WO2021064895A1 - Processing system, control device, control method, and computer program - Google Patents

Processing system, control device, control method, and computer program Download PDF

Info

Publication number
WO2021064895A1
WO2021064895A1 PCT/JP2019/038922 JP2019038922W WO2021064895A1 WO 2021064895 A1 WO2021064895 A1 WO 2021064895A1 JP 2019038922 W JP2019038922 W JP 2019038922W WO 2021064895 A1 WO2021064895 A1 WO 2021064895A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
supply
processing system
modeling material
control
Prior art date
Application number
PCT/JP2019/038922
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 上野
ふみ香 志岐
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/038922 priority Critical patent/WO2021064895A1/en
Publication of WO2021064895A1 publication Critical patent/WO2021064895A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to, for example, a processing system that performs processing using powder, and a technical field of a control device, a control method, and a computer program that controls the processing system.
  • Patent Document 1 describes a processing system that performs a processing process for forming a modeled object by melting the powder with an energy beam and then solidifying the melted powder. In such a processing system, it is a technical problem to appropriately supply powder.
  • a processing system that performs processing using powder, and images the powder supply device that supplies the powder and the powder that passes through the powder supply path.
  • a processing system including an image pickup device and a control device for controlling the powder supply device based on an image of the powder imaged by the image pickup device is provided.
  • the second aspect it is a processing system that performs a processing process using an energy beam and a powder, the irradiation device that irradiates the energy beam, the powder supply device that supplies the powder, and the said.
  • a processing system including an image pickup device that images the powder passing through a powder supply path and a control device that controls the irradiation device based on the image captured by the image pickup device is provided.
  • the powder supply device that supplies the powder and the powder that passes through the powder supply path are supplied.
  • the position based on the image pickup device for imaging, the position change device for changing the positional relationship between the powder supply position supplied to the object and the object, and the powder image captured by the image pickup device.
  • a machining system including a control device for controlling a change device is provided.
  • a processing system that performs processing using powder, and images the powder supply device that supplies the powder and the powder that passes through the powder supply path.
  • a processing system including an image pickup device and a receiving device that receives the control signal from a control device that generates a control signal for controlling the powder supply device based on an image of the powder imaged by the image pickup device.
  • the fifth aspect it is a processing system that performs a processing process using an energy beam and a powder, the irradiation device that irradiates the energy beam, the powder supply device that supplies the powder, and the said. From the image pickup device that images the powder passing through the powder supply path and the control device that generates a control signal for controlling the irradiation device based on the image of the powder imaged by the image pickup device, the said A processing system including a receiving device for receiving a control signal is provided.
  • the powder supply device that supplies the powder and the powder that passes through the powder supply path are combined.
  • a processing system including a receiving device for receiving the control signal is provided from a control device for generating a control signal for controlling the device.
  • a control device that controls a processing system that performs processing using powder
  • the processing system includes a powder supply device that supplies the powder, and the processing of the powder.
  • a control device for controlling the powder supply device is provided based on an image of the powder obtained by imaging the powder passing through the supply path.
  • control device controls a processing system that performs processing using an energy beam and powder, and the processing system includes an irradiation device that irradiates the energy beam and the powder.
  • a control device for controlling the irradiation device based on an image of the powder obtained by imaging the powder passing through the powder supply path is provided.
  • a ninth aspect it is a control device that controls a processing system that processes an object using powder
  • the processing system is a powder supply device that supplies the powder and the object.
  • the powder obtained by imaging the powder passing through the supply path of the powder, provided with a position changing device for changing the positional relationship between the supplied position of the powder to be supplied and the object.
  • a control device for controlling the position changing device based on an image is provided.
  • it is a control method for controlling a processing system that performs processing using powder, wherein the processing system includes a powder supply device that supplies the powder, and the powder
  • a control method including acquiring an image of the powder obtained by imaging the powder passing through the supply path and controlling the powder supply device based on the image of the powder.
  • the eleventh aspect it is a control method for controlling a processing system that performs processing processing using an energy beam and powder, wherein the processing system includes an irradiation device that irradiates the energy beam and the powder.
  • the powder supply device is provided, and an image of the powder obtained by imaging the powder passing through the powder supply path is obtained, and based on the image of the powder.
  • a control method including controlling the irradiation device is provided.
  • the processing system is a powder supply device that supplies the powder and the object.
  • the powder obtained by imaging the powder passing through the powder supply path with a position changing device for changing the positional relationship between the supplied powder supply position and the object.
  • a control device is provided that includes acquiring an image and controlling the position changing device based on the image of the powder.
  • the thirteenth aspect is a computer program executed by a computer that controls a processing system that performs processing using powder, and the processing system includes a powder supply device that supplies the powder.
  • the computer program acquires an image of the powder obtained by imaging the powder passing through the supply path of the powder on the computer, and based on the image of the powder, A computer program for controlling and executing the powder feeding device is provided.
  • the processing system is a computer program executed by a computer that controls a processing system that performs processing using an energy beam and powder, and the processing system is an irradiation device that irradiates the energy beam.
  • the computer program obtains an image of the powder obtained by imaging the powder passing through the supply path of the powder on the computer.
  • a computer program is provided that executes the acquisition of the above and the control of the irradiation device based on the image of the powder.
  • a computer program executed by a computer that controls a processing system that processes an object using powder, wherein the processing system is a powder supply device that supplies the powder. And a position changing device for changing the positional relationship between the powder supply position supplied to the object and the object, the computer program causes the computer to pass through the powder supply path.
  • a computer program is provided that acquires an image of the powder obtained by imaging the powder and controls the position changing device based on the image of the powder.
  • FIG. 1 is a cross-sectional view showing the structure of the processing system of the present embodiment.
  • FIG. 2 is a system configuration diagram showing a system configuration of the processing system of the present embodiment.
  • FIG. 3 is a cross-sectional view showing the structure of the material supply device of the present embodiment.
  • FIG. 4 is a side view showing the structure of the holding member included in the material supply device.
  • FIG. 5A is a perspective view showing the structure of the first example of the transport member included in the material supply device
  • FIG. 5B is a front view showing the structure of the first example of the transport member. ..
  • FIG. 6 (a) is a perspective view showing the structure of a second example of the transport member included in the material supply device, and each of FIGS.
  • FIGS. 7 (a) to 7 (e) is a cross-sectional view showing a state in which light is irradiated and a modeling material is supplied in a certain region on the work.
  • FIGS. 8 (a) to 8 (c) is a cross-sectional view showing a process of forming a three-dimensional structure.
  • FIG. 9 is a cross-sectional view showing a material supply device that supplies modeling materials.
  • FIG. 10 is a flowchart showing a flow of a supply amount control operation for controlling the actual supply amount of the modeling material.
  • FIG. 11 is a plan view showing an example of the original image captured by the imaging device.
  • FIG. 12 is a plan view showing an example of a binarized image generated by performing a binarization process on the original image.
  • FIG. 13 is a graph showing correlation information showing the correlation between the area occupied by the modeling material in the binarized image and the actual supply amount of the modeling material.
  • FIG. 14 is a graph showing the time change of the actual supply amount of the modeling material M.
  • FIG. 15 is a graph showing the time change of the actual supply amount of the modeling material M.
  • FIG. 16 is a cross-sectional view showing an imaging device that images an imaging target path.
  • FIG. 17 is a cross-sectional view showing an example of an image pickup apparatus that images a modeling material passing through a supply path between a material nozzle and a work.
  • FIG. 18 is a cross-sectional view showing an example of an image pickup apparatus that images a modeling material passing through a supply path between a material nozzle and a work.
  • FIG. 19 is a cross-sectional view showing an example of an image pickup apparatus that images a modeling material passing through a supply path between a material nozzle and a work.
  • FIG. 20A is a cross-sectional view showing a machining system in which the actual supply direction and the target supply direction do not match
  • FIG. 20B is a machining in which the actual supply direction and the target supply direction coincide with each other. It is sectional drawing which shows the system.
  • FIG. 21 is a graph showing an example of the correlation between the particle size of the modeling material and the intensity of the processing light.
  • FIG. 22 is a graph showing the correlation between the control amount (specifically, the rotation speed) of the transport member by the feedback control and the actual supply amount of the modeling material.
  • FIG. 23 shows an actual supply amount of the modeling material M that periodically fluctuates in synchronization with the rotation cycle of the transfer member under a situation where feedback control is not performed, and a control amount of the transfer member by feedback control (specifically, Is a graph showing the rotation speed) and the actual supply amount of the modeling material M under the condition that the feedback control is performed.
  • FIG. 24 (a) is a cross-sectional view showing how the modeling material falls from a gap located below the central axis of the shaft member
  • FIG. 24 (b) is a sectional view showing how the molding material falls below the central axis of the shaft member.
  • FIG. 24 (c) is a front view showing how the modeling material falls from the gap
  • FIG. 24 (c) is a cross-sectional view showing how the modeling material falls from the gap located above the central axis of the shaft member
  • 24 (d) is a front view showing how the modeling material falls from the gap located above the central axis of the shaft member
  • FIG. 24 (e) shows the modeling material falling from the gap per unit time. It is a graph which shows the quantity.
  • FIG. 25 is a perspective view showing the configuration of a processing head including a plurality of material nozzles.
  • the modeling material M supplied to the work W is melted by the processing light EL (energy beam having the form of light) to be integrated with the work W or separated from the work W.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction).
  • the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be horizontal.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the processing system SYS of the present embodiment.
  • FIG. 2 is a system configuration diagram showing an example of the system configuration of the processing system SYS of the present embodiment.
  • the processing system SYS can form a three-dimensional structure ST (that is, a three-dimensional object having a size in any of the three-dimensional directions and a three-dimensional object).
  • the processing system SYS can form the three-dimensional structure ST on the work W that is the basis for forming the three-dimensional structure ST.
  • the processing system SYS can form the three-dimensional structure ST on the work W that is the target of additional processing (that is, the target of processing).
  • This work W may be referred to as a base material or a pedestal.
  • the processing system SYS can form a three-dimensional structure ST by performing additional processing on the work W.
  • the machining system SYS can form the three-dimensional structure ST on the stage 31.
  • the processing system SYS puts the three-dimensional structure ST on the existing structure. It can be formed.
  • the processing system SYS may form a three-dimensional structure ST integrated with the existing structure.
  • the operation of forming the three-dimensional structure ST integrated with the existing structure can be regarded as equivalent to the operation of adding a new structure to the existing structure.
  • the existing structure may be, for example, a repair-required product having a defective portion.
  • the processing system SYS may form a three-dimensional structure ST on the repair-required product so as to fill the defective portion of the repair-required product.
  • the processing system SYS may form a three-dimensional structure ST separable from the existing structure.
  • FIG. 1 shows an example in which the work W is an existing structure held by the stage 31. Further, in the following, the description will proceed with reference to an example in which the work W is an existing structure held by the stage 31.
  • the processing system SYS can form the three-dimensional structure ST by the laser overlay welding method. That is, it can be said that the processing system SYS is a 3D printer that forms an object by using the laminated modeling technology.
  • the laminated modeling technique is also referred to as rapid prototyping, rapid manufacturing, or adaptive manufacturing.
  • the processing system SYS has a material supply device 1, a processing device 2, a stage device 3, a light source 4, and a gas supply device 5, as shown in FIGS. 1 and 2.
  • a housing 6, a control device 7, an image pickup device 8, and a lighting device 9 are provided. At least a part of each of the processing device 2 and the stage device 3 is housed in the chamber space 63IN inside the housing 6.
  • the housing 6 may be referred to as a housing.
  • the housing is not limited to the box shape and may have other shapes.
  • the material supply device 1 supplies the modeling material M to the processing device 2.
  • the processing apparatus 2 supplies the modeling material M to the work W as described later. Therefore, the material supply device 1 may be regarded as supplying the modeling material M to the work W via the processing device 2.
  • the material supply device 1 corresponds to the required amount so that the modeling material M required for the processing device 2 to form the three-dimensional structure ST is supplied to the processing device 2.
  • the modeling material M is supplied at the supply rate. That is, the material supply device 1 supplies the modeling material M so that the supply amount of the modeling material M per unit time becomes a desired supply amount according to the required amount. Since the structure of the material supply device 1 will be described in detail later with reference to FIG. 3 and the like, detailed description thereof will be omitted here.
  • the modeling material M is a material that can be melted by irradiation with a processing light EL having a predetermined intensity or higher.
  • a modeling material M for example, at least one of a metal material and a resin material can be used.
  • the modeling material M other materials different from the metal material and the resin material may be used.
  • the modeling material M is a powdery material. That is, the modeling material M is a powder.
  • the powder may contain a granular material in addition to the powdery material.
  • the modeling material M may contain, for example, a powder having a particle size within the range of 90 micrometers ⁇ 40 micrometers.
  • the average particle size of the powders constituting the modeling material M may be, for example, 75 micrometers or other sizes.
  • the processing device 2 forms the three-dimensional structure ST using the modeling material M supplied from the material supply device 1.
  • the processing apparatus 2 includes a processing head 21 and a head drive system 22.
  • the processing head 21 includes an irradiation optical system 211 and a material nozzle (that is, a supply system or a supply device for supplying the modeling material M) 212.
  • the processing head 21 and the head drive system 22 are housed in the chamber space 63IN. However, at least a part of the processing head 21 and / or the head drive system 22 may be arranged in the external space 64OUT, which is the space outside the housing 6.
  • the external space 64OUT may be a space accessible to the operator of the processing system SYS.
  • the irradiation optical system 211 is an optical system (for example, a condensing optical system) for emitting the processed light EL from the injection unit 213. Specifically, the irradiation optical system 211 is optically connected to the light source 4 that emits the processed light EL via an optical transmission member (not shown) such as an optical fiber or a light pipe. The irradiation optical system 211 emits the processed light EL propagating from the light source 4 via the optical transmission member. The irradiation optical system 211 emits the processing light EL so that the processing light EL advances in the chamber space 63IN.
  • an optical transmission member not shown
  • the irradiation optical system 211 emits the processed light EL propagating from the light source 4 via the optical transmission member.
  • the irradiation optical system 211 emits the processing light EL so that the processing light EL advances in the chamber space 63IN.
  • the irradiation optical system 211 irradiates the processed light EL downward (that is, the ⁇ Z side) from the irradiation optical system 211.
  • a stage 31 is arranged below the irradiation optical system 211.
  • the irradiation optical system 211 irradiates the work W with the processing light EL.
  • the irradiation optical system 211 can irradiate the irradiation area EA set on the work W as the area where the processing light EL is irradiated (typically, the light is focused). ..
  • the state of the irradiation optical system 211 can be switched between a state in which the irradiation area EA is irradiated with the processing light EL and a state in which the irradiation area EA is not irradiated with the processing light EL under the control of the control device 7. ..
  • the direction of the processed light EL emitted from the irradiation optical system 211 is not limited to directly below (that is, coincident with the ⁇ Z axis direction), and is, for example, a direction tilted by a predetermined angle with respect to the Z axis. May be good.
  • the material nozzle 212 is a material supply member (powder supply member) that supplies the modeling material M toward the work W. Specifically, the material nozzle 212 is formed with a supply port 214 for supplying the modeling material M. The supply port 214 is formed, for example, in a portion of the material nozzle 212 facing the work W side (that is, a portion facing the work W and facing the ⁇ Z side). The material nozzle 212 supplies the modeling material M from the supply port 214 (for example, spraying, ejecting, or spraying). The material nozzle 212 is physically connected to the material supply device 1 via a pipe (not shown) or the like. The material nozzle 212 supplies the modeling material M supplied from the material supply device 1 via a pipe.
  • a pipe not shown
  • the material nozzle 212 may pump the modeling material M supplied from the material supply device 1 via a pipe. That is, the material supply device 1 mixes the modeling material M from the material supply device 1 and a gas for transportation (for example, an inert gas such as nitrogen or argon) and pumps it to the material nozzle 212 via a pipe. May be good. In this case, for example, the purge gas supplied from the gas supply device 5 may be used as the transport gas.
  • the material nozzle 212 is drawn in a tubular shape in FIG. 1, the shape of the material nozzle 212 is not limited to this shape.
  • the material nozzle 212 supplies the modeling material M toward the chamber space 63IN.
  • the material nozzle 212 supplies the modeling material M downward (that is, the ⁇ Z side) from the material nozzle 212.
  • a stage 31 is arranged below the material nozzle 212.
  • the material nozzle 212 supplies the modeling material M toward the work W.
  • the traveling direction of the modeling material M supplied from the material nozzle 212 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z-axis direction, but even if it is on the ⁇ Z side (that is, directly below). Good.
  • the material nozzle 212 is aligned with the irradiation optical system 211 so that the irradiation optical system 211 supplies the modeling material M toward the irradiation region EA on which the processing light EL is irradiated.
  • the irradiation optical system 211 emits the processing light EL toward the supply region MA set on the work W as the region where the material nozzle 212 supplies the modeling material M. Aligned with respect to material nozzle 212. That is, the material nozzle 212 and the irradiation optical system 211 are aligned so that the supply region MA and the irradiation region EA coincide with each other (or at least partially overlap).
  • the material nozzle 212 may be aligned so as to supply the modeling material M to the molten pool MP formed by the processing light EL emitted from the irradiation optical system 211.
  • the head drive system 22 moves the processing head 21.
  • the head drive system 22 moves the processing head 21 within the chamber space 63IN, for example.
  • the head drive system 22 moves the machining head 21 along at least one of the X-axis, the Y-axis, and the Z-axis. Further, the head drive system 22 may move the machining head 21 along at least one rotation direction in the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis. ..
  • the head drive system 22 may rotate the machining head 21 around at least one of the X-axis, Y-axis, and Z-axis.
  • the head drive system 22 may change the posture of the machining head 21 around at least one of the X-axis, the Y-axis, and the Z-axis.
  • the head drive system 22 includes an actuator such as a motor, for example.
  • each of the irradiation region EA and the supply region MA moves along the X-axis on the work W.
  • the head drive system 22 can change the positional relationship between the irradiation region EA and the supply region MA and the work W by moving the processing head 21.
  • the head drive system 22 may move the irradiation optical system 211 and the material nozzle 212 separately.
  • the head drive system 22 may be capable of adjusting at least one of the position of the injection unit 213, the direction of the injection unit 213, the position of the supply port 214, and the direction of the supply port 214.
  • the irradiation region EA in which the irradiation optical system 211 irradiates the processing light EL and the supply region MA in which the material nozzle 212 supplies the modeling material M can be controlled separately.
  • the stage device 3 includes a stage 31.
  • the stage 31 is housed in the chamber space 63IN.
  • the stage 31 can support the work W.
  • the state in which the work W supports the work W may mean a state in which the work W is directly or indirectly supported by the stage 31.
  • the stage 31 may be able to hold the work W. That is, the stage 31 may support the work W by holding the work W.
  • the stage 31 may be provided with a mechanical chuck, a vacuum suction chuck, or the like in order to hold the work W.
  • the stage 31 does not have to be able to hold the work W.
  • the work W may be placed on the stage 31. That is, the stage 31 may support the work W placed on the stage 31.
  • the state in which the "stage 31 supports the work W" in the present embodiment may include a state in which the stage 31 holds the work W and a state in which the work W is placed on the stage 31. Since the stage 31 is housed in the chamber space 63IN, the work W supported by the stage 31 is also housed in the chamber space 63IN. Further, the stage 31 can release the held work W when the work W is held.
  • the irradiation optical system 211 described above irradiates the processing light EL at least a part of the period during which the stage 31 supports the work W.
  • the material nozzle 212 described above supplies the modeling material M during at least a part of the period in which the stage 31 supports the work W.
  • a part of the modeling material M supplied by the material nozzle 212 may be scattered or spilled from the surface of the work W to the outside of the work W (for example, around the stage 31). Therefore, the processing system SYS may be provided with a recovery device for recovering the scattered or spilled modeling material M around the stage 31.
  • the stage 31 may be movable by a stage drive system (not shown).
  • the stage drive system may move the stage 31 within the chamber space 63IN, for example.
  • the stage drive system may move the stage 31 along at least one of the X-axis, the Y-axis, and the Z-axis.
  • each of the irradiation region EA and the supply region MA moves on the work W along at least one of the X-axis and the Y-axis.
  • the stage drive system may move the stage 31 along at least one rotation direction in the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis.
  • the stage drive system includes, for example, an actuator such as a motor.
  • the processing device 2 does not have to include the head drive system 22.
  • the light source 4 emits, for example, at least one of infrared light and ultraviolet light as processed light EL.
  • the processed light EL light having another wavelength (for example, light having a wavelength in the visible region) may be used.
  • the processing light EL is a laser light.
  • the light source 4 may include a laser light source such as a semiconductor laser. Examples of the laser light source include at least one such as a laser diode (LD: Laser Diode), a fiber laser, a CO 2 laser, a YAG laser, and an excimer laser.
  • the processing light EL does not have to be a laser beam, and the light source 4 may include an arbitrary light source (for example, at least one such as an LED (Light Emitting Diode) and a discharge lamp).
  • the gas supply device 5 is a supply source of purge gas for purging the chamber space 63IN.
  • the purge gas contains an inert gas.
  • nitrogen gas or argon gas can be mentioned.
  • the gas supply device 5 supplies purge gas to the chamber space 63IN.
  • the chamber space 63IN becomes a space purged by the purge gas.
  • the gas supply device 5 also supplies purge gas to the material supply device 1.
  • the purge gas supplied to the material supply device 1 is mainly used for pumping the modeling material M from the material supply device 1 to the material nozzle 212, as will be described later. Therefore, the gas supply device 5 supplies the pressurized purge gas to the material supply device 1.
  • the gas supply device 5 may be a cylinder in which a purge gas such as nitrogen gas or argon gas is stored.
  • a purge gas such as nitrogen gas or argon gas
  • the gas supply device 5 may be a nitrogen gas generator that generates nitrogen gas from the atmosphere as a raw material.
  • the gas supply device 5 may separately control the gas supply mode to the chamber space 63IN and the gas supply mode to the material supply device 1.
  • the gas supply device 5 has the chamber space 63IN and the material supply device so that the supply amount of the purge gas to the chamber space 63IN per unit time and the supply amount of the purge gas to the material supply device 1 per unit time are different.
  • the gas supply mode to each of 1 may be controlled.
  • the gas supply device 5 supplies the purge gas to either the chamber space 63IN or the material supply device 1 in a state where the supply of the purge gas to the chamber space 63IN or the material supply device 1 is stopped.
  • the mode of gas supply to each of the chamber space 63IN and the material supply device 1 may be controlled.
  • the characteristics of the purge gas supplied to the chamber space 63IN may be different from the characteristics of the purge gas supplied to the material supply device 1.
  • the composition of the purge gas supplied to the chamber space 63IN may be different from the composition of the purge gas supplied to the material supply device 1.
  • the processing system SYS may separately include a gas supply device that supplies purge gas to the chamber space 63IN and a gas supply device that supplies purge gas to the material supply device 1.
  • the housing 6 is a storage device that accommodates at least a part of each of the processing device 2 and the stage device 3 in the chamber space 63IN, which is the internal space of the housing 6.
  • the housing 6 includes a partition member 61 that defines the chamber space 63IN.
  • the partition member 61 is a member that separates the chamber space 63IN from the external space 64OUT of the housing 6.
  • the partition member 61 faces the chamber space 63IN via its inner wall 611, and faces the outer space 64OUT via its outer wall 612. In this case, the space surrounded by the partition member 61 (more specifically, the space surrounded by the inner wall 611 of the partition member 61) becomes the chamber space 63IN.
  • the partition member 61 may be provided with a door that can be opened and closed.
  • This door may be opened when the work W is placed on the stage 31 (or brought in so as to be supported or held). This door may be opened when the work W and / or the three-dimensional structure ST is taken out from the stage 31. On the other hand, this door may be closed while the additional processing for forming the three-dimensional structure ST is being performed.
  • the control device 7 controls the operation of the processing system SYS.
  • the control device 7 may control the emission mode of the processed light EL by the irradiation optical system 211.
  • the injection mode may include, for example, at least one of the intensity of the processing light EL and the injection timing of the processing light EL.
  • the injection mode may include, for example, a ratio (so-called duty ratio) between the length of the emission time of the pulsed light and the emission period of the pulsed light.
  • the injection mode may include, for example, at least one of the length of the emission time of the pulsed light itself and the emission period itself.
  • the control device 7 may control the movement mode of the processing head 21 by the head drive system 22.
  • the movement mode may include, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing.
  • the control device 7 may control the supply mode of the modeling material M by the material supply device 1.
  • the supply mode of the modeling material M by the material nozzle 212 is mainly determined by the supply mode of the modeling material M by the material supply device 1. Therefore, controlling the supply mode of the modeling material M by the material supply device 1 can be regarded as equivalent to controlling the supply mode of the modeling material M by the material nozzle 212.
  • the supply mode may include, for example, at least one of a supply amount (particularly, a supply amount per unit time) and a supply timing.
  • the control device 7 may include, for example, an arithmetic unit and a storage device.
  • the arithmetic unit may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the control device 7 functions as a device that controls the operation of the processing system SYS by executing a computer program by the arithmetic unit.
  • This computer program is a computer program for causing the control device 7 (for example, an arithmetic unit) to perform (that is, execute) the above-mentioned operation to be performed by the control device 7. That is, this computer program is a computer program for causing the control device 7 to function so that the processing system SYS performs the operation described later.
  • the computer program executed by the arithmetic unit may be recorded in a storage device (that is, a recording medium) included in the control device 7, or any storage built in the control device 7 or externally attached to the control device 7. It may be recorded on a medium (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 7 via the network interface.
  • a storage device that is, a recording medium included in the control device 7, or any storage built in the control device 7 or externally attached to the control device 7. It may be recorded on a medium (for example, a hard disk or a semiconductor memory).
  • the arithmetic unit may download the computer program to be executed from an external device of the control device 7 via the network interface.
  • the control device 7 does not have to be provided inside the processing system SYS, and may be provided as a server or the like outside the processing system SYS, for example.
  • the control device 7 and the processing system SYS may be connected by a wired and / or wireless network (or a data bus and / or a communication line).
  • a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used.
  • a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®).
  • a network using infrared rays may be used.
  • a network using optical communication may be used.
  • the control device 7 and the processing system SYS may be configured so that various types of information can be transmitted and received via the network.
  • control device 7 may be able to transmit information such as commands and control parameters to the processing system SYS via the network.
  • the processing system SYS may include a receiving device that receives information such as commands and control parameters from the control device 7 via the network.
  • the first control device that performs a part of the processing performed by the control device 7 is provided inside the processing system SYS
  • the second control device that performs the other part of the processing performed by the control device 7 is provided.
  • the control device may be provided outside the processing system SYS.
  • the recording medium for recording the computer program executed by the arithmetic unit includes CD-ROM, CD-R, CD-RW, flexible disc, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD-. At least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memories such as USB memory, and any other medium capable of storing a program is used. You may.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in a state in which it can be executed in at least one form such as software and firmware).
  • each process or function included in the computer program may be realized by a logical processing block realized in the control device 7 by the control device 7 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 7, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
  • FPGA predetermined gate array
  • the image pickup device 8 is a camera capable of taking an image of an object to be imaged.
  • the image captured by the image pickup device 8 is output to the control device 7.
  • the control device 7 may control the operation of the processing system SYS based on the image captured by the image pickup device 8.
  • the image pickup apparatus 8 images at least a part of the supply path of the modeling material M. That is, in the present embodiment, the image pickup device 8 is arranged so that the image pickup range IMA of the image pickup device 8 (see FIG. 3 and the like described later) includes at least a part of the supply path of the modeling material M.
  • the image pickup range IMA of the image pickup device 8 includes at least a part of the supply path of the modeling material M.
  • at least a part of the supply path of the modeling material M to be imaged by the imaging device 8 is referred to as an “imaging target path”.
  • the imaging device 8 images the modeling material M passing through the imaging target path.
  • the modeling material M passing through the image pickup target path is reflected in the image captured by the image pickup apparatus 8. Therefore, it can be said that the image captured by the image pickup apparatus 8 includes information regarding the modeling material M passing through the image pickup target path.
  • the modeling material M supplied through the imaging target path is reflected in the image captured by the imaging device 8. Therefore, it can be said that the image captured by the image pickup apparatus 8 includes information regarding the supply state of the modeling material M.
  • the imaging device 8 may image the modeling material M passing through the imaging target path at a desired timing.
  • the image pickup apparatus 8 may repeatedly image the modeling material M passing through the image pickup target path.
  • the imaging device 8 may repeatedly image the modeling material M passing through the imaging target path at a regular cycle. That is, the imaging device 8 may repeatedly image the modeling material M passing through the imaging target path at a desired imaging rate.
  • the imaging rate is arbitrary.
  • the imaging device 8 passes through the imaging target path at an imaging rate (that is, an imaging rate of several fps (frame per sec) to several tens of fps) that images the imaging target path several to several tens of times per second.
  • the modeling material M may be repeatedly imaged.
  • the imaging device 8 images at an imaging rate (that is, an imaging rate of several hundred fps to several hundred fps) that images the modeling material M passing through the imaging target path several hundred to several hundred times per second.
  • the modeling material M passing through the target path may be repeatedly imaged.
  • imaging devices capable of imaging an imaged object at an imaging rate of several hundred fps to several hundred fps are US Pat. No. 7,046,821, US Patent Application Publication No. 2012/0147016, and US Pat. No. It is described in each of Nos. 6, 970 and 196.
  • the imaging device 8 may repeatedly image the modeling material M passing through the imaging target path at an irregular cycle or a random cycle.
  • the lighting device 9 illuminates at least a part of the imaging range IMA of the imaging device 8 with the illumination light IL (see FIG. 3 described later) which is visible light. Since the imaging device 8 images the modeling material M passing through the imaging target path, the lighting device 9 illuminates the modeling material M passing through the imaging target path with the illumination light IL. However, when the image pickup element of the image pickup apparatus 8 can detect light in a wavelength range different from the visible light wavelength range, the illumination light IL is light in a wavelength range different from the visible light wavelength range (particularly, Light in a wavelength range that can be detected by the image pickup element) may be included.
  • the lighting device 9 illuminates the modeling material M passing through the imaging target path with the illumination light IL during the period in which the imaging device 8 images the modeling material M passing through the imaging target path. Therefore, the image pickup apparatus 8 images the modeling material M illuminated by the illumination light IL. As a result, even when the image pickup target path is in a relatively dark environment, the image pickup apparatus 8 can appropriately image the modeling material M passing through the image pickup target path.
  • the processing system SYS does not have to include the lighting device 9.
  • FIG. 3 is a cross-sectional view showing the structure of the material supply device 1.
  • the material supply device 1 is connected to a hopper 11, a holding member 12, a transport member 13, a drive device 14, a material delivery member 15, and a housing (in other words, a container) 16. It is provided with a tube 17.
  • the holding member 12, the transport member 13, and the material delivery member 15 are a space surrounded by a partition member 161 of a box-shaped (or other shape) housing 16 (that is, an internal space 16IN of the housing 16). ).
  • the hopper 11 and the driving device 14 are arranged in the external space 16OUT separated from the internal space 16IN via the partition member 161. However, at least one of the hopper 11 and the drive device 14 may be arranged in the internal space 16IN.
  • the hopper 11 is a device for storing the modeling material M.
  • the hopper 11 has a funnel-shaped shape (that is, an inverted conical shape).
  • the space surrounded by the funnel-shaped partition wall member 111 corresponds to the storage space 112 for storing the modeling material M.
  • the hopper 11 may have other shapes.
  • the shape of the hopper 11 may be an inverted pyramid shape (for example, an inverted quadrangular pyramid shape).
  • a supply port 113 is formed at the lower end of the hopper 11 (that is, below the storage space 112).
  • the supply port 113 is an opening (that is, a through hole) that penetrates the partition wall member 111 along the Z-axis direction at the bottom of the hopper 11.
  • the open end of the lower portion of the hopper 11 in which the partition wall member 111 is not formed may be used as the supply port 113.
  • the shape of the cross section of the supply port 113 (specifically, the cross section along the XY plane) is circular, but other shapes (for example, at least one of an oval shape, an elliptical shape, a rectangular shape, and a polygonal shape). There may be.
  • the supply port 113 is an opening for supplying the modeling material M from the hopper 11 to the lower side of the hopper 11 (that is, to the ⁇ Z side). That is, the modeling material M stored in the storage space 112 by the hopper 11 is supplied to the outside of the hopper 11 via the supply port 113 (in other words, discharged or dropped).
  • the hopper 11 is arranged on the partition member 161 of the housing 16. Specifically, the hopper 11 is arranged on the ceiling member 1611 located above the internal space 16IN of the partition wall member 161.
  • a supply port 162 is formed in the ceiling member 1611.
  • the supply port 162 is an opening (that is, a through hole) that penetrates the ceiling member 1611 from the external space 16OUT toward the internal space 16IN.
  • the supply port 162 of the housing 16 is connected to the supply port 113 of the hopper 11. Therefore, the supply port 162 is substantially an opening (that is, a through hole) that penetrates the ceiling member 1611 from the supply port 113 toward the internal space 16IN. Therefore, the modeling material M stored in the storage space 112 by the hopper 11 is supplied to the internal space 16IN of the housing 16 via the supply port 113 and the supply port 162 (in other words, is discharged or discharged). Will be dropped).
  • a material replenishment port 114 is formed at the upper end of the hopper 11.
  • the material replenishment port 114 is an opening that penetrates the partition wall member 111 along the Z-axis direction at the upper end of the hopper 11.
  • the open end on the upper portion of the hopper 11 on which the partition wall member 111 is not formed may be used as the material replenishment port 114.
  • the material replenishment port 114 is an opening for replenishing the hopper 11 (particularly, the storage space 112) with the modeling material M.
  • the material replenishment port 114 is normally sealed by a lid 115 (specifically, during the period when the hopper 11 is not replenished with the modeling material M).
  • the lid 115 may function together with the partition member 111 as a partition member that defines the storage space 112.
  • the lid 115 may function together with the partition wall member 111 as a partition wall member that maintains the airtightness of the storage space 112.
  • the lid 115 is opened during the period of replenishing the hopper 11 with the modeling material M.
  • the material replenishment port 114 may be used for purposes other than replenishment of the modeling material M (for example, for the purpose of maintenance of the hopper 11).
  • An opening 116 is formed in the partition member 111 of the hopper 11 (for example, a portion located relatively upward and below the material replenishment port 114).
  • the opening 116 is a through hole that penetrates the partition wall member 111 from the storage space 112 toward the space outside the hopper 11 (specifically, the exterior space 16OUT of the housing 16). Therefore, the storage space 112 is connected to the external space 16OUT through the opening 116.
  • a connecting pipe 17 is attached to the opening 116. Therefore, when the connecting pipe 17 is attached to the opening 116, the storage space 112 is separated from the external space 16OUT.
  • the through hole formed in the lid 115 may be used as the opening 116.
  • the holding member 12 holds the modeling material M supplied from the supply port 113 of the hopper 11 to the internal space 16IN via the supply port 162.
  • the holding member 12 is arranged below each of the supply port 113 and the supply port 162.
  • the holding member 12 is arranged so that a part of the holding member 12 is located directly below each of the supply port 113 and the supply port 162.
  • the holding member 12 is arranged so that a part of the holding member 12 is located in the drop path of the modeling material M from the supply port 113 and the supply port 162.
  • the holding member 12 is arranged so that a part of the holding member 12 faces each of the supply ports 162 along the Z-axis direction.
  • the holding member 12 is supported by the partition member 161 (particularly, the ceiling member 1611) of the housing 6.
  • the holding member 12 may be supported by any other member.
  • the holding member 12 may be supported by the side wall member 1612 located on the side of the internal space 16IN of the partition wall member 161.
  • the holding member 12 may be supported by a bottom member 1613 located below the internal space 16IN of the partition member 161.
  • the holding member 12 may be supported by a supporting member (not shown).
  • FIG. 4 is a side view showing the structure of the holding member 12.
  • the holding member 12 is a tubular member (that is, a hollow member).
  • the holding member 12 is a member in which a tubular space 121 extending along a direction intersecting the Z-axis direction is formed inside. That is, the holding member 12 is a member whose longitudinal direction is the direction intersecting the Z-axis direction.
  • FIGS. 3 and 4 show an example in which the space 121 extends along the Y-axis direction, the space 121 may be a space extending along the X-axis direction or the Z-axis. It may be a space extending along a direction inclined with respect to the space.
  • the space 121 is a space surrounded by the inner wall surface 122 of the holding member 12.
  • the shape of the cross section of the inner wall surface 122 including the Z axis is circular.
  • the shape of the cross section of the tubular space 121 including the Z axis is circular.
  • the holding member 12 is a cylindrical member.
  • the "cylindrical member" referred to here means a member having a circular cross-sectional shape of the inner wall surface 122. Therefore, the shape of the cross section of the outer wall surface of the holding member 12 is not limited to a circle, and may be any shape (for example, at least one of an oval shape, an ellipse shape, a rectangle, and a polygonal shape).
  • the shape of the cross section of the inner wall surface 122 including the Z axis may be another shape different from the circular shape (for example, at least one of an oval shape, an elliptical shape, a rectangular shape, and a polygonal shape). Since the holding member 12 is arranged in the internal space 16IN, the space 121 constitutes at least a part of the internal space 16IN.
  • a supply port 123 is formed in the holding member 12.
  • the supply port 123 is an opening (that is, a through hole) that penetrates the holding member 12 along the Z-axis direction.
  • the supply port 123 is a through hole that penetrates the holding member 12 in one direction from the space 121.
  • the supply port 123 is a through hole that penetrates the holding member 12 in a direction (for example, in the Z-axis direction (upward)) that intersects the direction in which the space 121 extends (for example, the Y-axis direction).
  • the supply port 123 is connected to the supply port 162 located above the holding member 12. That is, the holding member 12 is arranged so that the supply port 123 is connected to the supply port 162.
  • the supply port 123 is a through hole that penetrates the holding member 12 upward from the space 121. Since the supply port 123 is connected to the supply port 162, the storage space 112 and the space 121 are connected to each other via the supply ports 113, 162, and 123. Therefore, the modeling material M supplied from the storage space 112 to the internal space 16IN via the supply port 113 and the supply port 162 is supplied to the space 121 via the supply port 123. That is, the modeling material M is supplied from the storage space 112 to the space 121 via the supply port 113, the supply port 162, and the supply port 123. The modeling material M is supplied from the hopper 11 to the holding member 12 so as to fall from the storage space 112 toward the space 121 through the supply port 113, the supply port 162, and the supply port 123.
  • the modeling material M supplied to the space 121 is deposited on the inner wall surface 122. Specifically, the modeling material M supplied to the space 121 falls and accumulates on the surface portions of the inner wall surface 122 located below the supply port 113, the supply port 162, and the supply port 123.
  • the inner wall surface 122 holds the modeling material M deposited on at least a part of the inner wall surface 122. Therefore, the inner wall surface 122 includes a holding surface 1221 for holding the modeling material M supplied from the hopper 11. At least a part of the inner wall surface 122 functions as a holding surface 1221. For example, since the holding surface 1221 holds the modeling material M that falls downward due to the action of gravity, at least a part of the inner wall surface 122 facing upward (that is, the + Z side).
  • the holding surface 1221 functions as a holding surface 1221.
  • the holding surface 1221 holds the modeling material M that falls from the supply ports 113, 162, and 123
  • the surface of the inner wall surface 122 that is located at a position downward from the supply ports 113, 162, and 123. At least a portion of the portion functions as a holding surface 1221.
  • the holding surface 1221 which is at least a part of the inner wall surface 122 holds the modeling material M
  • the space 121 defined by the inner wall surface 122 serves as a space for holding the modeling material M supplied from the hopper 11. Function. Therefore, in the following description, the space 121 is referred to as a "holding space 121".
  • At least a part of the transport member 13 is arranged in the holding space 121. Therefore, as shown in FIGS. 3 and 4, at least a part of the transport member 13 is surrounded by the inner wall surface 122 that defines the holding space 121. A gap SP is formed between the transport member 13 and the inner wall surface 122. Therefore, the modeling material M supplied to the holding space 121 is held between the inner wall surface 122 and the transport member 13. That is, the modeling material M supplied to the holding space 121 is held between the holding member 12 and the conveying member 13. Therefore, at least a part of the inner wall surface 122 that faces the transport member 13 may also function as the holding surface 1221 described above.
  • the transport member 13 is a member for supplying (that is, transporting) the modeling material M held by the holding member 12 from the holding member 12 to the outside of the holding member 12.
  • the transport member 13 is a member for supplying the modeling material M held by the holding space 121 from the holding space 121 to the outside of the holding space 121.
  • the transport member 13 is a member for supplying the modeling material M held by the inner wall surface 122 (particularly, the holding surface 1221) from the inner wall surface 122 to the outside of the inner wall surface 122.
  • the transport member 13 supplies the modeling material M along the direction in which the holding space 121 extends. As a result, the transport member 13 transfers the modeling material M held by the holding space 121 from the holding space 121 through the opening (that is, the open end) 124 of the holding member 12 that defines the end portion of the holding space 121. It is supplied to the outside of the holding space 121. That is, the opening 124 is used as a supply port for transporting the modeling material M from the holding member 12 to the outside of the holding member 12. Therefore, in the following, the opening 124 will be referred to as a “supply port 124”.
  • the device including the hopper 11, the holding member 12, and the conveying member 13 may be referred to as a material supply source 1A that supplies the modeling material M to the outside of the holding space 121 via the supply port 124.
  • the transport member 13 supplies the modeling material M that falls from the supply ports 113, 162, and 123 into the holding space 121, at least a part of the transport member 13 is located below the supply ports 113, 162, and 123. Since the transport member 13 supplies the modeling material M that falls on the inner wall surface 122 (particularly, the holding surface 1221), at least a part of the transport member 13 is at least a part of the inner wall surface 122 (particularly, the holding surface 1221). Located above. That is, at least a part of the transport member 13 is located between the supply ports 113, 162 and 123 and the inner wall surface 122 (particularly, the holding surface 1221). As a result, the modeling material M is supplied from the hopper 11 to the transport member 13 along the direction of gravity.
  • FIG. 5 (a) is a perspective view showing the structure of a first example of the transport member 13 included in the material supply device 1
  • FIG. 5 (b) is a first view of the transport member 13 included in the material supply device 1.
  • FIG. 6 (a) is a perspective view showing the structure of a second example of the transport member 13 included in the material supply device 1
  • each of FIGS. 6 (b) to 6 (c) includes the material supply device 1.
  • the transport member 13 is a member extending in a desired direction. Specifically, the transport member 13 is a member that extends along the direction in which the holding space 121 extends. That is, the transport member 13 is a member that extends along the longitudinal direction of the holding member 12. Since the holding space 121 extends in the direction intersecting the Z axis, the transport member 13 is a member extending along the direction intersecting the Z axis.
  • FIG. 3 shows an example in which the transport member 13 is a member extending along the Y-axis direction, but the transport member 13 may be a member extending along the X-axis direction or with respect to the Z-axis. It may be a member extending along an inclined direction.
  • the transport member 13 is arranged in the holding space 121 so that the transport member 13 extends along the direction in which the holding space 121 extends.
  • the transport member 13 may include a shaft member 131 extending along the direction intersecting the Z axis.
  • the shaft member 131 is a member having a circular cross-sectional shape including the Z-axis.
  • the shaft member 131 may be a member having a cross-sectional shape including the Z-axis having another shape (for example, at least one of an oval shape, an elliptical shape, a rectangular shape, and a polygonal shape).
  • the transport member 13 is arranged in the holding space 121 so that the shaft member 131 extends along the direction in which the holding space 121 extends.
  • the transport member 13 is a member having a spiral groove 132 formed on its side surface.
  • the transport member 13 is a member having a groove 132 formed on its side surface, which extends (that is, advances) along the direction in which the transport member 13 extends while rotating around an axis along the direction in which the transport member 13 extends. Is.
  • the transport member 13 is a member in which a groove 132 extending (that is, advancing) along the direction in which the transport member 13 extends while orbiting the side surface of the transport member 13 is formed on the side surface thereof.
  • the pitch of the spiral groove 132 (that is, the period, for example, the extension (that is, the distance traveled) of the groove 132 during one rotation of the groove 132) is constant but may vary.
  • An example of the transport member 13 in which the groove 132 is formed on the side surface is shown in FIGS. 5 (a) to 5 (b) and 6 (a) to 6 (c).
  • FIGS. 5 (a) to 5 (b) show a first example of the transport member 13 in which the groove 132 is formed on the side surface.
  • a protrusion 133 protruding from the side surface of the shaft member 131 so as to define (that is, form) a spiral groove 132 is formed. It may be formed.
  • the groove 132 is formed between two adjacent protrusions 133. That is, the space sandwiched by the two adjacent protrusions 133 becomes the groove 132. Therefore, the groove 132 is formed parallel to the protrusion 133.
  • the "state in which the groove 132 and the protrusion 133 are parallel" is not only a state in which the direction in which the groove 132 extends and the direction in which the protrusion 133 extends are literally completely parallel, but also the direction in which the groove 132 extends and the protrusion. There is also a state in which the direction in which the 133 extends is not exactly parallel, but can be regarded as substantially parallel (that is, the direction in which the groove 132 extends and the direction in which the protrusion 133 extends are substantially parallel). Including. In this case, the protrusion 133 may function as a partition wall defining the groove 132. The dimensions of the shaft member 131 and the protrusion 133 shown in FIGS.
  • 5 (a) to 5 (b) are merely examples, and are different from the dimensions shown in FIGS. 5 (a) to 5 (b). It may be.
  • the radial dimension of the protrusion 133 with respect to the diameter of the shaft member 131 may be smaller or larger than the examples shown in FIGS. 5 (a) to 5 (b).
  • the protrusion 133 is also a spiral member. Specifically, the protrusion 133 is formed so as to draw a spiral on the side surface of the shaft member 131. The protrusion 133 is formed so as to draw a spiral while orbiting the side surface of the shaft member 131. The position where the protrusion 133 is formed on the side surface of the shaft member 131 draws a spiral on the side surface of the shaft member 131. The protrusion 133 extends along the direction in which the shaft member 131 extends while rotating around the axis along the direction in which the shaft member 131 extends on the side surface of the shaft member 131.
  • FIGS. 6A to 6C show a second example of the transport member 13 in which the groove 132 is formed on the side surface.
  • a recess that is, a recess
  • the transport member 13 in which the groove 132 is formed on the side surface may be formed by processing the side surface of the shaft member 131 to form a recess so as to form the groove 132. ..
  • the transport member 13 having the groove 132 formed on the side surface may be formed.
