present invention is a probe for inspecting the characteristics of a connector, and includes a flange having a through hole and a base end portion which is an end portion on one side.
  • a housing that has a tip portion that is an end portion on the other side, is inserted into the through hole of the flange, the base end portion can be fitted into the through hole, and includes a coaxial cable and extends in the axial direction.
  • a plunger attached to the tip of the housing and having an opening for passing a probe pin electrically connected to the coaxial cable at the bottom, and a flange and the flange arranged between the flange and the flange.
  • An elastic body capable of urging the plunger in the axial direction away from each other and an elastic body arranged around the housing between the flange and the plunger so as to receive the axial urging force by the elastic body. It is equipped with a thrust bearing.
  • the probe of another aspect of the present invention is a probe for inspecting the characteristics of a connector, and includes a flange having a through hole, a base end portion which is one end portion, and an end portion on the other side.
  • a housing that has a tip portion that is, is inserted into the through hole of the flange, the base end portion can be fitted into the through hole, and includes a coaxial cable and extends in the axial direction, and a housing of the housing.
  • a plunger attached to the tip portion and having an opening through which a probe pin electrically connected to the coaxial cable is formed at the bottom is arranged between the flange and the plunger, and the flange and the plunger are separated from each other.
  • An elastic body capable of urging in the axial direction in the direction, and a ring-shaped member arranged around the housing between the flange and the plunger and interposed so as to receive the axial urging force by the elastic body.
  • the ring-shaped member has a first surface that directly contacts the elastic body and receives the urging force by the elastic body, and the friction coefficient between the first surface and the elastic body is the plunger. Is smaller than the friction coefficient between the and the elastic body.
  • the characteristic inspection of the terminal of the connector can be performed more accurately.
  • a probe for inspecting the characteristics of a connector which is a flange on which a through hole is formed, a base end portion which is an end portion on one side, and an end portion on the other side.
  • a housing having a tip portion, which is inserted into the through hole of the flange, the base end portion of which can be fitted into the through hole, and which includes a coaxial cable and extends in the axial direction, and the tip of the housing.
  • It includes an elastic body that can be urged in the axial direction and a thrust bearing that is arranged around the housing between the flange and the plunger and is interposed so as to receive the urging force in the axial direction by the elastic body. , Provide a probe.
  • the thrust bearing provides the probe according to the first aspect, which is arranged between the elastic body and the plunger. According to such a configuration, by arranging the thrust bearing at a position closer to the plunger than the elastic body, it is possible to make it difficult for the rotational force of the elastic body to be transmitted by the plunger.
  • the thrust bearing has a first surface that directly contacts the elastic body and surrounds the through hole, and the friction coefficient between the first surface and the elastic body is the same.
  • the probe according to the second aspect is provided, which is smaller than the coefficient of friction between the elastic body and the plunger.
  • the spring can be made slippery with respect to the first surface of the ring-shaped member, and the force in the plane direction due to the compression of the spring, particularly the rotational force, can be absorbed by the ring-shaped member. ..
  • the thrust bearing has a second surface along the outer periphery of the first surface, and the friction coefficient between the second surface and the elastic body is the same as that of the first surface.
  • the probe according to the third aspect which has a coefficient of friction with the elastic body, is provided. According to such a configuration, the stopper function for restricting the movement of the spring can be realized by the second surface provided on the outside of the first surface.
  • the thrust bearing has a protrusion protruding from the first surface around a portion of the first surface that comes into direct contact with the elastic body, the third aspect or the third aspect.
  • the probe according to the four aspects is provided. According to such a configuration, the protrusion can realize a stopper function for restricting the movement of the spring.
  • the thrust bearing provides the probe according to any one of the second to fifth aspects, which is in direct contact with the plunger. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing and the plunger.
  • the thrust bearing provides the probe according to the first or second aspect, which is in direct contact with the elastic body. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing and the elastic body.
  • the elastic body provides the probe according to any one of the first to seventh aspects, which is a spring arranged around the housing. According to such a configuration, a general-purpose configuration can be used for the elastic body, and the manufacturing cost of the probe can be reduced.
  • the probe according to the eighth aspect wherein the outer diameter of the spring is set larger than the diameter of the central hole of the thrust bearing.
  • the thrust bearing includes a ring-shaped first thrust washer, a ring-shaped second thrust washer arranged on the tip end side of the housing with respect to the first thrust washer, and the above.
  • the probe according to the tenth aspect wherein the surface of the first thrust washer and the second thrust washer on the side facing the cage is flat.
  • the ball of the cage can move freely in the plane direction as compared with the case where the raceway groove of the ball held by the cage is provided.
  • the thrust bearing can absorb the displacement of the probe pin.
  • a plurality of the coaxial cable and the probe pin are provided, respectively, and any one of the first to eleventh aspects for performing a characteristic inspection of a multi-pole connector having a plurality of terminals.
  • One of the probes described is provided. According to such a configuration, when performing a characteristic inspection of a multi-pole connector, poor contact with the terminal is likely to occur due to misalignment of the probe pin, whereas misalignment of the probe pin due to twisting of the elastic body is caused. By suppressing it, the accuracy of the characteristic inspection of the multi-pole connector can be improved.
  • a probe for inspecting the characteristics of a connector that is, a flange on which a through hole is formed, a base end portion which is an end portion on one side, and an end portion on the other side.
  • a housing having a tip portion, which is inserted into the through hole of the flange, the base end portion of which can be fitted into the through hole, and which includes a coaxial cable and extends in the axial direction, and the tip of the housing.
  • An elastic body capable of urging in the axial direction and a ring-shaped member arranged around the housing between the flange and the plunger and interposed so as to receive the urging force in the axial direction by the elastic body.
  • the ring-shaped member has a first surface that comes into direct contact with the elastic body and receives the urging force by the elastic body, and the friction coefficient between the first surface and the elastic body is the flanger and the said.
  • a probe having a coefficient of friction with an elastic body.
  • the ring-shaped member has a second surface along the outer circumference of the first surface, and the friction coefficient between the second surface and the elastic body is the first surface.
  • the probe according to the thirteenth aspect which is larger than the coefficient of friction between the elastic body and the elastic body. According to such a configuration, the stopper function for restricting the movement of the spring can be realized by the second surface provided on the outside of the first surface.
  • the ring-shaped member has a protruding portion protruding from the first surface around a portion of the first surface that comes into direct contact with the elastic body, or the thirteenth aspect.
  • the probe according to the fourteenth aspect is provided. According to such a configuration, the protrusion can realize a stopper function for restricting the movement of the spring.
  • FIGS. 1 and 5 are diagrams showing a schematic configuration of the probe 2 according to the embodiment.
  • 1 and 2 are perspective views of the probe 2 as viewed from different angles.
  • FIG. 3 is a vertical cross-sectional view of the probe 2 shown in FIGS. 1 and 2.
  • 4 and 5 are exploded perspective views of the probe 2 as viewed from different angles.
  • the probe 2 is an inspection instrument that inspects the characteristics of the connector 3.
  • the connector 3 of the embodiment is a multi-pole connector having a plurality of terminals. 1 to 3 show the outer shape of the connector 3 in a simplified manner, and FIGS. 4 and 5 omit the illustration of the connector 3.
  • the probe 2 includes a flange 4, a housing 6, a coaxial cable 8, a plunger 10, a spring 12 (elastic body), and a thrust bearing 14.
  • the flange 4 is a member for attaching the probe 2 to a predetermined facility.
  • the predetermined equipment is, for example, a sorting machine for sorting a printed circuit board on which the connector 3 is mounted based on the result of a characteristic inspection of the connector 3.
  • a through hole 20 for inserting the housing 6 is provided in the central portion of the flange 4.
  • the flange 4 is arranged so as to extend in the horizontal direction, and the through hole 20 is provided so as to extend in the vertical direction.
  • the through hole 20 of the embodiment has a cylindrical shape.
  • a recess 13 for receiving the base end portion 21 of the housing 6 is formed on the upper surface 11 of the flange 4.
  • the recess 13 is provided on the upper surface 11 of the flange 4 as a portion in which the through hole 20 is expanded in the horizontal direction.
  • the through hole 20 and the recess 13 are spatially continuously formed.
  • the housing 6 is a member that is inserted into and fitted into the through hole 20 of the flange 4 and holds a plunger 10 and the like, which will be described later.
  • the housing 6 is formed in a tubular shape extending in the axial direction A while including the coaxial cable 8.
  • the axial direction A may substantially coincide with the vertical direction.
  • the housing 6 includes a base end portion 21, a tip end portion 22, and an intermediate portion 23.
  • the base end portion 21 is the end portion on one side (upper side in the embodiment) of the housing 6, and the tip end portion 22 is the end portion on the other side (lower side in the embodiment) of the housing 6. Both the base end portion 21 and the tip end portion 22 have a shape with an enlarged diameter with respect to the intermediate portion 23.
  • the base end portion 21 is a portion housed in the recess 13 of the flange 4.
  • the recess 13 is provided with an inclined surface that is inclined so as to guide the base end portion 21 inward. While housed in the recess 13, the proximal end 21 is slightly movable in the recess 13 in the lateral direction, that is, in the horizontal direction.
  • the tip portion 22 is a portion that is press-fitted into the plunger 10.
  • the plunger 10 is fixed to the housing 6 by press-fitting the tip portion 22 into the plunger 10.
  • the intermediate portion 23 is a portion extending between the base end portion 21 and the tip end portion 22, and a spring 12 is arranged around the intermediate portion 23.
  • the plunger 10 is a member for fitting and positioning the connector 3.
  • the plunger 10 includes a fitting portion 10A into which the connector 3 is fitted from below, and a mounting portion 10B to be attached to the housing 6.
  • the fitting portion 10A is attached to the mounting portion 10B so as to project downward from the end portion of the mounting portion 10B.
  • the fitting portion 10A is formed with a protrusion 24 (FIG. 7) for fitting the connector 3.
  • the coaxial cable 8 is a member for electrically conducting with the terminal of the connector 3.
  • FIG. 6 is a perspective view showing one coaxial cable 8.
  • the coaxial cable 8 is formed in a rod shape, and a probe pin 16 is electrically connected to the tip of the coaxial cable 8.
  • One probe pin 16 is connected to one coaxial cable 8.
  • the other end of the coaxial cable 8 is connected to a measurement connector (not shown).
  • the measurement connector is a connector for connecting the coaxial cable 8 to an external measuring instrument (not shown).
  • the probe pin 16 is a rod-shaped member that contacts and conducts each terminal of the connector 3.
  • the probe pin 16 is formed of a conductive material on the inside and an insulating member on the outside.
  • the probe pin 16 is inserted through the fitting portion 10A of the plunger 10.
  • the tip of the probe pin 16 is a conductive portion and is exposed from the bottom of the fitting portion 10A.
  • FIG. 7 is a perspective view of the plunger 10.
  • the fitting portion 10A of the plunger 10 has an opening at the bottom thereof that exposes the tip of the probe pin 16.
  • the tip of the probe pin 16 exposed from the opening of the fitting portion 10A projects so as to come into contact with the terminal of the connector 3 fitted in the fitting portion 10A.
  • a plurality of coaxial cables 8 and a plurality of probe pins 16 are provided. According to such a configuration, even if the connector 3 to be inspected is a multi-pole connector having a plurality of terminals, the characteristic inspection of each terminal of the connector 3 can be performed at the same time.
  • eight coaxial cables 8 and eight probe pins 16 are provided, and the characteristics of the multi-pole connector 3 having eight terminals can be inspected at the same time.
  • the fitting portion 10A has a pair of protrusions 24.
  • the pair of protrusions 24 are protrusions that protrude downward from the bottom of the fitting portion 10A, and are arranged at intervals from each other.
  • a guide groove 28 for guiding the terminal of the connector 3 toward the probe pin 16 is formed between the pair of protrusions 24.
  • the surface shape of the guide groove 28 is designed to correspond to the connector 3.
  • the mounting portion 10B of the plunger 10 has a substantially disk-shaped portion that receives the thrust bearing 14 described above and a portion that is connected to the fitting portion 10A.
  • the spring 12 is an elastic body for pressing the probe pin 16 described above against the terminal of the connector 3 with an appropriate load.
  • the spring 12 is arranged around the housing 6 between the flange 4 and the plunger 10. As shown in FIGS. 1 and 3, one end (upper side) of the spring 12 is press-fitted into a groove formed on the lower surface of the flange 4. On the other hand, the other end (lower side) of the spring 12 is in contact with the surface of the thrust bearing 14 as shown in FIGS. 2 and 3. The spring 12 and the thrust bearing 14 are not fixed to each other.
  • the spring 12 In the state before fitting the connector 3 to the fitting portion 10A as shown in FIGS. 1 and 2, the spring 12 is in a state shorter than the natural length, that is, in a compressed state.
  • the compressed spring 12 urges the upper flange 4 and the lower thrust bearing 14 and the plunger 10 in the axial direction A so as to separate from each other.
  • the spring 12 in the compressed state has an urging force F in the axial direction A as an elastic force that tends to extend toward the natural length.
  • the spring 12 in the embodiment is a spiral coil spring, and its length and elastic force can be easily adjusted.
  • the spring 12 has an elastic modulus k1 and a shrinkage amount x1, and the urging force F can be roughly estimated as a value obtained by multiplying the elastic modulus k1 and the shrinkage amount x1.
  • the elastic modulus may be referred to as “elastic modulus” or “elastic constant”, or may be substituted by "spring constant”.
  • the outer diameter D1 of the spring 12 is set to be larger than the diameter D2 of the center hole of the thrust bearing 14. By setting such a length, it is possible to prevent the spring 12 which is not fixed to the thrust bearing 14 from accidentally entering the center hole of the thrust bearing 14.
  • the thrust bearing 14 is a member that intervenes so as to receive the urging force F in the axial direction A by the spring 12 described above. Like the spring 12, the thrust bearing 14 is arranged around the housing 6 between the flange 4 and the plunger 10. The thrust bearing 14 is not fixed to either the spring 12 or the plunger 10, and is arranged around the housing 6 so as to be rotatable in the rotation direction R about the axial direction A.
  • the spring 12 is arranged on the upper side and the thrust bearing 14 is arranged on the lower side.
  • the spring 12 is arranged between the flange 4 and the thrust bearing 14, and the thrust bearing 14 is arranged between the spring 12 and the plunger 10.
  • the spring 12 comes into direct contact with the flange 4 and the thrust bearing 14, and the thrust bearing 14 comes into direct contact with the spring 12 and the plunger 10. According to such a configuration, the number of parts can be reduced as compared with the case where other members are interposed between these members.
  • FIGS. 8A and 8B are exploded perspective views of the thrust bearing 14 viewed from different angles, respectively.
