WO2021065653A1 - Powder, powder production method, and solution production method - Google Patents

Powder, powder production method, and solution production method Download PDF

Info

Publication number
WO2021065653A1
WO2021065653A1 PCT/JP2020/035950 JP2020035950W WO2021065653A1 WO 2021065653 A1 WO2021065653 A1 WO 2021065653A1 JP 2020035950 W JP2020035950 W JP 2020035950W WO 2021065653 A1 WO2021065653 A1 WO 2021065653A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
bis
less
general formula
temperature
Prior art date
Application number
PCT/JP2020/035950
Other languages
French (fr)
Japanese (ja)
Inventor
健史 細井
峰男 渡辺
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN202080068632.5A priority Critical patent/CN114555549A/en
Priority to JP2021550673A priority patent/JPWO2021065653A1/ja
Priority to KR1020227013503A priority patent/KR20220069060A/en
Publication of WO2021065653A1 publication Critical patent/WO2021065653A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/24Halogenated derivatives
    • C07C39/367Halogenated derivatives polycyclic non-condensed, containing only six-membered aromatic rings as cyclic parts, e.g. halogenated poly-hydroxyphenylalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/10Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/74Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C215/76Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a powder, a method for producing a powder, and a method for producing a solution. More specifically, the present invention relates to a powder of a fluorinated bisphenol compound represented by the general formula (A) described later, a method for producing the powder, and a method for producing a solution using the powder.
  • BIOS-AF 2,2-bis (4-hydroxyphenyl) hexafluoropropane
  • Patent Document 1 which is a document relating to an epoxy resin composition, as Production Example 1, BIS-AF was crystallized in a mixed solvent of ethylene glycol and pure water to obtain a white powder thereof. It is stated that.
  • Patent Document 2 a solid BIS-AF in which the impurity hexafluoroacetone is reduced by neutralizing and precipitating BIS-AF dissolved in an alkaline aqueous solution with hydrochloric acid is used. It is stated that it was obtained.
  • Fluorinated bisphenol compounds typified by BIS-AF are industrially usually manufactured and sold as powders.
  • the powder may be used as it is in various industrial processes.
  • "Industrial handleability" means, for example, one or more of the following items. ⁇ Good filterability ⁇ Short drying time when drying wet powder ⁇ Difficult to absorb moisture ⁇ Good fluidity of powder ⁇ Good solvent solubility, specifically, quick dissolution in solvent ⁇ Agglomeration Difficult to (block)
  • the present invention has been made in view of such circumstances.
  • One of the objects of the present invention is to provide a powdery fluorinated bisphenol compound having excellent industrial handleability.
  • the present inventors have completed the following first to fourth inventions.
  • the first invention is as follows.
  • the mode diameter D m measured by the laser diffraction / scattering method is 75 to 150 ⁇ m.
  • R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  • the second invention is as follows.
  • a powder of a compound represented by the general formula (A) below is a powder of 1.1 to 1.5.
  • R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  • the third invention is as follows.
  • a powder of a compound represented by the general formula (A) below Volume-reduced cumulative 50% diameter D 50 measured by a laser diffraction scattering method is 50 ⁇ 100 [mu] m, A powder with an angle of repose of 35 to 49 °.
  • R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  • the fourth invention is as follows.
  • a method for producing a powder of a compound represented by the general formula (A) By putting the raw material containing the compound represented by the general formula (A) and the aqueous dispersion medium in a container and heating the raw material, the raw material is melted in the presence of the aqueous dispersion medium, and the raw material is melted.
  • the melting temperature T 1 of the said raw material, said aqueous dispersion medium, the solubility of the compound represented by the general formula (A), 10 [g / 100g] or less the production of the powder Method.
  • R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  • a method for producing a solution containing a compound represented by the general formula (A) below comprises a step of obtaining a solution of the compound represented by the general formula (A) using a solvent and at least one of the powders of the first to fourth inventions.
  • R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  • the powder of the present invention is excellent in industrial handleability.
  • XY in the description of the numerical range means X or more and Y or less unless otherwise specified.
  • X to 5% by mass means "1% by mass or more and 5% by mass or less”.
  • the notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the term "electronic device” as used herein refers to an element to which electronic engineering technology is applied, such as a semiconductor chip, a semiconductor element, a printed wiring board, an electric circuit display device, an information communication terminal, a light emitting diode, a physical battery, and a chemical battery. , Devices, final products, etc.
  • compound (A) the compound represented by the general formula (A) may be referred to as "compound (A)".
  • the embodiment of the first invention is the first embodiment
  • the embodiment of the second invention is the second embodiment
  • the embodiment of the third invention is the third embodiment
  • the embodiment of the fourth invention May be referred to as the fourth embodiment.
  • the embodiment of the above-mentioned powder manufacturing method invention may be described as the first manufacturing method.
  • a method for producing a powder that does not correspond to the above-mentioned invention of the powder production method but can produce the powder of the present invention (at least one of the first to fourth inventions) is described as a second production method.
  • the powders of the first to third embodiments are powders of a compound (compound (A)) represented by the following general formula (A). Further, the powder of the fourth embodiment is a powder of a compound in which all of R 1 to R 8 are hydrogen atoms in the following general formula (A).
  • R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  • R 1 to R 8 are independently hydrogen atoms or amino groups.
  • R 1 to R 8 when at least one of R 1 to R 8 is a group other than a hydrogen atom, the group other than the hydrogen atom is at any position of R 2 , R 3 , R 6 , or R 7. It is preferable to be present in. This is because of the ease of synthesizing the compound.
  • 0 to 4 of R 1 to R 8 are preferably groups other than hydrogen atoms, and 0 to 2 are more preferably groups other than hydrogen atoms.
  • the compound (A) includes 2,2 bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxy-3-methylphenyl) hexafluoropropane, and 2,2-bis (3).
  • -Ethyl-4-hydroxyphenyl) hexafluoropropane 2,2-bis (4-hydroxy-3,5-dimethylphenyl) hexafluoropropane, 2,2-bis (3-fluoro-4-hydroxyphenyl) hexafluoro Propane, 2,2-bis (3-bromo-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-bis) Amino-4-hydroxyphenyl) hexafluoropropane and the like can be mentioned.
  • the mode diameter (mode diameter) D m of the powder of the first embodiment measured by the laser diffraction / scattering method is 75 to 150 ⁇ m, preferably 75 to 135 ⁇ m, and more preferably 75 to 120 m.
  • the Ca ion content of the powder of the first embodiment is less than 1 ppm, preferably 0.7 ppm or less, and more preferably 0.5 ppm or less.
  • the "ppm" of the Ca ion (and Na ion described later) content is one million of "mass of Ca ion in powder / mass of powder". It is a fraction.
  • the industrial handleability of the powder of the first embodiment is good.
  • the powder of the first embodiment has advantages such as "good filterability" and "the drying time when drying the wet powder can be shortened". It is presumed that these advantages are due to the D m being 75 to 150 ⁇ m. The details are unknown, but it is presumed that when the D m is 75 ⁇ m or more, there is an appropriate “gap” between the particles, which makes it easier for the liquid to flow. Further, it is presumed that when D m is 150 ⁇ m or less, the “gap” does not become too large, and it is difficult to hold a large amount of liquid between the particles in the first place.
  • the present inventors have tried to control the content of Ca ions in the powder to less than 1 ppm in the first embodiment.
  • Ca ion is a component inevitably contained in general industrial water. Therefore, if the powder of compound (A) is produced so that the content of Ca ions is less than 1 ppm using the content of Ca ions as an index, various trace impurities (industrial water) other than Ca ions in the obtained powder can be produced. The amount of origin) can also be reduced. That is, the compound (A) in which the amount of Ca ions is less than 1 ppm is considered to have a small amount of not only Ca ions but also various impurities, and is preferably applicable to various technical fields. In addition, as will be described later, since Ca ions can be measured by ion chromatography, it is possible to facilitate process control in mass production equipment.
  • the fact that the Ca ion content is less than 1 ppm means that the powder of the first embodiment can be directly used preferably as a material for manufacturing an electronic device that requires a small amount of metal ions. Means.
  • the Ca ion content is preferably 0.7 ppm or less, more preferably 0.5 ppm or less. Basically, the smaller the amount of Ca ions, the more preferable.
  • the Ca ion content may be zero (below the measurement limit of the device). From a practical point of view, the Ca ion content is, for example, 0.01 ppm or more.
  • the method and conditions for producing the powder of the first embodiment are not limited. By selecting appropriate methods and conditions, a powder of compound (A) having a D m of 75 to 150 ⁇ m and a Ca ion content of less than 1 ppm can be obtained. Preferably, as in the first production method described later, it is preferable that the raw material is melted (not dissolved) in an aqueous dispersion medium and then crystallized. By appropriately selecting the conditions for melting and crystallization, a powder of compound (A) having a D m of 75 to 150 ⁇ m and a Ca ion content of less than 1 ppm can be obtained. The manufacturing method and manufacturing conditions will be described in detail later.
  • the Na ion content of the powder of the first embodiment is less than 1 ppm, preferably 0.7 ppm or less, and more preferably 0.5 ppm or less.
  • the powder of the present embodiment can be further more preferably applied to the production of electronic devices.
  • the Na ion content may be zero (below the measurement limit of the device). From a practical point of view, the Na ion content is, for example, 0.01 ppm or more.
  • the content of Mg ions in the powder of the first embodiment is less than 1 ppm, preferably 0.7 ppm or less, and more preferably 0.5 ppm or less.
  • the content of Mg ions is also an index that can be used when calculating the hardness of water, and Mg ions may be unavoidably contained in industrial water. Therefore, by setting the amount of Mg ions in addition to Ca ions to less than 1 ppm, the powder of the present embodiment can be further more suitably applied to various uses such as manufacturing of electronic devices. Further, the content of Mg ions may be zero (below the measurement limit of the apparatus). From a practical point of view, the content of Mg ions is preferably 0.01 ppm or more, for example.
  • the content of metal ions such as Ca ions can be determined by using an ion chromatography analysis method.
  • ion chromatography analysis a sample solution in which the powder of compound (A) is usually dissolved in an organic solvent such as t-butyl methyl ether is prepared. The content of metal ions in this sample liquid is measured, and "mass of Ca ions in powder / mass of powder" is calculated from the obtained measured values.
  • a metal such as Ca ion is formed by recrystallizing the compound (A) by a method of "not actively” dissolving "the compound (A) in water while using water as in the first manufacturing method described later. A powder having a small amount of ions can be obtained.
  • the powder of the first embodiment does not contain alcohol such as monool and diol, or preferably contains a small amount of alcohol.
  • Alcohol such as monool and diol, or preferably contains a small amount of alcohol.
  • Water-soluble monools with 4 or less carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl, even if they contain alcohol. It is more preferable to contain a small amount of -2-propanol or the like.
  • the content of alcohol in the powder of the first embodiment is preferably 400 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less.
  • alcohol does not include phenolic compounds (compounds having phenolic hydroxyl groups). Since the powder does not contain alcohol, or even if it contains a small amount of alcohol, an unintended reaction is unlikely to occur when a polymer is produced using the powder of the present embodiment as a raw material, and a desired polymer can be obtained. Easy to manufacture. Further, since the compound (A) and the alcohol can be hydrogen-bonded, it is easy to accurately weigh the amount of the pure compound (A) when the powder does not contain alcohol or even if it contains a small amount of alcohol. There are advantages. This means that, for example, the "equivalent ratio" when the compound (A) and the epoxy compound are reacted can be accurately controlled, and the physical properties of the finally obtained resin can be easily controlled.
  • Patent Document 1 since ethylene glycol is used for purification of BIS-AF, it is considered that BIS-AF described in Patent Document 1 contains ethylene glycol of more than 400 ppm.
  • alcohol may be used as a part of the dispersion medium for dispersing the compound (A).
  • the amount of alcohol in the powder is small because the compound (A) is not positively “dissolved” in alcohol. Further, when only water is used as the dispersion medium, the compound (A) does not contain alcohol in principle.
  • the amount of alcohol in compound (A) can be determined using, for example, a gas chromatograph.
  • D 50 When the volume-based cumulative 50% diameter of the powder of the first embodiment measured by the laser diffraction / scattering method is D 50 , D 50 is preferably 40 to 100 ⁇ m, more preferably 40 to 90 ⁇ m, and further preferably 40. It is ⁇ 80 ⁇ m.
  • the powder of the first embodiment can be more easily handled when D 50 is within a specific numerical range. It is considered that when D 50 is relatively large, the contact area between the particles becomes smaller and the friction between the particles during flow becomes smaller. And it is considered that it leads to further improvement of filterability and dryness.
  • the value of (D 90- D 50 ) / D 50 is preferably 1.3 to 1. It is 1.7, more preferably 1.4 to 1.7.
  • the index (D 90- D 50 ) / D 50 can be said to be an index indicating the degree of spread of the "hem" on the large particle size side in the particle size distribution curve. When this value is 1.7 or less, it means that the particle size distribution on the large particle size side is relatively sharp. It is considered that the sharp particle size distribution enhances the homogeneity of the powder and further enhances the handleability.
  • (D 90- D 50 ) / D 50 is 1.7 or less is considered to mean that the number of coarse particles is relatively small. With a relatively small number of coarse particles, for example, agglomeration may be suppressed.
  • 1.3 which is the lower limit of the preferable range of (D 90- D 50 ) / D 50 , sets a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive. It was done.
  • the value of (D 90- D m ) / D m is preferably 0.93 or less, more preferably 0.92 or less.
  • the lower limit of the value of (D 90- D m ) / D m is, for example, 0.40 or more.
  • D ave when the average diameter measured by a laser diffraction scattering method was D ave, D ave is preferably 45 ⁇ 80 [mu] m, more preferably 45 ⁇ 60 [mu] m.
  • the powder of the first embodiment tends to have a larger average diameter than the powder of the conventional compound (A) as a major tendency.
  • various values related to the particle size such as D m and D 50 can be obtained from the volume-based particle size distribution curve measured by the laser diffraction / scattering method.
  • a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned as an apparatus capable of measuring by the laser diffraction / scattering method.
  • SALD particle size distribution meter
  • the measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
  • D 50 is 50 ⁇ m or more, that is, 50% or more of relatively large particles having a particle size of 50 ⁇ m or more on a volume basis are contained in the powder. It is presumed that the friction is small.
  • D 50 / D ave is 1.1 or more means that the shape of the particle size distribution curve in which the frequency is plotted on the vertical axis and the particle size is plotted on the horizontal axis is as shown in FIG.
  • the solvent solubility of the powder of the second embodiment is good. That is, surprisingly, the powder of the present embodiment, despite having a relatively large D 50, soluble relatively quickly in the solvent. The inventors speculate that the reason for this is that the small number of small particle particles in the powder suppresses the swelling and aggregation of BIS-AF in the solvent (swelling). When or agglomeration occurs, the dispersibility of the powder decreases and the dissolution rate is presumed to slow down).
  • the upper limit value of D 50 100 ⁇ m, is set to a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive.
  • the method and conditions for producing the powder of the second embodiment are not limited. However, in order to obtain a powder of compound (A) having a D 50 of 50 to 100 ⁇ m and a D 50 / D ave of 1.1 to 1.5, it is preferable to select appropriate methods and conditions. In the present embodiment, for example, when the powder of the compound (A) is obtained by recrystallization, it is preferable to use a specific organic solvent, use a seed crystal, or slowly cool the powder. By selecting an appropriate production method and production conditions, a powder of compound (A) having a D 50 of 50 to 100 ⁇ m and a D 50 / D ave of 1.1 to 1.5 can be obtained. A specific manufacturing method will be described later as a "second manufacturing method". As a reminder, in producing the powder of the second embodiment, the first production method may be adopted.
  • D 50 is 50 to 100 ⁇ m, and D 50 / D ave is 1.1 to 1.5.
  • D 50 is preferably 50 to 90 ⁇ m, more preferably 50 to 80 ⁇ m, and even more preferably 50 to 70 ⁇ m.
  • D 50 / D ave is preferably 1.1 to 1.4, more preferably 1.1 to 1.3.
  • the fluidity can be further improved by setting the mode diameter (mode diameter) D m measured by the laser diffraction / scattering method within a specific numerical range. It is considered that when D m is relatively large, the contact area between the particles becomes smaller and the friction between the particles during flow becomes smaller. And it is considered that the handleability is further improved.
  • D m is preferably 75 to 150 ⁇ m, more preferably 80 to 120 ⁇ m.
  • the value of (D 90- D 50 ) / D 50 is preferably 1.3 to 1. It is 1.7, more preferably 1.4 to 1.7.
  • the index (D 90- D 50 ) / D 50 can be said to be an index showing the degree of spread of the "hem" on the right side (large particle size side) in the particle size distribution curve.
  • (D 90- D 50 ) / D 50 is 1.7 or less means that the particle size distribution on the large particle size side is relatively sharp, and from a different point of view from D 50 / D ave, the powder It is considered to mean that the particle size distribution deviates from the normal distribution as shown in FIG. Therefore, in addition to the fact that D 50 / D ave is 1.1 to 1.5, it is considered that the handleability is further improved by the fact that (D 90- D 50 ) / D 50 is 1.7 or less. .. Further, the fact that (D 90- D 50 ) / D 50 is 1.7 or less is considered to mean that the number of coarse particles is relatively small.
  • D 50 , D 90 , D ave and D m can be obtained from the volume-based particle size distribution curve measured by the laser diffraction / scattering method.
  • a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned. The measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
  • a solvent that is substantially insoluble for example, n-decane
  • the handleability of the powder can be further improved.
  • the looseness density of the powder of the second embodiment is preferably 0.50 to 0.75 g / cm 3 , and more preferably 0.60 to 0.75 g / cm 3 .
  • the firmness density of the powder of the present embodiment is preferably 0.76 to 0.90 g / cm 3 , and more preferably 0.80 to 0.90 g / cm 3 .
  • D 50 is 50 ⁇ 100 [mu] m.
  • D 50 is preferably 50 to 90 ⁇ m, more preferably 50 to 80 ⁇ m, and even more preferably 50 to 70 ⁇ m.
  • the fluidity can be further improved by setting the mode diameter (mode diameter) D m measured by the laser diffraction / scattering method within a specific numerical range. It is considered that when D m is relatively large, the contact area between the particles becomes smaller and the friction between the particles during flow becomes smaller. And it is considered that the handleability is further improved.
  • D m is preferably 75 to 150 ⁇ m, more preferably 80 to 120 ⁇ m.
  • the value of (D 90- D 50 ) / D 50 is preferably 1.3 to 1. It is 1.7, more preferably 1.4 to 1.7.
  • the index (D 90- D 50 ) / D 50 can be said to be an index indicating the degree of spread of the "hem" on the large particle size side in the particle size distribution curve. When this value is 1.7 or less, it means that the particle size distribution on the large particle size side is relatively sharp. It is considered that the sharp particle size distribution enhances the homogeneity of the powder and further enhances the handleability.
  • (D 90- D 50 ) / D 50 is 1.7 or less is considered to mean that the number of coarse particles is relatively small. With a relatively small number of coarse particles, for example, agglomeration may be further suppressed.
  • 1.3 which is the lower limit of the preferable range of (D 90- D 50 ) / D 50 , sets a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive. It was done.
  • D 50 , D 90 and D m can be obtained from the volume-based particle size distribution curve measured by the laser diffraction / scattering method.
  • a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned. The measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
  • the angle of repose of the powder of the third embodiment is 35 to 49 °.
  • the angle of repose is preferably 40 to 49 °, more preferably 40 to 47 °.
  • For the method of measuring the angle of repose refer to the description of the examples below.
  • the handleability of the powder can be further improved.
  • the looseness density ⁇ 1 of the powder of the third embodiment is preferably 0.50 to 0.75 g / cm 3 , and more preferably 0.60 to 0.75 g / cm 3 .
  • the firmness density ⁇ 2 of the powder of the third embodiment is preferably 0.76 to 0.90 g / cm 3 , and more preferably 0.80 to 0.90 g / cm 3 .
  • ⁇ 2 / ⁇ 1 is preferably in the range of 1.01 to 1.45, and more preferably in the range of 1.10 to 1.40.
  • ⁇ 2 / ⁇ 1 is 1.45 or less, for example, when the powder of the present embodiment is weighed, the fluctuation of the mass to be weighed can be sufficiently reduced.
  • the powder of the fourth embodiment has advantages such as "fast dissolution rate in a solvent, particularly a polar solvent or an alkaline solvent” and "the drying time when drying a wet powder can be shortened”.
  • advantages such as "fast dissolution rate in a solvent, particularly a polar solvent or an alkaline solvent” and "the drying time when drying a wet powder can be shortened”.
  • An example of the measurement conditions is as follows.
  • Tube Cu Voltage: 40kV Current: 50mA
  • Solar slit 2.5 ° (incident side, light receiving side)
  • Scan range 10-80 ° Step width: 0.01 °
  • Scan speed 35 ° / min
  • Detector 1-dimensional X-ray detector (D / tex Ultra250; manufactured by Rigaku Co., Ltd.)
  • the method and conditions are not limited.
  • a powder in the range can be preferably obtained.
  • the particle size of the powder of the fourth embodiment is not particularly limited, and it is sufficient that the powder has an appropriate handleability.
  • the volume-based cumulative 50% diameter (D 50 ) measured by the laser diffraction / scattering method may be preferably 20 to 100 ⁇ m.
  • the lower limit may be more preferably 30 ⁇ m or more, further preferably 40 ⁇ m or more, and the upper limit may be more preferably 90 ⁇ m or less, further preferably 80 ⁇ m or less.
  • SALD particle size distribution meter
  • the measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
  • the powders of the first to fourth embodiments can be produced through an appropriate production method.
  • two preferable production methods first production method and second production method for producing the powders of the first to fourth embodiments will be described.
  • the method for producing a powder of a compound represented by the general formula (A) (first production method) is, for example, -By putting the raw material containing the compound represented by the general formula (A) and the aqueous dispersion medium in a container and heating the raw material, the raw material is melted in the presence of the aqueous dispersion medium, and the melted product of the raw material is obtained.
  • a melting step to obtain a heterogeneous liquid containing an aqueous dispersion medium ⁇ Crystallization process to obtain crystals by crystallizing the melt by lowering the temperature of the non-uniform liquid, Can be included.
  • the lower limit of this solubility may be zero, but the solubility is usually 0.5 [g / 100 g] or more.
  • Melting temperature T 1 of raw material means the lowest temperature at which all powdered (solid) raw material melts and loses its original form.
  • the fact that all the raw material has melted is (i) a method of visually observing the state of the raw material in the container and confirming that no powdery (solid) raw material is found, (ii) from inside the container. It can be confirmed by a method of quickly visually observing the extracted aqueous layer and confirming that the raw material does not remain in the powder form (solid form).
  • the first manufacturing method can also be described as follows.
  • -In the melting step the raw material containing the compound (A) is heated in an aqueous dispersion medium and melted (not melted) at a temperature T 1 to obtain a melt.
  • Aqueous dispersion medium Briefly, a compound at the temperature T 1 (A) "poor solvent” in the (unlikely liquid by dissolving the compound (A)).
  • T 1 a compound at the temperature T 1 (A) "poor solvent” in the (unlikely liquid by dissolving the compound (A)).
  • a heterogeneous liquid containing a melt of the raw material and an aqueous dispersion medium can be obtained.
  • the melt in the non-uniform liquid is crystallized.
  • the amount of Ca ions and the like can be reduced by moving Ca ions and the like from the raw material material side to the aqueous dispersion liquid side at the interface between the melt of the raw material and the aqueous dispersion. This is preferable from the viewpoint of producing the powder of the first embodiment (less Ca ions).
  • the raw material since the raw material is not positively “dissolved” (it does not go through a state in which the solute and the solvent are completely and uniformly mixed), Ca ions and the like, which are impurities derived from the solvent such as water, etc. However, it is considered that the raw material is suppressed from being incorporated into the recrystallized substance. Similarly, it is considered that Ca ions and the like, which are impurities once dissolved from the raw material, are suppressed from being "re-incorporated” into the crystallized raw material. These are also considered to be related to the fact that the amount of impurities such as Ca ions can be reduced.
  • BIS-AF by itself does not melt when heated to 100 ° C. (boiling point of water), but BIS-AF in water melts when heated to 100 ° C. (or lower temperature).
  • BIS-AF in water melts when heated to 100 ° C. (or lower temperature).
  • the melting point of BIS-AF is lowered by hydration.
  • Patent Document 3 For known information, refer to, for example, the above-mentioned Patent Document 3.
  • the first manufacturing method also has the additional advantage of having a small environmental load. Specifically, in carrying out the first production method, an aqueous dispersion is mainly used, and an organic solvent (a good solvent of compound (A)) is unnecessary. That is, by adopting the above manufacturing method, the use of organic solvent can be reduced, so that the environmental load can be reduced.
  • an organic solvent a good solvent of compound (A)
  • the -Melting step Normally, in the melting step, the raw material containing the compound (A) and the aqueous dispersion medium are heated in a container equipped with a stirring means and a heating means. By doing so, a heterogeneous liquid containing a melt of the raw material and an aqueous dispersion medium can be obtained. By heating with stirring, the non-uniform liquid usually becomes a suspended liquid. When agitated or stopped and allowed to stand, the non-uniform liquid is usually in a two-layer separated state.
  • the aqueous dispersion can contain substantially only water.
  • the amount of alcohol in the finally obtained compound (A) can be made substantially zero.
  • the solubility of the compound (A) in water is very small, there is an advantage that the amount of the compound (A) contained in the waste liquid can be reduced.
  • the aqueous dispersion can include water and alcohol.
  • the ratio of alcohol in the aqueous dispersion medium is usually 30% by mass or less, preferably 1 to 30% by mass, and more preferably 5 to 25% by mass. If the proportion of alcohol is too high, the raw material may not be properly dispersed in the aqueous dispersion and many may "dissolve". Therefore, the ratio of alcohol in the aqueous dispersion is preferably about the above.
  • T 1 is higher than 90 ° C. It tends to be low (about 30 to 90 ° C).
  • T 1 is lowered, delicate temperature adjustment becomes easy, and for example, crystal growth may be facilitated in a later crystallization step.
  • the effect of reducing impurities such as Ca ions (the more the aqueous dispersion is used, the easier it is for Ca ions in the raw material to move to the water-based dispersion) and the cost. It may be set appropriately from the balance of.
  • the amount of the aqueous dispersion with respect to 100 parts by mass of the raw material is usually 100 to 3000 parts by mass, preferably 200 to 1500 parts by mass.
  • the temperature T 1 varies depending on the specific structure of the compound (A) and the composition of the aqueous dispersion.
  • the heating temperature and time required in the melting step may be appropriately set accordingly.
  • the total amount of the compound (A) excluding the portion dissolved in the aqueous dispersion may be melted.
  • the temperature of the non-uniform liquid obtained in the melting step is lowered to crystallize the melt in the non-uniform liquid.
  • a compound in which Ca ions and the like are small and the particle size distribution is appropriately controlled for example, D m is 75 to 150 ⁇ m as in the first embodiment
  • the powder of (A) can be obtained. Further, by appropriately selecting the specific conditions for lowering the temperature, the powder of the compound (A) having a relatively small half-value width of the XRD spectrum can be obtained, probably because the size of the crystallite is controlled.
  • the crystallization step in the first process is different from the general crystallization step, that is, the crystallization of a substance dissolved in a uniform "solution".
  • a general crystallization step it is necessary to gradually lower the temperature of the solution as the crystals precipitate.
  • the temperature of the non-uniform liquid may be lowered to a certain temperature or less (less than the melting temperature), and the temperature does not necessarily have to be "gradually lowered". Most of compound (A) is not “melted” but simply "melted”, so as long as the temperature is kept below a certain temperature (less than the melting temperature), compound (A) Most of them crystallize (solidify).
  • the obtained crystal (final product) is different from the conventional product.
  • the aqueous dispersion medium contains alcohol
  • a certain amount of the compound (A) is "dissolved" in the dispersion medium, so that the temperature lowering operation may be performed at an appropriate rate.
  • the temperature may be lowered after the temperature is maintained at a constant temperature lower than the melting temperature.
  • the temperature T 2 in the crystallization step is preferably 1 to 10 ° C. lower than the temperature T 1 and more preferably 1 to 8 ° C. lower.
  • the system may be maintained at the above temperature T 2 (within a range of 1 to 10 ° C. lower than the temperature T 1 ), preferably for 30 minutes or longer, more preferably 60 minutes or longer. preferable.
  • the temperature T 2 for a sufficiently long time, Ca ions and the like were sufficiently reduced, and the particle size distribution was appropriately controlled (for example, D m is 75 to 150 ⁇ m as in the first embodiment). Easy to obtain crystals.
  • the time for maintaining the temperature T 2 in the crystallization step is preferably, for example, 300 minutes or less.
  • the crystallization step is preferably carried out while stirring the non-uniform liquid.
  • stirring is performed in the melting step, it is preferable to continue stirring as it is. By doing so, it is easy to sufficiently reduce the amount of impurities such as Ca ions.
  • the crystal growth is appropriately controlled and the particle size distribution is appropriately controlled (for example, D m is 75 to 150 ⁇ m as in the first embodiment). Easy to get.
  • the above stirring is preferably performed at a speed of 50 to 500 rpm, and more preferably at a speed of 150 to 300 rpm.
  • seed crystals may or may not be used.
  • the amount of the seed crystal added can be about 1/1000 to 1/100 of the compound (A) dispersed in the aqueous dispersion medium in terms of mass ratio.
  • the seed crystal is not particularly limited as long as it is a solid compound (A).
  • the system is usually cooled to room temperature (about 25 ° C.).
  • the cooling conditions are not particularly limited. It may or may not be naturally cooled.
  • a large amount of the compound (A) is not precipitated by cooling.
  • the aqueous dispersion medium dissolves a small amount of the compound (A)
  • some crystals are precipitated by cooling. From the viewpoint of precise adjustment of the amount of Ca ions and the like and the particle size distribution, it is preferable that the cooling is gently performed at about 0.1 to 0.3 [° C./min].
  • the obtained crystals can be recovered by, for example, vacuum filtration, washed with water, and dried under reduced pressure in an environment of about 20 to 50 ° C. to obtain the final powder.
  • the method for producing a powder of a compound represented by the general formula (A) includes, for example, a series of procedures such as the following steps 1 to 4. By such a procedure, the particle size distribution was appropriately controlled (for example, D 50 is 50 to 100 ⁇ m and D 50 / D ave is 1.1 to 1.5 as in the second embodiment). A powder of compound (A) can be obtained.
  • a substance containing a chemical structure represented by the general formula (A) is prepared.
  • a raw material can be obtained, for example, by the method described in Patent Document 2 described above.
  • Commercially available products may be used as raw materials.
  • Step 2 Dissolution in organic solvent (heating, etc.)
  • the raw material prepared in step 1 is put into an organic solvent. Then, the organic solvent is heated with stirring to dissolve the raw material in the organic solvent.
  • the organic solvent it is preferable to use a mixed solvent containing the poor solvent and the good solvent of the compound (A). As a result, in the subsequent (3) recrystallization, the crystals tend to grow slowly, and the particle size distribution is appropriately controlled (for example, as in the second embodiment, D 50 and D 50 / D ave). Easy to obtain (properly controlled) powder.
  • the poor solvent examples include alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and ethylcyclohexane, and n-pentane, n-hexane, isohexane, n-heptane, n-octane, isooctane, n-decane and the like.
  • aliphatic hydrocarbon solvent can be mentioned.
  • good solvents include ester solvents such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, amyl acetate, isoamyl acetate, methyl lactate, ethyl lactate, and butyl lactate.
  • / Good solvent 95/5 to 80/20.
  • step 2 the organic solvent is heated to, for example, about 60 to 80 ° C. This heating and stirring completely dissolves the raw material in the organic solvent.
  • the amount of the raw material added to the organic solvent is adjusted so that the organic solvent is completely dissolved when heated to about 60 to 80 ° C., but precipitation occurs in step 3 (lowering temperature) described later.
  • This amount may be appropriately set based on the solubility of the raw material, the organic solvent used, the heating temperature, and the like.
  • the amount of the raw material used can be about 100 g per 1000 g of the organic solvent.
  • Step 3 Temperature lowering / addition of seed crystals / stirring
  • the organic solvent heated to about 60 to 80 ° C. and completely dissolved in the raw material was slowly brought to about 55 ° C. over about 30 minutes to 3 hours. To cool down.
  • the solid compound (A) is added to the organic solvent as a seed crystal.
  • the particle size distribution is finally appropriately controlled by using the seed crystal (for example, the second). It is easy to obtain the powder of the compound (A) in which D 50 and D 50 / D ave are controlled as in the embodiment.
  • the amount of the seed crystal added can be about 1/1000 to 1/100 of the raw material dissolved in the organic solvent in the step 2 in terms of mass ratio.
  • the seed crystal is not particularly limited as long as it is a solid compound (A).
  • a seed crystal obtained according to the method described in Examples of Patent Document 2 described above can be used.
  • a commercially available solid compound (A) can also be used as a seed crystal.
  • the organic solvent is stirred for about 30 minutes to 3 hours while maintaining the temperature of about 55 ° C. to precipitate the crystal.
  • Step 4 Cooling After the step 3, the organic solvent is slowly cooled to about 30 to 40 ° C. for about 1 to 5 hours while stirring. This causes the crystals to grow.
  • the obtained crystals are collected by vacuum filtration and dried under reduced pressure in an environment of about 20 to 50 ° C. By doing so, it is possible to obtain a powder having an appropriately controlled particle size distribution and the like.
  • a solution containing the compound represented by the general formula (A) can be produced by using the solvent and at least one of the powders of the first to fourth embodiments. By using this solution, various low molecular weight compounds, oligomers, polymers and the like can be produced.
  • the first to fourth embodiments may be added as it is to the solvent, and the mixture may be stirred or dissolved.
  • the first to fourth embodiments may be added. At least one of the powders of the embodiment may be finely divided to obtain a finely divided powder, and at least the finely divided powder may be added to a solvent and stirred or dissolved.
  • the industrial handleability of the powders of the first to fourth embodiments is good.
  • the mode diameter D m when the mode diameter D m is 75 to 150 ⁇ m, there are advantages such as “good filterability” and “the drying time when drying the wet powder can be shortened”. ..
  • the mode diameter D m is relatively large, 75 to 150 ⁇ m, there is a concern that it may take some time to dissolve depending on the type of solvent. Therefore, it may be preferable to produce the solution as described in (ii) above.
  • miniaturization is not particularly limited.
  • a typical miniaturization method is pulverization.
  • Industrially, pulverization can be performed using devices such as jet mills, roller mills, hammer mills, pin mills, rotary mills, vibration mills, planetary mills, and bead mills.
  • pulverization can be performed using devices such as jet mills, roller mills, hammer mills, pin mills, rotary mills, vibration mills, planetary mills, and bead mills.
  • at least one of the powders of the first to fourth embodiments is put into a solvent, and the undissolved powder is taken out (for example, by filtration) before being completely dissolved to be finely divided. Powder may be obtained.
  • At least one of the powders of the first to fourth embodiments is put into a solvent in an amount that does not dissolve the entire amount of the powder, and after the dissolution of the powder is saturated, it is not dissolved.
  • Fine powder may be obtained by taking out the powder of.
  • the solution containing the undissolved powder may be used as it is.
  • the degree of miniaturization is not particularly limited.
  • the degree of miniaturization may be determined by balancing the cost required for miniaturization with the merit of performing miniaturization (for example, the above-mentioned improvement in solubility).
  • the Dave may be 1/20 to 1/2, more preferably 1/15 to 1/4 before and after miniaturization (preferably pulverization).
  • D ave of the powder after fine (preferably crushed) is preferably 0.1 ⁇ 15 [mu] m, and more preferably may be such that the 0.5 ⁇ 10 [mu] m.
  • the solvent that can be used in producing the solution of compound (A) can be appropriately selected according to various purposes.
  • the solvent that can be used is not particularly limited as long as the compound (A) is dissolved.
  • amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphate triamide, and N-methyl-2-pyrrolidone, methanol, ethanol, and 1-propanol.
  • Niterite solvents such as acetonitrile, propanenitrile, benzonitrile, aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, cumene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2,2- Examples thereof include halogen-based solvents such as tetrachloroethane, and lactone-based solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • the solvent may be used alone or in combination of two or more.
  • Example 1 to 5 and Comparative Examples 1 to 6 The following Examples 1 to 5 and Comparative Examples 1 to 6 are, in particular, Examples and Comparative Examples for explaining the first embodiment in detail.
  • Example 1 25.0 g (74.4 mmol) of BIS-AF powder manufactured by Central Glass Co., Ltd. was collected from a reagent bottle and placed in a glass container made of borosilicate glass having a volume of 500 mL equipped with a stirrer and a cooling condenser. Then, 225.0 g of pure water was added into the container. Then, the temperature inside the container was raised to 95 ° C. while stirring. While the temperature was being raised, the BIS-AF powder began to melt, and the inside of the container became suspended. The temperature was maintained at 95 ° C. and the mixture was stirred for 1 hour.
  • the internal temperature was slightly lowered from 95 ° C., and the mixture was stirred for 1 hour while maintaining the temperature of 92 to 94 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 75 ° C. under reduced pressure (1 kPa or less) for 8 hours using a vacuum dryer.
  • the BIS-AF powder obtained after drying was 24.1 g, and the yield was 96%.
  • Example 2 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 202.5 g of pure water and 22.5 g of methanol were added into the container, and the temperature inside the container was raised to 66 ° C. with stirring. While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
  • the mixture was stirred for 1 hour while maintaining an internal temperature of 60 to 65 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer. The BIS-AF powder obtained after drying was 22.9 g, and the yield was 92%.
  • Example 3 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 112.5 g of pure water and 12.5 g of methanol were added into the container, and the temperature inside the container was raised to 66 ° C. with stirring. While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 2 hours.
  • the mixture was stirred for 1 hour while maintaining an internal temperature of 59 to 65 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer. The BIS-AF powder obtained after drying was 23.4 g, and the yield was 94%.
  • Example 4 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 100.0 g of pure water and 25.0 g of methanol were added into the container, and the temperature inside the container was raised to 40 ° C. with stirring. While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 2 hours.
  • the mixture was stirred for 1 hour while maintaining an internal temperature of 34 to 39 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 10 ° C./1 hour. The room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer. The BIS-AF powder obtained after drying was 23.0 g, and the yield was 92%.
  • Example 5 100.0 g (298 mmol) of BIS-AF powder manufactured by Central Glass Co., Ltd. was collected from a reagent bottle and placed in a glass container made of borosilicate glass having a volume of 2000 mL equipped with a stirrer and a cooling condenser. Then, 425.0 g of pure water and 75.0 g of methanol were added into the container. Then, the temperature inside the container was raised to 55 ° C. while stirring. While the temperature was being raised, the BIS-AF powder began to melt, and the inside of the container became suspended. The temperature was maintained at 55 ° C. and the mixture was stirred for 1 hour.
  • the internal temperature was slightly lowered from 55 ° C., and the mixture was stirred for 1 hour while maintaining the temperature of 49-50 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 300 mL of pure water. The washed BIS-AF was dried at 75 ° C. under reduced pressure (1 kPa or less) for 8 hours using a vacuum dryer.
  • the BIS-AF powder obtained after drying was 95.1 g, and the yield was 95%.
  • Comparative Example 1 is an example in which an attempt is made to reduce Ca ions by simple washing with water.
  • BIS-AF powder 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 125.0 g of pure water was added, and the BIS-AF powder was washed while stirring at room temperature (about 20 ° C.) for 1 hour. After the washing was completed, the mixture was separated and collected by vacuum filtration using a suction filter equipped with a filter paper. Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours. The BIS-AF powder obtained after drying was 24.0 g, and the yield was 96%.
  • Comparative Example 2 is an example in which the reduction of Ca ions by reprecipitation, which is often attempted to reduce the amount of metal in the crystalline compound, is attempted.
  • Comparative Example 3 is an example in which an attempt was made to reduce Ca ions using activated carbon with reference to the description in Patent Document (CN104528717A).
  • BIS-AF was reprecipitated by gradually dropping this methanol solution into 200 g of pure water. After precipitation of BIS-AF, BIS-AF was recovered by vacuum filtration using a suction filter equipped with a filter paper. Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 8 hours. The BIS-AF powder obtained after drying was 21.9 g, and the yield was 88%.
  • Comparative Example 4 is an example in which the activated carbon is replaced with an ion exchange resin in Comparative Example 3.
  • BIS-AF powder 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 50.0 g of methanol and 2.0 g of an ion exchange resin (manufactured by Sumika Chemtex Co., Ltd., trade name, Duolite C255LFH) were added to the container, and the mixture was stirred at room temperature (about 20 ° C.) for 5 hours. After the stirring was completed, the ion exchange resin was removed by filtration using a suction filter equipped with a filter paper, and the methanol solution of BIS-AF was recovered.
  • an ion exchange resin manufactured by Sumika Chemtex Co., Ltd., trade name, Duolite C255LFH
  • BIS-AF was reprecipitated by gradually dropping this methanol solution into 200 g of pure water. After precipitation of BIS-AF, BIS-AF was recovered by vacuum filtration using a suction filter equipped with a filter paper. Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 7 hours. The BIS-AF powder obtained after drying was 22.2 g, and the yield was 89%.
  • Comparative Example 5 is an example in which activated carbon was replaced with activated clay in Comparative Example 3.
  • BIS-AF powder 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 50.0 g of methanol and 2.0 g of activated clay (manufactured by Mizusawa Industrial Chemicals, Inc., trade name, galleon earth) were added to the container, and the mixture was stirred at room temperature (about 20 ° C.) for 5 hours. After the stirring was completed, the active clay was removed by filtration using a suction filter equipped with a filter paper, and the methanol solution of BIS-AF was recovered.
  • activated clay manufactured by Mizusawa Industrial Chemicals, Inc., trade name, galleon earth
  • Comparative Example 6 is an example referring to the matters described in Japanese Patent Application Laid-Open No. 2007-246819.
  • a mixed solvent of water and alcohol ethylene glycol
  • Comparative Example 6 was completely dissolved in the mixed solvent (became a uniform single layer), and Comparative Example 6 was essentially different from the present embodiment. different.
  • BIS-AF powder 150 g was put into a 2 L volume borosilicate glass container equipped with a stirrer and a cooling condenser from the same reagent bottle as in Example 1, and 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the container. .. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 85 ° C. The temperature was maintained as it was, and the mixture was stirred for 1 hour. After 1 hour, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. Then, a uniform solution was confirmed.
  • the flask was cooled at a temperature lowering rate of 10 ° C./hour until the internal temperature of the flask reached 25 ° C. Then, the crystals began to gradually precipitate (recrystallize) at the same time as the temperature lowering started.
  • the precipitated crystals were collected by filtration under reduced pressure (1 kPa or less) and dried under reduced pressure at 60 ° C.
  • the BIS-AF powder obtained after drying was 137.0 g, and the yield was 91%.
  • the concentration of Na ions was 0.2 ppm, and the concentration of Ca ions was 0.3 ppm.
  • ⁇ Measurement> (Diameter distribution) Using SALD-2200, a particle size distribution meter manufactured by Shimadzu Corporation, the particle size distribution of the obtained powder BIS-AF dispersed in an n-decane solvent was measured. At the time of measurement, BIS-AF and n-decane solvent were mixed in advance on a slide glass to prepare a paste-like BIS-AF. Then, paste-like BIS-AF is gradually added to n-decane, which is a dispersion solvent, and the amount of addition is adjusted so that the absorbance value is 0.1 L / (mol ⁇ cm) or less, and the particle size distribution is distributed. Was measured. By analyzing the obtained measurement results (particle size distribution), D m and the like were calculated.
  • Example / Comparative Example 0.4 g of each BIA-AF powder obtained in Example / Comparative Example was dissolved in 2.0 mL of t-butyl methyl ether to prepare a solution.
  • This solution and 2.0 mL of ultrapure water were placed in a separatory funnel, and the separatory funnel was vigorously shaken to extract a metal ion component on the ultrapure water (aqueous layer) side.
  • the separating funnel was allowed to stand, and the side of the separated aqueous layer was used as an analytical sample solution for analysis of metal ion components.
  • the metal ion content of this analytical sample solution was measured using an ion chromatography device (CS-2100) manufactured by Thermo Fisher Scientific.
  • a separation column (inner diameter 4 mm ⁇ 250 mm)) and a guard column (Ion Pac CG16 (inner diameter 4 mm ⁇ 100 mm)) were used.
  • a guard column (Ion Pac CG16 (inner diameter 4 mm ⁇ 100 mm)
  • the eluent 30 mM methanesulfonic acid was used, the eluent flow rate was 1.0 mL / min, and the temperature was 35 ° C.
  • Example 2 (Alcohol content)
  • 1.00 g of dried BIS-AF was dissolved in 1.00 g of ethyl acetate, and gas chromatography analysis was performed.
  • the methanol content was less than 100 ppm based on the peak area excluding ethyl acetate.
  • Comparative Example 6 1.00 g of BIS-AF after drying was dissolved in 1.00 g of ethyl acetate, and gas chromatography analysis was performed.
  • the ethylene glycol content was 500 ppm based on the peak area excluding ethyl acetate.
  • the filterability of the BIS-AF powders of Examples 1 to 5 was good. Further, from the evaluation results of the water content, it was found that the drying time when drying the BIS-AF powders of Examples 1 to 5 was short. That is, the BIS-AF powders of Examples 1 to 5 were excellent in industrial handleability.
  • the Ca ion content of the BIS-AF powders of Examples 1 to 5 was less than 1 ppm. From this, it was found that the BIS-AF powders of Examples 1 to 5 are preferably used in various technical fields (for example, manufacturing of electronic devices).
  • Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-3 The following Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-3 are, in particular, Examples and Comparative Examples for explaining the second embodiment in detail.
  • Example 2-1 First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C. After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • 1 g of BIS-AF manufactured by Central Glass Co., Ltd.
  • the target BIS-AF was precipitated by stirring for a time. After that, the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 24 g of BIS-AF in powder form.
  • Example 2-2 First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C. After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • the target BIS-AF was precipitated by stirring for a time. After that, the mixture was cooled over 4 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 27 g of BIS-AF in powder form.
  • Example 2-3 First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-heptane and 200 g of ethyl acetate were poured into the flask. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C. After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • the desired BIS-AF was precipitated.
  • the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration.
  • the recovered crystals were dried under reduced pressure at 30 ° C. to obtain 23 g of BIS-AF in powder form.
  • Comparative Example 2-1 is an example in which powder is produced by a method according to the example of Patent Document 2 (precipitation of BIF-AF by neutralization reaction).
  • 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) and 52 g of sodium hydroxide were placed in a 3 L flask made of borosilicate glass equipped with a stirring motor and a thermometer. Then, 1800 g of water was added while paying attention to heat generation, and the mixture was stirred to obtain a uniform solution (the salt of BIF-AF was dissolved). Then, the mixture was cooled to an internal temperature of 10 ° C.
  • Comparative Example 2-2 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document 1 (the main component of the solvent is water).
  • 150 g of BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the flask.
  • BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
  • BIS-AF was precipitated while cooling at a temperature lowering rate of 10 ° C./hour until the internal temperature of the flask reached 25 ° C.
  • the precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 135 g of powdery BIS-AF was obtained.
  • Comparative Example 2-3 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document (CN104528717A) (precipitation of BIS-AF by reprecipitation).
  • 800 g of ion-exchanged water was poured into a 1 L flask made of borosilicate glass equipped with a stirring motor and a thermometer.
  • a solution prepared by dissolving 100 g of BIS-AF (manufactured by Central Glass Co., Ltd.) in 100 g of methanol was added dropwise thereto at an internal temperature of 20 to 23 ° C., and BIS-AF was reprecipitated while stirring the inside of the flask.
  • the precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 89 g of powdery BIS-AF was obtained.
  • Table 3 summarizes information on particle size.
  • the bulk density was measured using a JIS bulk specific gravity measuring instrument manufactured by Tsutsui Rikagaku Kikai.
  • the bulk specific gravity measuring instrument is provided with a funnel having a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, a shaking plate having a mesh opening of 0.5 mm on the funnel, and a cylindrical 30 mL receiver under the funnel nozzle.
  • 50 g of BIS-AF powder was taken on a shaking plate and slowly dropped into a receiver using a brush to allow natural filling. After scraping off the BIS-AF powder overflowing from the receiver, the looseness density was calculated by measuring the weight of the receiver. Further, when the BIS-AF powder was dropped, the hardness density was calculated from the weight obtained by compressing and filling the lower part of the receiver while lightly striking it.
  • Table 4 summarizes the results of various measurements / evaluations.
  • Examples 3-1 to 3-4 and Comparative Examples 3-1 to 3-3 The following Examples 3-1 to 3-4 and Comparative Examples 3-1 to 3-3 are, in particular, Examples and Comparative Examples for explaining the third embodiment in detail.
  • Example 3-1 First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C. After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • 1 g of BIS-AF manufactured by Central Glass Co., Ltd.
  • the target BIS-AF was precipitated by stirring for a time. After that, the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 24 g of BIS-AF in powder form.
  • Example 3-2 First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C. After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • the target BIS-AF was precipitated by stirring for a time. After that, the mixture was cooled over 4 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 27 g of BIS-AF in powder form.
  • Example 3-3 First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-heptane and 200 g of ethyl acetate were poured into the flask. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C. After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • the desired BIS-AF was precipitated.
  • the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration.
  • the recovered crystals were dried under reduced pressure at 30 ° C. to obtain 23 g of BIS-AF in powder form.
  • Comparative Example 3-1 is an example in which powder is produced by a method according to the example of Patent Document 2 (precipitation of BIF-AF by neutralization reaction).
  • 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) and 52 g of sodium hydroxide were placed in a 3 L flask made of borosilicate glass equipped with a stirring motor and a thermometer. Then, 1800 g of water was added while paying attention to heat generation, and the mixture was stirred to obtain a uniform solution (the salt of BIF-AF was dissolved). Then, the mixture was cooled to an internal temperature of 10 ° C.
  • Comparative Example 3-2 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document 1 (the main component of the solvent is water).
  • 150 g of BIS-AF manufactured by Central Glass Co., Ltd.
  • BIS-AF manufactured by Central Glass Co., Ltd.
  • 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the flask.
  • BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
  • BIS-AF was precipitated while cooling at a temperature lowering rate of 10 ° C./hour until the internal temperature of the flask reached 25 ° C.
  • the precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 135 g of powdery BIS-AF was obtained.
  • Comparative Example 3-3 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document (CN104528717A) (precipitation of BIS-AF by reprecipitation).
  • 800 g of ion-exchanged water was poured into a 1 L flask made of borosilicate glass equipped with a stirring motor and a thermometer.
  • a solution prepared by dissolving 100 g of BIS-AF (manufactured by Central Glass Co., Ltd.) in 100 g of methanol was added dropwise thereto at an internal temperature of 20 to 23 ° C., and BIS-AF was reprecipitated while stirring the inside of the flask.
  • the precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 89 g of powdery BIS-AF was obtained.
  • the bulk density was measured using a JIS bulk specific gravity measuring instrument manufactured by Tsutsui Rikagaku Kikai.
  • the bulk specific gravity measuring instrument is provided with a funnel having a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, a shaking plate having a mesh opening of 0.5 mm on the funnel, and a cylindrical 30 mL receiver under the funnel nozzle.
  • 50 g of BIS-AF powder was taken on a shaking plate and slowly dropped into a receiver using a brush to allow natural filling. After scraping off the BIS-AF powder overflowing from the receiver, the looseness density was calculated by measuring the weight of the receiver. Further, when the BIS-AF powder was dropped, the hardness density was calculated from the weight obtained by compressing and filling the lower part of the receiver while lightly striking it.
  • Example 4-1 to 4-5 and Comparative Examples 4-1 to 4-3 The following Examples 4-1 to 4-5 and Comparative Examples 4-1 to 4-3 are, in particular, Examples and Comparative Examples for explaining the fourth embodiment in detail.
  • Example 4-1 25.0 g (74.4 mmol) of BIS-AF powder manufactured by Tokyo Chemical Industry Co., Ltd. was collected from a reagent bottle and placed in a glass container made of borosilicate glass having a volume of 500 mL equipped with a stirrer and a cooling condenser. Next, 202.5 g of pure water and 22.5 g of methanol were added into the container, and the temperature inside the container was raised to 65 ° C. with stirring. While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
  • the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
  • the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour.
  • the room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
  • the BIS-AF powder obtained after drying was 22.9 g, and the yield was 92%.
  • Example 4-2 BIS as in Example 4-1 except that the amount of BIS-AF powder was changed to 100.0 g (298 mmol), the amount of pure water was changed to 810.0 g, and methanol was changed to 90.0 g. -AF powder was obtained. The BIS-AF powder obtained after drying was 94.6 g, and the yield was 95%.
  • Example 4-3 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 4-1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. .. Then, 225.0 g of pure water was added into the container. Then, the temperature inside the container was raised to 95 ° C. while stirring. While the temperature was being raised, the BIS-AF powder began to melt, and the inside of the container became suspended. The temperature was maintained at 95 ° C. and the mixture was stirred for 1 hour.
  • the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour.
  • the room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 75 ° C. under reduced pressure (1 kPa or less) for 8 hours using a vacuum dryer.
  • the BIS-AF powder obtained after drying was 24.1 g, and the yield was 96%.
  • Example 4-4 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 4-1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 112.5 g of pure water and 12.5 g of methanol were added into the container, and the temperature inside the container was raised to 65 ° C. with stirring. While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
  • the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour.
  • the room temperature at this time was about 25 ° C.
  • the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
  • the BIS-AF powder obtained after drying was 23.5 g, and the yield was 94%.
  • Example 4-5 25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 4-1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 100.0 g of pure water and 25.0 g of methanol were added into the container, and the temperature inside the container was raised to 45 ° C. with stirring. While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
  • the precipitated BIS-AF was separated and collected by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
  • the BIS-AF powder obtained after drying was 24.1 g, and the yield was 96%.
  • BIS-AF manufactured by Tokyo Chemical Industry Co., Ltd.
  • BIS-AF manufactured by Tokyo Chemical Industry Co., Ltd.
  • X-ray diffraction (XRD) spectrum The X-ray diffraction (XRD) spectrum of the powder is based on the measurement method and measurement conditions described above.
  • Table 7 summarizes information on the X-ray diffraction spectrum.
  • the dispersion liquid in which the BIS-AF powder was dispersed in water was passed through a filter equipped with a filter paper and filtered to obtain a water-wet BIS-AF powder.
  • the obtained BIS-AF powder was placed in a vacuum dryer manufactured by Yamato Scientific Co., Ltd., dried at 0.5 KPa and 60 ° C., and the water content of the powder was measured.
  • the dissolution rates of the BIS-AF powders of Examples 4-1, 4-4 and 4-5 were good. Further, from the evaluation results of the water content, it was found that the drying time when drying the BIS-AF powders of Examples 4-1, 4-4 and 4-5 was short. That is, the BIS-AF powder of Example 4-1 and the like was excellent in industrial handleability.
  • Example 4-1 the "moisture absorption test” was performed as follows. (Hygroscopic test) 10 g of BIS-AF powder was weighed on a charley, and the water content of the BIS-AF powder was measured with a capacitive Karl Fischer (MKV-710B, manufactured by Kyoto Denshi Kogyo Co., Ltd.). In addition, 10 g of BIS-AF powder is weighed in a charley and allowed to stand in a constant temperature and humidity chamber at a temperature of 30 ° C. and a humidity of 98%. MKV-710B, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the water content of the BIS-AF powder of Example 4-1 did not change even after 24 hours, and it was found that it was difficult to absorb moisture. That is, the BIS-AF powder of Example 4-1 was excellent in industrial handleability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A powder for a compound represented by general formula (A). For example, the mode diameter Dm for this powder, measured using the laser diffraction scattering method, is 75–150 μm and the Ca ion content is less than 1 ppm. In general formula (A), R1–R8 each independently indicate a hydrogen atom, a C1–4 alkyl group, a halogen atom, or an amino group. This powder can be obtained by a method including, for example, a melting step (i) in which a feedstock substance is melted in the presence of an aqueous carrier fluid and an heterogeneous fluid is obtained, by the feedstock substance, which includes a compound indicated by general formula (A), and an aqueous carrier fluid (a poor solvent of the compound indicated in general formula (A)) being put into a container and heated; and a crystallization step (ii) in which the melt is crystallized by reducing the temperature of the heterogeneous fluid.