  • the portion of the shaft member 131 in which the groove 132 is not formed substantially defines the groove 132. It may function as a protrusion 133. Therefore, in the following description, for convenience of explanation, the second example of the transport member 13 is also a member in which the protrusion 133 is formed on the side surface of the shaft member 131, similarly to the first example of the transport member 13. I will proceed with the explanation.
  • the shape of the cross section of the groove 132 formed on the side surface of the shaft member 131 along the XZ plane may be any shape.
  • FIG. 6B shows an example in which the shape of the cross section of the groove 132 formed on the side surface of the shaft member 131 along the XZ plane is a rectangular shape (for example, a trapezoidal shape).
  • FIG. 6C shows an example in which the shape of the cross section of the groove 132 formed on the side surface of the shaft member 131 along the XZ plane is the shape of an arc.
  • the dimensions of the shaft member 131 and the groove 132 shown in FIGS. 6 (a) to 6 (c) are merely examples, and are different from those shown in FIGS. 6 (a) to 6 (c). It may be a dimension.
  • the radial dimension of the groove 132 with respect to the diameter of the shaft member 131 may be smaller or larger than the examples shown in FIGS. 6 (a) to 6 (c).
  • the transport member 13 can also function as a screw. Therefore, not only the transport member 13 having the structures shown in FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c), but also a member capable of functioning as a screw is used as the transport member 13. May be done.
  • the first example of the transport member 13 can also function as an Archimedes' screw. Therefore, not only the transport member 13 having the structures shown in FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c), but also a member capable of functioning as an Archimedes' screw is a transport member. It may be used as 13.
  • a second example of the transport member 13 can also function as a screw. Therefore, not only the transport member 13 having the structures shown in FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c), but also a member capable of functioning as a screw is used as the transport member 13. May be done.
  • the transport member 13 supplies the modeling material M via the groove 132.
  • the transport member 13 supplies the modeling material M so that the modeling material M moves through the groove 132 in the holding space 121.
  • the transport member 13 supplies the modeling material M so that the modeling material M moves along the groove 132 in the holding space 121.
  • the transport member 13 is supplied from the holding space 121 to the outside of the holding member 12 through the supply port 124 of the holding member 12 by using the groove 132. Therefore, the transport member 13 is arranged so as to penetrate the supply port 124.
  • the groove 132 is formed so as to extend from the holding space 121 toward the supply port 124. More specifically, the groove 132 is formed so as to extend toward the supply port 124 from at least a portion of the holding space 121 located directly below the supply port 123. The groove 132 is formed so as to extend from at least the portion of the transport member 13 located directly below the supply port 123 toward the portion of the transport member 13 located at the supply port 124.
  • the driving device 14 drives the transport member 13 in which the groove 132 is formed. Therefore, the drive device 14 includes an actuator (power source) such as a motor to drive the transport member 13. Specifically, the drive device 14 uses the transport member 13 so that the shaft member 131 rotates about a shaft (typically, the central shaft of the shaft member 131) along the direction in which the shaft member 131 extends. Rotationally driven. As a result, the modeling material M held in the holding space 121 extends in the direction in which the shaft member 131 extends (that is, the holding space 121 extends) along the spiral groove 132 formed on the side surface of the rotating transport member 13. It moves along the direction (longitudinal direction of the holding member 12).
  • an actuator such as a motor
  • the modeling material M moves along the direction intersecting the Z axis.
  • the modeling material M moves laterally.
  • the drive device 14 shafts in the rotational direction in which the modeling material M can be moved toward the supply port 124 through the groove 132 (in the example shown in FIG. 3, it is moved toward the ⁇ Y side).
  • the transport member 13 is rotationally driven so that the member 131 rotates.
  • the modeling material M held in the holding space 121 falls to the outside of the holding space 121 through the supply port 124.
  • the modeling material M held by the inner wall surface 122 falls to the outside of the inner wall surface 122 through the supply port 124. That is, the transport member 13 supplies the modeling material M to the outside of the holding member 12 by passing the modeling material M through the supply port 124.
  • the transport member 13 In order to drive the transport member 13, the transport member 13 is connected to the drive device 14. Specifically, the transport member 13 (particularly, the shaft member 131) is formed in the opening (that is, the open end) 125 and the housing 16 of the holding member 12 that defines the end opposite to the supply port 124. Through the opening 163, it extends from the internal space 16IN (particularly, the holding space 121) to the external space 16OUT.
  • the opening 163 is a through hole that penetrates the side wall member 1612 of the housing 16 from the internal space 16IN to the external space 16OUT.
  • the transport member 13 (particularly, the shaft member 131) is connected to the drive device 14 arranged in the external space 16OUT via the openings 126 and 163.
  • the opening 163 formed in the partition wall member 161 may be formed with a seal member 164 for filling the gap between the transport member 13 (particularly, the shaft member 131) and the partition wall member 161.
  • a seal member 164 for filling the gap between the transport member 13 (particularly, the shaft member 131) and the partition wall member 161.
  • a gap SP is formed between the transport member 13 and the inner wall surface 122 that defines the holding space 121.
  • the transport member 13 rotates smoothly as compared with the case where the gap SP is not formed between the transport member 13 and the inner wall surface 122. That is, the transport member 13 rotates smoothly as compared with the case where the transport member 13 comes into contact with the inner wall surface 122.
  • the size of the gap SP (that is, the distance between the transport member 13 and the inner wall surface 122) d realizes a state in which the supply of the modeling material M through the gap SP is suppressed (typically prevented). It may be set to be less than or equal to the desired desired interval.
  • the "gap SP size d" in the present embodiment may mean the distance between the portion of the transport member 13 closest to the inner wall surface 122 and the inner wall surface 122. That is, the “gap SP size d” may mean the minimum value of the distance between the transport member 13 and the inner wall surface 122.
  • the portion of the transport member 13 closest to the inner wall surface 122 is It becomes a protrusion 133 (particularly, a portion of the protrusion 133 located on the outermost peripheral side). Therefore, the “gap SP size d” in the present embodiment may mean the distance between the protrusion 133 (particularly, the portion of the protrusion 133 located on the outermost peripheral side) and the inner wall surface 122. ..
  • the size d of the gap SP may be set according to the characteristics of the modeling material M. For example, since the modeling material M is a powder, the smaller the size (for example, the particle size) of the modeling material M, the more the modeling material M penetrates into the gap SP. Therefore, the size d of the gap SP may be set according to the size (for example, particle size) of the modeling material M. For example, the size d of the gap SP may be set according to the maximum particle size of the modeling material M (that is, the maximum size assumed as the particle size of the modeling material M). For example, the size d of the gap SP may be set to be twice or less the maximum particle size of the modeling material M.
  • the size d of the gap SP When the size d of the gap SP is set to be twice or less the maximum particle size of the modeling material M, the size d of the gap SP is set to be larger than twice the maximum particle size of the modeling material M. Compared with the case where it is set, the supply of the modeling material M through the gap SP is suppressed.
  • the size d of the gap SP may be set to be 1 time or less of the maximum particle size of the modeling material M.
  • the size d of the gap SP When the size d of the gap SP is set to be 1 times or less of the maximum particle size of the modeling material M, the size d of the gap SP is set to be larger than 1 time the maximum particle size of the modeling material M. Compared with the case where it is set, the supply of the modeling material M through the gap SP is suppressed.
  • the material sending member 15 receives the modeling material M supplied by the conveying member 13 from the holding member 12.
  • the transport member 13 supplies the modeling material M so that the modeling material M falls from the holding member 12. Therefore, the material sending member 15 receives the modeling material M falling from the holding member 12.
  • the material delivery member 15 is arranged at a position where the modeling material M supplied from the holding member 12 can be received.
  • the material delivery member 15 may be arranged at least one of the lower side and the diagonally lower side of the holding member 12.
  • the material delivery member 15 may be arranged on the drop path of the modeling material M from the holding member 12.
  • the material delivery member 15 is located below the supply port 124.
  • the material delivery member 15 may have a funnel-shaped shape (for example, an inverted conical shape).
  • the material delivery member 15 receives the modeling material M supplied from the holding member 12 so as to be collected by the funnel-shaped partition wall member.
  • the material delivery member 15 may have other shapes (for example, an inverted pyramid shape, for example, an inverted quadrangular pyramid shape).
  • the material sending member 15 further sends the modeling material M received from the holding member 12 to the outside of the material supply device 1 (that is, to the processing device 2).
  • a delivery port 151 is formed at the lower end of the material delivery member 15 in order to send the modeling material M to the processing apparatus 2.
  • the delivery port 151 is an opening (that is, a through hole) that penetrates the partition wall at the bottom of the material delivery member 15 along the Z-axis direction.
  • the partition wall member is not formed at the lower end of the material delivery member 15, the open end of the lower portion of the material delivery member 15 on which the partition wall member is not formed may be used as the delivery port 151.
  • the shape of the cross section of the delivery port 151 (specifically, the cross section along the XY plane) is circular, but other shapes may be used. Other shapes include at least one of oval, elliptical, rectangular and polygonal.
  • a delivery port 165 is formed in the housing 16.
  • the delivery port 165 is an opening (that is, a through hole) that penetrates the partition wall member 161 (in the example shown in FIG. 5, the bottom member 1613) from the internal space 16IN toward the external space 16 OUT.
  • the delivery port 165 is connected to the delivery port 151 of the material delivery member 15.
  • the above-mentioned pipe (not shown) connected to the processing device 2 is connected to the delivery port 165. Therefore, the modeling material M sent out by the material sending member 15 is sent out to the processing apparatus 2 through the delivery ports 151 and 164 and a pipe (not shown).
  • the housing 16 is further formed with an inflow port 166.
  • the inflow port 166 is an opening that penetrates the partition wall member 161 (in the example shown in FIG. 5, the side wall member 1612, but may be the ceiling member 1611 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. (That is, a through hole).
  • the inflow port 166 is connected to the gas supply device 5 described above. Therefore, the pressurized purge gas is supplied from the gas supply device 5 described above to the internal space 16IN of the housing 16 via the inflow port 166. That is, the internal space 16IN is a space purged with the purge gas. At this time, when the purge gas contains an inert gas, the possibility of a dust explosion caused by the modeling material M is eliminated or reduced.
  • the housing 16 is further formed with an opening 167.
  • the opening 167 is a through hole that penetrates the partition wall member 161 (in the example shown in FIG. 3, the ceiling member 1611, but may be the side wall member 1612 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT.
  • a connecting pipe 17 connected to the opening 116 of the hopper 11 described above is connected to the opening 167.
  • one end of the connecting pipe 17 is connected to the opening 116, and the other end of the connecting pipe 17 is connected to the opening 167.
  • the storage space 112 of the hopper 11 and the internal space 16IN of the housing 16 are connected to each other via the connecting pipe 17, the opening 116, and the opening 167.
  • the connecting pipe 17 connects the storage space 112 and the internal space 16IN at a position different from the supply ports 113, 162 and 123.
  • the modeling material M is stored in the storage space 112 (as a result, the path via the supply ports 113, 162, and 123 as the path connecting the storage space 112 and the internal space 16IN is blocked by the modeling material M.
  • the storage space 112 is a space purged by the purge gas, similarly to the internal space 16IN.
  • the modeling material M is stored in the storage space 112 (as a result, the path via the supply ports 113, 162 and 123 as the path connecting the storage space 112 and the internal space 16IN is blocked by the modeling material M.
  • the purge gas in the storage space 112 flows into (that is, moves) into the internal space 16IN and / or the purge gas in the internal space 16IN flows into the storage space 112 through the connecting pipe 17.
  • the difference between the pressure in the storage space 112 and the pressure in the internal space 16IN is reduced. Therefore, there is almost no imbalance between the pressure of the storage space 112 and the pressure of the internal space 16IN. Therefore, the inconvenience that the modeling material M is suddenly supplied from the hopper 11 to the holding member 12 due to the imbalance generated between the pressure of the storage space 112 and the pressure of the internal space 16IN may occur. Almost gone.
  • the modeling material M is not smoothly supplied from the hopper 11 due to the imbalance generated between the pressure of the storage space 112 and the pressure of the internal space 16IN. Further, due to the imbalance that occurs between the pressure of the storage space 112 and the pressure of the internal space 16IN, the modeling material M supplied from the hopper 11 to the internal space 16IN (particularly, the holding space 121) is supplied to the supply port. There is almost no backflow to the storage space 112 of the hopper 11 via 113, 162 and 123.
  • the hopper 11 may be arranged in the internal space 16IN.
  • the connecting pipe 17 is not connected to the opening 116, the storage space 112 and the internal space 16IN are connected to each other through the opening 116. Therefore, there is almost no imbalance between the pressure of the storage space 112 and the pressure of the internal space 16IN.
  • the housing 16 may not have an opening 167.
  • the housing 16 is further formed with an opening 168.
  • the opening 168 is a through hole that penetrates the partition wall member 161 (in the example shown in FIG. 3, the side wall member 1612, but may be the ceiling member 1611 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. Is.
  • An observation window 1681 is fitted in the opening 168. When a gap is formed between the observation window 1681 and the partition member 161 with the observation window 1681 fitted in the opening 168, a seal member is formed in the gap between the observation window 1681 and the partition member 161. May be good.
  • the observation window 1681 is a member through which visible light can pass (that is, is transparent to visible light).
  • the observation window 1681 is used for light in a wavelength range different from the visible light wavelength range (particularly). It may be a member through which light in a wavelength range that can be detected by the image pickup element) can pass.
  • the observation window 1681 is used for the imaging device 8 to image the modeling material M passing through the internal space 16IN of the housing 16. Therefore, in the example shown in FIG. 3, the image pickup target path to be imaged by the image pickup apparatus 8 is set in the internal space 16IN of the housing 16.
  • the imaging device 8 arranged in the external space 16OUT images the modeling material M passing through the imaging target path in the internal space 16IN through the observation window 1681.
  • the imaging device 8 when the imaging device 8 is arranged in the external space 16OUT, the imaging device 8 is physically isolated from the internal space 16IN in which the modeling material M is present. As a result, the imaging device 8 can image the modeling material M passing through the imaging target path without being affected by the modeling material M. That is, there is no possibility or low possibility that the modeling material M has an influence on the image pickup apparatus 8.
  • the image pickup apparatus 8 may be arranged in the internal space 16IN.
  • the imaging device 8 images the modeling material M passing between the material supply source 1A and the material nozzle 212 through the observation window 1681. That is, the image pickup apparatus 8 images the modeling material M passing through the supply path (imaging target path) between the material supply source 1A and the material nozzle 212. Since the material supply source 1A supplies the modeling material M from the supply port 124, the image pickup apparatus 8 images the modeling material M passing through the supply path path (imaging target path) between the supply port 124 and the material nozzle 212. To do. In the example shown in FIG. 3, the image pickup apparatus 8 images the modeling material M passing through the drop path (that is, the supply path) DP of the modeling material M that falls from the holding member 12 to the material delivery member 15.
  • the image pickup apparatus 8 images the modeling material M passing through the supply path between the supply port 124 and the material delivery member 15. However, the image pickup apparatus 8 may image the modeling material M which is a supply path between the material supply source 1A and the material nozzle 212 and passes through a supply path different from the drop path DP of the modeling material M.
  • the housing 16 is further formed with an opening 169.
  • the opening 169 is a through hole that penetrates the partition wall member 161 (in the example shown in FIG. 3, the side wall member 1612, but may be the ceiling member 1611 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. Is.
  • An observation window 1691 is fitted in the opening 169. When a gap is formed between the observation window 1691 and the partition member 161 with the observation window 1691 fitted in the opening 169, a seal member is formed in the gap between the observation window 1691 and the partition member 161. May be good.
  • the observation window 1691 is a member through which visible light can pass (that is, is transparent to visible light).
  • the observation window 1691 emits light in a wavelength range different from the visible light wavelength range (particularly, illumination). It may be a member through which optical IL) can pass.
  • the observation window 1691 is used for the lighting device 9 to illuminate the modeling material M passing through the internal space 16IN of the housing 16 with the illumination light IL.
  • the illumination device 9 arranged in the external space 16OUT irradiates the illumination light IL toward the modeling material M passing through the supply path in the internal space 16IN through the observation window 1691.
  • the modeling material M passing through the supply path in the internal space 16IN is illuminated by the illumination light IL emitted from the lighting device 9 arranged in the external space 16OUT through the observation window 1691.
  • the lighting device 9 is physically isolated from the internal space 16IN in which the modeling material M exists.
  • the illumination device 9 can irradiate the illumination light IL toward the modeling material M passing through the imaging target path without being affected by the modeling material M. That is, there is no possibility or low possibility that the modeling material M has an influence on the lighting device 9.
  • the lighting device 9 may be arranged in the internal space 16IN.
  • the openings 168 and 169 may be formed at positions separated from the imaging target path (that is, at least a part of the falling path DP) in different directions.
  • the image pickup device 8 and the illumination device 9 may be arranged at positions separated from the image pickup target path in different directions.
  • the lighting device 9 may illuminate the modeling material M with the illumination light IL from a direction different from the direction in which the imaging device 8 images the modeling material M.
  • At least one of the image pickup device 8 and the illumination device 9 may be provided with an optical path deflection mirror.
  • the optical path deflection mirror may be arranged between the objective optical system of the image pickup apparatus 8 and the image pickup target path or between the illumination optical system of the illumination device 9 and the image pickup target path.
  • the opening 168 may be formed on the ⁇ Y side of the imaging target path, and the opening 169 may be formed on the + Y side of the imaging target path. That is, the opening 168 may be formed on the opposite side of the opening 169 when viewed from the imaging target path.
  • the lighting device 9 illuminates the modeling material M with the illumination light IL from the side opposite to the direction in which the imaging device 8 images the modeling material M.
  • the lighting device 9 may illuminate the illumination light IL toward the image pickup device 8. In other words, the lighting device 9 transmits and illuminates the modeling material M.
  • the image pickup apparatus 8 acquires an image corresponding to a negative image in which the brightness and darkness of the modeling material M, which is the subject, is reversed from the actual one.
  • the image pickup apparatus 8 acquires an image corresponding to such a negative image
  • it is compared with the case where the image pickup apparatus 8 acquires an image corresponding to a positive image in which the brightness and darkness of the modeling material M as the subject is substantially the same as the actual one.
  • Image analysis (specifically, binarization process and zero-order moment calculation process, which will be described in detail later with reference to FIG. 10) becomes easy.
  • the illumination light IL emitted by the illumination device 9 may be continuous light or pulsed light.
  • the openings 168 and 169 may be formed at positions separated from the imaging target path in the same direction.
  • the lighting device 9 may illuminate the modeling material M with the illumination light IL from the same direction in which the imaging device 8 images the modeling material M. In other words, the lighting device 9 may reflect-illuminate the modeling material M.
  • the image pickup apparatus 8 acquires an image corresponding to a positive image in which the brightness and darkness of the modeling material M as the subject is substantially the same as the actual one. Even in this case, the image can be analyzed.
  • a machining operation by the machining system SYS that is, an operation for forming a three-dimensional structure ST
  • the processing system SYS forms the three-dimensional structure ST by the laser overlay welding method. Therefore, the processing system SYS may form the three-dimensional structure ST by performing an existing processing operation (in this case, a modeling operation) based on the laser overlay welding method.
  • an existing processing operation in this case, a modeling operation
  • the processing system SYS forms the three-dimensional structure ST on the work W based on the three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed.
  • 3D model data at least the measurement data of a three-dimensional object measured by a measuring device (not shown) provided in the processing system SYS and the measurement data of the 3D shape measuring machine provided separately from the processing system SYS. One may be used.
  • the processing system SYS forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SLs arranged along the Z-axis direction in order.
  • the processing system SYS sequentially forms a plurality of structural layers SL obtained by cutting the three-dimensional structure ST into round slices along the Z-axis direction.
  • the three-dimensional structure ST which is a laminated structure in which a plurality of structural layers SL are laminated, is formed.
  • the flow of the operation of forming the three-dimensional structure ST by sequentially forming the plurality of structural layers SL one by one will be described.
  • each structural layer SL Under the control of the control device 7, the processing system SYS sets an irradiation region EA in a desired region on the modeling surface MS corresponding to the surface of the work W or the surface of the formed structural layer SL, and the irradiation region EA is set with respect to the irradiation region EA.
  • the processing light EL is irradiated from the irradiation optical system 211.
  • the region occupied by the processed light EL emitted from the irradiation optical system 211 on the modeling surface MS may be referred to as an irradiation region EA.
  • the focus position (that is, the condensing position) of the processed light EL coincides with the modeling surface MS.
  • a molten pool (that is, a pool of metal melted by the processing light EL) MP is formed in a desired region on the modeling surface MS by the processing light EL emitted from the irradiation optical system 211. It is formed.
  • the processing system SYS sets a supply region MA in a desired region on the modeling surface MS under the control of the control device 7, and supplies the modeling material M to the supply region MA from the material nozzle 212.
  • the processing system SYS supplies the modeling material M to the molten pool MP from the material nozzle 212.
  • the modeling material M supplied to the molten pool MP is melted.
  • the processing light EL is not irradiated to the molten pool MP as the processing head 21 moves, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified).
  • the solidified modeling material M is deposited on the modeling surface MS. That is, a modeled object is formed by the deposit of the solidified modeling material M.
  • a series of modeling processes including formation of the molten pool MP by irradiation with such processing light EL, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M can be performed.
  • the processing head 21 is repeatedly moved relative to the modeling surface MS along the XY plane. That is, when the processing head 21 moves relative to the modeling surface MS, the irradiation region EA also moves relative to the modeling surface MS. Therefore, a series of modeling processes is repeated while the irradiation region EA is moved relative to the modeling surface MS along the XY plane (that is, in the two-dimensional plane).
  • the processed light EL is selectively irradiated to the irradiation region EA set in the region where the modeled object is to be formed on the modeled surface MS, but it is not desired to form the modeled object on the modeled surface MS.
  • the irradiation area EA set in the area is not selectively irradiated (it can be said that the irradiation area EA is not set in the area where the modeled object is not desired to be formed). That is, the processing system SYS moves the irradiation region EA along the predetermined movement locus on the modeling surface MS, and converts the processing light EL into the modeling surface MS at a timing according to the distribution mode of the region where the modeled object is to be formed. Irradiate.
  • the mode of distribution of the region where the modeled object is to be formed may be referred to as a distribution pattern or a pattern of the structural layer SL.
  • the molten pool MP also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA.
  • the molten pool MP is sequentially formed on the modeling surface MS in the portion of the region along the movement locus of the irradiation region EA that is irradiated with the processing light EL.
  • the supply region MA also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA. Become.
  • a structural layer SL corresponding to an aggregate of the modeled objects made of the solidified modeling material M is formed on the modeling surface MS. That is, the structural layer SL corresponding to the aggregate of the shaped objects formed on the modeling surface MS in the pattern corresponding to the moving locus of the molten pool MP (that is, the shape corresponding to the moving locus of the molten pool MP in a plan view).
  • the structural layer SL) to have is formed.
  • the processing system SYS supplies the modeling material M to the irradiation region EA, and the processing light EL having an intensity that does not allow the molten pool MP to be formed. May be irradiated to the irradiation area EA.
  • the irradiation area EA moves with respect to the modeling surface MS, but the modeling surface MS may move with respect to the irradiation area EA.
  • the processing system SYS repeatedly performs the operation for forming such a structural layer SL under the control of the control device 7 based on the three-dimensional model data. Specifically, first, the three-dimensional model data is sliced at a stacking pitch to create slice data. The processing system SYS performs an operation for forming the first structural layer SL # 1 on the modeling surface MS corresponding to the surface of the work W, that is, three-dimensional model data corresponding to the structural layer SL # 1, that is, the structural layer. This is performed based on the slice data corresponding to SL # 1. As a result, the structural layer SL # 1 is formed on the modeling surface MS as shown in FIG. 8A.
  • the processing system SYS sets the surface (that is, the upper surface) of the structural layer SL # 1 on the new modeling surface MS, and then forms the second structural layer SL # 2 on the new modeling surface MS.
  • the control device 7 first controls the head drive system 22 so that the machining head 21 moves along the Z axis. Specifically, the control device 7 controls the head drive system 22 so that the irradiation region EA and the supply region MA are set on the surface of the structural layer SL # 1 (that is, the new modeling surface MS). The processing head 21 is moved toward the + Z side. As a result, the focus position of the processing light EL coincides with the new modeling surface MS.
  • the processing system SYS operates on the structural layer SL # 1 based on the slice data corresponding to the structural layer SL # 2 in the same operation as the operation of forming the structural layer SL # 1 under the control of the control device 7.
  • the structural layer SL # 2 is formed on the surface.
  • the structural layer SL # 2 is formed as shown in FIG. 8 (b).
  • the same operation is repeated until all the structural layers SL constituting the three-dimensional structure ST to be formed on the work W are formed.
  • the three-dimensional structure ST is formed by the laminated structure in which a plurality of structural layers SL are laminated.
  • FIG. 9 is a cross-sectional view showing a material supply device 1 that supplies the modeling material M.
  • the modeling material M stored in the storage space 112 of the hopper 11 falls into the holding space 121 of the holding member 12 via the supply ports 113, 162 and 123.
  • the modeling material M stored in the storage space 112 of the hopper 11 falls on the holding surface 1221 of the holding member 12 via the supply ports 113, 162 and 123. That is, the modeling material M is supplied from the hopper 11 to the holding member 12 (particularly to the holding space 121 and further to the transport member 13 arranged in the holding space 121) in the direction of gravity.
  • the supply port 123 is formed on a surface portion of the inner wall surface 122 that does not intersect with the transport member 13 (particularly, the shaft member 131).
  • the holding space 121 holds the modeling material M in an amount corresponding to the size of the holding space 121.
  • An amount of modeling material M corresponding to the size of the holding space 121 is deposited on the holding surface 1221.
  • the modeling material M deposited on the holding surface 1221 is in contact with the supply ports 123, 162 and 113.
  • the transport member 13 under the condition that the transport member 13 is stationary (that is, not rotating), the deposited modeling material M closes the supply ports 123, 162 and 113, and more modeling material M is attached to the holding member 12. It suppresses the supply.
  • the transport member 13 is rotationally driven by the drive device 14.
  • the modeling material M held in the holding space 121 starts to move through the groove 132 formed in the transport member 13.
  • the modeling material M is pushed by the protrusion 133 defining the groove 132 and gradually moves toward the supply port 124. That is, the transport member 13 supplies the modeling material M toward the supply port 124.
  • the transport member 13 is along a direction (for example, the Y-axis direction) that intersects the direction in which the modeling material M is supplied from the hopper 11 to the transport member 13 (for example, the direction of gravity and the Z-axis direction).
  • the modeling material M is supplied.
  • the modeling material M supplied by the transport member 13 falls (that is, spills) from the supply port 124 of the holding member 12 to the outside of the holding member 12 (that is, the material delivery member 15).
  • the modeling material M falls from the end of the groove 132 or the gap G corresponding to the groove 132 exposed in the internal space 16IN to the material delivery member 15. That is, the modeling material M falls from the gap G formed by the groove 132 to the material delivery member 15 at the position where the supply port 124 is formed.
  • the gap G is a gap formed by a groove 132 between the holding member 12 and the transport member 13 at the position where the supply port 124 is formed.
  • the device including the hopper 11, the holding member 12, and the conveying member 13 may be referred to as a supply source because the modeling material M is supplied to the material sending member 15.
  • the transport member 13 Since the pitch of the spiral groove 132 (that is, the period, for example, the distance that the groove 132 extends (that is, advances) during one rotation of the groove 132) is constant, the transport member 13 is continuously and. When it continues to rotate in the same manner, the modeling material M held in the holding space 121 is supplied at a constant supply rate. As a result, a certain amount of the modeling material M per unit time spills from the supply port 124 of the holding member 12 to the outside of the holding member 12 (that is, the material delivery member 15). As a result, the holding member 12 supplies (that is, conveys) a constant amount of the modeling material M to the material sending member 15 per unit time. Therefore, by supplying the modeling material M through the groove 132, the transport member 13 substantially functions as a member that cuts out a constant amount of the modeling material M per unit time to the outside of the holding member 12.
  • the modeling material M held in the holding space 121 stops moving, and the modeling material M does not spill from the holding member 12. That is, the supply of the modeling material M from the holding member 12 to the material sending member 15 is stopped. As a result, the supply of the modeling material M from the material supply device 1 to the processing device 2 is also stopped. Therefore, the drive device 14 does not have to supply the modeling material M to the processing device 2 under the control of the control device 7 (for example, the timing at which the material nozzle 212 does not have to supply the modeling material M). , The rotation of the transport member 13 is stopped.
  • the amount of the modeling material M supplied from the holding member 12 to the outside of the holding member 12 per unit time (that is, the supply amount of the modeling material M per unit time) can be controlled by the state of rotation of the transport member 13. is there. Therefore, in the control device 7, the amount of the modeling material M supplied from the holding member 12 to the material sending member 15 per unit time corresponds to the supply rate of the modeling material M required for forming the three-dimensional structure ST.
  • the state of rotation of the transport member 13 may be set so as to reach the target supply amount.
  • the amount of the modeling material M means the mass of the modeling material M.
  • the drive device 14 is under the control of the control device 7 while the processing device 2 is forming the three-dimensional structure ST (more specifically, while the material nozzle 212 continues to supply the modeling material M). May rotate the transport member 13 so that the transport member 13 continues to rotate in the set rotation state. As a result, a certain amount of modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST is supplied from the holding member 12 to the material sending member 15.
  • the state of rotation may include, for example, the rotation speed (that is, the number of rotations per unit time). For example, as the rotation speed increases (that is, the number of rotations per unit time increases), the moving speed of the modeling material M moving through the groove 132 also increases. Therefore, the faster the rotation speed, the larger the amount of the modeling material M supplied from the holding member 12 to the outside of the holding member 12 per unit time. As the amount of the modeling material M supplied from the holding member 12 to the outside of the holding member 12 increases per unit time, the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time ( That is, the supply amount) increases.
  • the control device 7 takes into consideration the relationship between the rotation speed of the transport member 13 and the supply amount of the modeling material M, and the modeling material supplied from the holding member 12 to the material delivery member 15 per unit time.
  • the rotation speed of the transport member 13 may be set so that the amount of M becomes the target supply amount according to the supply rate of the modeling material M required for forming the three-dimensional structure ST. That is, the control device 7 is a transport member based on the supply rate of the modeling material M required for forming the three-dimensional structure ST (that is, the amount of the modeling material M to be supplied by the material supply device 1 per unit time).
  • the rotation speed of 13 may be set. Further, the drive device 14 may rotationally drive the transfer member 13 so that the transfer member 13 rotates at a rotation speed set by the control device 7.
  • the amount of the modeling material M of the second type (however, the second type is different from the first type) supplied from 12 per unit time is not the same.
  • the amount of the molding material M of the second particle size (however, the second particle size is different from the first particle size) supplied per unit is not the same.
  • the amount of the molding material M having the first particle size supplied from the holding member 12 per unit time by the transport member 13 rotating in a certain state and the amount of the molding material M having the same particle size per unit time from the holding member 12 There is a possibility that the amount of the modeling material M of the second particle size (however, the second particle size is different from the first particle size) supplied to the product will not be the same.
  • the amount of the modeling material M of the second shape (however, the second shape is different from the first shape) supplied from 12 per unit time is not the same.
  • the amount of the modeling material M whose surface friction coefficient is the first value, which is supplied from the holding member 12 by the conveying member 13 rotating in a certain state is held by the conveying member 13 rotating in the same state.
  • the surface friction coefficient supplied from the member 12 per unit time may not be the same as the amount of the modeling material M having the second value (however, the second value is different from the first value).
  • the amount of the modeling material M having the first specific gravity supplied from the holding member 12 per unit time by the conveying member 13 rotating in a certain state and the amount of the modeling material M having the first specific gravity supplied from the holding member 12 per unit time by the conveying member 13 rotating in the same state.
  • the amount of the modeling material M of the second specific gravity (however, the second specific gravity is different from the first specific gravity) supplied to the above is not the same.
  • the control device 7 adds or substitutes for or in place of the relationship between the state of rotation of the transport member 13 and the supply amount of the modeling material M, and the relationship between the state of the modeling material M and the supply amount of the modeling material M.
  • the amount of the modeling material M supplied from the holding member 12 to the material sending member 15 per unit time is a target according to the supply rate of the modeling material M required for forming the three-dimensional structure ST.
  • the state of rotation of the transport member 13 may be set so as to be the supply amount. That is, the control device 7 may set the rotational state of the transport member 13 based on the state of the modeling material M and the supply rate of the modeling material M required for forming the three-dimensional structure ST.
  • the state of the modeling material M includes the type of the modeling material M, the size of the modeling material M (for example, the particle size), the particle size of the modeling material M, the shape of the modeling material M, the friction coefficient of the surface of the modeling material M, and so on. It may contain at least one of the specific gravity of the modeling material M and the density of the modeling material M.
  • the control device. 7 performs the supply amount control operation shown below. Specifically, the control device 7 calculates (that is, obtains) the amount of the modeling material M that passes through the imaging target path per unit time based on the image captured by the imaging device 8.
  • the amount of the modeling material M passing through the imaging target path per unit time will be referred to as "the actual supply amount of the modeling material M".
  • the material supply device 1 supplies the modeling material M to the processing device 2, as shown in FIG.
  • the image pickup device 8 is located between the material supply source 1A and the material creation member 15.
  • the modeling material M passing through the drop path DP of the above is imaged. Therefore, the image captured by the image pickup apparatus 8 includes information regarding the modeling material M passing through the image pickup target path (fall path DP). Therefore, the control device 7 calculates the actual supply amount of the modeling material M by analyzing the image captured by the image pickup device 8. After that, the control device 7 sets the rotational state of the transport member 13 based on the calculation result of the actual supply amount of the modeling material M. Specifically, the control device 7 sets the state of rotation of the transport member 13 so that the actual supply amount of the modeling material M matches the target supply amount.
  • the modeling material M supplied from the holding member 12 to the material delivery member 15 since at least a part of the supply path (that is, the drop path DP) of the modeling material M supplied from the holding member 12 to the material delivery member 15 is the imaging target path, the modeling material The actual supply amount of M may be regarded as substantially equivalent to the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15 per unit time. Therefore, the operation of setting the rotational state of the transport member 13 so that the actual supply amount of the modeling material M matches the target supply amount is substantially from the holding member 12 to the material delivery member 15 per unit time. This is equivalent to the operation of setting the rotational state of the transport member 13 so that the amount of the supplied modeling material M becomes the target supply amount.
  • the actual supply amount of the modeling material M is calculated by analyzing the image captured by the imaging device 8, and the rotational state of the transport member 13 is determined based on the calculation result of the actual supply amount of the modeling material M. Since the supply amount control operation to be set will be described in detail later with reference to FIG. 10 and the like, detailed description here will be omitted.
  • the amount of the modeling material M held by the holding member 12 is reduced.
  • the holding member 12 since the holding member 12 is located below the supply port 113 of the hopper 11, when the amount of the modeling material M held by the holding member 12 decreases, the weight of the modeling material M itself causes the supply port 113 to move.
  • a new modeling material M is supplied from the hopper 11 to the holding member 12 via the hopper 11. That is, the holding member 12 is newly supplied with the modeling material M in an amount corresponding to the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15.
  • the holding member 12 is newly supplied with the modeling material M in an amount substantially the same as the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15. Therefore, the modeling material M does not disappear from the holding member 12 due to the supply of the modeling material M from the holding member 12.
  • the holding member 12 will hold approximately the same amount of modeling material M.
  • the modeling material M supplied from the holding member 12 falls from the holding member 12 to the material sending member 15.
  • the material sending member 15 receives the modeling material M supplied from the holding member 12.
  • the modeling material M received by the material sending member 15 is sent out to the outside of the material supply device 1 (that is, to the processing device 2).
  • the purge gas pressurized from the gas supply device 5 is supplied to the internal space 16IN of the housing 16 in which the material delivery member 15 is arranged via the inflow port 166.
  • the material delivery member 15 sends the modeling material M to the processing apparatus 2 by pressure feeding with the pressurized purge gas.
  • the modeling material M received by the material delivery member 15 is sent out so as to be pushed out into the pipe through the delivery ports 151 and 165 by the pressure of the purge gas supplied to the internal space 16IN.
  • the modeling material M sent out through the pipe is supplied from the material nozzle 212.
  • the material sending member 15 sends out the modeling material M by pumping
  • the amount of the modeling material M sent out by the material sending member 15 per unit time is supplied from the holding member 12 to the material sending member 15 per unit time. It depends on the amount of the modeling material M (that is, the actual supply amount of the modeling material M). Therefore, the material delivery member 15 can deliver a fixed amount of the modeling material M to the processing device 2 per unit time. As a result, the material supply device 1 can supply a fixed amount of the modeling material M to the processing device 2 per unit time. That is, in the material supply device 1, the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time depends on the supply rate of the modeling material M required for forming the three-dimensional structure ST.
  • the modeling material M can be supplied to the processing apparatus 2 so as to have a constant supply amount. Therefore, the above-mentioned supply amount control operation can be regarded as substantially equivalent to the operation of controlling the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time. Good.
  • the material nozzle 212 supplies the modeling material M supplied from the material supply device 1 to the processing device 2 to the work W
  • the amount of the modeling material M supplied by the material nozzle 212 per unit time is a unit time. It depends on the amount of the modeling material M supplied to the modeling material M supplied from the material supply device 1 to the processing device 2. Therefore, the material nozzle 212 can supply a fixed amount of the modeling material M to the work W per unit time. That is, the material nozzle 212 supplies a constant amount of the modeling material M supplied from the material nozzle 212 to the work W per unit time according to the supply rate of the modeling material M required for forming the three-dimensional structure ST.
  • the modeling material M can be supplied to the work W so as to be in quantity. Therefore, the above-mentioned supply amount control operation may be regarded as substantially equivalent to the operation of controlling the amount of the modeling material M supplied from the material nozzle 212 to the work W per unit time.
  • the amount of the modeling material M transported from the holding member 12 to the material sending member 15 is constant per unit time. ing. That is, while the processing device 2 forms the three-dimensional structure ST, the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 is constant per unit time. However, the material supply device 1 is supplied from the material supply device 1 to the processing device 2 per unit time while the processing device 2 forms the three-dimensional structure ST under the control of the control device 7.
  • the amount of the modeling material M may be changed. Specifically, as described above, the amount of the modeling material M transported from the holding member 12 to the material delivery member 15 per unit time depends on the state of rotation of the transport member.
  • control device 7 may control the drive device 14 so as to change the rotational state of the transport member 13 during at least a part of the period during which the processing device 2 forms the three-dimensional structure ST.
  • the control device 7 may control the drive device 14 so as to change the rotational state of the transport member 13 during at least a part of the period during which the processing device 2 forms the three-dimensional structure ST.
  • FIG. 10 is a flowchart showing a flow of a supply amount control operation for controlling the actual supply amount of the modeling material M.
  • the supply amount control operation shown in FIG. 10 is performed at least a part of the period during which the machining system SYS is machining the work W.
  • the supply amount control operation shown in FIG. 10 is performed at least a part of the period during which the material supply device 1 supplies the modeling material M to the processing device 2.
  • the supply amount control operation shown in FIG. 10 is repeatedly performed during at least a part of the period during which the machining system SYS is machining the work W.
  • the supply amount control operation shown in FIG. 10 is repeatedly performed during at least a part of the period during which the material supply device 1 supplies the modeling material M to the processing device 2.
  • the supply amount control operation shown in FIG. 10 may not be performed during at least a part of the period during which the material supply device 1 does not supply the modeling material M to the processing device 2.
  • the image pickup apparatus 8 images the image pickup target path (step S11). That is, the image pickup apparatus 8 takes an image of the modeling material M passing through the image pickup target path (step S11).
  • the control device 7 acquires an image (hereinafter referred to as “original image”) captured by the image pickup device 8 (step S12).
  • original image An example of the original image captured by the image pickup apparatus 8 is shown in FIG.
  • FIG. 11 shows an example of an original image in which the light and darkness of the modeling material M, which is the subject, corresponds to a negative image in which the brightness is reversed from the actual one.
  • the control device 7 calculates the actual supply amount of the modeling material M based on the original image acquired in step S12 (steps S13 to S15).
  • the control device 7 may use an existing method as a method for calculating the amount of powder based on the image. Therefore, a detailed description of the process of calculating the actual supply amount of the modeling material M based on the original image will be omitted, but the following is an example of the process of calculating the actual supply amount of the modeling material M based on the original image. Will be briefly explained. However, the control device 7 may calculate the actual supply amount of the modeling material M based on the original image by performing a process different from the process shown below.
  • the control device 7 In order to calculate the actual supply amount of the modeling material M, the control device 7 generates a binarized image by performing a binarization process on the original image acquired in step S12 (step S13). At this time, the control device 7 may perform binarization processing on the entire original image. Alternatively, the control device 7 may perform the binarization process on a part of the original image, but may not perform the binarization process on the remaining part of the original image. For example, the control device 7 may perform binarization processing on a part of the image portion in which the modeling material M is reflected in the original image. For example, the control device 7 may perform binarization processing on a part of the image portion of the original image in which the imaging target path is reflected. When the binarization process is performed on a part of the original image in this way, the processing load of the control device 7 is reduced as compared with the case where the binarization process is performed on the entire original image.
  • FIG. 12 shows a binarized image generated by performing a binarization process on a part of the original image shown in FIG.
  • FIG. 12 shows a binarized image generated by performing a binarization process on a part of the original image shown in FIG.
  • FIG. 12 shows a binarized image in which the modeling material M and its background can be more clearly distinguished is generated as compared with the original image.
  • the control device 7 calculates the area occupied by the modeling material M in the binarized image based on the binarized image (step S14).
  • the control device 7 reflects, for example, at least a part of the modeling material M among the plurality of pixels constituting the binarized image.
  • the 0th-order moment corresponding to the sum of the pixels may be calculated. That is, the control device 7 sets the pixel value of the pixel in which at least a part of the modeling material M is reflected to 1, and sets the pixel value of the pixel in which at least a part of the modeling material M is not reflected to 0.
  • the 0th-order moment corresponding to the sum of the pixel values of the plurality of pixels constituting the binarized image may be calculated.
  • the 0th-order moment calculated in this way corresponds to the area occupied by the modeling material M in the binarized image.
  • the control device 7 calculates the actual supply amount of the modeling material M based on the area of the modeling material M calculated in step S14 (that is, the area occupied by the modeling material M in the binarized image) (step S15). Specifically, as the actual supply amount of the modeling material M increases, the modeling material M reflected in the original image increases. The larger the modeling material M reflected in the original image, the larger the area occupied by the modeling material M in the binarized image. Therefore, the area occupied by the modeling material M in the binarized image is information having a correlation with the actual supply amount of the modeling material M. Therefore, the control device 7 can calculate the actual supply amount of the modeling material M based on the area occupied by the modeling material M in the binarized image.
  • the control device 7 uses the correlation information showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M from the area occupied by the modeling material M in the binarized image.
  • the actual supply amount of the modeling material M may be calculated.
  • An example of correlation information is shown in FIG.
  • the correlation information may include a graph showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M.
  • the correlation information typically shows a correlation that the larger the area occupied by the modeling material M in the binarized image, the larger the actual supply amount of the modeling material M.
  • FIG. 13 the correlation information showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M from the area occupied by the modeling material M in the binarized image.
  • the correlation information shows that the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M have a linear correlation.
  • the correlation information may indicate that the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M have a non-linear correlation.
  • arbitrary information showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M may be used as the correlation information.
  • An example of such arbitrary information is at least one of a table, a function, a computational model and a database.
  • Such correlation information may be generated in advance before the supply amount control operation is performed.
  • the correlation information generated in advance may be stored in a storage device included in the control device 7.
  • the material supply device 1 may perform the above-mentioned supply operation before the processing device 2 processes the work W.
  • the imaging device 8 images the modeling material M passing through the imaging target path, and the amount of the modeling material M passing through the imaging target path (that is, the actual supply amount) is actually measured using the mass measuring device. You may. For example, if the mass measuring device is arranged in the falling path of the modeling material M that falls from the holding member 12 to the material sending member 15, the mass measuring device can measure the amount of the modeling material M passing through the imaging target path (that is, the actual amount).
  • control device 7 calculates the area occupied by the modeling material M in the binarized image from the original image captured by the image pickup device 8, and obtains the correlation information based on the calculated area and the measurement result of the mass measuring device. It may be generated.
  • the correlation between the area occupied by the area of the modeling material M in the binarized image and the actual supply amount of the modeling material M may change.
  • the correlation between the area occupied by the first type of modeling material M in the binarized image and the actual supply amount of the first type of modeling material M is different from that of the first type in the second type.
  • the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the second type of modeling material M may differ.
  • the correlation between the area occupied by the modeling material M having the first particle size in the binarized image and the actual supply amount of the modeling material M having the first particle size is different from that of the first particle size.
  • the correlation between the area occupied by the modeling material M having the particle size of 2 in the binarized image and the actual supply amount of the modeling material M having the second particle size may be different.
  • the correlation between the area occupied by the modeling material M of the first particle size in the binarized image and the actual supply amount of the modeling material M of the first particle size is different from that of the first particle size.
  • the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M having the second particle size may differ.
  • the correlation between the area occupied by the modeling material M of the first shape in the binarized image and the actual supply amount of the modeling material M of the first shape is different from that of the first shape.
  • the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M of the second shape may be different.
  • the correlation between the area occupied by the modeling material M having the first specific gravity in the binarized image and the actual supply amount of the modeling material M having the first specific gravity is different from that of the first specific gravity.
  • the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M having the second specific gravity may be different.
  • the correlation between the area occupied by the first density modeling material M in the binarized image and the actual supply amount of the first density modeling material M is different from the first density in the second density.
  • the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M having the second density may be different. Therefore, the control device 7 may calculate the actual supply amount of each of the plurality of modeling materials M having different states by using the plurality of correlation information. Specifically, the control device 7 selects one correlation information according to the state of the modeling material M from a plurality of correlation information, and uses the selected one correlation information to determine the actual supply amount of the modeling material M. It may be calculated. Alternatively, the control device 7 may calculate the actual supply amount of each of the plurality of modeling materials M in different states by using a single correlation information. Specifically, the control device 7 converts the correlation information based on the state of the modeling material M (in other words, changes, corrects, or corrects), and uses the converted correlation information to produce the fruit of the modeling material M. The supply amount may be calculated.
  • control device 7 calculates the deviation of the actual supply amount of the modeling material M calculated in step S15 from the target supply amount (step S16). That is, the control device 7 calculates the difference between the actual supply amount of the modeling material M calculated in step S15 and the target supply amount (step S16).