  • the thrust bearing 14 has a first thrust washer 30, a second thrust washer 32, and a cage 34.
  • the first thrust washer 30, the second thrust washer 32, and the cage 34 are ring-shaped members forming the central holes 30A, 32A, and 34A, respectively.
  • the diameters of the central holes 30A, 32A, and 34A are all set to be substantially the same.
  • the first thrust washer 30 and the second thrust washer 32 are cylindrical members having the same dimensions.
  • the first thrust washer 30 is arranged above the cage 34, and the second thrust washer 32 is arranged below the cage 34.
  • the first thrust washer 30 has an upper surface 30B and a lower surface 30C, and the second thrust washer 32 has an upper surface 32B and a lower surface 32C.
  • the first thrust washer 30 faces the cage 34 on the lower surface 30C, and the second thrust washer 32 faces the cage 34 on the upper surface 32B.
  • the cage 34 is a ring-shaped member arranged between the first thrust washer 30 and the second thrust washer 32.
  • the cage 34 of the embodiment holds a plurality of balls 36.
  • the plurality of balls 36 are provided so as to be movable relative to the thrust washers 30 and 32 in the rotational direction R while being sandwiched between the lower surface 30C of the first thrust washer 30 and the upper surface 32B of the second thrust washer 32. ing.
  • the upper surface 30B and the lower surface 30C of the first thrust washer 30 and the upper surface 32B and the lower surface 32C of the second thrust washer 32 are all formed flat.
  • the ball 36 of the cage 34 moves in the horizontal direction. It will be possible.
  • a circumferential recess is formed as a ball trajectory on the surface of the thrust washer on the side in contact with the ball to restrict the movement of the ball, but the lower surface 30C and the upper surface 32B are flat.
  • the ball 36 of the cage 34 By forming the ball 36 in the cage 34, the movement of the ball 36 of the cage 34 is not restricted. Therefore, the ball 36 of the cage 34 can not only rotate in the rotation direction R relative to the thrust washers 30 and 32, but also can move laterally in the horizontal direction.
  • the probe 2 further includes a plate 26.
  • the plate 26 is a member for preventing the coaxial cable 8 from coming off upward.
  • the plate 26 is arranged at the mounting portion 10B of the plunger 10 and is arranged between the tip portion 22 of the housing 6 and the plunger 10.
  • the housing 6 and the plunger 10 can be integrally rotated in the rotation direction R which is the circumferential direction.
  • the spring 12 and the thrust bearing 14, which are not attached to either the housing 6 or the plunger 10, do not rotate integrally.
  • FIGS. 9A and 9B are notched perspective views showing the housing 6 before the connector 3 is fitted
  • FIG. 9B is a notched perspective view showing the housing 6 after the connector 3 is fitted.
  • the connector 3, the plunger 10, the spring 12, the thrust bearing 14, and the like are not shown, and only the flange 4 and the housing 6 are shown.
  • the base end portion 21 of the housing 6 is housed in the recess 13, and the spring 12 (not shown) in the compressed state has an urging force F1.
  • the connector 3 is fitted into the fitting portion 10A (not shown) of the plunger 10, and an upward pressing force is applied from the connector 3 to the housing 6 via the plunger 10.
  • FIG. 9B the housing 6 floats upward with respect to the flange 4, and the engagement between the base end portion 21 of the housing 6 and the flange 4 is released.
  • the housing 6 can move in the horizontal direction within the range in the through hole 20 and can rotate in the rotation direction R (not shown).
  • the housing 6 moves laterally in the horizontal direction and rotates in the rotation direction R according to the position of the terminal of the connector 3 fitted to the plunger 10.
  • the postures of the housing 6 and the plunger 10 are adjusted according to the positions of the terminals of the connector 3, and the probe pins 16 attached to the plunger 10 and the terminals of the connector 3 can be aligned.
  • the spring 12 shown in FIG. 9B is further contracted from the state shown in FIG. 9A and has an urging force F2 larger than the urging force F1. Since the spring 12 has the urging force F2, the probe pin 16 arranged on the plunger 10 can be pressed against the connector 3 with an appropriate load.
  • the spring 12 is not fixed to either the housing 6 or the plunger 10, but is arranged around the housing 6 in a state of being fixed to the lower surface of the flange 4.
  • the thrust bearing 14 is interposed between the spring 12 and the plunger 10. The thrust bearing 14 has a function of receiving an urging force F in the axial direction A of the spring 12 and absorbing a rotational force W due to the twist of the spring 12.
  • the probe 2 of the embodiment includes a flange 4, a housing 6, a plunger 10, a spring 12, and a thrust bearing 14.
  • the flange 4 is a member in which a through hole 20 is formed.
  • the housing 6 has a base end portion 21 which is an end portion on one side and a tip end portion 22 which is an end portion on the other side, and is inserted into a through hole 20 of a flange 4, and the base end portion 21 is inserted into the through hole 20. It can be fitted and includes the coaxial cable 8 and extends in the axial direction A.
  • the plunger 10 is attached to the tip end 22 of the housing 6 and has an opening at the bottom through which the probe pin 16 electrically connected to the coaxial cable 8 passes.
  • the spring 12 is an elastic body arranged between the flange 4 and the plunger 10 and capable of urging the flange 4 and the plunger 10 in the axial direction A in a direction away from each other.
  • the thrust bearing 14 is arranged around the housing 6 between the flange 4 and the plunger 10 and is interposed so as to receive the urging force F in the axial direction A by the spring 12.
  • the thrust bearing 14 can absorb the rotational force W due to the twist of the spring 12 while receiving the urging force F in the axial direction A by the spring 12.
  • the rotational force W of the spring 12 being transmitted to the plunger 10
  • the probe pin 16 can be used as the terminal of the connector. It is possible to make contact with high accuracy. In this way, the accuracy of the characteristic inspection of the connector can be improved.
  • the thrust bearing 14 is arranged between the spring 12 and the plunger 10. According to such a configuration, by arranging the thrust bearing 14 at a position closer to the plunger 10 than the spring 12, the rotational force of the spring 12 can be made difficult to be transmitted by the plunger 10.
  • the thrust bearing 14 comes into direct contact with the plunger 10. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing 14 and the plunger 10.
  • the thrust bearing 14 comes into direct contact with the spring 12. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing 14 and the spring 12.
  • a spring 12 arranged around the housing 6 is used as an elastic body that generates an urging force F.
  • a general-purpose configuration can be used for the elastic body, and the manufacturing cost of the probe 2 can be reduced.
  • the outer diameter D1 of the spring 12 is set to be larger than the diameter D2 of the center hole of the thrust bearing 14. According to such a configuration, it is possible to prevent the spring 12 from accidentally entering the center hole of the thrust bearing 14.
  • the thrust bearing 14 has a ring-shaped first thrust washer 30, a ring-shaped second thrust washer 32, and a ring-shaped cage 34.
  • the second thrust washer 32 is arranged closer to the tip portion 22 of the housing 6 than the first thrust washer 30.
  • the cage 34 is arranged between the first thrust washer 30 and the second thrust washer 32, and holds a plurality of balls 36. According to such a configuration, a general-purpose configuration can be used as the thrust bearing 14, and the manufacturing cost of the probe 2 can be reduced.
  • the lower surface 30C and the upper surface 32B of the first thrust washer 30 and the second thrust washer 32 facing the cage 34 are flat. According to such a configuration, the ball 36 of the cage 34 can be freely moved in the plane direction as compared with the case where the raceway groove of the ball 36 of the cage 34 is provided on the inner surface of the thrust washers 30 and 32. .. As a result, not only the rotational force W due to the twist of the spring 12 but also the displacement in the plane direction can be absorbed by the thrust bearing 14. Therefore, the misalignment of the probe pin 16 can be further suppressed, and the accuracy of the characteristic inspection of the connector 3 can be further improved.
  • a plurality of coaxial cables 8 and probe pins 16 are provided, respectively, and the characteristics of the multi-pole connector 3 having a plurality of terminals are inspected.
  • the multi-pole connector 3 since the multi-pole connector 3 has a plurality of terminals, poor contact with the terminals is likely to occur due to the misalignment of the probe pins 16, whereas the position of the probe pins 16 due to the twist of the spring 12 is likely to occur. By suppressing the deviation, the accuracy of the characteristic inspection of the multi-pole connector 3 can be improved.
  • the present invention has been described above with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments.
  • the case where the spring 12 is arranged on the upper side and the thrust bearing 14 is arranged on the lower side has been described, but the case is not limited to such a case.
  • the spring 12 may be arranged on the lower side
  • the thrust bearing 14 may be arranged on the upper side
  • the like may be arranged at any position between the flange 4 and the plunger 10.
  • the case where one thrust bearing 14 is provided has been described, but the case is not limited to such a case.
  • two thrust bearings 14 may be provided.
  • a thrust bearing different from the thrust bearing 14 may be interposed between the flange 4 and the spring 12.
  • the case where the spring 12 is used as the elastic body for generating the urging force F in the axial direction A has been described, but the case is not limited to such a case. Any elastic body may be used as long as it generates an urging force F in the axial direction A.
  • the case where the multi-pole connector 3 having a plurality of terminals, particularly the multi-pole connector 3 having eight terminals, is the inspection target of the probe 2 has been described, but the case is not limited to such a case. .. A connector having an arbitrary number of terminals may be inspected.
  • the thrust bearing 14 has a plurality of balls 36 as shown in FIGS. 8A and 8B has been described, but the case is not limited to such a case.
  • Any type of thrust bearing may be used as long as it is a "rotational force absorbing member" that absorbs the rotational force W due to the twist of the spring 12 while receiving the urging force F in the axial direction A of the spring 12.
  • different examples of the thrust bearing 14 of the above-described embodiment will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a schematic perspective view showing the thrust bearing of the first embodiment.
  • the thrust bearing of the first embodiment is a ring-shaped member 100 having a through hole 102 in the central portion.
  • a housing 6 (not shown) is arranged in the through hole 102.
  • the ring-shaped member 100 has a main surface 104 as a surface facing the spring 12 (not shown).
  • the main surface 104 has a first surface 106 and a second surface 108.
  • the first surface 106 is a surface surrounding the through hole 102 and comes into direct contact with the spring 12.
  • the second surface 108 is a surface along the outer circumference 110 of the first surface 106, and is provided outside the first surface 106.
  • the ring-shaped member 100 is integrally made of a resin such as POM.
  • the material of the spring 12 and the plunger 10 that come into contact with the ring-shaped member 100 is, for example, SUS.
  • the coefficient of friction between the SUSs is, for example, 0.6 to 0.9.
  • the coefficient of friction between SUS and POM is, for example, about 0.15, which is lower than the coefficient of friction between SUSs.
  • the coefficient of friction between the first surface 106 made of POM and the spring 12 made of SUS is the coefficient of friction between the spring 12 made of SUS and the plunger 10 made of SUS (for example, 0.15). It is smaller than 0.6 to 0.9).
  • the spring 12 is connected to the ring-shaped member 100 by interposing the ring-shaped member 100, as compared with the configuration in which the spring 12 and the plunger 10 are in direct contact with each other without providing the ring-shaped member 100. It can be made slippery on the main surface 104.
  • the force in the plane direction due to the compression of the spring 12, particularly the rotational force W, can be absorbed by the ring-shaped member 100, and the rotational force W can be suppressed from being transmitted to the plunger 10.
  • the same effect as that of the thrust bearing 14 (for example, made of metal) of the embodiment can be obtained.
  • the friction coefficient between the second surface 108 and the spring 12 is made larger than the friction coefficient between the first surface 106 and the spring 12.
  • the first surface 106 and the second surface 108 may be integrally formed of the same material, and then the surface of the second surface 108 may be roughened.
  • the ring-shaped member 100 made of resin such as POM, the shape such as thickness can be easily changed by resin molding without performing shaving or the like as in the case of metal. As a result, the urging force of the spring 12 can be easily adjusted.
  • the friction coefficient between the spring 12 and the third surface which is the surface of the ring-shaped member 100 facing the first surface 106 and the second surface 108, is preferably smaller than the friction coefficient between the spring 12 and the plunger 10. In this case, the transmission of the rotational force to the plunger 10 can be further suppressed.
  • FIG. 11 is a schematic perspective view showing the thrust bearing of the second embodiment.
  • the thrust bearing of the second embodiment is a ring-shaped member 200 having a through hole 202 in the central portion.
  • a housing 6 (not shown) is arranged in the through hole 202.
  • the ring-shaped member 200 has a first surface 204 as a main surface on the side facing the spring 12 (not shown).
  • the first surface 204 is made of a resin such as POM, and the friction coefficient between the first surface 204 and the spring 12 (for example, 0.15) is set to the friction coefficient between the spring 12 and the plunger 10 (for example). It is smaller than 0.6 to 0.9). As a result, the same effect as that of the first embodiment can be obtained.
  • a projecting portion 206 projecting in a direction orthogonal to the first surface 204 is provided around the first surface 204.
  • a protruding portion 206 By providing such a protruding portion 206, it is possible to provide a stopper function for restricting the movement of the spring 12 when the spring 12 slides in the plane direction, as in the first embodiment.
  • the surface of the first surface 204 may be processed in the same manner as in the first embodiment.
  • the ring-shaped members 100 and 200 are a perfect annular shape continuous in the circumferential direction, but not limited to such a case, the ring-shaped members 100 and 200 are incomplete with a partially discontinuous portion. It may be an annular shape. That is, the ring-shaped members 100 and 200 may at least partially surround the housing 6.
  • the case where the spring 12 is arranged on the upper side and the ring-shaped members 100 and 200 are arranged on the lower side has been described, but the case is not limited to such a case.
  • the spring 12 may be arranged on the lower side, the ring-shaped members 100 and 200 may be arranged on the upper side, and the spring 12 may be arranged at any position between the flange 4 and the plunger 10.
  • the friction coefficient between the ring-shaped members 100 and 200 and the flange 4 is smaller than the friction coefficient between the spring 12 and the flange 4. Is preferable.
  • the present invention is applicable to any probe that inspects the characteristics of the connector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

This probe is for inspecting characteristics of a connector and is provided with: a flange for attaching the probe to equipment; a housing which has a base end section and a distal end section, is inserted through a through-hole of the flange such that the base end section can be fitted to the through-hole, and extends in an axial direction with coaxial cables accommodated therein; a plunger attached to the distal end section of the housing and having a bottom part with openings through which probe pins electrically connected to the coaxial cables are passed; an elastic body disposed between the flange and the plunger and capable of biasing the flange and the plunger in directions separating from each other along the axial direction; and a thrust bearing disposed around the housing between the flange and the plunger and interposed so as to receive the axial biasing force of the elastic body.