Description

粉体、粉体の製造方法および溶液の製造方法Powder, powder manufacturing method and solution manufacturing method
 本発明は、粉体、粉体の製造方法および溶液の製造方法に関する。より具体的には、後掲の一般式(A)で表されるフッ素化ビスフェノール化合物の粉体、その粉体の製造方法、および、その粉体を用いた溶液の製造方法に関する。 The present invention relates to a powder, a method for producing a powder, and a method for producing a solution. More specifically, the present invention relates to a powder of a fluorinated bisphenol compound represented by the general formula (A) described later, a method for producing the powder, and a method for producing a solution using the powder.
 2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン(以下「BIS-AF」とも略記)に代表されるフッ素化ビスフェノール化合物は、各種樹脂の原料などとしてしばしば用いられている。 Fluorinated bisphenol compounds typified by 2,2-bis (4-hydroxyphenyl) hexafluoropropane (hereinafter also abbreviated as "BIS-AF") are often used as raw materials for various resins.
 一例として、エポキシ樹脂組成物に関する文献である特許文献1には、製造例1として、エチレングリコールおよび純水の混合溶媒中で、BIS-AFを結晶化するなどして、その白色粉末を得たことが記載されている。 As an example, in Patent Document 1, which is a document relating to an epoxy resin composition, as Production Example 1, BIS-AF was crystallized in a mixed solvent of ethylene glycol and pure water to obtain a white powder thereof. It is stated that.
 別の例として、特許文献2の実施例などには、アルカリ水溶液に溶かしたBIS-AFを塩酸で中和して析出させ、不純物であるヘキサフルオロアセトンが低減されたBIS-AFの固形物を得たことが記載されている。 As another example, in the examples of Patent Document 2, a solid BIS-AF in which the impurity hexafluoroacetone is reduced by neutralizing and precipitating BIS-AF dissolved in an alkaline aqueous solution with hydrochloric acid is used. It is stated that it was obtained.
 さらに別の例として、特許文献3の特許請求の範囲や実施例などには、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンと水を常温以上に加熱し、溶解液(水溶液)を冷却して析出する固体を得る、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの精製法が記載されている。 As yet another example, in the claims and examples of Patent Document 3, 2,2-bis (4-hydroxyphenyl) hexafluoropropane and water are heated to room temperature or higher, and a solution (aqueous solution) is prepared. A method for purifying 2,2-bis (4-hydroxyphenyl) hexafluoropropane is described, which obtains a solid that precipitates by cooling.
特開2007-246819号公報Japanese Unexamined Patent Publication No. 2007-246819 特開平4-054144号公報Japanese Unexamined Patent Publication No. 4-054144 特開平2-067239号公報Japanese Unexamined Patent Publication No. 2-067239
 BIS-AFに代表されるフッ素化ビスフェノール化合物は、工業的には、通常、粉体として製造・販売される。また、粉体のまま、各種工業プロセスに用いられることがある。
 本発明者らの知見によれば、従来の粉体状のフッ素化ビスフェノール化合物には、工業的な取り扱い性の観点で改善の余地があった。「工業的な取り扱い性」とは、例えば、以下項目のうち1または2以上のことをいう。
・濾過性が良好
・濡れた粉体を乾燥させる際の乾燥時間が短い
・吸湿しにくい
・粉体の流動性が良好
・溶媒溶解性が良好、具体的には、溶媒に速く溶ける
・塊状化(ブロッキング)しにくい
Fluorinated bisphenol compounds typified by BIS-AF are industrially usually manufactured and sold as powders. In addition, the powder may be used as it is in various industrial processes.
According to the findings of the present inventors, there is room for improvement in the conventional powdery fluorinated bisphenol compound from the viewpoint of industrial handleability. "Industrial handleability" means, for example, one or more of the following items.
・ Good filterability ・ Short drying time when drying wet powder ・ Difficult to absorb moisture ・ Good fluidity of powder ・ Good solvent solubility, specifically, quick dissolution in solvent ・ Agglomeration Difficult to (block)
 本発明はこのような事情に鑑みてなされたものである。本発明の目的の1つは、工業的な取り扱い性に優れた粉体状のフッ素化ビスフェノール化合物を提供することである。 The present invention has been made in view of such circumstances. One of the objects of the present invention is to provide a powdery fluorinated bisphenol compound having excellent industrial handleability.
 本発明者らは、以下の第1発明~第4発明を完成させた。 The present inventors have completed the following first to fourth inventions.
 第1発明は、以下である。 The first invention is as follows.
 以下一般式(A)で表される化合物の粉体であって、
 レーザ回折散乱法で測定されるモード径Dが75~150μmであり、
 Caイオンの含有量が1ppm未満である粉体。
A powder of a compound represented by the general formula (A) below.
The mode diameter D m measured by the laser diffraction / scattering method is 75 to 150 μm.
A powder having a Ca ion content of less than 1 ppm.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。 In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
 第2発明は、以下である。 The second invention is as follows.
 以下一般式(A)で表される化合物の粉体であって、
 レーザ回折散乱法で測定される体積基準累積50%径をD50とし、同法で測定される算術体積平均径をDaveとしたとき、
 D50は50~100μmであり、
 D50/Daveは1.1~1.5である粉体。
A powder of a compound represented by the general formula (A) below.
The volume-reduced cumulative 50% diameter measured by a laser diffraction scattering method and D 50, when the arithmetic volume average diameter measured by the law and the D ave,
D 50 is 50-100 μm
D 50 / D ave is a powder of 1.1 to 1.5.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
 第3発明は、以下である。 The third invention is as follows.
 以下一般式(A)で表される化合物の粉体であって、
 レーザ回折散乱法で測定される体積基準累積50%径D50が50~100μmであり、
 安息角が35~49°である粉体。
A powder of a compound represented by the general formula (A) below.
Volume-reduced cumulative 50% diameter D 50 measured by a laser diffraction scattering method is 50 ~ 100 [mu] m,
A powder with an angle of repose of 35 to 49 °.
Figure JPOXMLDOC01-appb-C000008
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。
Figure JPOXMLDOC01-appb-C000008
In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
 第4発明は、以下である。 The fourth invention is as follows.
 2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの粉体であって、
 X線回折スペクトルにおける2θ=22.3°付近のピークの半値幅が、0.050°以上0.180°以下であり、
 X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅が、0.050°以上0.120°以下であり、
 X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅が、0.040°以上0.120°以下である粉体。
2,2-Bis (4-hydroxyphenyl) hexafluoropropane powder
The half width of the peak near 2θ = 22.3 ° in the X-ray diffraction spectrum is 0.050 ° or more and 0.180 ° or less.
The half width of the peak near 2θ = 23.7 ° in the X-ray diffraction spectrum is 0.050 ° or more and 0.120 ° or less.
A powder having a peak width of 0.040 ° or more and 0.120 ° or less in the X-ray diffraction spectrum near 2θ = 25.8 °.
 また、本発明者らは、以下の粉体製法発明を完成させた。 In addition, the present inventors have completed the following invention of the powder manufacturing method.
 以下一般式(A)で表される化合物の粉体の製造方法であって、
 当該一般式(A)で表される化合物を含む原料物質と、水系分散媒とを容器に入れて熱することで、前記原料物質を前記水系分散媒の存在下で融解させ、前記原料物質の融解物と前記水系分散媒とを含む不均一液体を得る融解工程と、
 前記不均一液体を降温することで、前記融解物を結晶化させて結晶を得る結晶化工程と、
を含み、
 前記融解工程において、前記原料物質の融解温度Tにおける、前記水系分散媒の、前記一般式(A)で表される化合物の溶解度は、10[g/100g]以下である、粉体の製造方法。
Hereinafter, a method for producing a powder of a compound represented by the general formula (A).
By putting the raw material containing the compound represented by the general formula (A) and the aqueous dispersion medium in a container and heating the raw material, the raw material is melted in the presence of the aqueous dispersion medium, and the raw material is melted. A melting step of obtaining a non-uniform liquid containing a melt and the aqueous dispersion medium, and
A crystallization step of crystallizing the melt to obtain crystals by lowering the temperature of the non-uniform liquid.
Including
In the melting step, the melting temperature T 1 of the said raw material, said aqueous dispersion medium, the solubility of the compound represented by the general formula (A), 10 [g / 100g] or less, the production of the powder Method.
Figure JPOXMLDOC01-appb-C000009
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。
Figure JPOXMLDOC01-appb-C000009
In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
 また、本発明者らは、以下の溶液製法発明を完成させた。 In addition, the present inventors have completed the following invention of the solution manufacturing method.
 以下一般式(A)で表される化合物を含む溶液の製造方法であって、
 溶媒と、第1発明~第4発明の少なくともいずれかの粉体とを用い、当該一般式(A)で表される化合物の溶液を得る工程を含む、溶液の製造方法。
A method for producing a solution containing a compound represented by the general formula (A) below.
A method for producing a solution, which comprises a step of obtaining a solution of the compound represented by the general formula (A) using a solvent and at least one of the powders of the first to fourth inventions.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。 In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
 本発明の粉体は、工業的な取り扱い性に優れる。 The powder of the present invention is excellent in industrial handleability.
第2実施形態の粉体の粒径分布について説明するための図である。It is a figure for demonstrating the particle size distribution of the powder of 2nd Embodiment. 第2実施形態の粉体の粒径分布について説明するための図である。It is a figure for demonstrating the particle size distribution of the powder of 2nd Embodiment.
 以下、本発明の実施形態について、詳細に説明する。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
Hereinafter, embodiments of the present invention will be described in detail.
In the present specification, the notation "XY" in the description of the numerical range means X or more and Y or less unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「電子デバイス」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
In the notation of a group (atomic group) in the present specification, the notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent. For example, the "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
The term "electronic device" as used herein refers to an element to which electronic engineering technology is applied, such as a semiconductor chip, a semiconductor element, a printed wiring board, an electric circuit display device, an information communication terminal, a light emitting diode, a physical battery, and a chemical battery. , Devices, final products, etc.
 本明細書中、一般式(A)で表される化合物のことを「化合物(A)」と表記することがある。 In the present specification, the compound represented by the general formula (A) may be referred to as "compound (A)".
 本明細書において、第1発明の実施形態を第1実施形態と、第2発明の実施形態を第2実施形態と、第3発明の実施形態を第3実施形態と、第4発明の実施形態を第4実施形態と記載することがある。
 また、本明細書において、上掲の粉体製法発明の実施形態を、第1製法と記載することがある。一方、上掲の粉体製法発明には該当しないが、本発明の粉体(第1発明~第4発明の少なくともいずれか)を製造可能な粉体の製造方法を、第2製法と記載することがある。
In the present specification, the embodiment of the first invention is the first embodiment, the embodiment of the second invention is the second embodiment, the embodiment of the third invention is the third embodiment, and the embodiment of the fourth invention. May be referred to as the fourth embodiment.
Further, in the present specification, the embodiment of the above-mentioned powder manufacturing method invention may be described as the first manufacturing method. On the other hand, a method for producing a powder that does not correspond to the above-mentioned invention of the powder production method but can produce the powder of the present invention (at least one of the first to fourth inventions) is described as a second production method. Sometimes.
<粉体>
 第1~第3実施形態の粉体は、以下一般式(A)で表される化合物(化合物(A))の粉体である。また、第4実施形態の粉体は、以下一般式(A)において、R~Rのすべてが水素原子である化合物の粉体である。
<Powder>
The powders of the first to third embodiments are powders of a compound (compound (A)) represented by the following general formula (A). Further, the powder of the fourth embodiment is a powder of a compound in which all of R 1 to R 8 are hydrogen atoms in the following general formula (A).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。 In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
 一般式(A)において、R~Rの炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基などを挙げることができる。
 一般式(A)において、好ましくは、R~Rは、それぞれ独立に、水素原子またはアミノ基である。
 一般式(A)において、R~Rの少なくともいずれかが水素原子以外の基である場合、その水素原子以外の基は、R、R、R、Rのいずれかの位置に存在することが好ましい。化合物の合成のしやすさのためである。
 一般式(A)において、R~Rのうち、0~4つが水素原子以外の基であることが好ましく、0~2つが水素原子以外の基であることがより好ましい。
In formula (A), the alkyl group having 1 to 4 carbon atoms R 1 ~ R 8, methyl group, ethyl group, n- propyl group, an isopropyl group, n- butyl group, an isobutyl group, t- butyl group And so on.
In the general formula (A), preferably, R 1 to R 8 are independently hydrogen atoms or amino groups.
In the general formula (A), when at least one of R 1 to R 8 is a group other than a hydrogen atom, the group other than the hydrogen atom is at any position of R 2 , R 3 , R 6 , or R 7. It is preferable to be present in. This is because of the ease of synthesizing the compound.
In the general formula (A) , 0 to 4 of R 1 to R 8 are preferably groups other than hydrogen atoms, and 0 to 2 are more preferably groups other than hydrogen atoms.
 化合物(A)として具体的には、2,2ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン等が挙げられる。 Specifically, the compound (A) includes 2,2 bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxy-3-methylphenyl) hexafluoropropane, and 2,2-bis (3). -Ethyl-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) hexafluoropropane, 2,2-bis (3-fluoro-4-hydroxyphenyl) hexafluoro Propane, 2,2-bis (3-bromo-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-bis) Amino-4-hydroxyphenyl) hexafluoropropane and the like can be mentioned.
 特に、以下の化合物が、好ましい化合物(A)として挙げられる。 In particular, the following compounds are mentioned as preferable compounds (A).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(第1実施形態)
 第1実施形態の粉体の、レーザ回折散乱法で測定されるモード径(最頻径)Dは、75~150μm、好ましくは75~135μm、さらに好ましくは75~120mである。
 第1実施形態の粉体の、Caイオンの含有量は、1ppm未満、好ましくは0.7ppm以下、さらに好ましくは0.5ppm以下である。念のため説明しておくと、本明細書において、Caイオン(および後述のNaイオン)の含有量の「ppm」は、「粉体中のCaイオンの質量/粉体の質量」の百万分率である。質量%との関係は、1ppm=0.0001質量%となる。
(First Embodiment)
The mode diameter (mode diameter) D m of the powder of the first embodiment measured by the laser diffraction / scattering method is 75 to 150 μm, preferably 75 to 135 μm, and more preferably 75 to 120 m.
The Ca ion content of the powder of the first embodiment is less than 1 ppm, preferably 0.7 ppm or less, and more preferably 0.5 ppm or less. As a reminder, in the present specification, the "ppm" of the Ca ion (and Na ion described later) content is one million of "mass of Ca ion in powder / mass of powder". It is a fraction. The relationship with mass% is 1 ppm = 0.0001 mass%.
 第1実施形態の粉体の工業的な取り扱い性は良好である。具体的には、第1実施形態の粉体は、「濾過性が良い」「濡れた粉体を乾燥させる際の乾燥時間を短縮化できる」等の利点を有する。これら利点は、Dが75~150μmであることに起因していると推測される。
 詳細は不明であるが、おそらくは、Dが75μm以上であることにより、粒子間に適度な「すき間」が存在することとなり、液体が流れやすくなっているものと推測される。また、Dが150μm以下であることにより、その「すき間」が大きくなりすぎず、粒子間にそもそも多量の液体を保持しにくくなっているものと推測される。
The industrial handleability of the powder of the first embodiment is good. Specifically, the powder of the first embodiment has advantages such as "good filterability" and "the drying time when drying the wet powder can be shortened". It is presumed that these advantages are due to the D m being 75 to 150 μm.
The details are unknown, but it is presumed that when the D m is 75 μm or more, there is an appropriate “gap” between the particles, which makes it easier for the liquid to flow. Further, it is presumed that when D m is 150 μm or less, the “gap” does not become too large, and it is difficult to hold a large amount of liquid between the particles in the first place.
 また、本発明者らは、第1実施形態において粉体中のCaイオンの含有量を1ppm未満に制御するようにした。
 Caイオンは、一般的な工業用水に不可避的に含まれる成分である。よって、Caイオンの含有量を指標として、その量が1ppm未満となるように化合物(A)の粉体を製造すれば、得られる粉体中の、Caイオン以外の種々の微量不純物(工業用水由来)の量もあわせて低減しうる。すなわち、Caイオンの量が1ppm未満である化合物(A)は、Caイオンのみならず種々の不純物が少ないと考えられ、様々な技術分野に好ましく適用可能である。加えて、後述するように、Caイオンはイオンクロマトグラフィーにより測定可能であることから、量産化設備での工程管理を容易にすることもできる。
In addition, the present inventors have tried to control the content of Ca ions in the powder to less than 1 ppm in the first embodiment.
Ca ion is a component inevitably contained in general industrial water. Therefore, if the powder of compound (A) is produced so that the content of Ca ions is less than 1 ppm using the content of Ca ions as an index, various trace impurities (industrial water) other than Ca ions in the obtained powder can be produced. The amount of origin) can also be reduced. That is, the compound (A) in which the amount of Ca ions is less than 1 ppm is considered to have a small amount of not only Ca ions but also various impurities, and is preferably applicable to various technical fields. In addition, as will be described later, since Ca ions can be measured by ion chromatography, it is possible to facilitate process control in mass production equipment.
 ちなみに、Caイオンの含有量が1ppm未満であることは、直接的には、第1実施形態の粉体が、金属イオン量が少ないことが求められる電子デバイス製造用の素材として好ましく用いることができることを意味する。 By the way, the fact that the Ca ion content is less than 1 ppm means that the powder of the first embodiment can be directly used preferably as a material for manufacturing an electronic device that requires a small amount of metal ions. Means.
 Caイオンの含有量は、好ましくは0.7ppm以下、より好ましくは0.5ppm以下である。
 Caイオンは基本的に少ないほど好ましい。Caイオンの含有量はゼロ(装置の測定限界以下)であってもよい。現実的な観点からは、Caイオンの含有量は、例えば0.01ppm以上である。
The Ca ion content is preferably 0.7 ppm or less, more preferably 0.5 ppm or less.
Basically, the smaller the amount of Ca ions, the more preferable. The Ca ion content may be zero (below the measurement limit of the device). From a practical point of view, the Ca ion content is, for example, 0.01 ppm or more.
 第1実施形態の粉体を製造するための方法や条件は限定されない。適切な方法および条件を選択することで、Dが75~150μmであり、Caイオンの含有量が1ppm未満である化合物(A)の粉体を得ることができる。好ましくは、後述の第1製法のように、原料物質を水系分散媒中で融解(溶解ではない)させ、その後に結晶化させることが好ましい。融解や結晶化の条件を適切に選択することで、Dが75~150μmであり、Caイオンの含有量が1ppm未満である化合物(A)の粉体を得ることができる。製造方法や製造条件については、追って詳述する。 The method and conditions for producing the powder of the first embodiment are not limited. By selecting appropriate methods and conditions, a powder of compound (A) having a D m of 75 to 150 μm and a Ca ion content of less than 1 ppm can be obtained. Preferably, as in the first production method described later, it is preferable that the raw material is melted (not dissolved) in an aqueous dispersion medium and then crystallized. By appropriately selecting the conditions for melting and crystallization, a powder of compound (A) having a D m of 75 to 150 μm and a Ca ion content of less than 1 ppm can be obtained. The manufacturing method and manufacturing conditions will be described in detail later.
 第1実施形態の粉体の、Naイオンの含有量は、1ppm未満、好ましくは0.7ppm以下、さらに好ましくは0.5ppm以下である。Caイオンに加えてNaイオン量も1ppm未満とすることで、本実施形態の粉体は、より一層、電子デバイス製造に好適に適用可能となる。また、Naイオンの含有量はゼロ(装置の測定限界以下)であってもよい。現実的な観点からは、Naイオンの含有量は、例えば0.01ppm以上である。 The Na ion content of the powder of the first embodiment is less than 1 ppm, preferably 0.7 ppm or less, and more preferably 0.5 ppm or less. By setting the amount of Na ions in addition to Ca ions to less than 1 ppm, the powder of the present embodiment can be further more preferably applied to the production of electronic devices. Further, the Na ion content may be zero (below the measurement limit of the device). From a practical point of view, the Na ion content is, for example, 0.01 ppm or more.
 第1実施形態の粉体の、Mgイオンの含有量は、1ppm未満、好ましくは0.7ppm以下、さらに好ましくは0.5ppm以下である。Caイオン同様、Mgイオンの含有量も、水の硬度を計算する際に使用され得る指標であり、工業用水中にMgイオンが不可避に含まれる場合がある。その為、Caイオンに加えてMgイオン量も1ppm未満とすることで、本実施形態の粉体は、より一層、電子デバイス製造などの種々の用途に好適に適用可能となる。また、Mgイオンの含有量はゼロ(装置の測定限界以下)であってもよい。現実的な観点からは、Mgイオンの含有量は、例えば0.01ppm以上が好ましい。 The content of Mg ions in the powder of the first embodiment is less than 1 ppm, preferably 0.7 ppm or less, and more preferably 0.5 ppm or less. Like Ca ions, the content of Mg ions is also an index that can be used when calculating the hardness of water, and Mg ions may be unavoidably contained in industrial water. Therefore, by setting the amount of Mg ions in addition to Ca ions to less than 1 ppm, the powder of the present embodiment can be further more suitably applied to various uses such as manufacturing of electronic devices. Further, the content of Mg ions may be zero (below the measurement limit of the apparatus). From a practical point of view, the content of Mg ions is preferably 0.01 ppm or more, for example.
 Caイオン等の金属イオンの含有量は、イオンクロマトグラフィー分析法を利用することで求めることができる。イオンクロマトグラフィー分析に当たっては、通常、化合物(A)の粉体を、t-ブチルメチルエーテル等の有機溶剤に溶解したサンプル液を作製する。このサンプル液中の金属イオンの含有量を測定し、得られた測定値から「粉体中のCaイオンの質量/粉体の質量」を算出する。 The content of metal ions such as Ca ions can be determined by using an ion chromatography analysis method. In ion chromatography analysis, a sample solution in which the powder of compound (A) is usually dissolved in an organic solvent such as t-butyl methyl ether is prepared. The content of metal ions in this sample liquid is measured, and "mass of Ca ions in powder / mass of powder" is calculated from the obtained measured values.
 従来のBIS-AFの精製法、特に、水を用いた再沈殿法においては、用いる水自体に金属イオンが含まれるため、金属イオン量の低減が困難な場合が多かった。後述の第1製法ように、水を用いつつも、化合物(A)を水に「積極的には『溶解』させない」方法により化合物(A)を再結晶化することで、Caイオン等の金属イオン量が少ない粉体を得ることができる。 In the conventional BIS-AF purification method, particularly the reprecipitation method using water, it was often difficult to reduce the amount of metal ions because the water used itself contained metal ions. A metal such as Ca ion is formed by recrystallizing the compound (A) by a method of "not actively" dissolving "the compound (A) in water while using water as in the first manufacturing method described later. A powder having a small amount of ions can be obtained.
 第1実施形態の粉体は、モノオールやジオール等のアルコールを含まないか、または、含むとしても少量であることが好ましい。アルコールを含むとしても、水溶性の炭素数4以下のモノオール、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール等を少量含むことがより好ましい。
 第1実施形態の粉体中のアルコールの含有量は、好ましくは400ppm以下、より好ましくは200ppm以下、さらに好ましくは100ppm以下である。化学の常識ではあるが念のため述べておくと、ここでの「アルコール」は、フェノール化合物(フェノール性水酸基を有する化合物)を含まない。
 粉体がアルコールを含まないか、または、含むとしても少量であることにより、本実施形態の粉体を原料として用いてポリマーを製造する際に、意図せぬ反応が生じにくく、所望のポリマーを製造しやすい。
 また、化合物(A)とアルコールは水素結合しうるため、粉体がアルコールを含まないか、または、含むとしても少量であることにより、純粋な化合物(A)の量を正確に秤量しやすいという利点がある。このことは、例えば化合物(A)とエポキシ化合物とを反応させる際の「当量比」を正確に制御することができ、最終的に得られる樹脂の物性を精密に制御しやすいことにつながる。
The powder of the first embodiment does not contain alcohol such as monool and diol, or preferably contains a small amount of alcohol. Water-soluble monools with 4 or less carbon atoms, such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl, even if they contain alcohol. It is more preferable to contain a small amount of -2-propanol or the like.
The content of alcohol in the powder of the first embodiment is preferably 400 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less. Although it is common sense in chemistry, it should be mentioned here that "alcohol" does not include phenolic compounds (compounds having phenolic hydroxyl groups).
Since the powder does not contain alcohol, or even if it contains a small amount of alcohol, an unintended reaction is unlikely to occur when a polymer is produced using the powder of the present embodiment as a raw material, and a desired polymer can be obtained. Easy to manufacture.
Further, since the compound (A) and the alcohol can be hydrogen-bonded, it is easy to accurately weigh the amount of the pure compound (A) when the powder does not contain alcohol or even if it contains a small amount of alcohol. There are advantages. This means that, for example, the "equivalent ratio" when the compound (A) and the epoxy compound are reacted can be accurately controlled, and the physical properties of the finally obtained resin can be easily controlled.
 ちなみに、特許文献1においては、BIS-AFの精製にエチレングリコールを用いているため、特許文献1に記載のBIS-AFには400ppm超のエチレングリコールが含まれていると考えられる。
 一方、後述の製造方法(第1製法)で第1実施形態の粉体を製造する際には、化合物(A)を分散させる分散媒の一部としてアルコールを用いる場合がある。しかし、第1製法は、化合物(A)をアルコールに積極的に「溶解」させるものではないため、粉体中のアルコール量は少ない。また、分散媒として水のみを用いる場合には、原理的には化合物(A)はアルコールを含まない。
Incidentally, in Patent Document 1, since ethylene glycol is used for purification of BIS-AF, it is considered that BIS-AF described in Patent Document 1 contains ethylene glycol of more than 400 ppm.
On the other hand, when the powder of the first embodiment is produced by the production method (first production method) described later, alcohol may be used as a part of the dispersion medium for dispersing the compound (A). However, in the first production method, the amount of alcohol in the powder is small because the compound (A) is not positively "dissolved" in alcohol. Further, when only water is used as the dispersion medium, the compound (A) does not contain alcohol in principle.
 化合物(A)中のアルコール量は、例えば、ガスクロマトグラフを用いて求めることができる。 The amount of alcohol in compound (A) can be determined using, for example, a gas chromatograph.
 第1実施形態の粉体の、レーザ回折散乱法で測定される体積基準累積50%径をD50としたとき、D50は好ましくは40~100μm、より好ましくは40~90μm、さらに好ましくは40~80μmである。
 第1実施形態の粉体は、D50が特定数値範囲内であることにより、取扱性が一層良好となりうる。D50が比較的大きいことにより、粒子同士の接触面積がより小さくなり、流動時の粒子同士の摩擦がより小さくなると考えられる。そして、濾過性や乾燥性などの一層の良化につながると考えられる。
When the volume-based cumulative 50% diameter of the powder of the first embodiment measured by the laser diffraction / scattering method is D 50 , D 50 is preferably 40 to 100 μm, more preferably 40 to 90 μm, and further preferably 40. It is ~ 80 μm.
The powder of the first embodiment can be more easily handled when D 50 is within a specific numerical range. It is considered that when D 50 is relatively large, the contact area between the particles becomes smaller and the friction between the particles during flow becomes smaller. And it is considered that it leads to further improvement of filterability and dryness.
 第1実施形態の粉体において、レーザ回折散乱法で測定される体積基準累積90%径をD90としたとき、(D90-D50)/D50の値は、好ましくは1.3~1.7、より好ましくは1.4~1.7である。
 (D90-D50)/D50という指標は、粒径分布曲線における、大粒径側の「裾」の広がり具合を表す指標であるといえる。この値が1.7以下であるということは、少なくとも大粒径側の粒径分布が比較的シャープであることを意味する。粒径分布がシャープであることにより、粉体の均質性が高まり、取扱い性がより一層高まると考えられる。
 また、(D90-D50)/D50が1.7以下であるということは、粗大粒子が比較的少ないということも意味すると考えられる。粗大粒子が比較的少ないことにより、例えば、塊状化を抑制できる可能性もある。
 ちなみに、(D90-D50)/D50の好適範囲の下限値としている1.3は、化合物(A)の粉体を得る際の再結晶化のコストや手間が過度にならない範囲を設定したものである。
In the powder of the first embodiment, when the volume-based cumulative 90% diameter measured by the laser diffraction / scattering method is D 90 , the value of (D 90- D 50 ) / D 50 is preferably 1.3 to 1. It is 1.7, more preferably 1.4 to 1.7.
The index (D 90- D 50 ) / D 50 can be said to be an index indicating the degree of spread of the "hem" on the large particle size side in the particle size distribution curve. When this value is 1.7 or less, it means that the particle size distribution on the large particle size side is relatively sharp. It is considered that the sharp particle size distribution enhances the homogeneity of the powder and further enhances the handleability.
Further, the fact that (D 90- D 50 ) / D 50 is 1.7 or less is considered to mean that the number of coarse particles is relatively small. With a relatively small number of coarse particles, for example, agglomeration may be suppressed.
By the way, 1.3, which is the lower limit of the preferable range of (D 90- D 50 ) / D 50 , sets a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive. It was done.
 上記と類似する指標として、第1実施形態の粉体において、(D90-D)/Dの値は、好ましくは0.93以下、より好ましくは0.92以下である。(D90-D)/Dの値の下限は、例えば0.40以上である。 As an index similar to the above, in the powder of the first embodiment, the value of (D 90- D m ) / D m is preferably 0.93 or less, more preferably 0.92 or less. The lower limit of the value of (D 90- D m ) / D m is, for example, 0.40 or more.
 別観点として、第1実施形態の粉体の、レーザ回折散乱法で測定される平均径をDaveしたとき、Daveは好ましくは45~80μm、より好ましくは45~60μmである。第1実施形態の粉体は、大きな傾向としては、従来の化合物(A)の粉体よりも平均径が大きめな傾向がある。 Another aspect, of the powder of the first embodiment, when the average diameter measured by a laser diffraction scattering method was D ave, D ave is preferably 45 ~ 80 [mu] m, more preferably 45 ~ 60 [mu] m. The powder of the first embodiment tends to have a larger average diameter than the powder of the conventional compound (A) as a major tendency.
 第1実施形態において、DやD50などの粒径に関する各種値は、レーザ回折散乱法で測定される、体積基準の粒径分布曲線から求めることができる。レーザ回折散乱法による測定が可能な装置としては、例えば株式会社島津製作所の粒度分布計「SALD」シリーズを挙げることができる。測定は、通常、粉体を実質上溶解しない溶媒(例えばn-デカン)に分散させて、湿式で測定する。 In the first embodiment, various values related to the particle size such as D m and D 50 can be obtained from the volume-based particle size distribution curve measured by the laser diffraction / scattering method. As an apparatus capable of measuring by the laser diffraction / scattering method, for example, a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned. The measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
(第2実施形態)
 第2実施形態の粉体の、レーザ回折散乱法で測定される体積基準累積50%径をD50とし、同法で測定される算術体積平均径をDaveとしたとき、D50は50~100μmであり、D50/Daveは1.1~1.5である。
(Second Embodiment)
When the volume-based cumulative 50% diameter of the powder of the second embodiment measured by the laser diffraction / scattering method is D 50 and the arithmetic volume average diameter measured by the same method is Dave , D 50 is 50 to It is 100 μm and D 50 / D ave is 1.1 to 1.5.
 第2実施形態の粉体の取り扱い性が良好な理由については、以下のように推測される。
 粉体が含む粒子の粒径が比較的大きいと、粒子同士の接触面積が比較的小さくなるため、流動時の粒子同士の摩擦が小さくなると推測される。
 第2実施形態においては、D50が50μm以上である、つまり、粉体中に、体積基準において粒径が50μm以上の比較的大きな粒子が50%以上含まれることで、流動時の粒子同士の摩擦が小さくなっていると推測される。
 また、第2実施形態において、D50/Daveが1.1以上であるということは、縦軸に頻度、横軸に粒径をプロットした粒径分布曲線の形が、図2のように左右対称(正規分布)ではなく、図1のように右側(粒径が大きい側)に偏っていることを表す。同じD50であっても、図1のような粒径分布のほうが、粒子全体に占める比較的大きな粒子の割合は大きいため、粒子同士の接触面積がより小さくなりやすい。よって、流動時の粒子同士の摩擦がより小さくなっていると推測される。
 これらのことが、良好な取り扱い性につながっていると推測される。
The reason why the handleability of the powder of the second embodiment is good is presumed as follows.
If the particle size of the particles contained in the powder is relatively large, the contact area between the particles is relatively small, and it is presumed that the friction between the particles during flow is small.
In the second embodiment, D 50 is 50 μm or more, that is, 50% or more of relatively large particles having a particle size of 50 μm or more on a volume basis are contained in the powder. It is presumed that the friction is small.
Further, in the second embodiment, the fact that D 50 / D ave is 1.1 or more means that the shape of the particle size distribution curve in which the frequency is plotted on the vertical axis and the particle size is plotted on the horizontal axis is as shown in FIG. It is not symmetrical (normal distribution), but is biased to the right side (larger particle size side) as shown in FIG. Even with the same D 50, better particle size distribution as shown in FIG. 1, the proportion of relatively large particles in the whole particles are larger, likely smaller the contact area of the particles. Therefore, it is presumed that the friction between the particles during flow is smaller.
It is presumed that these things lead to good handleability.