  • the control device 7 controls the transport member 13 based on the deviation calculated in step S16 (step S17). Specifically, the control device 7 calculates the state of rotation (typically, the rotation speed) of the transport member 13 that can make the deviation calculated in step S16 zero. That is, the control device 7 calculates the state of rotation of the transport member 13 capable of matching the actual supply amount of the modeling material M calculated in step S15 with the target supply amount. For example, when the actual supply amount is larger than the target supply amount, it is desirable to reduce the actual supply amount. In this case, the control device 7 may calculate a speed slower than the current rotation speed by the amount corresponding to the deviation. On the other hand, for example, when the actual supply amount is smaller than the target supply amount, it is desirable to increase the actual supply amount. In this case, the control device 7 may calculate a speed that is faster than the current rotation speed by the amount corresponding to the deviation. After that, the control device 7 controls the drive device 14 so that the transport member 13 rotates in the calculated state (typically, the speed).
  • the state of rotation of the transport member 13 is controlled so that the actual supply amount and the target supply amount match. That is, the control device 7 can feedback-control the rotation state of the transport member 13 that affects the actual supply amount of the modeling material M based on the actual supply amount of the modeling material M. Therefore, a state in which the actual supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2 matches the target supply rate of the modeling material M required for forming the three-dimensional structure ST is appropriately maintained. To.
  • the machining system SYS of the present embodiment can appropriately perform additional machining on the work W.
  • the material supply device 1 included in the processing system SYS is a holding member 12 arranged below the hopper 11 to hold a certain amount of the modeling material M supplied from the hopper 11 and then enter the holding space 121 of the holding member 12.
  • a certain amount of modeling material M is transported from the holding member 12 to the material delivery member 15 per unit time by the rotation of the arranged transport member 13. Therefore, the material supply device 1 can stably supply the processing device 2 with a fixed amount of the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST. .. That is, the material supply device 1 can supply the modeling material M to the processing device 2 while maintaining a desired supply rate.
  • the processing system SYS can form a relatively high-precision three-dimensional structure ST.
  • control device 7 can control the rotational state of the transport member 13 so that the actual supply amount of the modeling material M and the target supply amount match. Therefore, even if the actual supply amount of the modeling material M does not match the target supply amount due to some factor, the control device 7 again matches the actual supply amount of the modeling material M with the target supply amount.
  • the state of rotation of the transport member 13 can be controlled. That is, a state in which the actual supply amount of the modeling material M and the target supply amount match is appropriately maintained.
  • FIG. 14 shows a state in which the actual supply amount of the modeling material M gradually decreases (or increases in some cases) when the state of rotation of the transport member 13 is continuously maintained under the condition that the supply amount operation is not performed. Is indicated by a dotted line.
  • the shaft member 131 since the transport member 13 is rotating, the shaft member 131 may be worn. When the shaft member 131 is worn in this way, the fruit of the modeling material M is different from the case where the shaft member 131 is not worn, even though the rotational state of the transport member 13 has not changed at all.
  • the supply may change. For example, as shown by the dotted line in FIG. 14, as the shaft member 131 gradually wears, the actual supply amount of the modeling material M may also gradually decrease (or increase).
  • the temperature of the transport member 13 may fluctuate according to the rotation of the transport member 13. If the temperature of the transport member 13 fluctuates, the transport member 13 may be thermally deformed. As a result, the actual supply amount of the modeling material M may change due to the thermal deformation of the transport member 13. However, even if the actual supply amount of the modeling material M does not match the target supply amount due to such wear of the shaft member 131 and / or thermal deformation of the transport member 13, the control device 7 still uses the modeling material M. The state of rotation of the transport member 13 is controlled so that the actual supply amount and the target supply amount of the above match again. As a result, as shown by the solid line in FIG. 14, the state in which the actual supply amount of the modeling material M and the target supply amount coincide with each other is appropriately maintained.
  • FIG. 15 shows that the actual supply amount of the modeling material M decreases (or increases in some cases) at a certain timing when the state of rotation of the transport member 13 is continuously maintained under the condition that the supply amount operation is not performed.
  • the situation is shown by a dotted line.
  • the state of the material supply device 1 changes from the state in which the modeling material M in the first state is supplied to the state in which the modeling material M in the second state different from the first state is supplied. there's a possibility that. This is because the processing system SYS does not always perform the processing operation using the modeling material M in the same state. In this case, as shown by the dotted line in FIG.
  • the actual supply amount of the modeling material M is changed at the timing when the state of the modeling material M is changed even though the rotational state of the transport member 13 has not changed at all. It may change. However, even if the actual supply amount of the modeling material M does not match the target supply amount due to such a change in the state of the modeling material M, the control device 7 still supplies the actual supply amount and the target supply amount of the modeling material M. The state of rotation of the transport member 13 is controlled so that the amount matches again. As a result, as shown by the solid line in FIG. 15, the state in which the actual supply amount of the modeling material M and the target supply amount coincide with each other is appropriately maintained.
  • the material supply device 1 takes the processing device 2 to form the three-dimensional structure ST per unit time.
  • a certain amount of the modeling material M required for the above can be stably supplied to the processing apparatus 2. That is, the material supply device 1 can supply the modeling material M to the processing device 2 while maintaining a desired supply rate.
  • the material nozzle 212 can stably supply the work W with a fixed amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. That is, the material nozzle 212 can supply the modeling material M to the work W while maintaining a desired supply rate.
  • the processing system SYS can form a relatively high-precision three-dimensional structure ST.
  • the modeling material is used by a mass measuring device such as a load cell.
  • a mass measuring device such as a load cell.
  • the measured value of the mass measuring device such as the load cell may fluctuate due to the vibration of the material supply device 1 (or the vibration of some members thereof) and the wind pressure of the purge gas or the like.
  • the processing system of the comparative example may not be able to maintain a state in which the actual supply amount of the modeling material M and the target supply amount match.
  • the processing system SYS of the present embodiment since the actual supply amount of the modeling material M is calculated based on the original image, the vibration of the material supply device 1 (or the vibration of a part of the members), the wind pressure such as purge gas, and the material.
  • the temperature of the supply device 1, electrical noise, and the like do not affect the calculated value of the actual supply amount. Therefore, the processing system SYS of the present embodiment can appropriately maintain a state in which the actual supply amount and the target supply amount of the modeling material M are in agreement, which is practical, which is not found in the processing system of the comparative example. You can enjoy the effect.
  • the drive device 14 is arranged in the external space 16OUT separated from the internal space 16IN of the housing 16 by the partition member 161. Therefore, as compared with the case where the drive device 14 is arranged in the internal space 16IN, the heat generated by the actuator (power source) such as the motor included in the drive device 14 is arranged in the internal space 16IN. Specifically, it becomes difficult to transmit to the holding member 12, the transport member 13, and the material delivery member 15). As a result, the members arranged in the internal space 16IN are less likely to be thermally deformed.
  • the thermal deformation of the members arranged in the internal space 16IN may cause fluctuations in the amount of the modeling material M transported from the holding member 12 to the material delivery member 15 per unit time.
  • the thermal deformation of the member arranged in the internal space 16IN may cause a fluctuation in the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2.
  • the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2 becomes the heat of the drive device 14. Due to this, unintentional fluctuations are appropriately suppressed. That is, the material supply device 1 can suppress the influence of the heat of the drive device 14 on the supply rate of the modeling material M. Therefore, the material supply device 1 can supply the modeling material M while maintaining a desired supply rate.
  • the processing system SYS can form a relatively high-precision three-dimensional structure ST.
  • the drive device 14 may be arranged in the internal space 16IN of the housing 16.
  • the control device 7 controls the transport member 13 based on the actual supply amount of the modeling material M calculated based on the original image.
  • the control device 7 repeatedly images the imaging target path from step S13 to step S15, based on the fact that the imaging device 8 repeatedly images the imaging target path at a constant imaging rate.
  • the actual supply amount of the modeling material M is calculated a plurality of times, and then the calculated value calculated by performing the calculation using the plurality of actual supply amounts is calculated. May be good.
  • the control device 7 may control the transport member 13 based on the calculated values of the plurality of actual supply amounts in steps S16 to S17.
  • control device 7 calculates deviations from the target supply amount of the calculated values of the plurality of actual supply amounts in step S16, and controls the transport member 13 based on the calculated deviations in step S17. You may. That is, the control device 7 may control the transport member 13 based on the plurality of original images.
  • the average value is an example of the calculated value.
  • the control device 7 may calculate the average value of the plurality of actual supply amounts, calculate the deviation of the calculated average value from the target supply amount, and control the transport member 13 based on the calculated deviation. .. Since the image pickup device 8 repeatedly images the image pickup target path at a constant image pickup rate, it can be said that the plurality of original images acquired by the control device 7 are time-series data. Therefore, the average value here may mean a moving average value.
  • the fluctuation amount of the deviation of the average value of the actual supply amount with respect to the target supply amount is usually smaller than the fluctuation amount of the deviation of the actual supply amount itself with respect to the target supply amount.
  • the average value corresponds to a smoothed value of a plurality of actual supplies calculated as time series data based on a plurality of original images. Therefore, when such an average value of the actual supply amount is used, the variation in deviation becomes smaller than when the actual supply amount itself is used.
  • the material supply device 1 can stably supply the processing device 2 with a fixed amount of the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST. ..
  • the material nozzle 212 can stably supply the work W with a fixed amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST.
  • the processing system SYS can form a highly accurate three-dimensional structure ST.
  • FIG. 16 is a cross-sectional view showing an image pickup device 8 that images the modeling material M passing through the imaging target path
  • the imaging device 8 looks at the modeling material M passing through the imaging target path.
  • the modeling material M passing through the imaging target path is imaged from one direction.
  • the modeling material M is supplied while being distributed so as to have a constant spread along a direction intersecting the supply direction (for example, the left-right direction of the paper surface in FIG. 16).
  • the image pickup apparatus 8 not all of the modeling material M passing through the image pickup target path is imaged by the image pickup apparatus 8. Specifically, at least one modeling material M in which another modeling material M exists between the modeling material M passing through the imaging target path and the imaging device 8 (specifically, it is shown by a dotted line in FIG. 16). The modeling material M) may not be imaged by the image pickup apparatus 8. Therefore, not all of the modeling material M passing through the imaging target path is reflected in the original image. As a result, the actual supply amount calculated based on the original image may be different from the actual supply amount of all the modeling materials M passing through the imaging target path. That is, the actual supply amount calculated based on the original image may have an error with respect to the true value of the actual supply amount.
  • the control device 7 uses the average value of the actual supply amount, which is more likely to be closer to the true value of the actual supply amount than the actual supply amount itself calculated based on the original image.
  • the transport member 13 can be controlled.
  • the actual supply amount of the modeling material M supplied by the material supply device 1 corresponds to the constant amount of the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST. It is more likely to get closer to the target supply.
  • the actual supply amount of the modeling material M supplied by the material nozzle 212 is a target according to a certain amount of modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. It is more likely to get closer to the supply.
  • the processing system SYS can form a highly accurate three-dimensional structure ST.
  • the calculated value is at least one of the median value and the mode value.
  • the fluctuation amount of the deviation of the median and the mode of the actual supply with respect to at least one target supply is usually the target of the actual supply itself. It is smaller than the fluctuation amount of the deviation with respect to the supply amount.
  • the error of the actual supply amount itself calculated based on the original image that is, the calculated value of the actual supply amount with respect to the true value of the actual supply amount). The effect caused by the error) is reduced.
  • the machining system SYS can form a highly accurate three-dimensional structure ST as in the case where the mean value is used. ..
  • the image pickup apparatus 8 images the modeling material M passing through the supply path between the material supply source 1A and the material nozzle 212. That is, the image pickup apparatus 8 images the modeling material M passing through the supply path in the internal space 16IN of the housing 6.
  • the imaging range IMA of the imaging device 8 includes a supply path of the modeling material M in the internal space 16IN. However, the imaging device 8 may image the modeling material M passing through the supply path between the material nozzle 212 and the work W.
  • the image pickup apparatus 8 may take an image of the modeling material M passing through the supply path of the external space 16OUT of the housing 6.
  • the imaging range IMA of the imaging device 8 may include a supply path of the modeling material M in the external space 16OUT.
  • FIGS. 17 to 19 is a cross-sectional view showing an example of an image pickup apparatus 8 that images a modeling material M passing through a supply path between the material nozzle 212 and the work W.
  • the imaging device 8 may image the modeling material M passing through the supply path between the material nozzle 212 and the work W.
  • the image pickup apparatus 8 may take an image of the modeling material M passing through the supply path between the supply port 214 of the material nozzle 212 and the work W.
  • the image pickup apparatus 8 may take an image of the modeling material M heading from the material nozzle 212 to the work W.
  • the imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W.
  • the imaging range IMA may include a supply path of the modeling material M between the supply port 214 of the material nozzle 212 and the work W.
  • the image pickup apparatus 8 images the modeling material M passing through the chamber space 63IN of the housing 6. May be good.
  • the imaging device 8 may image the modeling material M passing through the supply path in the chamber space 63IN of the housing 6.
  • the imaging range IMA may include a supply path of the modeling material M in the chamber space 63IN of the housing 6.
  • the housing 6 may have an opening 613.
  • the opening 613 is a through hole that penetrates the partition wall member 61 from the chamber space 63IN toward the external space 64OUT.
  • An observation window 6131 is fitted in the opening 613.
  • a seal member is formed in the gap between the observation window 6131 and the partition member 61. May be good.
  • the observation window 6131 is a member through which visible light can pass (that is, is transparent to visible light).
  • the observation window 6131 uses light in a wavelength range different from the visible light wavelength range (particularly). It may be a member through which light in a wavelength range that can be detected by the image pickup element) can pass.
  • the observation window 6131 is used for the imaging device 8 to image the modeling material M passing through the chamber space 63IN of the housing 6. Therefore, the image pickup apparatus 8 arranged in the external space 64OUT images the modeling material M passing through the supply path of the chamber space 63IN of the housing 6 through the observation window 6131. That is, the imaging device 8 can image the modeling material M passing through the imaging target path without being affected by the modeling material M.
  • the image pickup apparatus 8 may be arranged in the chamber space 63IN.
  • the housing 6 may be formed with an opening 614.
  • the opening 614 is a through hole that penetrates the partition wall member 61 from the chamber space 63IN toward the external space 64OUT.
  • An observation window 6141 may be fitted in the opening 614. When a gap is formed between the observation window 6141 and the partition member 61 with the observation window 6141 fitted in the opening 614, a seal member is formed in the gap between the observation window 6141 and the partition member 61. May be good.
  • the observation window 6141 is a member through which visible light can pass (that is, is transparent to visible light).
  • the observation window 6141 emits light in a wavelength range different from the visible light wavelength range (particularly, illumination). It may be a member through which optical IL) can pass.
  • the observation window 6141 is used for the lighting device 9 to illuminate the modeling material M passing through the chamber space 63IN of the housing 6 with the illumination light IL.
  • the modeling material M passing through the supply path in the chamber space 63IN of the housing 6 is illuminated by the illumination light IL emitted from the lighting device 9 arranged in the external space 64OUT through the observation window 6141.
  • the illumination device 9 can irradiate the illumination light IL toward the modeling material M passing through the imaging target path without being affected by the modeling material M. That is, there is no possibility or low possibility that the modeling material M has an influence on the lighting device 9.
  • the lighting device 9 may be arranged in the chamber space 63IN.
  • the positional relationship of the openings 613 and 614 with respect to the supply path of the modeling material M may be the same as the positional relationship of the openings 168 and 169 with respect to the supply path of the modeling material M described above. That is, the openings 613 and 614 may be formed at positions separated from the supply path of the modeling material M in different directions. In this case, the lighting device 9 illuminates the modeling material M with the illumination light IL from a direction different from the direction in which the imaging device 8 images the modeling material M. Alternatively, the openings 613 and 614 may be formed at positions separated from the supply path of the modeling material M in the same direction. In this case, the lighting device 9 illuminates the modeling material M with the illumination light IL from the same direction as the direction in which the imaging device 8 images the modeling material M.
  • the modeling material M passing through the supply path between the material nozzle 212 and the work W is imaged by the image pickup apparatus 8
  • the modeling material M passing through the supply path between the material supply source 1A and the material nozzle 212 is imaged.
  • the actual supply amount of the modeling material M calculated based on the original image approaches the actual supply amount of the modeling material M supplied to the work W. This is because, in the example shown in FIG. 17, the modeling material M that was not actually supplied from the material nozzle 212 toward the work W even though it fell from the holding member 12 toward the material delivery member 15 is the imaging device 8. Will not be imaged by.
  • the actual supply amount of the modeling material M calculated based on the original image is actually supplied from the material nozzle 212 toward the work W even though it has fallen from the holding member 12 toward the material delivery member 15. Does not include the amount of modeling material M that was not present. Therefore, the actual supply amount of the modeling material M supplied by the material nozzle 212 is the target supply according to the constant amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. Get closer to the quantity. As a result, the processing system SYS can form a highly accurate three-dimensional structure ST.
  • the holding member 12 sent the material to the material delivery member 15.
  • the modeling material M that has spilled to the outside of the material delivery member 15 even though it has fallen toward it can be mentioned.
  • the holding member 12 sent the material to the material delivery member 15. Examples thereof include the modeling material M that has accumulated or is clogged inside the pipe connecting the material supply device 1 and the material nozzle 212 even though the material has fallen toward the material nozzle 212.
  • the image pickup apparatus 8 may take an image of the molten pool MP in addition to the modeling material M passing through the supply path between the material nozzle 212 and the work W.
  • the imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and a molten pool MP.
  • the control device 7 is supplied from the material nozzle 212 to the chamber space 63IN and then is actually supplied to the molten pool MP (that is, molten) based on the original image.
  • the actual supply amount of the modeling material M supplied to the molten pool MP is a target according to the constant amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. Closer to the supply. As a result, the processing system SYS can form a highly accurate three-dimensional structure ST.
  • the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP matches the target supply amount
  • the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP is The machining system SYS can form a more accurate 3D structure ST as compared to the case where it does not match the target supply amount.
  • the operation of controlling the rotational state of the transport member 13 so that the actual supply amount of the modeling material M passing through the imaging target path described above matches the target supply amount is substantially the operation of controlling the rotation state from the material nozzle 212 to the molten pool. It may be regarded as equivalent to the operation of controlling the rotational state of the transport member 13 so that the actual supply amount of the modeling material M supplied to the MP matches the target supply amount.
  • the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP depends on the relative speed between the supply position (that is, the supply region MA) of the modeling material M supplied to the work W and the work W. And fluctuate. This is because, under the condition that the amount of the modeling material M supplied by the material nozzle 212 from the supply port 214 to the chamber space 63IN per unit time is constant, the speed at which the supply region MA moves with respect to the work W can be increased. The more, the shorter the time for the supply region MA to be located in a certain portion of the work W.
  • the rotational state typically, rotational speed
  • the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP may be matched with the target supply amount.
  • the control device 7 typically controls the relative speed between the work W and the supply region MA by controlling the speed at which the material nozzle 212 moves with respect to the work W using the head drive system 22. You may.
  • the image pickup apparatus 8 includes the molding material M passing through the supply path between the material nozzle 212 and the work W, and the molten pool of the work W.
  • the portion where the MP is formed may be imaged.
  • the imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and a portion of the work W where the molten pool MP is formed.
  • the modeling material M passing through the supply path between the material nozzle 212 and the work W and the modeling material M in the work W are The supplied portion (that is, the portion of the work W in which the supply region MA is set) may be imaged.
  • the image pickup apparatus 8 may take an image of the modeling material M passing through the supply path between the material nozzle 212 and the work W and the portion of the work W reached by the modeling material M.
  • the imaging range IMA includes a modeling material M passing through a supply path between the material nozzle 212 and the work W, and a portion of the work W to which the modeling material M is supplied (a portion reached by the modeling material M). You may be. In this case as well, the same effect as that that can be enjoyed when the molten pool MP is imaged by the imaging device 8 can be enjoyed.
  • the image pickup apparatus 8 may take an image of the modeling material M passing through the supply path between the material nozzle 212 and the work W, and at least a part of the material nozzle 212.
  • the imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and at least a portion of the material nozzle 212.
  • the image pickup apparatus 8 may image the modeling material M passing through the supply path between the material nozzle 212 and the work W, and the supply port 214 of the material nozzle 212.
  • the imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and a supply port 214 of the material nozzle 212.
  • At least one of at least a part of the image pickup apparatus 8 and at least a part of the illumination apparatus 9 has a fixed relative positional relationship with the material nozzle 212. It may be provided. In other words, at least one of at least a part of the image pickup apparatus 8 and at least a part of the illumination apparatus 9 may be provided on the movable processing head 21.
  • control device 7 calculates the actual supply amount of the modeling material M passing through the image pickup target path based on the original image captured by the image pickup device 8. However, the control device 7 adds or replaces the actual supply amount of the modeling material M passing through the imaging target path based on the original image captured by the imaging device 8, and optionally the modeling material M passing through the imaging target path. The supply status of is calculated (that is, it may be calculated).
  • control device 7 may control the rotational state of the transport member 13 in the same manner as the supply amount control operation described above, based on the calculated arbitrary supply state of the modeling material M.
  • control device 7 may control the operation of the processing system SYS based on the calculated arbitrary supply state of the modeling material M.
  • the control device 7 controls at least one of the processing device 2 (particularly, the irradiation optical system 211) and the light source 4 based on the calculated arbitrary supply state of the modeling material M, so that the processing light by the irradiation optical system 211 The injection mode of the EL may be controlled.
  • control device 7 may control the movement mode of the processing head 21 by controlling the head drive system 22 based on the calculated arbitrary supply state of the modeling material M.
  • the control device 7 controls at least one of the processing device 2 (particularly, the material nozzle 212) and the material supply device 1 based on the calculated arbitrary supply state of the modeling material M, thereby supplying the modeling material M. May be controlled.
  • the control device 7 may control the operation of the processing system SYS based on the calculated actual supply amount of the modeling material M. ..
  • the supply direction of the modeling material M from the material nozzle 212 can be mentioned.
  • the image pickup apparatus 8 provides a supply path of the modeling material M supplied from the material nozzle 212 to the work W and at least a part of the material nozzle 212 (particularly, the supply port 214). You may take an image.
  • the control device 7 can calculate the supply direction (hereinafter, referred to as “actual supply direction”) of the modeling material M from the material nozzle 212 based on the original image captured by the image pickup device 8.
  • the control device 7 determines the position of the modeling material M reflected in the plurality of original images corresponding to the time series data. By comparing, the moving direction of the modeling material M from the material nozzle 212 (hereinafter, referred to as “actual moving direction”) may be calculated.
  • the moving direction of the modeling material M may be regarded as equivalent to the supply direction of the modeling material M.
  • the control device 7 controls the material nozzle 212 so that the actual supply direction of the modeling material M from the material nozzle 212 matches the target supply direction.
  • the actual supply direction of the modeling material M from the above may be controlled.
  • the control device 7 controls the material nozzle 212 so that the actual moving direction of the modeling material M from the material nozzle 212 coincides with the target moving direction.
  • the actual moving direction of the modeling material M from the above may be controlled.
  • the target supply direction is the supply direction (movement direction) of the modeling material M that can realize a state in which the modeling material M supplied from the material nozzle 212 reaches the irradiation position of the processing light EL.
  • the target supply direction is the supply direction of the modeling material M that can realize a state in which the supply region MA of the modeling material M coincides with (or at least partially overlaps) the irradiation region EA of the processing light EL.
  • the direction of movement may be used.
  • the control device 7 may control the head drive system 22 in order to control the actual supply direction (actual movement direction, the same applies hereinafter) of the modeling material M.
  • the control device 7 controls the actual supply direction of the modeling material M by controlling the position of the material nozzle 212 using the head drive system 22.
  • FIG. 20A is a cross-sectional view showing a processing system SYS in which the actual supply direction and the target supply direction do not match.
  • the control device 7 uses the head drive system 22 so that the actual supply direction of the modeling material M coincides with the target supply direction, and the control device 7 uses the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, and the ⁇ Y direction.
  • the position of the material nozzle 212 in at least one of the ⁇ Z directions may be controlled.
  • the position of the material nozzle 212 in at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may be referred to as the posture of the material nozzle 212. That is, the control device 7 may control the posture of the material nozzle 212 by using the head drive system 22 so that the actual supply direction of the modeling material M coincides with the target supply direction. As a result, as shown in FIG. 20B, the actual supply direction of the modeling material M coincides with the target supply direction.
  • the control device 7 sets the actual supply direction that does not match the target supply direction as the target supply direction by changing the relationship between the actual supply direction (actual movement direction) of the modeling material M and the posture of the work W.
  • the head drive system 22 may be controlled so as to match.
  • the imaging device 8 may image the molten pool MP as in the example shown in FIG.
  • the control device 7 calculates the position of the molten pool MP from the imaging result of the molten pool MP imaged by the imaging device 8, and from the position of the supply port 214 of the material nozzle 212 to the calculated position of the molten pool MP.
  • the direction may be set to the target supply direction.
  • the material nozzle 212 may be imaged by the image pickup apparatus 8.
  • the control device 7 may control the gas supply device 5 in addition to or in place of the head drive system 22 in order to control the actual supply direction (actual movement direction, the same applies hereinafter) of the modeling material M. Specifically, the control device 7 may control the pressure and / or flow rate (typically, the flow rate per unit time) of the purge gas supplied by the gas supply device 5 to the material supply device 1.
  • the material supply device 1 pumps the modeling material M to the material nozzle 212 using the purge gas and the modeling material M is supplied from the supply port 214 of the material nozzle 212 to the chamber space 63IN by the purge gas, the pressure of the purge gas and / Alternatively, when the flow rate changes, the momentum of the modeling material M supplied from the material nozzle 212 to the chamber space 63IN changes. As a result, the supply direction (movement direction) of the modeling material M from the material nozzle 212 changes.
  • the particle size of the modeling material M supplied from the material nozzle 212 can be mentioned.
  • the control device 7 calculates and calculates the size (typically, a diameter such as a diameter or a radius) of the modeling material M reflected in the original image based on the original image captured by the image pickup device 8.
  • the particle size of the modeling material M may be calculated based on the determined size. Since the particle size of the modeling material M is a parameter based on the size of the modeling material M (typically, a diameter such as a diameter or a radius), the size of the modeling material M is also an example of an arbitrary supply state. It can be said that there is. Therefore, the control device 7 may calculate the size of the modeling material M in addition to or instead of calculating the particle size of the modeling material M.
  • the control device 7 may control the intensity of the processing light EL applied to the work W based on the calculated particle size.
  • the intensity of the processing light EL required to melt the modeling material M having a relatively coarse particle size is usually relatively fine (that is, a relatively large size). It is higher than the strength of the processing light EL required to melt the modeling material M (which is relatively small in size). Therefore, as shown in FIG. 21, which is a graph showing an example of the correlation between the particle size of the modeling material M and the intensity of the processing light EL, the control device 7 increases the intensity of the processing light EL as the particle size of the modeling material M becomes coarser.
  • the intensity of the processing light EL may be controlled so as to increase the value.
  • the intensity of the processing light EL when the modeling material M having the first particle size is supplied is the processing light EL when the modeling material M having a second particle size finer than the first particle size is supplied.
  • the intensity of the processing light EL may be controlled so as to be higher than the intensity of.
  • the control device 7 may control the light source 4 in order to control the intensity of the processing light EL.
  • the control device 7 may control an intensity distribution control element (not shown) included in the irradiation optical system 211 in order to control the intensity of the processed light EL.
  • the control device 7 Even when the processing system SYS is controlled based on an arbitrary supply state of the modeling material M described in the third modification, the control device 7 still has a plurality of original images as described in the first modification.
  • the supply state of the modeling material M is calculated a plurality of times based on the above, the calculated value calculated by performing the calculation using the plurality of supply states is calculated, and the processing system SYS is calculated based on the calculated values of the plurality of supply states. You may control it.
  • control device 7 feeds back the state of rotation of the transport member 13 that affects the actual supply amount of the modeling material M based on the actual supply amount of the modeling material M. I'm in control.
  • control device 7 may feedforward control the rotational state of the transport member 13 in addition to feedback-controlling the rotational state of the transport member 13. The feedforward control will be described below.
  • the control device 7 learns the relationship between the control amount (specifically, the rotation speed) of the transport member 13 by feedback control and the actual supply amount of the modeling material M. Specifically, when the control device 7 sets the rotation speed of the transport member 13 to a target speed determined based on feedback control, what value does the actual supply amount of the modeling material M take (that is, which? How it changes). As a result, as shown in FIG. 22, the control device 7 can calculate the correlation between the control amount (specifically, the rotation speed) of the transport member 13 by feedback control and the actual supply amount of the modeling material M. it can.
  • the control device 7 feedforwards the rotational state of the transport member 13 based on the correlation between the control amount of the transport member 13 calculated based on the result of the feedback control and the actual supply amount of the modeling material M.
  • Control Specifically, the control device 7 calculates the target control amount (that is, the target speed) of the transport member 13 corresponding to the target supply amount of the modeling material M based on the calculated correlation. That is, the control device 7 calculates the target control amount (that is, the target speed) of the transport member 13 required to match the actual supply amount of the modeling material M with the target supply amount based on the calculated correlation. At this time, the control device 7 does not have to calculate the actual supply amount of the modeling material M based on the original image captured by the image pickup device 8. After that, the control device 7 controls the state of rotation of the transport member 13 so that the transport member 13 rotates with the calculated target control amount.
  • the control device 7 may not be able to appropriately control the rotational state of the transport member 13 by feedforward control. Specifically, the control device 7 may not be able to match the actual supply amount of the modeling material M with the target supply amount only by controlling the rotational state of the transport member 13 by feedforward control. Therefore, the control device 7 may perform the feedback control and the feedforward control in parallel (typically, alternately) until a certain period of time elapses from the start of the feedback control.
  • the control device 7 may perform feedforward control without performing feedback control after a certain period of time has elapsed from the start of feedback control. For a certain period of time, after the feedback control is started, the state of rotation of the transport member 13 can be appropriately controlled by the feedforward control alone (that is, the actual supply amount of the modeling material M is matched with the target supply amount. It may be set to a period required until it becomes possible or a period longer than the period.
  • the control device 7 may learn the correlation in synchronization with the rotation cycle of the transport member 13.
  • the first-stage graph of FIG. 23 is a graph showing the actual supply amount of the modeling material M that periodically fluctuates in synchronization with the rotation cycle of the transport member 13 under the condition that the feedback control is not performed. ..
  • the control device 7 rotates the transport member 13 so that the rotation speed of the transport member 13 periodically fluctuates in synchronization with the rotation cycle of the transport member 13. Feedback control of the state of.
  • the control device 7 may learn the correlation between the control amount of the transport member by feedback control and the actual supply amount of the modeling material M in synchronization with the rotation cycle of the transport member 13.
  • the control device 7 learns the correlation between the control amount of the transport member by feedback control and the actual supply amount of the modeling material M during the period of one rotation of the transport member 13 (that is, for one cycle). You may.
  • the control device 7 rotates the transport member 13 at the rotation speed indicated by the learned correlation (that is, the rotation of the transport member 13 at the rotation speed indicated by the learned correlation) while the transport member 13 rotates once.
  • the state of rotation of the transport member 13 may be feed-forward controlled so that the speed changes). That is, even if the control device 7 feedforward controls the rotation state of the transport member 13 so that the transport member 13 repeats the operation of rotating the transport member 13 at the rotation speed for one cycle indicated by the learned correlation. Good.
  • the control device 7 causes the transport member 13 so that the actual supply amount of the modeling material M matches the target supply amount.
  • the state of rotation can be appropriately controlled.
  • FIGS. 24 (a) to 24 (e) An example of a situation in which the actual supply amount of the modeling material M fluctuates during a relatively short period will be described with reference to FIGS. 24 (a) to 24 (e).
  • the modeling material M falls from the gap G formed between the holding member 12 and the conveying member 13 into the material sending member 15 (see FIG. 9).
  • the shaft member 131 of the transport member 13 rotates to transport the modeling material M
  • the position of the gap G between the holding member 12 and the transport member 13 where the modeling material M spills is the position of the shaft member 131. It changes according to the rotation of. Specifically, the position of the gap G changes so that the gap G moves along a locus that rotates around the central axis of the shaft member 131.
  • FIG. 24A is a cross-sectional view showing how the modeling material M falls from the gap G located below the central axis of the shaft member 131.
  • FIG. 24B is a front view showing how the modeling material M falls from the gap G located below the central axis of the shaft member 131.
  • FIG. 24C is a cross-sectional view showing how the modeling material M falls from the gap G located above the central axis of the shaft member 131.
  • FIG. 24D is a front view showing how the modeling material M falls from the gap G located above the central axis of the shaft member 131.
  • the gap G is a gap formed by the groove 132 at the supply port 124. Therefore, the state in which the gap G is located below the central axis of the shaft member 131 can be regarded as equivalent to the state in which the groove 132 is located below the central axis of the shaft member 131 at the supply port 124. Similarly, the state in which the gap G is located above the central axis of the shaft member 131 can be regarded as equivalent to the state in which the groove 132 is located above the central axis of the shaft member 131 at the supply port 124.
  • the modeling material M falls from the holding member 12 to the material sending member 15 due to the action of gravity. Therefore, when the gap G is located below the central axis of the shaft member 131, it originally remains in the groove 132 due to the fact that the modeling material M has fallen from the gap G, and gradually from the gap G. The modeling material M to be dropped may collapse due to its own weight. As a result, when the gap G is located below the central axis of the shaft member 131, the gap G is larger than the gap G per unit time as compared with the case where the gap G is located above the central axis of the shaft member 131. There is a possibility that the amount of the molding material M that falls will increase.
  • FIG. 24E is a graph showing the amount of the modeling material M that falls from the gap G per unit time under the condition that the rotation speed of the conveying member 13 is constant (that is, the actual supply amount of the modeling material M). .. As shown in FIG. 24 (e), the actual supply amount of the modeling material M fluctuates periodically in synchronization with the rotation of the shaft member 131. That is, the amount of drop of the modeling material M fluctuates during a relatively short period synchronized with the rotation of the shaft member 131.
  • the control device 7 ensures that the actual supply amount of the modeling material M matches the target supply amount.
  • the state of rotation of the transport member 13 can be appropriately controlled.
  • the control device 7 may feedforward control the position (posture) of the material nozzle 212. Even when the machining system SYS is feedback-controlled based on an arbitrary supply state of the modeling material M, the control device 7 may feedforward control the machining system SYS.
  • the control device 7 is provided with each device (that is, the material supply device 1, the processing device 2, and the light source 4) included in the processing system SYS. And at least one of the gas supply devices 5) may be feedforward controlled.
  • the processing head 21 includes one material nozzle 212.
  • the processing head 21 may include a plurality of material nozzles 212.
  • a plurality of supply paths of the modeling material M are formed between the plurality of material nozzles 212 and the work W, and the plurality of supply paths may be imaged by one imaging device 8.
  • FIG. 25 shows the configuration of the processing head 21 provided with a plurality of material nozzles 212a and 212b.
  • the processing head 21 is provided with an irradiation optical system 211, and a plurality of material nozzles 212a and 212b and an imaging device 8 are arranged around the injection portion 213 of the irradiation optical system 211. ..
  • the image pickup apparatus 8 images the modeling material M supplied (injected) from each of the plurality of material nozzles 212a and 212b.
  • the imaging range IMA of the imaging device 8 includes a plurality of supply paths of the modeling material M between the plurality of material nozzles 212 and the work W.
  • the processing head 21 includes two material nozzles 212a and 212b, but the number of material nozzles 212 is not limited to two, and the processing head 21 is made of three or more materials.
  • the nozzle 212 may be provided.
  • the processing system SYS since the modeling material M is illuminated by the light from the molten pool MP, the processing system SYS does not have to be provided with the lighting device 9.
  • the lighting device 9 may not be provided on the processing head 21.
  • the processing system SYS may include the lighting device 9.
  • the processing head 21 may be provided with the lighting device 9.
  • the optical axis AX211 of the irradiation optical system 211 and the optical axis AX8 of the imaging device 8 intersect on the work W, but the optical axis AX211 of the irradiation optical system 211 and the imaging device 8 The optical axis AX8 does not have to intersect on the work W.
  • the imaging device 8 also images the molten pool MP, but the imaging device 8 does not have to image the molten pool MP.
  • the image pickup device 8 is provided so as to overlook the work W, but the optical axis AX8 of the image pickup device 8 may be provided so as to be substantially parallel to the surface of the work W. ..
  • the plurality of supply paths of the modeling material M between the plurality of material nozzles 212a and 212b and the work W may be imaged by the plurality of imaging devices 8, respectively.
  • the material supply device 1 supplies the modeling material M to the material nozzle 212 by using the rotating transport member 13.
  • the material supply device 1 may have any structure as long as the modeling material M can be supplied to the material nozzle 212.
  • the material supply device 1 may supply the modeling material M from the holding member 12 to the material delivery member 15 by vibrating the holding member 12. Good.
  • the control device 7 may control the vibration state (for example, at least one of the amplitude and frequency of the vibration) of the holding member 12 so that the supply state of the modeling material M matches the desired state.
  • the processing apparatus 2 melts the modeling material M by irradiating the modeling material M with the processing light EL.
  • the processing apparatus 2 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
  • the processing device 2 may include a beam irradiation device capable of irradiating an arbitrary energy beam in addition to or in place of the irradiation optical system 211.
  • Any energy beam includes, but is not limited to, a charged particle beam such as an electron beam, an ion beam, or an electromagnetic wave.
  • the processing system SYS can form the three-dimensional structure ST by the laser overlay welding method.
  • the processing system SYS can form the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam). It may be formed.
  • Other methods include, for example, a powder bed melting bonding method (Power Bed Fusion) such as a powder sintering laminated molding method (SLS: Selective Laser Sintering), a binder jetting method (Binder Jetting), or a laser metal fusion method (LMF:). Laser Metal Fusion).
  • the processing system SYS may use an arbitrary method for additional processing, which is different from the method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam).
  • the three-dimensional structure ST may be formed.
  • the processing system SYS forms the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 toward the irradiation region EA where the irradiation optical system 211 irradiates the processing light EL. ..
  • the processing system SYS may form the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 without irradiating the processing light EL from the irradiation optical system 211.
  • the processing system SYS melts the modeling material M on the modeling surface MS by spraying the modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the melted modeling material M.
  • the three-dimensional structure ST may be formed.
  • the processing system SYS melts the modeling material M on the modeling surface MS and solidifies the molten modeling material M by blowing a gas containing the modeling material M onto the modeling surface MS from the material nozzle 212 at an ultra-high speed.
  • the three-dimensional structure ST may be formed.
  • the processing system SYS melts the modeling material M on the modeling surface MS by spraying the heated modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the melted modeling material M.
  • the three-dimensional structure ST may be formed.
  • the processing system SYS (particularly, the processing head 21) does not have to include the irradiation optical system 211. Good.
  • the processing system SYS may perform a removal processing capable of removing at least a part of the object by irradiating an object such as a work W with a processing light EL (or an arbitrary energy beam). Good.
  • the processing system SYS irradiates an object such as a work W with processing light EL (or an arbitrary energy beam) in addition to or in place of at least one of addition processing and removal processing to mark at least a part of the object. Marking processing capable of forming (for example, letters, numbers or figures) may be performed. Even in this case, the above-mentioned effects can be enjoyed.
  • the processing system SYS capable of forming the three-dimensional structure ST from the modeling material M is provided with the material supply device 1.
  • a processing system capable of performing a processing process using an arbitrary powder may include a material supply device 1 that supplies the arbitrary powder instead of the modeling material M.
  • An example of such a processing system is a chemical manufacturing system that manufactures a pharmaceutical product from a granular or powdery raw material. In this case, the material supply device 1 supplies granular or powdery raw materials.
  • an example of such a processing system is a food manufacturing system that manufactures food from granular or powdery raw materials. In this case, the material supply device 1 supplies granular or powdery raw materials.
  • a processing system there is a recycling manufacturing system for manufacturing a PET bottle or a glass container (or various other products) from recycled pellets obtained by finely crushing a PET bottle or a glass container.
  • the material supply device 1 supplies the regenerated pellets.
  • an electronic product manufacturing system that manufactures an electronic product from minute parts. In this case, the material supply device 1 supplies minute parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

This processing system is for performing a processing by using powder and is provided with: a powder supply device for supplying powder; an imaging device for imaging powder passing through a powder supply path; and a control device for controlling the powder supply device on the basis of a powder image imaged by the imaging device.

Description

加工システム、制御装置、制御方法及びコンピュータプログラムMachining system, control device, control method and computer program
 本発明は、例えば、粉体を用いて加工処理を行う加工システム、並びに、加工システムを制御する制御装置、制御方法及びコンピュータプログラムの技術分野に関する。 The present invention relates to, for example, a processing system that performs processing using powder, and a technical field of a control device, a control method, and a computer program that controls the processing system.
 特許文献1には、粉体をエネルギビームで溶融したのちに、溶融した粉体を固化させることで造形物を形成する加工処理を行う加工システムが記載されている。このような加工システムでは、粉体を適切に供給することが技術的課題となる。 Patent Document 1 describes a processing system that performs a processing process for forming a modeled object by melting the powder with an energy beam and then solidifying the melted powder. In such a processing system, it is a technical problem to appropriately supply powder.
米国特許第5,038,014号U.S. Pat. No. 5,038,014
 第1の態様によれば、粉体を用いて加工処理を行う加工システムであって、前記粉体を供給する粉体供給装置と、前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、前記撮像装置が撮像した前記粉体の画像に基づいて、前記粉体供給装置を制御する制御装置とを備える加工システムが提供される。 According to the first aspect, it is a processing system that performs processing using powder, and images the powder supply device that supplies the powder and the powder that passes through the powder supply path. A processing system including an image pickup device and a control device for controlling the powder supply device based on an image of the powder imaged by the image pickup device is provided.
 第2の態様によれば、エネルギビームと粉体とを用いた加工処理を行う加工システムであって、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置と、前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、前記撮像装置が撮像した画像に基づいて、前記照射装置を制御する制御装置とを備える加工システムが提供される。 According to the second aspect, it is a processing system that performs a processing process using an energy beam and a powder, the irradiation device that irradiates the energy beam, the powder supply device that supplies the powder, and the said. A processing system including an image pickup device that images the powder passing through a powder supply path and a control device that controls the irradiation device based on the image captured by the image pickup device is provided.
 第3の態様によれば、粉体を用いて物体の加工処理を行う加工システムであって、前記粉体を供給する粉体供給装置と、前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置と、前記撮像装置が撮像した前記粉体の画像に基づいて、前記位置変更装置を制御する制御装置とを備える加工システムが提供される。 According to the third aspect, in a processing system that processes an object using powder, the powder supply device that supplies the powder and the powder that passes through the powder supply path are supplied. The position based on the image pickup device for imaging, the position change device for changing the positional relationship between the powder supply position supplied to the object and the object, and the powder image captured by the image pickup device. A machining system including a control device for controlling a change device is provided.
 第4の態様によれば、粉体を用いて加工処理を行う加工システムであって、前記粉体を供給する粉体供給装置と、前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、前記撮像装置が撮像した前記粉体の画像に基づいて前記粉体供給装置を制御するための制御信号を生成する制御装置から、前記制御信号を受信する受信装置とを備える加工システムが提供される。 According to the fourth aspect, it is a processing system that performs processing using powder, and images the powder supply device that supplies the powder and the powder that passes through the powder supply path. A processing system including an image pickup device and a receiving device that receives the control signal from a control device that generates a control signal for controlling the powder supply device based on an image of the powder imaged by the image pickup device. Is provided.
 第5の態様によれば、エネルギビームと粉体とを用いた加工処理を行う加工システムであって、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置と、前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、前記撮像装置が撮像した前記粉体の画像に基づいて前記照射装置を制御するための制御信号を生成する制御装置から、前記制御信号を受信する受信装置とを備える加工システムが提供される。 According to the fifth aspect, it is a processing system that performs a processing process using an energy beam and a powder, the irradiation device that irradiates the energy beam, the powder supply device that supplies the powder, and the said. From the image pickup device that images the powder passing through the powder supply path and the control device that generates a control signal for controlling the irradiation device based on the image of the powder imaged by the image pickup device, the said A processing system including a receiving device for receiving a control signal is provided.
 第6の態様によれば、粉体を用いて物体の加工処理を行う加工システムであって、前記粉体を供給する粉体供給装置と、前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置と、前記撮像装置が撮像した前記粉体の画像に基づいて前記位置変更装置を制御するための制御信号を生成する制御装置から、前記制御信号を受信する受信装置とを備える加工システムが提供される。 According to the sixth aspect, in a processing system that processes an object using powder, the powder supply device that supplies the powder and the powder that passes through the powder supply path are combined. The position change based on the image pickup device for imaging, the position change device for changing the positional relationship between the powder supply position supplied to the object and the object, and the powder image captured by the image pickup device. A processing system including a receiving device for receiving the control signal is provided from a control device for generating a control signal for controlling the device.
 第7の態様によれば、粉体を用いて加工処理を行う加工システムを制御する制御装置であって、前記加工システムは、前記粉体を供給する粉体供給装置を備え、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像に基づいて、前記粉体供給装置を制御する制御装置が提供される。 According to a seventh aspect, it is a control device that controls a processing system that performs processing using powder, and the processing system includes a powder supply device that supplies the powder, and the processing of the powder. A control device for controlling the powder supply device is provided based on an image of the powder obtained by imaging the powder passing through the supply path.
 第8の態様によれば、エネルギビームと粉体とを用いた加工処理を行う加工システムを制御する制御装置であって、前記加工システムは、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置とを備え、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像に基づいて前記照射装置を制御する制御装置が提供される。 According to an eighth aspect, the control device controls a processing system that performs processing using an energy beam and powder, and the processing system includes an irradiation device that irradiates the energy beam and the powder. A control device for controlling the irradiation device based on an image of the powder obtained by imaging the powder passing through the powder supply path is provided. To.
 第9の態様によれば、粉体を用いて物体の加工処理を行う加工システムを制御する制御装置であって、前記加工システムは、前記粉体を供給する粉体供給装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置とを備え、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像に基づいて前記位置変更装置を制御する制御装置が提供される。 According to a ninth aspect, it is a control device that controls a processing system that processes an object using powder, and the processing system is a powder supply device that supplies the powder and the object. The powder obtained by imaging the powder passing through the supply path of the powder, provided with a position changing device for changing the positional relationship between the supplied position of the powder to be supplied and the object. A control device for controlling the position changing device based on an image is provided.