Description

プローブprobe
 本発明は、コネクタの特性検査を行うためのプローブに関する。 The present invention relates to a probe for inspecting the characteristics of a connector.
 従来より、被検査体であるコネクタの特性検査を行うためのプローブが開示されている(例えば、特許文献1参照)。 Conventionally, a probe for inspecting the characteristics of a connector to be inspected has been disclosed (see, for example, Patent Document 1).
 特許文献1のプローブは、コネクタの特性検査を行うためのプローブであり、特に、複数信号を流すように複数の端子が設けられた多極コネクタの特性検査を行うものである。特許文献1のプローブは、多極コネクタの複数の端子に対して同時に接触可能な複数のプローブピンを備えている。 The probe of Patent Document 1 is a probe for inspecting the characteristics of a connector, and in particular, inspects the characteristics of a multi-pole connector provided with a plurality of terminals so as to pass a plurality of signals. The probe of Patent Document 1 includes a plurality of probe pins capable of simultaneously contacting a plurality of terminals of a multi-pole connector.
国際公開第2018/116568号公報International Publication No. 2018/116568
 コネクタのプローブにおいては、端子の特性検査の精度を向上させることが求められている。特許文献1のプローブのように、弾性部材を用いてプローブをコネクタ端子に押し付ける場合に、弾性部材のねじれによって、特性検査精度のさらなる向上が妨げられる。 In connector probes, it is required to improve the accuracy of terminal characteristic inspection. When the probe is pressed against the connector terminal using an elastic member as in the probe of Patent Document 1, the twist of the elastic member hinders further improvement of the characteristic inspection accuracy.
 本発明の目的は、コネクタの端子の特性検査をより精度良く行うことができるプローブを提供することにある。 An object of the present invention is to provide a probe capable of more accurately inspecting the characteristics of connector terminals.
 上記目的を達成するために、本発明の一態様のプローブは、コネクタの特性検査を行うためのプローブであって、貫通孔が形成されたフランジと、一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、前記ハウジングの前記先端部に取り付けられ、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部を底部に形成したプランジャと、前記フランジと前記プランジャの間に配置され、前記フランジと前記プランジャを互いに離れる方向へ前記軸方向に付勢可能な弾性体と、前記フランジと前記プランジャの間で前記ハウジングの周りに配置され、前記弾性体による前記軸方向の付勢力を受けるように介在するスラストベアリングと、を備える。 In order to achieve the above object, the probe of one aspect of the present invention is a probe for inspecting the characteristics of a connector, and includes a flange having a through hole and a base end portion which is an end portion on one side. A housing that has a tip portion that is an end portion on the other side, is inserted into the through hole of the flange, the base end portion can be fitted into the through hole, and includes a coaxial cable and extends in the axial direction. A plunger attached to the tip of the housing and having an opening for passing a probe pin electrically connected to the coaxial cable at the bottom, and a flange and the flange arranged between the flange and the flange. An elastic body capable of urging the plunger in the axial direction away from each other and an elastic body arranged around the housing between the flange and the plunger so as to receive the axial urging force by the elastic body. It is equipped with a thrust bearing.
 また、本発明の別の態様のプローブは、コネクタの特性検査を行うためのプローブであって、貫通孔が形成されたフランジと、一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、前記ハウジングの前記先端部に取り付けられ、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部を底部に形成したプランジャと、前記フランジと前記プランジャの間に配置され、前記フランジと前記プランジャを互いに離れる方向へ前記軸方向に付勢可能な弾性体と、前記フランジと前記プランジャの間で前記ハウジングの周りに配置され、前記弾性体による前記軸方向の付勢力を受けるように介在するリング状部材と、を備え、前記リング状部材は、前記弾性体に直接接触して前記弾性体による前記付勢力を受ける第1面を有し、前記第1面と前記弾性体との摩擦係数は、前記プランジャと前記弾性体との摩擦係数よりも小さい。 Further, the probe of another aspect of the present invention is a probe for inspecting the characteristics of a connector, and includes a flange having a through hole, a base end portion which is one end portion, and an end portion on the other side. A housing that has a tip portion that is, is inserted into the through hole of the flange, the base end portion can be fitted into the through hole, and includes a coaxial cable and extends in the axial direction, and a housing of the housing. A plunger attached to the tip portion and having an opening through which a probe pin electrically connected to the coaxial cable is formed at the bottom is arranged between the flange and the plunger, and the flange and the plunger are separated from each other. An elastic body capable of urging in the axial direction in the direction, and a ring-shaped member arranged around the housing between the flange and the plunger and interposed so as to receive the axial urging force by the elastic body. The ring-shaped member has a first surface that directly contacts the elastic body and receives the urging force by the elastic body, and the friction coefficient between the first surface and the elastic body is the plunger. Is smaller than the friction coefficient between the and the elastic body.
 本発明のプローブによれば、コネクタの端子の特性検査をより精度良く行うことができる。 According to the probe of the present invention, the characteristic inspection of the terminal of the connector can be performed more accurately.
実施の形態におけるプローブの概略斜視図Schematic perspective view of the probe according to the embodiment 実施の形態におけるプローブの概略斜視図Schematic perspective view of the probe according to the embodiment 実施の形態におけるプローブの概略縦断面図Schematic longitudinal section of the probe according to the embodiment 実施の形態におけるプローブの概略分解斜視図Schematic exploded perspective view of the probe according to the embodiment 実施の形態におけるプローブの概略分解斜視図Schematic exploded perspective view of the probe according to the embodiment 実施の形態における同軸ケーブルおよびプローブピンの概略斜視図Schematic perspective view of the coaxial cable and probe pin in the embodiment 実施の形態におけるプランジャおよびプローブピンの概略斜視図Schematic perspective view of the plunger and probe pin in the embodiment 実施の形態におけるスラストベアリングの概略分解斜視図Schematic exploded perspective view of the thrust bearing in the embodiment 実施の形態におけるスラストベアリングの概略分解斜視図Schematic exploded perspective view of the thrust bearing in the embodiment 実施の形態におけるプローブの動作を説明するための概略切欠き斜視図Schematic notched perspective view for explaining the operation of the probe in the embodiment. 実施の形態におけるプローブの動作を説明するための概略切欠き斜視図Schematic notched perspective view for explaining the operation of the probe in the embodiment. 実施例1のスラストベアリングの概略斜視図Schematic perspective view of the thrust bearing of the first embodiment 実施例2のスラストベアリングの概略斜視図Schematic perspective view of the thrust bearing of the second embodiment
 本発明の第1態様によれば、コネクタの特性検査を行うためのプローブであって、貫通孔が形成されたフランジと、一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、前記ハウジングの前記先端部に取り付けられ、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部を底部に形成したプランジャと、前記フランジと前記プランジャの間に配置され、前記フランジと前記プランジャを互いに離れる方向へ前記軸方向に付勢可能な弾性体と、前記フランジと前記プランジャの間で前記ハウジングの周りに配置され、前記弾性体による前記軸方向の付勢力を受けるように介在するスラストベアリングと、を備える、プローブを提供する。 According to the first aspect of the present invention, it is a probe for inspecting the characteristics of a connector, which is a flange on which a through hole is formed, a base end portion which is an end portion on one side, and an end portion on the other side. A housing having a tip portion, which is inserted into the through hole of the flange, the base end portion of which can be fitted into the through hole, and which includes a coaxial cable and extends in the axial direction, and the tip of the housing. A plunger attached to the housing and having an opening through which a probe pin electrically connected to the coaxial cable is formed at the bottom, and the flange and the plunger are arranged in a direction in which the flange and the plunger are separated from each other. It includes an elastic body that can be urged in the axial direction and a thrust bearing that is arranged around the housing between the flange and the plunger and is interposed so as to receive the urging force in the axial direction by the elastic body. , Provide a probe.
 このような構成によれば、スラストベアリングによって弾性体による軸方向の付勢力を受けつつ、弾性体のねじれに伴う回転力を吸収することができる。これにより、弾性体の回転力がプランジャに伝達されることを抑制することができ、プランジャに配置したプローブピンの位置ずれを抑制することができ、プローブピンをコネクタの端子に精度良く接触させることができる。このようにして、コネクタの特性検査の精度を向上させることができる。 According to such a configuration, it is possible to absorb the rotational force due to the twist of the elastic body while receiving the axial urging force by the elastic body by the thrust bearing. As a result, the rotational force of the elastic body can be suppressed from being transmitted to the plunger, the displacement of the probe pin arranged on the plunger can be suppressed, and the probe pin can be brought into contact with the terminal of the connector with high accuracy. Can be done. In this way, the accuracy of the characteristic inspection of the connector can be improved.
 本発明の第2態様によれば、前記スラストベアリングは、前記弾性体と前記プランジャとの間に配置される、第1態様に記載のプローブを提供する。このような構成によれば、スラストベアリングを弾性体よりもプランジャに近い位置に配置することで、弾性体の回転力をプランジャにより伝達されにくくすることができる。 According to the second aspect of the present invention, the thrust bearing provides the probe according to the first aspect, which is arranged between the elastic body and the plunger. According to such a configuration, by arranging the thrust bearing at a position closer to the plunger than the elastic body, it is possible to make it difficult for the rotational force of the elastic body to be transmitted by the plunger.
 本発明の第3態様によれば、前記スラストベアリングは、前記弾性体と直接接触して前記貫通孔を取り囲む第1面を有し、前記第1面と前記弾性体との摩擦係数は、前記弾性体と前記プランジャとの摩擦係数よりも小さい、第2態様に記載のプローブを提供する。このような構成によれば、リング状部材の第1面に対してスプリングを滑りやすくすることができ、スプリングの圧縮に伴う平面方向の力、特に回転力をリング状部材によって吸収することができる。 According to the third aspect of the present invention, the thrust bearing has a first surface that directly contacts the elastic body and surrounds the through hole, and the friction coefficient between the first surface and the elastic body is the same. The probe according to the second aspect is provided, which is smaller than the coefficient of friction between the elastic body and the plunger. According to such a configuration, the spring can be made slippery with respect to the first surface of the ring-shaped member, and the force in the plane direction due to the compression of the spring, particularly the rotational force, can be absorbed by the ring-shaped member. ..
 本発明の第4態様によれば、前記スラストベアリングは、前記第1面の外周に沿った第2面を有し、前記第2面と前記弾性体との摩擦係数は、前記第1面と前記弾性体との摩擦係数よりも大きい、第3態様に記載のプローブを提供する。このような構成によれば、第1面の外側に設けた第2面によって、スプリングの移動を規制するストッパー機能を実現することができる。 According to the fourth aspect of the present invention, the thrust bearing has a second surface along the outer periphery of the first surface, and the friction coefficient between the second surface and the elastic body is the same as that of the first surface. The probe according to the third aspect, which has a coefficient of friction with the elastic body, is provided. According to such a configuration, the stopper function for restricting the movement of the spring can be realized by the second surface provided on the outside of the first surface.
 本発明の第5態様によれば、前記スラストベアリングは、前記第1面における前記弾性体と直接接触する箇所の周囲に前記第1面に対して突出した突出部を有する、第3態様又は第4態様に記載のプローブを提供する。このような構成によれば、突出部によって、スプリングの移動を規制するストッパー機能を実現することができる。 According to a fifth aspect of the present invention, the thrust bearing has a protrusion protruding from the first surface around a portion of the first surface that comes into direct contact with the elastic body, the third aspect or the third aspect. The probe according to the four aspects is provided. According to such a configuration, the protrusion can realize a stopper function for restricting the movement of the spring.
 本発明の第6態様によれば、前記スラストベアリングは、前記プランジャに直接接触する、第2態様から第5態様のいずれか1つに記載のプローブを提供する。このような構成によれば、スラストベアリングとプランジャの間に部材を設けないことで、部品点数を減らすことができる。 According to the sixth aspect of the present invention, the thrust bearing provides the probe according to any one of the second to fifth aspects, which is in direct contact with the plunger. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing and the plunger.
 本発明の第7態様によれば、前記スラストベアリングは、前記弾性体に直接接触する、第1態様又は第2態様に記載のプローブを提供する。このような構成によれば、スラストベアリングと弾性体の間に部材を設けないことで、部品点数を減らすことができる。 According to the seventh aspect of the present invention, the thrust bearing provides the probe according to the first or second aspect, which is in direct contact with the elastic body. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing and the elastic body.
 本発明の第8態様によれば、前記弾性体は、前記ハウジングの周囲に配置されたスプリングである、第1態様から第7態様のいずれか1つに記載のプローブを提供する。このような構成によれば、弾性体に汎用的な構成を用いることができ、プローブの製造コストを低減することができる。 According to the eighth aspect of the present invention, the elastic body provides the probe according to any one of the first to seventh aspects, which is a spring arranged around the housing. According to such a configuration, a general-purpose configuration can be used for the elastic body, and the manufacturing cost of the probe can be reduced.
 本発明の第9態様によれば、前記スプリングの外径は、前記スラストベアリングの中心孔の径よりも大きく設定される、第8態様に記載のプローブを提供する。このような構成によれば、スプリングがスラストベアリングの中心孔に誤って入ることを防止することができる。 According to the ninth aspect of the present invention, there is provided the probe according to the eighth aspect, wherein the outer diameter of the spring is set larger than the diameter of the central hole of the thrust bearing. With such a configuration, it is possible to prevent the spring from accidentally entering the center hole of the thrust bearing.
 本発明の第10態様によれば、前記スラストベアリングは、輪状の第1スラストワッシャーと、前記第1スラストワッシャーよりも前記ハウジングの前記先端部側に配置された輪状の第2スラストワッシャーと、前記第1スラストワッシャーと前記第2スラストワッシャーの間に配置され、複数の玉を保持する輪状の保持器とを有する、第1態様から第9態様のいずれか1つに記載のプローブを提供する。このような構成によれば、スラストベアリングとして汎用的な構成を用いることができ、プローブの製造コストを低減することができる。 According to the tenth aspect of the present invention, the thrust bearing includes a ring-shaped first thrust washer, a ring-shaped second thrust washer arranged on the tip end side of the housing with respect to the first thrust washer, and the above. The probe according to any one of the first to ninth aspects, which is arranged between the first thrust washer and the second thrust washer and has a ring-shaped cage for holding a plurality of balls. According to such a configuration, a general-purpose configuration can be used as the thrust bearing, and the manufacturing cost of the probe can be reduced.