 別観点として、第2実施形態の粉体の溶媒溶解性は良好である。すなわち、意外にも、本実施形態の粉体は、比較的大きなD50を有するにもかかわらず、溶媒に比較的早く溶ける。発明者らは、この理由として、粉体中に小粒径の粒子が少ないことにより、溶媒中でのBIS-AFの膨潤や凝集が抑えられることが関係していると推察している(膨潤や凝集が発生すると、粉体の分散性が低下し、溶解速度が遅くなると推察される)。 As another viewpoint, the solvent solubility of the powder of the second embodiment is good. That is, surprisingly, the powder of the present embodiment, despite having a relatively large D 50, soluble relatively quickly in the solvent. The inventors speculate that the reason for this is that the small number of small particle particles in the powder suppresses the swelling and aggregation of BIS-AF in the solvent (swelling). When or agglomeration occurs, the dispersibility of the powder decreases and the dissolution rate is presumed to slow down).
 ちなみに、D50の上限値である100μmは、化合物(A)の粉体を得る際の再結晶化のコストや手間が過度にならない範囲を設定したものである。D50/Daveの上限値である1.5についても同様である。 Incidentally, the upper limit value of D 50 , 100 μm, is set to a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive. The same applies to 1.5, which is the upper limit of D 50 / D ave.
 第2実施形態の粉体を製造するための方法や条件は限定されない。しかし、D50が50~100μmであり、D50/Daveが1.1~1.5である化合物(A)の粉体を得るには、適切な方法および条件を選択することが好ましい。
 本実施形態においては、例えば、再結晶化により化合物(A)の粉体を得る際に、特定の有機溶媒を用いたり、種晶を用いたり、ゆっくり冷却したりすることが好ましい。適切な製造方法および製造条件を選択することで、D50が50~100μmであり、D50/Daveが1.1~1.5である化合物(A)の粉体を得ることができる。具体的な製造方法は、「第2製法」として後述する。念のため述べておくと、第2実施形態の粉体を製造するにあたり、第1製法を採用してもよい。
The method and conditions for producing the powder of the second embodiment are not limited. However, in order to obtain a powder of compound (A) having a D 50 of 50 to 100 μm and a D 50 / D ave of 1.1 to 1.5, it is preferable to select appropriate methods and conditions.
In the present embodiment, for example, when the powder of the compound (A) is obtained by recrystallization, it is preferable to use a specific organic solvent, use a seed crystal, or slowly cool the powder. By selecting an appropriate production method and production conditions, a powder of compound (A) having a D 50 of 50 to 100 μm and a D 50 / D ave of 1.1 to 1.5 can be obtained. A specific manufacturing method will be described later as a "second manufacturing method". As a reminder, in producing the powder of the second embodiment, the first production method may be adopted.
 前述のように、第2実施形態の粉体の、D50は50~100μmであり、D50/Daveは1.1~1.5である。
 D50は、好ましくは50~90μm、より好ましくは50~80μm、さらに好ましくは50~70μmである。
 D50/Daveは、好ましくは1.1~1.4、より好ましくは1.1~1.3である。
As described above, in the powder of the second embodiment, D 50 is 50 to 100 μm, and D 50 / D ave is 1.1 to 1.5.
D 50 is preferably 50 to 90 μm, more preferably 50 to 80 μm, and even more preferably 50 to 70 μm.
D 50 / D ave is preferably 1.1 to 1.4, more preferably 1.1 to 1.3.
 第2実施形態の粉体においては、レーザ回折散乱法で測定されるモード径(最頻径)Dを特定数値範囲内とすることで、流動性を一層改善することができる。Dが比較的大きいことにより、粒子同士の接触面積がより小さくなり、流動時の粒子同士の摩擦がより小さくなると考えられる。そして、取扱い性が一層向上すると考えられる。
 具体的な数値として、Dは、好ましくは75~150μm、より好ましくは80~120μmである。
In the powder of the second embodiment, the fluidity can be further improved by setting the mode diameter (mode diameter) D m measured by the laser diffraction / scattering method within a specific numerical range. It is considered that when D m is relatively large, the contact area between the particles becomes smaller and the friction between the particles during flow becomes smaller. And it is considered that the handleability is further improved.
As a specific numerical value, D m is preferably 75 to 150 μm, more preferably 80 to 120 μm.
 第2実施形態の粉体において、レーザ回折散乱法で測定される体積基準累積90%径をD90としたとき、(D90-D50)/D50の値は、好ましくは1.3~1.7、より好ましくは1.4~1.7である。
 (D90-D50)/D50という指標は、粒径分布曲線における、右側(大粒径側)の「裾」の広がり具合を表す指標であるといえる。(D90-D50)/D50が1.7以下であるということは、大粒径側の粒径分布が比較的シャープであり、D50/Daveとは別観点で、粉体の粒径分布が図1のような正規分布から外れた分布であることを意味すると考えられる。よって、D50/Daveが1.1~1.5であることに加え、(D90-D50)/D50が1.7以下であることにより、一層、取扱い性が向上すると考えられる。
 また、(D90-D50)/D50が1.7以下であるということは、粗大粒子が比較的少ないということも意味すると考えられる。粗大粒子が比較的少ないことにより、例えば、塊状化を一層抑制できる可能性もある。
 ちなみに、(D90-D50)/D50の好適範囲の下限値としている1.3は、化合物(A)の粉体を得る際の再結晶化のコストや手間が過度にならない範囲を設定したものである。
In the powder of the second embodiment, when the volume-based cumulative 90% diameter measured by the laser diffraction / scattering method is D 90 , the value of (D 90- D 50 ) / D 50 is preferably 1.3 to 1. It is 1.7, more preferably 1.4 to 1.7.
The index (D 90- D 50 ) / D 50 can be said to be an index showing the degree of spread of the "hem" on the right side (large particle size side) in the particle size distribution curve. The fact that (D 90- D 50 ) / D 50 is 1.7 or less means that the particle size distribution on the large particle size side is relatively sharp, and from a different point of view from D 50 / D ave, the powder It is considered to mean that the particle size distribution deviates from the normal distribution as shown in FIG. Therefore, in addition to the fact that D 50 / D ave is 1.1 to 1.5, it is considered that the handleability is further improved by the fact that (D 90- D 50 ) / D 50 is 1.7 or less. ..
Further, the fact that (D 90- D 50 ) / D 50 is 1.7 or less is considered to mean that the number of coarse particles is relatively small. With a relatively small number of coarse particles, for example, agglomeration may be further suppressed.
By the way, 1.3, which is the lower limit of the preferable range of (D 90- D 50 ) / D 50 , sets a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive. It was done.
 第2実施形態において、D50、D90、DaveおよびDは、レーザ回折散乱法で測定される、体積基準の粒径分布曲線から求めることができる。レーザ回折散乱法による測定が可能な装置としては、例えば株式会社島津製作所の粒度分布計「SALD」シリーズを挙げることができる。測定は、通常、粉体を実質上溶解しない溶媒(例えばn-デカン)に分散させて、湿式で測定する。測定方法の詳細は後掲の実施例を参照されたい。 In the second embodiment, D 50 , D 90 , D ave and D m can be obtained from the volume-based particle size distribution curve measured by the laser diffraction / scattering method. As an apparatus capable of measuring by the laser diffraction / scattering method, for example, a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned. The measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane). For details of the measurement method, refer to the examples below.
(かさ密度)
 第2実施形態の粉体のかさ密度が一定の数値範囲内にあることにより、粉体の取り扱い性を一層高めることができる。
 具体的には、第2実施形態の粉体のゆるみかさ密度は、好ましくは0.50~0.75g/cm、より好ましくは0.60~0.75g/cmである。また、本実施形態の粉体のかためかさ密度は、好ましくは0.76~0.90g/cm、より好ましくは0.80~0.90g/cmである。
 ゆるみかさ密度およびかためかさ密度の測定方法については、後掲の実施例を参照されたい。
(Bulk density)
When the bulk density of the powder of the second embodiment is within a certain numerical range, the handleability of the powder can be further improved.
Specifically, the looseness density of the powder of the second embodiment is preferably 0.50 to 0.75 g / cm 3 , and more preferably 0.60 to 0.75 g / cm 3 . The firmness density of the powder of the present embodiment is preferably 0.76 to 0.90 g / cm 3 , and more preferably 0.80 to 0.90 g / cm 3 .
For the method of measuring the loose bulk density and the firm bulk density, refer to the examples below.
(第3実施形態)
 第3実施形態の粉体の、D50は50~100μmである。D50は、好ましくは50~90μm、より好ましくは50~80μm、さらに好ましくは50~70μmである。
(Third Embodiment)
Powder of the third embodiment, D 50 is 50 ~ 100 [mu] m. D 50 is preferably 50 to 90 μm, more preferably 50 to 80 μm, and even more preferably 50 to 70 μm.
 第3実施形態の粉体においては、レーザ回折散乱法で測定されるモード径(最頻径)Dを特定数値範囲内とすることで、流動性を一層改善することができる。Dが比較的大きいことにより、粒子同士の接触面積がより小さくなり、流動時の粒子同士の摩擦がより小さくなると考えられる。そして、取扱い性が一層向上すると考えられる。
 具体的な数値として、Dは、好ましくは75~150μm、より好ましくは80~120μmである。
In the powder of the third embodiment, the fluidity can be further improved by setting the mode diameter (mode diameter) D m measured by the laser diffraction / scattering method within a specific numerical range. It is considered that when D m is relatively large, the contact area between the particles becomes smaller and the friction between the particles during flow becomes smaller. And it is considered that the handleability is further improved.
As a specific numerical value, D m is preferably 75 to 150 μm, more preferably 80 to 120 μm.
 第3実施形態の粉体において、レーザ回折散乱法で測定される体積基準累積90%径をD90としたとき、(D90-D50)/D50の値は、好ましくは1.3~1.7、より好ましくは1.4~1.7である。
 (D90-D50)/D50という指標は、粒径分布曲線における、大粒径側の「裾」の広がり具合を表す指標であるといえる。この値が1.7以下であるということは、少なくとも大粒径側の粒径分布が比較的シャープであることを意味する。粒径分布がシャープであることにより、粉体の均質性が高まり、取扱い性がより一層高まると考えられる。
 また、(D90-D50)/D50が1.7以下であるということは、粗大粒子が比較的少ないということも意味すると考えられる。粗大粒子が比較的少ないことにより、例えば、塊状化を一層抑制できる可能性もある。
 ちなみに、(D90-D50)/D50の好適範囲の下限値としている1.3は、化合物(A)の粉体を得る際の再結晶化のコストや手間が過度にならない範囲を設定したものである。
In the powder of the third embodiment, when the volume-based cumulative 90% diameter measured by the laser diffraction / scattering method is D 90 , the value of (D 90- D 50 ) / D 50 is preferably 1.3 to 1. It is 1.7, more preferably 1.4 to 1.7.
The index (D 90- D 50 ) / D 50 can be said to be an index indicating the degree of spread of the "hem" on the large particle size side in the particle size distribution curve. When this value is 1.7 or less, it means that the particle size distribution on the large particle size side is relatively sharp. It is considered that the sharp particle size distribution enhances the homogeneity of the powder and further enhances the handleability.
Further, the fact that (D 90- D 50 ) / D 50 is 1.7 or less is considered to mean that the number of coarse particles is relatively small. With a relatively small number of coarse particles, for example, agglomeration may be further suppressed.
By the way, 1.3, which is the lower limit of the preferable range of (D 90- D 50 ) / D 50 , sets a range in which the cost and labor of recrystallization when obtaining the powder of the compound (A) are not excessive. It was done.
 第3実施形態において、D50、D90およびDは、レーザ回折散乱法で測定される、体積基準の粒径分布曲線から求めることができる。レーザ回折散乱法による測定が可能な装置としては、例えば株式会社島津製作所の粒度分布計「SALD」シリーズを挙げることができる。測定は、通常、粉体を実質上溶解しない溶媒(例えばn-デカン)に分散させて、湿式で測定する。 In the third embodiment, D 50 , D 90 and D m can be obtained from the volume-based particle size distribution curve measured by the laser diffraction / scattering method. As an apparatus capable of measuring by the laser diffraction / scattering method, for example, a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned. The measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
 前述のように、第3実施形態の粉体の安息角は、35~49°である。安息角は、好ましくは40~49°、さらに好ましくは40~47°である。
 安息角の測定方法については、後掲の実施例の記載を参照されたい。
As described above, the angle of repose of the powder of the third embodiment is 35 to 49 °. The angle of repose is preferably 40 to 49 °, more preferably 40 to 47 °.
For the method of measuring the angle of repose, refer to the description of the examples below.
 第3実施形態の粉体のかさ密度を適切に設計することで、粉体の取り扱い性を一層高めることができる。
 具体的には、第3実施形態の粉体のゆるみかさ密度ρは、好ましくは0.50~0.75g/cm、より好ましくは0.60~0.75g/cmである。また、第3実施形態の粉体のかためかさ密度ρは、好ましくは0.76~0.90g/cm、より好ましくは0.80~0.90g/cmである。
 ゆるみかさ密度およびかためかさ密度の測定方法については、後掲の実施例を参照されたい。
By appropriately designing the bulk density of the powder of the third embodiment, the handleability of the powder can be further improved.
Specifically, the looseness density ρ 1 of the powder of the third embodiment is preferably 0.50 to 0.75 g / cm 3 , and more preferably 0.60 to 0.75 g / cm 3 . The firmness density ρ 2 of the powder of the third embodiment is preferably 0.76 to 0.90 g / cm 3 , and more preferably 0.80 to 0.90 g / cm 3 .
For the method of measuring the loose bulk density and the firm bulk density, refer to the examples below.
 特に、第3実施形態においては、ρ/ρが1.01~1.45の範囲内にあることが好ましく、1.10~1.40の範囲内にあることがより好ましい。ρ/ρが1.45以下であることで、例えば、本実施形態の粉体を量り取る際、量り取る質量のブレを十二分に小さくすることができる。 In particular, in the third embodiment, ρ 2 / ρ 1 is preferably in the range of 1.01 to 1.45, and more preferably in the range of 1.10 to 1.40. When ρ 2 / ρ 1 is 1.45 or less, for example, when the powder of the present embodiment is weighed, the fluctuation of the mass to be weighed can be sufficiently reduced.
(第4実施形態)
 第4実施形態の粉体は、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン(一般式(A)において、R~Rのすべてが水素原子であるもの)の粉体であって、
 X線回折(XRD)スペクトルにおける2θ=22.3°付近のピークの半値幅が、0.050°以上0.180°以下であり、
 X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅が、0.050°以上0.120°以下であり、
 X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅が、0.040°以上0.120°以下である粉体である。
(Fourth Embodiment)
Powder of the fourth embodiment, 2,2 (In Formula (A), all of R 1 ~ R 8 is as a hydrogen atom) bis (4-hydroxyphenyl) hexafluoropropane was in a powder of hand,
The half width of the peak near 2θ = 22.3 ° in the X-ray diffraction (XRD) spectrum is 0.050 ° or more and 0.180 ° or less.
The half width of the peak near 2θ = 23.7 ° in the X-ray diffraction spectrum is 0.050 ° or more and 0.120 ° or less.
It is a powder in which the half width of the peak near 2θ = 25.8 ° in the X-ray diffraction spectrum is 0.040 ° or more and 0.120 ° or less.
 第4実施形態の粉体は、具体的には、「溶媒、特に極性溶媒又はアルカリ溶媒への溶解速度が速い」「濡れた粉体を乾燥させる際の乾燥時間を短縮化できる」等の利点を有する。これら利点は、X線回折スペクトルにおける2θ=22.3°付近のピークの半値幅が、0.050°以上0.180°以下であり、X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅が、0.050°以上0.120°以下であり、X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅が、0.040°以上0.120°以下であることに起因していると推測される。
 本発明者らは、粉体のX線回折スペクトルにおける特定の3つの2θにおけるピークの半値幅に着目した。
 詳細は不明であるが、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンに固有の2θ=22.3°付近のピークの半値幅、2θ=23.7°付近のピークの半値幅、および、2θ=25.8°付近のピークの半値幅が小さくなるように粉体を設計することにより、粉体の結晶子のサイズが大きく、かつ、粉体全体に亘り結晶子のサイズが整ったと考えられる。
 これにより、溶媒への溶解時に、結晶子のサイズのバラツキに起因する凝集が抑制されて、溶媒への溶解速度が速くなったと考えられる。また、濡れた粉体を乾燥させる際においては、結晶子のサイズのバラツキに起因する凝集が抑制されることで、
粉体の粒子間に液成分が存在し難くなり、そして粉体の乾燥時間を短縮化できたものと推測される。
Specifically, the powder of the fourth embodiment has advantages such as "fast dissolution rate in a solvent, particularly a polar solvent or an alkaline solvent" and "the drying time when drying a wet powder can be shortened". Has. These advantages are that the half width of the peak near 2θ = 22.3 ° in the X-ray diffraction spectrum is 0.050 ° or more and 0.180 ° or less, and the peak near 2θ = 23.7 ° in the X-ray diffraction spectrum. The half-value width of is 0.050 ° or more and 0.120 ° or less, and the half-value width of the peak near 2θ = 25.8 ° in the X-ray diffraction spectrum is 0.040 ° or more and 0.120 ° or less. It is presumed that this is due to.
The present inventors focused on the full width at half maximum of the peaks at three specific 2θs in the X-ray diffraction spectrum of the powder.
Although the details are unknown, the half width of the peak near 2θ = 22.3 °, which is peculiar to 2,2-bis (4-hydroxyphenyl) hexafluoropropane, and the half width of the peak near 2θ = 23.7 °, By designing the powder so that the half width of the peak near 2θ = 25.8 ° is small, the size of the crystallites of the powder is large and the size of the crystallites is adjusted over the entire powder. It is thought that it was.
As a result, it is considered that the aggregation caused by the variation in the size of the crystallites was suppressed during the dissolution in the solvent, and the dissolution rate in the solvent was increased. In addition, when the wet powder is dried, aggregation due to variation in crystallite size is suppressed, so that aggregation is suppressed.
It is presumed that the liquid component was less likely to exist between the powder particles and the drying time of the powder could be shortened.
 X線回折スペクトルにおける2θ=22.3°付近とは、2θ=22.3°を中心として、±1°の範囲を意味するものであり、X線回折スペクトルにおける2θ=22.3°付近のピークとは、2θ=22.3°を中心として、±1°の範囲内における最大のピークを意味する。
 X線回折スペクトルにおける2θ=23.7°付近とは、2θ=23.7°を中心として、±1°の範囲を意味するものであり、X線回折スペクトルにおける2θ=23.7°付近のピークとは、2θ=23.7°を中心として、±1°の範囲内における最大のピークを意味する。
 X線回折スペクトルにおける2θ=25.8°付近とは、2θ=25.8°を中心として、±1°の範囲を意味するものであり、X線回折スペクトルにおける2θ=25.8°付近のピークとは、2θ=25.8°を中心として、±1°の範囲内における最大のピークを意味する。
The vicinity of 2θ = 22.3 ° in the X-ray diffraction spectrum means a range of ± 1 ° centered on 2θ = 22.3 °, and the vicinity of 2θ = 22.3 ° in the X-ray diffraction spectrum. The peak means the maximum peak within the range of ± 1 ° centered on 2θ = 22.3 °.
The vicinity of 2θ = 23.7 ° in the X-ray diffraction spectrum means a range of ± 1 ° centered on 2θ = 23.7 °, and the vicinity of 2θ = 23.7 ° in the X-ray diffraction spectrum. The peak means the maximum peak within the range of ± 1 ° centered on 2θ = 23.7 °.
The vicinity of 2θ = 25.8 ° in the X-ray diffraction spectrum means a range of ± 1 ° centered on 2θ = 25.8 °, and the vicinity of 2θ = 25.8 ° in the X-ray diffraction spectrum. The peak means the maximum peak within the range of ± 1 ° centered on 2θ = 25.8 °.
 2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの粉体のX線回折スペクトルにおける2θ=22.3°付近のピークの半値幅は、0.050°以上0.180°以下である。
 X線回折スペクトルにおける2θ=22.3°付近のピークの半値幅は、0.055°以上であることが好ましく、0.060°以上であることがより好ましい。
 また、0.170°以下であることが好ましく、0.165°以下であることがより好ましい。
The half width of the peak near 2θ = 22.3 ° in the X-ray diffraction spectrum of the powder of 2,2-bis (4-hydroxyphenyl) hexafluoropropane is 0.050 ° or more and 0.180 ° or less.
The half width of the peak near 2θ = 22.3 ° in the X-ray diffraction spectrum is preferably 0.055 ° or more, and more preferably 0.060 ° or more.
Further, it is preferably 0.170 ° or less, and more preferably 0.165 ° or less.
 2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの粉体のX線回折スペクトルにおける2θ=23.7°付近のピークの半値幅は、0.050°以上0.120°以下である。
 X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅は、0.055°以上であることが好ましく、0.060°以上であることがより好ましい。
 また、0.100°以下であることが好ましく、0.090°以下であることがより好ましい。
The half width of the peak near 2θ = 23.7 ° in the X-ray diffraction spectrum of the powder of 2,2-bis (4-hydroxyphenyl) hexafluoropropane is 0.050 ° or more and 0.120 ° or less.
The half width of the peak near 2θ = 23.7 ° in the X-ray diffraction spectrum is preferably 0.055 ° or more, and more preferably 0.060 ° or more.
Further, it is preferably 0.100 ° or less, and more preferably 0.090 ° or less.
 2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの粉体のX線回折スペクトルにおける2θ=25.8°付近のピークの半値幅は、0.040°以上0.120°以下である。
 X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅は、0.045°以上であることが好ましく、0.050°以上であることがより好ましい。
 また、0.115°以下であることが好ましく、0.110°以下であることがより好ましい。
The half width of the peak near 2θ = 25.8 ° in the X-ray diffraction spectrum of the powder of 2,2-bis (4-hydroxyphenyl) hexafluoropropane is 0.040 ° or more and 0.120 ° or less.
The half width of the peak near 2θ = 25.8 ° in the X-ray diffraction spectrum is preferably 0.045 ° or more, and more preferably 0.050 ° or more.
Further, it is preferably 0.115 ° or less, and more preferably 0.110 ° or less.
 粉体のX線回折(XRD)スペクトルは、Cu-Kα(λ=1.5418Å)放射線照射を用いるX線粉末回析計(Smart Lab;株式会社リガク製)を用いて測定することができる。
 測定サンプルは、試料を乳鉢にてすり潰した後、測定範囲内に回折ピークを持たない無反射試料板(株式会社リガクなどから購入可能)に採取し、平坦化して試料板ごと装置へセットし測定する。測定条件の一例は以下のとおりである。
[X線回折の測定条件]
 管球:Cu
 電圧:40kV
 電流:50mA
 ソーラースリット:2.5°(入射側、受光側)
 スキャン範囲:10~80°
 ステップ幅:0.01°
 スキャンスピード:35°/min
 検出器:1次元X線検出器(D/tex Ultra250;株式会社リガク製)
The X-ray diffraction (XRD) spectrum of the powder can be measured using an X-ray powder diffractometer (Smart Lab; manufactured by Rigaku Co., Ltd.) using Cu—Kα (λ = 1.5418 Å) irradiation.
After grinding the sample in a mortar, the measurement sample is collected on a non-reflective sample plate (available from Rigaku Co., Ltd.) that does not have a diffraction peak within the measurement range, flattened, and set in the device together with the sample plate for measurement. To do. An example of the measurement conditions is as follows.
[Measurement conditions for X-ray diffraction]
Tube: Cu
Voltage: 40kV
Current: 50mA
Solar slit: 2.5 ° (incident side, light receiving side)
Scan range: 10-80 °
Step width: 0.01 °
Scan speed: 35 ° / min
Detector: 1-dimensional X-ray detector (D / tex Ultra250; manufactured by Rigaku Co., Ltd.)
 測定から得られるX線回折スペクトルにおいて、2θ=22.3°付近、23.7°付近、25.8°付近のピークの半値幅をそれぞれ算出する(θはブラッグ角)。ピークの半値幅の算出は、Smart Lab StudioII(解析ソフト:Power XRD)を用いて行うことができる。 In the X-ray diffraction spectrum obtained from the measurement, the half widths of the peaks near 2θ = 22.3 °, 23.7 °, and 25.8 ° are calculated, respectively (θ is the Bragg angle). The calculation of the half width of the peak can be performed using Smart Lab Studio II (analysis software: Power XRD).
 第4実施形態の粉体を製造するため方法や条件は限定されない。例えば、後述の第1製法で説明するように、原料物質を水系分散媒中で融解させ、その後に後述の結晶化工程の温度Tにて十分な時間(例えば、30分以上)維持して結晶化させることにより、X線回折(XRD)スペクトルにおける2θ=22.3°付近のピーク、2θ=23.7°付近のピーク、及び2θ=25.8°付近のピークの半値幅がそれぞれ上記範囲である粉体を好適に得ることができる。 Since the powder of the fourth embodiment is produced, the method and conditions are not limited. For example, as described in the first production method will be described later, the raw material is melted in an aqueous dispersion medium, a sufficient time at a temperature T 2 of the subsequent later crystallization step (e.g., more than 30 minutes) while maintaining By crystallization, the half widths of the peaks near 2θ = 22.3 ° and the peaks near 2θ = 23.7 ° and the peaks near 2θ = 25.8 ° in the X-ray diffraction (XRD) spectrum are described above. A powder in the range can be preferably obtained.
 第4実施形態の粉体の粒子径は特に限定されるものではなく、適度な取り扱い性を有していればよい。例えば、レーザ回折散乱法で測定される体積基準累積50%径(D50)を、好ましくは20~100μmとしてもよい。また、下限をより好ましくは30μm以上、さらに好ましくは40μm以上としてもよく、上限をより好ましくは90μm以下、さらに好ましくは80μm以下としてもよい。
 レーザ回折散乱法による測定が可能な装置としては、例えば株式会社島津製作所の粒度分布計「SALD」シリーズを挙げることができる。測定は、通常、粉体を実質上溶解しない溶媒(例えばn-デカン)に分散させて、湿式で測定する。
The particle size of the powder of the fourth embodiment is not particularly limited, and it is sufficient that the powder has an appropriate handleability. For example, the volume-based cumulative 50% diameter (D 50 ) measured by the laser diffraction / scattering method may be preferably 20 to 100 μm. Further, the lower limit may be more preferably 30 μm or more, further preferably 40 μm or more, and the upper limit may be more preferably 90 μm or less, further preferably 80 μm or less.
As an apparatus capable of measuring by the laser diffraction / scattering method, for example, a particle size distribution meter "SALD" series manufactured by Shimadzu Corporation can be mentioned. The measurement is usually carried out in a wet manner by dispersing the powder in a solvent that is substantially insoluble (for example, n-decane).
<粉体の製造方法>
 第1~第4実施形態の粉体は、適切な製造方法を通じて製造することができる。以下では、第1~第4実施形態の粉体を製造するための好ましい製造方法(第1製法および第2製法)を2つ説明する。
<Powder manufacturing method>
The powders of the first to fourth embodiments can be produced through an appropriate production method. In the following, two preferable production methods (first production method and second production method) for producing the powders of the first to fourth embodiments will be described.
(第1製法)
 一般式(A)で表される化合物の粉体の製造方法(第1製法)は、例えば、
・一般式(A)で表される化合物を含む原料物質と、水系分散媒とを容器に入れて熱することで、原料物質を水系分散媒の存在下で融解させ、原料物質の融解物と水系分散媒とを含む不均一液体を得る融解工程と、
・不均一液体を降温することで、融解物を結晶化させて結晶を得る結晶化工程と、
を含むことができる。
 第1製法の融解工程において、原料物質の融解温度Tにおける、水系分散媒の、一般式(A)で表される化合物の溶解度は、10[g/100g]以下、好ましくは8[g/100g]以下である。この溶解度の下限値はゼロであってもよいが、通常、溶解度は0.5[g/100g]以上である。
 「原料物質の融解温度T」とは、粉体状(固形状)の原料物質がすべて融解し、原形がなくなる最低温度のことをいう。原料物質がすべて融解したことは、(i)容器内の原料物質の状態を目視観察し、粉体状(固形状)の原料物質が認められないことにより確認する方法、(ii)容器内から抜き出した水層を素早く目視観察して、原料物質が粉体状(固形状)のまま残っていないことを確認する方法、などにより確認することができる。
(1st manufacturing method)
The method for producing a powder of a compound represented by the general formula (A) (first production method) is, for example,
-By putting the raw material containing the compound represented by the general formula (A) and the aqueous dispersion medium in a container and heating the raw material, the raw material is melted in the presence of the aqueous dispersion medium, and the melted product of the raw material is obtained. A melting step to obtain a heterogeneous liquid containing an aqueous dispersion medium,
・ Crystallization process to obtain crystals by crystallizing the melt by lowering the temperature of the non-uniform liquid,
Can be included.
In the melting step of the first production method, at the melting temperature T 1 of the raw material, the aqueous dispersion medium, the solubility of the compound represented by the general formula (A), 10 [g / 100g] or less, preferably 8 [g / 100 g] or less. The lower limit of this solubility may be zero, but the solubility is usually 0.5 [g / 100 g] or more.
"Melting temperature T 1 of raw material" means the lowest temperature at which all powdered (solid) raw material melts and loses its original form. The fact that all the raw material has melted is (i) a method of visually observing the state of the raw material in the container and confirming that no powdery (solid) raw material is found, (ii) from inside the container. It can be confirmed by a method of quickly visually observing the extracted aqueous layer and confirming that the raw material does not remain in the powder form (solid form).
 第1製法については、以下のようにも説明することができる。
・融解工程では、化合物(A)を含む原料物質を、水系分散媒中で熱して、温度Tで融解(溶解ではない)させて融解物とする。水系分散媒は、簡単に言うと、温度Tにおいて化合物(A)の「貧溶媒」(化合物(A)を溶解させにくい液体)である。化合物(A)の貧溶媒(水系)中で化合物(A)を加熱することで、原料物質の融解物と水系分散媒とを含む不均一液体が得られる。
・結晶化工程では、上記不均一液体中の融解物を結晶化する。
The first manufacturing method can also be described as follows.
-In the melting step, the raw material containing the compound (A) is heated in an aqueous dispersion medium and melted (not melted) at a temperature T 1 to obtain a melt. Aqueous dispersion medium, Briefly, a compound at the temperature T 1 (A) "poor solvent" in the (unlikely liquid by dissolving the compound (A)). By heating the compound (A) in a poor solvent (aqueous) of the compound (A), a heterogeneous liquid containing a melt of the raw material and an aqueous dispersion medium can be obtained.
-In the crystallization step, the melt in the non-uniform liquid is crystallized.
 第1製法においては、原料物質の融解物と水系分散液との界面において、原料物質側から水系分散液側にCaイオン等が移動することにより、Caイオン等の量を少なくできると考えられる。このことは、第1実施形態の粉体(Caイオンが少ない)を製造する観点で好ましい。 In the first production method, it is considered that the amount of Ca ions and the like can be reduced by moving Ca ions and the like from the raw material material side to the aqueous dispersion liquid side at the interface between the melt of the raw material and the aqueous dispersion. This is preferable from the viewpoint of producing the powder of the first embodiment (less Ca ions).
 また、第1製法においては、原料物質を積極的には「溶解」させない(溶質と溶媒が完全に均一に混合した状態を経ない)ため、水などの溶媒に由来する不純物であるCaイオン等が、原料物質が再結晶化したものに取り込まれることが抑えられると考えられる。同様に、一旦は原料物質から溶け出した不純物であるCaイオン等が、結晶化した原料物質に「再度」取り込まれることが抑えられると考えられる。これらのことも、Caイオン等の不純物の量を少なくできることに関係していると考えられる。 Further, in the first production method, since the raw material is not positively "dissolved" (it does not go through a state in which the solute and the solvent are completely and uniformly mixed), Ca ions and the like, which are impurities derived from the solvent such as water, etc. However, it is considered that the raw material is suppressed from being incorporated into the recrystallized substance. Similarly, it is considered that Ca ions and the like, which are impurities once dissolved from the raw material, are suppressed from being "re-incorporated" into the crystallized raw material. These are also considered to be related to the fact that the amount of impurities such as Ca ions can be reduced.
 ちなみに、例えばBIS-AFは、それ単体では100℃(水の沸点)に熱しても融解しないが、水中のBIS-AFは、100℃(またはそれより低い温度)に熱せられると融解する。これは、公知情報や本発明者らの知見によれば、BIS-AFは水和することにより融点が下がるためである。公知情報としては、例えば前述の特許文献3を参照されたい。 By the way, for example, BIS-AF by itself does not melt when heated to 100 ° C. (boiling point of water), but BIS-AF in water melts when heated to 100 ° C. (or lower temperature). This is because, according to publicly known information and the findings of the present inventors, the melting point of BIS-AF is lowered by hydration. For known information, refer to, for example, the above-mentioned Patent Document 3.
 第1製法は、環境負荷が小さいという追加の利点も有する。具体的には、第1製法の実施に際しては、水系分散液が主として使用され、有機溶媒(化合物(A)の良溶媒)は不要である。すなわち、上記製造方法を採用することにより有機溶剤の使用を少なくことができるため、環境負荷を小さくすることができる。 The first manufacturing method also has the additional advantage of having a small environmental load. Specifically, in carrying out the first production method, an aqueous dispersion is mainly used, and an organic solvent (a good solvent of compound (A)) is unnecessary. That is, by adopting the above manufacturing method, the use of organic solvent can be reduced, so that the environmental load can be reduced.
 以下、融解工程および結晶化工程についてより詳しく説明する。 Hereinafter, the melting process and the crystallization process will be described in more detail.
・融解工程
 通常、融解工程では、化合物(A)を含む原料物質と、水系分散媒とを、攪拌手段および加熱手段を備えた容器内で加熱する。こうすることで、原料物質の融解物と水系分散媒とを含む不均一液体を得ることができる。攪拌しながら加熱することで、不均一液体は、通常、懸濁状態の液体となる。攪拌を行わないまたは止めて静置した場合、不均一液体は、通常、2層分離状態になる。ちなみに、攪拌しながら加熱することで、原料物質の融解物と水系分散媒とが十二分に接触して、原料物質側から水系分散液側にCaイオン等が一層移動しやすくなると考えられる。
-Melting step Normally, in the melting step, the raw material containing the compound (A) and the aqueous dispersion medium are heated in a container equipped with a stirring means and a heating means. By doing so, a heterogeneous liquid containing a melt of the raw material and an aqueous dispersion medium can be obtained. By heating with stirring, the non-uniform liquid usually becomes a suspended liquid. When agitated or stopped and allowed to stand, the non-uniform liquid is usually in a two-layer separated state. By the way, it is considered that by heating while stirring, the melt of the raw material and the aqueous dispersion medium are in sufficient contact with each other, and Ca ions and the like are more easily moved from the raw material side to the aqueous dispersion side.
 一例として、水系分散液は、実質的に水のみを含むものであることができる。実質的に水のみを含む水系分散液を用いることで、最終的に得られる化合物(A)中のアルコール量を実質的にゼロとすることができる。また、化合物(A)の水への溶解性は非常に小さいため、廃液に含まれる化合物(A)を少なくできるという利点もある。 As an example, the aqueous dispersion can contain substantially only water. By using an aqueous dispersion containing substantially only water, the amount of alcohol in the finally obtained compound (A) can be made substantially zero. Further, since the solubility of the compound (A) in water is very small, there is an advantage that the amount of the compound (A) contained in the waste liquid can be reduced.
 別の例として、水系分散液は、水とアルコールを含むことができる。この場合、水系分散媒中のアルコールの比率は、通常30質量%以下、好ましくは1~30質量%、さらに好ましくは5~25質量%である。アルコールの比率が多すぎると、原料物質が水系分散液中に適切に分散せずに、その多くが「溶解」してしまう可能性がある。よって、水系分散液中のアルコールの比率は上記程度とすることが好ましい。
 水系分散液として、水とアルコールを含むものを用いることにより、温度Tを低くすることができるという利点がある。本発明者らの知見として、水系分散液として水のみを用いた場合、Tは90℃以上となるが、水系分散液が30質量%以下のアルコールを含むことで、Tは90℃より低くなる(30~90℃程度となる)傾向がある。Tが低くなることで、微妙な温度調整が容易となり、例えば、後の結晶化工程において結晶成長をさせやすくなる場合がある。