 第10の態様によれば、粉体を用いて加工処理を行う加工システムを制御する制御方法であって、前記加工システムは、前記粉体を供給する粉体供給装置を備え、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、前記粉体の画像に基づいて、前記粉体供給装置を制御することとを含む制御方法が提供される。 According to a tenth aspect, it is a control method for controlling a processing system that performs processing using powder, wherein the processing system includes a powder supply device that supplies the powder, and the powder A control method including acquiring an image of the powder obtained by imaging the powder passing through the supply path and controlling the powder supply device based on the image of the powder. Is provided.
 第11の態様によれば、エネルギビームと粉体とを用いた加工処理を行う加工システムを制御する制御方法であって、前記加工システムは、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置とを備え、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、前記粉体の画像に基づいて前記照射装置を制御することとを含む制御方法が提供される。 According to the eleventh aspect, it is a control method for controlling a processing system that performs processing processing using an energy beam and powder, wherein the processing system includes an irradiation device that irradiates the energy beam and the powder. The powder supply device is provided, and an image of the powder obtained by imaging the powder passing through the powder supply path is obtained, and based on the image of the powder. A control method including controlling the irradiation device is provided.
 第12の態様によれば、粉体を用いて物体の加工処理を行う加工システムを制御する制御方法であって、前記加工システムは、前記粉体を供給する粉体供給装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置とを備え、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、前記粉体の画像に基づいて前記位置変更装置を制御することとを含む制御装置が提供される。 According to the twelfth aspect, it is a control method for controlling a processing system that processes an object using powder, and the processing system is a powder supply device that supplies the powder and the object. The powder obtained by imaging the powder passing through the powder supply path with a position changing device for changing the positional relationship between the supplied powder supply position and the object. A control device is provided that includes acquiring an image and controlling the position changing device based on the image of the powder.
 第13の態様によれば、粉体を用いて加工処理を行う加工システムを制御するコンピュータによって実行されるコンピュータプログラムであって、前記加工システムは、前記粉体を供給する粉体供給装置を備え、前記コンピュータプログラムは、前記コンピュータに、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、前記粉体の画像に基づいて、前記粉体供給装置を制御することとを実行させるコンピュータプログラムが提供される。 According to the thirteenth aspect, it is a computer program executed by a computer that controls a processing system that performs processing using powder, and the processing system includes a powder supply device that supplies the powder. The computer program acquires an image of the powder obtained by imaging the powder passing through the supply path of the powder on the computer, and based on the image of the powder, A computer program for controlling and executing the powder feeding device is provided.
 第14の態様によれば、エネルギビームと粉体とを用いて加工処理を行う加工システムを制御するコンピュータによって実行されるコンピュータプログラムであって、前記加工システムは、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置とを備え、前記コンピュータプログラムは、前記コンピュータに、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、前記粉体の画像に基づいて前記照射装置を制御することとを実行させるコンピュータプログラムが提供される。 According to a fourteenth aspect, the processing system is a computer program executed by a computer that controls a processing system that performs processing using an energy beam and powder, and the processing system is an irradiation device that irradiates the energy beam. And a powder supply device for supplying the powder, the computer program obtains an image of the powder obtained by imaging the powder passing through the supply path of the powder on the computer. A computer program is provided that executes the acquisition of the above and the control of the irradiation device based on the image of the powder.
 第15の態様によれば、粉体を用いて物体の加工処理を行う加工システムを制御するコンピュータによって実行されるコンピュータプログラムであって、前記加工システムは、前記粉体を供給する粉体供給装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置とを備え、前記コンピュータプログラムは、前記コンピュータに、前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、前記粉体の画像に基づいて前記位置変更装置を制御することとを実行させるコンピュータプログラムが提供される。 According to a fifteenth aspect, a computer program executed by a computer that controls a processing system that processes an object using powder, wherein the processing system is a powder supply device that supplies the powder. And a position changing device for changing the positional relationship between the powder supply position supplied to the object and the object, the computer program causes the computer to pass through the powder supply path. A computer program is provided that acquires an image of the powder obtained by imaging the powder and controls the position changing device based on the image of the powder.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The actions and other gains of the present invention will be clarified from the embodiments described below.
図1は、本実施形態の加工システムの構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the processing system of the present embodiment. 図2は、本実施形態の加工システムのシステム構成を示すシステム構成図である。FIG. 2 is a system configuration diagram showing a system configuration of the processing system of the present embodiment. 図3は、本実施形態の材料供給装置の構造を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the material supply device of the present embodiment. 図4は、材料供給装置が備える保持部材の構造を示す側面図である。FIG. 4 is a side view showing the structure of the holding member included in the material supply device. 図5(a)は、材料供給装置が備える搬送部材の第1の例の構造を示す斜視図であり、図5(b)は、搬送部材の第1の例の構造を示す正面図である。FIG. 5A is a perspective view showing the structure of the first example of the transport member included in the material supply device, and FIG. 5B is a front view showing the structure of the first example of the transport member. .. 図6(a)は、材料供給装置が備える搬送部材の第2の例の構造を示す斜視図であり、図6(b)から図6(c)のそれぞれは、搬送部材の第2の例の構造を示す断面図である。FIG. 6 (a) is a perspective view showing the structure of a second example of the transport member included in the material supply device, and each of FIGS. 6 (b) to 6 (c) is a second example of the transport member. It is sectional drawing which shows the structure of. 図7(a)から図7(e)のそれぞれは、ワーク上のある領域において光を照射し且つ造形材料を供給した場合の様子を示す断面図である。Each of FIGS. 7 (a) to 7 (e) is a cross-sectional view showing a state in which light is irradiated and a modeling material is supplied in a certain region on the work. 図8(a)から図8(c)のそれぞれは、3次元構造物を形成する過程を示す断面図である。Each of FIGS. 8 (a) to 8 (c) is a cross-sectional view showing a process of forming a three-dimensional structure. 図9は、造形材料の供給動作を行っている材料供給装置を示す断面図である。FIG. 9 is a cross-sectional view showing a material supply device that supplies modeling materials. 図10は、造形材料の実供給量を制御する供給量制御動作の流れを示すフローチャートである。FIG. 10 is a flowchart showing a flow of a supply amount control operation for controlling the actual supply amount of the modeling material. 図11は、撮像装置が撮像した元画像の一例を示す平面図である。FIG. 11 is a plan view showing an example of the original image captured by the imaging device. 図12は、元画像に二値化処理を行うことで生成される二値化画像の一例を示す平面図である。FIG. 12 is a plan view showing an example of a binarized image generated by performing a binarization process on the original image. 図13は、造形材料が二値化画像内で占める面積と造形材料の実供給量との相関関係を示す相関情報を示すグラフである。FIG. 13 is a graph showing correlation information showing the correlation between the area occupied by the modeling material in the binarized image and the actual supply amount of the modeling material. 図14は、造形材料Mの実供給量の時間変化を示すグラフである。FIG. 14 is a graph showing the time change of the actual supply amount of the modeling material M. 図15は、造形材料Mの実供給量の時間変化を示すグラフである。FIG. 15 is a graph showing the time change of the actual supply amount of the modeling material M. 図16は、撮像対象経路を撮像する撮像装置を示す断面図である。FIG. 16 is a cross-sectional view showing an imaging device that images an imaging target path. 図17は、材料ノズルとワークとの間の供給経路を通過する造形材料を撮像する撮像装置の一例を示す断面図である。FIG. 17 is a cross-sectional view showing an example of an image pickup apparatus that images a modeling material passing through a supply path between a material nozzle and a work. 図18は、材料ノズルとワークとの間の供給経路を通過する造形材料を撮像する撮像装置の一例を示す断面図である。FIG. 18 is a cross-sectional view showing an example of an image pickup apparatus that images a modeling material passing through a supply path between a material nozzle and a work. 図19は、材料ノズルとワークとの間の供給経路を通過する造形材料を撮像する撮像装置の一例を示す断面図である。FIG. 19 is a cross-sectional view showing an example of an image pickup apparatus that images a modeling material passing through a supply path between a material nozzle and a work. 図20(a)は、実供給方向と目標供給方向とが一致していない加工システムを示す断面図であり、図20(b)は、実供給方向と目標供給方向とが一致している加工システムを示す断面図である。FIG. 20A is a cross-sectional view showing a machining system in which the actual supply direction and the target supply direction do not match, and FIG. 20B is a machining in which the actual supply direction and the target supply direction coincide with each other. It is sectional drawing which shows the system. 図21は、造形材料の粒度と加工光の強度との相関関係の一例を示すグラフである。FIG. 21 is a graph showing an example of the correlation between the particle size of the modeling material and the intensity of the processing light. 図22は、フィードバック制御による搬送部材の制御量(具体的には、回転速度)と造形材料の実供給量との相関関係を示すグラフである。FIG. 22 is a graph showing the correlation between the control amount (specifically, the rotation speed) of the transport member by the feedback control and the actual supply amount of the modeling material. 図23は、フィードバック制御が行われていない状況下で、搬送部材の回転周期と同期して周期的に変動する造形材料Mの実供給量と、フィードバック制御による搬送部材の制御量(具体的には、回転速度)と、フィードバック制御が行われている状況下での造形材料Mの実供給量とを示すグラフである。FIG. 23 shows an actual supply amount of the modeling material M that periodically fluctuates in synchronization with the rotation cycle of the transfer member under a situation where feedback control is not performed, and a control amount of the transfer member by feedback control (specifically, Is a graph showing the rotation speed) and the actual supply amount of the modeling material M under the condition that the feedback control is performed. 図24(a)は、軸部材の中心軸よりも下方に位置する隙間から造形材料が落下する様子を示す断面図であり、図24(b)は、軸部材の中心軸よりも下方に位置する隙間から造形材料が落下する様子を示す正面図であり、図24(c)は、軸部材の中心軸よりも上方に位置する隙間から造形材料が落下する様子を示す断面図であり、図24(d)は、軸部材の中心軸よりも上方に位置する隙間から造形材料が落下する様子を示す正面図であり、図24(e)は、単位時間当たりに隙間から落下する造形材料の分量を示すグラフである。FIG. 24 (a) is a cross-sectional view showing how the modeling material falls from a gap located below the central axis of the shaft member, and FIG. 24 (b) is a sectional view showing how the molding material falls below the central axis of the shaft member. FIG. 24 (c) is a front view showing how the modeling material falls from the gap, and FIG. 24 (c) is a cross-sectional view showing how the modeling material falls from the gap located above the central axis of the shaft member. 24 (d) is a front view showing how the modeling material falls from the gap located above the central axis of the shaft member, and FIG. 24 (e) shows the modeling material falling from the gap per unit time. It is a graph which shows the quantity. 図25は、複数の材料ノズルを備えた加工ヘッドの構成を示す斜視図である。FIG. 25 is a perspective view showing the configuration of a processing head including a plurality of material nozzles.
 以下、図面を参照しながら、加工システム、制御装置、制御方法及びコンピュータプログラムの実施形態について説明する。以下では、物体の一例であるワークWに付加加工を行う加工システムSYS加工システムSYSを用いて、加工システム、制御装置、制御方法及びコンピュータプログラムの実施形態を説明する。特に、以下では、レーザ肉盛溶接法(LMD:Laser Metal Deposition)に基づく付加加工を含む加工処理を行う加工システムSYSを用いて、加工システム、制御装置、制御方法及びコンピュータプログラムの実施形態を説明する。レーザ肉盛溶接法に基づく付加加工は、ワークWに供給した造形材料Mを加工光EL(光の形態を有するエネルギビーム)で溶融することで、ワークWと一体化された又はワークWから分離可能な3次元構造物STを形成する付加加工である。 Hereinafter, the processing system, the control device, the control method, and the embodiment of the computer program will be described with reference to the drawings. Hereinafter, embodiments of a machining system, a control device, a control method, and a computer program will be described using the machining system SYS machining system SYS that performs additional machining on the work W, which is an example of an object. In particular, in the following, a machining system, a control device, a control method, and an embodiment of a computer program will be described using a machining system SYS that performs machining processing including additional machining based on a laser overlay welding method (LMD: Laser Metal Deposition). To do. In the additional processing based on the laser overlay welding method, the modeling material M supplied to the work W is melted by the processing light EL (energy beam having the form of light) to be integrated with the work W or separated from the work W. This is an additional process for forming a possible three-dimensional structure ST.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、加工システムSYSを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。 Further, in the following description, the positional relationship of various components constituting the machining system SYS will be described using the XYZ Cartesian coordinate system defined from the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction). Further, the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the θX direction, the θY direction, and the θZ direction, respectively. Here, the Z-axis direction may be the direction of gravity. Further, the XY plane may be horizontal.
 (1)加工システムSYSの構造
 初めに、本実施形態の加工システムSYSの構造について説明する。
(1) Structure of Processing System SYS First, the structure of the processing system SYS of the present embodiment will be described.
 (1-1)加工システムSYSの全体構造
 初めに、図1及び図2を参照しながら、本実施形態の加工システムSYSの全体構造について説明する。図1は、本実施形態の加工システムSYSの構造の一例を示す断面図である。図2は、本実施形態の加工システムSYSのシステム構成の一例を示すシステム構成図である。
(1-1) Overall Structure of Machining System SYS First, the overall structure of the machining system SYS of the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing an example of the structure of the processing system SYS of the present embodiment. FIG. 2 is a system configuration diagram showing an example of the system configuration of the processing system SYS of the present embodiment.
 加工システムSYSは、3次元構造物ST(つまり、3次元方向のいずれの方向においても大きさを持つ3次元の物体であり、立体物)を形成可能である。加工システムSYSは、3次元構造物STを形成するための基礎となるワークW上に、3次元構造物STを形成可能である。加工システムSYSは、付加加工の対象となる(つまり、加工処理の対象となる)ワークW上に、3次元構造物STを形成可能である。このワークWを基材又は台座と称してもよい。加工システムSYSは、ワークWに付加加工を行うことで、3次元構造物STを形成可能である。ワークWが後述するステージ31である場合には、加工システムSYSは、ステージ31上に、3次元構造物STを形成可能である。ワークWがステージ31によって保持されている(或いは、ステージ31に支持又は載置されている)既存構造物である場合には、加工システムSYSは、既存構造物上に、3次元構造物STを形成可能である。この場合、加工システムSYSは、既存構造物と一体化された3次元構造物STを形成してもよい。既存構造物と一体化された3次元構造物STを形成する動作は、既存構造物に新たな構造物を付加する動作と等価とみなせる。尚、既存構造物は例えば欠損箇所がある要修理品であってもよい。加工システムSYSは、要修理品の欠損箇所を埋めるように、要修理品に3次元構造物STを形成してもよい。或いは、加工システムSYSは、既存構造物と分離可能な3次元構造物STを形成してもよい。尚、図1は、ワークWが、ステージ31によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ31によって保持されている既存構造物である例を用いて説明を進める。 The processing system SYS can form a three-dimensional structure ST (that is, a three-dimensional object having a size in any of the three-dimensional directions and a three-dimensional object). The processing system SYS can form the three-dimensional structure ST on the work W that is the basis for forming the three-dimensional structure ST. The processing system SYS can form the three-dimensional structure ST on the work W that is the target of additional processing (that is, the target of processing). This work W may be referred to as a base material or a pedestal. The processing system SYS can form a three-dimensional structure ST by performing additional processing on the work W. When the work W is the stage 31, which will be described later, the machining system SYS can form the three-dimensional structure ST on the stage 31. When the work W is an existing structure held by the stage 31 (or supported or mounted on the stage 31), the processing system SYS puts the three-dimensional structure ST on the existing structure. It can be formed. In this case, the processing system SYS may form a three-dimensional structure ST integrated with the existing structure. The operation of forming the three-dimensional structure ST integrated with the existing structure can be regarded as equivalent to the operation of adding a new structure to the existing structure. The existing structure may be, for example, a repair-required product having a defective portion. The processing system SYS may form a three-dimensional structure ST on the repair-required product so as to fill the defective portion of the repair-required product. Alternatively, the processing system SYS may form a three-dimensional structure ST separable from the existing structure. Note that FIG. 1 shows an example in which the work W is an existing structure held by the stage 31. Further, in the following, the description will proceed with reference to an example in which the work W is an existing structure held by the stage 31.
 上述したように、加工システムSYSは、レーザ肉盛溶接法により3次元構造物STを形成可能である。つまり、加工システムSYSは、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称される。 As described above, the processing system SYS can form the three-dimensional structure ST by the laser overlay welding method. That is, it can be said that the processing system SYS is a 3D printer that forms an object by using the laminated modeling technology. The laminated modeling technique is also referred to as rapid prototyping, rapid manufacturing, or adaptive manufacturing.
 3次元構造物STを形成するために、加工システムSYSは、図1及び図2に示すように、材料供給装置1と、加工装置2と、ステージ装置3と、光源4と、ガス供給装置5と、筐体6と、制御装置7と、撮像装置8と、照明装置9とを備える。加工装置2とステージ装置3とのそれぞれの少なくとも一部は、筐体6の内部のチャンバ空間63IN内に収容されている。尚、筐体6をハウジングと称してもよい。ハウジングは箱形に限定されず、他の形状をしていてもよい。 In order to form the three-dimensional structure ST, the processing system SYS has a material supply device 1, a processing device 2, a stage device 3, a light source 4, and a gas supply device 5, as shown in FIGS. 1 and 2. A housing 6, a control device 7, an image pickup device 8, and a lighting device 9 are provided. At least a part of each of the processing device 2 and the stage device 3 is housed in the chamber space 63IN inside the housing 6. The housing 6 may be referred to as a housing. The housing is not limited to the box shape and may have other shapes.
 材料供給装置1は、加工装置2に造形材料Mを供給する。加工装置2は、後述するようにワークWに造形材料Mを供給する。このため、材料供給装置1は、加工装置2を介してワークWに造形材料Mを供給しているとみなしてもよい。材料供給装置1は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とする分量の造形材料Mが加工装置2に供給されるように、当該必要な分量に応じた供給レートで造形材料Mを供給する。つまり、材料供給装置1は、単位時間当たりの造形材料Mの供給量が、当該必要な分量に応じた所望の供給量となるように、造形材料Mを供給する。尚、材料供給装置1の構造については、図3等を参照しながら後に詳述するため、ここでの詳細な説明を省略する。 The material supply device 1 supplies the modeling material M to the processing device 2. The processing apparatus 2 supplies the modeling material M to the work W as described later. Therefore, the material supply device 1 may be regarded as supplying the modeling material M to the work W via the processing device 2. The material supply device 1 corresponds to the required amount so that the modeling material M required for the processing device 2 to form the three-dimensional structure ST is supplied to the processing device 2. The modeling material M is supplied at the supply rate. That is, the material supply device 1 supplies the modeling material M so that the supply amount of the modeling material M per unit time becomes a desired supply amount according to the required amount. Since the structure of the material supply device 1 will be described in detail later with reference to FIG. 3 and the like, detailed description thereof will be omitted here.
 造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属材料及び樹脂材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属材料及び樹脂材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の材料である。つまり、造形材料Mは、粉体である。粉体は、粉状の材料に加えて、粒状の材料を含んでいてもよい。造形材料Mは、例えば、90マイクロメートル±40マイクロメートルの範囲に収まる粒径の粉体を含んでいてもよい。造形材料Mを構成する粉体の平均粒径は、例えば、75マイクロメートルであってもよいし、その他のサイズであってもよい。 The modeling material M is a material that can be melted by irradiation with a processing light EL having a predetermined intensity or higher. As such a modeling material M, for example, at least one of a metal material and a resin material can be used. However, as the modeling material M, other materials different from the metal material and the resin material may be used. The modeling material M is a powdery material. That is, the modeling material M is a powder. The powder may contain a granular material in addition to the powdery material. The modeling material M may contain, for example, a powder having a particle size within the range of 90 micrometers ± 40 micrometers. The average particle size of the powders constituting the modeling material M may be, for example, 75 micrometers or other sizes.
 加工装置2は、材料供給装置1から供給される造形材料Mを用いて3次元構造物STを形成する。造形材料Mを用いて3次元構造物STを形成するために、加工装置2は、加工ヘッド21と、ヘッド駆動系22とを備える。更に、加工ヘッド21は、照射光学系211と、材料ノズル(つまり造形材料Mを供給する供給系又は供給装置)212とを備えている。加工ヘッド21と、ヘッド駆動系22とは、チャンバ空間63IN内に収容されている。但し、加工ヘッド21及び/又はヘッド駆動系22の少なくとも一部が、筐体6の外部の空間である外部空間64OUTに配置されていてもよい。尚、外部空間64OUTは、加工システムSYSのオペレータが立ち入り可能な空間であってもよい。 The processing device 2 forms the three-dimensional structure ST using the modeling material M supplied from the material supply device 1. In order to form the three-dimensional structure ST using the modeling material M, the processing apparatus 2 includes a processing head 21 and a head drive system 22. Further, the processing head 21 includes an irradiation optical system 211 and a material nozzle (that is, a supply system or a supply device for supplying the modeling material M) 212. The processing head 21 and the head drive system 22 are housed in the chamber space 63IN. However, at least a part of the processing head 21 and / or the head drive system 22 may be arranged in the external space 64OUT, which is the space outside the housing 6. The external space 64OUT may be a space accessible to the operator of the processing system SYS.
 照射光学系211は、射出部213から加工光ELを射出するための光学系(例えば、集光光学系)である。具体的には、照射光学系211は、加工光ELを発する光源4と、光ファイバやライトパイプ等の不図示の光伝送部材を介して光学的に接続されている。照射光学系211は、光伝送部材を介して光源4から伝搬してくる加工光ELを射出する。照射光学系211は、加工光ELがチャンバ空間63INを進むように加工光ELを射出する。照射光学系211は、照射光学系211から下方(つまり、-Z側)に向けて加工光ELを照射する。照射光学系211の下方には、ステージ31が配置されている。ステージ31にワークWが載置されている場合には、照射光学系211は、ワークWに向けて加工光ELを照射する。具体的には、照射光学系211は、加工光ELが照射される(典型的には、集光される)領域としてワークW上に設定される照射領域EAに加工光ELを照射可能である。更に、照射光学系211の状態は、制御装置7の制御下で、照射領域EAに加工光ELを照射する状態と、照射領域EAに加工光ELを照射しない状態との間で切替可能である。尚、照射光学系211から射出される加工光ELの方向は真下(つまり、-Z軸方向と一致)には限定されず、例えば、Z軸に対して所定の角度だけ傾いた方向であってもよい。 The irradiation optical system 211 is an optical system (for example, a condensing optical system) for emitting the processed light EL from the injection unit 213. Specifically, the irradiation optical system 211 is optically connected to the light source 4 that emits the processed light EL via an optical transmission member (not shown) such as an optical fiber or a light pipe. The irradiation optical system 211 emits the processed light EL propagating from the light source 4 via the optical transmission member. The irradiation optical system 211 emits the processing light EL so that the processing light EL advances in the chamber space 63IN. The irradiation optical system 211 irradiates the processed light EL downward (that is, the −Z side) from the irradiation optical system 211. A stage 31 is arranged below the irradiation optical system 211. When the work W is placed on the stage 31, the irradiation optical system 211 irradiates the work W with the processing light EL. Specifically, the irradiation optical system 211 can irradiate the irradiation area EA set on the work W as the area where the processing light EL is irradiated (typically, the light is focused). .. Further, the state of the irradiation optical system 211 can be switched between a state in which the irradiation area EA is irradiated with the processing light EL and a state in which the irradiation area EA is not irradiated with the processing light EL under the control of the control device 7. .. The direction of the processed light EL emitted from the irradiation optical system 211 is not limited to directly below (that is, coincident with the −Z axis direction), and is, for example, a direction tilted by a predetermined angle with respect to the Z axis. May be good.
 材料ノズル212は、ワークWに向けて造形材料Mを供給する材料供給部材(粉体供給部材)である。具体的には、材料ノズル212には、造形材料Mを供給する供給口214が形成されている。供給口214は、例えば、材料ノズル212のうちのワークW側を向いた部分(つまり、ワークWに対向する部分であり、-Z側を向いた部分)に形成される。材料ノズル212は、供給口214から造形材料Mを供給する(例えば、噴射する、噴出する、又は、吹き付ける)。材料ノズル212は、材料供給装置1と、不図示のパイプ等を介して物理的に接続されている。材料ノズル212は、パイプを介して材料供給装置1から供給される造形材料Mを供給する。材料ノズル212は、パイプを介して材料供給装置1から供給される造形材料Mを圧送してもよい。即ち、材料供給装置1は、材料供給装置1からの造形材料Mと搬送用の気体(例えば、窒素やアルゴン等の不活性ガス)とを混合してパイプを介して材料ノズル212に圧送してもよい。この場合、搬送用の気体として、例えば、ガス供給装置5から供給されるパージガスが用いられてもよい。尚、図1において材料ノズル212は、チューブ状に描かれているが、材料ノズル212の形状は、この形状に限定されない。材料ノズル212は、チャンバ空間63INに向けて造形材料Mを供給する。材料ノズル212は、材料ノズル212から下方(つまり、-Z側)に向けて造形材料Mを供給する。材料ノズル212の下方には、ステージ31が配置されている。ステージ31にワークWが搭載されている場合には、材料ノズル212は、ワークWに向けて造形材料Mを供給する。尚、材料ノズル212から供給される造形材料Mの進行方向はZ軸方向に対して所定の角度(一例として鋭角)だけ傾いた方向であるが、-Z側(つまり、真下)であってもよい。 The material nozzle 212 is a material supply member (powder supply member) that supplies the modeling material M toward the work W. Specifically, the material nozzle 212 is formed with a supply port 214 for supplying the modeling material M. The supply port 214 is formed, for example, in a portion of the material nozzle 212 facing the work W side (that is, a portion facing the work W and facing the −Z side). The material nozzle 212 supplies the modeling material M from the supply port 214 (for example, spraying, ejecting, or spraying). The material nozzle 212 is physically connected to the material supply device 1 via a pipe (not shown) or the like. The material nozzle 212 supplies the modeling material M supplied from the material supply device 1 via a pipe. The material nozzle 212 may pump the modeling material M supplied from the material supply device 1 via a pipe. That is, the material supply device 1 mixes the modeling material M from the material supply device 1 and a gas for transportation (for example, an inert gas such as nitrogen or argon) and pumps it to the material nozzle 212 via a pipe. May be good. In this case, for example, the purge gas supplied from the gas supply device 5 may be used as the transport gas. Although the material nozzle 212 is drawn in a tubular shape in FIG. 1, the shape of the material nozzle 212 is not limited to this shape. The material nozzle 212 supplies the modeling material M toward the chamber space 63IN. The material nozzle 212 supplies the modeling material M downward (that is, the −Z side) from the material nozzle 212. A stage 31 is arranged below the material nozzle 212. When the work W is mounted on the stage 31, the material nozzle 212 supplies the modeling material M toward the work W. The traveling direction of the modeling material M supplied from the material nozzle 212 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z-axis direction, but even if it is on the −Z side (that is, directly below). Good.
 本実施形態では、材料ノズル212は、照射光学系211が加工光ELを照射する照射領域EAに向けて造形材料Mを供給するように、照射光学系211に対して位置合わせされている。逆に言えば、本実施形態では、照射光学系211は、材料ノズル212が造形材料Mを供給する領域としてワークW上に設定される供給領域MAに向けて加工光ELを射出するように、材料ノズル212に対して位置合わせされている。つまり、供給領域MAと照射領域EAとが一致する(或いは、少なくとも部分的に重複する)ように、材料ノズル212と照射光学系211とが位置合わせされている。尚、照射光学系211から射出された加工光ELによって形成される溶融池MPに、材料ノズル212が造形材料Mを供給するように位置合わせされていてもよい。 In the present embodiment, the material nozzle 212 is aligned with the irradiation optical system 211 so that the irradiation optical system 211 supplies the modeling material M toward the irradiation region EA on which the processing light EL is irradiated. Conversely, in the present embodiment, the irradiation optical system 211 emits the processing light EL toward the supply region MA set on the work W as the region where the material nozzle 212 supplies the modeling material M. Aligned with respect to material nozzle 212. That is, the material nozzle 212 and the irradiation optical system 211 are aligned so that the supply region MA and the irradiation region EA coincide with each other (or at least partially overlap). The material nozzle 212 may be aligned so as to supply the modeling material M to the molten pool MP formed by the processing light EL emitted from the irradiation optical system 211.
 ヘッド駆動系22は、加工ヘッド21を移動させる。ヘッド駆動系22は、例えば、チャンバ空間63IN内で加工ヘッド21を移動させる。ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つに沿って加工ヘッド21を移動させる。更に、ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つに加えて、θX方向、θY方向及びθZ方向の少なくとも一つの回転方向に沿って加工ヘッド21を移動させてもよい。言い換えると、ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つの軸回りに加工ヘッド21を回転させてもよい。ヘッド駆動系22は、X軸、Y軸及びZ軸の少なくとも一つの軸回りに加工ヘッド21の姿勢を変えてもよい。ヘッド駆動系22は、例えば、モータ等のアクチュエータを含む。 The head drive system 22 moves the processing head 21. The head drive system 22 moves the processing head 21 within the chamber space 63IN, for example. The head drive system 22 moves the machining head 21 along at least one of the X-axis, the Y-axis, and the Z-axis. Further, the head drive system 22 may move the machining head 21 along at least one rotation direction in the θX direction, the θY direction, and the θZ direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis. .. In other words, the head drive system 22 may rotate the machining head 21 around at least one of the X-axis, Y-axis, and Z-axis. The head drive system 22 may change the posture of the machining head 21 around at least one of the X-axis, the Y-axis, and the Z-axis. The head drive system 22 includes an actuator such as a motor, for example.
 加工ヘッド21がX軸及びθY方向の少なくとも一つに沿って移動すると、照射領域EA及び供給領域MAのそれぞれは、ワークW上をX軸に沿って移動する。加工ヘッド21がY軸及びθX方向の少なくとも一つに沿って移動すると、照射領域EA及び供給領域MAのそれぞれは、ワークW上をY軸に沿って移動する。つまり、ヘッド駆動系22は、加工ヘッド21を移動させることで、照射領域EA及び供給領域MAのそれぞれとワークWとの位置関係を変更することができる。 When the processing head 21 moves along at least one of the X-axis and the θY direction, each of the irradiation region EA and the supply region MA moves along the X-axis on the work W. When the processing head 21 moves along at least one of the Y axis and the θX direction, each of the irradiation region EA and the supply region MA moves along the Y axis on the work W. That is, the head drive system 22 can change the positional relationship between the irradiation region EA and the supply region MA and the work W by moving the processing head 21.
 尚、ヘッド駆動系22は、照射光学系211と材料ノズル212とを別々に移動させてもよい。具体的には、例えば、ヘッド駆動系22は、射出部213の位置、射出部213の向き、供給口214の位置及び供給口214の向きの少なくとも一つを調整可能であってもよい。この場合、照射光学系211が加工光ELを照射する照射領域EAと、材料ノズル212が造形材料Mを供給する供給領域MAとが別々に制御可能となる。 The head drive system 22 may move the irradiation optical system 211 and the material nozzle 212 separately. Specifically, for example, the head drive system 22 may be capable of adjusting at least one of the position of the injection unit 213, the direction of the injection unit 213, the position of the supply port 214, and the direction of the supply port 214. In this case, the irradiation region EA in which the irradiation optical system 211 irradiates the processing light EL and the supply region MA in which the material nozzle 212 supplies the modeling material M can be controlled separately.
 ステージ装置3は、ステージ31を備えている。ステージ31は、チャンバ空間63INに収容される。ステージ31は、ワークWを支持可能である。尚、ここで言う「ステージ31がワークWを支持する」状態は、ワークWがステージ31によって直接的に又は間接的に支えられている状態を意味していてもよい。ステージ31は、ワークWを保持可能であってもよい。つまり、ステージ31は、ワークWを保持することでワークWを支持してもよい。この場合、ステージ31は、ワークWを保持するために、機械的なチャックや真空吸着チャック等を備えていてもよい。或いは、ステージ31は、ワークWを保持可能でなくてもよい。この場合、ワークWは、ステージ31に載置されていてもよい。つまり、ステージ31は、ステージ31に載置されたワークWを支持してもよい。このとき、ワークWは、クランプレスでステージ31に載置されていてもよい。従って、本実施形態における「ステージ31がワークWを支持する」状態は、ステージ31がワークWを保持する状態及びワークWがステージ31に載置される状態をも含んでいてもよい。ステージ31がチャンバ空間63INに収容されるため、ステージ31が支持するワークWもまた、チャンバ空間63INに収容される。更に、ステージ31は、ワークWが保持されている場合には、保持したワークWをリリース可能である。上述した照射光学系211は、ステージ31がワークWを支持している期間の少なくとも一部において加工光ELを照射する。更に、上述した材料ノズル212は、ステージ31がワークWを支持している期間の少なくとも一部において造形材料Mを供給する。尚、材料ノズル212が供給した造形材料Mの一部は、ワークWの表面からワークWの外部へと(例えば、ステージ31の周囲へと)散乱する又はこぼれ落ちる可能性がある。このため、加工システムSYSは、ステージ31の周囲に、散乱した又はこぼれ落ちた造形材料Mを回収する回収装置を備えていてもよい。 The stage device 3 includes a stage 31. The stage 31 is housed in the chamber space 63IN. The stage 31 can support the work W. The state in which the work W supports the work W may mean a state in which the work W is directly or indirectly supported by the stage 31. The stage 31 may be able to hold the work W. That is, the stage 31 may support the work W by holding the work W. In this case, the stage 31 may be provided with a mechanical chuck, a vacuum suction chuck, or the like in order to hold the work W. Alternatively, the stage 31 does not have to be able to hold the work W. In this case, the work W may be placed on the stage 31. That is, the stage 31 may support the work W placed on the stage 31. At this time, the work W may be mounted on the stage 31 without being clamped. Therefore, the state in which the "stage 31 supports the work W" in the present embodiment may include a state in which the stage 31 holds the work W and a state in which the work W is placed on the stage 31. Since the stage 31 is housed in the chamber space 63IN, the work W supported by the stage 31 is also housed in the chamber space 63IN. Further, the stage 31 can release the held work W when the work W is held. The irradiation optical system 211 described above irradiates the processing light EL at least a part of the period during which the stage 31 supports the work W. Further, the material nozzle 212 described above supplies the modeling material M during at least a part of the period in which the stage 31 supports the work W. A part of the modeling material M supplied by the material nozzle 212 may be scattered or spilled from the surface of the work W to the outside of the work W (for example, around the stage 31). Therefore, the processing system SYS may be provided with a recovery device for recovering the scattered or spilled modeling material M around the stage 31.
 ステージ31は、不図示のステージ駆動系によって移動可能であってもよい。この場合、ステージ駆動系は、例えば、チャンバ空間63IN内でステージ31を移動させてもよい。ステージ駆動系は、X軸、Y軸及びZ軸の少なくとも一つに沿ってステージ31を移動させてもよい。ステージ31がX軸及びY軸の少なくとも一方に沿って移動すると、照射領域EA及び供給領域MAのそれぞれは、ワークW上をX軸及びY軸の少なくとも一方に沿って移動する。更に、ステージ駆動系は、X軸、Y軸及びZ軸の少なくとも一つに加えて、θX方向、θY方向及びθZ方向の少なくとも一つの回転方向に沿ってステージ31を移動させてもよい。ステージ駆動系は、例えば、モータ等のアクチュエータを含む。ステージ装置3がステージ駆動系を備えている場合には、加工装置2は、ヘッド駆動系22を備えていなくてもよい。 The stage 31 may be movable by a stage drive system (not shown). In this case, the stage drive system may move the stage 31 within the chamber space 63IN, for example. The stage drive system may move the stage 31 along at least one of the X-axis, the Y-axis, and the Z-axis. When the stage 31 moves along at least one of the X-axis and the Y-axis, each of the irradiation region EA and the supply region MA moves on the work W along at least one of the X-axis and the Y-axis. Further, the stage drive system may move the stage 31 along at least one rotation direction in the θX direction, the θY direction, and the θZ direction in addition to at least one of the X-axis, the Y-axis, and the Z-axis. The stage drive system includes, for example, an actuator such as a motor. When the stage device 3 includes a stage drive system, the processing device 2 does not have to include the head drive system 22.
 光源4は、例えば、赤外光及び紫外光のうちの少なくとも一つを、加工光ELとして射出する。但し、加工光ELとして、その他の波長の光(例えば、可視域の波長の光)が用いられてもよい。加工光ELは、レーザ光である。この場合、光源4は、半導体レーザ等のレーザ光源を含んでいてもよい。レーザ光源の一例としては、レーザダイオード(LD:Laser Diode)、ファイバ・レーザ、COレーザ、YAGレーザ及びエキシマレーザ等の少なくとも一つがあげられる。但し、加工光ELはレーザ光でなくてもよいし、光源4は任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。 The light source 4 emits, for example, at least one of infrared light and ultraviolet light as processed light EL. However, as the processed light EL, light having another wavelength (for example, light having a wavelength in the visible region) may be used. The processing light EL is a laser light. In this case, the light source 4 may include a laser light source such as a semiconductor laser. Examples of the laser light source include at least one such as a laser diode (LD: Laser Diode), a fiber laser, a CO 2 laser, a YAG laser, and an excimer laser. However, the processing light EL does not have to be a laser beam, and the light source 4 may include an arbitrary light source (for example, at least one such as an LED (Light Emitting Diode) and a discharge lamp).
 ガス供給装置5は、チャンバ空間63INをパージするためのパージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス又はアルゴンガスがあげられる。ガス供給装置5は、チャンバ空間63INにパージガスを供給する。その結果、チャンバ空間63INは、パージガスによってパージされた空間となる。ガス供給装置5は更に、材料供給装置1に対してもパージガスを供給する。材料供給装置1に供給されたパージガスは、後述するように、主として材料供給装置1から材料ノズル212へと造形材料Mを圧送するために用いられる。このため、ガス供給装置5は、材料供給装置1に対して、加圧されたパージガスを供給する。尚、ガス供給装置5は、窒素ガスやアルゴンガス等のパージガスが格納されたボンベであってもよい。パージガスが窒素ガスである場合には、ガス供給装置5は、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。 The gas supply device 5 is a supply source of purge gas for purging the chamber space 63IN. The purge gas contains an inert gas. As an example of the inert gas, nitrogen gas or argon gas can be mentioned. The gas supply device 5 supplies purge gas to the chamber space 63IN. As a result, the chamber space 63IN becomes a space purged by the purge gas. The gas supply device 5 also supplies purge gas to the material supply device 1. The purge gas supplied to the material supply device 1 is mainly used for pumping the modeling material M from the material supply device 1 to the material nozzle 212, as will be described later. Therefore, the gas supply device 5 supplies the pressurized purge gas to the material supply device 1. The gas supply device 5 may be a cylinder in which a purge gas such as nitrogen gas or argon gas is stored. When the purge gas is nitrogen gas, the gas supply device 5 may be a nitrogen gas generator that generates nitrogen gas from the atmosphere as a raw material.
 ガス供給装置5は、チャンバ空間63INへのガス供給態様と、材料供給装置1へのガス供給態様とを、別々に制御してもよい。例えば、ガス供給装置5は、チャンバ空間63INへのパージガスの単位時間当たりの供給量と、材料供給装置1へのパージガスの単位時間当たりの供給量とが異なるように、チャンバ空間63IN及び材料供給装置1のそれぞれへのガス供給態様を制御してもよい。例えば、ガス供給装置5は、チャンバ空間63IN及び材料供給装置1のいずれか一方へのパージガスの供給を停止した状態で、チャンバ空間63IN及び材料供給装置1のいずれか他方にパージガスを供給するように、チャンバ空間63IN及び材料供給装置1のそれぞれへのガス供給態様を制御してもよい。また、チャンバ空間63INに供給されるパージガスの特性(例えば、温度等)と、材料供給装置1に供給されるパージガスの特性とが異なっていてもよい。チャンバ空間63INに供給されるパージガスの組成と、材料供給装置1に供給されるパージガスの組成とが異なっていてもよい。尚、加工システムSYSは、チャンバ空間63INにパージガスを供給するガス供給装置と、材料供給装置1にパージガスを供給するガス供給装置とを別々に備えていてもよい。 The gas supply device 5 may separately control the gas supply mode to the chamber space 63IN and the gas supply mode to the material supply device 1. For example, the gas supply device 5 has the chamber space 63IN and the material supply device so that the supply amount of the purge gas to the chamber space 63IN per unit time and the supply amount of the purge gas to the material supply device 1 per unit time are different. The gas supply mode to each of 1 may be controlled. For example, the gas supply device 5 supplies the purge gas to either the chamber space 63IN or the material supply device 1 in a state where the supply of the purge gas to the chamber space 63IN or the material supply device 1 is stopped. , The mode of gas supply to each of the chamber space 63IN and the material supply device 1 may be controlled. Further, the characteristics of the purge gas supplied to the chamber space 63IN (for example, temperature and the like) may be different from the characteristics of the purge gas supplied to the material supply device 1. The composition of the purge gas supplied to the chamber space 63IN may be different from the composition of the purge gas supplied to the material supply device 1. The processing system SYS may separately include a gas supply device that supplies purge gas to the chamber space 63IN and a gas supply device that supplies purge gas to the material supply device 1.
 筐体6は、筐体6の内部空間であるチャンバ空間63INに少なくとも加工装置2及びステージ装置3のそれぞれの少なくとも一部を収容する収容装置である。筐体6は、チャンバ空間63INを規定する隔壁部材61を含む。隔壁部材61は、チャンバ空間63INと、筐体6の外部空間64OUTとを隔てる部材である。隔壁部材61は、その内壁611を介してチャンバ空間63INに面し、その外壁612を介して外部空間64OUTに面する。この場合、隔壁部材61によって囲まれた空間(より具体的には、隔壁部材61の内壁611によって囲まれた空間)が、チャンバ空間63INとなる。尚、隔壁部材61には、開閉可能な扉が設けられていてもよい。この扉は、ワークWをステージ31に載置する(又は支持或いは保持されるように搬入する)際に開かれてもよい。この扉は、ステージ31からワークW及び/又は3次元構造物STを取り出す際に開かれてもよい。一方で、この扉は、3次元構造物STを形成するための付加加工が行われている間は閉じられていてもよい。 The housing 6 is a storage device that accommodates at least a part of each of the processing device 2 and the stage device 3 in the chamber space 63IN, which is the internal space of the housing 6. The housing 6 includes a partition member 61 that defines the chamber space 63IN. The partition member 61 is a member that separates the chamber space 63IN from the external space 64OUT of the housing 6. The partition member 61 faces the chamber space 63IN via its inner wall 611, and faces the outer space 64OUT via its outer wall 612. In this case, the space surrounded by the partition member 61 (more specifically, the space surrounded by the inner wall 611 of the partition member 61) becomes the chamber space 63IN. The partition member 61 may be provided with a door that can be opened and closed. This door may be opened when the work W is placed on the stage 31 (or brought in so as to be supported or held). This door may be opened when the work W and / or the three-dimensional structure ST is taken out from the stage 31. On the other hand, this door may be closed while the additional processing for forming the three-dimensional structure ST is being performed.
 制御装置7は、加工システムSYSの動作を制御する。例えば、制御装置7は、照射光学系211による加工光ELの射出態様を制御してもよい。射出態様は、例えば、加工光ELの強度及び加工光ELの射出タイミングの少なくとも一方を含んでいてもよい。加工光ELがパルス光である場合には、射出態様は、例えば、パルス光の発光時間の長さとパルス光の発光周期との比(いわゆる、デューティ比)を含んでいてもよい。また、射出態様は、例えば、パルス光の発光時間の長さそのもの及び発光周期そのものの少なくとも一方を含んでいてもよい。更に、制御装置7は、ヘッド駆動系22による加工ヘッド21の移動態様を制御してもよい。移動態様は、例えば、移動量、移動速度、移動方向及び移動タイミングの少なくとも一つを含んでいてもよい。更に、制御装置7は、材料供給装置1による造形材料Mの供給態様を制御してもよい。材料ノズル212による造形材料Mの供給態様は、主として、材料供給装置1による造形材料Mの供給態様によって定まる。このため、材料供給装置1による造形材料Mの供給態様を制御することは、材料ノズル212による造形材料Mの供給態様を制御することと等価とみなせる。供給態様は、例えば、供給量(特に、単位時間当たりの供給量)及び供給タイミングの少なくとも一方を含んでいてもよい。 The control device 7 controls the operation of the processing system SYS. For example, the control device 7 may control the emission mode of the processed light EL by the irradiation optical system 211. The injection mode may include, for example, at least one of the intensity of the processing light EL and the injection timing of the processing light EL. When the processing light EL is pulsed light, the injection mode may include, for example, a ratio (so-called duty ratio) between the length of the emission time of the pulsed light and the emission period of the pulsed light. Further, the injection mode may include, for example, at least one of the length of the emission time of the pulsed light itself and the emission period itself. Further, the control device 7 may control the movement mode of the processing head 21 by the head drive system 22. The movement mode may include, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing. Further, the control device 7 may control the supply mode of the modeling material M by the material supply device 1. The supply mode of the modeling material M by the material nozzle 212 is mainly determined by the supply mode of the modeling material M by the material supply device 1. Therefore, controlling the supply mode of the modeling material M by the material supply device 1 can be regarded as equivalent to controlling the supply mode of the modeling material M by the material nozzle 212. The supply mode may include, for example, at least one of a supply amount (particularly, a supply amount per unit time) and a supply timing.
 制御装置7は、例えば、演算装置と記憶装置とを含んでいてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit))の少なくとも一方を含んでいてもよい。制御装置7は、演算装置がコンピュータプログラムを実行することで、加工システムSYSの動作を制御する装置として機能する。このコンピュータプログラムは、制御装置7が行うべき上述した動作を制御装置7(例えば、演算装置)に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工システムSYSに後述する動作を行わせるように制御装置7を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置7が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置7に内蔵された又は制御装置7に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置7の外部の装置からダウンロードしてもよい。 The control device 7 may include, for example, an arithmetic unit and a storage device. The arithmetic unit may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The control device 7 functions as a device that controls the operation of the processing system SYS by executing a computer program by the arithmetic unit. This computer program is a computer program for causing the control device 7 (for example, an arithmetic unit) to perform (that is, execute) the above-mentioned operation to be performed by the control device 7. That is, this computer program is a computer program for causing the control device 7 to function so that the processing system SYS performs the operation described later. The computer program executed by the arithmetic unit may be recorded in a storage device (that is, a recording medium) included in the control device 7, or any storage built in the control device 7 or externally attached to the control device 7. It may be recorded on a medium (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 7 via the network interface.