 本発明の第11態様によれば、前記第1スラストワッシャーおよび前記第2スラストワッシャーにおいて前記保持器に面する側の表面は平坦である、第10態様に記載のプローブを提供する。このような構成によれば、スラストワッシャーの内側の面を平坦とすることで、保持器の保持する玉の軌道溝を設ける場合と比べて、保持器の玉が平面方向に自由に移動可能となる。これにより、弾性体のねじれに伴う回転力だけでなく平面方向の位置ずれもスラストベアリングで吸収することができ、プローブピンの位置ずれをさらに抑制し、コネクタの特性検査の精度をさらに向上させることができる。 According to the eleventh aspect of the present invention, there is provided the probe according to the tenth aspect, wherein the surface of the first thrust washer and the second thrust washer on the side facing the cage is flat. According to such a configuration, by flattening the inner surface of the thrust washer, the ball of the cage can move freely in the plane direction as compared with the case where the raceway groove of the ball held by the cage is provided. Become. As a result, not only the rotational force due to the twist of the elastic body but also the displacement in the plane direction can be absorbed by the thrust bearing, the displacement of the probe pin can be further suppressed, and the accuracy of the connector characteristic inspection can be further improved. Can be done.
 本発明の第12態様によれば、前記同軸ケーブルおよび前記プローブピンはそれぞれ複数設けられており、複数の端子を有する多極コネクタの特性検査を行うための第1態様から第11態様のいずれか1つに記載のプローブを提供する。このような構成によれば、多極コネクタの特性検査を行う際にはプローブピンの位置ずれによって端子との接触不良が生じやすいのに対して、弾性体のねじれに伴うプローブピンの位置ずれを抑制することで、多極コネクタの特性検査の精度を向上できる。 According to the twelfth aspect of the present invention, a plurality of the coaxial cable and the probe pin are provided, respectively, and any one of the first to eleventh aspects for performing a characteristic inspection of a multi-pole connector having a plurality of terminals. One of the probes described is provided. According to such a configuration, when performing a characteristic inspection of a multi-pole connector, poor contact with the terminal is likely to occur due to misalignment of the probe pin, whereas misalignment of the probe pin due to twisting of the elastic body is caused. By suppressing it, the accuracy of the characteristic inspection of the multi-pole connector can be improved.
 本発明の第13態様によれば、コネクタの特性検査を行うためのプローブであって、貫通孔が形成されたフランジと、一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、前記ハウジングの前記先端部に取り付けられ、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部を底部に形成したプランジャと、前記フランジと前記プランジャの間に配置され、前記フランジと前記プランジャを互いに離れる方向へ前記軸方向に付勢可能な弾性体と、前記フランジと前記プランジャの間で前記ハウジングの周りに配置され、前記弾性体による前記軸方向の付勢力を受けるように介在するリング状部材と、を備え、前記リング状部材は、前記弾性体に直接接触して前記弾性体による前記付勢力を受ける第1面を有し、前記第1面と前記弾性体との摩擦係数は、前記プランジャと前記弾性体との摩擦係数よりも小さい、プローブを提供する。 According to the thirteenth aspect of the present invention, it is a probe for inspecting the characteristics of a connector, that is, a flange on which a through hole is formed, a base end portion which is an end portion on one side, and an end portion on the other side. A housing having a tip portion, which is inserted into the through hole of the flange, the base end portion of which can be fitted into the through hole, and which includes a coaxial cable and extends in the axial direction, and the tip of the housing. A plunger attached to the housing and having an opening through which a probe pin electrically connected to the coaxial cable is formed at the bottom, and the flange and the plunger are arranged in a direction in which the flange and the plunger are separated from each other. An elastic body capable of urging in the axial direction and a ring-shaped member arranged around the housing between the flange and the plunger and interposed so as to receive the urging force in the axial direction by the elastic body. The ring-shaped member has a first surface that comes into direct contact with the elastic body and receives the urging force by the elastic body, and the friction coefficient between the first surface and the elastic body is the flanger and the said. Provided is a probe having a coefficient of friction with an elastic body.
 このような構成によれば、リング状部材によって弾性体による軸方向の付勢力を受けつつ、弾性体のねじれに伴う回転力を吸収することができる。これにより、弾性体の回転力がプランジャに伝達されることを抑制することができ、プランジャに配置したプローブピンの位置ずれを抑制することができ、プローブピンをコネクタの端子に精度良く接触させることができる。このようにして、コネクタの特性検査の精度を向上させることができる。 According to such a configuration, it is possible to absorb the rotational force due to the twist of the elastic body while receiving the axial urging force by the elastic body by the ring-shaped member. As a result, the rotational force of the elastic body can be suppressed from being transmitted to the plunger, the displacement of the probe pin arranged on the plunger can be suppressed, and the probe pin can be brought into contact with the terminal of the connector with high accuracy. Can be done. In this way, the accuracy of the characteristic inspection of the connector can be improved.
 本発明の第14態様によれば、前記リング状部材は、前記第1面の外周に沿った第2面を有し、前記第2面と前記弾性体との摩擦係数は、前記第1面と前記弾性体との摩擦係数よりも大きい、第13態様に記載のプローブを提供する。このような構成によれば、第1面の外側に設けた第2面によって、スプリングの移動を規制するストッパー機能を実現することができる。 According to the 14th aspect of the present invention, the ring-shaped member has a second surface along the outer circumference of the first surface, and the friction coefficient between the second surface and the elastic body is the first surface. The probe according to the thirteenth aspect, which is larger than the coefficient of friction between the elastic body and the elastic body. According to such a configuration, the stopper function for restricting the movement of the spring can be realized by the second surface provided on the outside of the first surface.
 本発明の第15態様によれば、前記リング状部材は、前記第1面における前記弾性体と直接接触する箇所の周囲に前記第1面に対して突出した突出部を有する、第13態様又は第14態様に記載のプローブを提供する。このような構成によれば、突出部によって、スプリングの移動を規制するストッパー機能を実現することができる。 According to the fifteenth aspect of the present invention, the ring-shaped member has a protruding portion protruding from the first surface around a portion of the first surface that comes into direct contact with the elastic body, or the thirteenth aspect. The probe according to the fourteenth aspect is provided. According to such a configuration, the protrusion can realize a stopper function for restricting the movement of the spring.
 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
(実施の形態)
 図1~図5は、実施の形態におけるプローブ2の概略構成を示す図である。図1、図2はそれぞれ、プローブ2を異なる角度から見た斜視図である。図3は、図1、図2に示すプローブ2の縦断面図である。図4、図5はそれぞれ、プローブ2を異なる角度から見た分解斜視図である。
(Embodiment)
1 to 5 are diagrams showing a schematic configuration of the probe 2 according to the embodiment. 1 and 2 are perspective views of the probe 2 as viewed from different angles. FIG. 3 is a vertical cross-sectional view of the probe 2 shown in FIGS. 1 and 2. 4 and 5 are exploded perspective views of the probe 2 as viewed from different angles.
 プローブ2は、コネクタ3の特性検査を行う検査器具である。実施の形態のコネクタ3は、複数の端子を有する多極コネクタである。図1~図3では、コネクタ3の外形を簡略化して図示しており、図4、図5ではコネクタ3の図示を省略している。 The probe 2 is an inspection instrument that inspects the characteristics of the connector 3. The connector 3 of the embodiment is a multi-pole connector having a plurality of terminals. 1 to 3 show the outer shape of the connector 3 in a simplified manner, and FIGS. 4 and 5 omit the illustration of the connector 3.
 プローブ2は、フランジ4と、ハウジング6と、同軸ケーブル8と、プランジャ10と、スプリング12(弾性体)と、スラストベアリング14とを備える。 The probe 2 includes a flange 4, a housing 6, a coaxial cable 8, a plunger 10, a spring 12 (elastic body), and a thrust bearing 14.
 フランジ4は、プローブ2を所定の設備に取り付けるための部材である。所定の設備は例えば、コネクタ3が実装されたプリント基板をコネクタ3の特性検査の結果に基づいて選別するための選別機である。 The flange 4 is a member for attaching the probe 2 to a predetermined facility. The predetermined equipment is, for example, a sorting machine for sorting a printed circuit board on which the connector 3 is mounted based on the result of a characteristic inspection of the connector 3.
 図3、図4に示すように、フランジ4の中心部には、ハウジング6を挿通するための貫通孔20が設けられている。フランジ4は水平方向に延在するように配置され、貫通孔20は鉛直方向に延びるように設けられる。実施の形態の貫通孔20は円柱形状である。 As shown in FIGS. 3 and 4, a through hole 20 for inserting the housing 6 is provided in the central portion of the flange 4. The flange 4 is arranged so as to extend in the horizontal direction, and the through hole 20 is provided so as to extend in the vertical direction. The through hole 20 of the embodiment has a cylindrical shape.
 フランジ4の上面11には、ハウジング6の基端部21を受けるための凹部13が形成されている。凹部13は、フランジ4の上面11において、貫通孔20を水平方向に拡張した部分として設けられている。貫通孔20と凹部13は、空間的に連続して形成されている。 A recess 13 for receiving the base end portion 21 of the housing 6 is formed on the upper surface 11 of the flange 4. The recess 13 is provided on the upper surface 11 of the flange 4 as a portion in which the through hole 20 is expanded in the horizontal direction. The through hole 20 and the recess 13 are spatially continuously formed.
 ハウジング6は、フランジ4の貫通孔20に挿通されて嵌合するとともに、後述するプランジャ10などを保持する部材である。ハウジング6は、同軸ケーブル8を内包しながら軸方向Aに延びる筒状に形成されている。軸方向Aは鉛直方向に略一致してもよい。 The housing 6 is a member that is inserted into and fitted into the through hole 20 of the flange 4 and holds a plunger 10 and the like, which will be described later. The housing 6 is formed in a tubular shape extending in the axial direction A while including the coaxial cable 8. The axial direction A may substantially coincide with the vertical direction.
 ハウジング6は、基端部21と、先端部22と、中間部23とを備える。 The housing 6 includes a base end portion 21, a tip end portion 22, and an intermediate portion 23.
 基端部21は、ハウジング6の一方側(実施の形態では上側)の端部であり、先端部22は、ハウジング6の他方側(実施の形態では下側)の端部である。基端部21および先端部22はともに、中間部23に対して拡径した形状を有する。 The base end portion 21 is the end portion on one side (upper side in the embodiment) of the housing 6, and the tip end portion 22 is the end portion on the other side (lower side in the embodiment) of the housing 6. Both the base end portion 21 and the tip end portion 22 have a shape with an enlarged diameter with respect to the intermediate portion 23.
 基端部21は、フランジ4の凹部13に収容される部分である。凹部13には、基端部21を内側に向かってガイドするように傾斜した傾斜面が設けられている。凹部13に収容された状態で、基端部21は凹部13の中で横方向、すなわち水平方向にわずかに移動可能である。一方で、先端部22は、プランジャ10に圧入される部分である。先端部22がプランジャ10に圧入されることにより、プランジャ10がハウジング6に固定される。中間部23は、基端部21と先端部22の間に延びる部分であり、中間部23の周囲にはスプリング12が配置される。 The base end portion 21 is a portion housed in the recess 13 of the flange 4. The recess 13 is provided with an inclined surface that is inclined so as to guide the base end portion 21 inward. While housed in the recess 13, the proximal end 21 is slightly movable in the recess 13 in the lateral direction, that is, in the horizontal direction. On the other hand, the tip portion 22 is a portion that is press-fitted into the plunger 10. The plunger 10 is fixed to the housing 6 by press-fitting the tip portion 22 into the plunger 10. The intermediate portion 23 is a portion extending between the base end portion 21 and the tip end portion 22, and a spring 12 is arranged around the intermediate portion 23.
 プランジャ10は、コネクタ3を嵌合させて位置決めするための部材である。プランジャ10は、コネクタ3が下方から嵌合される嵌合部10Aと、ハウジング6に取り付けられる取付部10Bとを備える。嵌合部10Aは、取付部10Bの端部から下方に突出するように取付部10Bに取り付けられる。嵌合部10Aには、コネクタ3を嵌合させるための突起24(図7)が形成されている。 The plunger 10 is a member for fitting and positioning the connector 3. The plunger 10 includes a fitting portion 10A into which the connector 3 is fitted from below, and a mounting portion 10B to be attached to the housing 6. The fitting portion 10A is attached to the mounting portion 10B so as to project downward from the end portion of the mounting portion 10B. The fitting portion 10A is formed with a protrusion 24 (FIG. 7) for fitting the connector 3.
 図2、図3に示すように、ハウジング6の内部には、複数の同軸ケーブル8が挿通されている。同軸ケーブル8は、コネクタ3の端子と電気的に導通するための部材である。 As shown in FIGS. 2 and 3, a plurality of coaxial cables 8 are inserted inside the housing 6. The coaxial cable 8 is a member for electrically conducting with the terminal of the connector 3.
 図6は、1本の同軸ケーブル8を示す斜視図である。同軸ケーブル8は棒状に構成されており、その先端部にプローブピン16が電気的に接続されている。1つの同軸ケーブル8に対して1つのプローブピン16が接続されている。同軸ケーブル8の他方側の端部は測定コネクタ(図示せず)に接続されている。測定コネクタは、同軸ケーブル8を外部の測定器(図示せず)に接続するためのコネクタである。 FIG. 6 is a perspective view showing one coaxial cable 8. The coaxial cable 8 is formed in a rod shape, and a probe pin 16 is electrically connected to the tip of the coaxial cable 8. One probe pin 16 is connected to one coaxial cable 8. The other end of the coaxial cable 8 is connected to a measurement connector (not shown). The measurement connector is a connector for connecting the coaxial cable 8 to an external measuring instrument (not shown).
 プローブピン16は、コネクタ3の各端子に接触して導通する棒状の部材である。プローブピン16は、内側が導電性材料により形成され、外側が絶縁性部材により形成されている。プローブピン16はプランジャ10の嵌合部10Aに挿通される。プローブピン16の先端は導電性部分であり、嵌合部10Aの底部から露出される。 The probe pin 16 is a rod-shaped member that contacts and conducts each terminal of the connector 3. The probe pin 16 is formed of a conductive material on the inside and an insulating member on the outside. The probe pin 16 is inserted through the fitting portion 10A of the plunger 10. The tip of the probe pin 16 is a conductive portion and is exposed from the bottom of the fitting portion 10A.
 図7は、プランジャ10の斜視図である。図7に示すように、プランジャ10の嵌合部10Aは、その底部にプローブピン16の先端を露出させる開口部を有している。嵌合部10Aの開口部から露出するプローブピン16の先端は、嵌合部10Aに嵌合したコネクタ3の端子に接触可能に突出する。 FIG. 7 is a perspective view of the plunger 10. As shown in FIG. 7, the fitting portion 10A of the plunger 10 has an opening at the bottom thereof that exposes the tip of the probe pin 16. The tip of the probe pin 16 exposed from the opening of the fitting portion 10A projects so as to come into contact with the terminal of the connector 3 fitted in the fitting portion 10A.