As another example, the aqueous dispersion can include water and alcohol. In this case, the ratio of alcohol in the aqueous dispersion medium is usually 30% by mass or less, preferably 1 to 30% by mass, and more preferably 5 to 25% by mass. If the proportion of alcohol is too high, the raw material may not be properly dispersed in the aqueous dispersion and many may "dissolve". Therefore, the ratio of alcohol in the aqueous dispersion is preferably about the above.
By using a liquid containing water and alcohol as the aqueous dispersion, there is an advantage that the temperature T 1 can be lowered. According to the findings of the present inventors, when only water is used as the aqueous dispersion, T 1 becomes 90 ° C. or higher, but since the aqueous dispersion contains 30% by mass or less of alcohol, T 1 is higher than 90 ° C. It tends to be low (about 30 to 90 ° C). When T 1 is lowered, delicate temperature adjustment becomes easy, and for example, crystal growth may be facilitated in a later crystallization step.
 原料物質と水系分散液の比率については、Caイオン等の不純物の低減効果(水系分散液を多く用いるほど、原料物質中のCaイオン等は水系分散液の側に移動しやすい)と、コストとの兼ね合いから、適宜設定すればよい。原料物質100質量部に対する水系分散液の量は、通常100~3000質量部、好ましくは200~1500質量部である。 Regarding the ratio of the raw material to the aqueous dispersion, the effect of reducing impurities such as Ca ions (the more the aqueous dispersion is used, the easier it is for Ca ions in the raw material to move to the water-based dispersion) and the cost. It may be set appropriately from the balance of. The amount of the aqueous dispersion with respect to 100 parts by mass of the raw material is usually 100 to 3000 parts by mass, preferably 200 to 1500 parts by mass.
 温度Tは、化合物(A)の具体的構造や水系分散液の組成により変わる。融解工程において必要な加熱温度や時間は、それに応じて適宜設定すればよい。融解工程においては、化合物(A)の全量のうち、水系分散液へ溶解する分を除いた全量が融解すればよい。 The temperature T 1 varies depending on the specific structure of the compound (A) and the composition of the aqueous dispersion. The heating temperature and time required in the melting step may be appropriately set accordingly. In the melting step, the total amount of the compound (A) excluding the portion dissolved in the aqueous dispersion may be melted.
・結晶化工程
 結晶化工程では、融解工程で得られた不均一液体を降温することで、不均一液体中の融解物を結晶化させる。降温の具体的条件を適切に選択することで、Caイオン等が少なく、かつ、粒径分布が適切に制御された(例えば第1実施形態のように、Dが75~150μmである)化合物(A)の粉体を得ることができる。また、降温の具体的条件を適切に選択することで、おそらく結晶子のサイズが制御されるなどして、XRDスペクトルの半値幅が比較的小さい化合物(A)の粉体を得ることができる。
-Crystallization step In the crystallization step, the temperature of the non-uniform liquid obtained in the melting step is lowered to crystallize the melt in the non-uniform liquid. A compound in which Ca ions and the like are small and the particle size distribution is appropriately controlled (for example, D m is 75 to 150 μm as in the first embodiment) by appropriately selecting specific conditions for lowering the temperature. The powder of (A) can be obtained. Further, by appropriately selecting the specific conditions for lowering the temperature, the powder of the compound (A) having a relatively small half-value width of the XRD spectrum can be obtained, probably because the size of the crystallite is controlled.
 第1製法における結晶化工程は、一般的な結晶化工程、すなわち、均一な「溶液」に溶解した物質を結晶化させるものとは異なる。
 一般的な結晶化工程においては、結晶の析出に伴い、溶液の温度を徐々に下げていく必要がある。
 一方、第1製法における結晶化工程は、不均一液体を一定温度以下(融解温度未満)に降温すればよく、必ずしも、温度を「徐々に下げる」必要はない。化合物(A)の大部分は「溶解」しているのではなく単に「融解」しているものであるため、温度を一定温度以下(融解温度未満)に維持しさえすれば、化合物(A)の大部分は結晶化(固化)する。このような、通常とは異なる結晶化メカニズムにより、得られる結晶(最終物)は、従来品と異なってくる。
 ただし、例えば水系分散媒がアルコールを含む場合には、ある程度の量の化合物(A)が分散媒に「溶解」するため、適当な速度で降温操作を行ってもよい。また、結晶化工程においては、融解温度未満の一定温度での維持の後、降温操作を行ってもよい。
The crystallization step in the first process is different from the general crystallization step, that is, the crystallization of a substance dissolved in a uniform "solution".
In a general crystallization step, it is necessary to gradually lower the temperature of the solution as the crystals precipitate.
On the other hand, in the crystallization step in the first production method, the temperature of the non-uniform liquid may be lowered to a certain temperature or less (less than the melting temperature), and the temperature does not necessarily have to be "gradually lowered". Most of compound (A) is not "melted" but simply "melted", so as long as the temperature is kept below a certain temperature (less than the melting temperature), compound (A) Most of them crystallize (solidify). Due to such an unusual crystallization mechanism, the obtained crystal (final product) is different from the conventional product.
However, for example, when the aqueous dispersion medium contains alcohol, a certain amount of the compound (A) is "dissolved" in the dispersion medium, so that the temperature lowering operation may be performed at an appropriate rate. Further, in the crystallization step, the temperature may be lowered after the temperature is maintained at a constant temperature lower than the melting temperature.
 結晶化工程の温度Tは、温度Tよりも1~10℃低いことが好ましく、1~8℃低いことがより好ましい。具体的には、結晶化工程においては、系を、上記温度T(温度Tよりも1~10℃低い範囲内)で、好ましくは30分以上、より好ましくは60分以上維持することが好ましい。温度Tを十分長い時間維持することで、十分にCaイオン等が低減され、かつ、粒径分布が適切に制御された(例えば第1実施形態のようにDが75~150μmである)結晶を得やすい。一方、製造の効率性の観点からは、結晶化工程において温度Tを維持する時間は、例えば300分以下が好ましい。 The temperature T 2 in the crystallization step is preferably 1 to 10 ° C. lower than the temperature T 1 and more preferably 1 to 8 ° C. lower. Specifically, in the crystallization step, the system may be maintained at the above temperature T 2 (within a range of 1 to 10 ° C. lower than the temperature T 1 ), preferably for 30 minutes or longer, more preferably 60 minutes or longer. preferable. By maintaining the temperature T 2 for a sufficiently long time, Ca ions and the like were sufficiently reduced, and the particle size distribution was appropriately controlled (for example, D m is 75 to 150 μm as in the first embodiment). Easy to obtain crystals. On the other hand, from the viewpoint of production efficiency, the time for maintaining the temperature T 2 in the crystallization step is preferably, for example, 300 minutes or less.
 結晶化工程は、不均一液体を攪拌しながら行われることが好ましい。融解工程において攪拌を行っていた場合には、そのまま攪拌を継続することが好ましい。こうすることで、Caイオン等の不純物の量を十二分に低減しやすい。また、分散液が常に攪拌されることで、結晶成長が適切に制御され、粒径分布が適切に制御された(例えば第1実施形態のようにDが75~150μmである)粉体を得やすい。上記の攪拌は、50~500rpmの速度で行うのが好ましく、150~300rpmの速度で行うのがより好ましい。 The crystallization step is preferably carried out while stirring the non-uniform liquid. When stirring is performed in the melting step, it is preferable to continue stirring as it is. By doing so, it is easy to sufficiently reduce the amount of impurities such as Ca ions. Further, by constantly stirring the dispersion liquid, the crystal growth is appropriately controlled and the particle size distribution is appropriately controlled (for example, D m is 75 to 150 μm as in the first embodiment). Easy to get. The above stirring is preferably performed at a speed of 50 to 500 rpm, and more preferably at a speed of 150 to 300 rpm.
 結晶化工程においては、種晶を用いてもよいし、用いなくてもよい。種晶を用いる場合、その添加量は、質量比で、水系分散媒に分散した化合物(A)の1/1000から1/100程度とすることができる。種晶は、固体状の化合物(A)である限り特に限定されない。 In the crystallization step, seed crystals may or may not be used. When a seed crystal is used, the amount of the seed crystal added can be about 1/1000 to 1/100 of the compound (A) dispersed in the aqueous dispersion medium in terms of mass ratio. The seed crystal is not particularly limited as long as it is a solid compound (A).
・結晶化工程後の処理
 結晶化工程の後、系を、通常、常温(25℃程度)まで冷却する。
 冷却の条件は特に限定されない。自然冷却であってもそうでなくてもよい。前述のように、本実施形態は「溶解」した化合物(A)を結晶化する従来技術とは趣を異にするものであるため、冷却によって多量の化合物(A)が析出するものではない。
 ただ、水系分散媒は化合物(A)を少量は溶解するため、冷却により多少は結晶が析出する。Caイオン等の量や粒径分布の精密な調整の観点では、冷却は0.1~0.3[℃/分]程度で緩やかに行われることが好ましい。
-Treatment after the crystallization step After the crystallization step, the system is usually cooled to room temperature (about 25 ° C.).
The cooling conditions are not particularly limited. It may or may not be naturally cooled. As described above, since this embodiment is different from the prior art of crystallizing the "dissolved" compound (A), a large amount of the compound (A) is not precipitated by cooling.
However, since the aqueous dispersion medium dissolves a small amount of the compound (A), some crystals are precipitated by cooling. From the viewpoint of precise adjustment of the amount of Ca ions and the like and the particle size distribution, it is preferable that the cooling is gently performed at about 0.1 to 0.3 [° C./min].
 冷却後、得られた結晶を、例えば減圧濾過にて回収し、水で洗浄、20~50℃前後の環境下で減圧乾燥することで、最終的な粉体を得ることができる。 After cooling, the obtained crystals can be recovered by, for example, vacuum filtration, washed with water, and dried under reduced pressure in an environment of about 20 to 50 ° C. to obtain the final powder.
(第2製法)
 一般式(A)で表される化合物の粉体の製造方法(第2製法)は、例えば、以下の工程1~工程4のような一連の手順を含む。このような手順により、粒径分布が適切に制御された(例えば第2実施形態のように、D50が50~100μmであり、D50/Daveが1.1~1.5である)化合物(A)の粉体を得ることができる。
(2nd manufacturing method)
The method for producing a powder of a compound represented by the general formula (A) (second production method) includes, for example, a series of procedures such as the following steps 1 to 4. By such a procedure, the particle size distribution was appropriately controlled (for example, D 50 is 50 to 100 μm and D 50 / D ave is 1.1 to 1.5 as in the second embodiment). A powder of compound (A) can be obtained.
・工程1:原料の準備
 まず、原料として、一般式(A)で表される化学構造を含む物質を準備する。このような原料は、例えば前述の特許文献2に記載の方法により得ることができる。原料として市販品を利用してもよい。
-Step 1: Preparation of raw material First, as a raw material, a substance containing a chemical structure represented by the general formula (A) is prepared. Such a raw material can be obtained, for example, by the method described in Patent Document 2 described above. Commercially available products may be used as raw materials.
・工程2:有機溶媒への溶解(加熱等)
 工程1で準備した原料を、有機溶媒に投入する。そして、有機溶媒を攪拌しながら加熱して、原料を有機溶媒中に溶解させる。
-Step 2: Dissolution in organic solvent (heating, etc.)
The raw material prepared in step 1 is put into an organic solvent. Then, the organic solvent is heated with stirring to dissolve the raw material in the organic solvent.
 この際、有機溶媒として適切なものを選択することが重要である。具体的には、有機溶媒として、化合物(A)の貧溶媒と良溶媒とを含む混合溶媒を用いることが好ましい。これにより、後の(3)再結晶化において、結晶がゆっくりと成長しやすくなり、粒径分布が適切に制御された(例えば第2実施形態のように、D50やD50/Daveが適切に制御された)粉体を得やすい。 At this time, it is important to select an appropriate organic solvent. Specifically, as the organic solvent, it is preferable to use a mixed solvent containing the poor solvent and the good solvent of the compound (A). As a result, in the subsequent (3) recrystallization, the crystals tend to grow slowly, and the particle size distribution is appropriately controlled (for example, as in the second embodiment, D 50 and D 50 / D ave). Easy to obtain (properly controlled) powder.
 貧溶媒としては、例えば、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環族炭化水素系溶媒や、n-ペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、イソオクタン、n-デカン等の脂肪族炭化水素系溶媒を挙げることができる。
 良溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸イソアミル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル系溶媒を挙げることができる。
 貧溶媒と良溶媒の混合比は、質量比で、例えば貧溶媒/良溶媒=99/1~50/50、好ましくは貧溶媒/良溶媒=95/5~75/25、より好ましくは貧溶媒/良溶媒=95/5~80/20である。
Examples of the poor solvent include alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and ethylcyclohexane, and n-pentane, n-hexane, isohexane, n-heptane, n-octane, isooctane, n-decane and the like. An aliphatic hydrocarbon solvent can be mentioned.
Examples of good solvents include ester solvents such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, amyl acetate, isoamyl acetate, methyl lactate, ethyl lactate, and butyl lactate.
The mixing ratio of the poor solvent and the good solvent is a mass ratio, for example, poor solvent / good solvent = 99/1 to 50/50, preferably poor solvent / good solvent = 95/5 to 75/25, and more preferably poor solvent. / Good solvent = 95/5 to 80/20.
 工程2において、有機溶媒は、例えば60~80℃程度にまで加熱される。この加熱および攪拌により、原料を有機溶媒中に完全に溶解させる。別の言い方として、有機溶媒への原料の投入量は、有機溶媒を60~80℃程度に加熱したときには完全溶解するが、後述の工程3(降温)において析出が生じる程度の量で調整する。この量は、原料の溶解性、使用する有機溶媒、加熱温度などに基づき適宜設定すればよい。
 あくまで1例であるが、原料の使用量(有機溶媒への投入量)は、有機溶媒1000gあたり100g程度とすることができる。
In step 2, the organic solvent is heated to, for example, about 60 to 80 ° C. This heating and stirring completely dissolves the raw material in the organic solvent. In other words, the amount of the raw material added to the organic solvent is adjusted so that the organic solvent is completely dissolved when heated to about 60 to 80 ° C., but precipitation occurs in step 3 (lowering temperature) described later. This amount may be appropriately set based on the solubility of the raw material, the organic solvent used, the heating temperature, and the like.
Although it is only an example, the amount of the raw material used (the amount input to the organic solvent) can be about 100 g per 1000 g of the organic solvent.
・工程3:降温/種晶の添加/攪拌
 工程2において、60~80℃程度に加熱されて原料が完全に溶解した有機溶媒を、30分~3時間程度かけてゆっくりと、55℃程度にまで降温する。
-Step 3: Temperature lowering / addition of seed crystals / stirring In step 2, the organic solvent heated to about 60 to 80 ° C. and completely dissolved in the raw material was slowly brought to about 55 ° C. over about 30 minutes to 3 hours. To cool down.
 降温後、種晶として、固体状の化合物(A)を有機溶媒に添加する。本発明者らの知見として、特に、有機溶媒として上記のような貧溶媒および良溶媒を用いる場合、種晶を用いることで、最終的に、粒径分布が適切に制御された(例えば第2実施形態のようにD50やD50/Daveが制御された)化合物(A)の粉体を得やすい。
 種晶の添加量は、質量比で、工程2で有機溶媒に溶解させた原料の1/1000から1/100程度とすることができる。種晶は、固体状の化合物(A)である限り特に限定されない。例えば前掲の特許文献2の実施例に記載の方法に準じて得られたものを、種晶として用いることができる。また、市販の固体状の化合物(A)を種晶として用いることもできる。
After the temperature is lowered, the solid compound (A) is added to the organic solvent as a seed crystal. As the findings of the present inventors, in particular, when the above-mentioned poor solvent and good solvent are used as the organic solvent, the particle size distribution is finally appropriately controlled by using the seed crystal (for example, the second). It is easy to obtain the powder of the compound (A) in which D 50 and D 50 / D ave are controlled as in the embodiment.
The amount of the seed crystal added can be about 1/1000 to 1/100 of the raw material dissolved in the organic solvent in the step 2 in terms of mass ratio. The seed crystal is not particularly limited as long as it is a solid compound (A). For example, a seed crystal obtained according to the method described in Examples of Patent Document 2 described above can be used. Further, a commercially available solid compound (A) can also be used as a seed crystal.
 種晶の添加後、55℃程度の温度を維持したまま、有機溶媒を30分~3時間程度攪拌し、結晶を析出させる。 After adding the seed crystal, the organic solvent is stirred for about 30 minutes to 3 hours while maintaining the temperature of about 55 ° C. to precipitate the crystal.
・工程4:冷却
 工程3の後、有機溶媒を攪拌しながら、30~40℃程度まで、1~5時間程度かけてゆっくりと冷却を行う。これにより結晶を成長させる。
 得られた結晶を、減圧濾過にて回収し、20~50℃前後の環境下で減圧乾燥する。このようにすることで、粒径分布などが適切に制御された粉体を得ることができる。
-Step 4: Cooling After the step 3, the organic solvent is slowly cooled to about 30 to 40 ° C. for about 1 to 5 hours while stirring. This causes the crystals to grow.
The obtained crystals are collected by vacuum filtration and dried under reduced pressure in an environment of about 20 to 50 ° C. By doing so, it is possible to obtain a powder having an appropriately controlled particle size distribution and the like.
<溶液の製造方法>
 溶媒と、第1~第4実施形態の少なくともいずれかの粉体とを用いて、一般式(A)で表される化合物を含む溶液を製造することができる。この溶液を用いることで、種々の低分子化合物、オリゴマー、ポリマーなどを製造することができる。
<Method of manufacturing solution>
A solution containing the compound represented by the general formula (A) can be produced by using the solvent and at least one of the powders of the first to fourth embodiments. By using this solution, various low molecular weight compounds, oligomers, polymers and the like can be produced.
 溶液を製造するにあたっては、(i)溶媒に、第1~第4実施形態の少なくともいずれかの粉体をそのまま加えて攪拌又は溶解してもよいし、(ii)まず、第1~第4実施形態の少なくともいずれかの粉体を微細化して微細化された粉体を得、少なくともその微細化された粉体を溶媒に加えて攪拌又は溶解してもよい。
 前述のように、第1~第4実施形態の粉体の工業的な取り扱い性は良好である。例えば第1実施形態においては、モード径Dが75~150μmであることにより、「濾過性が良い」、「濡れた粉体を乾燥させる際の乾燥時間を短縮化できる」等の利点を有する。一方、モード径Dが75~150μmと比較的大きい場合には、溶媒の種類によっては溶解に少し時間がかかることも懸念される。このため、上記(ii)のようにして溶液を製造することが好ましい場合がある。
In producing the solution, (i) at least one of the powders of the first to fourth embodiments may be added as it is to the solvent, and the mixture may be stirred or dissolved. (Ii) First, the first to fourth embodiments may be added. At least one of the powders of the embodiment may be finely divided to obtain a finely divided powder, and at least the finely divided powder may be added to a solvent and stirred or dissolved.
As described above, the industrial handleability of the powders of the first to fourth embodiments is good. For example, in the first embodiment, when the mode diameter D m is 75 to 150 μm, there are advantages such as “good filterability” and “the drying time when drying the wet powder can be shortened”. .. On the other hand, when the mode diameter D m is relatively large, 75 to 150 μm, there is a concern that it may take some time to dissolve depending on the type of solvent. Therefore, it may be preferable to produce the solution as described in (ii) above.
 「微細化」の方法は特に限定されない。代表的な微細化の方法は粉砕である。工業的には、ジェットミル、ローラーミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、ビーズミルなどの装置を用いて粉砕を行うことができる。
 微細化の別の方法として、第1~第4実施形態の少なくともいずれかの粉体を溶媒に投入し、完全に溶解する前に未溶解の粉体を(例えば濾過により)取り出して、微細な粉体を得てもよい。
 微細化のさらに別の方法として、第1~第4実施形態の少なくともいずれかの粉体を、粉体の全量は溶解しない量の溶媒に投入し、粉体の溶解が飽和したのち、未溶解の粉体を取り出すことで、微細な粉体を得てもよい。または、未溶解の粉体が存在する溶液をそのまま用いてもよい。
The method of "miniaturization" is not particularly limited. A typical miniaturization method is pulverization. Industrially, pulverization can be performed using devices such as jet mills, roller mills, hammer mills, pin mills, rotary mills, vibration mills, planetary mills, and bead mills.
As another method of miniaturization, at least one of the powders of the first to fourth embodiments is put into a solvent, and the undissolved powder is taken out (for example, by filtration) before being completely dissolved to be finely divided. Powder may be obtained.
As yet another method for micronization, at least one of the powders of the first to fourth embodiments is put into a solvent in an amount that does not dissolve the entire amount of the powder, and after the dissolution of the powder is saturated, it is not dissolved. Fine powder may be obtained by taking out the powder of. Alternatively, the solution containing the undissolved powder may be used as it is.
 微細化を行う場合、どの程度微細化するかは特に限定されない。微細化に必要なコストと、微細化を行うことのメリット(例えば上述の溶解性向上)の兼ね合いによりどの程度微細化するかを決めればよい。一観点として、微細化(好ましくは粉砕)の前後で、Daveが1/20~1/2、より好ましくは1/15~1/4となるようにすればよい。Daveの絶対値の観点では、微細化(好ましくは粉砕)の後の粉体のDaveが、好ましくは0.1~15μm、より好ましくは0.5~10μmとなるようにすればよい。 When miniaturization is performed, the degree of miniaturization is not particularly limited. The degree of miniaturization may be determined by balancing the cost required for miniaturization with the merit of performing miniaturization (for example, the above-mentioned improvement in solubility). From one viewpoint, the Dave may be 1/20 to 1/2, more preferably 1/15 to 1/4 before and after miniaturization (preferably pulverization). In terms of absolute value of D ave, D ave of the powder after fine (preferably crushed) is preferably 0.1 ~ 15 [mu] m, and more preferably may be such that the 0.5 ~ 10 [mu] m.
 化合物(A)の溶液を製造するに際して使用可能な溶媒は、種々の目的に応じて適宜選択することができる。使用可能な溶媒は、化合物(A)が溶解すれば特に制限されない。具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、ヘキサメチルリン酸トリアミド、N-メチル-2-ピロリドン等のアミド系溶媒、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール等のアルコール系溶媒、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキサン1-メトキシ-2-プロパノール等のエーテル系溶媒、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピレングリコールモノメチルアセテート、乳酸エチル等のエステル系溶媒、アセトニトリル、プロパンニトリル、ベンゾニトリル等のニトリル系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン等のハロゲン系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、ε-カプロラクトンのラクトン系溶媒を例示することができる。溶媒は単独で用いられてもよいし、二種以上が併用されてもよい。 The solvent that can be used in producing the solution of compound (A) can be appropriately selected according to various purposes. The solvent that can be used is not particularly limited as long as the compound (A) is dissolved. Specifically, amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, hexamethylphosphate triamide, and N-methyl-2-pyrrolidone, methanol, ethanol, and 1-propanol. , 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol and other alcohol solvents, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether , Diphenyl ether, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxane 1-methoxy-2-propanol and other ether solvents, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl acetate, ethyl lactate and other ester solvents. , Niterite solvents such as acetonitrile, propanenitrile, benzonitrile, aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, cumene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2,2- Examples thereof include halogen-based solvents such as tetrachloroethane, and lactone-based solvents such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, and ε-caprolactone. The solvent may be used alone or in combination of two or more.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。 Embodiments of the present invention will be described in detail based on Examples and Comparative Examples. As a reminder, the invention is not limited to examples.
[実施例1~5および比較例1~6]
 以下の実施例1~5および比較例1~6は、特に、第1実施形態について詳細に説明するための実施例および比較例である。
[Examples 1 to 5 and Comparative Examples 1 to 6]
The following Examples 1 to 5 and Comparative Examples 1 to 6 are, in particular, Examples and Comparative Examples for explaining the first embodiment in detail.
<実施例1>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、試薬ビンからセントラル硝子社製のBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水225.0gを容器内へ加えた。そして、攪拌しながら容器内部の温度を95℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内は懸濁状態になった。そのまま温度を95℃に維持して1時間攪拌した。
<Example 1>
25.0 g (74.4 mmol) of BIS-AF powder manufactured by Central Glass Co., Ltd. was collected from a reagent bottle and placed in a glass container made of borosilicate glass having a volume of 500 mL equipped with a stirrer and a cooling condenser. Then, 225.0 g of pure water was added into the container. Then, the temperature inside the container was raised to 95 ° C. while stirring.
While the temperature was being raised, the BIS-AF powder began to melt, and the inside of the container became suspended. The temperature was maintained at 95 ° C. and the mixture was stirred for 1 hour.
 1時間経過後に一旦攪拌を止めて静置し、容器内を観察した。観察の結果、容器内には、水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度を測定した。濃度は1質量%程度であり、95℃程度の高温であってもBIS-AFのほとんどは水に「溶解」はしていなかった。すなわち、原料のBIS-AF粉体の融解温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 1 hour, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured. The concentration was about 1% by mass, and most of BIS-AF was not "dissolved" in water even at a high temperature of about 95 ° C. That is, at the melting temperature of the raw material BIS-AF powder, the solubility of the aqueous dispersion medium BIS-AF was far below 10 [g / 100 g].
 次に、内温を95℃から若干下げて、92~94℃の温度を維持しながら1時間攪拌した。すると、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。このときの室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、75℃、減圧(1kPa以下)下で8時間乾燥させた。
Next, the internal temperature was slightly lowered from 95 ° C., and the mixture was stirred for 1 hour while maintaining the temperature of 92 to 94 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 75 ° C. under reduced pressure (1 kPa or less) for 8 hours using a vacuum dryer.
 乾燥後に得られたBIS-AF粉末は24.1gであり、収率は96%だった。 The BIS-AF powder obtained after drying was 24.1 g, and the yield was 96%.
<実施例2>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水202.5gとメタノール22.5gを容器内へ加え、攪拌しながら容器内部の温度を66℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内が懸濁状態になった。そのまま温度を維持して1.5時間攪拌した。
<Example 2>
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 202.5 g of pure water and 22.5 g of methanol were added into the container, and the temperature inside the container was raised to 66 ° C. with stirring.
While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
 1.5時間経過後に一旦攪拌を止めて静置し、容器内を観察した。観察の結果、容器内には、水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度を測定した。濃度は2質量%以下であり、66℃程度の高温であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 1.5 hours, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a high temperature of about 66 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
 次に、内温60~65℃の温度を維持しながら1時間攪拌した。すると、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。なお、この時の室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は22.9gであり、収率は92%だった。
Next, the mixture was stirred for 1 hour while maintaining an internal temperature of 60 to 65 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
The BIS-AF powder obtained after drying was 22.9 g, and the yield was 92%.
<実施例3>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水112.5gとメタノール12.5gを容器内へ加え、攪拌しながら容器内部の温度を66℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内が懸濁状態になった。そのまま温度を維持して2時間攪拌した。
<Example 3>
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 112.5 g of pure water and 12.5 g of methanol were added into the container, and the temperature inside the container was raised to 66 ° C. with stirring.
While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 2 hours.
 2時間経過後に一旦攪拌を止めて静置し、容器内を観察した。観察の結果、容器内には、水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度を測定した。濃度は2質量%以下であり、66℃程度の高温であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 2 hours, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a high temperature of about 66 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
 次に、内温59~65℃の温度を維持しながら1時間攪拌した。すると、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。なお、この時の室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は23.4gであり、収率は94%だった。
Next, the mixture was stirred for 1 hour while maintaining an internal temperature of 59 to 65 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
The BIS-AF powder obtained after drying was 23.4 g, and the yield was 94%.
<実施例4>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水100.0gとメタノール25.0gを容器内へ加え、攪拌しながら容器内部の温度を40℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内が懸濁状態になった。そのまま温度を維持して2時間攪拌した。
<Example 4>
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 100.0 g of pure water and 25.0 g of methanol were added into the container, and the temperature inside the container was raised to 40 ° C. with stirring.
While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 2 hours.
 2時間経過後に一旦攪拌を止めて静置し、容器内を観察した。観察の結果、容器内には、水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度を測定した。濃度は2質量%以下であり、40℃程度の温度であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 2 hours, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a temperature of about 40 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
 次に、内温34~39℃の温度を維持しながら1時間攪拌した。すると、結晶が析出した。その後、内温を10℃/1時間の降温速度にて室温まで冷却した。なお、この時の室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は23.0gであり、収率は92%だった。
Next, the mixture was stirred for 1 hour while maintaining an internal temperature of 34 to 39 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 10 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
The BIS-AF powder obtained after drying was 23.0 g, and the yield was 92%.
<実施例5>
 撹拌機と冷却コンデンサーを備えた、容積2000mLのホウケイ酸ガラス製容器中に、試薬ビンからセントラル硝子社製のBIS-AF粉体100.0g(298mmol)を採取して入れた。次いで、純水425.0gとメタノール75.0gを容器内へ加えた。そして、攪拌しながら容器内部の温度を55℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内は懸濁状態になった。そのまま温度を55℃に維持して1時間攪拌した。
<Example 5>
100.0 g (298 mmol) of BIS-AF powder manufactured by Central Glass Co., Ltd. was collected from a reagent bottle and placed in a glass container made of borosilicate glass having a volume of 2000 mL equipped with a stirrer and a cooling condenser. Then, 425.0 g of pure water and 75.0 g of methanol were added into the container. Then, the temperature inside the container was raised to 55 ° C. while stirring.
While the temperature was being raised, the BIS-AF powder began to melt, and the inside of the container became suspended. The temperature was maintained at 55 ° C. and the mixture was stirred for 1 hour.
 1時間経過後に一旦攪拌を止めて静置し、容器内を観察した。観察の結果、容器内には、水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度を測定した。濃度は1質量%程度であり、BIS-AFのほとんどは水に「溶解」はしていなかった。すなわち、原料のBIS-AF粉体の融解温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 1 hour, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured. The concentration was about 1% by mass, and most of BIS-AF was not "dissolved" in water. That is, at the melting temperature of the raw material BIS-AF powder, the solubility of the aqueous dispersion medium BIS-AF was far below 10 [g / 100 g].
 次に、内温を55℃から若干下げて、49-50℃の温度を維持しながら1時間攪拌した。すると、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。このときの室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、300mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、75℃、減圧(1kPa以下)下で8時間乾燥させた。
Next, the internal temperature was slightly lowered from 55 ° C., and the mixture was stirred for 1 hour while maintaining the temperature of 49-50 ° C. Then, crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 300 mL of pure water. The washed BIS-AF was dried at 75 ° C. under reduced pressure (1 kPa or less) for 8 hours using a vacuum dryer.
 乾燥後に得られたBIS-AF粉末は95.1gであり、収率は95%だった。 The BIS-AF powder obtained after drying was 95.1 g, and the yield was 95%.
<比較例1>
 比較例1は、単純な水洗浄によるCaイオンの低減を試みた例である。
<Comparative example 1>
Comparative Example 1 is an example in which an attempt is made to reduce Ca ions by simple washing with water.
 撹拌機を備えた、容積300mLのホウケイ酸ガラス製容器中へ、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水125.0gを加え、室温(約20℃)にて1時間攪拌しながら、BIS-AF粉体を洗浄した。
 洗浄終了後、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。
 次いで、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は24.0gであり、収率は96%だった。
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 125.0 g of pure water was added, and the BIS-AF powder was washed while stirring at room temperature (about 20 ° C.) for 1 hour.
After the washing was completed, the mixture was separated and collected by vacuum filtration using a suction filter equipped with a filter paper.
Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours.
The BIS-AF powder obtained after drying was 24.0 g, and the yield was 96%.
<比較例2>
 比較例2は、結晶性化合物のメタル量低減でしばしば試みられる、再沈殿によるCaイオンの低減を試みた例である。
<Comparative example 2>
Comparative Example 2 is an example in which the reduction of Ca ions by reprecipitation, which is often attempted to reduce the amount of metal in the crystalline compound, is attempted.
 撹拌機を備えた、容積300mLのホウケイ酸ガラス製容器中に、純水200.0gを入れた。
 次に、メタノール50.0gに、実施例1と同じ試薬ビンから採取したBIS-AF粉体25.0g(74.4mmol)を溶解させた溶液を、上記純水を入れたホウケイ酸ガラス製容器中へ、撹拌機を回しながら徐々に滴下した。これにより、BIS-AFの固体を析出させた。
 析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて回収した。次いで、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で8時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は23.2gであり、収率は93%だった。
200.0 g of pure water was placed in a glass container made of borosilicate glass having a volume of 300 mL and equipped with a stirrer.
Next, a borosilicate glass container containing the pure water in a solution prepared by dissolving 25.0 g (74.4 mmol) of BIS-AF powder collected from the same reagent bottle as in Example 1 in 50.0 g of methanol. Gradually dropped into the inside while turning the stirrer. As a result, a solid BIS-AF was precipitated.
The precipitated BIS-AF was collected by vacuum filtration using a suction filter equipped with a filter paper. Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 8 hours.
The BIS-AF powder obtained after drying was 23.2 g, and the yield was 93%.
<比較例3>
 比較例3は、特許文献(CN104529717A)の記載を参考に、活性炭を用いてCaイオンの低減を試みた例である。
<Comparative example 3>
Comparative Example 3 is an example in which an attempt was made to reduce Ca ions using activated carbon with reference to the description in Patent Document (CN104528717A).
 撹拌機を備えた、容積300mLのホウケイ酸ガラス製容器中に、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、容器中に、メタノール50.0g、活性炭(大阪ガスケミカル株式会社製、商品名白鷺ANOX-1)を2.0g加え、室温(約20℃)にて5時間攪拌した。
 攪拌終了後、ろ紙を備えた吸引濾過器を用い、濾過にて活性炭を除去し、BIS-AFのメタノール溶液を回収した。メタノール溶液の金属イオン濃度を測定したところ、Naイオンが9ppm、Caイオンが12ppmであった。
 次いで、このメタノール溶液を純水200g中へ徐々に滴下することで、BIS-AFを再沈殿させた。BIS-AFの析出後、ろ紙を備えた吸引濾過器を用い、減圧濾過にてBIS-AFを回収した。次いで、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で8時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は21.9gであり、収率は88%だった。
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 50.0 g of methanol and 2.0 g of activated carbon (manufactured by Osaka Gas Chemical Co., Ltd., trade name Shirasagi ANOX-1) were added to the container, and the mixture was stirred at room temperature (about 20 ° C.) for 5 hours.
After the stirring was completed, the activated carbon was removed by filtration using a suction filter equipped with a filter paper, and the methanol solution of BIS-AF was recovered. When the metal ion concentration of the methanol solution was measured, Na ion was 9 ppm and Ca ion was 12 ppm.
Then, BIS-AF was reprecipitated by gradually dropping this methanol solution into 200 g of pure water. After precipitation of BIS-AF, BIS-AF was recovered by vacuum filtration using a suction filter equipped with a filter paper. Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 8 hours.
The BIS-AF powder obtained after drying was 21.9 g, and the yield was 88%.
<比較例4>
 比較例4は、比較例3において、活性炭をイオン交換樹脂に替えた例である。
<Comparative example 4>
Comparative Example 4 is an example in which the activated carbon is replaced with an ion exchange resin in Comparative Example 3.
 撹拌機を備えた、容積300mLのホウケイ酸ガラス製容器中に、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、容器中に、メタノール50.0g、イオン交換樹脂(住化ケムテックス株式会社製、商品名、デュオライトC255LFH)を2.0g加え、室温(約20℃)にて5時間攪拌した。
 攪拌終了後、ろ紙を備えた吸引濾過器を用い、濾過にてイオン交換樹脂を除去し、BIS-AFのメタノール溶液を回収した。メタノール溶液の金属イオン濃度を測定したところ、Naイオンが3ppm、Caイオンが2ppmであった。
 次いで、このメタノール溶液を純水200g中へ徐々に滴下することで、BIS-AFを再沈殿させた。BIS-AFの析出後、ろ紙を備えた吸引濾過器を用い、減圧濾過にてBIS-AFを回収した。次いで、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で7時間乾燥させた。
 乾燥後に得られたBIS-AF粉末は22.2gであり、収率は89%だった。
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 50.0 g of methanol and 2.0 g of an ion exchange resin (manufactured by Sumika Chemtex Co., Ltd., trade name, Duolite C255LFH) were added to the container, and the mixture was stirred at room temperature (about 20 ° C.) for 5 hours.
After the stirring was completed, the ion exchange resin was removed by filtration using a suction filter equipped with a filter paper, and the methanol solution of BIS-AF was recovered. When the metal ion concentration of the methanol solution was measured, Na ion was 3 ppm and Ca ion was 2 ppm.
Then, BIS-AF was reprecipitated by gradually dropping this methanol solution into 200 g of pure water. After precipitation of BIS-AF, BIS-AF was recovered by vacuum filtration using a suction filter equipped with a filter paper. Then, using a vacuum dryer, it was dried at 80 ° C. under reduced pressure (1 kPa or less) for 7 hours.
The BIS-AF powder obtained after drying was 22.2 g, and the yield was 89%.
<比較例5>
 比較例5は、比較例3において、活性炭を活性白土に替えた例である。
<Comparative example 5>
Comparative Example 5 is an example in which activated carbon was replaced with activated clay in Comparative Example 3.
 撹拌機を備えた、容積300mLのホウケイ酸ガラス製容器中に、実施例1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、容器中に、メタノール50.0g、活性白土(水澤化学工業株式会社製、商品名、ガレオンアース)を2.0g加え、室温(約20℃)にて5時間攪拌した。
 攪拌終了後、ろ紙を備えた吸引濾過器を用い濾過にて活性白土を除去し、BIS-AFのメタノール溶液を回収した。メタノール溶液の金属イオン濃度を測定したところ、Naイオンが18ppm、Caイオンが4ppmであった。
(このメタノール溶液中のメタル濃度が比較例4よりも明らかに高かったため、その後の再沈殿を行っても恐らくメタルの除去は出来ないと推測し、再沈殿は行わなかった。)
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 1 and placed in a glass container made of borosilicate glass having a volume of 300 mL equipped with a stirrer. Next, 50.0 g of methanol and 2.0 g of activated clay (manufactured by Mizusawa Industrial Chemicals, Inc., trade name, galleon earth) were added to the container, and the mixture was stirred at room temperature (about 20 ° C.) for 5 hours.
After the stirring was completed, the active clay was removed by filtration using a suction filter equipped with a filter paper, and the methanol solution of BIS-AF was recovered. When the metal ion concentration of the methanol solution was measured, Na ion was 18 ppm and Ca ion was 4 ppm.
(Since the metal concentration in this methanol solution was clearly higher than that of Comparative Example 4, it was presumed that the metal could not be removed even if the subsequent reprecipitation was performed, and the reprecipitation was not performed.)
<比較例6>
 比較例6は、特開2007-246819号公報に記載された事項を参照した例である。
 比較例6においては、水とアルコール(エチレングリコール)の混合溶剤を用いている。ただし、一連の流れの中で、原料のBIS-AF粉体は、混合溶剤に完全に溶解した(均一な1層になった)点で、比較例6は、本実施形態とは本質的に異なる。
<Comparative Example 6>
Comparative Example 6 is an example referring to the matters described in Japanese Patent Application Laid-Open No. 2007-246819.
In Comparative Example 6, a mixed solvent of water and alcohol (ethylene glycol) is used. However, in a series of flows, the raw material BIS-AF powder was completely dissolved in the mixed solvent (became a uniform single layer), and Comparative Example 6 was essentially different from the present embodiment. different.
 撹拌機と冷却コンデンサーを備えた、容積2Lのホウケイ酸ガラス製容器中へ、実施例1と同じ試薬ビンからBIS-AF粉体を150g入れ、そこへエチレングリコール300gとイオン交換水700gを注ぎ込んだ。その後、オイルバスを用いて、フラスコの内温が85℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。そのまま温度を維持して1時間攪拌した。1時間経過後に一旦攪拌を止めて静置し、容器内を観察した。すると、均一な溶液が確認された。 150 g of BIS-AF powder was put into a 2 L volume borosilicate glass container equipped with a stirrer and a cooling condenser from the same reagent bottle as in Example 1, and 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the container. .. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 85 ° C. The temperature was maintained as it was, and the mixture was stirred for 1 hour. After 1 hour, the stirring was stopped and the container was allowed to stand, and the inside of the container was observed. Then, a uniform solution was confirmed.
 次に、攪拌を継続しながら、10℃/時間の降温速度で、フラスコの内温が25℃になるまで冷却した。そうすると、降温開始と同時に結晶が徐々に析出(再結晶)し始めた。析出した結晶を減圧(1kPa以下)濾過にて回収し、60℃で減圧乾燥した。
 乾燥後に得られたBIS-AF粉末は137.0gであり、収率は91%だった。そして、Naイオンの濃度は0.2ppm、Caイオンの濃度は0.3ppmであった。
Next, while continuing stirring, the flask was cooled at a temperature lowering rate of 10 ° C./hour until the internal temperature of the flask reached 25 ° C. Then, the crystals began to gradually precipitate (recrystallize) at the same time as the temperature lowering started. The precipitated crystals were collected by filtration under reduced pressure (1 kPa or less) and dried under reduced pressure at 60 ° C.
The BIS-AF powder obtained after drying was 137.0 g, and the yield was 91%. The concentration of Na ions was 0.2 ppm, and the concentration of Ca ions was 0.3 ppm.
<測定>
(粒径分布)
 島津製作所製の粒度分布計であるSALD-2200を用い、得られた粉体状のBIS-AFを、n-デカン溶媒に分散させたサンプルの粒径分布を測定した。測定の際は、予めスライドガラス上にて、BIS-AFとn-デカン溶媒を混ぜ合わせ、ペースト状のBIS-AFを用意した。その後、分散溶媒であるn-デカン中へペースト状のBIS-AFを少しずつ添加し、吸光度の数値が0.1L/(mol・cm)以下になるように添加量を調整して、粒度分布を測定した。
 得られた測定結果(粒度分布)を解析することで、Dなどを算出した。
<Measurement>
(Diameter distribution)
Using SALD-2200, a particle size distribution meter manufactured by Shimadzu Corporation, the particle size distribution of the obtained powder BIS-AF dispersed in an n-decane solvent was measured. At the time of measurement, BIS-AF and n-decane solvent were mixed in advance on a slide glass to prepare a paste-like BIS-AF. Then, paste-like BIS-AF is gradually added to n-decane, which is a dispersion solvent, and the amount of addition is adjusted so that the absorbance value is 0.1 L / (mol · cm) or less, and the particle size distribution is distributed. Was measured.
By analyzing the obtained measurement results (particle size distribution), D m and the like were calculated.
(Ca、NaおよびMgイオンの含有量)
 イオンクロマトグラフィー分析法を利用して、粉体中のCa、NaおよびMgイオンの含有量を求めた。分析法の詳細は以下のとおりである。
(Content of Ca, Na and Mg ions)
The contents of Ca, Na and Mg ions in the powder were determined by using an ion chromatography analysis method. The details of the analysis method are as follows.
 まず、実施例/比較例で得られた各BIA-AF粉末0.4gを、t-ブチルメチルエーテル2.0mLへ溶解させて溶液とした。この溶液と超純水2.0mLとを分液漏斗に入れ、分液漏斗を激しく振盪することで、超純水(水層)の側に金属イオン成分を抽出した。分液漏斗を静置し、分離した水層の側を、金属イオン成分の分析用の分析サンプル液とした。
 この分析サンプル液の金属イオン含有量を、サーモフィッシャーサイエンティフィック製のイオンクロマトグラフィー装置(CS-2100)を用いて測定した。カラムとしては、分離カラム(Ion Pac CS16(内径4mm×250mm))とガードカラム(Ion Pac CG16(内径4mm×100mm))を用いた。また、溶離液としては、30mMメタンスルホン酸を用い、溶離液流量は1.0mL/min、温度は35℃とした。
First, 0.4 g of each BIA-AF powder obtained in Example / Comparative Example was dissolved in 2.0 mL of t-butyl methyl ether to prepare a solution. This solution and 2.0 mL of ultrapure water were placed in a separatory funnel, and the separatory funnel was vigorously shaken to extract a metal ion component on the ultrapure water (aqueous layer) side. The separating funnel was allowed to stand, and the side of the separated aqueous layer was used as an analytical sample solution for analysis of metal ion components.
The metal ion content of this analytical sample solution was measured using an ion chromatography device (CS-2100) manufactured by Thermo Fisher Scientific. As the columns, a separation column (Ion Pac CS16 (inner diameter 4 mm × 250 mm)) and a guard column (Ion Pac CG16 (inner diameter 4 mm × 100 mm)) were used. As the eluent, 30 mM methanesulfonic acid was used, the eluent flow rate was 1.0 mL / min, and the temperature was 35 ° C.
 粒径分布、および、Ca、NaおよびMgイオンの含有量に関する情報を下表にまとめて示す。ちなみに、一部比較例においては、金属イオンの含有量が明らかに大きかったため、粒径分布を測定しなかった(表中にN.D.で示す)。 Information on the particle size distribution and the content of Ca, Na and Mg ions is summarized in the table below. Incidentally, in some comparative examples, the particle size distribution was not measured because the content of metal ions was clearly large (indicated by N.D. in the table).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(アルコールの含有量)
 実施例2においては、乾燥後のBIS-AF1.00gを、1.00gの酢酸エチルに溶解させ、ガスクロマトグラフィー分析を行った。酢酸エチルを除いたピーク面積を基準としたとき、メタノール含量は100ppm未満であった。
 比較例6においては、乾燥後のBIS-AF1.00gを、1.00gの酢酸エチルに溶解させ、ガスクロマトグラフィー分析を行った。酢酸エチルを除いたピーク面積を基準としたとき、エチレングリコール含量は500ppmであった。
(Alcohol content)
In Example 2, 1.00 g of dried BIS-AF was dissolved in 1.00 g of ethyl acetate, and gas chromatography analysis was performed. The methanol content was less than 100 ppm based on the peak area excluding ethyl acetate.
In Comparative Example 6, 1.00 g of BIS-AF after drying was dissolved in 1.00 g of ethyl acetate, and gas chromatography analysis was performed. The ethylene glycol content was 500 ppm based on the peak area excluding ethyl acetate.
<評価>
 BIS-AF粉体が水に分散した分散液を、ろ紙を備えた吸引濾過器に通して、粉体と水とを分離した。この際の濾過性(液切れ)の良さを、以下のように評価した。
・良い:減圧開始後、濾過器(漏斗の足)からの液だれが速やかに消失する。
・悪い:減圧開始後、濾過機(漏斗の足)からの液だれが暫く続く。
<Evaluation>
The dispersion liquid in which the BIS-AF powder was dispersed in water was passed through a suction filter equipped with a filter paper to separate the powder and water. The good filterability (drainage) at this time was evaluated as follows.
-Good: After the start of decompression, the dripping from the filter (funnel foot) disappears quickly.
・ Bad: After decompression starts, dripping from the filter (funnel foot) continues for a while.
 また、濾過器(漏斗の足)からの液だれが消失するまで吸引濾過した後の粉体の含水率を、カールフィッシャー法により測定した。 In addition, the water content of the powder after suction filtration until the dripping from the filter (funnel foot) disappeared was measured by the Karl Fischer method.
 評価結果をまとめて下表に示す。ちなみに、前述のように、比較例5では再沈殿を行わなかったため、液切れや含水率の評価結果も無い(N.D.=No Data)。 The evaluation results are summarized in the table below. Incidentally, as described above, since reprecipitation was not performed in Comparative Example 5, there was no evaluation result of liquid drainage or water content (ND = No Data).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表2に示されるとおり、実施例1~5のBIS-AFの粉体の濾過性は良好であった。また、含水率の評価結果より、実施例1~5のBIS-AFの粉体を乾燥させる際の乾燥時間は短くて済むことがわかった。すなわち、実施例1~5のBIS-AFの粉体は、工業的な取り扱い性に優れていた。 As shown in Table 2, the filterability of the BIS-AF powders of Examples 1 to 5 was good. Further, from the evaluation results of the water content, it was found that the drying time when drying the BIS-AF powders of Examples 1 to 5 was short. That is, the BIS-AF powders of Examples 1 to 5 were excellent in industrial handleability.
 加えて、実施例1~5のBIS-AFの粉体のCaイオンの含有量は1ppm未満であった。このことから、実施例1~5のBIS-AFの粉体は、様々な技術分野(例えば電子デバイス製造)に好ましく用いられることが分かった。 In addition, the Ca ion content of the BIS-AF powders of Examples 1 to 5 was less than 1 ppm. From this, it was found that the BIS-AF powders of Examples 1 to 5 are preferably used in various technical fields (for example, manufacturing of electronic devices).
[実施例2-1~2-4および比較例2-1~2-3]
 以下の実施例2-1~2-4および比較例2-1~2-3は、特に、第2実施形態について詳細に説明するための実施例および比較例である。
[Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-3]
The following Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-3 are, in particular, Examples and Comparative Examples for explaining the second embodiment in detail.
<実施例2-1>
 まず、撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の3Lフラスコ内に、BIS-AF(セントラル硝子社製)を200g入れ、そこへn-ヘキサン1800gと酢酸エチル200gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃に到達後、1時間かけて内温が55℃になるまでゆっくりと降温し、その降温後、BIS-AF(セントラル硝子社製)を種晶として1g加え、そのまま1時間撹拌して目的のBIS-AFを析出させた。
 さらにその後、内温が35℃になるまで2時間かけて冷却し、析出した結晶を減圧濾過にて回収した。回収した結晶を30℃で減圧乾燥することにより、粉体状のBIS-AFを24g得た。
<Example 2-1>
First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C. over 1 hour, and after the temperature reduction, 1 g of BIS-AF (manufactured by Central Glass Co., Ltd.) is added as a seed crystal, and 1 g is added as it is. The target BIS-AF was precipitated by stirring for a time.
After that, the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 24 g of BIS-AF in powder form.
<実施例2-2>
 まず、撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の3Lフラスコ内に、BIS-AF(セントラル硝子社製)を200g入れ、そこへn-ヘキサン1800gと酢酸エチル200gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃へ到達後、2時間かけて内温が55℃になるまでゆっくりと降温し、その降温後、BIS-AF(セントラル硝子社製)を種晶として1g加え、そのまま2時間撹拌して目的のBIS-AFを析出させた。
 さらにその後、内温が35℃になるまで4時間かけて冷却し、析出した結晶を減圧濾過にて回収した。回収した結晶を30℃で減圧乾燥することにより、粉体状のBIS-AFを27g得た。
<Example 2-2>
First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C. over 2 hours, and after the temperature reduction, 1 g of BIS-AF (manufactured by Central Glass Co., Ltd.) is added as a seed crystal, and 2 as it is. The target BIS-AF was precipitated by stirring for a time.
After that, the mixture was cooled over 4 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 27 g of BIS-AF in powder form.
<実施例2-3>
 まず、撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の3Lフラスコ内に、BIS-AF(セントラル硝子社製)を200g入れ、そこへn-ヘプタン1800gと酢酸エチル200gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃へ到達後、1時間かけて内温55℃までゆっくりと降温し、その降温後、BIS-AF(セントラル硝子社製)を種晶として1g加え、そのまま1時間撹拌して目的のBIS-AFを析出させた。
 さらにその後、内温が35℃になるまで2時間かけて冷却し、析出した結晶を減圧濾過にて回収した。回収した結晶を30℃で減圧乾燥することにより、粉体状のBIS-AFを23g得た。
<Example 2-3>
First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-heptane and 200 g of ethyl acetate were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C. over 1 hour, and after the temperature is lowered, 1 g of BIS-AF (manufactured by Central Glass Co., Ltd.) is added as a seed crystal and stirred as it is for 1 hour. The desired BIS-AF was precipitated.
After that, the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 23 g of BIS-AF in powder form.
<実施例2-4>
 前掲の<実施例5>と同様にしてBIS-AF粉末を得た。
<Example 2-4>
BIS-AF powder was obtained in the same manner as in <Example 5> described above.
<比較例2-1>
 比較例2-1は、特許文献2の実施例に準じた方法で粉体を製造した例である(中和反応によるBIF-AFの析出)。
 撹拌モーターおよび温度計を備え付けたホウケイ酸ガラス製の3Lフラスコ内へ、BIS-AF(セントラル硝子社製)を200g、水酸化ナトリウムを52g入れた。その後、発熱に注意しながら1800gの水を加え、撹拌することにより均一な溶液(BIF-AFの塩が溶解している)を得た。
 次いで、氷浴にて内温10℃まで冷却し、その後、35%塩酸水136gを滴下しながら中和することでBIS-AFを析出させた。
 析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。これにより粉体状のBIS-AFを171g得た。
<Comparative Example 2-1>
Comparative Example 2-1 is an example in which powder is produced by a method according to the example of Patent Document 2 (precipitation of BIF-AF by neutralization reaction).
200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) and 52 g of sodium hydroxide were placed in a 3 L flask made of borosilicate glass equipped with a stirring motor and a thermometer. Then, 1800 g of water was added while paying attention to heat generation, and the mixture was stirred to obtain a uniform solution (the salt of BIF-AF was dissolved).
Then, the mixture was cooled to an internal temperature of 10 ° C. in an ice bath, and then neutralized by dropping 136 g of 35% hydrochloric acid water to precipitate BIS-AF.
The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 171 g of powdery BIS-AF was obtained.
<比較例2-2>
 比較例2-2は、特許文献1の実施例に準じた方法・条件で粉体を製造した例である(溶媒の主成分が水である)。
 撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の2Lフラスコに、BIS-AF(セントラル硝子社製)を150g入れ、そこへエチレングリコール300gとイオン交換水700gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃に到達後、10℃/時間の降温速度で、フラスコの内温が25℃になるまで冷却しながら、BIS-AFを析出させた。
 析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。これにより、粉体状のBIS-AFを135g得た。
<Comparative Example 2-2>
Comparative Example 2-2 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document 1 (the main component of the solvent is water).
150 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 2 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reached 65 ° C., BIS-AF was precipitated while cooling at a temperature lowering rate of 10 ° C./hour until the internal temperature of the flask reached 25 ° C.
The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 135 g of powdery BIS-AF was obtained.
<比較例2-3>
 比較例2-3は、特許文献(CN104529717A)の実施例に準じた方法・条件で粉体を製造した例である(再沈殿によるBIS-AFの析出)。
 撹拌モーター、温度計を備え付けたホウケイ酸ガラス製の1Lフラスコに、イオン交換水800gを注ぎ込んだ。そこへ、100gのメタノールにBIS-AF(セントラル硝子社製)100gを溶解させた溶液を、内温20~23℃にて滴下し、フラスコ内を攪拌させながらBIS-AFを再沈殿させた。
 析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。これにより、粉体状のBIS-AFを89g得た。
<Comparative Example 2-3>
Comparative Example 2-3 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document (CN104528717A) (precipitation of BIS-AF by reprecipitation).
800 g of ion-exchanged water was poured into a 1 L flask made of borosilicate glass equipped with a stirring motor and a thermometer. A solution prepared by dissolving 100 g of BIS-AF (manufactured by Central Glass Co., Ltd.) in 100 g of methanol was added dropwise thereto at an internal temperature of 20 to 23 ° C., and BIS-AF was reprecipitated while stirring the inside of the flask.
The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 89 g of powdery BIS-AF was obtained.
<各種測定/評価>
(粒径分布)
 島津製作所製の粒度分布計であるSALD-2200を用い、得られた粉体状のBIS-AFを、n-デカン溶媒に分散させたサンプルの粒径分布を測定した。測定の際は、予めスライドガラス上にて、BIS-AFとn-デカン溶媒を混ぜ合わせ、ペースト状のBIS-AFを用意した。その後、分散溶媒であるn-デカン中へペースト状のBIS-AFを少しずつ添加し、吸光度の数値が0.1L/(mol・cm)以下になるように添加量を調整して、粒度分布を測定した。得られた測定結果を解析することで、D50、D90、DaveおよびDを算出した。
<Various measurements / evaluations>
(Diameter distribution)
Using SALD-2200, a particle size distribution meter manufactured by Shimadzu Corporation, the particle size distribution of the obtained powder BIS-AF dispersed in an n-decane solvent was measured. At the time of measurement, BIS-AF and n-decane solvent were mixed in advance on a slide glass to prepare a paste-like BIS-AF. Then, paste-like BIS-AF is gradually added to n-decane, which is a dispersion solvent, and the amount of addition is adjusted so that the absorbance value is 0.1 L / (mol · cm) or less, and the particle size distribution is distributed. Was measured. By analyzing the obtained measurement results, D 50 , D 90 , D ave and D m were calculated.
 粒径に関する情報をまとめて表3に示す。 Table 3 summarizes information on particle size.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(取り扱い性:塊状化の評価)
 蓋付き100mLポリエチレン製容器に、50gのBIS-AF粉体を入れ、室温下で1カ月安置した。その後、容器を開封して全量のBIS-AF粉体を取り出して、BIS-AFの凝集による塊状化の有無を目視で確認した。
 塊状化が全く確認されなかった場合を○(良い)、塊状化が確認された場合を×(悪い)と評価した。
(Handling: Evaluation of agglomeration)
50 g of BIS-AF powder was placed in a 100 mL polyethylene container with a lid and allowed to stand at room temperature for 1 month. Then, the container was opened and the entire amount of BIS-AF powder was taken out, and the presence or absence of agglomeration due to aggregation of BIS-AF was visually confirmed.
The case where no agglomeration was confirmed was evaluated as ◯ (good), and the case where agglomeration was confirmed was evaluated as × (bad).
(取り扱い性:流動性評価(ロートテスト))
 ロート口径150mm、ノズル径12mm、ノズル長22mmのロートに対し、BIS-AF粉体60gを全量投入し、粉体の自然排出可否を確認した。その際、全量のBIS-AF粉体が自然排出される場合を〇(良い)、自然排出されない場合を×(悪い)と評価した。
(Handling: Liquidity evaluation (Rohto test))
A total amount of 60 g of BIS-AF powder was added to a funnel having a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, and it was confirmed whether or not the powder could be discharged naturally. At that time, the case where the entire amount of BIS-AF powder was spontaneously discharged was evaluated as 〇 (good), and the case where it was not naturally discharged was evaluated as × (bad).
(取り扱い性:安息角の測定)
 ロート口径150mm、ノズル径12mm、ノズル長22mmのロートを用いて、ロート上に目開き0.5mmの振るい板を、ロートノズルの先端から下部へ4.5cm離れた位置に水平台を、それぞれ配置した。次に、振るい板上にBIS-AF粉体50gを取り、刷毛を用いてBIS-AF粉体をロートノズルの方向へ落とし込み、水平台上に堆積させた。次いで、堆積した粉体の山について写真を撮影し、写真上にて安息角を測定した。安息角が小さいほど、粉体はさらさらして流動しやすいこと、つまり、取扱い性に優れることを表す。
(Handling: Measurement of angle of repose)
Using a funnel with a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, a shake plate with a mesh opening of 0.5 mm is placed on the funnel, and a horizontal base is placed at a position 4.5 cm away from the tip of the funnel nozzle. did. Next, 50 g of BIS-AF powder was taken on a shaker plate, and the BIS-AF powder was dropped in the direction of the funnel nozzle using a brush and deposited on a horizontal table. Next, a photograph was taken of the accumulated powder pile, and the angle of repose was measured on the photograph. The smaller the angle of repose, the easier it is for the powder to flow smoothly, that is, the better the handleability.
(かさ密度(ゆるみ、かため)の測定)
 筒井理化学器械製のJISかさ比重測定器を用い、かさ密度を測定した。かさ比重測定器は、ロート口径150mm、ノズル径12mm、ノズル長22mmのロートと、ロート上に目開き0.5mmの振るい板、及びロートノズルの下部に円筒状の30mL受器を、それぞれ備える。振るい板の上にBIS-AF粉体50gを取り、刷毛を用いてゆっくりと受器へ落とし込むことで、自然充填させた。受器から溢れ出ているBIS-AF粉体を摺り切り後、受器の重量を測定することにより、ゆるみかさ密度を算出した。また、BIS-AF粉体を落とし込む際、受器の下部を軽く打ち付けながら圧縮充填させて得られた重量より、かためかさ密度を算出した。
(Measurement of bulk density (looseness, firmness))
The bulk density was measured using a JIS bulk specific gravity measuring instrument manufactured by Tsutsui Rikagaku Kikai. The bulk specific gravity measuring instrument is provided with a funnel having a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, a shaking plate having a mesh opening of 0.5 mm on the funnel, and a cylindrical 30 mL receiver under the funnel nozzle. 50 g of BIS-AF powder was taken on a shaking plate and slowly dropped into a receiver using a brush to allow natural filling. After scraping off the BIS-AF powder overflowing from the receiver, the looseness density was calculated by measuring the weight of the receiver. Further, when the BIS-AF powder was dropped, the hardness density was calculated from the weight obtained by compressing and filling the lower part of the receiver while lightly striking it.
(溶媒溶解性/溶け残りの評価)
 実施例2-1および比較例2-1~2-3のBIS-AF粉体について、以下手順により、溶媒溶解性を評価した。
(i)40%メタノール水溶液に対する溶解速度比較
 撹拌子および温度計を備え付けたホウケイ酸ガラス製の100mLフラスコ内へ、10gのBIS-AF粉体を量り取った。粉体のBIS-AFを一定速度で撹拌している中に、速やかに40%メタノール水溶液を40g注ぎ込んだ。その後、一定速度での撹拌を維持し、18~20℃にてBIS-AF粉体を完全に溶解させた。
 上記手順において、メタノール水溶液を加えた直後から、BIS-AF粉体が完全に溶解するまでにかかった時間を測定した。
(Evaluation of solvent solubility / undissolved residue)
The solvent solubility of the BIS-AF powders of Example 2-1 and Comparative Examples 2-1 to 2-3 was evaluated by the following procedure.
(I) Comparison of dissolution rate in 40% aqueous methanol solution 10 g of BIS-AF powder was weighed into a 100 mL flask made of borosilicate glass equipped with a stirrer and a thermometer. While stirring the powder BIS-AF at a constant speed, 40 g of a 40% aqueous methanol solution was immediately poured. Then, stirring at a constant rate was maintained, and the BIS-AF powder was completely dissolved at 18 to 20 ° C.
In the above procedure, the time taken from immediately after the addition of the aqueous methanol solution to the complete dissolution of the BIS-AF powder was measured.
(ii)10%水酸化ナトリウム水溶液に対する溶解速度比較
 撹拌子および温度計を備え付けたホウケイ酸ガラス製の100mLフラスコ内へ、40gの10%水酸化ナトリウム水溶液を量り取った。一定速度で撹拌中の10%水酸化ナトリウム水溶液に対し、BIS-AF粉体を10g、30秒掛けて少しずつ投入した。その後、一定速度での撹拌を維持し、18~20℃にてBIS-AF粉体が完全に溶解するまでの積算時間を測定した。
(Ii) Comparison of dissolution rate with 10% sodium hydroxide aqueous solution 40 g of 10% sodium hydroxide aqueous solution was weighed into a 100 mL flask made of borosilicate glass equipped with a stirrer and a thermometer. 10 g of BIS-AF powder was added little by little to a 10% aqueous sodium hydroxide solution being stirred at a constant speed over 30 seconds. Then, stirring at a constant speed was maintained, and the integrated time until the BIS-AF powder was completely dissolved was measured at 18 to 20 ° C.
 各種測定/評価結果をまとめて表4に示す。 Table 4 summarizes the results of various measurements / evaluations.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表3および表4より、実施例2-1~2-4の粉体の塊状化は抑えられた。また、実施例2-1~2-4の粉体のロートテストの結果は良好だった。さらに、実施例2-1~2-4の粉体の安息角は、比較例2-1および2-2の粉体よりも小さかった。これら結果より、D50が50~100μmであり、D50/Daveが1.1~1.5である化合物(A)の粉体は、良好な取り扱い性を有することが理解される。
 実施例2-1~2-4の粉体のかさ密度(ゆるみ、かため)は、比較例2-1~2-3の粉体よりも大きかった。このことからも、実施例2-1~2-3の粉体の取り扱い性は良好と言える。
 実施例2-1の粉体の溶媒溶解性は良好であった。このことからも、実施例2-1の粉体の取り扱い性は良好と言える。
From Tables 3 and 4, the agglomeration of the powders of Examples 2-1 to 2-4 was suppressed. In addition, the results of the Rohto test of the powders of Examples 2-1 to 2-4 were good. Furthermore, the angle of repose of the powders of Examples 2-1 to 2-4 was smaller than that of the powders of Comparative Examples 2-1 and 2-2. From these results, it is understood that the powder of the compound (A) having a D 50 of 50 to 100 μm and a D 50 / D ave of 1.1 to 1.5 has good handleability.
The bulk density (looseness, firmness) of the powders of Examples 2-1 to 2-4 was larger than that of the powders of Comparative Examples 2-1 to 2-3. From this, it can be said that the handleability of the powders of Examples 2-1 to 2-3 is good.
The solvent solubility of the powder of Example 2-1 was good. From this, it can be said that the handleability of the powder of Example 2-1 is good.
[実施例3-1~3-4および比較例3-1~3-3]
 以下の実施例3-1~3-4および比較例3-1~3-3は、特に、第3実施形態について詳細に説明するための実施例および比較例である。
[Examples 3-1 to 3-4 and Comparative Examples 3-1 to 3-3]
The following Examples 3-1 to 3-4 and Comparative Examples 3-1 to 3-3 are, in particular, Examples and Comparative Examples for explaining the third embodiment in detail.
<実施例3-1>
 まず、撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の3Lフラスコ内に、BIS-AF(セントラル硝子社製)を200g入れ、そこへn-ヘキサン1800gと酢酸エチル200gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃に到達後、1時間かけて内温が55℃になるまでゆっくりと降温し、その降温後、BIS-AF(セントラル硝子社製)を種晶として1g加え、そのまま1時間撹拌して目的のBIS-AFを析出させた。
 さらにその後、内温が35℃になるまで2時間かけて冷却し、析出した結晶を減圧濾過にて回収した。回収した結晶を30℃で減圧乾燥することにより、粉体状のBIS-AFを24g得た。
<Example 3-1>
First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C. over 1 hour, and after the temperature reduction, 1 g of BIS-AF (manufactured by Central Glass Co., Ltd.) is added as a seed crystal, and 1 g is added as it is. The target BIS-AF was precipitated by stirring for a time.
After that, the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 24 g of BIS-AF in powder form.
<実施例3-2>
 まず、撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の3Lフラスコ内に、BIS-AF(セントラル硝子社製)を200g入れ、そこへn-ヘキサン1800gと酢酸エチル200gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃へ到達後、2時間かけて内温が55℃になるまでゆっくりと降温し、その降温後、BIS-AF(セントラル硝子社製)を種晶として1g加え、そのまま2時間撹拌して目的のBIS-AFを析出させた。
 さらにその後、内温が35℃になるまで4時間かけて冷却し、析出した結晶を減圧濾過にて回収した。回収した結晶を30℃で減圧乾燥することにより、粉体状のBIS-AFを27g得た。
<Example 3-2>
First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-hexane and 200 g of ethyl acetate were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C. over 2 hours, and after the temperature reduction, 1 g of BIS-AF (manufactured by Central Glass Co., Ltd.) is added as a seed crystal, and 2 as it is. The target BIS-AF was precipitated by stirring for a time.