 制御装置7は、加工システムSYSの内部に設けられていなくてもよく、例えば、加工システムSYS外にサーバ等として設けられていてもよい。この場合、制御装置7と加工システムSYSとは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置7と加工システムSYSとはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置7は、ネットワークを介して加工システムSYSにコマンドや制御パラメータ等の情報を送信可能であってもよい。加工システムSYSは、制御装置7からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。或いは、制御装置7が行う処理のうちの一部を行う第1制御装置が加工システムSYSの内部に設けられている一方で、制御装置7が行う処理のうちの他の一部を行う第2制御装置が加工システムSYSの外部に設けられていてもよい。 The control device 7 does not have to be provided inside the processing system SYS, and may be provided as a server or the like outside the processing system SYS, for example. In this case, the control device 7 and the processing system SYS may be connected by a wired and / or wireless network (or a data bus and / or a communication line). As the wired network, for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used. As the wired network, a network using a parallel bus interface may be used. As a wired network, a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used. As the wireless network, a network using radio waves may be used. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®). As the wireless network, a network using infrared rays may be used. As the wireless network, a network using optical communication may be used. In this case, the control device 7 and the processing system SYS may be configured so that various types of information can be transmitted and received via the network. Further, the control device 7 may be able to transmit information such as commands and control parameters to the processing system SYS via the network. The processing system SYS may include a receiving device that receives information such as commands and control parameters from the control device 7 via the network. Alternatively, while the first control device that performs a part of the processing performed by the control device 7 is provided inside the processing system SYS, the second control device that performs the other part of the processing performed by the control device 7 is provided. The control device may be provided outside the processing system SYS.
 尚、演算装置が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置7(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置7内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置7が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 The recording medium for recording the computer program executed by the arithmetic unit includes CD-ROM, CD-R, CD-RW, flexible disc, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD-. At least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memories such as USB memory, and any other medium capable of storing a program is used. You may. The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in a state in which it can be executed in at least one form such as software and firmware). Further, each process or function included in the computer program may be realized by a logical processing block realized in the control device 7 by the control device 7 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 7, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
 撮像装置8は、撮像対象物を撮像可能なカメラである。撮像装置8が撮像した画像は、制御装置7に出力される。制御装置7は、撮像装置8が撮像した画像に基づいて、加工システムSYSの動作を制御してもよい。 The image pickup device 8 is a camera capable of taking an image of an object to be imaged. The image captured by the image pickup device 8 is output to the control device 7. The control device 7 may control the operation of the processing system SYS based on the image captured by the image pickup device 8.
 本実施形態では、撮像装置8は、造形材料Mの供給経路の少なくとも一部を撮像する。つまり、本実施形態では、撮像装置8の撮像範囲IMA(後述の図3等参照)が、造形材料Mの供給経路の少なくとも一部を含むように、撮像装置8が配置される。尚、以下の説明では、説明の便宜上、撮像装置8が撮像する(つまり、撮像範囲IMAに含まれる)造形材料Mの供給経路の少なくとも一部を、“撮像対象経路”と称する。 In the present embodiment, the image pickup apparatus 8 images at least a part of the supply path of the modeling material M. That is, in the present embodiment, the image pickup device 8 is arranged so that the image pickup range IMA of the image pickup device 8 (see FIG. 3 and the like described later) includes at least a part of the supply path of the modeling material M. In the following description, for convenience of explanation, at least a part of the supply path of the modeling material M to be imaged by the imaging device 8 (that is, included in the imaging range IMA) is referred to as an “imaging target path”.
 撮像対象経路を造形材料Mが通過している期間中には、撮像装置8は、撮像対象経路を通過する造形材料Mを撮像する。この場合、撮像装置8が撮像した画像には、撮像対象経路を通過する造形材料Mが映り込んでいる。このため、撮像装置8が撮像した画像は、撮像対象経路を通過する造形材料Mに関する情報を含んでいると言える。特に、撮像装置8が撮像した画像には、撮像対象経路を通過して供給される造形材料Mが映り込んでいる。このため、撮像装置8が撮像した画像は、造形材料Mの供給状態に関する情報を含んでいると言える。 During the period during which the modeling material M passes through the imaging target path, the imaging device 8 images the modeling material M passing through the imaging target path. In this case, the modeling material M passing through the image pickup target path is reflected in the image captured by the image pickup apparatus 8. Therefore, it can be said that the image captured by the image pickup apparatus 8 includes information regarding the modeling material M passing through the image pickup target path. In particular, the modeling material M supplied through the imaging target path is reflected in the image captured by the imaging device 8. Therefore, it can be said that the image captured by the image pickup apparatus 8 includes information regarding the supply state of the modeling material M.
 撮像装置8は、所望のタイミングで撮像対象経路を通過する造形材料Mを撮像してもよい。撮像装置8は、撮像対象経路を通過する造形材料Mを繰り返し撮像してもよい。例えば、撮像装置8は、撮像対象経路を通過する造形材料Mを規則的な周期で繰り返し撮像してもよい。つまり、撮像装置8は、撮像対象経路を通過する造形材料Mを所望の撮像レートで繰り返し撮像してもよい。撮像レートは任意である。例えば、撮像装置8は、撮像対象経路を1秒間に数回から数十回撮像する撮像レート(つまり、数fps(frame per sec)から数十fpsの撮像レート)で、撮像対象経路を通過する造形材料Mを繰り返し撮像してもよい。例えば、撮像装置8は、撮像対象経路を通過する造形材料Mを1秒間に数百回から千数百回撮像する撮像レート(つまり、数百fpsから千数百fpsの撮像レート)で、撮像対象経路を通過する造形材料Mを繰り返し撮像してもよい。尚、数百fpsから千数百fpsの撮像レートで撮像対象物を撮像可能な撮像装置の一例が、米国特許第7,046,821号、米国特許出願公開第2012/0147016号及び米国特許第6,970,196号のそれぞれに記載されている。或いは、撮像装置8は、撮像対象経路を通過する造形材料Mを不規則な周期で又はランダムな周期で繰り返し撮像してもよい。 The imaging device 8 may image the modeling material M passing through the imaging target path at a desired timing. The image pickup apparatus 8 may repeatedly image the modeling material M passing through the image pickup target path. For example, the imaging device 8 may repeatedly image the modeling material M passing through the imaging target path at a regular cycle. That is, the imaging device 8 may repeatedly image the modeling material M passing through the imaging target path at a desired imaging rate. The imaging rate is arbitrary. For example, the imaging device 8 passes through the imaging target path at an imaging rate (that is, an imaging rate of several fps (frame per sec) to several tens of fps) that images the imaging target path several to several tens of times per second. The modeling material M may be repeatedly imaged. For example, the imaging device 8 images at an imaging rate (that is, an imaging rate of several hundred fps to several hundred fps) that images the modeling material M passing through the imaging target path several hundred to several hundred times per second. The modeling material M passing through the target path may be repeatedly imaged. Examples of imaging devices capable of imaging an imaged object at an imaging rate of several hundred fps to several hundred fps are US Pat. No. 7,046,821, US Patent Application Publication No. 2012/0147016, and US Pat. No. It is described in each of Nos. 6, 970 and 196. Alternatively, the imaging device 8 may repeatedly image the modeling material M passing through the imaging target path at an irregular cycle or a random cycle.
 照明装置9は、撮像装置8の撮像範囲IMAの少なくとも一部を、可視光である照明光IL(後述の図3参照)で照明する。撮像装置8が撮像対象経路を通過する造形材料Mを撮像するがゆえに、照明装置9は、撮像対象経路を通過する造形材料Mを照明光ILで照明する。但し、撮像装置8の撮像素子が可視光の波長域とは異なる波長域の光を検出可能である場合には、照明光ILは、可視光の波長域とは異なる波長域の光(特に、撮像素子が検出可能な波長域の光)を含んでいてもよい。照明装置9は、撮像装置8が撮像対象経路を通過する造形材料Mを撮像する期間中に、撮像対象経路を通過する造形材料Mを照明光ILで照明する。このため、撮像装置8は、照明光ILで照明された造形材料Mを撮像する。その結果、撮像対象経路が相対的に暗い環境下にある場合であっても、撮像装置8は、撮像対象経路を通過する造形材料Mを適切に撮像することができる。尚、撮像対象経路が相対的に明るい環境下に存在する場合には、加工システムSYSは、照明装置9を備えていなくてもよい。 The lighting device 9 illuminates at least a part of the imaging range IMA of the imaging device 8 with the illumination light IL (see FIG. 3 described later) which is visible light. Since the imaging device 8 images the modeling material M passing through the imaging target path, the lighting device 9 illuminates the modeling material M passing through the imaging target path with the illumination light IL. However, when the image pickup element of the image pickup apparatus 8 can detect light in a wavelength range different from the visible light wavelength range, the illumination light IL is light in a wavelength range different from the visible light wavelength range (particularly, Light in a wavelength range that can be detected by the image pickup element) may be included. The lighting device 9 illuminates the modeling material M passing through the imaging target path with the illumination light IL during the period in which the imaging device 8 images the modeling material M passing through the imaging target path. Therefore, the image pickup apparatus 8 images the modeling material M illuminated by the illumination light IL. As a result, even when the image pickup target path is in a relatively dark environment, the image pickup apparatus 8 can appropriately image the modeling material M passing through the image pickup target path. When the imaging target path exists in a relatively bright environment, the processing system SYS does not have to include the lighting device 9.
 (1-2)材料供給装置1の構造
 続いて、図3を参照しながら、材料供給装置1の構造について説明する。図3は、材料供給装置1の構造を示す断面図である。
(1-2) Structure of Material Supply Device 1 Subsequently, the structure of the material supply device 1 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the structure of the material supply device 1.
 図3に示すように、材料供給装置1は、ホッパ11と、保持部材12と、搬送部材13と、駆動装置14と、材料送出部材15と、筐体(言い換えれば、容器)16と、連結管17とを備えている。保持部材12と、搬送部材13と、材料送出部材15とは、箱型形状(或いは、その他の形状)の筐体16の隔壁部材161によって取り囲まれた空間(つまり、筐体16の内部空間16IN)に収容されている。ホッパ11と、駆動装置14とは、隔壁部材161を介して内部空間16INと隔てられた外部空間16OUTに配置されている。但し、ホッパ11と駆動装置14との少なくとも一方が、内部空間16INに配置されていてもよい。 As shown in FIG. 3, the material supply device 1 is connected to a hopper 11, a holding member 12, a transport member 13, a drive device 14, a material delivery member 15, and a housing (in other words, a container) 16. It is provided with a tube 17. The holding member 12, the transport member 13, and the material delivery member 15 are a space surrounded by a partition member 161 of a box-shaped (or other shape) housing 16 (that is, an internal space 16IN of the housing 16). ). The hopper 11 and the driving device 14 are arranged in the external space 16OUT separated from the internal space 16IN via the partition member 161. However, at least one of the hopper 11 and the drive device 14 may be arranged in the internal space 16IN.
 ホッパ11は、造形材料Mを貯蔵するための装置である。ホッパ11は、漏斗状の形状(つまり、逆円錐状の形状)を有している。漏斗状の形状を有する隔壁部材111によって囲まれた空間が、造形材料Mを貯蔵するための貯蔵空間112に相当する。但し、ホッパ11は、その他の形状を有していてもよい。例えば、ホッパ11の形状は、逆角錐状の形状(一例として逆四角錐状)であってもよい。 The hopper 11 is a device for storing the modeling material M. The hopper 11 has a funnel-shaped shape (that is, an inverted conical shape). The space surrounded by the funnel-shaped partition wall member 111 corresponds to the storage space 112 for storing the modeling material M. However, the hopper 11 may have other shapes. For example, the shape of the hopper 11 may be an inverted pyramid shape (for example, an inverted quadrangular pyramid shape).
 ホッパ11の下端(つまり、貯蔵空間112の下方)には、供給口113が形成されている。供給口113は、ホッパ11の底部において隔壁部材111をZ軸方向に沿って貫通する開口(つまり、貫通孔)である。或いは、隔壁部材111がホッパ11の下端に形成されない場合には、隔壁部材111が形成されていないホッパ11の下部の開放端が、供給口113として用いられてもよい。供給口113の断面(具体的には、XY平面に沿った断面)の形状は、円形であるが、その他の形状(例えば、長丸形、楕円形、矩形及び多角形の少なくとも一つ)であってもよい。供給口113は、ホッパ11からホッパ11の下方に(つまり、-Z側に)造形材料Mを供給するための開口である。つまり、ホッパ11が貯蔵空間112に貯蔵している造形材料Mは、供給口113を介してホッパ11の外部へと供給される(言い換えれば、排出される又は落とされる)。 A supply port 113 is formed at the lower end of the hopper 11 (that is, below the storage space 112). The supply port 113 is an opening (that is, a through hole) that penetrates the partition wall member 111 along the Z-axis direction at the bottom of the hopper 11. Alternatively, when the partition wall member 111 is not formed at the lower end of the hopper 11, the open end of the lower portion of the hopper 11 in which the partition wall member 111 is not formed may be used as the supply port 113. The shape of the cross section of the supply port 113 (specifically, the cross section along the XY plane) is circular, but other shapes (for example, at least one of an oval shape, an elliptical shape, a rectangular shape, and a polygonal shape). There may be. The supply port 113 is an opening for supplying the modeling material M from the hopper 11 to the lower side of the hopper 11 (that is, to the −Z side). That is, the modeling material M stored in the storage space 112 by the hopper 11 is supplied to the outside of the hopper 11 via the supply port 113 (in other words, discharged or dropped).
 ホッパ11は、筐体16の隔壁部材161に配置されている。具体的には、ホッパ11は、隔壁部材161のうち内部空間16INの上方に位置する天井部材1611に配置されている。天井部材1611には、供給口162が形成されている。供給口162は、外部空間16OUTから内部空間16INに向かって天井部材1611を貫通する開口(つまり、貫通孔)である。筐体16の供給口162は、ホッパ11の供給口113につながっている。このため、供給口162は、実質的には、供給口113から内部空間16INに向かって天井部材1611を貫通する開口(つまり、貫通孔)である。このため、ホッパ11が貯蔵空間112に貯蔵している造形材料Mは、供給口113及び供給口162を介して、筐体16の内部空間16INへと供給される(言い換えれば、排出される又は落とされる)。 The hopper 11 is arranged on the partition member 161 of the housing 16. Specifically, the hopper 11 is arranged on the ceiling member 1611 located above the internal space 16IN of the partition wall member 161. A supply port 162 is formed in the ceiling member 1611. The supply port 162 is an opening (that is, a through hole) that penetrates the ceiling member 1611 from the external space 16OUT toward the internal space 16IN. The supply port 162 of the housing 16 is connected to the supply port 113 of the hopper 11. Therefore, the supply port 162 is substantially an opening (that is, a through hole) that penetrates the ceiling member 1611 from the supply port 113 toward the internal space 16IN. Therefore, the modeling material M stored in the storage space 112 by the hopper 11 is supplied to the internal space 16IN of the housing 16 via the supply port 113 and the supply port 162 (in other words, is discharged or discharged). Will be dropped).
 ホッパ11の上端には、材料補充口114が形成されている。材料補充口114は、ホッパ11の上端において隔壁部材111をZ軸方向に沿って貫通する開口である。或いは、隔壁部材111がホッパ11の上端に形成されない場合には、隔壁部材111が形成されていないホッパ11の上部の開放端が、材料補充口114として用いられてもよい。材料補充口114は、ホッパ11(特に、貯蔵空間112)に造形材料Mを補充するための開口である。材料補充口114は、通常は(具体的には、ホッパ11に造形材料Mを補充していない期間中は)、蓋115によって密閉されている。この場合、蓋115は、隔壁部材111と共に貯蔵空間112を規定する隔壁部材として機能してもよい。蓋115は、隔壁部材111と共に貯蔵空間112の密閉性を維持する隔壁部材として機能してもよい。蓋115は、ホッパ11に造形材料Mを補充する期間中に開けられる。尚、材料補充口114は、造形材料Mの補充以外の目的(たとえば、ホッパ11のメンテナンス等の目的)で使用されてもよい。 A material replenishment port 114 is formed at the upper end of the hopper 11. The material replenishment port 114 is an opening that penetrates the partition wall member 111 along the Z-axis direction at the upper end of the hopper 11. Alternatively, when the partition wall member 111 is not formed on the upper end of the hopper 11, the open end on the upper portion of the hopper 11 on which the partition wall member 111 is not formed may be used as the material replenishment port 114. The material replenishment port 114 is an opening for replenishing the hopper 11 (particularly, the storage space 112) with the modeling material M. The material replenishment port 114 is normally sealed by a lid 115 (specifically, during the period when the hopper 11 is not replenished with the modeling material M). In this case, the lid 115 may function together with the partition member 111 as a partition member that defines the storage space 112. The lid 115 may function together with the partition wall member 111 as a partition wall member that maintains the airtightness of the storage space 112. The lid 115 is opened during the period of replenishing the hopper 11 with the modeling material M. The material replenishment port 114 may be used for purposes other than replenishment of the modeling material M (for example, for the purpose of maintenance of the hopper 11).
 ホッパ11の隔壁部材111(例えば、相対的に上方に位置する部分であって且つ材料補充口114よりも下方に位置する部分)には、開口116が形成されている。開口116は、貯蔵空間112からホッパ11の外部の空間(具体的には、筐体16の外部空間16OUT)に向かって隔壁部材111を貫通する貫通孔である。このため、貯蔵空間112は、開口116を介して外部空間16OUTにつながる。但し、後に詳述するように、開口116には、連結管17が取り付けられている。このため、開口116に連結管17が取り付けられている場合には、貯蔵空間112は外部空間16OUTと隔てられている。尚、隔壁部材111に形成された貫通孔に加えて又は代えて、蓋115に形成された貫通孔が、開口116として用いられてもよい。 An opening 116 is formed in the partition member 111 of the hopper 11 (for example, a portion located relatively upward and below the material replenishment port 114). The opening 116 is a through hole that penetrates the partition wall member 111 from the storage space 112 toward the space outside the hopper 11 (specifically, the exterior space 16OUT of the housing 16). Therefore, the storage space 112 is connected to the external space 16OUT through the opening 116. However, as will be described in detail later, a connecting pipe 17 is attached to the opening 116. Therefore, when the connecting pipe 17 is attached to the opening 116, the storage space 112 is separated from the external space 16OUT. In addition to or in place of the through hole formed in the partition wall member 111, the through hole formed in the lid 115 may be used as the opening 116.
 保持部材12は、ホッパ11の供給口113から供給口162を介して内部空間16INに供給される造形材料Mを保持する。ホッパ11から供給される造形材料Mを保持するために、保持部材12は、供給口113及び供給口162のそれぞれの下方に配置される。保持部材12は、保持部材12の一部が供給口113及び供給口162のそれぞれの直下に位置するように配置される。保持部材12は、保持部材12の一部が供給口113及び供給口162からの造形材料Mの落下経路に位置するように配置される。保持部材12は、保持部材12の一部がZ軸方向に沿って供給口162のそれぞれに対向するように配置される。 The holding member 12 holds the modeling material M supplied from the supply port 113 of the hopper 11 to the internal space 16IN via the supply port 162. In order to hold the modeling material M supplied from the hopper 11, the holding member 12 is arranged below each of the supply port 113 and the supply port 162. The holding member 12 is arranged so that a part of the holding member 12 is located directly below each of the supply port 113 and the supply port 162. The holding member 12 is arranged so that a part of the holding member 12 is located in the drop path of the modeling material M from the supply port 113 and the supply port 162. The holding member 12 is arranged so that a part of the holding member 12 faces each of the supply ports 162 along the Z-axis direction.
 保持部材12は、筐体6の隔壁部材161(特に、天井部材1611)によって支持される。但し、保持部材12は、その他の任意の部材によって支持されていてもよい。例えば、保持部材12は、隔壁部材161のうちの内部空間16INの側方に位置する側壁部材1612によって支持されていてもよい。例えば、保持部材12は、隔壁部材161のうちの内部空間16INの下方に位置する底部材1613によって支持されていてもよい。例えば、保持部材12は、不図示の支持部材によって支持されていてもよい。 The holding member 12 is supported by the partition member 161 (particularly, the ceiling member 1611) of the housing 6. However, the holding member 12 may be supported by any other member. For example, the holding member 12 may be supported by the side wall member 1612 located on the side of the internal space 16IN of the partition wall member 161. For example, the holding member 12 may be supported by a bottom member 1613 located below the internal space 16IN of the partition member 161. For example, the holding member 12 may be supported by a supporting member (not shown).
 図4は、保持部材12の構造を示す側面図である。保持部材12は、図3及び図4に示すように、筒状の部材(つまり、中空状の部材)である。具体的には、保持部材12は、Z軸方向に交差する方向に沿って延びる筒状の空間121が内部に形成された部材である。つまり、保持部材12は、Z軸方向に交差する方向が長手方向となる部材である。尚、図3及び図4は、空間121がY軸方向に沿って延びる空間である例を示しているが、空間121は、X軸方向に沿って延びる空間であってもよいし、Z軸に対して傾斜した方向に沿って延びる空間であってもよい。空間121は、保持部材12の内壁面122によって囲まれた空間である。内壁面122のZ軸を含む断面の形状は、円形である。この場合、筒状の空間121のZ軸を含む断面の形状は、円形となる。つまり、保持部材12は、円筒部材となる。尚、ここで言う「円筒部材」は、内壁面122の断面の形状が円形となる部材を意味する。このため、保持部材12の外壁面の断面の形状は、円形に限らず、任意の形状(例えば、長丸形、楕円形、矩形及び多角形の少なくとも一つ)であってもよい。但し、内壁面122のZ軸を含む断面の形状は、円形とは異なるその他の形状(例えば、長丸形、楕円形、矩形及び多角形の少なくとも一つ)であってもよい。保持部材12が内部空間16INに配置されているがゆえに、空間121は、内部空間16INの少なくとも一部を構成する。 FIG. 4 is a side view showing the structure of the holding member 12. As shown in FIGS. 3 and 4, the holding member 12 is a tubular member (that is, a hollow member). Specifically, the holding member 12 is a member in which a tubular space 121 extending along a direction intersecting the Z-axis direction is formed inside. That is, the holding member 12 is a member whose longitudinal direction is the direction intersecting the Z-axis direction. Although FIGS. 3 and 4 show an example in which the space 121 extends along the Y-axis direction, the space 121 may be a space extending along the X-axis direction or the Z-axis. It may be a space extending along a direction inclined with respect to the space. The space 121 is a space surrounded by the inner wall surface 122 of the holding member 12. The shape of the cross section of the inner wall surface 122 including the Z axis is circular. In this case, the shape of the cross section of the tubular space 121 including the Z axis is circular. That is, the holding member 12 is a cylindrical member. The "cylindrical member" referred to here means a member having a circular cross-sectional shape of the inner wall surface 122. Therefore, the shape of the cross section of the outer wall surface of the holding member 12 is not limited to a circle, and may be any shape (for example, at least one of an oval shape, an ellipse shape, a rectangle, and a polygonal shape). However, the shape of the cross section of the inner wall surface 122 including the Z axis may be another shape different from the circular shape (for example, at least one of an oval shape, an elliptical shape, a rectangular shape, and a polygonal shape). Since the holding member 12 is arranged in the internal space 16IN, the space 121 constitutes at least a part of the internal space 16IN.
 保持部材12には、供給口123が形成されている。供給口123は、保持部材12をZ軸方向に沿って貫通する開口(つまり、貫通孔)である。供給口123は、空間121から一の方向に向かって保持部材12を貫通する貫通孔である。供給口123は、空間121が延びる方向(例えば、Y軸方向)に交差する方向(例えば、Z軸方向(上方))に向かって保持部材12を貫通する貫通孔である。供給口123は、保持部材12の上方に位置する供給口162につながる。つまり、保持部材12は、供給口123が供給口162につながるように配置される。この場合、保持部材12が供給口162の下方に配置されるがゆえに、供給口123は、空間121から上方に向かって保持部材12を貫通する貫通孔である。供給口123が供給口162につながっているため、貯蔵空間112と空間121とは、供給口113、162及び123を介してつながる。このため、貯蔵空間112から供給口113及び供給口162を介して内部空間16INに供給される造形材料Mは、供給口123を介して空間121に供給される。つまり、造形材料Mは、貯蔵空間112から供給口113、供給口162及び供給口123を介して空間121に供給される。造形材料Mは、貯蔵空間112から供給口113、供給口162及び供給口123を介して空間121に向かって落下するように、ホッパ11から保持部材12に供給される。 A supply port 123 is formed in the holding member 12. The supply port 123 is an opening (that is, a through hole) that penetrates the holding member 12 along the Z-axis direction. The supply port 123 is a through hole that penetrates the holding member 12 in one direction from the space 121. The supply port 123 is a through hole that penetrates the holding member 12 in a direction (for example, in the Z-axis direction (upward)) that intersects the direction in which the space 121 extends (for example, the Y-axis direction). The supply port 123 is connected to the supply port 162 located above the holding member 12. That is, the holding member 12 is arranged so that the supply port 123 is connected to the supply port 162. In this case, since the holding member 12 is arranged below the supply port 162, the supply port 123 is a through hole that penetrates the holding member 12 upward from the space 121. Since the supply port 123 is connected to the supply port 162, the storage space 112 and the space 121 are connected to each other via the supply ports 113, 162, and 123. Therefore, the modeling material M supplied from the storage space 112 to the internal space 16IN via the supply port 113 and the supply port 162 is supplied to the space 121 via the supply port 123. That is, the modeling material M is supplied from the storage space 112 to the space 121 via the supply port 113, the supply port 162, and the supply port 123. The modeling material M is supplied from the hopper 11 to the holding member 12 so as to fall from the storage space 112 toward the space 121 through the supply port 113, the supply port 162, and the supply port 123.
 空間121に供給された造形材料Mは、内壁面122に堆積する。具体的には、空間121に供給された造形材料Mは、内壁面122のうちの供給口113、供給口162及び供給口123の下方に位置する面部分に落下して堆積する。内壁面122は、内壁面122の少なくとも一部の上に堆積している造形材料Mを保持する。このため、内壁面122は、ホッパ11から供給される造形材料Mを保持するための保持面1221を備える。内壁面122の少なくとも一部は、保持面1221として機能する。例えば、重力が作用することで下方に落下してくる造形材料Mを保持面1221が保持するがゆえに、内壁面122のうちの上方(つまり、+Z側)を向いている面部分の少なくとも一部が、保持面1221として機能する。例えば、供給口113、162及び123から落下してくる造形材料Mを保持面1221が保持するがゆえに、内壁面122のうちの供給口113、162及び123から下方に離れた位置に位置する面部分の少なくとも一部が、保持面1221として機能する。また、内壁面122の少なくとも一部である保持面1221が造形材料Mを保持するがゆえに、内壁面122が規定する空間121は、ホッパ11から供給される造形材料Mを保持するための空間として機能する。このため、以下の説明では、空間121を、“保持空間121”と称する。 The modeling material M supplied to the space 121 is deposited on the inner wall surface 122. Specifically, the modeling material M supplied to the space 121 falls and accumulates on the surface portions of the inner wall surface 122 located below the supply port 113, the supply port 162, and the supply port 123. The inner wall surface 122 holds the modeling material M deposited on at least a part of the inner wall surface 122. Therefore, the inner wall surface 122 includes a holding surface 1221 for holding the modeling material M supplied from the hopper 11. At least a part of the inner wall surface 122 functions as a holding surface 1221. For example, since the holding surface 1221 holds the modeling material M that falls downward due to the action of gravity, at least a part of the inner wall surface 122 facing upward (that is, the + Z side). However, it functions as a holding surface 1221. For example, since the holding surface 1221 holds the modeling material M that falls from the supply ports 113, 162, and 123, the surface of the inner wall surface 122 that is located at a position downward from the supply ports 113, 162, and 123. At least a portion of the portion functions as a holding surface 1221. Further, since the holding surface 1221 which is at least a part of the inner wall surface 122 holds the modeling material M, the space 121 defined by the inner wall surface 122 serves as a space for holding the modeling material M supplied from the hopper 11. Function. Therefore, in the following description, the space 121 is referred to as a "holding space 121".
 保持空間121には、搬送部材13の少なくとも一部が配置される。このため、図3及び図4に示すように、搬送部材13の少なくとも一部は、保持空間121を規定する内壁面122によって取り囲まれる。搬送部材13と内壁面122との間には、間隙SPが形成されている。従って、保持空間121に供給された造形材料Mは、内壁面122と搬送部材13との間において保持される。つまり、保持空間121に供給された造形材料Mは、保持部材12と搬送部材13との間において保持される。このため、内壁面122のうちの搬送部材13と対向する面部分の少なくとも一部もまた、上述した保持面1221として機能してもよい。 At least a part of the transport member 13 is arranged in the holding space 121. Therefore, as shown in FIGS. 3 and 4, at least a part of the transport member 13 is surrounded by the inner wall surface 122 that defines the holding space 121. A gap SP is formed between the transport member 13 and the inner wall surface 122. Therefore, the modeling material M supplied to the holding space 121 is held between the inner wall surface 122 and the transport member 13. That is, the modeling material M supplied to the holding space 121 is held between the holding member 12 and the conveying member 13. Therefore, at least a part of the inner wall surface 122 that faces the transport member 13 may also function as the holding surface 1221 described above.
 搬送部材13は、保持部材12によって保持された造形材料Mを、保持部材12から保持部材12の外部に供給する(つまり、搬送する)ための部材である。搬送部材13は、保持空間121によって保持された造形材料Mを、保持空間121から保持空間121の外部に供給するための部材である。搬送部材13は、内壁面122(特に、保持面1221)によって保持された造形材料Mを、内壁面122から内壁面122の外部に供給するための部材である。 The transport member 13 is a member for supplying (that is, transporting) the modeling material M held by the holding member 12 from the holding member 12 to the outside of the holding member 12. The transport member 13 is a member for supplying the modeling material M held by the holding space 121 from the holding space 121 to the outside of the holding space 121. The transport member 13 is a member for supplying the modeling material M held by the inner wall surface 122 (particularly, the holding surface 1221) from the inner wall surface 122 to the outside of the inner wall surface 122.
 搬送部材13は、保持空間121が延びる方向に沿って造形材料Mを供給する。その結果、搬送部材13は、保持空間121によって保持された造形材料Mを、保持空間121から、保持空間121の端部を規定する保持部材12の開口(つまり、開放端)124を介して、保持空間121の外部に供給する。つまり、開口124は、保持部材12から保持部材12の外部へと造形材料Mを搬送するための供給口として用いられる。このため、以下では、開口124を“供給口124”と称する。尚、ホッパ11、保持部材12及び搬送部材13を含む装置は、供給口124を介して保持空間121の外部に造形材料Mを供給する材料供給源1Aと称されてもよい。 The transport member 13 supplies the modeling material M along the direction in which the holding space 121 extends. As a result, the transport member 13 transfers the modeling material M held by the holding space 121 from the holding space 121 through the opening (that is, the open end) 124 of the holding member 12 that defines the end portion of the holding space 121. It is supplied to the outside of the holding space 121. That is, the opening 124 is used as a supply port for transporting the modeling material M from the holding member 12 to the outside of the holding member 12. Therefore, in the following, the opening 124 will be referred to as a “supply port 124”. The device including the hopper 11, the holding member 12, and the conveying member 13 may be referred to as a material supply source 1A that supplies the modeling material M to the outside of the holding space 121 via the supply port 124.
 供給口113、162及び123から保持空間121に落下してくる造形材料Mを搬送部材13が供給するため、搬送部材13の少なくとも一部は、供給口113、162及び123の下方に位置する。内壁面122(特に、保持面1221)に落下してくる造形材料Mを搬送部材13が供給するため、搬送部材13の少なくとも一部は、内壁面122(特に、保持面1221)の少なくとも一部の上方に位置する。つまり、搬送部材13の少なくとも一部は、供給口113、162及び123と内壁面122(特に、保持面1221)との間に位置する。その結果、ホッパ11からは搬送部材13に対して、重力方向に沿って造形材料Mが供給される。 Since the transport member 13 supplies the modeling material M that falls from the supply ports 113, 162, and 123 into the holding space 121, at least a part of the transport member 13 is located below the supply ports 113, 162, and 123. Since the transport member 13 supplies the modeling material M that falls on the inner wall surface 122 (particularly, the holding surface 1221), at least a part of the transport member 13 is at least a part of the inner wall surface 122 (particularly, the holding surface 1221). Located above. That is, at least a part of the transport member 13 is located between the supply ports 113, 162 and 123 and the inner wall surface 122 (particularly, the holding surface 1221). As a result, the modeling material M is supplied from the hopper 11 to the transport member 13 along the direction of gravity.
 搬送部材13は、造形材料Mを供給可能である限りは、どのような構造を有していてもよい。以下、搬送部材13の構造の一例について、図3と共に図5(a)から図5(b)及び図6(a)から図6(c)を参照しながら説明する。図5(a)は、材料供給装置1が備える搬送部材13の第1の例の構造を示す斜視図であり、図5(b)は、材料供給装置1が備える搬送部材13の第1の例の構造を示す正面図である。図6(a)は、材料供給装置1が備える搬送部材13の第2の例の構造を示す斜視図であり、図6(b)から図6(c)のそれぞれは、材料供給装置1が備える搬送部材13の第2の例の構造を示す断面図である。 The transport member 13 may have any structure as long as the modeling material M can be supplied. Hereinafter, an example of the structure of the transport member 13 will be described together with FIG. 3 with reference to FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c). FIG. 5 (a) is a perspective view showing the structure of a first example of the transport member 13 included in the material supply device 1, and FIG. 5 (b) is a first view of the transport member 13 included in the material supply device 1. It is a front view which shows the structure of an example. FIG. 6 (a) is a perspective view showing the structure of a second example of the transport member 13 included in the material supply device 1, and each of FIGS. 6 (b) to 6 (c) includes the material supply device 1. It is sectional drawing which shows the structure of the 2nd example of the transport member 13 provided.
 図3並びに図5(a)から図6(c)に示すように、搬送部材13は、所望方向に沿って延びる部材である。具体的には、搬送部材13は、保持空間121が延びる方向に沿って延びる部材である。つまり、搬送部材13は、保持部材12の長手方向に沿って延びる部材である。保持空間121がZ軸に交差する方向に延びているがゆえに、搬送部材13は、Z軸に交差する方向に沿って延びる部材である。図3は、搬送部材13は、Y軸方向に沿って延びる部材である例を示しているが、搬送部材13は、X軸方向に沿って延びる部材であってもよいし、Z軸に対して傾斜した方向に沿って延びる部材であってもよい。搬送部材13は、保持空間121内において、保持空間121が延びる方向に沿って搬送部材13が延びるように配置される。 As shown in FIGS. 3 and 5 (a) to 6 (c), the transport member 13 is a member extending in a desired direction. Specifically, the transport member 13 is a member that extends along the direction in which the holding space 121 extends. That is, the transport member 13 is a member that extends along the longitudinal direction of the holding member 12. Since the holding space 121 extends in the direction intersecting the Z axis, the transport member 13 is a member extending along the direction intersecting the Z axis. FIG. 3 shows an example in which the transport member 13 is a member extending along the Y-axis direction, but the transport member 13 may be a member extending along the X-axis direction or with respect to the Z-axis. It may be a member extending along an inclined direction. The transport member 13 is arranged in the holding space 121 so that the transport member 13 extends along the direction in which the holding space 121 extends.
 搬送部材13がZ軸に交差する方向に沿って延びる部材である場合、搬送部材13は、Z軸に交差する方向に沿って延びる軸部材131を備えていてもよい。軸部材131は、Z軸を含む断面の形状が円形となる部材である。但し、軸部材131は、Z軸を含む断面の形状がその他の形状(例えば、長丸形、楕円形、矩形及び多角形の少なくとも一つ)となる部材であってもよい。搬送部材13は、保持空間121内において、保持空間121が延びる方向に沿って軸部材131が延びるように配置される。 When the transport member 13 is a member extending along the direction intersecting the Z axis, the transport member 13 may include a shaft member 131 extending along the direction intersecting the Z axis. The shaft member 131 is a member having a circular cross-sectional shape including the Z-axis. However, the shaft member 131 may be a member having a cross-sectional shape including the Z-axis having another shape (for example, at least one of an oval shape, an elliptical shape, a rectangular shape, and a polygonal shape). The transport member 13 is arranged in the holding space 121 so that the shaft member 131 extends along the direction in which the holding space 121 extends.
 搬送部材13は、その側面にらせん状の溝132が形成された部材である。具体的には、搬送部材13は、搬送部材13が延びる方向に沿った軸周りに回転しながら搬送部材13が延びる方向に沿って延びる(つまり、進む)溝132がその側面に形成された部材である。搬送部材13は、搬送部材13の側面を周回しながら搬送部材13が延びる方向に沿って延びる(つまり、進む)溝132がその側面に形成された部材である。らせん状の溝132のピッチ(つまり、周期であり、例えば、溝132が1回転する間に溝132が延びる(つまり、進む距離)は、一定であるが、変動してもよい。このような溝132が側面に形成された搬送部材13の一例が、図5(a)から図5(b)及び図6(a)から図6(c)に示されている。 The transport member 13 is a member having a spiral groove 132 formed on its side surface. Specifically, the transport member 13 is a member having a groove 132 formed on its side surface, which extends (that is, advances) along the direction in which the transport member 13 extends while rotating around an axis along the direction in which the transport member 13 extends. Is. The transport member 13 is a member in which a groove 132 extending (that is, advancing) along the direction in which the transport member 13 extends while orbiting the side surface of the transport member 13 is formed on the side surface thereof. The pitch of the spiral groove 132 (that is, the period, for example, the extension (that is, the distance traveled) of the groove 132 during one rotation of the groove 132) is constant but may vary. An example of the transport member 13 in which the groove 132 is formed on the side surface is shown in FIGS. 5 (a) to 5 (b) and 6 (a) to 6 (c).
 図5(a)から図5(b)は、溝132が側面に形成された搬送部材13の第1の例を示している。図5(a)から図5(b)に示すように、軸部材131の側面には、らせん状の溝132を規定する(つまり、形成する)ように軸部材131の側面から突き出る突起133が形成されていてもよい。この場合、溝132は、隣り合う2つの突起133の間に形成される。つまり、隣り合う2つの突起133によって挟まれる空間が、溝132となる。このため、溝132は、突起133と平行に形成される。尚、ここで言う「溝132と突起133とが平行な状態」とは、溝132が延びる方向と突起133が延びる方向とが文字通り完全に平行な状態のみならず、溝132が延びる方向と突起133が延びる方向とが厳密な意味での平行ではないものの実質的に平行であるとみなすことができる状態(つまり、溝132が延びる方向と突起133が延びる方向とがほぼ平行な状態)をも含む。この場合、突起133は、溝132を規定する隔壁として機能してもよい。尚、図5(a)から図5(b)に示した軸部材131と突起133との寸法は単なる一例であり、図5(a)から図5(b)に示したものとは異なる寸法であってもよい。例えば、軸部材131の直径に対する突起133の半径方向の寸法は、図5(a)から図5(b)に示した例よりも小さくてもよいし、大きくてもよい。 5 (a) to 5 (b) show a first example of the transport member 13 in which the groove 132 is formed on the side surface. As shown in FIGS. 5 (a) to 5 (b), on the side surface of the shaft member 131, a protrusion 133 protruding from the side surface of the shaft member 131 so as to define (that is, form) a spiral groove 132 is formed. It may be formed. In this case, the groove 132 is formed between two adjacent protrusions 133. That is, the space sandwiched by the two adjacent protrusions 133 becomes the groove 132. Therefore, the groove 132 is formed parallel to the protrusion 133. The "state in which the groove 132 and the protrusion 133 are parallel" is not only a state in which the direction in which the groove 132 extends and the direction in which the protrusion 133 extends are literally completely parallel, but also the direction in which the groove 132 extends and the protrusion. There is also a state in which the direction in which the 133 extends is not exactly parallel, but can be regarded as substantially parallel (that is, the direction in which the groove 132 extends and the direction in which the protrusion 133 extends are substantially parallel). Including. In this case, the protrusion 133 may function as a partition wall defining the groove 132. The dimensions of the shaft member 131 and the protrusion 133 shown in FIGS. 5 (a) to 5 (b) are merely examples, and are different from the dimensions shown in FIGS. 5 (a) to 5 (b). It may be. For example, the radial dimension of the protrusion 133 with respect to the diameter of the shaft member 131 may be smaller or larger than the examples shown in FIGS. 5 (a) to 5 (b).
 突起133がらせん状の溝132を形成するがゆえに、突起133もまた、らせん状の部材となる。具体的には、突起133は、軸部材131の側面においてらせんを描くように形成される。突起133は、軸部材131の側面を周回しながららせんを描くように形成される。軸部材131の側面上において突起133が形成される位置は、軸部材131の側面においてらせんを描く。突起133は、軸部材131の側面において、軸部材131が延びる方向に沿った軸周りに回転しながら軸部材131が延びる方向に沿って延びる。 Since the protrusion 133 forms the spiral groove 132, the protrusion 133 is also a spiral member. Specifically, the protrusion 133 is formed so as to draw a spiral on the side surface of the shaft member 131. The protrusion 133 is formed so as to draw a spiral while orbiting the side surface of the shaft member 131. The position where the protrusion 133 is formed on the side surface of the shaft member 131 draws a spiral on the side surface of the shaft member 131. The protrusion 133 extends along the direction in which the shaft member 131 extends while rotating around the axis along the direction in which the shaft member 131 extends on the side surface of the shaft member 131.
 図6(a)から図6(c)は、溝132が側面に形成された搬送部材13の第2の例を示している。図6(a)から図6(c)に示すように、軸部材131の側面に、らせん状の溝132を規定する窪み(つまり、凹部分)が形成されていてもよい。つまり、溝132を形成するように軸部材131の側面にくぼみを形成する加工が軸部材131の側面に施されることで、溝132が側面に形成された搬送部材13が形成されてもよい。溝132を形成する彫りこみ加工が軸部材131の側面に施されることで、溝132が側面に形成された搬送部材13が形成されてもよい。この場合、軸部材131のうち溝132が形成されていない部分(例えば、彫りこみ加工が施されなかった部分又は溝132に対して突き出た凸部分)が、実質的には、溝132を規定する突起133として機能してもよい。従って、以下の説明では、説明の便宜上、搬送部材13の第2の例もまた、搬送部材13の第1の例と同様に、軸部材131の側面に突起133が形成された部材であるものとして説明を進める。 6 (a) to 6 (c) show a second example of the transport member 13 in which the groove 132 is formed on the side surface. As shown in FIGS. 6A to 6C, a recess (that is, a recess) defining the spiral groove 132 may be formed on the side surface of the shaft member 131. That is, the transport member 13 in which the groove 132 is formed on the side surface may be formed by processing the side surface of the shaft member 131 to form a recess so as to form the groove 132. .. By applying the engraving process for forming the groove 132 to the side surface of the shaft member 131, the transport member 13 having the groove 132 formed on the side surface may be formed. In this case, the portion of the shaft member 131 in which the groove 132 is not formed (for example, the portion not carved or the convex portion protruding from the groove 132) substantially defines the groove 132. It may function as a protrusion 133. Therefore, in the following description, for convenience of explanation, the second example of the transport member 13 is also a member in which the protrusion 133 is formed on the side surface of the shaft member 131, similarly to the first example of the transport member 13. I will proceed with the explanation.
 尚、軸部材131の側面に形成される溝132のXZ平面に沿った断面の形状は、どのような形状であってもよい。図6(b)は、軸部材131の側面に形成される溝132のXZ平面に沿った断面の形状が、矩形の形状(例えば、台形の形状)となる例を示している。図6(c)は、軸部材131の側面に形成される溝132のXZ平面に沿った断面の形状が、円弧の形状となる例を示している。尚、図6(a)から図6(c)に示した軸部材131と溝132との寸法は、単なる一例であり、図6(a)から図6(c)に示したものとは異なる寸法であってもよい。例えば、軸部材131の直径に対する溝132の半径方向の寸法は、図6(a)から図6(c)に示した例よりも小さくともよいし、大きくてもよい。 The shape of the cross section of the groove 132 formed on the side surface of the shaft member 131 along the XZ plane may be any shape. FIG. 6B shows an example in which the shape of the cross section of the groove 132 formed on the side surface of the shaft member 131 along the XZ plane is a rectangular shape (for example, a trapezoidal shape). FIG. 6C shows an example in which the shape of the cross section of the groove 132 formed on the side surface of the shaft member 131 along the XZ plane is the shape of an arc. The dimensions of the shaft member 131 and the groove 132 shown in FIGS. 6 (a) to 6 (c) are merely examples, and are different from those shown in FIGS. 6 (a) to 6 (c). It may be a dimension. For example, the radial dimension of the groove 132 with respect to the diameter of the shaft member 131 may be smaller or larger than the examples shown in FIGS. 6 (a) to 6 (c).
 搬送部材13の第1の例及び第2の例のいずれにおいても、搬送部材13は、スクリューとしても機能し得る。従って、図5(a)から図5(b)及び図6(a)から図6(c)に示す構造を有する搬送部材13に限らず、スクリューとして機能し得る部材が、搬送部材13として用いられてもよい。また、搬送部材13の第1の例は、アルキメディアン・スクリューとしても機能し得る。従って、図5(a)から図5(b)及び図6(a)から図6(c)に示す構造を有する搬送部材13に限らず、アルキメディアン・スクリューとして機能し得る部材が、搬送部材13として用いられてもよい。また、搬送部材13の第2の例は、ねじとして機能し得る。従って、図5(a)から図5(b)及び図6(a)から図6(c)に示す構造を有する搬送部材13に限らず、ねじとして機能し得る部材が、搬送部材13として用いられてもよい。 In both the first example and the second example of the transport member 13, the transport member 13 can also function as a screw. Therefore, not only the transport member 13 having the structures shown in FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c), but also a member capable of functioning as a screw is used as the transport member 13. May be done. The first example of the transport member 13 can also function as an Archimedes' screw. Therefore, not only the transport member 13 having the structures shown in FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c), but also a member capable of functioning as an Archimedes' screw is a transport member. It may be used as 13. A second example of the transport member 13 can also function as a screw. Therefore, not only the transport member 13 having the structures shown in FIGS. 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c), but also a member capable of functioning as a screw is used as the transport member 13. May be done.