 実施の形態のプローブ2では、複数の同軸ケーブル8および複数のプローブピン16を設けている。このような構成によれば、被検査体であるコネクタ3が複数の端子を備える多極コネクタであっても、コネクタ3の各端子の特性検査を同時に実施することができる。実施の形態では特に、8つの同軸ケーブル8と8つのプローブピン16を設けており、8つの端子を有する多極コネクタ3の特性検査を同時に実施することができる。 In the probe 2 of the embodiment, a plurality of coaxial cables 8 and a plurality of probe pins 16 are provided. According to such a configuration, even if the connector 3 to be inspected is a multi-pole connector having a plurality of terminals, the characteristic inspection of each terminal of the connector 3 can be performed at the same time. In particular, in the embodiment, eight coaxial cables 8 and eight probe pins 16 are provided, and the characteristics of the multi-pole connector 3 having eight terminals can be inspected at the same time.
 嵌合部10Aは、一対の突起24を有する。一対の突起24は、嵌合部10Aの底部から下方に突出した突起であり、互いに間隔を空けて配置されている。一対の突起24の間には、コネクタ3の端子をプローブピン16に向けてガイドするガイド溝28が形成される。ガイド溝28の表面形状は、コネクタ3に応じた形状に設計されている。 The fitting portion 10A has a pair of protrusions 24. The pair of protrusions 24 are protrusions that protrude downward from the bottom of the fitting portion 10A, and are arranged at intervals from each other. A guide groove 28 for guiding the terminal of the connector 3 toward the probe pin 16 is formed between the pair of protrusions 24. The surface shape of the guide groove 28 is designed to correspond to the connector 3.
 プランジャ10の取付部10Bは、前述したスラストベアリング14を受ける大略円板状の部分と、嵌合部10Aに接続される部分とを有する。 The mounting portion 10B of the plunger 10 has a substantially disk-shaped portion that receives the thrust bearing 14 described above and a portion that is connected to the fitting portion 10A.
 図1~図5に戻ると、スプリング12は、前述したプローブピン16をコネクタ3の端子に対して適切な荷重で押し付けるための弾性体である。スプリング12は、フランジ4とプランジャ10の間でハウジング6の周囲に配置されている。図1、図3に示すように、スプリング12の一方側(上側)の端部は、フランジ4の下面に形成された溝に圧入されている。一方で、スプリング12の他方側(下側)の端部は、図2、図3に示すようにスラストベアリング14の表面に接触している。スプリング12とスラストベアリング14は互いに固定されていない。 Returning to FIGS. 1 to 5, the spring 12 is an elastic body for pressing the probe pin 16 described above against the terminal of the connector 3 with an appropriate load. The spring 12 is arranged around the housing 6 between the flange 4 and the plunger 10. As shown in FIGS. 1 and 3, one end (upper side) of the spring 12 is press-fitted into a groove formed on the lower surface of the flange 4. On the other hand, the other end (lower side) of the spring 12 is in contact with the surface of the thrust bearing 14 as shown in FIGS. 2 and 3. The spring 12 and the thrust bearing 14 are not fixed to each other.
 図1、図2に示すような、嵌合部10Aにコネクタ3を嵌合させる前の状態において、スプリング12は自然長よりも短い状態、すなわち圧縮状態にある。圧縮状態にあるスプリング12は、上方にあるフランジ4と下方にあるスラストベアリング14およびプランジャ10を互いに離れるように軸方向Aに付勢する。圧縮状態にあるスプリング12は、自然長に向かって延びようとする弾性力として軸方向Aの付勢力Fを有する。 In the state before fitting the connector 3 to the fitting portion 10A as shown in FIGS. 1 and 2, the spring 12 is in a state shorter than the natural length, that is, in a compressed state. The compressed spring 12 urges the upper flange 4 and the lower thrust bearing 14 and the plunger 10 in the axial direction A so as to separate from each other. The spring 12 in the compressed state has an urging force F in the axial direction A as an elastic force that tends to extend toward the natural length.
 実施の形態におけるスプリング12は、らせん状のコイルスプリングであり、長さおよび弾性力を容易に調節することができる。スプリング12は、弾性係数k1および縮み量x1を有しており、付勢力Fは、弾性係数k1と縮み量x1を乗じた値として概算することができる。弾性係数は、「弾性率」、「弾性定数」と称してもよく、「ばね定数」で代用してもよい。 The spring 12 in the embodiment is a spiral coil spring, and its length and elastic force can be easily adjusted. The spring 12 has an elastic modulus k1 and a shrinkage amount x1, and the urging force F can be roughly estimated as a value obtained by multiplying the elastic modulus k1 and the shrinkage amount x1. The elastic modulus may be referred to as "elastic modulus" or "elastic constant", or may be substituted by "spring constant".
 図3に示すように、スプリング12の外径D1は、スラストベアリング14の中心孔の径D2よりも大きく設定されている。このような長さの設定により、スラストベアリング14に固定されていないスプリング12が誤ってスラストベアリング14の中心孔に入ることが防止される。 As shown in FIG. 3, the outer diameter D1 of the spring 12 is set to be larger than the diameter D2 of the center hole of the thrust bearing 14. By setting such a length, it is possible to prevent the spring 12 which is not fixed to the thrust bearing 14 from accidentally entering the center hole of the thrust bearing 14.
 スラストベアリング14は、前述したスプリング12による軸方向Aの付勢力Fを受けるように介在する部材である。スラストベアリング14はスプリング12と同様に、フランジ4とプランジャ10の間でハウジング6の周囲に配置される。スラストベアリング14は、スプリング12およびプランジャ10のいずれにも固定されておらず、軸方向Aを中心とする回転方向Rに回転可能な状態でハウジング6の周囲に配置される。 The thrust bearing 14 is a member that intervenes so as to receive the urging force F in the axial direction A by the spring 12 described above. Like the spring 12, the thrust bearing 14 is arranged around the housing 6 between the flange 4 and the plunger 10. The thrust bearing 14 is not fixed to either the spring 12 or the plunger 10, and is arranged around the housing 6 so as to be rotatable in the rotation direction R about the axial direction A.
 実施の形態では、スプリング12を上側、スラストベアリング14を下側に配置している。スプリング12はフランジ4とスラストベアリング14の間に配置され、スラストベアリング14はスプリング12とプランジャ10の間に配置される。スプリング12はフランジ4およびスラストベアリング14と直接接触し、スラストベアリング14はスプリング12およびプランジャ10と直接接触する。このような構成によれば、これらの部材の間にその他の部材を介在させる場合と比べて、部品点数を減らすことができる。 In the embodiment, the spring 12 is arranged on the upper side and the thrust bearing 14 is arranged on the lower side. The spring 12 is arranged between the flange 4 and the thrust bearing 14, and the thrust bearing 14 is arranged between the spring 12 and the plunger 10. The spring 12 comes into direct contact with the flange 4 and the thrust bearing 14, and the thrust bearing 14 comes into direct contact with the spring 12 and the plunger 10. According to such a configuration, the number of parts can be reduced as compared with the case where other members are interposed between these members.
 図8A、図8Bはそれぞれ、スラストベアリング14を異なる角度から見た分解斜視図である。図8A、図8Bに示すように、スラストベアリング14は、第1スラストワッシャー30と、第2スラストワッシャー32と、保持器34とを有する。 8A and 8B are exploded perspective views of the thrust bearing 14 viewed from different angles, respectively. As shown in FIGS. 8A and 8B, the thrust bearing 14 has a first thrust washer 30, a second thrust washer 32, and a cage 34.
 第1スラストワッシャー30、第2スラストワッシャー32および保持器34はそれぞれ、中心孔30A、32A、34Aを形成した輪状の部材である。中心孔30A、32A、34Aの直径はいずれも略同じに設定される。 The first thrust washer 30, the second thrust washer 32, and the cage 34 are ring-shaped members forming the central holes 30A, 32A, and 34A, respectively. The diameters of the central holes 30A, 32A, and 34A are all set to be substantially the same.
 第1スラストワッシャー30および第2スラストワッシャー32は、同寸法の円筒状の部材である。第1スラストワッシャー30は保持器34の上側に配置され、第2スラストワッシャー32は保持器34の下側に配置される。第1スラストワッシャー30は上面30Bおよび下面30Cを有しており、第2スラストワッシャー32は上面32Bおよび下面32Cを有する。第1スラストワッシャー30は下面30Cで保持器34に面しており、第2スラストワッシャー32は上面32Bで保持器34に面している。 The first thrust washer 30 and the second thrust washer 32 are cylindrical members having the same dimensions. The first thrust washer 30 is arranged above the cage 34, and the second thrust washer 32 is arranged below the cage 34. The first thrust washer 30 has an upper surface 30B and a lower surface 30C, and the second thrust washer 32 has an upper surface 32B and a lower surface 32C. The first thrust washer 30 faces the cage 34 on the lower surface 30C, and the second thrust washer 32 faces the cage 34 on the upper surface 32B.
 保持器34は、第1スラストワッシャー30と第2スラストワッシャー32の間に配置される輪状の部材である。実施の形態の保持器34は、複数の玉36を保持している。複数の玉36は、第1スラストワッシャー30の下面30Cおよび第2スラストワッシャー32の上面32Bに挟まれた状態で、スラストワッシャー30、32に対して回転方向Rへ相対的に移動可能に設けられている。 The cage 34 is a ring-shaped member arranged between the first thrust washer 30 and the second thrust washer 32. The cage 34 of the embodiment holds a plurality of balls 36. The plurality of balls 36 are provided so as to be movable relative to the thrust washers 30 and 32 in the rotational direction R while being sandwiched between the lower surface 30C of the first thrust washer 30 and the upper surface 32B of the second thrust washer 32. ing.
 図8A、図8Bに示すように、第1スラストワッシャー30の上面30Bおよび下面30C、並びに第2スラストワッシャー32の上面32Bおよび下面32Cはいずれも平坦に形成されている。特に、保持器34の玉36に接する側の面である第1スラストワッシャー30の下面30Cおよび第2スラストワッシャー32の上面32Bを平坦とすることで、保持器34の玉36は水平方向に移動可能となる。スラストベアリングの種類によってはスラストワッシャーにおける保持器の玉に接する側の面に、円周状の凹部を玉の軌道として形成して玉の移動を制限しているが、下面30Cおよび上面32Bを平坦に形成することで、保持器34の玉36の移動が制限されない。このため、保持器34の玉36はスラストワッシャー30、32に対して相対的に回転方向Rへ回転可能であるだけでなく水平方向の横移動も可能となる。 As shown in FIGS. 8A and 8B, the upper surface 30B and the lower surface 30C of the first thrust washer 30 and the upper surface 32B and the lower surface 32C of the second thrust washer 32 are all formed flat. In particular, by flattening the lower surface 30C of the first thrust washer 30 and the upper surface 32B of the second thrust washer 32, which are the surfaces of the cage 34 in contact with the ball 36, the ball 36 of the cage 34 moves in the horizontal direction. It will be possible. Depending on the type of thrust bearing, a circumferential recess is formed as a ball trajectory on the surface of the thrust washer on the side in contact with the ball to restrict the movement of the ball, but the lower surface 30C and the upper surface 32B are flat. By forming the ball 36 in the cage 34, the movement of the ball 36 of the cage 34 is not restricted. Therefore, the ball 36 of the cage 34 can not only rotate in the rotation direction R relative to the thrust washers 30 and 32, but also can move laterally in the horizontal direction.
 図4、図5に示すように、プローブ2はさらに、プレート26を備える。 As shown in FIGS. 4 and 5, the probe 2 further includes a plate 26.
 プレート26は、同軸ケーブル8が上方へ抜けるのを防止するための部材である。プレート26は、プランジャ10の取付部10Bに配置され、ハウジング6の先端部22とプランジャ10の間に配置される。 The plate 26 is a member for preventing the coaxial cable 8 from coming off upward. The plate 26 is arranged at the mounting portion 10B of the plunger 10 and is arranged between the tip portion 22 of the housing 6 and the plunger 10.
 ハウジング6の先端部22がプレート26を介してプランジャ10に取り付けられた状態において、ハウジング6とプランジャ10は周方向である回転方向Rに一体的に回転可能となる。ハウジング6とプランジャ10のいずれにも取り付けられていないスプリング12およびスラストベアリング14は一体的に回転しない。 In a state where the tip portion 22 of the housing 6 is attached to the plunger 10 via the plate 26, the housing 6 and the plunger 10 can be integrally rotated in the rotation direction R which is the circumferential direction. The spring 12 and the thrust bearing 14, which are not attached to either the housing 6 or the plunger 10, do not rotate integrally.
 上述した構成を有するプローブ2の動作について、図9A、図9Bを用いて説明する。図9Aは、コネクタ3が嵌合する前のハウジング6を示す切欠き斜視図であり、図9Bは、コネクタ3が嵌合した後のハウジング6を示す切欠き斜視図である。図9A、図9Bでは、コネクタ3、プランジャ10、スプリング12およびスラストベアリング14などの図示を省略しており、フランジ4およびハウジング6のみを図示している。 The operation of the probe 2 having the above-described configuration will be described with reference to FIGS. 9A and 9B. 9A is a notched perspective view showing the housing 6 before the connector 3 is fitted, and FIG. 9B is a notched perspective view showing the housing 6 after the connector 3 is fitted. In FIGS. 9A and 9B, the connector 3, the plunger 10, the spring 12, the thrust bearing 14, and the like are not shown, and only the flange 4 and the housing 6 are shown.
 図9Aに示す状態では、ハウジング6の基端部21は凹部13に収容されており、圧縮状態にあるスプリング12(図示せず)は付勢力F1を有している。図9Aに示す状態から、プランジャ10の嵌合部10A(図示せず)にコネクタ3が嵌合し、コネクタ3からプランジャ10を介してハウジング6に対して上方への押圧力が付与される。これにより、図9Bに示すようにハウジング6はフランジ4に対して上方へ浮き上がり、ハウジング6の基端部21とフランジ4との係合が解除される。 In the state shown in FIG. 9A, the base end portion 21 of the housing 6 is housed in the recess 13, and the spring 12 (not shown) in the compressed state has an urging force F1. From the state shown in FIG. 9A, the connector 3 is fitted into the fitting portion 10A (not shown) of the plunger 10, and an upward pressing force is applied from the connector 3 to the housing 6 via the plunger 10. As a result, as shown in FIG. 9B, the housing 6 floats upward with respect to the flange 4, and the engagement between the base end portion 21 of the housing 6 and the flange 4 is released.