After that, the mixture was cooled over 4 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 27 g of BIS-AF in powder form.
<実施例3-3>
 まず、撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の3Lフラスコ内に、BIS-AF(セントラル硝子社製)を200g入れ、そこへn-ヘプタン1800gと酢酸エチル200gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃へ到達後、1時間かけて内温55℃までゆっくりと降温し、その降温後、BIS-AF(セントラル硝子社製)を種晶として1g加え、そのまま1時間撹拌して目的のBIS-AFを析出させた。
 さらにその後、内温が35℃になるまで2時間かけて冷却し、析出した結晶を減圧濾過にて回収した。回収した結晶を30℃で減圧乾燥することにより、粉体状のBIS-AFを23g得た。
<Example 3-3>
First, 200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 3 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 1800 g of n-heptane and 200 g of ethyl acetate were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reaches 65 ° C., the temperature is slowly lowered to 55 ° C. over 1 hour, and after the temperature is lowered, 1 g of BIS-AF (manufactured by Central Glass Co., Ltd.) is added as a seed crystal and stirred as it is for 1 hour. The desired BIS-AF was precipitated.
After that, the mixture was cooled over 2 hours until the internal temperature reached 35 ° C., and the precipitated crystals were collected by vacuum filtration. The recovered crystals were dried under reduced pressure at 30 ° C. to obtain 23 g of BIS-AF in powder form.
<実施例3-4>
 前掲の<実施例5>と同様にしてBIS-AF粉末を得た。
<Example 3-4>
BIS-AF powder was obtained in the same manner as in <Example 5> described above.
<比較例3-1>
 比較例3-1は、特許文献2の実施例に準じた方法で粉体を製造した例である(中和反応によるBIF-AFの析出)。
 撹拌モーターおよび温度計を備え付けたホウケイ酸ガラス製の3Lフラスコ内へ、BIS-AF(セントラル硝子社製)を200g、水酸化ナトリウムを52g入れた。その後、発熱に注意しながら1800gの水を加え、撹拌することにより均一な溶液(BIF-AFの塩が溶解している)を得た。
 次いで、氷浴にて内温10℃まで冷却し、その後、35%塩酸水136gを滴下しながら中和することでBIS-AFを析出させた。
 析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。これにより粉体状のBIS-AFを171g得た。
<Comparative Example 3-1>
Comparative Example 3-1 is an example in which powder is produced by a method according to the example of Patent Document 2 (precipitation of BIF-AF by neutralization reaction).
200 g of BIS-AF (manufactured by Central Glass Co., Ltd.) and 52 g of sodium hydroxide were placed in a 3 L flask made of borosilicate glass equipped with a stirring motor and a thermometer. Then, 1800 g of water was added while paying attention to heat generation, and the mixture was stirred to obtain a uniform solution (the salt of BIF-AF was dissolved).
Then, the mixture was cooled to an internal temperature of 10 ° C. in an ice bath, and then neutralized by dropping 136 g of 35% hydrochloric acid water to precipitate BIS-AF.
The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 171 g of powdery BIS-AF was obtained.
<比較例3-2>
 比較例3-2は、特許文献1の実施例に準じた方法・条件で粉体を製造した例である(溶媒の主成分が水である)。
 撹拌モーター、温度計および冷却コンデンサーを備え付けたホウケイ酸ガラス製の2Lフラスコに、BIS-AF(セントラル硝子社製)を150g入れ、そこへエチレングリコール300gとイオン交換水700gを注ぎ込んだ。
 その後、オイルバスを用いて、フラスコの内温が65℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。
 フラスコの内温が65℃に到達後、10℃/時間の降温速度で、フラスコの内温が25℃になるまで冷却しながら、BIS-AFを析出させた。
 析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。これにより、粉体状のBIS-AFを135g得た。
<Comparative Example 3-2>
Comparative Example 3-2 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document 1 (the main component of the solvent is water).
150 g of BIS-AF (manufactured by Central Glass Co., Ltd.) was placed in a 2 L flask made of borosilicate glass equipped with a stirring motor, a thermometer and a cooling condenser, and 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the flask.
Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 65 ° C.
After the internal temperature of the flask reached 65 ° C., BIS-AF was precipitated while cooling at a temperature lowering rate of 10 ° C./hour until the internal temperature of the flask reached 25 ° C.
The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 135 g of powdery BIS-AF was obtained.
<比較例3-3>
 比較例3-3は、特許文献(CN104529717A)の実施例に準じた方法・条件で粉体を製造した例である(再沈殿によるBIS-AFの析出)。
 撹拌モーター、温度計を備え付けたホウケイ酸ガラス製の1Lフラスコに、イオン交換水800gを注ぎ込んだ。そこへ、100gのメタノールにBIS-AF(セントラル硝子社製)100gを溶解させた溶液を、内温20~23℃にて滴下し、フラスコ内を攪拌させながらBIS-AFを再沈殿させた。
 析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。これにより、粉体状のBIS-AFを89g得た。
<Comparative Example 3-3>
Comparative Example 3-3 is an example in which the powder was produced by the method and conditions according to the examples of Patent Document (CN104528717A) (precipitation of BIS-AF by reprecipitation).
800 g of ion-exchanged water was poured into a 1 L flask made of borosilicate glass equipped with a stirring motor and a thermometer. A solution prepared by dissolving 100 g of BIS-AF (manufactured by Central Glass Co., Ltd.) in 100 g of methanol was added dropwise thereto at an internal temperature of 20 to 23 ° C., and BIS-AF was reprecipitated while stirring the inside of the flask.
The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. As a result, 89 g of powdery BIS-AF was obtained.
<各種測定/評価>
(粒径分布)
 島津製作所製の粒度分布計であるSALD-2200を用い、得られた粉体状のBIS-AFを、n-デカン溶媒に分散させたサンプルの粒径分布を測定した。測定の際は、予めスライドガラス上にて、BIS-AFとn-デカン溶媒を混ぜ合わせ、ペースト状のBIS-AFを用意した。その後、分散溶媒であるn-デカン中へペースト状のBIS-AFを少しずつ添加し、吸光度の数値が0.1L/(mol・cm)以下になるように添加量を調整して、粒度分布を測定した。得られた測定結果を解析することで、D50、D90、DaveおよびDを算出した。
<Various measurements / evaluations>
(Diameter distribution)
Using SALD-2200, a particle size distribution meter manufactured by Shimadzu Corporation, the particle size distribution of the obtained powder BIS-AF dispersed in an n-decane solvent was measured. At the time of measurement, BIS-AF and n-decane solvent were mixed in advance on a slide glass to prepare a paste-like BIS-AF. Then, paste-like BIS-AF is gradually added to n-decane, which is a dispersion solvent, and the amount of addition is adjusted so that the absorbance value is 0.1 L / (mol · cm) or less, and the particle size distribution is distributed. Was measured. By analyzing the obtained measurement results, D 50 , D 90 , D ave and D m were calculated.
(安息角の測定)
 ロート口径150mm、ノズル径12mm、ノズル長22mmのロートを用いて、ロート上に目開き0.5mmの振るい板を、ロートノズルの先端から下部へ4.5cm離れた位置に水平台を、それぞれ配置した。次に、振るい板上にBIS-AF粉体50gを取り、刷毛を用いてBIS-AF粉体をロートノズルの方向へ落とし込み、水平台上に堆積させた。次いで、堆積した粉体の山について写真を撮影し、写真上にて安息角を測定した。
(Measurement of angle of repose)
Using a funnel with a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, a shake plate with a mesh opening of 0.5 mm is placed on the funnel, and a horizontal base is placed at a position 4.5 cm away from the tip of the funnel nozzle. did. Next, 50 g of BIS-AF powder was taken on a shaker plate, and the BIS-AF powder was dropped in the direction of the funnel nozzle using a brush and deposited on a horizontal table. Next, a photograph was taken of the accumulated powder pile, and the angle of repose was measured on the photograph.
(かさ密度(ゆるみ、かため)の測定)
 筒井理化学器械製のJISかさ比重測定器を用い、かさ密度を測定した。かさ比重測定器は、ロート口径150mm、ノズル径12mm、ノズル長22mmのロートと、ロート上に目開き0.5mmの振るい板、及びロートノズルの下部に円筒状の30mL受器を、それぞれ備える。振るい板の上にBIS-AF粉体50gを取り、刷毛を用いてゆっくりと受器へ落とし込むことで、自然充填させた。受器から溢れ出ているBIS-AF粉体を摺り切り後、受器の重量を測定することにより、ゆるみかさ密度を算出した。また、BIS-AF粉体を落とし込む際、受器の下部を軽く打ち付けながら圧縮充填させて得られた重量より、かためかさ密度を算出した。
(Measurement of bulk density (looseness, firmness))
The bulk density was measured using a JIS bulk specific gravity measuring instrument manufactured by Tsutsui Rikagaku Kikai. The bulk specific gravity measuring instrument is provided with a funnel having a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, a shaking plate having a mesh opening of 0.5 mm on the funnel, and a cylindrical 30 mL receiver under the funnel nozzle. 50 g of BIS-AF powder was taken on a shaking plate and slowly dropped into a receiver using a brush to allow natural filling. After scraping off the BIS-AF powder overflowing from the receiver, the looseness density was calculated by measuring the weight of the receiver. Further, when the BIS-AF powder was dropped, the hardness density was calculated from the weight obtained by compressing and filling the lower part of the receiver while lightly striking it.
(塊状化の評価)
 蓋付き100mLポリエチレン製容器に、50gのBIS-AF粉体を入れ、室温下で1カ月安置した。その後、容器を開封して全量のBIS-AF粉体を取り出して、BIS-AFの凝集による塊状化の有無を目視で確認した。
 塊状化が全く確認されなかった場合を○(良い)、塊状化が確認された場合を×(悪い)と評価した。
(Evaluation of agglomeration)
50 g of BIS-AF powder was placed in a 100 mL polyethylene container with a lid and allowed to stand at room temperature for 1 month. Then, the container was opened and the entire amount of BIS-AF powder was taken out, and the presence or absence of agglomeration due to aggregation of BIS-AF was visually confirmed.
The case where no agglomeration was confirmed was evaluated as ◯ (good), and the case where agglomeration was confirmed was evaluated as × (bad).
(流動性評価:ロートテスト)
 ロート口径150mm、ノズル径12mm、ノズル長22mmのロートに対し、BIS-AF粉体60gを全量投入し、粉体の自然排出可否を確認した。その際、全量のBIS-AF粉体が自然排出される場合を〇(良い)、自然排出されない場合を×(悪い)と評価した。
(Liquidity evaluation: Rohto test)
A total amount of 60 g of BIS-AF powder was added to a funnel having a funnel diameter of 150 mm, a nozzle diameter of 12 mm, and a nozzle length of 22 mm, and it was confirmed whether or not the powder could be discharged naturally. At that time, the case where the entire amount of BIS-AF powder was spontaneously discharged was evaluated as 〇 (good), and the case where it was not naturally discharged was evaluated as × (bad).
(溶媒溶解性/溶け残りの評価)
 実施例3-1および比較例3-1~3-4のBIS-AF粉体について、以下手順により、溶媒溶解性を評価した。
(i)40%メタノール水溶液に対する溶解速度比較
 撹拌子および温度計を備え付けたホウケイ酸ガラス製の100mLフラスコ内へ、10gのBIS-AF粉体を量り取った。粉体のBIS-AFを一定速度で撹拌している中に、速やかに40%メタノール水溶液を40g注ぎ込んだ。その後、一定速度での撹拌を維持し、18~20℃にてBIS-AF粉体を完全に溶解させた。
 上記手順において、メタノール水溶液を加えた直後から、BIS-AF粉体が完全に溶解するまでにかかった時間を測定した。
(Evaluation of solvent solubility / undissolved residue)
The solvent solubility of the BIS-AF powders of Example 3-1 and Comparative Examples 3-1 to 3-4 was evaluated by the following procedure.
(I) Comparison of dissolution rate in 40% aqueous methanol solution 10 g of BIS-AF powder was weighed into a 100 mL flask made of borosilicate glass equipped with a stirrer and a thermometer. While stirring the powder BIS-AF at a constant speed, 40 g of a 40% aqueous methanol solution was immediately poured. Then, stirring at a constant rate was maintained, and the BIS-AF powder was completely dissolved at 18 to 20 ° C.
In the above procedure, the time taken from immediately after the addition of the aqueous methanol solution to the complete dissolution of the BIS-AF powder was measured.
(ii)10%水酸化ナトリウム水溶液に対する溶解速度比較
 撹拌子および温度計を備え付けたホウケイ酸ガラス製の100mLフラスコ内へ、40gの10%水酸化ナトリウム水溶液を量り取った。一定速度で撹拌中の10%水酸化ナトリウム水溶液に対し、BIS-AF粉体を10g、30秒掛けて少しずつ投入した。その後、一定速度での撹拌を維持し、18~20℃にてBIS-AF粉体が完全に溶解するまでの積算時間を測定した。
(Ii) Comparison of dissolution rate with 10% sodium hydroxide aqueous solution 40 g of 10% sodium hydroxide aqueous solution was weighed into a 100 mL flask made of borosilicate glass equipped with a stirrer and a thermometer. 10 g of BIS-AF powder was added little by little to a 10% aqueous sodium hydroxide solution being stirred at a constant speed over 30 seconds. Then, stirring at a constant speed was maintained, and the integrated time until the BIS-AF powder was completely dissolved was measured at 18 to 20 ° C.
 上記の各種情報をまとめて表5および表6に示す。 The above various information are summarized in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表5および表6より、実施例3-1~3-4の粉体の、塊状化やロートテストに関する評価結果は良好だった。また、実施例3-1の粉体の溶媒溶解性は良好だった。すなわち、D50が50~100μmであり、安息角が35~49°である化合物(A)の粉体は、工業的な取り扱い性に優れていた。 From Tables 5 and 6, the evaluation results regarding the agglomeration and the Rohto test of the powders of Examples 3-1 to 3-4 were good. Moreover, the solvent solubility of the powder of Example 3-1 was good. That, D 50 is 50 ~ 100 [mu] m, the powder of the compound angle of repose is 35 ~ 49 ° (A) was excellent in industrial handling property.
[実施例4-1~4-5および比較例4-1~4-3]
 以下の実施例4-1~4-5および比較例4-1~4-3は、特に、第4実施形態について詳細に説明するための実施例および比較例である。
[Examples 4-1 to 4-5 and Comparative Examples 4-1 to 4-3]
The following Examples 4-1 to 4-5 and Comparative Examples 4-1 to 4-3 are, in particular, Examples and Comparative Examples for explaining the fourth embodiment in detail.
<実施例4-1>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、試薬ビンから東京化成工業株式会社製のBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水202.5gとメタノール22.5gを容器内へ加え、攪拌しながら容器内部の温度を65℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内が懸濁状態になった。そのまま温度を維持して1.5時間攪拌した。
<Example 4-1>
25.0 g (74.4 mmol) of BIS-AF powder manufactured by Tokyo Chemical Industry Co., Ltd. was collected from a reagent bottle and placed in a glass container made of borosilicate glass having a volume of 500 mL equipped with a stirrer and a cooling condenser. Next, 202.5 g of pure water and 22.5 g of methanol were added into the container, and the temperature inside the container was raised to 65 ° C. with stirring.
While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
 1.5時間経過後に一旦攪拌を止めて静置し、容器内を目視観察した。観察の結果、容器内には水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度をp-ビス(トリフルオロメチル)ベンゼンを内部標準に用いて19F-NMRにより測定した。濃度は2質量%以下であり、65℃程度の高温であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
 次に、内温60~65℃の温度を維持しながら1時間攪拌したところ、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。なお、この時の室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。
After 1.5 hours had passed, stirring was temporarily stopped and the container was allowed to stand, and the inside of the container was visually observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured by 19 F-NMR using p-bis (trifluoromethyl) benzene as an internal standard. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a high temperature of about 65 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
Next, when the mixture was stirred for 1 hour while maintaining the internal temperature of 60 to 65 ° C., crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
 乾燥後に得られたBIS-AF粉体は22.9gであり、収率は92%だった。 The BIS-AF powder obtained after drying was 22.9 g, and the yield was 92%.
<実施例4-2>
 BIS-AF粉体の量を100.0g(298mmol)に変更し、純水の量を810.0gに変更し、メタノールを90.0gに変更した以外は、実施例4-1と同様にBIS-AF粉体を得た。
 乾燥後に得られたBIS-AF粉体は94.6gであり、収率は95%だった。
<Example 4-2>
BIS as in Example 4-1 except that the amount of BIS-AF powder was changed to 100.0 g (298 mmol), the amount of pure water was changed to 810.0 g, and methanol was changed to 90.0 g. -AF powder was obtained.
The BIS-AF powder obtained after drying was 94.6 g, and the yield was 95%.
 なお、実施例1と同様に、1.5時間経過後に一旦攪拌を止めて静置し、容器内を目視観察した。観察の結果、容器内には水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度をp-ビス(トリフルオロメチル)ベンゼンを内部標準に用いて19F-NMRにより測定した。濃度は2質量%以下であり、65℃程度の高温であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
In the same manner as in Example 1, after 1.5 hours had passed, stirring was temporarily stopped and the container was allowed to stand, and the inside of the container was visually observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured by 19 F-NMR using p-bis (trifluoromethyl) benzene as an internal standard. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a high temperature of about 65 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
<実施例4-3>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、実施例4-1と同様の試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水225.0gを容器内へ加えた。そして、攪拌しながら容器内部の温度を95℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内は懸濁状態になった。そのまま温度を95℃に維持して1時間攪拌した。
<Example 4-3>
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 4-1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. .. Then, 225.0 g of pure water was added into the container. Then, the temperature inside the container was raised to 95 ° C. while stirring.
While the temperature was being raised, the BIS-AF powder began to melt, and the inside of the container became suspended. The temperature was maintained at 95 ° C. and the mixture was stirred for 1 hour.
 1時間経過後に一旦攪拌を止めて静置し、容器内を目視観察した。観察の結果、容器内には水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度をp-ビス(トリフルオロメチル)ベンゼンを内部標準に用いて19F-NMRにより測定した。濃度は2質量%程度であり、95℃程度の高温であってもBIS-AFのほとんどは水に「溶解」はしていなかった。すなわち、原料のBIS-AF粉体の融解温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 1 hour, the stirring was stopped and the container was allowed to stand, and the inside of the container was visually observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured by 19 F-NMR using p-bis (trifluoromethyl) benzene as an internal standard. The concentration was about 2% by mass, and most of BIS-AF was not "dissolved" in water even at a high temperature of about 95 ° C. That is, at the melting temperature of the raw material BIS-AF powder, the solubility of the aqueous dispersion medium BIS-AF was far below 10 [g / 100 g].
 次に、内温を92~94℃で維持しながら1時間攪拌したところ、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。このときの室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、75℃、減圧(1kPa以下)下で8時間乾燥させた。
Next, when the mixture was stirred for 1 hour while maintaining the internal temperature at 92 to 94 ° C., crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 75 ° C. under reduced pressure (1 kPa or less) for 8 hours using a vacuum dryer.
 乾燥後に得られたBIS-AF粉体は24.1gであり、収率は96%だった。 The BIS-AF powder obtained after drying was 24.1 g, and the yield was 96%.
<実施例4-4>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、実施例4-1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水112.5gとメタノール12.5gを容器内へ加え、攪拌しながら容器内部の温度を65℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内が懸濁状態になった。そのまま温度を維持して1.5時間攪拌した。
<Example 4-4>
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 4-1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 112.5 g of pure water and 12.5 g of methanol were added into the container, and the temperature inside the container was raised to 65 ° C. with stirring.
While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
 1.5時間経過後に一旦攪拌を止めて静置し、容器内を目視観察した。観察の結果、容器内には水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度をp-ビス(トリフルオロメチル)ベンゼンを内部標準に用いて19F-NMRにより測定した。濃度は2質量%以下であり、65℃程度の高温であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 1.5 hours had passed, stirring was temporarily stopped and the container was allowed to stand, and the inside of the container was visually observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured by 19 F-NMR using p-bis (trifluoromethyl) benzene as an internal standard. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a high temperature of about 65 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
 次に、内温60~65℃の温度を維持しながら1時間攪拌したところ、結晶が析出した。その後、内温を15℃/1時間の降温速度にて室温まで冷却した。なお、この時の室温は約25℃だった。
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。
Next, when the mixture was stirred for 1 hour while maintaining the internal temperature of 60 to 65 ° C., crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 15 ° C./1 hour. The room temperature at this time was about 25 ° C.
After cooling, the precipitated BIS-AF was separated and recovered by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
 乾燥後に得られたBIS-AF粉体は23.5gであり、収率は94%だった。 The BIS-AF powder obtained after drying was 23.5 g, and the yield was 94%.
<実施例4-5>
 撹拌機と冷却コンデンサーを備えた、容積500mLのホウケイ酸ガラス製容器中に、実施例4-1と同じ試薬ビンからBIS-AF粉体25.0g(74.4mmol)を採取して入れた。次いで、純水100.0gとメタノール25.0gを容器内へ加え、攪拌しながら容器内部の温度を45℃まで昇温させた。
 昇温させている最中にBIS-AF粉体は融解し始め、容器内が懸濁状態になった。そのまま温度を維持して1.5時間攪拌した。
<Example 4-5>
25.0 g (74.4 mmol) of BIS-AF powder was collected from the same reagent bottle as in Example 4-1 and placed in a glass container made of borosilicate glass having a volume of 500 mL and equipped with a stirrer and a cooling condenser. Next, 100.0 g of pure water and 25.0 g of methanol were added into the container, and the temperature inside the container was raised to 45 ° C. with stirring.
While the temperature was being raised, the BIS-AF powder began to melt and the inside of the container became suspended. The temperature was maintained as it was, and the mixture was stirred for 1.5 hours.
 1.5時間経過後に一旦攪拌を止めて静置し、容器内を目視観察した。観察の結果、容器内には水層と、BIS-AFの融解物との二相が分離して(完全には混ざり合わずに)存在していることが確認された。また、未融解のBIS-AFは確認されなかった。
 この際、水層側のBIS-AF濃度をp-ビス(トリフルオロメチル)ベンゼンを内部標準に用いて19F-NMRにより測定した。濃度は2質量%以下であり、45℃程度の温度であってもBIS-AFのほとんどは、水/メタノールに「溶解」はしていなかった。すなわち、原料のBIS-AF粉体が完全に「融解」する温度において、水系分散媒のBIS-AFの溶解度は、10[g/100g]を大きく下回っていた。
After 1.5 hours had passed, stirring was temporarily stopped and the container was allowed to stand, and the inside of the container was visually observed. As a result of observation, it was confirmed that the two phases of the aqueous layer and the melt of BIS-AF were separated (not completely mixed) in the container. In addition, unmelted BIS-AF was not confirmed.
At this time, the BIS-AF concentration on the aqueous layer side was measured by 19 F-NMR using p-bis (trifluoromethyl) benzene as an internal standard. The concentration was 2% by mass or less, and most of BIS-AF was not "dissolved" in water / methanol even at a temperature of about 45 ° C. That is, at the temperature at which the raw material BIS-AF powder was completely "melted", the solubility of the aqueous dispersion medium BIS-AF was well below 10 [g / 100 g].
 次に、内温35~40℃の温度を維持しながら1時間攪拌したところ、結晶が析出した。その後、内温を10℃/1時間の降温速度にて室温まで冷却した。なお、この時の室温は約25℃だった。 Next, when the mixture was stirred for 1 hour while maintaining the internal temperature of 35 to 40 ° C., crystals were precipitated. Then, the internal temperature was cooled to room temperature at a temperature lowering rate of 10 ° C./1 hour. The room temperature at this time was about 25 ° C.
 冷却後、析出したBIS-AFを、ろ紙を備えた吸引濾過器を用い、減圧濾過にて分離し回収した。回収後、75mLの純水で掛け洗浄を行った。洗浄したBIS-AFを、真空乾燥器を用いて、80℃、減圧(1kPa以下)下で6時間乾燥させた。 After cooling, the precipitated BIS-AF was separated and collected by vacuum filtration using a suction filter equipped with a filter paper. After recovery, it was washed with 75 mL of pure water. The washed BIS-AF was dried at 80 ° C. under reduced pressure (1 kPa or less) for 6 hours using a vacuum dryer.
 乾燥後に得られたBIS-AF粉体は24.1gであり、収率は96%だった。 The BIS-AF powder obtained after drying was 24.1 g, and the yield was 96%.
<比較例4-1>
 BIS-AF(東京化成工業株式会社製)を試薬瓶より採取した。
<Comparative Example 4-1>
BIS-AF (manufactured by Tokyo Chemical Industry Co., Ltd.) was collected from a reagent bottle.
<比較例4-2>
 撹拌機を備えた、容積500Lのホウケイ酸ガラス製容器中へ純水200gを注ぎ込み、室温(約20℃)にて撹拌を開始した。そこへ、メタノール50gに溶解させたBIS-AF(東京化成工業株式会社製)25.0gを、滴下ロートを用いてゆっくりと滴下し、BIS-AFの再沈殿を行った。
 BIS-AFの析出後、ろ紙を備えた吸引濾過器を用い、減圧濾過にてBIS-AFを回収した。次いで、真空乾燥器を用いて、80℃、減圧下で8時間乾燥させた。乾燥後に得られたBIS-AF粉体は22.1gであり、収率は88%だった。
<Comparative Example 4-2>
200 g of pure water was poured into a glass container made of borosilicate glass having a volume of 500 L equipped with a stirrer, and stirring was started at room temperature (about 20 ° C.). 25.0 g of BIS-AF (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 50 g of methanol was slowly added dropwise thereto using a dropping funnel to reprecipitate BIS-AF.
After precipitation of BIS-AF, BIS-AF was recovered by vacuum filtration using a suction filter equipped with a filter paper. Then, it was dried in a vacuum dryer at 80 ° C. under reduced pressure for 8 hours. The BIS-AF powder obtained after drying was 22.1 g, and the yield was 88%.
<比較例4-3>
 撹拌機と冷却コンデンサーを備えた、容積2Lのホウケイ酸ガラス製容器中へ、BIS-AF(東京化成工業株式会社製)を150g入れ、そこへエチレングリコール300gとイオン交換水700gを注ぎ込んだ。その後、オイルバスを用いて、フラスコの内温が85℃になるまで加熱撹拌を行いながら、BIS-AFを溶解させた。そのまま温度を維持して1時間攪拌し、1時間経過後に一旦攪拌を止めて静置し、容器内を目視観察したところ、均一な溶液が確認された。
 次に、攪拌させながら10℃/時間の降温速度で、フラスコの内温が25℃になるまで冷却すると、降温中に結晶の析出が確認された。析出した結晶を減圧濾過にて回収し、60℃で減圧乾燥した。乾燥後に得られたBIS-AF粉体は137gであり、収率は91%だった。
<Comparative Example 4-3>
150 g of BIS-AF (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a 2 L volume borosilicate glass container equipped with a stirrer and a cooling condenser, and 300 g of ethylene glycol and 700 g of ion-exchanged water were poured into the container. Then, using an oil bath, BIS-AF was dissolved while heating and stirring until the internal temperature of the flask reached 85 ° C. The temperature was maintained as it was, and the mixture was stirred for 1 hour. After 1 hour, the stirring was stopped and the mixture was allowed to stand, and the inside of the container was visually observed to confirm a uniform solution.
Next, when the flask was cooled at a temperature lowering rate of 10 ° C./hour with stirring until the internal temperature of the flask reached 25 ° C., precipitation of crystals was confirmed during the temperature lowering. The precipitated crystals were collected by vacuum filtration and dried under reduced pressure at 60 ° C. The BIS-AF powder obtained after drying was 137 g, and the yield was 91%.
<測定>
(X線回折(XRD)スペクトル)
 粉体のX線回折(XRD)スペクトルは、前述の測定方法及び測定条件に基づくものである。
<Measurement>
(X-ray diffraction (XRD) spectrum)
The X-ray diffraction (XRD) spectrum of the powder is based on the measurement method and measurement conditions described above.
 X線回折スペクトルに関する情報を表7にまとめて示す。 Table 7 summarizes information on the X-ray diffraction spectrum.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<評価>
(溶解速度)
(i)40%メタノール水溶液(40%MeOH水)に対する溶解速度比較
 撹拌子および温度計を備え付けたホウケイ酸ガラス製の100mLフラスコ内へ、10gのBIS-AF粉体を量り取った。粉体のBIS-AFを一定速度(200rpm)で撹拌している中に、速やかに40%メタノール水溶液を40g注ぎ込んだ。その後、一定速度(200rpm)での撹拌を維持し、18~20℃にてBIS-AF粉体を完全に溶解させた。
 上記手順において、メタノール水溶液を加えた直後から、BIS-AF粉体が完全に溶解するまでにかかった時間を測定した。BIS-AF粉体が完全に融解したことは、目視観察により確認した。
<Evaluation>
(Dissolution rate)
(I) Comparison of dissolution rate in 40% aqueous methanol solution (40% MeOH water) 10 g of BIS-AF powder was weighed into a 100 mL flask made of borosilicate glass equipped with a stirrer and a thermometer. While stirring the powder BIS-AF at a constant speed (200 rpm), 40 g of a 40% aqueous methanol solution was immediately poured. Then, stirring at a constant speed (200 rpm) was maintained, and the BIS-AF powder was completely dissolved at 18 to 20 ° C.
In the above procedure, the time taken from immediately after the addition of the aqueous methanol solution to the complete dissolution of the BIS-AF powder was measured. It was confirmed by visual observation that the BIS-AF powder was completely melted.
(ii)10%水酸化ナトリウム水溶液(10%NaOH水)に対する溶解速度比較
 撹拌子および温度計を備え付けたホウケイ酸ガラス製の100mLフラスコ内へ、40gの10%水酸化ナトリウム水溶液を量り取った。一定速度(200rpm)で撹拌中の10%水酸化ナトリウム水溶液に対し、BIS-AF粉体10gを、30秒掛けて少しずつ投入した。その後、一定速度(200rpm)での撹拌を維持し、BIS-AF粉体を加え始めた直後から、18~20℃にてBIS-AF粉体が完全に溶解するまでの積算時間を測定した。BIS-AF粉体が完全に融解したことは、目視観察により確認した。
(Ii) Comparison of dissolution rate in 10% sodium hydroxide aqueous solution (10% NaOH water) 40 g of 10% sodium hydroxide aqueous solution was weighed into a 100 mL flask made of borosilicate glass equipped with a stirrer and a thermometer. 10 g of BIS-AF powder was added little by little over 30 seconds to a 10% aqueous sodium hydroxide solution being stirred at a constant speed (200 rpm). After that, stirring was maintained at a constant speed (200 rpm), and the integrated time from immediately after the start of adding the BIS-AF powder to the complete dissolution of the BIS-AF powder was measured at 18 to 20 ° C. It was confirmed by visual observation that the BIS-AF powder was completely melted.
(乾燥試験)
 BIS-AF粉体が水に分散した分散液を、ろ紙を備えた濾過器に通して、ろ過して、水に濡れたBIS-AF粉体を得た。得られたBIS-AF粉体をヤマト科学株式会社製の真空乾燥機に入れて、0.5KPa、60℃で乾燥して、粉体の含水率を測定した。
(Drying test)
The dispersion liquid in which the BIS-AF powder was dispersed in water was passed through a filter equipped with a filter paper and filtered to obtain a water-wet BIS-AF powder. The obtained BIS-AF powder was placed in a vacuum dryer manufactured by Yamato Scientific Co., Ltd., dried at 0.5 KPa and 60 ° C., and the water content of the powder was measured.
 BIS-AF粉体を10g入れて、0.5kPa、60℃で乾燥し始めた時点(0時間)、0.5時間後、1時間後の粉体の含水率を容量滴定式カールフィッシャー(MKV-710B、京都電子工業株式会社製)により測定した。 When 10 g of BIS-AF powder was added and dried at 0.5 kPa and 60 ° C. (0 hours), 0.5 hours and 1 hour later, the water content of the powder was measured by volumetric titration type Karl Fischer (MKV). -710B, manufactured by Kyoto Electronics Industry Co., Ltd.).
 評価結果をまとめて下表に示す。 The evaluation results are summarized in the table below.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表8に示されるとおり、実施例4-1、4-4及び4-5のBIS-AFの粉体の溶解速度は良好であった。また、含水率の評価結果より、実施例4-1、4―4および4-5のBIS-AFの粉体を乾燥させる際の乾燥時間は短くて済むことがわかった。すなわち、実施例4-1などのBIS-AFの粉体は、工業的な取り扱い性に優れていた。 As shown in Table 8, the dissolution rates of the BIS-AF powders of Examples 4-1, 4-4 and 4-5 were good. Further, from the evaluation results of the water content, it was found that the drying time when drying the BIS-AF powders of Examples 4-1, 4-4 and 4-5 was short. That is, the BIS-AF powder of Example 4-1 and the like was excellent in industrial handleability.
 また、実施例4-1について、以下のように「吸湿試験」を行った。
(吸湿試験)
 シャーレーにBIS-AF粉体10gを量り取り、BIS-AF粉体の含水率を容量式カールフィッシャー(MKV-710B、京都電子工業株式会社製)にて測定した。
 また、シャーレーにBIS-AF粉体10gを量り取り、温度30℃、湿度98%の恒温恒湿槽内へ静置し、24時間経過後にBIS-AF粉体の含水率を容量式カールフィッシャー(MKV-710B、京都電子工業株式会社製)にて測定した。
Moreover, about Example 4-1, the "moisture absorption test" was performed as follows.
(Hygroscopic test)
10 g of BIS-AF powder was weighed on a charley, and the water content of the BIS-AF powder was measured with a capacitive Karl Fischer (MKV-710B, manufactured by Kyoto Denshi Kogyo Co., Ltd.).
In addition, 10 g of BIS-AF powder is weighed in a charley and allowed to stand in a constant temperature and humidity chamber at a temperature of 30 ° C. and a humidity of 98%. MKV-710B, manufactured by Kyoto Electronics Industry Co., Ltd.).
 評価結果を下表に示す。 The evaluation results are shown in the table below.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表9に示されるとおり、実施例4-1のBIS-AFの粉体の含水率は、24時間後であっても変化はなく、吸湿し難いことがわかった。すなわち、実施例4-1のBIS-AF粉体は、工業的な取り扱い性に優れていた。 As shown in Table 9, the water content of the BIS-AF powder of Example 4-1 did not change even after 24 hours, and it was found that it was difficult to absorb moisture. That is, the BIS-AF powder of Example 4-1 was excellent in industrial handleability.
 この出願は、2019年9月30日に出願された日本出願特願2019-178923号、2019年9月30日に出願された日本出願特願2019-178924号、2019年12月27日に出願された日本出願特願2019-238016号および2020年2月28日に出願された日本出願特願2020-033388号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application is filed on September 30, 2019, Japanese Application Japanese Patent Application No. 2019-178923, Japanese Application Japanese Patent Application No. 2019-178924, filed on September 30, 2019, December 27, 2019. Claim priorities based on Japanese Patent Application No. 2019-238016 filed and Japanese Patent Application No. 2020-03338 filed on February 28, 2020, all of which are incorporated herein by reference.