 搬送部材13は、溝132を介して、造形材料Mを供給する。搬送部材13は、保持空間121内において溝132を介して造形材料Mが移動するように、造形材料Mを供給する。搬送部材13は、保持空間121内において溝132を伝って造形材料Mが移動するように、造形材料Mを供給する。搬送部材13は、溝132を用いて、保持空間121から、保持部材12の供給口124を介して、保持部材12の外部へと供給する。このため、搬送部材13は、供給口124を貫通するように配置される。 The transport member 13 supplies the modeling material M via the groove 132. The transport member 13 supplies the modeling material M so that the modeling material M moves through the groove 132 in the holding space 121. The transport member 13 supplies the modeling material M so that the modeling material M moves along the groove 132 in the holding space 121. The transport member 13 is supplied from the holding space 121 to the outside of the holding member 12 through the supply port 124 of the holding member 12 by using the groove 132. Therefore, the transport member 13 is arranged so as to penetrate the supply port 124.
 溝132を介して造形材料Mを供給するために、溝132は、保持空間121から供給口124に向かって延びるように形成される。より具体的には、溝132は、少なくとも、保持空間121のうち供給口123の直下に位置する部分から供給口124に向かって延びるように形成される。溝132は、少なくとも、搬送部材13のうち供給口123の直下に位置する部分から搬送部材13のうち供給口124に位置する部分に向かって延びるように形成される。 In order to supply the modeling material M through the groove 132, the groove 132 is formed so as to extend from the holding space 121 toward the supply port 124. More specifically, the groove 132 is formed so as to extend toward the supply port 124 from at least a portion of the holding space 121 located directly below the supply port 123. The groove 132 is formed so as to extend from at least the portion of the transport member 13 located directly below the supply port 123 toward the portion of the transport member 13 located at the supply port 124.
 更に、溝132を介して造形材料Mを供給するために、駆動装置14は、溝132が形成された搬送部材13を駆動する。このため、駆動装置14は、搬送部材13を駆動するために、モータ等のアクチュエータ(動力源)を備えている。具体的には、駆動装置14は、軸部材131が延びる方向に沿った軸(典型的には、軸部材131の中心軸)を回転軸として軸部材131が回転するように、搬送部材13を回転駆動する。その結果、保持空間121に保持されている造形材料Mは、回転する搬送部材13の側面に形成されたらせん状の溝132を伝って、軸部材131が延びる方向(つまり、保持空間121が延びる方向であって、保持部材12の長手方向)に沿って移動する。つまり、造形材料Mは、Z軸に交差する方向に沿って移動する。造形材料Mは、側方に向かって移動する。この場合、駆動装置14は、溝132を介して造形材料Mを供給口124に向かって移動させる(図3に示す例では、-Y側に向かって移動させる)ことが可能な回転方向に軸部材131が回転するように、搬送部材13を回転駆動する。その結果、保持空間121に保持されている造形材料Mは、供給口124を介して、保持空間121の外部に落下する。内壁面122に保持されている造形材料Mは、供給口124を介して、内壁面122の外部に落下する。つまり、搬送部材13は、造形材料Mを供給して供給口124を通過させることで、造形材料Mを保持部材12の外部に供給する。 Further, in order to supply the modeling material M through the groove 132, the driving device 14 drives the transport member 13 in which the groove 132 is formed. Therefore, the drive device 14 includes an actuator (power source) such as a motor to drive the transport member 13. Specifically, the drive device 14 uses the transport member 13 so that the shaft member 131 rotates about a shaft (typically, the central shaft of the shaft member 131) along the direction in which the shaft member 131 extends. Rotationally driven. As a result, the modeling material M held in the holding space 121 extends in the direction in which the shaft member 131 extends (that is, the holding space 121 extends) along the spiral groove 132 formed on the side surface of the rotating transport member 13. It moves along the direction (longitudinal direction of the holding member 12). That is, the modeling material M moves along the direction intersecting the Z axis. The modeling material M moves laterally. In this case, the drive device 14 shafts in the rotational direction in which the modeling material M can be moved toward the supply port 124 through the groove 132 (in the example shown in FIG. 3, it is moved toward the −Y side). The transport member 13 is rotationally driven so that the member 131 rotates. As a result, the modeling material M held in the holding space 121 falls to the outside of the holding space 121 through the supply port 124. The modeling material M held by the inner wall surface 122 falls to the outside of the inner wall surface 122 through the supply port 124. That is, the transport member 13 supplies the modeling material M to the outside of the holding member 12 by passing the modeling material M through the supply port 124.
 搬送部材13を駆動するために、搬送部材13は、駆動装置14に連結されている。具体的には、搬送部材13(特に、軸部材131)は、供給口124とは反対側の端部を規定する保持部材12の開口(つまり、開放端)125及び筐体16に形成された開口163を介して、内部空間16IN(特に、保持空間121)から外部空間16OUTへと延びる。開口163は、筐体16の側壁部材1612を内部空間16INから外部空間16OUTへと貫通する貫通孔である。搬送部材13(特に、軸部材131)は、開口126及び163を介して、外部空間16OUTに配置されている駆動装置14に連結される。 In order to drive the transport member 13, the transport member 13 is connected to the drive device 14. Specifically, the transport member 13 (particularly, the shaft member 131) is formed in the opening (that is, the open end) 125 and the housing 16 of the holding member 12 that defines the end opposite to the supply port 124. Through the opening 163, it extends from the internal space 16IN (particularly, the holding space 121) to the external space 16OUT. The opening 163 is a through hole that penetrates the side wall member 1612 of the housing 16 from the internal space 16IN to the external space 16OUT. The transport member 13 (particularly, the shaft member 131) is connected to the drive device 14 arranged in the external space 16OUT via the openings 126 and 163.
 隔壁部材161に形成される開口163には、搬送部材13(特に、軸部材131)と隔壁部材161の隙間を埋めるためのシール部材164が形成されていてもよい。シール部材164が形成されると、内部空間16IN(特に、保持空間121)の造形材料Mが開口163を介して外部空間16OUTに意図せず放出されることを抑制することができる。更に、シール部材164が形成されると、内部空間16IN(特に、保持空間121)のパージガスが開口163を介して外部空間16OUTに意図せず放出されることを抑制することができる。 The opening 163 formed in the partition wall member 161 may be formed with a seal member 164 for filling the gap between the transport member 13 (particularly, the shaft member 131) and the partition wall member 161. When the seal member 164 is formed, it is possible to prevent the modeling material M of the internal space 16IN (particularly, the holding space 121) from being unintentionally discharged to the external space 16OUT through the opening 163. Further, when the seal member 164 is formed, it is possible to prevent the purge gas in the internal space 16IN (particularly, the holding space 121) from being unintentionally discharged to the external space 16OUT through the opening 163.
 上述したように、搬送部材13と保持空間121を規定する内壁面122との間には、間隙SPが形成されている。その結果、搬送部材13と内壁面122との間に間隙SPが形成されない場合と比較して、搬送部材13がスムーズに回転する。つまり、搬送部材13が内壁面122に接触する場合と比較して、搬送部材13がスムーズに回転する。 As described above, a gap SP is formed between the transport member 13 and the inner wall surface 122 that defines the holding space 121. As a result, the transport member 13 rotates smoothly as compared with the case where the gap SP is not formed between the transport member 13 and the inner wall surface 122. That is, the transport member 13 rotates smoothly as compared with the case where the transport member 13 comes into contact with the inner wall surface 122.
 一方で、搬送部材13と内壁面122との間に相対的に大きな間隙SPが形成されると、当該間隙SPに相対的に多くの造形材料Mが侵入してしまう。その結果、本来は回転する搬送部材13の溝132を介して造形材料Mが供給されるべき状況にも関わらず、搬送部材13の溝132を介することなく間隙SPを介して造形材料Mが供給されてしまう可能性がある。このような溝132を介さない造形材料Mの供給は、材料供給装置1から加工装置2に供給される造形材料Mの供給レートの変動を引き起こしかねない。そこで、間隙SPのサイズ(つまり、搬送部材13と内壁面122との間の間隔)dは、間隙SPを介した造形材料Mの供給を抑制する(典型的には、防止する)状態を実現可能な所望間隔以下に設定されてもよい。 On the other hand, if a relatively large gap SP is formed between the transport member 13 and the inner wall surface 122, a relatively large amount of modeling material M invades the gap SP. As a result, although the modeling material M should be supplied through the groove 132 of the rotating transport member 13, the modeling material M is supplied through the gap SP without passing through the groove 132 of the transport member 13. There is a possibility that it will be done. Such supply of the modeling material M through the groove 132 may cause fluctuations in the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2. Therefore, the size of the gap SP (that is, the distance between the transport member 13 and the inner wall surface 122) d realizes a state in which the supply of the modeling material M through the gap SP is suppressed (typically prevented). It may be set to be less than or equal to the desired desired interval.
 尚、本実施形態における「間隙SPのサイズd」は、搬送部材13のうちの内壁面122に最も近い部分と内壁面122との間の間隔を意味していてもよい。つまり、「間隙SPのサイズd」は、搬送部材13と内壁面122との間の間隔の最小値を意味していてもよい。上述した図3、図5(a)から図5(b)及び図6(a)から図6(c)を見ると分かるように、搬送部材13のうちの内壁面122に最も近い部分は、突起133(特に、突起133のうちの最も外周側に位置する部分)になる。このため、本実施形態における「間隙SPのサイズd」は、突起133(特に、突起133のうちの最も外周側に位置する部分)と内壁面122との間の間隔を意味していてもよい。 Note that the "gap SP size d" in the present embodiment may mean the distance between the portion of the transport member 13 closest to the inner wall surface 122 and the inner wall surface 122. That is, the “gap SP size d” may mean the minimum value of the distance between the transport member 13 and the inner wall surface 122. As can be seen from FIGS. 3, 5 (a) to 5 (b) and FIGS. 6 (a) to 6 (c) described above, the portion of the transport member 13 closest to the inner wall surface 122 is It becomes a protrusion 133 (particularly, a portion of the protrusion 133 located on the outermost peripheral side). Therefore, the “gap SP size d” in the present embodiment may mean the distance between the protrusion 133 (particularly, the portion of the protrusion 133 located on the outermost peripheral side) and the inner wall surface 122. ..
 間隙SPのサイズdは、造形材料Mの特性に応じて設定されてもよい。例えば、造形材料Mが粉体であるがゆえに、造形材料Mの大きさ(例えば、粒径)が小さくなればなるほど、間隙SPにより多くの造形材料Mが侵入してしまう。このため、間隙SPのサイズdは、造形材料Mの大きさ(例えば、粒径)に応じて設定されてもよい。例えば、間隙SPのサイズdは、造形材料Mの最大粒径(つまり、造形材料Mの粒径として想定される最大の大きさ)に応じて設定されてもよい。例えば、間隙SPのサイズdは、造形材料Mの最大粒径の2倍以下になるように設定されてもよい。間隙SPのサイズdが造形材料Mの最大粒径の2倍以下になるように設定されている場合には、間隙SPのサイズdが造形材料Mの最大粒径の2倍より大きくなるように設定されている場合と比較して、間隙SPを介した造形材料Mの供給が抑制される。或いは、例えば、間隙SPのサイズdは、造形材料Mの最大粒径の1倍以下になるように設定されてもよい。間隙SPのサイズdが造形材料Mの最大粒径の1倍以下になるように設定されている場合には、間隙SPのサイズdが造形材料Mの最大粒径の1倍より大きくなるように設定されている場合と比較して、間隙SPを介した造形材料Mの供給が抑制される。 The size d of the gap SP may be set according to the characteristics of the modeling material M. For example, since the modeling material M is a powder, the smaller the size (for example, the particle size) of the modeling material M, the more the modeling material M penetrates into the gap SP. Therefore, the size d of the gap SP may be set according to the size (for example, particle size) of the modeling material M. For example, the size d of the gap SP may be set according to the maximum particle size of the modeling material M (that is, the maximum size assumed as the particle size of the modeling material M). For example, the size d of the gap SP may be set to be twice or less the maximum particle size of the modeling material M. When the size d of the gap SP is set to be twice or less the maximum particle size of the modeling material M, the size d of the gap SP is set to be larger than twice the maximum particle size of the modeling material M. Compared with the case where it is set, the supply of the modeling material M through the gap SP is suppressed. Alternatively, for example, the size d of the gap SP may be set to be 1 time or less of the maximum particle size of the modeling material M. When the size d of the gap SP is set to be 1 times or less of the maximum particle size of the modeling material M, the size d of the gap SP is set to be larger than 1 time the maximum particle size of the modeling material M. Compared with the case where it is set, the supply of the modeling material M through the gap SP is suppressed.
 再び図3において、材料送出部材15は、保持部材12から搬送部材13によって供給された造形材料Mを受け取る。搬送部材13は、保持部材12から造形材料Mが落下するように造形材料Mを供給する。このため、材料送出部材15は、保持部材12から落下してくる造形材料Mを受け取る。この場合、材料送出部材15は、保持部材12から供給された造形材料Mを受け取ることが可能な位置に配置される。例えば、材料送出部材15は、保持部材12の下方及び斜め下方の少なくとも一方に配置されていてもよい。例えば、材料送出部材15は、保持部材12からの造形材料Mの落下経路上に配置されていてもよい。典型的には、材料送出部材15は、供給口124の下方に配置される。造形材料Mを受け取るために、材料送出部材15は、漏斗状の形状(例えば、逆円錐状の形状)を有していてもよい。材料送出部材15は、漏斗状の形状を有する隔壁部材によって、保持部材12から供給された造形材料Mを収集するように受け取る。但し、材料送出部材15は、その他の形状(例えば、逆角錐状の形状、一例として逆四角錐形状)を有していてもよい。 Again in FIG. 3, the material sending member 15 receives the modeling material M supplied by the conveying member 13 from the holding member 12. The transport member 13 supplies the modeling material M so that the modeling material M falls from the holding member 12. Therefore, the material sending member 15 receives the modeling material M falling from the holding member 12. In this case, the material delivery member 15 is arranged at a position where the modeling material M supplied from the holding member 12 can be received. For example, the material delivery member 15 may be arranged at least one of the lower side and the diagonally lower side of the holding member 12. For example, the material delivery member 15 may be arranged on the drop path of the modeling material M from the holding member 12. Typically, the material delivery member 15 is located below the supply port 124. In order to receive the modeling material M, the material delivery member 15 may have a funnel-shaped shape (for example, an inverted conical shape). The material delivery member 15 receives the modeling material M supplied from the holding member 12 so as to be collected by the funnel-shaped partition wall member. However, the material delivery member 15 may have other shapes (for example, an inverted pyramid shape, for example, an inverted quadrangular pyramid shape).
 材料送出部材15は、更に、保持部材12から受け取った造形材料Mを、材料供給装置1の外部へと(つまり、加工装置2へと)送り出す。造形材料Mを加工装置2へと送り出すために、材料送出部材15の下端には、送出口151が形成されている。送出口151は、材料送出部材15の底部の隔壁をZ軸方向に沿って貫通する開口(つまり、貫通孔)である。或いは、隔壁部材が材料送出部材15の下端に形成されない場合には、隔壁部材が形成されていない材料送出部材15の下部の開放端が、送出口151として用いられてもよい。送出口151の断面(具体的には、XY平面に沿った断面)の形状は、円形であるが、その他の形状であってもよい。その他の形状は長円形、楕円形、矩形及び多角形の少なくとも一つを含む。 The material sending member 15 further sends the modeling material M received from the holding member 12 to the outside of the material supply device 1 (that is, to the processing device 2). A delivery port 151 is formed at the lower end of the material delivery member 15 in order to send the modeling material M to the processing apparatus 2. The delivery port 151 is an opening (that is, a through hole) that penetrates the partition wall at the bottom of the material delivery member 15 along the Z-axis direction. Alternatively, when the partition wall member is not formed at the lower end of the material delivery member 15, the open end of the lower portion of the material delivery member 15 on which the partition wall member is not formed may be used as the delivery port 151. The shape of the cross section of the delivery port 151 (specifically, the cross section along the XY plane) is circular, but other shapes may be used. Other shapes include at least one of oval, elliptical, rectangular and polygonal.
 筐体16には、送出口165が形成されている。送出口165は、内部空間16INから外部空間16OUTに向かって隔壁部材161(図5に示す例では、底部材1613)を貫通する開口(つまり、貫通孔)である。送出口165は、材料送出部材15の送出口151につながっている。送出口165には、加工装置2につながる上述した不図示のパイプが接続されている。従って、材料送出部材15が送り出した造形材料Mは、送出口151及び164並びに不図示のパイプを介して、加工装置2へと送り出される。 A delivery port 165 is formed in the housing 16. The delivery port 165 is an opening (that is, a through hole) that penetrates the partition wall member 161 (in the example shown in FIG. 5, the bottom member 1613) from the internal space 16IN toward the external space 16 OUT. The delivery port 165 is connected to the delivery port 151 of the material delivery member 15. The above-mentioned pipe (not shown) connected to the processing device 2 is connected to the delivery port 165. Therefore, the modeling material M sent out by the material sending member 15 is sent out to the processing apparatus 2 through the delivery ports 151 and 164 and a pipe (not shown).
 筐体16には更に、流入口166が形成されている。流入口166は、内部空間16INから外部空間16OUTに向かって隔壁部材161(図5に示す例では、側壁部材1612であるが、天井部材1611又は底部材1613であってもよい)を貫通する開口(つまり、貫通孔)である。流入口166は、上述したガス供給装置5に接続されている。従って、筐体16の内部空間16INには、流入口166を介して、上述したガス供給装置5から、加圧されたパージガスが供給される。つまり、内部空間16INは、パージガスでパージされた空間となる。このとき、パージガスが不活性ガスを含む場合に、造形材料Mに起因した粉塵爆発が生ずる可能性がなくなる又は低くなる。 The housing 16 is further formed with an inflow port 166. The inflow port 166 is an opening that penetrates the partition wall member 161 (in the example shown in FIG. 5, the side wall member 1612, but may be the ceiling member 1611 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. (That is, a through hole). The inflow port 166 is connected to the gas supply device 5 described above. Therefore, the pressurized purge gas is supplied from the gas supply device 5 described above to the internal space 16IN of the housing 16 via the inflow port 166. That is, the internal space 16IN is a space purged with the purge gas. At this time, when the purge gas contains an inert gas, the possibility of a dust explosion caused by the modeling material M is eliminated or reduced.
 筐体16には更に、開口167が形成されている。開口167は、内部空間16INから外部空間16OUTに向かって隔壁部材161(図3に示す例では、天井部材1611であるが、側壁部材1612又は底部材1613であってもよい)を貫通する貫通孔である。開口167には、上述したホッパ11の開口116につながる連結管17がつながっている。具体的には、連結管17の一方の端部が開口116につながり、連結管17の他方の端部が開口167につながっている。その結果、ホッパ11の貯蔵空間112と筐体16の内部空間16INとは、連結管17並びに開口116及び開口167を介してつながる。つまり、加工システムSYSには、貯蔵空間112と内部空間16INとをつなげる経路として、供給口113、162及び123を介した経路のみならず、連結管17並びに開口116及び開口167を介した経路が形成されている。言い換えれば、連結管17は、供給口113、162及び123とは別の位置において、貯蔵空間112と内部空間16INとを連結する。 The housing 16 is further formed with an opening 167. The opening 167 is a through hole that penetrates the partition wall member 161 (in the example shown in FIG. 3, the ceiling member 1611, but may be the side wall member 1612 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. Is. A connecting pipe 17 connected to the opening 116 of the hopper 11 described above is connected to the opening 167. Specifically, one end of the connecting pipe 17 is connected to the opening 116, and the other end of the connecting pipe 17 is connected to the opening 167. As a result, the storage space 112 of the hopper 11 and the internal space 16IN of the housing 16 are connected to each other via the connecting pipe 17, the opening 116, and the opening 167. That is, in the processing system SYS, not only the route via the supply ports 113, 162 and 123 but also the route via the connecting pipe 17 and the opening 116 and the opening 167 are provided as the route connecting the storage space 112 and the internal space 16IN. It is formed. In other words, the connecting pipe 17 connects the storage space 112 and the internal space 16IN at a position different from the supply ports 113, 162 and 123.
 このため、貯蔵空間112に造形材料Mが貯蔵されている(その結果、貯蔵空間112と内部空間16INとをつなげる経路としての供給口113、162及び123を介した経路が造形材料Mによってふさがっている)場合であっても、貯蔵空間112は、内部空間16INと同様に、パージガスによってパージされた空間となる。更に、貯蔵空間112に造形材料Mが貯蔵されている(その結果、貯蔵空間112と内部空間16INとをつなげる経路としての供給口113、162及び123を介した経路が造形材料Mによってふさがっている)場合であっても、連結管17を介して、貯蔵空間112のパージガスが内部空間16INに流入する(つまり、移動する)及び/又は内部空間16INのパージガスが貯蔵空間112に流入する。その結果、貯蔵空間112の圧力と内部空間16INの圧力との間の差が低減される。このため、貯蔵空間112の圧力と内部空間16INの圧力との間に不均衡が発生することは殆どない。従って、貯蔵空間112の圧力と内部空間16INの圧力との間に発生する不均衡に起因してホッパ11から保持部材12に対して造形材料Mが突発的に供給されるという不都合が生ずることは殆どなくなる。また、貯蔵空間112の圧力と内部空間16INの圧力との間に発生する不均衡に起因してホッパ11から造形材料Mがスムーズに供給されないことは殆どなくなる。また、貯蔵空間112の圧力と内部空間16INの圧力との間に発生する不均衡に起因して、ホッパ11から内部空間16IN(特に、保持空間121)に供給された造形材料Mが、供給口113、162及び123を介してホッパ11の貯蔵空間112に逆流してしまうことは殆どなくなる。 Therefore, the modeling material M is stored in the storage space 112 (as a result, the path via the supply ports 113, 162, and 123 as the path connecting the storage space 112 and the internal space 16IN is blocked by the modeling material M. Even in this case, the storage space 112 is a space purged by the purge gas, similarly to the internal space 16IN. Further, the modeling material M is stored in the storage space 112 (as a result, the path via the supply ports 113, 162 and 123 as the path connecting the storage space 112 and the internal space 16IN is blocked by the modeling material M. ), The purge gas in the storage space 112 flows into (that is, moves) into the internal space 16IN and / or the purge gas in the internal space 16IN flows into the storage space 112 through the connecting pipe 17. As a result, the difference between the pressure in the storage space 112 and the pressure in the internal space 16IN is reduced. Therefore, there is almost no imbalance between the pressure of the storage space 112 and the pressure of the internal space 16IN. Therefore, the inconvenience that the modeling material M is suddenly supplied from the hopper 11 to the holding member 12 due to the imbalance generated between the pressure of the storage space 112 and the pressure of the internal space 16IN may occur. Almost gone. Further, it is almost impossible that the modeling material M is not smoothly supplied from the hopper 11 due to the imbalance generated between the pressure of the storage space 112 and the pressure of the internal space 16IN. Further, due to the imbalance that occurs between the pressure of the storage space 112 and the pressure of the internal space 16IN, the modeling material M supplied from the hopper 11 to the internal space 16IN (particularly, the holding space 121) is supplied to the supply port. There is almost no backflow to the storage space 112 of the hopper 11 via 113, 162 and 123.
 尚、加工システムSYSが連結管17を備えることに加えて又は代えて、ホッパ11が内部空間16INに配置されていてもよい。この場合、開口116に連結管17がつなげられていなくても、開口116を介して貯蔵空間112と内部空間16INとがつながる。このため、貯蔵空間112の圧力と内部空間16INの圧力との間に不均衡が発生することは殆どない。尚、加工システムSYSが連結管17を備えていない場合には、筐体16には、開口167が形成されていなくてもよい。 In addition to or instead of the processing system SYS including the connecting pipe 17, the hopper 11 may be arranged in the internal space 16IN. In this case, even if the connecting pipe 17 is not connected to the opening 116, the storage space 112 and the internal space 16IN are connected to each other through the opening 116. Therefore, there is almost no imbalance between the pressure of the storage space 112 and the pressure of the internal space 16IN. When the processing system SYS does not include the connecting pipe 17, the housing 16 may not have an opening 167.
 筐体16には更に、開口168が形成されている。開口168は、内部空間16INから外部空間16OUTに向かって隔壁部材161(図3に示す例では、側壁部材1612であるが、天井部材1611又は底部材1613であってもよい)を貫通する貫通孔である。開口168には、観察窓1681がはめ込まれている。観察窓1681が開口168にはめ込まれた状態で観察窓1681と隔壁部材161との間に隙間が形成される場合には、観察窓1681と隔壁部材161との隙間にシール部材が形成されていてもよい。観察窓1681は、可視光が通過可能な(つまり、可視光に対して透明な)部材である。但し、撮像装置8の撮像素子が可視光の波長域とは異なる波長域の光を検出可能である場合には、観察窓1681は、可視光の波長域とは異なる波長域の光(特に、撮像素子が検出可能な波長域の光)が通過可能な部材であってもよい。観察窓1681は、撮像装置8が筐体16の内部空間16INを通過する造形材料Mを撮像するために用いられる。このため、図3に示す例では、撮像装置8が撮像する撮像対象経路は、筐体16の内部空間16IN内に設定される。その結果、外部空間16OUTに配置された撮像装置8は、観察窓1681を介して、内部空間16IN内の撮像対象経路を通過する造形材料Mを撮像する。このように、撮像装置8が外部空間16OUTに配置される場合には、撮像装置8は、造形材料Mが存在する内部空間16INと物理的に隔離される。その結果、撮像装置8は、造形材料Mの影響を受けることなく、撮像対象経路を通過する造形材料Mを撮像することができる。つまり、撮像装置8に対して造形材料Mが影響を与える可能性はない又は低い。但し、撮像装置8は、内部空間16INに配置されていてもよい。 The housing 16 is further formed with an opening 168. The opening 168 is a through hole that penetrates the partition wall member 161 (in the example shown in FIG. 3, the side wall member 1612, but may be the ceiling member 1611 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. Is. An observation window 1681 is fitted in the opening 168. When a gap is formed between the observation window 1681 and the partition member 161 with the observation window 1681 fitted in the opening 168, a seal member is formed in the gap between the observation window 1681 and the partition member 161. May be good. The observation window 1681 is a member through which visible light can pass (that is, is transparent to visible light). However, when the image pickup element of the image pickup apparatus 8 can detect light in a wavelength range different from the visible light wavelength range, the observation window 1681 is used for light in a wavelength range different from the visible light wavelength range (particularly). It may be a member through which light in a wavelength range that can be detected by the image pickup element) can pass. The observation window 1681 is used for the imaging device 8 to image the modeling material M passing through the internal space 16IN of the housing 16. Therefore, in the example shown in FIG. 3, the image pickup target path to be imaged by the image pickup apparatus 8 is set in the internal space 16IN of the housing 16. As a result, the imaging device 8 arranged in the external space 16OUT images the modeling material M passing through the imaging target path in the internal space 16IN through the observation window 1681. In this way, when the imaging device 8 is arranged in the external space 16OUT, the imaging device 8 is physically isolated from the internal space 16IN in which the modeling material M is present. As a result, the imaging device 8 can image the modeling material M passing through the imaging target path without being affected by the modeling material M. That is, there is no possibility or low possibility that the modeling material M has an influence on the image pickup apparatus 8. However, the image pickup apparatus 8 may be arranged in the internal space 16IN.
 撮像装置8は、観察窓1681を介して、材料供給源1Aと材料ノズル212との間を通過する造形材料Mを撮像する。つまり、撮像装置8は、材料供給源1Aと材料ノズル212との間の供給経路(撮像対象経路)を通過する造形材料Mを撮像する。材料供給源1Aが供給口124から造形材料Mを供給するがゆえに、撮像装置8は、供給口124と材料ノズル212との間の供給経路路(撮像対象経路)を通過する造形材料Mを撮像する。図3に示す例では、撮像装置8は、保持部材12から材料送出部材15へと落下する造形材料Mの落下経路(つまり、供給経路)DPを通過する造形材料Mを撮像する。撮像装置8は、供給口124と材料送出部材15との間の供給経路を通過する造形材料Mを撮像する。但し、撮像装置8は、材料供給源1Aと材料ノズル212との間の供給経路であって且つ造形材料Mの落下経路DPとは異なる供給経路を通過する造形材料Mを撮像してもよい。 The imaging device 8 images the modeling material M passing between the material supply source 1A and the material nozzle 212 through the observation window 1681. That is, the image pickup apparatus 8 images the modeling material M passing through the supply path (imaging target path) between the material supply source 1A and the material nozzle 212. Since the material supply source 1A supplies the modeling material M from the supply port 124, the image pickup apparatus 8 images the modeling material M passing through the supply path path (imaging target path) between the supply port 124 and the material nozzle 212. To do. In the example shown in FIG. 3, the image pickup apparatus 8 images the modeling material M passing through the drop path (that is, the supply path) DP of the modeling material M that falls from the holding member 12 to the material delivery member 15. The image pickup apparatus 8 images the modeling material M passing through the supply path between the supply port 124 and the material delivery member 15. However, the image pickup apparatus 8 may image the modeling material M which is a supply path between the material supply source 1A and the material nozzle 212 and passes through a supply path different from the drop path DP of the modeling material M.
 筐体16には更に、開口169が形成されている。開口169は、内部空間16INから外部空間16OUTに向かって隔壁部材161(図3に示す例では、側壁部材1612であるが、天井部材1611又は底部材1613であってもよい)を貫通する貫通孔である。開口169には、観察窓1691がはめ込まれている。観察窓1691が開口169にはめ込まれた状態で観察窓1691と隔壁部材161との間に隙間が形成される場合には、観察窓1691と隔壁部材161との隙間にシール部材が形成されていてもよい。観察窓1691は、可視光が通過可能な(つまり、可視光に対して透明な)部材である。但し、照明装置9が可視光の波長域とは異なる波長域の光を照明光ILとして射出する場合には、観察窓1691は、可視光の波長域とは異なる波長域の光(特に、照明光IL)が通過可能な部材であってもよい。観察窓1691は、照明装置9が筐体16の内部空間16INを通過する造形材料Mを照明光ILで照明するために用いられる。具体的には、外部空間16OUTに配置された照明装置9は、観察窓1691を介して、内部空間16IN内の供給経路を通過する造形材料Mに向けて照明光ILを照射する。その結果、観察窓1691を介して外部空間16OUTに配置された照明装置9から照射される照明光ILによって、内部空間16IN内の供給経路を通過する造形材料Mが照明される。このように、照明装置9が外部空間16OUTに配置される場合には、照明装置9は、造形材料Mが存在する内部空間16INと物理的に隔離される。その結果、照明装置9は、造形材料Mの影響を受けることなく、撮像対象経路を通過する造形材料Mに向けて照明光ILを照射することができる。つまり、照明装置9に対して造形材料Mが影響を与える可能性はない又は低い。但し、照明装置9は、内部空間16INに配置されていてもよい。 The housing 16 is further formed with an opening 169. The opening 169 is a through hole that penetrates the partition wall member 161 (in the example shown in FIG. 3, the side wall member 1612, but may be the ceiling member 1611 or the bottom member 1613) from the internal space 16IN toward the external space 16OUT. Is. An observation window 1691 is fitted in the opening 169. When a gap is formed between the observation window 1691 and the partition member 161 with the observation window 1691 fitted in the opening 169, a seal member is formed in the gap between the observation window 1691 and the partition member 161. May be good. The observation window 1691 is a member through which visible light can pass (that is, is transparent to visible light). However, when the lighting device 9 emits light in a wavelength range different from the visible light wavelength range as the illumination light IL, the observation window 1691 emits light in a wavelength range different from the visible light wavelength range (particularly, illumination). It may be a member through which optical IL) can pass. The observation window 1691 is used for the lighting device 9 to illuminate the modeling material M passing through the internal space 16IN of the housing 16 with the illumination light IL. Specifically, the illumination device 9 arranged in the external space 16OUT irradiates the illumination light IL toward the modeling material M passing through the supply path in the internal space 16IN through the observation window 1691. As a result, the modeling material M passing through the supply path in the internal space 16IN is illuminated by the illumination light IL emitted from the lighting device 9 arranged in the external space 16OUT through the observation window 1691. In this way, when the lighting device 9 is arranged in the external space 16OUT, the lighting device 9 is physically isolated from the internal space 16IN in which the modeling material M exists. As a result, the illumination device 9 can irradiate the illumination light IL toward the modeling material M passing through the imaging target path without being affected by the modeling material M. That is, there is no possibility or low possibility that the modeling material M has an influence on the lighting device 9. However, the lighting device 9 may be arranged in the internal space 16IN.
 開口168及び169は、撮像対象経路(つまり、落下経路DPの少なくとも一部)からそれぞれ異なる方向に離れた位置に形成されてもよい。この場合、撮像装置8及び照明装置9は、撮像対象経路からそれぞれ異なる方向に離れた位置に配置されてもよい。その結果、照明装置9は、撮像装置8が造形材料Mを撮像する方向とは異なる方向から、照明光ILで造形材料Mを照明してもよい。尚、撮像装置8及び照明装置9のうち少なくとも一方は、光路偏向ミラーを備えていてもよい。この光路偏向ミラーは、撮像装置8の対物光学系と撮像対象経路との間又は照明装置9の照明光学系と撮像対象経路との間に配置されていてもよい。 The openings 168 and 169 may be formed at positions separated from the imaging target path (that is, at least a part of the falling path DP) in different directions. In this case, the image pickup device 8 and the illumination device 9 may be arranged at positions separated from the image pickup target path in different directions. As a result, the lighting device 9 may illuminate the modeling material M with the illumination light IL from a direction different from the direction in which the imaging device 8 images the modeling material M. At least one of the image pickup device 8 and the illumination device 9 may be provided with an optical path deflection mirror. The optical path deflection mirror may be arranged between the objective optical system of the image pickup apparatus 8 and the image pickup target path or between the illumination optical system of the illumination device 9 and the image pickup target path.
 例えば、図3に一例として示すように、開口168は、撮像対象経路の-Y側に形成され、開口169は、撮像対象経路の+Y側に形成されてもよい。つまり、撮像対象経路から見て、開口168は、開口169の反対側に形成されてもよい。この場合、照明装置9は、撮像装置8が造形材料Mを撮像する方向とは反対側から、照明光ILで造形材料Mを照明する。照明装置9は、撮像装置8に向けて照明光ILを照明してもよい。言い換えると、照明装置9は、造形材料Mを透過照明する。その結果、撮像装置8は、被写体たる造形材料Mの明暗が実物とは反転した陰画に相当する画像を取得する。このような陰画に相当する画像を撮像装置8が取得する場合には、被写体たる造形材料Mの明暗が実物と概ね同じになる陽画に相当する画像を撮像装置8が取得する場合と比較して、画像の解析(具体的には、図10を参照しながら後に詳述する二値化処理及び0次モーメントの算出処理等)が容易になる。尚、照明装置9が照射する照明光ILは、連続光であってもよいし、パルス光であってもよい。 For example, as shown as an example in FIG. 3, the opening 168 may be formed on the −Y side of the imaging target path, and the opening 169 may be formed on the + Y side of the imaging target path. That is, the opening 168 may be formed on the opposite side of the opening 169 when viewed from the imaging target path. In this case, the lighting device 9 illuminates the modeling material M with the illumination light IL from the side opposite to the direction in which the imaging device 8 images the modeling material M. The lighting device 9 may illuminate the illumination light IL toward the image pickup device 8. In other words, the lighting device 9 transmits and illuminates the modeling material M. As a result, the image pickup apparatus 8 acquires an image corresponding to a negative image in which the brightness and darkness of the modeling material M, which is the subject, is reversed from the actual one. When the image pickup apparatus 8 acquires an image corresponding to such a negative image, it is compared with the case where the image pickup apparatus 8 acquires an image corresponding to a positive image in which the brightness and darkness of the modeling material M as the subject is substantially the same as the actual one. , Image analysis (specifically, binarization process and zero-order moment calculation process, which will be described in detail later with reference to FIG. 10) becomes easy. The illumination light IL emitted by the illumination device 9 may be continuous light or pulsed light.
 但し、開口168及び169は、撮像対象経路から同じ方向に離れた位置に形成されてもよい。照明装置9は、撮像装置8が造形材料Mを撮像する方向と同じ方向から、照明光ILで造形材料Mを照明してもよい。言い換えると、照明装置9は造形材料Mを反射照明してもよい。その結果、撮像装置8は、被写体たる造形材料Mの明暗が実物と概ね同じになる陽画に相当する画像を取得する。この場合であっても、画像の解析は可能である。 However, the openings 168 and 169 may be formed at positions separated from the imaging target path in the same direction. The lighting device 9 may illuminate the modeling material M with the illumination light IL from the same direction in which the imaging device 8 images the modeling material M. In other words, the lighting device 9 may reflect-illuminate the modeling material M. As a result, the image pickup apparatus 8 acquires an image corresponding to a positive image in which the brightness and darkness of the modeling material M as the subject is substantially the same as the actual one. Even in this case, the image can be analyzed.
 (2)加工システムSYSの動作
 続いて、加工システムSYSの動作について説明する。
(2) Operation of Machining System SYS Next, the operation of the machining system SYS will be described.
 (2-1)ワークWを加工する加工動作
 初めに、加工システムSYSによる加工動作(つまり、3次元構造物STを形成するための動作)について説明する。上述したように、加工システムSYSは、レーザ肉盛溶接法により3次元構造物STを形成する。このため、加工システムSYSは、レーザ肉盛溶接法に準拠した既存の加工動作(この場合、造形動作)を行うことで、3次元構造物STを形成してもよい。以下、レーザ肉盛溶接法を用いて3次元構造物STを形成する加工動作の一例について簡単に説明する。
(2-1) Machining Operation for Machining Work W First, a machining operation by the machining system SYS (that is, an operation for forming a three-dimensional structure ST) will be described. As described above, the processing system SYS forms the three-dimensional structure ST by the laser overlay welding method. Therefore, the processing system SYS may form the three-dimensional structure ST by performing an existing processing operation (in this case, a modeling operation) based on the laser overlay welding method. Hereinafter, an example of a machining operation for forming the three-dimensional structure ST by using the laser overlay welding method will be briefly described.
 加工システムSYSは、形成するべき3次元構造物STの3次元モデルデータ(例えば、CAD(Computer Aided Design)データ)等に基づいて、ワークW上に3次元構造物STを形成する。3次元モデルデータとして、加工システムSYS内に設けられた不図示の計測装置で計測された立体物の計測データ、及び、加工システムSYSとは別に設けられた3次元形状計測機の計測データの少なくとも一方を用いてもよい。 The processing system SYS forms the three-dimensional structure ST on the work W based on the three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed. As 3D model data, at least the measurement data of a three-dimensional object measured by a measuring device (not shown) provided in the processing system SYS and the measurement data of the 3D shape measuring machine provided separately from the processing system SYS. One may be used.
 加工システムSYSは、3次元構造物STを形成するために、例えば、Z軸方向に沿って並ぶ複数の層状の部分構造物(以下、“構造層”と称する)SLを順に形成していく。例えば、加工システムSYSは、3次元構造物STをZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に形成していく。その結果、複数の構造層SLが積層された積層構造体である3次元構造物STが形成される。以下、複数の構造層SLを1層ずつ順に形成していくことで3次元構造物STを形成する動作の流れについて説明する。 In order to form the three-dimensional structure ST, the processing system SYS forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SLs arranged along the Z-axis direction in order. For example, the processing system SYS sequentially forms a plurality of structural layers SL obtained by cutting the three-dimensional structure ST into round slices along the Z-axis direction. As a result, the three-dimensional structure ST, which is a laminated structure in which a plurality of structural layers SL are laminated, is formed. Hereinafter, the flow of the operation of forming the three-dimensional structure ST by sequentially forming the plurality of structural layers SL one by one will be described.
 まず、各構造層SLを形成する動作について図7(a)から図7(e)を参照して説明する。加工システムSYSは、制御装置7の制御下で、ワークWの表面又は形成済みの構造層SLの表面に相当する造形面MS上の所望領域に照射領域EAを設定し、当該照射領域EAに対して照射光学系211から加工光ELを照射する。尚、照射光学系211から照射される加工光ELが造形面MS上に占める領域を照射領域EAと称してもよい。本実施形態においては、加工光ELのフォーカス位置(つまり、集光位置)が造形面MSに一致している。その結果、図7(a)に示すように、照射光学系211から射出された加工光ELによって造形面MS上の所望領域に溶融池(つまり、加工光ELによって溶融した金属のプール)MPが形成される。更に、加工システムSYSは、制御装置7の制御下で、造形面MS上の所望領域に供給領域MAを設定し、当該供給領域MAに対して材料ノズル212から造形材料Mを供給する。ここで、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAは、溶融池MPが形成された領域に設定されている。このため、加工システムSYSは、図7(b)に示すように、溶融池MPに対して、材料ノズル212から造形材料Mを供給する。その結果、溶融池MPに供給された造形材料Mが溶融する。加工ヘッド21の移動に伴って溶融池MPに加工光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて固化(つまり、凝固)する。その結果、図7(c)に示すように、固化した造形材料Mが造形面MS上に堆積される。つまり、固化した造形材料Mの堆積物による造形物が形成される。 First, the operation of forming each structural layer SL will be described with reference to FIGS. 7 (a) to 7 (e). Under the control of the control device 7, the processing system SYS sets an irradiation region EA in a desired region on the modeling surface MS corresponding to the surface of the work W or the surface of the formed structural layer SL, and the irradiation region EA is set with respect to the irradiation region EA. The processing light EL is irradiated from the irradiation optical system 211. The region occupied by the processed light EL emitted from the irradiation optical system 211 on the modeling surface MS may be referred to as an irradiation region EA. In the present embodiment, the focus position (that is, the condensing position) of the processed light EL coincides with the modeling surface MS. As a result, as shown in FIG. 7A, a molten pool (that is, a pool of metal melted by the processing light EL) MP is formed in a desired region on the modeling surface MS by the processing light EL emitted from the irradiation optical system 211. It is formed. Further, the processing system SYS sets a supply region MA in a desired region on the modeling surface MS under the control of the control device 7, and supplies the modeling material M to the supply region MA from the material nozzle 212. Here, since the irradiation region EA and the supply region MA coincide with each other as described above, the supply region MA is set to the region where the molten pool MP is formed. Therefore, as shown in FIG. 7B, the processing system SYS supplies the modeling material M to the molten pool MP from the material nozzle 212. As a result, the modeling material M supplied to the molten pool MP is melted. When the processing light EL is not irradiated to the molten pool MP as the processing head 21 moves, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified). As a result, as shown in FIG. 7C, the solidified modeling material M is deposited on the modeling surface MS. That is, a modeled object is formed by the deposit of the solidified modeling material M.
 このような加工光ELの照射による溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理が、図7(d)に示すように、造形面MSに対して加工ヘッド21がXY平面に沿って相対的に移動されながら繰り返される。つまり、造形面MSに対して加工ヘッド21が相対的に移動すると、造形面MSに対して照射領域EAもまた相対的に移動する。従って、一連の造形処理が、造形面MSに対して照射領域EAがXY平面に沿って(つまり、二次元平面内において)相対的に移動されながら繰り返される。この際、加工光ELは、造形面MS上において造形物を形成したい領域に設定された照射領域EAに対して選択的に照射される一方で、造形面MS上において造形物を形成したくない領域に設定された照射領域EAに対して選択的に照射されない(造形物を形成したくない領域には照射領域EAが設定されないとも言える)。つまり、加工システムSYSは、造形面MS上を所定の移動軌跡に沿って照射領域EAを移動させながら、造形物を形成したい領域の分布の態様に応じたタイミングで加工光ELを造形面MSに照射する。尚、造形物を形成したい領域の分布の態様を分布パターンとも構造層SLのパターンとも称してもよい。その結果、溶融池MPもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面MS上を移動することになる。具体的には、溶融池MPは、造形面MS上において、照射領域EAの移動軌跡に沿った領域のうち加工光ELが照射された部分に順次形成される。更に、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAもまた、照射領域EAの移動軌跡に応じた移動軌跡に沿って造形面MS上を移動することになる。その結果、図7(e)に示すように、造形面MS上に、凝固した造形材料Mによる造形物の集合体に相当する構造層SLが形成される。つまり、溶融池MPの移動軌跡に応じたパターンで造形面MS上に形成された造形物の集合体に相当する構造層SL(つまり、平面視において、溶融池MPの移動軌跡に応じた形状を有する構造層SL)が形成される。なお、造形物を形成したくない領域に照射領域EAが設定されている場合には、加工システムSYSは、加工光ELを照射領域EAに照射するとともに、造形材料Mの供給を停止してもよい。また、造形物を形成したくない領域に照射領域EAが設定されている場合には、加工システムSYSは、造形材料Mを照射領域EAに供給するとともに、溶融池MPができない強度の加工光ELを照射領域EAに照射してもよい。尚、上述した説明では、造形面MSに対して照射領域EAが移動しているが、照射領域EAに対して造形面MSが移動してもよい。 A series of modeling processes including formation of the molten pool MP by irradiation with such processing light EL, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M can be performed. As shown in FIG. 7D, the processing head 21 is repeatedly moved relative to the modeling surface MS along the XY plane. That is, when the processing head 21 moves relative to the modeling surface MS, the irradiation region EA also moves relative to the modeling surface MS. Therefore, a series of modeling processes is repeated while the irradiation region EA is moved relative to the modeling surface MS along the XY plane (that is, in the two-dimensional plane). At this time, the processed light EL is selectively irradiated to the irradiation region EA set in the region where the modeled object is to be formed on the modeled surface MS, but it is not desired to form the modeled object on the modeled surface MS. The irradiation area EA set in the area is not selectively irradiated (it can be said that the irradiation area EA is not set in the area where the modeled object is not desired to be formed). That is, the processing system SYS moves the irradiation region EA along the predetermined movement locus on the modeling surface MS, and converts the processing light EL into the modeling surface MS at a timing according to the distribution mode of the region where the modeled object is to be formed. Irradiate. The mode of distribution of the region where the modeled object is to be formed may be referred to as a distribution pattern or a pattern of the structural layer SL. As a result, the molten pool MP also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA. Specifically, the molten pool MP is sequentially formed on the modeling surface MS in the portion of the region along the movement locus of the irradiation region EA that is irradiated with the processing light EL. Further, since the irradiation region EA and the supply region MA coincide with each other as described above, the supply region MA also moves on the modeling surface MS along the movement locus according to the movement locus of the irradiation region EA. Become. As a result, as shown in FIG. 7 (e), a structural layer SL corresponding to an aggregate of the modeled objects made of the solidified modeling material M is formed on the modeling surface MS. That is, the structural layer SL corresponding to the aggregate of the shaped objects formed on the modeling surface MS in the pattern corresponding to the moving locus of the molten pool MP (that is, the shape corresponding to the moving locus of the molten pool MP in a plan view). The structural layer SL) to have is formed. When the irradiation region EA is set in the region where the modeled object is not to be formed, the processing system SYS irradiates the irradiation region EA with the processing light EL and stops the supply of the modeling material M. Good. Further, when the irradiation region EA is set in the region where the modeled object is not to be formed, the processing system SYS supplies the modeling material M to the irradiation region EA, and the processing light EL having an intensity that does not allow the molten pool MP to be formed. May be irradiated to the irradiation area EA. In the above description, the irradiation area EA moves with respect to the modeling surface MS, but the modeling surface MS may move with respect to the irradiation area EA.