 図9Bに示す状態では、ハウジング6は貫通孔20の中の範囲で水平方向へ移動可能、かつ回転方向R(図示せず)へ回転可能となる。プランジャ10に嵌合したコネクタ3の端子の位置に応じて、ハウジング6は水平方向へ横移動するとともに回転方向Rへ回転する。これにより、コネクタ3の端子の位置に応じてハウジング6およびプランジャ10の姿勢が調整され、プランジャ10に取り付けたプローブピン16とコネクタ3の端子との位置合わせを行うことができる。 In the state shown in FIG. 9B, the housing 6 can move in the horizontal direction within the range in the through hole 20 and can rotate in the rotation direction R (not shown). The housing 6 moves laterally in the horizontal direction and rotates in the rotation direction R according to the position of the terminal of the connector 3 fitted to the plunger 10. As a result, the postures of the housing 6 and the plunger 10 are adjusted according to the positions of the terminals of the connector 3, and the probe pins 16 attached to the plunger 10 and the terminals of the connector 3 can be aligned.
 図9Bに示すスプリング12は、図9Aに示す状態からさらに縮んでおり、付勢力F1よりも大きな付勢力F2を有する。スプリング12が付勢力F2を有することで、プランジャ10に配置したプローブピン16をコネクタ3に対して適切な荷重で押し付けることができる。 The spring 12 shown in FIG. 9B is further contracted from the state shown in FIG. 9A and has an urging force F2 larger than the urging force F1. Since the spring 12 has the urging force F2, the probe pin 16 arranged on the plunger 10 can be pressed against the connector 3 with an appropriate load.
 その後、コネクタ3の特性検査が完了すると、コネクタ3とプランジャ10の嵌合が解除され、図9Aに示す状態に戻る。 After that, when the characteristic inspection of the connector 3 is completed, the mating between the connector 3 and the plunger 10 is released, and the state returns to the state shown in FIG. 9A.
 コネクタ3の特性検査を繰り返し実行すると、図9Bに示すようなハウジング6の水平方向の横移動および回転方向Rへの回転が繰り返される。ハウジング6の周りに配置されたスプリング12は、上側の端部がフランジ4の下面に固定されており、プランジャ10がコネクタ3に嵌合するとスプリング12が圧縮されるが、圧縮されたスプリング12には巻回方向やピッチに応じた回転方向Rへのねじれが生じる。このねじれはスプリング12の回転力Wとして他の部材に作用する。スプリング12に回転力Wが生じることで、スプリング12に連結されたプランジャ10に回転力Wが伝わり、プランジャ10に配置したプローブピン16に位置ずれが生じる可能性がある。 When the characteristic inspection of the connector 3 is repeatedly executed, the horizontal lateral movement of the housing 6 and the rotation in the rotation direction R as shown in FIG. 9B are repeated. The upper end of the spring 12 arranged around the housing 6 is fixed to the lower surface of the flange 4, and when the plunger 10 fits into the connector 3, the spring 12 is compressed, but the compressed spring 12 Is twisted in the rotation direction R according to the winding direction and the pitch. This twist acts as a rotational force W of the spring 12 on other members. When the rotational force W is generated in the spring 12, the rotational force W is transmitted to the plunger 10 connected to the spring 12, and the probe pin 16 arranged in the plunger 10 may be displaced.
 これに対して、実施の形態のプローブ2では、スプリング12をハウジング6とプランジャ10のいずれにも固定せず、フランジ4の下面に固定した状態でハウジング6の周囲に配置している。これにより、ハウジング6とプランジャ10の姿勢が変更される場合であっても、それに伴って、スプリング12にねじれおよび回転力Wが発生することが抑制される。さらに実施の形態のプローブ2では、スプリング12とプランジャ10の間にスラストベアリング14を介在させている。スラストベアリング14は、スプリング12の軸方向Aの付勢力Fを受けるとともに、スプリング12のねじれに伴う回転力Wを吸収する機能を有する。これにより、スプリング12のねじれに伴う回転力Wが発生した場合でも、プランジャ10に伝達されることを防止することができるため、プランジャ10に配置したプローブピン16の位置ずれを抑制することができる。このようにして、コネクタ3の特性検査の精度を向上させることができる。 On the other hand, in the probe 2 of the embodiment, the spring 12 is not fixed to either the housing 6 or the plunger 10, but is arranged around the housing 6 in a state of being fixed to the lower surface of the flange 4. As a result, even if the postures of the housing 6 and the plunger 10 are changed, it is possible to prevent the spring 12 from being twisted and the rotational force W is generated. Further, in the probe 2 of the embodiment, the thrust bearing 14 is interposed between the spring 12 and the plunger 10. The thrust bearing 14 has a function of receiving an urging force F in the axial direction A of the spring 12 and absorbing a rotational force W due to the twist of the spring 12. As a result, even when the rotational force W due to the twist of the spring 12 is generated, it can be prevented from being transmitted to the plunger 10, so that the displacement of the probe pin 16 arranged in the plunger 10 can be suppressed. .. In this way, the accuracy of the characteristic inspection of the connector 3 can be improved.
 上述したように、実施の形態のプローブ2は、フランジ4と、ハウジング6と、プランジャ10と、スプリング12と、スラストベアリング14とを備える。フランジ4は、貫通孔20が形成された部材である。ハウジング6は、一方側の端部である基端部21と他方側の端部である先端部22とを有し、フランジ4の貫通孔20に挿通され、基端部21が貫通孔20に嵌合可能であり、同軸ケーブル8を内包して軸方向Aに延びる。プランジャ10は、ハウジング6の先端部22に取り付けられ、同軸ケーブル8と電気的に接続されたプローブピン16を通す開口部を底部に形成している。スプリング12は、フランジ4とプランジャ10の間に配置され、フランジ4とプランジャ10を互いに離れる方向へ軸方向Aに付勢可能な弾性体である。スラストベアリング14は、フランジ4とプランジャ10の間でハウジング6の周りに配置され、スプリング12による軸方向Aの付勢力Fを受けるように介在する。 As described above, the probe 2 of the embodiment includes a flange 4, a housing 6, a plunger 10, a spring 12, and a thrust bearing 14. The flange 4 is a member in which a through hole 20 is formed. The housing 6 has a base end portion 21 which is an end portion on one side and a tip end portion 22 which is an end portion on the other side, and is inserted into a through hole 20 of a flange 4, and the base end portion 21 is inserted into the through hole 20. It can be fitted and includes the coaxial cable 8 and extends in the axial direction A. The plunger 10 is attached to the tip end 22 of the housing 6 and has an opening at the bottom through which the probe pin 16 electrically connected to the coaxial cable 8 passes. The spring 12 is an elastic body arranged between the flange 4 and the plunger 10 and capable of urging the flange 4 and the plunger 10 in the axial direction A in a direction away from each other. The thrust bearing 14 is arranged around the housing 6 between the flange 4 and the plunger 10 and is interposed so as to receive the urging force F in the axial direction A by the spring 12.
 このような構成によれば、スラストベアリング14によってスプリング12による軸方向Aの付勢力Fを受けつつ、スプリング12のねじれに伴う回転力Wを吸収することができる。これにより、スプリング12の回転力Wがプランジャ10に伝達されることを抑制することができ、プランジャ10に配置したプローブピン16の位置ずれを抑制することができ、プローブピン16をコネクタの端子に精度良く接触させることができる。このようにして、コネクタの特性検査の精度を向上させることができる。 According to such a configuration, the thrust bearing 14 can absorb the rotational force W due to the twist of the spring 12 while receiving the urging force F in the axial direction A by the spring 12. As a result, it is possible to suppress the rotational force W of the spring 12 being transmitted to the plunger 10, and it is possible to suppress the misalignment of the probe pin 16 arranged in the plunger 10, and the probe pin 16 can be used as the terminal of the connector. It is possible to make contact with high accuracy. In this way, the accuracy of the characteristic inspection of the connector can be improved.
 さらに、実施の形態のプローブ2では、スラストベアリング14は、スプリング12とプランジャ10との間に配置される。このような構成によれば、スラストベアリング14をスプリング12よりもプランジャ10に近い位置に配置することで、スプリング12の回転力をプランジャ10により伝達されにくくすることができる。 Further, in the probe 2 of the embodiment, the thrust bearing 14 is arranged between the spring 12 and the plunger 10. According to such a configuration, by arranging the thrust bearing 14 at a position closer to the plunger 10 than the spring 12, the rotational force of the spring 12 can be made difficult to be transmitted by the plunger 10.
 さらに、実施の形態のプローブ2では、スラストベアリング14は、プランジャ10に直接接触する。このような構成によれば、スラストベアリング14とプランジャ10の間に部材を設けないことで、部品点数を減らすことができる。 Further, in the probe 2 of the embodiment, the thrust bearing 14 comes into direct contact with the plunger 10. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing 14 and the plunger 10.
 さらに、実施の形態のプローブ2では、スラストベアリング14は、スプリング12に直接接触する。このような構成によれば、スラストベアリング14とスプリング12の間に部材を設けないことで、部品点数を減らすことができる。 Further, in the probe 2 of the embodiment, the thrust bearing 14 comes into direct contact with the spring 12. According to such a configuration, the number of parts can be reduced by not providing a member between the thrust bearing 14 and the spring 12.
 さらに、実施の形態のプローブ2では、付勢力Fを生じさせる弾性体として、ハウジング6の周囲に配置されたスプリング12を用いる。このような構成によれば、弾性体に汎用的な構成を用いることができ、プローブ2の製造コストを低減することができる。 Further, in the probe 2 of the embodiment, a spring 12 arranged around the housing 6 is used as an elastic body that generates an urging force F. According to such a configuration, a general-purpose configuration can be used for the elastic body, and the manufacturing cost of the probe 2 can be reduced.
 さらに、実施の形態のプローブ2では、スプリング12の外径D1は、スラストベアリング14の中心孔の径D2よりも大きく設定される。このような構成によれば、スプリング12がスラストベアリング14の中心孔に誤って入ることを防止することができる。 Further, in the probe 2 of the embodiment, the outer diameter D1 of the spring 12 is set to be larger than the diameter D2 of the center hole of the thrust bearing 14. According to such a configuration, it is possible to prevent the spring 12 from accidentally entering the center hole of the thrust bearing 14.
 さらに、実施の形態のプローブ2では、スラストベアリング14は、輪状の第1スラストワッシャー30と、輪状の第2スラストワッシャー32と、輪状の保持器34とを有する。第2スラストワッシャー32は、第1スラストワッシャー30よりもハウジング6の先端部22側に配置される。保持器34は、第1スラストワッシャー30と第2スラストワッシャー32の間に配置され、複数の玉36を保持する。このような構成によれば、スラストベアリング14として汎用的な構成を用いることができ、プローブ2の製造コストを低減することができる。 Further, in the probe 2 of the embodiment, the thrust bearing 14 has a ring-shaped first thrust washer 30, a ring-shaped second thrust washer 32, and a ring-shaped cage 34. The second thrust washer 32 is arranged closer to the tip portion 22 of the housing 6 than the first thrust washer 30. The cage 34 is arranged between the first thrust washer 30 and the second thrust washer 32, and holds a plurality of balls 36. According to such a configuration, a general-purpose configuration can be used as the thrust bearing 14, and the manufacturing cost of the probe 2 can be reduced.
 さらに、実施の形態のプローブ2では、第1スラストワッシャー30および第2スラストワッシャー32において保持器34に面する側の下面30Cおよび上面32Bは平坦である。このような構成によれば、スラストワッシャー30、32の内側の面に保持器34の玉36の軌道溝を設ける場合と比べて、保持器34の玉36が平面方向に自由に移動可能となる。これにより、スプリング12のねじれに伴う回転力Wだけでなく平面方向の位置ずれもスラストベアリング14で吸収することができる。このため、プローブピン16の位置ずれをさらに抑制し、コネクタ3の特性検査の精度をさらに向上させることができる。 Further, in the probe 2 of the embodiment, the lower surface 30C and the upper surface 32B of the first thrust washer 30 and the second thrust washer 32 facing the cage 34 are flat. According to such a configuration, the ball 36 of the cage 34 can be freely moved in the plane direction as compared with the case where the raceway groove of the ball 36 of the cage 34 is provided on the inner surface of the thrust washers 30 and 32. .. As a result, not only the rotational force W due to the twist of the spring 12 but also the displacement in the plane direction can be absorbed by the thrust bearing 14. Therefore, the misalignment of the probe pin 16 can be further suppressed, and the accuracy of the characteristic inspection of the connector 3 can be further improved.
 さらに、実施の形態のプローブ2では、同軸ケーブル8およびプローブピン16はそれぞれ複数設けられており、複数の端子を有する多極コネクタ3の特性検査が行われる。このような構成によれば、多極コネクタ3は端子が複数あるためにプローブピン16の位置ずれによって端子との接触不良が生じやすいのに対して、スプリング12のねじれに伴うプローブピン16の位置ずれを抑制することで、多極コネクタ3の特性検査の精度を向上させることができる。 Further, in the probe 2 of the embodiment, a plurality of coaxial cables 8 and probe pins 16 are provided, respectively, and the characteristics of the multi-pole connector 3 having a plurality of terminals are inspected. According to such a configuration, since the multi-pole connector 3 has a plurality of terminals, poor contact with the terminals is likely to occur due to the misalignment of the probe pins 16, whereas the position of the probe pins 16 due to the twist of the spring 12 is likely to occur. By suppressing the deviation, the accuracy of the characteristic inspection of the multi-pole connector 3 can be improved.
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明は上述の実施の形態に限定されない。例えば、上記実施の形態では、スプリング12を上側、スラストベアリング14を下側に配置する場合について説明したが、このような場合に限らない。例えば、スプリング12を下側、スラストベアリング14を上側に配置する等、フランジ4とプランジャ10の間であれば任意の位置にそれぞれ配置してもよい。 Although the present invention has been described above with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments. For example, in the above embodiment, the case where the spring 12 is arranged on the upper side and the thrust bearing 14 is arranged on the lower side has been described, but the case is not limited to such a case. For example, the spring 12 may be arranged on the lower side, the thrust bearing 14 may be arranged on the upper side, and the like may be arranged at any position between the flange 4 and the plunger 10.
 また、上記実施の形態では、スラストベアリング14を1つ設ける場合について説明したが、このような場合に限らない。例えば、スラストベアリング14を2つ設けてもよい。スラストベアリング14を2つ設ける場合には、図1、図2に示すプローブ2において、フランジ4とスプリング12の間に、スラストベアリング14とは別のスラストベアリングを介在させてもよい。 Further, in the above embodiment, the case where one thrust bearing 14 is provided has been described, but the case is not limited to such a case. For example, two thrust bearings 14 may be provided. When two thrust bearings 14 are provided, in the probe 2 shown in FIGS. 1 and 2, a thrust bearing different from the thrust bearing 14 may be interposed between the flange 4 and the spring 12.