Claims (27)

  1.  以下一般式(A)で表される化合物の粉体であって、
     レーザ回折散乱法で測定されるモード径Dが75~150μmであり、
     Caイオンの含有量が1ppm未満である粉体。
    Figure JPOXMLDOC01-appb-C000001
     一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。
    A powder of a compound represented by the general formula (A) below.
    The mode diameter D m measured by the laser diffraction / scattering method is 75 to 150 μm.
    A powder having a Ca ion content of less than 1 ppm.
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  2.  請求項1に記載の粉体であって、
     Naイオンの含有量が1ppm未満である粉体。
    The powder according to claim 1.
    A powder having a Na ion content of less than 1 ppm.
  3.  請求項1または2に記載の粉体であって、
     レーザ回折散乱法で測定される体積基準累積50%径をD50としたとき、D50の値が40~100μmである粉体。
    The powder according to claim 1 or 2.
    When the volume-reduced cumulative 50% diameter measured was D 50 by a laser diffraction scattering method, the powder D 50 of a 40 ~ 100 [mu] m.
  4.  請求項1~3のいずれか1項に記載の粉体であって、
     レーザ回折散乱法で測定される体積基準累積50%径をD50とし、同法で測定される体積基準累積90%径をD90としたとき、
     (D90-D50)/D50の値が1.3~1.7である粉体。
    The powder according to any one of claims 1 to 3.
    When the volume-based cumulative 50% diameter measured by the laser diffraction / scattering method is D 50 and the volume-based cumulative 90% diameter measured by the same method is D 90 .
    A powder having a value of (D 90- D 50 ) / D 50 of 1.3 to 1.7.
  5.  請求項1~4のいずれか1項に記載の粉体であって、
     アルコールの含有量が400ppm以下である粉体。
    The powder according to any one of claims 1 to 4.
    A powder having an alcohol content of 400 ppm or less.
  6.  以下一般式(A)で表される化合物の粉体であって、
     レーザ回折散乱法で測定される体積基準累積50%径をD50とし、同法で測定される算術体積平均径をDaveとしたとき、
     D50は50~100μmであり、
     D50/Daveは1.1~1.5である粉体。
    Figure JPOXMLDOC01-appb-C000002
     一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す
    A powder of a compound represented by the general formula (A) below.
    The volume-reduced cumulative 50% diameter measured by a laser diffraction scattering method and D 50, when the arithmetic volume average diameter measured by the law and the D ave,
    D 50 is 50-100 μm
    D 50 / D ave is a powder of 1.1 to 1.5.
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  7.  請求項6に記載の粉体であって、
     レーザ回折散乱法で測定されるモード径Dが75~150μmである粉体。
    The powder according to claim 6.
    A powder having a mode diameter D m of 75 to 150 μm measured by a laser diffraction / scattering method.
  8.  請求項6または7に記載の粉体であって、
     レーザ回折散乱法で測定される体積基準累積90%径をD90としたとき、
     (D90-D50)/D50の値が1.3~1.7である粉体。
    The powder according to claim 6 or 7.
    When the volume-based cumulative 90% diameter measured by the laser diffraction / scattering method is D 90 ,
    A powder having a value of (D 90- D 50 ) / D 50 of 1.3 to 1.7.
  9.  請求項6~8のいずれか1項に記載の粉体であって、
     ゆるみかさ密度が0.50~0.75g/cmであり、かためかさ密度が0.76~0.90g/cmである粉体。
    The powder according to any one of claims 6 to 8.
    A powder having a loose bulk density of 0.50 to 0.75 g / cm 3 and a firm bulk density of 0.76 to 0.90 g / cm 3.
  10.  以下一般式(A)で表される化合物の粉体であって、
     レーザ回折散乱法で測定される体積基準累積50%径D50が50~100μmであり、
     安息角が35~49°である粉体。
    Figure JPOXMLDOC01-appb-C000003
     一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。
    A powder of a compound represented by the general formula (A) below.
    Volume-reduced cumulative 50% diameter D 50 measured by a laser diffraction scattering method is 50 ~ 100 [mu] m,
    A powder with an angle of repose of 35 to 49 °.
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  11.  請求項10に記載の粉体であって、
     レーザ回折散乱法で測定されるモード径Dが75~150μmである粉体。
    The powder according to claim 10.
    A powder having a mode diameter D m of 75 to 150 μm measured by a laser diffraction / scattering method.
  12.  請求項10または11に記載の粉体であって、
     レーザ回折散乱法で測定される体積基準累積90%径をD90としたとき、
     (D90-D50)/D50の値が1.3~1.7である粉体。
    The powder according to claim 10 or 11.
    When the volume-based cumulative 90% diameter measured by the laser diffraction / scattering method is D 90 ,
    A powder having a value of (D 90- D 50 ) / D 50 of 1.3 to 1.7.
  13.  請求項10~12のいずれか1項に記載の粉体であって、
     当該粉体のゆるみかさ密度をρとし、当該粉体のかためかさ密度をρとしたとき、ρ/ρが1.01~1.45である粉体。
    The powder according to any one of claims 10 to 12.
    A powder in which ρ 2 / ρ 1 is 1.01 to 1.45 when the looseness density of the powder is ρ 1 and the hardness density of the powder is ρ 2.
  14.  2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンの粉体であって、
     X線回折スペクトルにおける2θ=22.3°付近のピークの半値幅が、0.050°以上0.180°以下であり、
     X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅が、0.050°以上0.120°以下であり、
     X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅が、0.040°以上0.120°以下である粉体。
    2,2-Bis (4-hydroxyphenyl) hexafluoropropane powder
    The half width of the peak near 2θ = 22.3 ° in the X-ray diffraction spectrum is 0.050 ° or more and 0.180 ° or less.
    The half width of the peak near 2θ = 23.7 ° in the X-ray diffraction spectrum is 0.050 ° or more and 0.120 ° or less.
    A powder having a peak width of 0.040 ° or more and 0.120 ° or less in the X-ray diffraction spectrum near 2θ = 25.8 °.
  15.  請求項14に記載の粉体であって、
     X線回折スペクトルにおける2θ=22.3°付近のピークの半値幅が、0.055°以上0.170°以下である粉体。
    The powder according to claim 14.
    A powder having a peak width at half maximum of around 2θ = 22.3 ° in an X-ray diffraction spectrum of 0.055 ° or more and 0.170 ° or less.
  16.  請求項14又は15に記載の粉体であって、
     X線回折スペクトルにおける2θ=22.3°付近のピークの半値幅が、0.060°以上0.165°以下である粉体。
    The powder according to claim 14 or 15.
    A powder having a peak width at half maximum of around 2θ = 22.3 ° in an X-ray diffraction spectrum of 0.060 ° or more and 0.165 ° or less.
  17.  請求項14~16のいずれか1項に記載の粉体であって、
     X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅が、0.055°以上0.100°以下である粉体。
    The powder according to any one of claims 14 to 16.
    A powder having a peak width at half maximum of around 2θ = 23.7 ° in an X-ray diffraction spectrum of 0.055 ° or more and 0.100 ° or less.
  18.  請求項14~17のいずれか1項に記載の粉体であって、
     X線回折スペクトルにおける2θ=23.7°付近のピークの半値幅が、0.060°以上0.090°以下である粉体。
    The powder according to any one of claims 14 to 17.
    A powder having a peak width of 0.060 ° or more and 0.090 ° or less in the X-ray diffraction spectrum near 2θ = 23.7 °.
  19.  請求項14~18のいずれか1項に記載の粉体であって、
     X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅が、0.045°以上0.115°以下である粉体。
    The powder according to any one of claims 14 to 18.
    A powder having a peak width at half maximum of around 2θ = 25.8 ° in the X-ray diffraction spectrum of 0.045 ° or more and 0.115 ° or less.
  20.  請求項14~19のいずれか1項に記載の粉体であって、
     X線回折スペクトルにおける2θ=25.8°付近のピークの半値幅が、0.050°以上0.110°以下である粉体。
    The powder according to any one of claims 14 to 19.
    A powder having a peak width at half maximum of around 2θ = 25.8 ° in the X-ray diffraction spectrum of 0.050 ° or more and 0.110 ° or less.
  21.  以下一般式(A)で表される化合物の粉体の製造方法であって、
     当該一般式(A)で表される化合物を含む原料物質と、水系分散媒とを容器に入れて熱することで、前記原料物質を前記水系分散媒の存在下で融解させ、前記原料物質の融解物と前記水系分散媒とを含む不均一液体を得る融解工程と、
     前記不均一液体を降温することで、前記融解物を結晶化させて結晶を得る結晶化工程と、
    を含み、
     前記融解工程において、前記原料物質の融解温度Tにおける、前記水系分散媒の、前記一般式(A)で表される化合物の溶解度は、10[g/100g]以下である、粉体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。
    Hereinafter, a method for producing a powder of a compound represented by the general formula (A).
    By putting the raw material containing the compound represented by the general formula (A) and the aqueous dispersion medium in a container and heating the raw material, the raw material is melted in the presence of the aqueous dispersion medium, and the raw material is melted. A melting step of obtaining a non-uniform liquid containing a melt and the aqueous dispersion medium, and
    A crystallization step of crystallizing the melt to obtain crystals by lowering the temperature of the non-uniform liquid.
    Including
    In the melting step, the melting temperature T 1 of the said raw material, said aqueous dispersion medium, the solubility of the compound represented by the general formula (A), 10 [g / 100g] or less, the production of the powder Method.
    Figure JPOXMLDOC01-appb-C000004
    In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  22.  請求項21に記載の粉体の製造方法であって、
     前記水系分散媒は実質的に水のみを含む、粉体の製造方法。
    The powder manufacturing method according to claim 21.
    A method for producing a powder, wherein the aqueous dispersion medium contains substantially only water.
  23.  請求項21に記載の粉体の製造方法であって、
     前記水系分散媒は、水とアルコールとを含み、
     前記水系分散媒中の前記アルコールの比率は30質量%以下である、粉体の製造方法。
    The powder manufacturing method according to claim 21.
    The aqueous dispersion medium contains water and alcohol, and contains water and alcohol.
    A method for producing a powder, wherein the ratio of the alcohol in the aqueous dispersion medium is 30% by mass or less.
  24.  請求項21~23のいずれか1項に記載の粉体の製造方法であって、
     前記結晶化工程の温度Tは、温度Tよりも1~10℃低い、粉体の製造方法。
    The method for producing a powder according to any one of claims 21 to 23.
    A method for producing a powder, wherein the temperature T 2 in the crystallization step is 1 to 10 ° C. lower than the temperature T 1.
  25.  請求項21~24のいずれか1項に記載の粉体の製造方法であって、
     前記結晶化工程は、前記不均一液体を攪拌しながら行われる、粉体の製造方法。
    The method for producing a powder according to any one of claims 21 to 24.
    The crystallization step is a method for producing a powder, which is carried out while stirring the non-uniform liquid.
  26.  以下一般式(A)で表される化合物を含む溶液の製造方法であって、
     溶媒と、請求項1~20のいずれか1項に記載の粉体とを用い、当該一般式(A)で表される化合物の溶液を得る工程を含む、溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000005
     一般式(A)中、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ハロゲン原子またはアミノ基を表す。
    A method for producing a solution containing a compound represented by the general formula (A) below.
    A method for producing a solution, which comprises a step of obtaining a solution of the compound represented by the general formula (A) using a solvent and the powder according to any one of claims 1 to 20.
    Figure JPOXMLDOC01-appb-C000005
    In the general formula (A), R 1 to R 8 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a halogen atom or an amino group, respectively.
  27.  請求項26に記載の溶液の製造方法であって、
     前記粉体を微細化する工程を含む、溶液の製造方法。
    The method for producing a solution according to claim 26.
    A method for producing a solution, which comprises a step of refining the powder.
PCT/JP2020/035950 2019-09-30 2020-09-24 Powder, powder production method, and solution production method WO2021065653A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080068632.5A CN114555549A (en) 2019-09-30 2020-09-24 Powder, method for producing powder, and method for producing solution
JP2021550673A JPWO2021065653A1 (en) 2019-09-30 2020-09-24
KR1020227013503A KR20220069060A (en) 2019-09-30 2020-09-24 Powder, powder manufacturing method and solution manufacturing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019178923 2019-09-30
JP2019-178924 2019-09-30
JP2019178924 2019-09-30
JP2019-178923 2019-09-30
JP2019238016 2019-12-27
JP2019-238016 2019-12-27
JP2020033388 2020-02-28
JP2020-033388 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021065653A1 true WO2021065653A1 (en) 2021-04-08