 加工システムSYSは、このような構造層SLを形成するための動作を、制御装置7の制御下で、3次元モデルデータに基づいて繰り返し行う。具体的には、まず、3次元モデルデータを積層ピッチでスライス処理してスライスデータを作成する。加工システムSYSは、ワークWの表面に相当する造形面MS上に1層目の構造層SL#1を形成するための動作を、構造層SL#1に対応する3次元モデルデータ、即ち構造層SL#1に対応するスライスデータに基づいて行う。その結果、造形面MS上には、図8(a)に示すように、構造層SL#1が形成される。その後、加工システムSYSは、構造層SL#1の表面(つまり、上面)を新たな造形面MSに設定した上で、当該新たな造形面MS上に2層目の構造層SL#2を形成する。構造層SL#2を形成するために、制御装置7は、まず、加工ヘッド21がZ軸に沿って移動するようにヘッド駆動系22を制御する。具体的には、制御装置7は、ヘッド駆動系22を制御して、照射領域EA及び供給領域MAが構造層SL#1の表面(つまり、新たな造形面MS)に設定されるように、+Z側に向かって加工ヘッド21を移動させる。これにより、加工光ELのフォーカス位置が新たな造形面MSに一致する。その後、加工システムSYSは、制御装置7の制御下で、構造層SL#1を形成する動作と同様の動作で、構造層SL#2に対応するスライスデータに基づいて、構造層SL#1上に構造層SL#2を形成する。その結果、図8(b)に示すように、構造層SL#2が形成される。以降、同様の動作が、ワークW上に形成するべき3次元構造物STを構成する全ての構造層SLが形成されるまで繰り返される。その結果、図8(c)に示すように、複数の構造層SLが積層された積層構造物によって、3次元構造物STが形成される。 The processing system SYS repeatedly performs the operation for forming such a structural layer SL under the control of the control device 7 based on the three-dimensional model data. Specifically, first, the three-dimensional model data is sliced at a stacking pitch to create slice data. The processing system SYS performs an operation for forming the first structural layer SL # 1 on the modeling surface MS corresponding to the surface of the work W, that is, three-dimensional model data corresponding to the structural layer SL # 1, that is, the structural layer. This is performed based on the slice data corresponding to SL # 1. As a result, the structural layer SL # 1 is formed on the modeling surface MS as shown in FIG. 8A. After that, the processing system SYS sets the surface (that is, the upper surface) of the structural layer SL # 1 on the new modeling surface MS, and then forms the second structural layer SL # 2 on the new modeling surface MS. To do. In order to form the structural layer SL # 2, the control device 7 first controls the head drive system 22 so that the machining head 21 moves along the Z axis. Specifically, the control device 7 controls the head drive system 22 so that the irradiation region EA and the supply region MA are set on the surface of the structural layer SL # 1 (that is, the new modeling surface MS). The processing head 21 is moved toward the + Z side. As a result, the focus position of the processing light EL coincides with the new modeling surface MS. After that, the processing system SYS operates on the structural layer SL # 1 based on the slice data corresponding to the structural layer SL # 2 in the same operation as the operation of forming the structural layer SL # 1 under the control of the control device 7. The structural layer SL # 2 is formed on the surface. As a result, the structural layer SL # 2 is formed as shown in FIG. 8 (b). After that, the same operation is repeated until all the structural layers SL constituting the three-dimensional structure ST to be formed on the work W are formed. As a result, as shown in FIG. 8C, the three-dimensional structure ST is formed by the laminated structure in which a plurality of structural layers SL are laminated.
 (2-2)材料供給装置1による造形材料Mの供給動作
 続いて、図9を参照しながら、上述した加工動作が行われている期間中に材料供給装置1によって行われる造形材料Mの供給動作について説明する。図9は、造形材料Mの供給動作を行っている材料供給装置1を示す断面図である。
(2-2) Supply operation of the modeling material M by the material supply device 1 Subsequently, with reference to FIG. 9, the supply of the modeling material M performed by the material supply device 1 during the period during which the above-mentioned processing operation is performed. The operation will be described. FIG. 9 is a cross-sectional view showing a material supply device 1 that supplies the modeling material M.
 図9に示すように、ホッパ11の貯蔵空間112に貯蔵された造形材料Mは、供給口113、162及び123を介して、保持部材12の保持空間121に落下する。ホッパ11の貯蔵空間112に貯蔵された造形材料Mは、供給口113、162及び123を介して、保持部材12の保持面1221に落下する。つまり、ホッパ11から保持部材12(特に、保持空間121に対して、更には、保持空間121に配置されている搬送部材13に対して)、重力方向に向かって造形材料Mが供給される。このような造形材料Mの供給を実現するために、供給口123は、内壁面122のうちの搬送部材13(特に、軸部材131)と交差しない面部分に形成される)。その結果、保持空間121は、保持空間121の大きさに応じた分量の造形材料Mを保持する。保持面1221上には、保持空間121の大きさに応じた分量の造形材料Mが堆積される。 As shown in FIG. 9, the modeling material M stored in the storage space 112 of the hopper 11 falls into the holding space 121 of the holding member 12 via the supply ports 113, 162 and 123. The modeling material M stored in the storage space 112 of the hopper 11 falls on the holding surface 1221 of the holding member 12 via the supply ports 113, 162 and 123. That is, the modeling material M is supplied from the hopper 11 to the holding member 12 (particularly to the holding space 121 and further to the transport member 13 arranged in the holding space 121) in the direction of gravity. In order to realize such supply of the modeling material M, the supply port 123 is formed on a surface portion of the inner wall surface 122 that does not intersect with the transport member 13 (particularly, the shaft member 131). As a result, the holding space 121 holds the modeling material M in an amount corresponding to the size of the holding space 121. An amount of modeling material M corresponding to the size of the holding space 121 is deposited on the holding surface 1221.
 保持面1221上に堆積した造形材料Mは供給口123、162及び113と接触している。この場合、搬送部材13が静止している(つまり、回転していない)状況下では、堆積した造形材料Mは供給口123、162及び113を塞いでそれ以上の造形材料Mが保持部材12に供給されることを抑制している。この状態において、搬送部材13は、駆動装置14によって回転駆動される。搬送部材13が回転し始めると、上述したように、保持空間121に保持されていた造形材料Mは、搬送部材13に形成された溝132を介して移動し始める。造形材料Mは、溝132を規定する突起133に押されて、供給口124に向かって徐々に移動する。つまり、搬送部材13は、供給口124に向かって造形材料Mを供給する。つまり、搬送部材13は、ホッパ11から搬送部材13に対して造形材料Mが供給される方向(例えば、重力方向であり、Z軸方向)に交差する方向(例えば、Y軸方向)に沿って造形材料Mを供給する。 The modeling material M deposited on the holding surface 1221 is in contact with the supply ports 123, 162 and 113. In this case, under the condition that the transport member 13 is stationary (that is, not rotating), the deposited modeling material M closes the supply ports 123, 162 and 113, and more modeling material M is attached to the holding member 12. It suppresses the supply. In this state, the transport member 13 is rotationally driven by the drive device 14. When the transport member 13 starts to rotate, as described above, the modeling material M held in the holding space 121 starts to move through the groove 132 formed in the transport member 13. The modeling material M is pushed by the protrusion 133 defining the groove 132 and gradually moves toward the supply port 124. That is, the transport member 13 supplies the modeling material M toward the supply port 124. That is, the transport member 13 is along a direction (for example, the Y-axis direction) that intersects the direction in which the modeling material M is supplied from the hopper 11 to the transport member 13 (for example, the direction of gravity and the Z-axis direction). The modeling material M is supplied.
 その結果、搬送部材13が供給した造形材料Mは、保持部材12の供給口124から保持部材12の外部(つまり、材料送出部材15)へと落下する(つまり、こぼれ落ちる)。具体的には、造形材料Mは、溝132の端部又は内部空間16INに露出した溝132に相当する隙間Gから材料送出部材15へと落下する。つまり、造形材料Mは、供給口124が形成された位置において溝132が形成する隙間Gから材料送出部材15へと落下する。隙間Gは、供給口124が形成されている位置において保持部材12と搬送部材13との間に溝132が形成する隙間である。尚、ホッパ11、保持部材12及び搬送部材13を含む装置は、材料送出部材15に造形材料Mを供給するがゆえに供給源と称されてもよい。 As a result, the modeling material M supplied by the transport member 13 falls (that is, spills) from the supply port 124 of the holding member 12 to the outside of the holding member 12 (that is, the material delivery member 15). Specifically, the modeling material M falls from the end of the groove 132 or the gap G corresponding to the groove 132 exposed in the internal space 16IN to the material delivery member 15. That is, the modeling material M falls from the gap G formed by the groove 132 to the material delivery member 15 at the position where the supply port 124 is formed. The gap G is a gap formed by a groove 132 between the holding member 12 and the transport member 13 at the position where the supply port 124 is formed. The device including the hopper 11, the holding member 12, and the conveying member 13 may be referred to as a supply source because the modeling material M is supplied to the material sending member 15.
 らせん状の溝132のピッチ(つまり、周期であり、例えば、溝132が1回転する間に溝132が延びる(つまり、進む)距離)が一定であるがゆえに、搬送部材13が継続的に且つ同じように回転し続けると、保持空間121に保持されていた造形材料Mは、一定の供給レートで供給される。その結果、単位時間当たりに一定量の造形材料Mが、保持部材12の供給口124から保持部材12の外部(つまり、材料送出部材15)へとこぼれ落ちる。その結果、保持部材12からは、単位時間当たりに一定量の造形材料Mが材料送出部材15へと供給(つまり、搬送)される。このため、搬送部材13は、溝132を介して造形材料Mを供給することで、実質的には、単位時間当たりに一定量の造形材料Mを保持部材12の外部に切り出す部材として機能する。 Since the pitch of the spiral groove 132 (that is, the period, for example, the distance that the groove 132 extends (that is, advances) during one rotation of the groove 132) is constant, the transport member 13 is continuously and. When it continues to rotate in the same manner, the modeling material M held in the holding space 121 is supplied at a constant supply rate. As a result, a certain amount of the modeling material M per unit time spills from the supply port 124 of the holding member 12 to the outside of the holding member 12 (that is, the material delivery member 15). As a result, the holding member 12 supplies (that is, conveys) a constant amount of the modeling material M to the material sending member 15 per unit time. Therefore, by supplying the modeling material M through the groove 132, the transport member 13 substantially functions as a member that cuts out a constant amount of the modeling material M per unit time to the outside of the holding member 12.
 一方で、駆動装置14による搬送部材13の回転が停止すると、保持空間121に保持された造形材料Mは移動することを止め、保持部材12から造形材料Mがこぼれ落ちなくなる。つまり、保持部材12から材料送出部材15への造形材料Mの供給が停止される。その結果、材料供給装置1から加工装置2への造形材料Mの供給も停止される。従って、駆動装置14は、制御装置7の制御下で、加工装置2へ造形材料Mを供給しなくてもよいタイミング(例えば、材料ノズル212が造形材料Mを供給しなくてもよいタイミング)で、搬送部材13の回転を停止する。 On the other hand, when the rotation of the transport member 13 by the drive device 14 is stopped, the modeling material M held in the holding space 121 stops moving, and the modeling material M does not spill from the holding member 12. That is, the supply of the modeling material M from the holding member 12 to the material sending member 15 is stopped. As a result, the supply of the modeling material M from the material supply device 1 to the processing device 2 is also stopped. Therefore, the drive device 14 does not have to supply the modeling material M to the processing device 2 under the control of the control device 7 (for example, the timing at which the material nozzle 212 does not have to supply the modeling material M). , The rotation of the transport member 13 is stopped.
 単位時間あたりに保持部材12から保持部材12の外部へと供給される造形材料Mの分量(つまり、単位時間当たりの造形材料Mの供給量)は、搬送部材13の回転の状態で制御可能である。このため、制御装置7は、単位時間あたりに保持部材12から材料送出部材15へ供給される造形材料Mの分量が、3次元構造物STの形成に必要な造形材料Mの供給レートに応じた目標供給量となるように、搬送部材13の回転の状態を設定してもよい。尚、本実施形態では、造形材料Mの分量は、造形材料Mの質量を意味するものとする。 The amount of the modeling material M supplied from the holding member 12 to the outside of the holding member 12 per unit time (that is, the supply amount of the modeling material M per unit time) can be controlled by the state of rotation of the transport member 13. is there. Therefore, in the control device 7, the amount of the modeling material M supplied from the holding member 12 to the material sending member 15 per unit time corresponds to the supply rate of the modeling material M required for forming the three-dimensional structure ST. The state of rotation of the transport member 13 may be set so as to reach the target supply amount. In the present embodiment, the amount of the modeling material M means the mass of the modeling material M.
 駆動装置14は、制御装置7の制御下で、加工装置2が3次元構造物STを形成している間(より具体的には、材料ノズル212が造形材料Mを供給し続けている間)は、設定した回転の状態で搬送部材13が回転し続けるように、搬送部材13を回転させてもよい。その結果、保持部材12から材料送出部材15へと、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mが供給される。 The drive device 14 is under the control of the control device 7 while the processing device 2 is forming the three-dimensional structure ST (more specifically, while the material nozzle 212 continues to supply the modeling material M). May rotate the transport member 13 so that the transport member 13 continues to rotate in the set rotation state. As a result, a certain amount of modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST is supplied from the holding member 12 to the material sending member 15.
 回転の状態は、例えば、回転速度(つまり、単位時間当たりの回転数)を含んでいてもよい。例えば、回転速度が速くなるほど(つまり、単位時間当たりの回転数が大きくなるほど)、溝132を介して移動する造形材料Mの移動速度もまた速くなる。このため、回転速度が速くなるほど、単位時間あたりに保持部材12から保持部材12の外部へと供給される造形材料Mの分量が多くなる。単位時間あたりに保持部材12から保持部材12の外部へと供給される造形材料Mの分量が多くなるほど、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mの分量(つまり、供給量)が多くなる。従って、回転速度が速くなるほど、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mの供給量が多くなる。制御装置7は、このような搬送部材13の回転速度と造形材料Mの供給量との間の関係を考慮した上で、単位時間あたりに保持部材12から材料送出部材15へ供給される造形材料Mの分量が、3次元構造物STの形成に必要な造形材料Mの供給レートに応じた目標供給量となるように、搬送部材13の回転速度を設定してもよい。つまり、制御装置7は、3次元構造物STの形成に必要な造形材料Mの供給レート(つまり、材料供給装置1が単位時間あたりに供給するべき造形材料Mの量)に基づいて、搬送部材13の回転速度を設定してもよい。更に、駆動装置14は、制御装置7が設定した回転速度で搬送部材13が回転するように、搬送部材13を回転駆動してもよい。 The state of rotation may include, for example, the rotation speed (that is, the number of rotations per unit time). For example, as the rotation speed increases (that is, the number of rotations per unit time increases), the moving speed of the modeling material M moving through the groove 132 also increases. Therefore, the faster the rotation speed, the larger the amount of the modeling material M supplied from the holding member 12 to the outside of the holding member 12 per unit time. As the amount of the modeling material M supplied from the holding member 12 to the outside of the holding member 12 increases per unit time, the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time ( That is, the supply amount) increases. Therefore, the faster the rotation speed, the larger the supply amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time. The control device 7 takes into consideration the relationship between the rotation speed of the transport member 13 and the supply amount of the modeling material M, and the modeling material supplied from the holding member 12 to the material delivery member 15 per unit time. The rotation speed of the transport member 13 may be set so that the amount of M becomes the target supply amount according to the supply rate of the modeling material M required for forming the three-dimensional structure ST. That is, the control device 7 is a transport member based on the supply rate of the modeling material M required for forming the three-dimensional structure ST (that is, the amount of the modeling material M to be supplied by the material supply device 1 per unit time). The rotation speed of 13 may be set. Further, the drive device 14 may rotationally drive the transfer member 13 so that the transfer member 13 rotates at a rotation speed set by the control device 7.
 搬送部材13の回転の状態が同じであっても、単位時間あたりに保持部材12から供給される第1の状態の造形材料Mの分量と、単位時間あたりに保持部材12から供給される第2の状態(但し、第2の状態は、第1の状態とは異なる)の造形材料Mの分量とが同じにならない可能性がある。つまり、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の状態の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される異なる第2の状態の造形材料Mの分量とが同じにならない可能性がある。具体的には、例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の種類の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第2の種類(但し、第2の種類は、第1の種類とは異なる)の造形材料Mの分量とが同じにならない可能性がある。例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の粒径の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第2の粒径(但し、第2の粒径は、第1の粒径とは異なる)の造形材料Mの分量とが同じにならない可能性がある。例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の粒度の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第2の粒度(但し、第2の粒度は、第1の粒度とは異なる)の造形材料Mの分量とが同じにならない可能性がある。例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の形状(特に、外形)の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第2の形状(但し、第2の形状は、第1の形状とは異なる)の造形材料Mの分量とが同じにならない可能性がある。例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される、表面の摩擦係数が第1値となる造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される、表面の摩擦係数が第2値(但し、第2値は、第1値とは異なる)の造形材料Mの分量とが同じにならない可能性がある。例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の比重の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第2の比重(但し、第2の比重は、第1の比重とは異なる)の造形材料Mの分量とが同じにならない可能性がある。例えば、ある状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第1の密度の造形材料Mの分量と、同じ状態で回転する搬送部材13によって保持部材12から単位時間あたりに供給される第2の密度(但し、第2の密度は、第1の密度とは異なる)の造形材料Mの分量とが同じにならない可能性がある。従って、制御装置7は、搬送部材13の回転の状態と造形材料Mの供給量との間の関係に加えて又は代えて、造形材料Mの状態と造形材料Mの供給量との間の関係を考慮した上で、単位時間あたりに保持部材12から材料送出部材15へと供給される造形材料Mの分量が、3次元構造物STの形成に必要な造形材料Mの供給レートに応じた目標供給量となるように、搬送部材13の回転の状態を設定してもよい。つまり、制御装置7は、造形材料Mの状態と3次元構造物STの形成に必要な造形材料Mの供給レートとに基づいて、搬送部材13の回転の状態を設定してもよい。ここで、造形材料Mの状態は、造形材料Mの種類、造形材料Mの大きさ(例えば、粒径)、造形材料Mの粒度、造形材料Mの形状、造形材料Mの表面の摩擦係数、造形材料Mの比重及び造形材料Mの密度のうち少なくとも一つを含んでいてもよい。 Even if the state of rotation of the transport member 13 is the same, the amount of the modeling material M in the first state supplied from the holding member 12 per unit time and the second amount supplied from the holding member 12 per unit time. (However, the second state is different from the first state), the amount of the modeling material M may not be the same. That is, the amount of the modeling material M in the first state supplied from the holding member 12 per unit time by the transport member 13 rotating in a certain state, and the amount per unit time from the holding member 12 by the transport member 13 rotating in the same state. The amount of modeling material M in a different second state supplied to may not be the same. Specifically, for example, the amount of the first type of modeling material M supplied from the holding member 12 by the conveying member 13 rotating in a certain state per unit time, and the holding member by the conveying member 13 rotating in the same state. There is a possibility that the amount of the modeling material M of the second type (however, the second type is different from the first type) supplied from 12 per unit time is not the same. For example, the amount of the molding material M having the first particle size supplied from the holding member 12 per unit time by the conveying member 13 rotating in a certain state and the unit time from the holding member 12 by the conveying member 13 rotating in the same state. There is a possibility that the amount of the molding material M of the second particle size (however, the second particle size is different from the first particle size) supplied per unit is not the same. For example, the amount of the molding material M having the first particle size supplied from the holding member 12 per unit time by the transport member 13 rotating in a certain state and the amount of the molding material M having the same particle size per unit time from the holding member 12 There is a possibility that the amount of the modeling material M of the second particle size (however, the second particle size is different from the first particle size) supplied to the product will not be the same. For example, the amount of the modeling material M of the first shape (particularly the outer shape) supplied from the holding member 12 by the conveying member 13 rotating in a certain state and the holding member 13 by the conveying member 13 rotating in the same state. There is a possibility that the amount of the modeling material M of the second shape (however, the second shape is different from the first shape) supplied from 12 per unit time is not the same. For example, the amount of the modeling material M whose surface friction coefficient is the first value, which is supplied from the holding member 12 by the conveying member 13 rotating in a certain state, is held by the conveying member 13 rotating in the same state. The surface friction coefficient supplied from the member 12 per unit time may not be the same as the amount of the modeling material M having the second value (however, the second value is different from the first value). For example, the amount of the modeling material M having the first specific gravity supplied from the holding member 12 per unit time by the conveying member 13 rotating in a certain state, and the amount of the modeling material M having the first specific gravity supplied from the holding member 12 per unit time by the conveying member 13 rotating in the same state. There is a possibility that the amount of the modeling material M of the second specific gravity (however, the second specific gravity is different from the first specific gravity) supplied to the above is not the same. For example, the amount of the first density modeling material M supplied from the holding member 12 per unit time by the transport member 13 rotating in a certain state, and the amount of the modeling material M of the first density supplied from the holding member 12 per unit time by the transport member 13 rotating in the same state. There is a possibility that the amount of the modeling material M of the second density (however, the second density is different from the first density) supplied to the first density is not the same. Therefore, the control device 7 adds or substitutes for or in place of the relationship between the state of rotation of the transport member 13 and the supply amount of the modeling material M, and the relationship between the state of the modeling material M and the supply amount of the modeling material M. The amount of the modeling material M supplied from the holding member 12 to the material sending member 15 per unit time is a target according to the supply rate of the modeling material M required for forming the three-dimensional structure ST. The state of rotation of the transport member 13 may be set so as to be the supply amount. That is, the control device 7 may set the rotational state of the transport member 13 based on the state of the modeling material M and the supply rate of the modeling material M required for forming the three-dimensional structure ST. Here, the state of the modeling material M includes the type of the modeling material M, the size of the modeling material M (for example, the particle size), the particle size of the modeling material M, the shape of the modeling material M, the friction coefficient of the surface of the modeling material M, and so on. It may contain at least one of the specific gravity of the modeling material M and the density of the modeling material M.
 本実施形態では特に、単位時間あたりに保持部材12から材料送出部材15へ供給される造形材料Mの分量が目標供給量となるように搬送部材13の回転の状態を設定するために、制御装置7は、以下に示す供給量制御動作を行う。具体的には、制御装置7は、撮像装置8が撮像した画像に基づいて、単位時間あたりに撮像対象経路を通過する造形材料Mの分量を算出する(つまり、求める)。以降、説明の簡略化のため、単位時間あたりに撮像対象経路を通過する造形材料Mの分量を、“造形材料Mの実供給量”と称する。具体的には、材料供給装置1が加工装置2に造形材料Mを供給している期間中は、図9に示すように、撮像装置8は、材料供給源1Aと材料創出部材15との間の落下経路DPを通過する造形材料Mを撮像する。このため、撮像装置8が撮像した画像は、撮像対象経路(落下経路DP)を通過する造形材料Mに関する情報が含まれている。このため、制御装置7は、撮像装置8が撮像した画像を解析することで、造形材料Mの実供給量を算出する。その後、制御装置7は、造形材料Mの実供給量の算出結果に基づいて、搬送部材13の回転の状態を設定する。具体的には、制御装置7は、造形材料Mの実供給量が目標供給量と一致するように、搬送部材13の回転の状態を設定する。ここで、本実施形態では、保持部材12から材料送出部材15へ供給される造形材料Mの供給経路(つまり、落下経路DP)の少なくとも一部が撮像対象経路となっているがゆえに、造形材料Mの実供給量は、単位時間あたりに保持部材12から材料送出部材15へ供給される造形材料Mの分量と実質的に等価であるとみなしてもよい。このため、造形材料Mの実供給量が目標供給量と一致するように搬送部材13の回転の状態を設定する動作は、実質的には、単位時間あたりに保持部材12から材料送出部材15へ供給される造形材料Mの分量が目標供給量となるように搬送部材13の回転の状態を設定する動作と等価である。 In the present embodiment, in particular, in order to set the rotational state of the transport member 13 so that the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15 per unit time becomes the target supply amount, the control device. 7 performs the supply amount control operation shown below. Specifically, the control device 7 calculates (that is, obtains) the amount of the modeling material M that passes through the imaging target path per unit time based on the image captured by the imaging device 8. Hereinafter, for the sake of simplification of the description, the amount of the modeling material M passing through the imaging target path per unit time will be referred to as "the actual supply amount of the modeling material M". Specifically, during the period in which the material supply device 1 supplies the modeling material M to the processing device 2, as shown in FIG. 9, the image pickup device 8 is located between the material supply source 1A and the material creation member 15. The modeling material M passing through the drop path DP of the above is imaged. Therefore, the image captured by the image pickup apparatus 8 includes information regarding the modeling material M passing through the image pickup target path (fall path DP). Therefore, the control device 7 calculates the actual supply amount of the modeling material M by analyzing the image captured by the image pickup device 8. After that, the control device 7 sets the rotational state of the transport member 13 based on the calculation result of the actual supply amount of the modeling material M. Specifically, the control device 7 sets the state of rotation of the transport member 13 so that the actual supply amount of the modeling material M matches the target supply amount. Here, in the present embodiment, since at least a part of the supply path (that is, the drop path DP) of the modeling material M supplied from the holding member 12 to the material delivery member 15 is the imaging target path, the modeling material The actual supply amount of M may be regarded as substantially equivalent to the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15 per unit time. Therefore, the operation of setting the rotational state of the transport member 13 so that the actual supply amount of the modeling material M matches the target supply amount is substantially from the holding member 12 to the material delivery member 15 per unit time. This is equivalent to the operation of setting the rotational state of the transport member 13 so that the amount of the supplied modeling material M becomes the target supply amount.
 尚、このような撮像装置8が撮像した画像を解析することで造形材料Mの実供給量を算出し、造形材料Mの実供給量の算出結果に基づいて、搬送部材13の回転の状態を設定する供給量制御動作については、図10等を参照しながら後に詳述するため、ここでの詳細な説明は省略する。 The actual supply amount of the modeling material M is calculated by analyzing the image captured by the imaging device 8, and the rotational state of the transport member 13 is determined based on the calculation result of the actual supply amount of the modeling material M. Since the supply amount control operation to be set will be described in detail later with reference to FIG. 10 and the like, detailed description here will be omitted.
 保持部材12から材料送出部材15へと造形材料Mが供給されると、保持部材12が保持する造形材料Mの分量が減る。一方で、保持部材12がホッパ11の供給口113の下方に位置しているがゆえに、保持部材12が保持する造形材料Mの分量が減ると、造形材料M自身の重量によって、供給口113を介してホッパ11から保持部材12へと新たな造形材料Mが供給される。つまり、保持部材12には、保持部材12から材料送出部材15へと供給された造形材料Mの分量に応じた分量の造形材料Mが、新たにホッパ11から供給される。例えば、保持部材12には、保持部材12から材料送出部材15へと供給された造形材料Mの分量と概ね同じ分量の造形材料Mが、新たにホッパ11から供給される。従って、保持部材12からの造形材料Mの供給に起因して保持部材12から造形材料Mがなくなることはない。典型的には、保持部材12は、概ね同じ分量の造形材料Mを保持することになる。 When the modeling material M is supplied from the holding member 12 to the material sending member 15, the amount of the modeling material M held by the holding member 12 is reduced. On the other hand, since the holding member 12 is located below the supply port 113 of the hopper 11, when the amount of the modeling material M held by the holding member 12 decreases, the weight of the modeling material M itself causes the supply port 113 to move. A new modeling material M is supplied from the hopper 11 to the holding member 12 via the hopper 11. That is, the holding member 12 is newly supplied with the modeling material M in an amount corresponding to the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15. For example, the holding member 12 is newly supplied with the modeling material M in an amount substantially the same as the amount of the modeling material M supplied from the holding member 12 to the material delivery member 15. Therefore, the modeling material M does not disappear from the holding member 12 due to the supply of the modeling material M from the holding member 12. Typically, the holding member 12 will hold approximately the same amount of modeling material M.
 保持部材12から供給された造形材料Mは、保持部材12から材料送出部材15へと落下していく。その結果、材料送出部材15は、保持部材12から供給された造形材料Mを受け取る。材料送出部材15が受け取った造形材料Mは、材料供給装置1の外部へと(つまり、加工装置2へと)送り出される。ここで、上述したように、材料送出部材15が配置されている筐体16の内部空間16INには、流入口166を介してガス供給装置5から加圧されたパージガスが供給される。材料送出部材15は、加圧されたパージガスによる圧送で、造形材料Mを加工装置2へと送り出す。つまり、材料送出部材15が受け取った造形材料Mは、内部空間16INに供給されたパージガスの圧力によって送出口151及び165を介してパイプ内を押し出されるように送り出される。パイプを介して送り出された造形材料Mは、材料ノズル212から供給される。 The modeling material M supplied from the holding member 12 falls from the holding member 12 to the material sending member 15. As a result, the material sending member 15 receives the modeling material M supplied from the holding member 12. The modeling material M received by the material sending member 15 is sent out to the outside of the material supply device 1 (that is, to the processing device 2). Here, as described above, the purge gas pressurized from the gas supply device 5 is supplied to the internal space 16IN of the housing 16 in which the material delivery member 15 is arranged via the inflow port 166. The material delivery member 15 sends the modeling material M to the processing apparatus 2 by pressure feeding with the pressurized purge gas. That is, the modeling material M received by the material delivery member 15 is sent out so as to be pushed out into the pipe through the delivery ports 151 and 165 by the pressure of the purge gas supplied to the internal space 16IN. The modeling material M sent out through the pipe is supplied from the material nozzle 212.
 材料送出部材15が圧送で造形材料Mを送り出しているがゆえに、単位時間あたりに材料送出部材15が送り出す造形材料Mの分量は、単位時間あたりに保持部材12から材料送出部材15に供給される造形材料Mの分量(つまり、造形材料Mの実供給量)に依存する。このため、材料送出部材15は、単位時間あたりに一定量の造形材料Mを加工装置2に送り出すことができる。その結果、材料供給装置1は、単位時間あたりに一定量の造形材料Mを加工装置2に供給することができる。つまり、材料供給装置1は、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mの分量が、3次元構造物STの形成に必要な造形材料Mの供給レートに応じた一定の供給量となるように、加工装置2に造形材料Mを供給することができる。このため、上述した供給量制御動作は、実質的には、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mの分量を制御する動作と等価であるとみなしてもよい。 Since the material sending member 15 sends out the modeling material M by pumping, the amount of the modeling material M sent out by the material sending member 15 per unit time is supplied from the holding member 12 to the material sending member 15 per unit time. It depends on the amount of the modeling material M (that is, the actual supply amount of the modeling material M). Therefore, the material delivery member 15 can deliver a fixed amount of the modeling material M to the processing device 2 per unit time. As a result, the material supply device 1 can supply a fixed amount of the modeling material M to the processing device 2 per unit time. That is, in the material supply device 1, the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time depends on the supply rate of the modeling material M required for forming the three-dimensional structure ST. The modeling material M can be supplied to the processing apparatus 2 so as to have a constant supply amount. Therefore, the above-mentioned supply amount control operation can be regarded as substantially equivalent to the operation of controlling the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 per unit time. Good.
 また、材料供給装置1から加工装置2へと供給される造形材料Mを材料ノズル212がワークWに供給するがゆえに、単位時間あたりに材料ノズル212が供給する造形材料Mの分量は、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mに供給される造形材料Mの分量に依存する。このため、材料ノズル212は、単位時間あたりに一定量の造形材料MをワークWに供給することができる。つまり、材料ノズル212は、単位時間あたりに材料ノズル212からワークWに供給される造形材料Mの分量が、3次元構造物STの形成に必要な造形材料Mの供給レートに応じた一定の供給量となるように、ワークWに造形材料Mを供給することができる。このため、上述した供給量制御動作は、実質的には、単位時間あたりに材料ノズル212からワークWへと供給される造形材料Mの分量を制御する動作と等価であるとみなしてもよい。 Further, since the material nozzle 212 supplies the modeling material M supplied from the material supply device 1 to the processing device 2 to the work W, the amount of the modeling material M supplied by the material nozzle 212 per unit time is a unit time. It depends on the amount of the modeling material M supplied to the modeling material M supplied from the material supply device 1 to the processing device 2. Therefore, the material nozzle 212 can supply a fixed amount of the modeling material M to the work W per unit time. That is, the material nozzle 212 supplies a constant amount of the modeling material M supplied from the material nozzle 212 to the work W per unit time according to the supply rate of the modeling material M required for forming the three-dimensional structure ST. The modeling material M can be supplied to the work W so as to be in quantity. Therefore, the above-mentioned supply amount control operation may be regarded as substantially equivalent to the operation of controlling the amount of the modeling material M supplied from the material nozzle 212 to the work W per unit time.
 尚、上述した説明では、加工装置2が3次元構造物STを形成している間は、単位時間あたりに保持部材12から材料送出部材15へと搬送される造形材料Mの分量が一定になっている。つまり、加工装置2が3次元構造物STを形成している間は、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mの分量が一定になっている。しかしながら、材料供給装置1は、制御装置7の制御下で、加工装置2が3次元構造物STを形成している間に、単位時間あたりに材料供給装置1から加工装置2へと供給される造形材料Mの分量を変更してもよい。具体的には、上述したように、単位時間あたりに保持部材12から材料送出部材15へと搬送される造形材料Mの分量は、搬送部材の回転の状態に依存する。従って、制御装置7は、加工装置2が3次元構造物STを形成している期間の少なくとも一部において、搬送部材13の回転の状態を変更するように駆動装置14を制御してもよい。その結果、搬送部材13の回転の状態の変更に伴い、単位時間あたりに保持部材12から材料送出部材15へと搬送される造形材料Mの分量が変更される。つまり、搬送部材13の回転の状態の変更に伴い、単位時間あたりに材料供給装置1から加工装置2へと搬送される造形材料Mの分量が変更される。 In the above description, while the processing apparatus 2 forms the three-dimensional structure ST, the amount of the modeling material M transported from the holding member 12 to the material sending member 15 is constant per unit time. ing. That is, while the processing device 2 forms the three-dimensional structure ST, the amount of the modeling material M supplied from the material supply device 1 to the processing device 2 is constant per unit time. However, the material supply device 1 is supplied from the material supply device 1 to the processing device 2 per unit time while the processing device 2 forms the three-dimensional structure ST under the control of the control device 7. The amount of the modeling material M may be changed. Specifically, as described above, the amount of the modeling material M transported from the holding member 12 to the material delivery member 15 per unit time depends on the state of rotation of the transport member. Therefore, the control device 7 may control the drive device 14 so as to change the rotational state of the transport member 13 during at least a part of the period during which the processing device 2 forms the three-dimensional structure ST. As a result, the amount of the modeling material M transported from the holding member 12 to the material delivery member 15 is changed per unit time as the rotational state of the transport member 13 is changed. That is, as the state of rotation of the transport member 13 changes, the amount of the modeling material M transported from the material supply device 1 to the processing device 2 is changed per unit time.
 (2-3)造形材料Mの実供給量を制御する供給量制御動作
 続いて、図10を参照しながら、造形材料Mの実供給量を制御する供給量制御動作について説明する。図10は、造形材料Mの実供給量を制御する供給量制御動作の流れを示すフローチャートである。
(2-3) Supply amount control operation for controlling the actual supply amount of the modeling material M Next, a supply amount control operation for controlling the actual supply amount of the modeling material M will be described with reference to FIG. FIG. 10 is a flowchart showing a flow of a supply amount control operation for controlling the actual supply amount of the modeling material M.
 尚、図10に示す供給量制御動作は、加工システムSYSがワークWを加工している期間の少なくとも一部において行われる。図10に示す供給量制御動作は、材料供給装置1が加工装置2に造形材料Mを供給している期間の少なくとも一部において行われる。特に、図10に示す供給量制御動作は、加工システムSYSがワークWを加工している期間の少なくとも一部において繰り返し行われる。図10に示す供給量制御動作は、材料供給装置1が加工装置2に造形材料Mを供給している期間の少なくとも一部において繰り返し行われる。一方で、図10に示す供給量制御動作は、加工システムSYSがワークWを加工していない期間の少なくとも一部において行われなくてもよい。図10に示す供給量制御動作は、材料供給装置1が加工装置2に造形材料Mを供給していない期間の少なくとも一部において行われなくてもよい。 The supply amount control operation shown in FIG. 10 is performed at least a part of the period during which the machining system SYS is machining the work W. The supply amount control operation shown in FIG. 10 is performed at least a part of the period during which the material supply device 1 supplies the modeling material M to the processing device 2. In particular, the supply amount control operation shown in FIG. 10 is repeatedly performed during at least a part of the period during which the machining system SYS is machining the work W. The supply amount control operation shown in FIG. 10 is repeatedly performed during at least a part of the period during which the material supply device 1 supplies the modeling material M to the processing device 2. On the other hand, the supply amount control operation shown in FIG. 10 may not be performed during at least a part of the period during which the machining system SYS is not machining the work W. The supply amount control operation shown in FIG. 10 may not be performed during at least a part of the period during which the material supply device 1 does not supply the modeling material M to the processing device 2.
 図10に示すように、まず、撮像装置8は、撮像対象経路を撮像する(ステップS11)。つまり、撮像装置8は、撮像対象経路を通過する造形材料Mを撮像する(ステップS11)。 As shown in FIG. 10, first, the image pickup apparatus 8 images the image pickup target path (step S11). That is, the image pickup apparatus 8 takes an image of the modeling material M passing through the image pickup target path (step S11).
 撮像装置8が造形材料Mを撮像するたびに、制御装置7は、撮像装置8が撮像した画像(以降、“元画像”と称する)を取得する(ステップS12)。撮像装置8が撮像した元画像の一例が、図11に示されている。図11に示すように、元画像には、撮像対象経路を通過する造形材料Mが映り込んでいる。尚、図11は、被写体たる造形材料Mの明暗が実物とは反転した陰画に相当する元画像の一例を示している。 Every time the image pickup device 8 images the modeling material M, the control device 7 acquires an image (hereinafter referred to as “original image”) captured by the image pickup device 8 (step S12). An example of the original image captured by the image pickup apparatus 8 is shown in FIG. As shown in FIG. 11, the modeling material M passing through the imaging target path is reflected in the original image. Note that FIG. 11 shows an example of an original image in which the light and darkness of the modeling material M, which is the subject, corresponds to a negative image in which the brightness is reversed from the actual one.
 その後、制御装置7は、ステップS12で取得した元画像に基づいて、造形材料Mの実供給量を算出する(ステップS13からステップS15)。尚、制御装置7は、画像に基づいて粉体の分量を算出する方法として、既存の方法を用いてもよい。このため、元画像に基づいて造形材料Mの実供給量を算出する処理の詳細な説明については省略するが、以下に、元画像に基づいて造形材料Mの実供給量を算出する処理の一例について簡単に説明する。但し、制御装置7は、以下に示す処理とは異なる処理を行うことで、元画像に基づいて造形材料Mの実供給量を算出してもよい。 After that, the control device 7 calculates the actual supply amount of the modeling material M based on the original image acquired in step S12 (steps S13 to S15). The control device 7 may use an existing method as a method for calculating the amount of powder based on the image. Therefore, a detailed description of the process of calculating the actual supply amount of the modeling material M based on the original image will be omitted, but the following is an example of the process of calculating the actual supply amount of the modeling material M based on the original image. Will be briefly explained. However, the control device 7 may calculate the actual supply amount of the modeling material M based on the original image by performing a process different from the process shown below.
 造形材料Mの実供給量を算出するために、制御装置7は、ステップS12で取得した元画像に対して二値化処理を行うことで、二値化画像を生成する(ステップS13)。このとき、制御装置7は、元画像の全体に対して二値化処理を行ってもよい。或いは、制御装置7は、元画像の一部に対して二値化処理を行う一方で、元画像の残りの一部に対して二値化処理を行わなくてもよい。例えば、制御装置7は、元画像のうちの造形材料Mが映り込んでいる一部の画像部分に対して二値化処理を行ってもよい。例えば、制御装置7は、元画像のうちの撮像対象経路が映り込んでいる一部の画像部分に対して二値化処理を行ってもよい。このように元画像の一部に対して二値化処理を行う場合には、元画像の全体に対して二値化処理を行う場合と比較して、制御装置7の処理負荷が低減する。 In order to calculate the actual supply amount of the modeling material M, the control device 7 generates a binarized image by performing a binarization process on the original image acquired in step S12 (step S13). At this time, the control device 7 may perform binarization processing on the entire original image. Alternatively, the control device 7 may perform the binarization process on a part of the original image, but may not perform the binarization process on the remaining part of the original image. For example, the control device 7 may perform binarization processing on a part of the image portion in which the modeling material M is reflected in the original image. For example, the control device 7 may perform binarization processing on a part of the image portion of the original image in which the imaging target path is reflected. When the binarization process is performed on a part of the original image in this way, the processing load of the control device 7 is reduced as compared with the case where the binarization process is performed on the entire original image.
 二値化画像の一例が、図12に示されている。図12は、図11に示す元画像のうちの一部に対して二値化処理を行うことで生成された二値化画像を示している。図12に示すように、二値化処理の結果、元画像と比較して、造形材料Mとその背景とがより明確に区別可能な二値化画像が生成されることが分かる。 An example of the binarized image is shown in FIG. FIG. 12 shows a binarized image generated by performing a binarization process on a part of the original image shown in FIG. As shown in FIG. 12, as a result of the binarization process, it can be seen that a binarized image in which the modeling material M and its background can be more clearly distinguished is generated as compared with the original image.
 その後、制御装置7は、二値化画像に基づいて、造形材料Mが二値化画像内で占める面積を算出する(ステップS14)。造形材料Mが二値化画像内で占める面積を算出するために、制御装置7は、例えば、二値化画像を構成する複数の画素のうちの造形材料Mの少なくとも一部が映り込んでいる画素の総和に相当する0次モーメントを算出してもよい。つまり、制御装置7は、造形材料Mの少なくとも一部が映り込んでいる画素の画素値を1に設定し且つ造形材料Mの少なくとも一部が映り込んでいない画素の画素値を0に設定し、二値化画像を構成する複数の画素の画素値の総和に相当する0次モーメントを算出してもよい。このように算出された0次モーメントは、造形材料Mが二値化画像内で占める面積に相当する。 After that, the control device 7 calculates the area occupied by the modeling material M in the binarized image based on the binarized image (step S14). In order to calculate the area occupied by the modeling material M in the binarized image, the control device 7 reflects, for example, at least a part of the modeling material M among the plurality of pixels constituting the binarized image. The 0th-order moment corresponding to the sum of the pixels may be calculated. That is, the control device 7 sets the pixel value of the pixel in which at least a part of the modeling material M is reflected to 1, and sets the pixel value of the pixel in which at least a part of the modeling material M is not reflected to 0. , The 0th-order moment corresponding to the sum of the pixel values of the plurality of pixels constituting the binarized image may be calculated. The 0th-order moment calculated in this way corresponds to the area occupied by the modeling material M in the binarized image.
 その後、制御装置7は、ステップS14で算出した造形材料Mの面積(つまり、造形材料Mが二値化画像内で占める面積)に基づいて、造形材料Mの実供給量を算出する(ステップS15)。具体的には、造形材料Mの実供給量が多くなるほど、元画像に映り込む造形材料Mが多くなる。元画像に映り込む造形材料Mが多くなるほど、造形材料Mが二値化画像内で占める面積が大きくなる。このため、造形材料Mが二値化画像内で占める面積は、造形材料Mの実供給量と相関を有する情報である。従って、制御装置7は、造形材料Mが二値化画像内で占める面積に基づいて、造形材料Mの実供給量を算出することができる。 After that, the control device 7 calculates the actual supply amount of the modeling material M based on the area of the modeling material M calculated in step S14 (that is, the area occupied by the modeling material M in the binarized image) (step S15). ). Specifically, as the actual supply amount of the modeling material M increases, the modeling material M reflected in the original image increases. The larger the modeling material M reflected in the original image, the larger the area occupied by the modeling material M in the binarized image. Therefore, the area occupied by the modeling material M in the binarized image is information having a correlation with the actual supply amount of the modeling material M. Therefore, the control device 7 can calculate the actual supply amount of the modeling material M based on the area occupied by the modeling material M in the binarized image.
 制御装置7は、造形材料Mが二値化画像内で占める面積と造形材料Mの実供給量との相関関係を示す相関情報を用いて、造形材料Mが二値化画像内で占める面積から、造形材料Mの実供給量を算出してもよい。相関情報の一例が図13に示されている。図13に示すように、相関情報は、造形材料Mが二値化画像内で占める面積と造形材料Mの実供給量との相関関係を示すグラフを含んでいてもよい。図13に示すように、相関情報は、典型的には、造形材料Mが二値化画像内で占める面積が多くなるほど造形材料Mの実供給量が多くなるという相関関係を示している。図13に示す例では、相関情報は、造形材料Mが二値化画像内で占める面積と造形材料Mの実供給量とが線形の相関関係にあることを示している。しかしながら、相関情報は、造形材料Mが二値化画像内で占める面積と造形材料Mの実供給量とが非線形の相関関係にあることを示していてもよい。 The control device 7 uses the correlation information showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M from the area occupied by the modeling material M in the binarized image. , The actual supply amount of the modeling material M may be calculated. An example of correlation information is shown in FIG. As shown in FIG. 13, the correlation information may include a graph showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M. As shown in FIG. 13, the correlation information typically shows a correlation that the larger the area occupied by the modeling material M in the binarized image, the larger the actual supply amount of the modeling material M. In the example shown in FIG. 13, the correlation information shows that the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M have a linear correlation. However, the correlation information may indicate that the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M have a non-linear correlation.