 また、上記実施の形態では、軸方向Aの付勢力Fを発生させる弾性体としてスプリング12を用いる場合について説明したが、このような場合に限らない。軸方向Aの付勢力Fを発生させるものであれば、任意の弾性体を用いてもよい。 Further, in the above embodiment, the case where the spring 12 is used as the elastic body for generating the urging force F in the axial direction A has been described, but the case is not limited to such a case. Any elastic body may be used as long as it generates an urging force F in the axial direction A.
 また、上記実施の形態では、複数の端子を有する多極コネクタ3、特に、8つの端子を有する多極コネクタ3がプローブ2の検査対象である場合について説明したが、このような場合に限らない。任意の数の端子を有するコネクタを検査対象としてもよい。 Further, in the above embodiment, the case where the multi-pole connector 3 having a plurality of terminals, particularly the multi-pole connector 3 having eight terminals, is the inspection target of the probe 2 has been described, but the case is not limited to such a case. .. A connector having an arbitrary number of terminals may be inspected.
 また、上記実施の形態では、スラストベアリング14が図8A、図8Bに示すような複数の玉36を有する構成である場合について説明したが、このような場合に限らない。スプリング12の軸方向Aの付勢力Fを受けつつスプリング12のねじれに伴う回転力Wを吸収する「回転力吸収部材」であれば、任意の種類のスラストベアリングを用いてもよい。ここで、上記実施の形態のスラストベアリング14の異なる実施例について、図10、図11を用いて説明する。 Further, in the above embodiment, the case where the thrust bearing 14 has a plurality of balls 36 as shown in FIGS. 8A and 8B has been described, but the case is not limited to such a case. Any type of thrust bearing may be used as long as it is a "rotational force absorbing member" that absorbs the rotational force W due to the twist of the spring 12 while receiving the urging force F in the axial direction A of the spring 12. Here, different examples of the thrust bearing 14 of the above-described embodiment will be described with reference to FIGS. 10 and 11.
(実施例1)
 図10は、実施例1のスラストベアリングを示す概略斜視図である。
(Example 1)
FIG. 10 is a schematic perspective view showing the thrust bearing of the first embodiment.
 図10に示すように、実施例1のスラストベアリングは、中心部に貫通孔102を有するリング状部材100である。貫通孔102にはハウジング6(図示せず)が配置される。リング状部材100は、スプリング12(図示せず)に対向する側の面として、主面104を有する。 As shown in FIG. 10, the thrust bearing of the first embodiment is a ring-shaped member 100 having a through hole 102 in the central portion. A housing 6 (not shown) is arranged in the through hole 102. The ring-shaped member 100 has a main surface 104 as a surface facing the spring 12 (not shown).
 図10に示すように、主面104は、第1面106と、第2面108とを有する。第1面106は、貫通孔102を取り囲む面であり、スプリング12と直接接触する。第2面108は、第1面106の外周110に沿った面であり、第1面106の外側に設けられる。 As shown in FIG. 10, the main surface 104 has a first surface 106 and a second surface 108. The first surface 106 is a surface surrounding the through hole 102 and comes into direct contact with the spring 12. The second surface 108 is a surface along the outer circumference 110 of the first surface 106, and is provided outside the first surface 106.
 実施例1では、リング状部材100は、POM等の樹脂で一体的に構成している。一方で、リング状部材100に接触するスプリング12およびプランジャ10の材質は例えばSUSである。ここで、SUS同士の摩擦係数は例えば0.6~0.9である。これに対して、SUSとPOMとの摩擦係数は例えば約0.15であり、SUS同士の摩擦係数よりも低い。 In Example 1, the ring-shaped member 100 is integrally made of a resin such as POM. On the other hand, the material of the spring 12 and the plunger 10 that come into contact with the ring-shaped member 100 is, for example, SUS. Here, the coefficient of friction between the SUSs is, for example, 0.6 to 0.9. On the other hand, the coefficient of friction between SUS and POM is, for example, about 0.15, which is lower than the coefficient of friction between SUSs.
 このような構成によれば、POM製の第1面106とSUS製のスプリング12との摩擦係数(例えば0.15)は、SUS製のスプリング12とSUS製のプランジャ10との摩擦係数(例えば0.6~0.9)よりも小さい。このような摩擦係数の関係によれば、リング状部材100を設けずにスプリング12とプランジャ10を直接接触させる構成に比べて、リング状部材100を介在させることでスプリング12をリング状部材100の主面104の上で滑りやすくすることができる。これにより、スプリング12の圧縮に伴う平面方向の力、特に回転力Wをリング状部材100によって吸収することができ、プランジャ10に回転力Wが伝達されることを抑制することができる。このようにして、実施の形態のスラストベアリング14(例えば金属製)と同様の効果を奏することができる。 According to such a configuration, the coefficient of friction between the first surface 106 made of POM and the spring 12 made of SUS (for example, 0.15) is the coefficient of friction between the spring 12 made of SUS and the plunger 10 made of SUS (for example, 0.15). It is smaller than 0.6 to 0.9). According to such a relationship of friction coefficient, the spring 12 is connected to the ring-shaped member 100 by interposing the ring-shaped member 100, as compared with the configuration in which the spring 12 and the plunger 10 are in direct contact with each other without providing the ring-shaped member 100. It can be made slippery on the main surface 104. As a result, the force in the plane direction due to the compression of the spring 12, particularly the rotational force W, can be absorbed by the ring-shaped member 100, and the rotational force W can be suppressed from being transmitted to the plunger 10. In this way, the same effect as that of the thrust bearing 14 (for example, made of metal) of the embodiment can be obtained.
 さらに実施例1では、第2面108とスプリング12との摩擦係数を、第1面106とスプリング12との摩擦係数よりも大きくしている。このような摩擦係数とするために、例えば第1面106と第2面108を同じ材質で一体的に形成した後に、第2面108の表面を粗くする加工を施してもよい。 Further, in the first embodiment, the friction coefficient between the second surface 108 and the spring 12 is made larger than the friction coefficient between the first surface 106 and the spring 12. In order to obtain such a friction coefficient, for example, the first surface 106 and the second surface 108 may be integrally formed of the same material, and then the surface of the second surface 108 may be roughened.
 このような第1面106と第2面108の摩擦係数の違いによれば、スプリング12が第1面106に対して平面方向に滑るときに、第1面106の外側まで移動すると摩擦係数の大きな第2面108に接触するため、スプリング12の更なる移動を抑制できる。第1面106の外側に、第1面106よりも表面の粗い第2面108を設けることで、スプリング12の移動を規制するストッパー機能を持たせることができる。 According to such a difference in friction coefficient between the first surface 106 and the second surface 108, when the spring 12 slides in the plane direction with respect to the first surface 106, when it moves to the outside of the first surface 106, the friction coefficient is increased. Further movement of the spring 12 can be suppressed because it comes into contact with the large second surface 108. By providing the second surface 108 having a surface rougher than that of the first surface 106 on the outside of the first surface 106, it is possible to have a stopper function for restricting the movement of the spring 12.
 また、リング状部材100をPOM等の樹脂製とすることで、金属製の場合のように削り加工等を行うことなく、樹脂成型によって厚み等の形状を容易に変更することができる。これにより、スプリング12による付勢力の調整を簡便に行うことができる。 Further, by making the ring-shaped member 100 made of resin such as POM, the shape such as thickness can be easily changed by resin molding without performing shaving or the like as in the case of metal. As a result, the urging force of the spring 12 can be easily adjusted.
 また、リング状部材100の第1面106および第2面108に対向する面である第3面とスプリング12との摩擦係数は、スプリング12とプランジャ10との摩擦係数よりも小さい方が好ましい。この場合には、プランジャ10への回転力の伝達をさらに抑制することができる。 Further, the friction coefficient between the spring 12 and the third surface, which is the surface of the ring-shaped member 100 facing the first surface 106 and the second surface 108, is preferably smaller than the friction coefficient between the spring 12 and the plunger 10. In this case, the transmission of the rotational force to the plunger 10 can be further suppressed.
(実施例2)
 図11は、実施例2のスラストベアリングを示す概略斜視図である。
(Example 2)
FIG. 11 is a schematic perspective view showing the thrust bearing of the second embodiment.
 図11に示すように、実施例2のスラストベアリングは、中心部に貫通孔202を有するリング状部材200である。貫通孔202にはハウジング6(図示せず)が配置される。リング状部材200は、スプリング12(図示せず)に対向する側の主面として、第1面204を有する。 As shown in FIG. 11, the thrust bearing of the second embodiment is a ring-shaped member 200 having a through hole 202 in the central portion. A housing 6 (not shown) is arranged in the through hole 202. The ring-shaped member 200 has a first surface 204 as a main surface on the side facing the spring 12 (not shown).
 実施例1と同様に、第1面204をPOM等の樹脂で構成し、第1面204とスプリング12との摩擦係数(例えば0.15)を、スプリング12とプランジャ10との摩擦係数(例えば0.6~0.9)よりも小さくしている。これにより、実施例1と同様の効果を奏することができる。 Similar to the first embodiment, the first surface 204 is made of a resin such as POM, and the friction coefficient between the first surface 204 and the spring 12 (for example, 0.15) is set to the friction coefficient between the spring 12 and the plunger 10 (for example). It is smaller than 0.6 to 0.9). As a result, the same effect as that of the first embodiment can be obtained.
 実施例2ではさらに、図11に示すように、第1面204の周囲に、第1面204に対して直交する方向に突出する突出部206を設けている。このような突出部206を設けることで、実施例1と同様に、スプリング12が平面方向に滑る際にスプリング12の移動を規制するストッパー機能を持たせることができる。なお、実施例1と同様に第1面204に対して表面加工を施してもよい Further, in the second embodiment, as shown in FIG. 11, a projecting portion 206 projecting in a direction orthogonal to the first surface 204 is provided around the first surface 204. By providing such a protruding portion 206, it is possible to provide a stopper function for restricting the movement of the spring 12 when the spring 12 slides in the plane direction, as in the first embodiment. The surface of the first surface 204 may be processed in the same manner as in the first embodiment.
 実施例1、2では、リング状部材100、200が周方向に連続した完全な環状である場合について説明したが、このような場合に限らず、部分的に不連続な部分を有した不完全な環状であってもよい。すなわち、リング状部材100、200は、ハウジング6の周囲を少なくとも部分的に取り囲んでいればよい。 In Examples 1 and 2, the case where the ring-shaped members 100 and 200 are a perfect annular shape continuous in the circumferential direction has been described, but not limited to such a case, the ring-shaped members 100 and 200 are incomplete with a partially discontinuous portion. It may be an annular shape. That is, the ring-shaped members 100 and 200 may at least partially surround the housing 6.
 上記実施の形態では、スプリング12を上側、リング状部材100、200を下側に配置する場合について説明したが、このような場合に限らない。例えば、スプリング12を下側、リング状部材100、200を上側に配置する等、フランジ4とプランジャ10の間であれば任意の位置にそれぞれ配置してもよい。なお、スプリング12を下側、リング状部材100、200を上側に配置する場合には、リング状部材100、200とフランジ4との摩擦係数は、スプリング12とフランジ4との摩擦係数よりも小さい方が好ましい。 In the above embodiment, the case where the spring 12 is arranged on the upper side and the ring-shaped members 100 and 200 are arranged on the lower side has been described, but the case is not limited to such a case. For example, the spring 12 may be arranged on the lower side, the ring-shaped members 100 and 200 may be arranged on the upper side, and the spring 12 may be arranged at any position between the flange 4 and the plunger 10. When the spring 12 is arranged on the lower side and the ring-shaped members 100 and 200 are arranged on the upper side, the friction coefficient between the ring-shaped members 100 and 200 and the flange 4 is smaller than the friction coefficient between the spring 12 and the flange 4. Is preferable.
 上述した実施例1、2の構成は互いに組み合わせてもよい。 The configurations of Examples 1 and 2 described above may be combined with each other.
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、各実施の形態における要素の組合せや順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。 Although the present disclosure has been fully described in relation to preferred embodiments with reference to the accompanying drawings, various modifications and modifications are obvious to those skilled in the art. It should be understood that such modifications and amendments are included therein, as long as they do not deviate from the scope of the present disclosure by the appended claims. In addition, changes in the combination and order of elements in each embodiment can be realized without departing from the scope and ideas of the present disclosure.
 なお、上記様々な実施の形態および変形例のうちの任意の実施の形態あるいは変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 It should be noted that, by appropriately combining any of the above-mentioned various embodiments and modifications, the effects of each can be achieved.
 本発明は、コネクタの特性検査を行うプローブであれば適用可能である。 The present invention is applicable to any probe that inspects the characteristics of the connector.
 2 プローブ
 3 コネクタ(多極コネクタ)
 4 フランジ
 6 ハウジング
 8 同軸ケーブル
10 プランジャ
10A 嵌合部
10B 取付部
11 上面
12 スプリング(弾性体)
13 凹部
14 スラストベアリング
16 プローブピン
20 貫通孔
21 基端部
22 先端部
23 中間部
24 突起
26 プレート
28 ガイド溝
30 第1スラストワッシャー
30A 中心孔
30B 上面
30C 下面
32 第2スラストワッシャー
32A 中心孔
32B 上面
32C 下面
34 保持器
34A 中心孔
36 玉
 A 軸方向
 F、F1、F2 付勢力
 R 回転方向(周方向)
 W 回転力
 100 リング状部材(スラストベアリング)
 102 貫通孔
 104 主面
 106 第1面
 108 第2面
 110 外周
 200 リング状部材(スラストベアリング)
 202 貫通孔
 204 第1面
 206 突出部
2 probe 3 connector (multi-pole connector)
4 Flange 6 Housing 8 Coaxial cable 10 Plunger 10A Fitting part 10B Mounting part 11 Top surface 12 Spring (elastic body)
13 Recess 14 Thrust bearing 16 Probe pin 20 Through hole 21 Base end 22 Tip 23 Intermediate 24 Projection 26 Plate 28 Guide groove 30 First thrust washer 30A Center hole 30B Top surface 30C Bottom surface 32 Second thrust washer 32A Center hole 32B Top surface 32C Bottom surface 34 Washer 34A Center hole 36 Ball A Axial direction F, F1, F2 Biasing force R Rotational direction (circumferential direction)
W Rotational force 100 Ring-shaped member (thrust bearing)
102 Through hole 104 Main surface 106 First surface 108 Second surface 110 Outer circumference 200 Ring-shaped member (thrust bearing)
202 Through hole 204 First surface 206 Projection

Claims (15)

  1.  コネクタの特性検査を行うためのプローブであって、
     貫通孔が形成されたフランジと、
     一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、
     前記ハウジングの前記先端部に取り付けられ、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部を底部に形成したプランジャと、
     前記フランジと前記プランジャの間に配置され、前記フランジと前記プランジャを互いに離れる方向へ前記軸方向に付勢可能な弾性体と、
     前記フランジと前記プランジャの間で前記ハウジングの周りに配置され、前記弾性体による前記軸方向の付勢力を受けるように介在するスラストベアリングと、を備える、プローブ。
    A probe for checking the characteristics of connectors,
    Flange with through hole and
    It has a base end portion which is an end portion on one side and a tip portion which is an end portion on the other side, is inserted into the through hole of the flange, and the base end portion can be fitted into the through hole. A housing that contains a coaxial cable and extends in the axial direction,
    A plunger attached to the tip of the housing and having an opening at the bottom for passing a probe pin electrically connected to the coaxial cable.