Family

ID=75337308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035950 WO2021065653A1 (en) 2019-09-30 2020-09-24 Powder, powder production method, and solution production method

Country Status (5)

Country Link
JP (1) JPWO2021065653A1 (en)
KR (1) KR20220069060A (en)
CN (1) CN114555549A (en)
TW (1) TW202120463A (en)
WO (1) WO2021065653A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267239A (en) * 1988-08-31 1990-03-07 Central Glass Co Ltd Purification of 2,2-bis(4-hydroxyphenyl)hexafluoropropane
JPH0454144A (en) * 1990-06-22 1992-02-21 Central Glass Co Ltd Method for purifying hexafluoropropylidene group-containing aromatic compound
JPH06145090A (en) * 1992-11-02 1994-05-24 Honsyu Kagaku Kogyo Kk Bisphenol af excellent in optical property and its production
JPH06211752A (en) * 1993-01-18 1994-08-02 Central Glass Co Ltd Production of 2,2-bis@(3754/24)3-nitro-4-hydroxyphenyl)-hexafluoropropane
JP2004131386A (en) * 2002-10-08 2004-04-30 Nippon Kayaku Co Ltd Method for producing diaminophenols
CN1919812A (en) * 2006-09-12 2007-02-28 上海三爱富新材料股份有限公司 Refining method for hexafluoromethylene aromatic compound
JP2007246819A (en) * 2006-03-17 2007-09-27 Japan Epoxy Resin Kk Epoxy resin composition for light-emitting device-sealing material
JP2012184173A (en) * 2011-03-03 2012-09-27 Toray Fine Chemicals Co Ltd Method for purifying bis(aminohydroxyphenyl)
CN104529717A (en) * 2014-12-24 2015-04-22 常熟市新华化工有限公司 Method for preparing biphenol hexafluoropropane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267239A (en) * 1988-08-31 1990-03-07 Central Glass Co Ltd Purification of 2,2-bis(4-hydroxyphenyl)hexafluoropropane
JPH0454144A (en) * 1990-06-22 1992-02-21 Central Glass Co Ltd Method for purifying hexafluoropropylidene group-containing aromatic compound
JPH06145090A (en) * 1992-11-02 1994-05-24 Honsyu Kagaku Kogyo Kk Bisphenol af excellent in optical property and its production
JPH06211752A (en) * 1993-01-18 1994-08-02 Central Glass Co Ltd Production of 2,2-bis@(3754/24)3-nitro-4-hydroxyphenyl)-hexafluoropropane
JP2004131386A (en) * 2002-10-08 2004-04-30 Nippon Kayaku Co Ltd Method for producing diaminophenols
JP2007246819A (en) * 2006-03-17 2007-09-27 Japan Epoxy Resin Kk Epoxy resin composition for light-emitting device-sealing material
CN1919812A (en) * 2006-09-12 2007-02-28 上海三爱富新材料股份有限公司 Refining method for hexafluoromethylene aromatic compound
JP2012184173A (en) * 2011-03-03 2012-09-27 Toray Fine Chemicals Co Ltd Method for purifying bis(aminohydroxyphenyl)
CN104529717A (en) * 2014-12-24 2015-04-22 常熟市新华化工有限公司 Method for preparing biphenol hexafluoropropane

Also Published As

Publication number Publication date
JPWO2021065653A1 (en) 2021-04-08
CN114555549A (en) 2022-05-27
KR20220069060A (en) 2022-05-26
TW202120463A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
RU2362764C2 (en) Phenolic antioxidants in crystal form
EP1773921B1 (en) Synthesis of nanoparticles in non-aqueous polymer solutions and product
WO2021065653A1 (en) Powder, powder production method, and solution production method
US8765864B2 (en) Melamine cyanurate in crystalline form
TW201825399A (en) Sol-gel silica powder and method for producing same
KR101189589B1 (en) Process for preparing solid particles of phenolic antioxidants
TW550263B (en) Method for reducing an organic solvent remaining in tris-(2,3-epoxypropyl)-isocyanurate crystals
CN112189003A (en) Crystal of 2,2 &#39;-bis (carboxymethoxy) -1, 1&#39; -binaphthyl
EP2108013A2 (en) Crystalline forms of deferasirox
EP3281938B1 (en) Method for producing bisimidodicarboxylic acid
US9920005B2 (en) Method for crystallization of 2-amino-2-[2-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]ethyl]-1,3-propanediol hydrochloride
CN109180494B (en) Pentanediamine succinate and crystal thereof
WO2022176821A1 (en) Powder of 2,2&#39;,3,3&#39;,5,5&#39;-hexamethylbiphenyl-4,4&#39;-diol bis(trimellitate anhydride)
Lee et al. Shaping particle size distribution of a metastable polymorph in additive-assisted reactive crystallization by the Taguchi method
JP4635155B2 (en) Method for producing cyclotriphosphazene derivative
JP4635157B2 (en) Method for producing cyclotriphosphazene derivative
EP3302473B1 (en) Preparation of sufentanil citrate and sufentanil base
JP6351074B2 (en) Amorphous form of binaphthalene derivative and method for producing the same
JP5090826B2 (en) Granulation method of polyoxyethylene ether of bisphenol A
CN115197255B (en) Low-moisture solid boron trifluoride methyl ethyl carbonate complex and preparation method and application thereof
WO2022065349A1 (en) Oxide powder and method for producing same, and resin composition
JP4221536B2 (en) Method for reducing residual organic solvent in tris- (2,3-epoxypropyl) -isocyanurate crystals
TW593311B (en) Method for reducing organic solvents remaining in tris-(2,3-epoxypropyl)-isocyanurate crystals
WO2024028273A1 (en) Novel crystalline forms of (s)-7-oxa-2-aza-spiro[4.5]decane-2-carboxylic acid [7-(3,6-dihydro-2h-pyran-4-yl)-4-methoxy-thiazolo[4,5-c]pyridin-2-yl]-amide and co-crystal forms thereof
CN117794860A (en) Spherical crystalline silica powder and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227013503

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20870979

Country of ref document: EP

Kind code of ref document: A1