    An elastic body arranged between the flange and the plunger and capable of urging the flange and the plunger in the axial direction in a direction away from each other.
    A probe comprising a thrust bearing located between the flange and the plunger around the housing and interposed so as to receive the axial urging force of the elastic body.
  2.  前記スラストベアリングは、前記弾性体と前記プランジャとの間に配置される、請求項1に記載のプローブ。 The probe according to claim 1, wherein the thrust bearing is arranged between the elastic body and the plunger.
  3.  前記スラストベアリングは、前記弾性体と直接接触して前記貫通孔を取り囲む第1面を有し、前記第1面と前記弾性体との摩擦係数は、前記弾性体と前記プランジャとの摩擦係数よりも小さい、請求項2に記載のプローブ。 The thrust bearing has a first surface that directly contacts the elastic body and surrounds the through hole, and the friction coefficient between the first surface and the elastic body is based on the friction coefficient between the elastic body and the plunger. The probe according to claim 2, which is also small.
  4.  前記スラストベアリングは、前記第1面の外周に沿った第2面を有し、前記第2面と前記弾性体との摩擦係数は、前記第1面と前記弾性体との摩擦係数よりも大きい、請求項3に記載のプローブ。 The thrust bearing has a second surface along the outer periphery of the first surface, and the coefficient of friction between the second surface and the elastic body is larger than the coefficient of friction between the first surface and the elastic body. , The probe according to claim 3.
  5.  前記スラストベアリングは、前記第1面における前記弾性体と直接接触する箇所の周囲に前記第1面に対して突出した突出部を有する、請求項3又は4に記載のプローブ。 The probe according to claim 3 or 4, wherein the thrust bearing has a protruding portion protruding from the first surface around a portion of the first surface that comes into direct contact with the elastic body.
  6.  前記スラストベアリングは、前記プランジャに直接接触する、請求項2から5のいずれか1つに記載のプローブ。 The probe according to any one of claims 2 to 5, wherein the thrust bearing comes into direct contact with the plunger.
  7.  前記スラストベアリングは、前記弾性体に直接接触する、請求項1又は2に記載のプローブ。 The probe according to claim 1 or 2, wherein the thrust bearing is in direct contact with the elastic body.
  8.  前記弾性体は、前記ハウジングの周囲に配置されたスプリングである、請求項1から7のいずれか1つに記載のプローブ。 The probe according to any one of claims 1 to 7, wherein the elastic body is a spring arranged around the housing.
  9.  前記スプリングの外径は、前記スラストベアリングの中心孔の径よりも大きく設定される、請求項8に記載のプローブ。 The probe according to claim 8, wherein the outer diameter of the spring is set to be larger than the diameter of the center hole of the thrust bearing.
  10.  前記スラストベアリングは、輪状の第1スラストワッシャーと、前記第1スラストワッシャーよりも前記ハウジングの前記先端部側に配置された輪状の第2スラストワッシャーと、前記第1スラストワッシャーと前記第2スラストワッシャーの間に配置され、複数の玉を保持する輪状の保持器とを有する、請求項1から9のいずれか1つに記載のプローブ。 The thrust bearing includes a ring-shaped first thrust washer, a ring-shaped second thrust washer arranged on the tip end side of the housing with respect to the first thrust washer, and the first thrust washer and the second thrust washer. The probe according to any one of claims 1 to 9, wherein the probe is arranged between the two and has a ring-shaped washer for holding a plurality of balls.
  11.  前記第1スラストワッシャーおよび前記第2スラストワッシャーにおいて前記保持器に面する側の表面は平坦である、請求項10に記載のプローブ。 The probe according to claim 10, wherein the surface of the first thrust washer and the second thrust washer on the side facing the cage is flat.
  12.  前記同軸ケーブルおよび前記プローブピンはそれぞれ複数設けられており、
     複数の端子を有する多極コネクタの特性検査を行うための請求項1から11のいずれか1つに記載のプローブ。
    A plurality of the coaxial cable and the probe pin are provided, respectively.
    The probe according to any one of claims 1 to 11, for performing a characteristic inspection of a multi-pole connector having a plurality of terminals.
  13.  コネクタの特性検査を行うためのプローブであって、
     貫通孔が形成されたフランジと、
     一方側の端部である基端部と他方側の端部である先端部とを有し、前記フランジの前記貫通孔に挿通され、前記基端部が前記貫通孔に嵌合可能であり、同軸ケーブルを内包して軸方向に延びるハウジングと、
     前記ハウジングの前記先端部に取り付けられ、前記同軸ケーブルと電気的に接続されたプローブピンを通す開口部を底部に形成したプランジャと、
     前記フランジと前記プランジャの間に配置され、前記フランジと前記プランジャを互いに離れる方向へ前記軸方向に付勢可能な弾性体と、
     前記フランジと前記プランジャの間で前記ハウジングの周りに配置され、前記弾性体による前記軸方向の付勢力を受けるように介在するリング状部材と、を備え、
     前記リング状部材は、前記弾性体に直接接触して前記弾性体による前記付勢力を受ける第1面を有し、
     前記第1面と前記弾性体との摩擦係数は、前記プランジャと前記弾性体との摩擦係数よりも小さい、プローブ。
    A probe for checking the characteristics of connectors,
    Flange with through hole and
    It has a base end portion which is an end portion on one side and a tip portion which is an end portion on the other side, is inserted into the through hole of the flange, and the base end portion can be fitted into the through hole. A housing that contains a coaxial cable and extends in the axial direction,
    A plunger attached to the tip of the housing and having an opening at the bottom for passing a probe pin electrically connected to the coaxial cable.
    An elastic body arranged between the flange and the plunger and capable of urging the flange and the plunger in the axial direction in a direction away from each other.
    A ring-shaped member arranged around the housing between the flange and the plunger and interposed so as to receive the axial urging force by the elastic body is provided.
    The ring-shaped member has a first surface that comes into direct contact with the elastic body and receives the urging force of the elastic body.
    A probe in which the coefficient of friction between the first surface and the elastic body is smaller than the coefficient of friction between the plunger and the elastic body.
  14.  前記リング状部材は、前記第1面の外周に沿った第2面を有し、前記第2面と前記弾性体との摩擦係数は、前記第1面と前記弾性体との摩擦係数よりも大きい、請求項13に記載のプローブ。 The ring-shaped member has a second surface along the outer circumference of the first surface, and the friction coefficient between the second surface and the elastic body is larger than the friction coefficient between the first surface and the elastic body. The larger probe of claim 13.
  15.  前記リング状部材は、前記第1面における前記弾性体と直接接触する箇所の周囲に前記第1面に対して突出した突出部を有する、請求項13又は14に記載のプローブ。 The probe according to claim 13 or 14, wherein the ring-shaped member has a protruding portion protruding from the first surface around a portion of the first surface that comes into direct contact with the elastic body.
PCT/JP2020/036221 2019-10-04 2020-09-25 Probe WO2021065702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080057124.7A CN114223098B (en) 2019-10-04 2020-09-25 Probe head
JP2021551177A JP7136362B2 (en) 2019-10-04 2020-09-25 probe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-183984 2019-10-04
JP2019183984 2019-10-04
JP2020-011320 2020-01-28
JP2020011320 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021065702A1 true WO2021065702A1 (en) 2021-04-08

Family

ID=75338054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036221 WO2021065702A1 (en) 2019-10-04 2020-09-25 Probe

Country Status (4)

Country Link
JP (1) JP7136362B2 (en)
CN (1) CN114223098B (en)
TW (1) TWI747536B (en)
WO (1) WO2021065702A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136578U (en) * 1991-06-10 1992-12-18 群馬日本電気株式会社 spring probe
JPH095392A (en) * 1995-06-19 1997-01-10 Shikino Hightech:Kk Jig for inspecting circuit board
JPH118003A (en) * 1997-06-13 1999-01-12 Sony Corp Contact type connection device
JPH11345659A (en) * 1998-04-06 1999-12-14 Andrew Corp One-piece connector for coaxial cable with outside conductor having annular corrugation
JP2002107422A (en) * 2000-05-12 2002-04-10 Delaware Capital Formation Inc Inspection jig and method for inspection
JP2005061876A (en) * 2003-08-19 2005-03-10 Japan Electronic Materials Corp Probe unit, and manufacturing method for the probe unit
JP2011518410A (en) * 2008-04-15 2011-06-23 ローデ ウント シュワルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディット ゲゼルシャフト Coaxial plug connector parts with thermal isolation
US8373430B1 (en) * 2012-05-06 2013-02-12 Jerzy Roman Sochor Low inductance contact probe with conductively coupled plungers
WO2018116568A1 (en) * 2016-12-22 2018-06-28 株式会社村田製作所 Probe structure

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955397B1 (en) * 1998-05-04 2004-04-21 Saurer GmbH & Co. KG Open-end spinning apparatus
DE19835932A1 (en) * 1998-05-04 1999-11-11 Schlafhorst & Co W Open-end spinning device
US6396293B1 (en) * 1999-02-18 2002-05-28 Delaware Capital Formation, Inc. Self-closing spring probe
CN100582786C (en) * 2000-09-22 2010-01-20 英特斯特公司 Manipulator for a test head with active compliance
JP2002156387A (en) * 2000-11-20 2002-05-31 Seiko Epson Corp Contact pin form semiconductor measuring device
JP2002202323A (en) * 2000-12-28 2002-07-19 Fujikura Ltd Probe pin, connector using the same and prober
JP4136578B2 (en) 2002-09-30 2008-08-20 株式会社ジョーヴィアン Fabric steamer
US7029304B2 (en) * 2004-02-04 2006-04-18 John Mezzalingua Associates, Inc. Compression connector with integral coupler
KR200388336Y1 (en) * 2005-03-23 2005-06-30 주식회사 제이엔에스 Contact probe
JP4845031B2 (en) * 2006-11-10 2011-12-28 株式会社ヨコオ Relay connector
CN101720269B (en) * 2007-02-23 2014-04-16 英泰斯特股份有限公司 Test head manipulator
US8105119B2 (en) * 2009-01-30 2012-01-31 Delaware Capital Formation, Inc. Flat plunger round barrel test probe
US7740499B1 (en) * 2009-02-11 2010-06-22 Itt Manufacturing Enterprises, Inc. Electrical connector including a bayonet locking device
KR101094215B1 (en) * 2009-09-07 2011-12-14 주식회사 만도 Air supspension
DE102009058722B4 (en) * 2009-12-17 2017-10-05 Amphenol-Tuchel Electronics Gmbh Connector with a torsion spring mounted union nut
JPWO2012067125A1 (en) * 2010-11-17 2014-05-12 日本発條株式会社 Probe unit
US9854839B2 (en) 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
US8547128B1 (en) * 2012-05-06 2013-10-01 Jerzy Roman Sochor Contact probe with conductively coupled plungers
CN103643704B (en) * 2013-12-21 2015-11-18 佛山市新城开发建设有限公司 A kind of for detecting immersed tube tunnel sand basis compactness inspection instrument
JP6395297B2 (en) * 2014-08-29 2018-09-26 株式会社ヨコオ Plunger, contact probe, socket and method for manufacturing plunger
CN111194410B (en) * 2017-10-06 2022-04-01 株式会社村田制作所 Detector
CN207884000U (en) * 2018-01-25 2018-09-18 天津同力重工有限公司 A kind of shaft space difference speed plug
JP2019138768A (en) * 2018-02-09 2019-08-22 株式会社村田製作所 probe
US10396510B1 (en) 2018-06-29 2019-08-27 Huber + Suhner Ag Coaxial connector with compensator
CN209043188U (en) * 2018-12-13 2019-06-28 卡尔迈耶(中国)有限公司 A kind of thickness measuring device for sectional warper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136578U (en) * 1991-06-10 1992-12-18 群馬日本電気株式会社 spring probe
JPH095392A (en) * 1995-06-19 1997-01-10 Shikino Hightech:Kk Jig for inspecting circuit board
JPH118003A (en) * 1997-06-13 1999-01-12 Sony Corp Contact type connection device
JPH11345659A (en) * 1998-04-06 1999-12-14 Andrew Corp One-piece connector for coaxial cable with outside conductor having annular corrugation
JP2002107422A (en) * 2000-05-12 2002-04-10 Delaware Capital Formation Inc Inspection jig and method for inspection
JP2005061876A (en) * 2003-08-19 2005-03-10 Japan Electronic Materials Corp Probe unit, and manufacturing method for the probe unit
JP2011518410A (en) * 2008-04-15 2011-06-23 ローデ ウント シュワルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディット ゲゼルシャフト Coaxial plug connector parts with thermal isolation
US8373430B1 (en) * 2012-05-06 2013-02-12 Jerzy Roman Sochor Low inductance contact probe with conductively coupled plungers
WO2018116568A1 (en) * 2016-12-22 2018-06-28 株式会社村田製作所 Probe structure

Also Published As

Publication number Publication date
CN114223098A (en) 2022-03-22
JPWO2021065702A1 (en) 2021-04-08
CN114223098B (en) 2024-04-12
TWI747536B (en) 2021-11-21
JP7136362B2 (en) 2022-09-13
TW202120933A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
US10641814B2 (en) Probe structure
JP6711469B2 (en) probe
US8519727B2 (en) Contact probe and socket
KR101894965B1 (en) Probe pin and ic socket
TWI706138B (en) Probe
JP5459801B2 (en) Test probe
WO2011058646A1 (en) Probe pin
JP7095753B2 (en) probe
KR101183809B1 (en) Coaxial connector for inspection
WO2021065702A1 (en) Probe
WO2023032625A1 (en) Probe and inspection socket
WO2020026409A1 (en) Contact probe and test socket equipped with same
US20220155347A1 (en) Electrical contactor and electrical connecting apparatus
JP7327663B2 (en) probe
JP7276363B2 (en) adapter
JP2024055075A (en) probe
JP2024055076A (en) probe
KR20210060597A (en) Probe
JPH0777539A (en) Contact probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870800

Country of ref document: EP

Kind code of ref document: A1