 尚、グラフに限らず、造形材料Mが二値化画像内で占める面積と造形材料Mの実供給量との相関関係を示す任意の情報が、相関情報として用いられてもよい。このような任意の情報の一例として、テーブル、関数、演算モデル及びデータベースの少なくとも一つがあげられる。 Not limited to the graph, arbitrary information showing the correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M may be used as the correlation information. An example of such arbitrary information is at least one of a table, a function, a computational model and a database.
 このような相関情報は、供給量制御動作が行われる前に予め生成されていてもよい。予め生成された相関情報は、制御装置7が備える記憶装置に格納されていてもよい。相関情報を予め生成するために、加工装置2がワークWを加工する前に、材料供給装置1が上述した供給動作を行ってもよい。この際、撮像対象経路を通過する造形材料Mを撮像装置8が撮像すると共に、撮像対象経路を通過する造形材料Mの分量(つまり、実供給量)が質量計測装置を用いて実際に計測されてもよい。例えば、保持部材12から材料送出部材15へと落下する造形材料Mの落下経路に質量計測装置が配置されれば、質量計測装置は、撮像対象経路を通過する造形材料Mの分量(つまり、実供給量)を計測することができる。その後、制御装置7は、撮像装置8が撮像した元画像から造形材料Mが二値化画像内で占める面積を算出し、算出した面積と質量計測装置の計測結果とに基づいて、相関情報を生成してもよい。 Such correlation information may be generated in advance before the supply amount control operation is performed. The correlation information generated in advance may be stored in a storage device included in the control device 7. In order to generate the correlation information in advance, the material supply device 1 may perform the above-mentioned supply operation before the processing device 2 processes the work W. At this time, the imaging device 8 images the modeling material M passing through the imaging target path, and the amount of the modeling material M passing through the imaging target path (that is, the actual supply amount) is actually measured using the mass measuring device. You may. For example, if the mass measuring device is arranged in the falling path of the modeling material M that falls from the holding member 12 to the material sending member 15, the mass measuring device can measure the amount of the modeling material M passing through the imaging target path (that is, the actual amount). Supply amount) can be measured. After that, the control device 7 calculates the area occupied by the modeling material M in the binarized image from the original image captured by the image pickup device 8, and obtains the correlation information based on the calculated area and the measurement result of the mass measuring device. It may be generated.
 造形材料Mの状態が異なる場合には、造形材料Mの面積が二値化画像内で占める面積と造形材料Mの実供給量との相関関係が変わる可能性がある。例えば、第1の種類の造形材料Mが二値化画像内で占める面積と第1の種類の造形材料Mの実供給量との相関関係は、第1の種類とは異なる第2の種類の造形材料Mが二値化画像内で占める面積と第2の種類の造形材料Mの実供給量との相関関係とは異なる可能性がある。例えば、第1の粒径の造形材料Mが二値化画像内で占める面積と第1の粒径の造形材料Mの実供給量との相関関係は、第1の粒径とは異なる第2の粒径の造形材料Mが二値化画像内で占める面積と第2の粒径の造形材料Mの実供給量との相関関係とは異なる可能性がある。例えば、第1の粒度の造形材料Mが二値化画像内で占める面積と第1の粒度の造形材料Mの実供給量との相関関係は、第1の粒度とは異なる第2の粒度の造形材料Mが二値化画像内で占める面積と第2の粒度の造形材料Mの実供給量との相関関係とは異なる可能性がある。例えば、第1の形状の造形材料Mが二値化画像内で占める面積と第1の形状の造形材料Mの実供給量との相関関係は、第1の形状とは異なる第2の形状の造形材料Mが二値化画像内で占める面積と第2の形状の造形材料Mの実供給量との相関関係とは異なる可能性がある。例えば、第1の比重の造形材料Mが二値化画像内で占める面積と第1の比重の造形材料Mの実供給量との相関関係は、第1の比重とは異なる第2の比重の造形材料Mが二値化画像内で占める面積と第2の比重の造形材料Mの実供給量との相関関係とは異なる可能性がある。例えば、第1の密度の造形材料Mが二値化画像内で占める面積と第1の密度の造形材料Mの実供給量との相関関係は、第1の密度とは異なる第2の密度の造形材料Mが二値化画像内で占める面積と第2の密度の造形材料Mの実供給量との相関関係とは異なる可能性がある。このため、制御装置7は、複数の相関情報を用いて、状態が異なる複数の造形材料Mのそれぞれの実供給量を算出してもよい。具体的には、制御装置7は、複数の相関情報の中から造形材料Mの状態に応じた一の相関情報を選択し、選択した一の相関情報を用いて造形材料Mの実供給量を算出してもよい。或いは、制御装置7は、単一の相関情報を用いて、状態が異なる複数の造形材料Mのそれぞれの実供給量を算出してもよい。具体的には、制御装置7は、造形材料Mの状態に基づいて相関情報を変換する(言い換えれば、変更する、修正する又は補正する)と共に、変換した相関情報を用いて造形材料Mの実供給量を算出してもよい。 When the state of the modeling material M is different, the correlation between the area occupied by the area of the modeling material M in the binarized image and the actual supply amount of the modeling material M may change. For example, the correlation between the area occupied by the first type of modeling material M in the binarized image and the actual supply amount of the first type of modeling material M is different from that of the first type in the second type. The correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the second type of modeling material M may differ. For example, the correlation between the area occupied by the modeling material M having the first particle size in the binarized image and the actual supply amount of the modeling material M having the first particle size is different from that of the first particle size. There is a possibility that the correlation between the area occupied by the modeling material M having the particle size of 2 in the binarized image and the actual supply amount of the modeling material M having the second particle size may be different. For example, the correlation between the area occupied by the modeling material M of the first particle size in the binarized image and the actual supply amount of the modeling material M of the first particle size is different from that of the first particle size. The correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M having the second particle size may differ. For example, the correlation between the area occupied by the modeling material M of the first shape in the binarized image and the actual supply amount of the modeling material M of the first shape is different from that of the first shape. The correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M of the second shape may be different. For example, the correlation between the area occupied by the modeling material M having the first specific gravity in the binarized image and the actual supply amount of the modeling material M having the first specific gravity is different from that of the first specific gravity. The correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M having the second specific gravity may be different. For example, the correlation between the area occupied by the first density modeling material M in the binarized image and the actual supply amount of the first density modeling material M is different from the first density in the second density. The correlation between the area occupied by the modeling material M in the binarized image and the actual supply amount of the modeling material M having the second density may be different. Therefore, the control device 7 may calculate the actual supply amount of each of the plurality of modeling materials M having different states by using the plurality of correlation information. Specifically, the control device 7 selects one correlation information according to the state of the modeling material M from a plurality of correlation information, and uses the selected one correlation information to determine the actual supply amount of the modeling material M. It may be calculated. Alternatively, the control device 7 may calculate the actual supply amount of each of the plurality of modeling materials M in different states by using a single correlation information. Specifically, the control device 7 converts the correlation information based on the state of the modeling material M (in other words, changes, corrects, or corrects), and uses the converted correlation information to produce the fruit of the modeling material M. The supply amount may be calculated.
 その後、制御装置7は、ステップS15で算出した造形材料Mの実供給量の目標供給量からの偏差を算出する(ステップS16)。つまり、制御装置7は、ステップS15で算出した造形材料Mの実供給量と目標供給量との差分を算出する(ステップS16)。 After that, the control device 7 calculates the deviation of the actual supply amount of the modeling material M calculated in step S15 from the target supply amount (step S16). That is, the control device 7 calculates the difference between the actual supply amount of the modeling material M calculated in step S15 and the target supply amount (step S16).
 その後、制御装置7は、ステップS16で算出した偏差に基づいて、搬送部材13を制御する(ステップS17)。具体的には、制御装置7は、ステップS16で算出した偏差をゼロにすることが可能な搬送部材13の回転の状態(典型的には、回転速度)を算出する。つまり、制御装置7は、ステップS15で算出した造形材料Mの実供給量を目標供給量と一致させることが可能な搬送部材13の回転の状態を算出する。例えば、実供給量が目標供給量よりも大きい場合には、実供給量を減らすことが望まれる。この場合、制御装置7は、現在の回転速度よりも偏差に応じた分だけ遅い速度を算出してもよい。一方で、例えば、実供給量が目標供給量よりも小さい場合には、実供給量を増やすことが望まれる。この場合、制御装置7は、現在の回転速度よりも偏差に応じた分だけ早い速度を算出してもよい。その後、制御装置7は、算出した状態(典型的には、速度)で搬送部材13が回転するように、駆動装置14を制御する。 After that, the control device 7 controls the transport member 13 based on the deviation calculated in step S16 (step S17). Specifically, the control device 7 calculates the state of rotation (typically, the rotation speed) of the transport member 13 that can make the deviation calculated in step S16 zero. That is, the control device 7 calculates the state of rotation of the transport member 13 capable of matching the actual supply amount of the modeling material M calculated in step S15 with the target supply amount. For example, when the actual supply amount is larger than the target supply amount, it is desirable to reduce the actual supply amount. In this case, the control device 7 may calculate a speed slower than the current rotation speed by the amount corresponding to the deviation. On the other hand, for example, when the actual supply amount is smaller than the target supply amount, it is desirable to increase the actual supply amount. In this case, the control device 7 may calculate a speed that is faster than the current rotation speed by the amount corresponding to the deviation. After that, the control device 7 controls the drive device 14 so that the transport member 13 rotates in the calculated state (typically, the speed).
 その結果、実供給量と目標供給量とが一致するように、搬送部材13の回転の状態が制御される。つまり、制御装置7は、造形材料Mの実供給量に基づいて、造形材料Mの実供給量に影響を与える搬送部材13の回転の状態をフィードバック制御することができる。このため、材料供給装置1から加工装置2に供給される造形材料Mの実供給レートが、3次元構造物STの形成に必要な造形材料Mの目標供給レートと一致する状態が適切に維持される。
As a result, the state of rotation of the transport member 13 is controlled so that the actual supply amount and the target supply amount match. That is, the control device 7 can feedback-control the rotation state of the transport member 13 that affects the actual supply amount of the modeling material M based on the actual supply amount of the modeling material M. Therefore, a state in which the actual supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2 matches the target supply rate of the modeling material M required for forming the three-dimensional structure ST is appropriately maintained. To.
 (3)加工システムSYSの技術的効果
 以上説明したように、本実施形態の加工システムSYSは、ワークWに対して適切に付加加工を行うことができる。
(3) Technical Effects of Machining System SYS As described above, the machining system SYS of the present embodiment can appropriately perform additional machining on the work W.
 また、加工システムSYSが備える材料供給装置1は、ホッパ11の下方に配置した保持部材12で、ホッパ11から供給される造形材料Mを一定量保持した上で、保持部材12の保持空間121に配置される搬送部材13の回転によって単位時間あたりに一定量の造形材料Mを保持部材12から材料送出部材15に搬送している。このため、材料供給装置1は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mを加工装置2に安定的に供給することができる。つまり、材料供給装置1は、所望の供給レートを維持したまま造形材料Mを加工装置2に供給することができる。その結果、加工システムSYSは、相対的に高精度な3次元構造物STを形成することができる。 Further, the material supply device 1 included in the processing system SYS is a holding member 12 arranged below the hopper 11 to hold a certain amount of the modeling material M supplied from the hopper 11 and then enter the holding space 121 of the holding member 12. A certain amount of modeling material M is transported from the holding member 12 to the material delivery member 15 per unit time by the rotation of the arranged transport member 13. Therefore, the material supply device 1 can stably supply the processing device 2 with a fixed amount of the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST. .. That is, the material supply device 1 can supply the modeling material M to the processing device 2 while maintaining a desired supply rate. As a result, the processing system SYS can form a relatively high-precision three-dimensional structure ST.
 また、制御装置7は、造形材料Mの実供給量と目標供給量とが一致するように、搬送部材13の回転の状態を制御することができる。このため、仮に何らかの要因に起因して造形材料Mの実供給量が目標供給量と一致しなくなったとしても、制御装置7は、造形材料Mの実供給量と目標供給量とが再び一致するように、搬送部材13の回転の状態を制御することができる。つまり、造形材料Mの実供給量と目標供給量とが一致する状態が適切に維持される。以下、図14及び図15を参照しながら、造形材料Mの実供給量と目標供給量とが一致する状態が適切に維持される場面の一例について説明する。 Further, the control device 7 can control the rotational state of the transport member 13 so that the actual supply amount of the modeling material M and the target supply amount match. Therefore, even if the actual supply amount of the modeling material M does not match the target supply amount due to some factor, the control device 7 again matches the actual supply amount of the modeling material M with the target supply amount. As described above, the state of rotation of the transport member 13 can be controlled. That is, a state in which the actual supply amount of the modeling material M and the target supply amount match is appropriately maintained. Hereinafter, an example of a situation in which a state in which the actual supply amount and the target supply amount of the modeling material M are appropriately maintained will be described with reference to FIGS. 14 and 15.
 図14は、供給量動作が行われていない状況下で搬送部材13の回転の状態を維持し続けた場合に造形材料Mの実供給量が徐々に減少(或いは、場合によっては増加)する様子を点線で示している。例えば、搬送部材13が回転しているがゆえに、軸部材131が摩耗する可能性がある。このように軸部材131が摩耗した場合には、軸部材131が摩耗していない場合と比較して、搬送部材13の回転の状態が何ら変化していないにも関わらず、造形材料Mの実供給量が変わってしまう可能性がある。例えば、図14に点線で示すように、軸部材131が徐々に摩耗していくにつれて、造形材料Mの実供給量もまた徐々に減少(或いは、増加)していく可能性がある。或いは、搬送部材13の回転に合わせて搬送部材13の温度が変動する可能性がある。搬送部材13の温度が変動すると、搬送部材13が熱変形する可能性がある。その結果、搬送部材13の熱変形に起因して、造形材料Mの実供給量が変わってしまう可能性がある。しかしながら、このような軸部材131の摩耗及び/又は搬送部材13の熱変形に起因して造形材料Mの実供給量が目標供給量と一致しなくなったとしても、制御装置7は、造形材料Mの実供給量と目標供給量とが再び一致するように、搬送部材13の回転の状態が制御される。その結果、図14に実線で示すように、造形材料Mの実供給量と目標供給量とが一致する状態が適切に維持される。 FIG. 14 shows a state in which the actual supply amount of the modeling material M gradually decreases (or increases in some cases) when the state of rotation of the transport member 13 is continuously maintained under the condition that the supply amount operation is not performed. Is indicated by a dotted line. For example, since the transport member 13 is rotating, the shaft member 131 may be worn. When the shaft member 131 is worn in this way, the fruit of the modeling material M is different from the case where the shaft member 131 is not worn, even though the rotational state of the transport member 13 has not changed at all. The supply may change. For example, as shown by the dotted line in FIG. 14, as the shaft member 131 gradually wears, the actual supply amount of the modeling material M may also gradually decrease (or increase). Alternatively, the temperature of the transport member 13 may fluctuate according to the rotation of the transport member 13. If the temperature of the transport member 13 fluctuates, the transport member 13 may be thermally deformed. As a result, the actual supply amount of the modeling material M may change due to the thermal deformation of the transport member 13. However, even if the actual supply amount of the modeling material M does not match the target supply amount due to such wear of the shaft member 131 and / or thermal deformation of the transport member 13, the control device 7 still uses the modeling material M. The state of rotation of the transport member 13 is controlled so that the actual supply amount and the target supply amount of the above match again. As a result, as shown by the solid line in FIG. 14, the state in which the actual supply amount of the modeling material M and the target supply amount coincide with each other is appropriately maintained.
 図15は、供給量動作が行われていない状況下で搬送部材13の回転の状態を維持し続けた場合に造形材料Mの実供給量があるタイミングで減少(或いは、場合によっては増加)する様子を点線で示している。例えば、材料供給装置1の状態が、第1の状態の造形材料Mを供給していた状態から、第1の状態とは異なる第2の状態の造形材料Mを供給していた状態へと遷移する可能性がある。なぜならば、加工システムSYSが常に同じ状態の造形材料Mを用いて加工動作を行うとは限らないからである。この場合には、図15に点線で示すように、搬送部材13の回転の状態が何ら変化していないにも関わらず、造形材料Mの状態が変わったタイミングで造形材料Mの実供給量が変わってしまう可能性がある。しかしながら、このような造形材料Mの状態の変化に起因して造形材料Mの実供給量が目標供給量と一致しなくなったとしても、制御装置7は、造形材料Mの実供給量と目標供給量とが再び一致するように、搬送部材13の回転の状態が制御される。その結果、図15に実線で示すように、造形材料Mの実供給量と目標供給量とが一致する状態が適切に維持される。 FIG. 15 shows that the actual supply amount of the modeling material M decreases (or increases in some cases) at a certain timing when the state of rotation of the transport member 13 is continuously maintained under the condition that the supply amount operation is not performed. The situation is shown by a dotted line. For example, the state of the material supply device 1 changes from the state in which the modeling material M in the first state is supplied to the state in which the modeling material M in the second state different from the first state is supplied. there's a possibility that. This is because the processing system SYS does not always perform the processing operation using the modeling material M in the same state. In this case, as shown by the dotted line in FIG. 15, the actual supply amount of the modeling material M is changed at the timing when the state of the modeling material M is changed even though the rotational state of the transport member 13 has not changed at all. It may change. However, even if the actual supply amount of the modeling material M does not match the target supply amount due to such a change in the state of the modeling material M, the control device 7 still supplies the actual supply amount and the target supply amount of the modeling material M. The state of rotation of the transport member 13 is controlled so that the amount matches again. As a result, as shown by the solid line in FIG. 15, the state in which the actual supply amount of the modeling material M and the target supply amount coincide with each other is appropriately maintained.
 このように造形材料Mの実供給量と目標供給量とが一致する状態が適切に維持されると、材料供給装置1は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mを加工装置2に安定的に供給することができる。つまり、材料供給装置1は、所望の供給レートを維持したまま造形材料Mを加工装置2に供給することができる。更には、材料ノズル212は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料MをワークWに安定的に供給することができる。つまり、材料ノズル212は、所望の供給レートを維持したまま造形材料MをワークWに供給することができる。その結果、加工システムSYSは、相対的に高精度な3次元構造物STを形成することができる。 When the state in which the actual supply amount and the target supply amount of the modeling material M are appropriately maintained in this way, the material supply device 1 takes the processing device 2 to form the three-dimensional structure ST per unit time. A certain amount of the modeling material M required for the above can be stably supplied to the processing apparatus 2. That is, the material supply device 1 can supply the modeling material M to the processing device 2 while maintaining a desired supply rate. Further, the material nozzle 212 can stably supply the work W with a fixed amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. That is, the material nozzle 212 can supply the modeling material M to the work W while maintaining a desired supply rate. As a result, the processing system SYS can form a relatively high-precision three-dimensional structure ST.
 尚、撮像対象経路を通過する造形材料Mを撮像することで得られた元画像に基づいて造形材料Mの実供給量を算出することに代えて、ロードセル等の質量計測装置を用いて造形材料Mの実供給量を実際に計測するという点で本実施形態の加工システムSYSとは異なる比較例の加工システムが、造形材料Mの実供給量と目標供給量とが一致する状態を維持するための代替案として考えられる。しかしながら、ロードセル等の質量計測装置の計測値は、材料供給装置1の振動(或いは、その一部の部材の振動)及びパージガス等の風圧に起因して変動してしまう可能性がある。このため、比較例の加工システムは、造形材料Mの実供給量と目標供給量とが一致する状態を維持することができない可能性がある。しかるに、本実施形態では、元画像に基づいて造形材料Mの実供給量が算出されるがゆえに、材料供給装置1の振動(或いは、その一部の部材の振動)、パージガス等の風圧、材料供給装置1の温度及び電気的ノイズ等が実供給量の算出値に影響を与えることはない。従って、本実施形態の加工システムSYSは、造形材料Mの実供給量と目標供給量とが一致する状態を適切に維持することができるという点で、比較例の加工システムにはない実践的な効果を享受できる。 Instead of calculating the actual supply amount of the modeling material M based on the original image obtained by imaging the modeling material M passing through the imaging target path, the modeling material is used by a mass measuring device such as a load cell. In order to maintain a state in which the actual supply amount of the modeling material M and the target supply amount match with each other in the processing system of the comparative example, which is different from the processing system SYS of the present embodiment in that the actual supply amount of M is actually measured. Can be considered as an alternative to. However, the measured value of the mass measuring device such as the load cell may fluctuate due to the vibration of the material supply device 1 (or the vibration of some members thereof) and the wind pressure of the purge gas or the like. Therefore, the processing system of the comparative example may not be able to maintain a state in which the actual supply amount of the modeling material M and the target supply amount match. However, in the present embodiment, since the actual supply amount of the modeling material M is calculated based on the original image, the vibration of the material supply device 1 (or the vibration of a part of the members), the wind pressure such as purge gas, and the material. The temperature of the supply device 1, electrical noise, and the like do not affect the calculated value of the actual supply amount. Therefore, the processing system SYS of the present embodiment can appropriately maintain a state in which the actual supply amount and the target supply amount of the modeling material M are in agreement, which is practical, which is not found in the processing system of the comparative example. You can enjoy the effect.
 また、材料供給装置1では、駆動装置14が、筐体16の内部空間16INから隔壁部材161によって隔てられた外部空間16OUTに配置されている。このため、駆動装置14が内部空間16INに配置されている場合と比較して、駆動装置14が備えるモータ等のアクチュエータ(動力源)で発生した熱が、内部空間16INに配置されている部材(具体的には、保持部材12、搬送部材13及び材料送出部材15)に伝達されにくくなる。その結果、内部空間16INに配置されている部材が熱変形しにくくなる。ここで、内部空間16INに配置されている部材の熱変形は、単位時間当たりに保持部材12から材料送出部材15へと搬送される造形材料Mの分量の変動を引き起こしかねない。つまり、内部空間16INに配置されている部材の熱変形は、材料供給装置1から加工装置2に供給される造形材料Mの供給レートの変動を引き起こしかねない。そうすると、本実施形態では、内部空間16INに配置されている部材が熱変形しにくくなるがゆえに、材料供給装置1から加工装置2に供給される造形材料Mの供給レートが駆動装置14の熱に起因して意図せず変動してしまうことが適切に抑制される。つまり、材料供給装置1は、造形材料Mの供給レートに対する駆動装置14の熱の影響を抑制することができる。このため、材料供給装置1は、所望の供給レートを維持したまま造形材料Mを供給することができる。その結果、加工システムSYSは、相対的に高精度な3次元構造物STを形成することができる。 Further, in the material supply device 1, the drive device 14 is arranged in the external space 16OUT separated from the internal space 16IN of the housing 16 by the partition member 161. Therefore, as compared with the case where the drive device 14 is arranged in the internal space 16IN, the heat generated by the actuator (power source) such as the motor included in the drive device 14 is arranged in the internal space 16IN. Specifically, it becomes difficult to transmit to the holding member 12, the transport member 13, and the material delivery member 15). As a result, the members arranged in the internal space 16IN are less likely to be thermally deformed. Here, the thermal deformation of the members arranged in the internal space 16IN may cause fluctuations in the amount of the modeling material M transported from the holding member 12 to the material delivery member 15 per unit time. That is, the thermal deformation of the member arranged in the internal space 16IN may cause a fluctuation in the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2. Then, in the present embodiment, since the member arranged in the internal space 16IN is less likely to be thermally deformed, the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2 becomes the heat of the drive device 14. Due to this, unintentional fluctuations are appropriately suppressed. That is, the material supply device 1 can suppress the influence of the heat of the drive device 14 on the supply rate of the modeling material M. Therefore, the material supply device 1 can supply the modeling material M while maintaining a desired supply rate. As a result, the processing system SYS can form a relatively high-precision three-dimensional structure ST.
 但し、仮に内部空間16INに配置されている部材の熱変形に起因して単位時間当たりに保持部材12から材料送出部材15へと搬送される造形材料Mの分量が変動したとしても、当該変動は、上述した供給量制御動作によって相殺される。このため、仮に内部空間16INに配置されている部材が熱変形したとしても、材料供給装置1から加工装置2に供給される造形材料Mの供給レートが変動することは殆どない。或いは、材料供給装置1から加工装置2に供給される造形材料Mの供給レートの変動量が加工装置2による加工精度に影響を与えるほどに大きくなることは殆どない。このため、駆動装置14は、筐体16の内部空間16INに配置されていてもよい。 However, even if the amount of the modeling material M transported from the holding member 12 to the material sending member 15 fluctuates per unit time due to thermal deformation of the member arranged in the internal space 16IN, the fluctuation does not occur. , It is offset by the supply amount control operation described above. Therefore, even if the member arranged in the internal space 16IN is thermally deformed, the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2 hardly fluctuates. Alternatively, the amount of fluctuation in the supply rate of the modeling material M supplied from the material supply device 1 to the processing device 2 is hardly so large as to affect the processing accuracy by the processing device 2. Therefore, the drive device 14 may be arranged in the internal space 16IN of the housing 16.
 (4)変形例
 続いて、加工システムSYSの変形例について説明する。尚、以下に説明する複数の変形例のうちの少なくとも二つが互いに組み合わせられてもよい。
(4) Modification Example Next, a modification of the machining system SYS will be described. It should be noted that at least two of the plurality of modifications described below may be combined with each other.
 (4-1)第1変形例
 上述した説明では、制御装置7は、元画像に基づいて算出される造形材料Mの実供給量をそのものに基づいて、搬送部材13を制御している。一方で、第1変形例では、撮像装置8が一定の撮像レートで撮像対象経路を繰り返し撮像していることを踏まえ、制御装置7は、ステップS13からステップS15において、撮像対象経路を繰り返し撮像することで得られた複数の元画像に基づいて、造形材料Mの実供給量を複数回算出し、その後、複数の実供給量を用いた演算を行うことで算出される演算値を算出してもよい。その後、制御装置7は、ステップS16からステップS17において、複数の実供給量の演算値に基づいて、搬送部材13を制御してもよい。具体的には、制御装置7は、ステップS16において、複数の実供給量の演算値の目標供給量からの偏差を算出し、ステップS17において、算出した偏差に基づいて、搬送部材13を制御してもよい。つまり、制御装置7は、複数の元画像に基づいて、搬送部材13を制御してもよい。
(4-1) First Modified Example In the above description, the control device 7 controls the transport member 13 based on the actual supply amount of the modeling material M calculated based on the original image. On the other hand, in the first modification, the control device 7 repeatedly images the imaging target path from step S13 to step S15, based on the fact that the imaging device 8 repeatedly images the imaging target path at a constant imaging rate. Based on the plurality of original images obtained by the above, the actual supply amount of the modeling material M is calculated a plurality of times, and then the calculated value calculated by performing the calculation using the plurality of actual supply amounts is calculated. May be good. After that, the control device 7 may control the transport member 13 based on the calculated values of the plurality of actual supply amounts in steps S16 to S17. Specifically, the control device 7 calculates deviations from the target supply amount of the calculated values of the plurality of actual supply amounts in step S16, and controls the transport member 13 based on the calculated deviations in step S17. You may. That is, the control device 7 may control the transport member 13 based on the plurality of original images.
 演算値の一例として平均値があげられる。この場合、制御装置7は、複数の実供給量の平均値を算出し、算出した平均値の目標供給量からの偏差を算出し、算出した偏差に基づいて搬送部材13を制御してもよい。尚、撮像装置8が一定の撮像レートで撮像対象経路を繰り返し撮像しているがゆえに、制御装置7が取得する複数の元画像は、時系列データであるとも言える。このため、ここでいう平均値は、移動平均値を意味していてもよい。 The average value is an example of the calculated value. In this case, the control device 7 may calculate the average value of the plurality of actual supply amounts, calculate the deviation of the calculated average value from the target supply amount, and control the transport member 13 based on the calculated deviation. .. Since the image pickup device 8 repeatedly images the image pickup target path at a constant image pickup rate, it can be said that the plurality of original images acquired by the control device 7 are time-series data. Therefore, the average value here may mean a moving average value.
 ここで、実供給量の平均値の目標供給量に対する偏差の変動量は、通常は、実供給量のそのものの目標供給量に対する偏差の変動量よりも小さくなる。なぜならば、平均値は、複数の元画像に基づいて時系列データとして算出される複数の実供給量を平滑化した値に相当するからである。このため、このような実供給量の平均値を用いる場合には、実供給量そのものを用いる場合と比較して、偏差のばらつきが小さくなる。その結果、材料供給装置1は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mを加工装置2に安定的に供給することができる。或いは、材料ノズル212は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料MをワークWに安定的に供給することができる。その結果、加工システムSYSは、高精度な3次元構造物STを形成することができる。 Here, the fluctuation amount of the deviation of the average value of the actual supply amount with respect to the target supply amount is usually smaller than the fluctuation amount of the deviation of the actual supply amount itself with respect to the target supply amount. This is because the average value corresponds to a smoothed value of a plurality of actual supplies calculated as time series data based on a plurality of original images. Therefore, when such an average value of the actual supply amount is used, the variation in deviation becomes smaller than when the actual supply amount itself is used. As a result, the material supply device 1 can stably supply the processing device 2 with a fixed amount of the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST. .. Alternatively, the material nozzle 212 can stably supply the work W with a fixed amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. As a result, the processing system SYS can form a highly accurate three-dimensional structure ST.
 更に、実供給量の平均値が用いられる場合には、元画像に基づいて算出される実供給量そのものの誤差(つまり、実供給量の真値に対する実供給量の算出値の誤差)に起因した影響が低減される。具体的には、撮像対象経路を通過する造形材料Mを撮像する撮像装置8を示す断面図である図16に示すように、撮像装置8は、撮像対象経路通過する造形材料Mをから見て一の方向から、撮像対象経路を通過する造形材料Mを撮像する。更には、図16に示すように、造形材料Mは、供給方向に交差する方向(例えば、図16中の紙面左右方向)に沿って一定の広がりを有するように分布しながら供給される。このため、撮像対象経路を通過する造形材料Mの全てが撮像装置8によって撮像されるとは限らない。具体的には、撮像対象経路を通過する造形材料Mのうち撮像装置8との間に他の造形材料Mが存在する少なくとも一つの造形材料M(具体的には、図16中の点線で示す造形材料M)は、撮像装置8によって撮像されない可能性がある。このため、撮像対象経路を通過する造形材料Mの全てが元画像に映り込むとは限らない。その結果、元画像に基づいて算出される実供給量は、撮像対象経路を通過する全ての造形材料Mの実供給量とは異なる可能性がある。つまり、元画像に基づいて算出される実供給量は、実供給量の真値に対して誤差を有している可能性がある。一方で、撮像装置8が撮像対象経路を撮像している期間中に撮像対象経路を造形材料Mが通過し続けるがゆえに、あるタイミングで撮像装置8に撮像されなかった造形材料Mが、別のタイミングで撮像装置8に撮像される可能性がある。そうすると、実供給量の平均値は、元画像に基づいて算出される実供給量そのものと比較して、実供給量の真値に近づく可能性が高くなる。このため、第1変形例では、制御装置7は、元画像に基づいて算出される実供給量そのものよりも実供給量の真値に近い可能性が高い実供給量の平均値を用いて、搬送部材13を制御することができる。その結果、材料供給装置1が供給する造形材料Mの実供給量は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mに応じた目標供給量により一層近づく可能性が高くなる。同様に、材料ノズル212が供給する造形材料Mの実供給量は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mに応じた目標供給量により一層近づく可能性が高くなる。その結果、加工システムSYSは、高精度な3次元構造物STを形成することができる。 Furthermore, when the average value of the actual supply amount is used, it is caused by an error of the actual supply amount itself calculated based on the original image (that is, an error of the calculated value of the actual supply amount with respect to the true value of the actual supply amount). The impact is reduced. Specifically, as shown in FIG. 16, which is a cross-sectional view showing an image pickup device 8 that images the modeling material M passing through the imaging target path, the imaging device 8 looks at the modeling material M passing through the imaging target path. The modeling material M passing through the imaging target path is imaged from one direction. Further, as shown in FIG. 16, the modeling material M is supplied while being distributed so as to have a constant spread along a direction intersecting the supply direction (for example, the left-right direction of the paper surface in FIG. 16). Therefore, not all of the modeling material M passing through the image pickup target path is imaged by the image pickup apparatus 8. Specifically, at least one modeling material M in which another modeling material M exists between the modeling material M passing through the imaging target path and the imaging device 8 (specifically, it is shown by a dotted line in FIG. 16). The modeling material M) may not be imaged by the image pickup apparatus 8. Therefore, not all of the modeling material M passing through the imaging target path is reflected in the original image. As a result, the actual supply amount calculated based on the original image may be different from the actual supply amount of all the modeling materials M passing through the imaging target path. That is, the actual supply amount calculated based on the original image may have an error with respect to the true value of the actual supply amount. On the other hand, since the modeling material M continues to pass through the imaging target path during the period in which the imaging device 8 is imaging the imaging target path, the modeling material M that is not imaged by the imaging device 8 at a certain timing is different. There is a possibility that the image pickup device 8 will take an image at the timing. Then, the average value of the actual supply amount is more likely to approach the true value of the actual supply amount than the actual supply amount itself calculated based on the original image. Therefore, in the first modification, the control device 7 uses the average value of the actual supply amount, which is more likely to be closer to the true value of the actual supply amount than the actual supply amount itself calculated based on the original image. The transport member 13 can be controlled. As a result, the actual supply amount of the modeling material M supplied by the material supply device 1 corresponds to the constant amount of the modeling material M required per unit time for the processing device 2 to form the three-dimensional structure ST. It is more likely to get closer to the target supply. Similarly, the actual supply amount of the modeling material M supplied by the material nozzle 212 is a target according to a certain amount of modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. It is more likely to get closer to the supply. As a result, the processing system SYS can form a highly accurate three-dimensional structure ST.
 演算値の他の一例として中央値及び最頻値の少なくとも一方があげられる。この場合であっても、平均値が用いられる場合と同様に、実供給量の中央値及び最頻値の少なくとも一方の目標供給量に対する偏差の変動量は、通常は、実供給量そのものの目標供給量に対する偏差の変動量よりも小さくなる。更に、実供給量の及び最頻値の少なくとも一方が用いられる場合には、元画像に基づいて算出される実供給量そのものの誤差(つまり、実供給量の真値に対する実供給量の算出値の誤差)に起因した影響が低減される。その結果、中央値及び最頻値の少なくとも一方が用いられる場合であっても、平均値が用いられる場合と同様に、加工システムSYSは、高精度な3次元構造物STを形成することができる。 Another example of the calculated value is at least one of the median value and the mode value. Even in this case, as in the case where the mean value is used, the fluctuation amount of the deviation of the median and the mode of the actual supply with respect to at least one target supply is usually the target of the actual supply itself. It is smaller than the fluctuation amount of the deviation with respect to the supply amount. Furthermore, when at least one of the actual supply amount and the mode value is used, the error of the actual supply amount itself calculated based on the original image (that is, the calculated value of the actual supply amount with respect to the true value of the actual supply amount). The effect caused by the error) is reduced. As a result, even when at least one of the median value and the mode value is used, the machining system SYS can form a highly accurate three-dimensional structure ST as in the case where the mean value is used. ..
 (4-2)第2変形例
 上述した説明では、撮像装置8は、材料供給源1Aと材料ノズル212との間の供給経路を通過する造形材料Mを撮像している。つまり、撮像装置8は、筐体6の内部空間16IN内の供給経路を通過する造形材料Mを撮像している。撮像装置8の撮像範囲IMAは、内部空間16INにおける造形材料Mの供給経路を含んでいる。しかしながら、撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mを撮像しておよい。撮像装置8は、筐体6の外部空間16OUTの供給経路を通過する造形材料Mを撮像してもよい。撮像装置8の撮像範囲IMAは、外部空間16OUTにおける造形材料Mの供給経路を含んでいてもよい。以下、図17から図19を参照しながら、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mを撮像する撮像装置8の一例について説明する。図17から図19のそれぞれは、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mを撮像する撮像装置8の一例を示す断面図である。
(4-2) Second Modified Example In the above description, the image pickup apparatus 8 images the modeling material M passing through the supply path between the material supply source 1A and the material nozzle 212. That is, the image pickup apparatus 8 images the modeling material M passing through the supply path in the internal space 16IN of the housing 6. The imaging range IMA of the imaging device 8 includes a supply path of the modeling material M in the internal space 16IN. However, the imaging device 8 may image the modeling material M passing through the supply path between the material nozzle 212 and the work W. The image pickup apparatus 8 may take an image of the modeling material M passing through the supply path of the external space 16OUT of the housing 6. The imaging range IMA of the imaging device 8 may include a supply path of the modeling material M in the external space 16OUT. Hereinafter, an example of the image pickup apparatus 8 that images the modeling material M passing through the supply path between the material nozzle 212 and the work W will be described with reference to FIGS. 17 to 19. Each of FIGS. 17 to 19 is a cross-sectional view showing an example of an image pickup apparatus 8 that images a modeling material M passing through a supply path between the material nozzle 212 and the work W.
 図17に示すように、撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mを撮像してもよい。撮像装置8は、材料ノズル212の供給口214とワークWとの間の供給経路を通過する造形材料Mを撮像してもよい。撮像装置8は、材料ノズル212からワークWへと向かう造形材料Mを撮像してもよい。撮像範囲IMAは、材料ノズル212とワークWとの間の造形材料Mの供給経路を含んでいてもよい。撮像範囲IMAは、材料ノズル212の供給口214とワークWとの間の造形材料Mの供給経路を含んでいてもよい。 As shown in FIG. 17, the imaging device 8 may image the modeling material M passing through the supply path between the material nozzle 212 and the work W. The image pickup apparatus 8 may take an image of the modeling material M passing through the supply path between the supply port 214 of the material nozzle 212 and the work W. The image pickup apparatus 8 may take an image of the modeling material M heading from the material nozzle 212 to the work W. The imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W. The imaging range IMA may include a supply path of the modeling material M between the supply port 214 of the material nozzle 212 and the work W.
 この場合、上述したように材料ノズル212及びワークWが筐体6に収容されていることを考慮すれば、撮像装置8は、筐体6のチャンバ空間63INを通過する造形材料Mを撮像してもよい。撮像装置8は、筐体6のチャンバ空間63IN内の供給経路を通過する造形材料Mを撮像してもよい。撮像範囲IMAは、筐体6のチャンバ空間63INにおける造形材料Mの供給経路を含んでいてもよい。 In this case, considering that the material nozzle 212 and the work W are housed in the housing 6 as described above, the image pickup apparatus 8 images the modeling material M passing through the chamber space 63IN of the housing 6. May be good. The imaging device 8 may image the modeling material M passing through the supply path in the chamber space 63IN of the housing 6. The imaging range IMA may include a supply path of the modeling material M in the chamber space 63IN of the housing 6.
 チャンバ空間63IN内の供給経路を通過する造形材料Mを撮像装置8が撮像する場合には、筐体6には、開口613が形成されていてもよい。開口613は、チャンバ空間63INから外部空間64OUTに向かって隔壁部材61を貫通する貫通孔である。開口613には、観察窓6131がはめ込まれている。観察窓6131が開口613にはめ込まれた状態で観察窓6131と隔壁部材61との間に隙間が形成される場合には、観察窓6131と隔壁部材61との隙間にシール部材が形成されていてもよい。観察窓6131は、可視光が通過可能な(つまり、可視光に対して透明な)部材である。但し、撮像装置8の撮像素子が可視光の波長域とは異なる波長域の光を検出可能である場合には、観察窓6131は、可視光の波長域とは異なる波長域の光(特に、撮像素子が検出可能な波長域の光)が通過可能な部材であってもよい。観察窓6131は、撮像装置8が筐体6のチャンバ空間63INを通過する造形材料Mを撮像するために用いられる。このため、外部空間64OUTに配置された撮像装置8は、観察窓6131を介して、筐体6のチャンバ空間63INの供給経路を通過する造形材料Mを撮像する。つまり、撮像装置8は、造形材料Mの影響を受けることなく、撮像対象経路を通過する造形材料Mを撮像することができる。但し、撮像装置8は、チャンバ空間63INに配置されていてもよい。 When the imaging device 8 images the modeling material M passing through the supply path in the chamber space 63IN, the housing 6 may have an opening 613. The opening 613 is a through hole that penetrates the partition wall member 61 from the chamber space 63IN toward the external space 64OUT. An observation window 6131 is fitted in the opening 613. When a gap is formed between the observation window 6131 and the partition member 61 with the observation window 6131 fitted in the opening 613, a seal member is formed in the gap between the observation window 6131 and the partition member 61. May be good. The observation window 6131 is a member through which visible light can pass (that is, is transparent to visible light). However, when the image pickup element of the image pickup apparatus 8 can detect light in a wavelength range different from the visible light wavelength range, the observation window 6131 uses light in a wavelength range different from the visible light wavelength range (particularly). It may be a member through which light in a wavelength range that can be detected by the image pickup element) can pass. The observation window 6131 is used for the imaging device 8 to image the modeling material M passing through the chamber space 63IN of the housing 6. Therefore, the image pickup apparatus 8 arranged in the external space 64OUT images the modeling material M passing through the supply path of the chamber space 63IN of the housing 6 through the observation window 6131. That is, the imaging device 8 can image the modeling material M passing through the imaging target path without being affected by the modeling material M. However, the image pickup apparatus 8 may be arranged in the chamber space 63IN.
 更に、筐体6には、開口614が形成されていてもよい。開口614は、チャンバ空間63INから外部空間64OUTに向かって隔壁部材61を貫通する貫通孔である。開口614には、観察窓6141がはめ込まれていてもよい。観察窓6141が開口614にはめ込まれた状態で観察窓6141と隔壁部材61との間に隙間が形成される場合には、観察窓6141と隔壁部材61との隙間にシール部材が形成されていてもよい。観察窓6141は、可視光が通過可能な(つまり、可視光に対して透明な)部材である。但し、照明装置9が可視光の波長域とは異なる波長域の光を照明光ILとして射出する場合には、観察窓6141は、可視光の波長域とは異なる波長域の光(特に、照明光IL)が通過可能な部材であってもよい。観察窓6141は、照明装置9が筐体6のチャンバ空間63INを通過する造形材料Mを照明光ILで照明するために用いられる。その結果、観察窓6141を介して外部空間64OUTに配置された照明装置9から照射される照明光ILによって、筐体6のチャンバ空間63IN内の供給経路を通過する造形材料Mが照明される。つまり、照明装置9は、造形材料Mの影響を受けることなく、撮像対象経路を通過する造形材料Mに向けて照明光ILを照射することができる。つまり、照明装置9に対して造形材料Mが影響を与える可能性はない又は低い。但し、照明装置9は、チャンバ空間63INに配置されていてもよい。 Further, the housing 6 may be formed with an opening 614. The opening 614 is a through hole that penetrates the partition wall member 61 from the chamber space 63IN toward the external space 64OUT. An observation window 6141 may be fitted in the opening 614. When a gap is formed between the observation window 6141 and the partition member 61 with the observation window 6141 fitted in the opening 614, a seal member is formed in the gap between the observation window 6141 and the partition member 61. May be good. The observation window 6141 is a member through which visible light can pass (that is, is transparent to visible light). However, when the lighting device 9 emits light in a wavelength range different from the visible light wavelength range as the illumination light IL, the observation window 6141 emits light in a wavelength range different from the visible light wavelength range (particularly, illumination). It may be a member through which optical IL) can pass. The observation window 6141 is used for the lighting device 9 to illuminate the modeling material M passing through the chamber space 63IN of the housing 6 with the illumination light IL. As a result, the modeling material M passing through the supply path in the chamber space 63IN of the housing 6 is illuminated by the illumination light IL emitted from the lighting device 9 arranged in the external space 64OUT through the observation window 6141. That is, the illumination device 9 can irradiate the illumination light IL toward the modeling material M passing through the imaging target path without being affected by the modeling material M. That is, there is no possibility or low possibility that the modeling material M has an influence on the lighting device 9. However, the lighting device 9 may be arranged in the chamber space 63IN.
 尚、造形材料Mの供給経路に対する開口613及び614の位置関係は、上述した造形材料Mの供給経路に対する開口168及び169の位置関係と同一であってもよい。つまり、開口613及び614は、造形材料Mの供給経路からそれぞれ異なる方向に離れた位置に形成されていてもよい。この場合、照明装置9は、撮像装置8が造形材料Mを撮像する方向とは異なる方向から、照明光ILで造形材料Mを照明する。或いは、開口613及び614は、造形材料Mの供給経路から同じ方向に離れた位置に形成されてもよい。この場合、照明装置9は、撮像装置8が造形材料Mを撮像する方向とは同じ方向から、照明光ILで造形材料Mを照明する。 The positional relationship of the openings 613 and 614 with respect to the supply path of the modeling material M may be the same as the positional relationship of the openings 168 and 169 with respect to the supply path of the modeling material M described above. That is, the openings 613 and 614 may be formed at positions separated from the supply path of the modeling material M in different directions. In this case, the lighting device 9 illuminates the modeling material M with the illumination light IL from a direction different from the direction in which the imaging device 8 images the modeling material M. Alternatively, the openings 613 and 614 may be formed at positions separated from the supply path of the modeling material M in the same direction. In this case, the lighting device 9 illuminates the modeling material M with the illumination light IL from the same direction as the direction in which the imaging device 8 images the modeling material M.
 材料ノズル212とワークWとの間における供給経路を通過する造形材料Mが撮像装置8によって撮像される場合、材料供給源1Aと材料ノズル212との間における供給経路を通過する造形材料Mが撮像装置8によって撮像される場合と比較して、元画像に基づいて算出される造形材料Mの実供給量が、ワークWに供給される造形材料Mの実供給量に近づく。というのも、図17に示す例では、保持部材12から材料送出部材15に向かって落下したにも関わらず材料ノズル212からワークWに向かって実際に供給されなかった造形材料Mが撮像装置8によって撮像されることはない。このため、元画像に基づいて算出される造形材料Mの実供給量は、保持部材12から材料送出部材15に向かって落下したにも関わらず材料ノズル212からワークWに向かって実際に供給されなかった造形材料Mの分量を含まない。従って、材料ノズル212が供給する造形材料Mの実供給量は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mに応じた目標供給量により近づく。その結果、加工システムSYSは、高精度な3次元構造物STを形成することができる。 When the modeling material M passing through the supply path between the material nozzle 212 and the work W is imaged by the image pickup apparatus 8, the modeling material M passing through the supply path between the material supply source 1A and the material nozzle 212 is imaged. Compared with the case where the image is taken by the apparatus 8, the actual supply amount of the modeling material M calculated based on the original image approaches the actual supply amount of the modeling material M supplied to the work W. This is because, in the example shown in FIG. 17, the modeling material M that was not actually supplied from the material nozzle 212 toward the work W even though it fell from the holding member 12 toward the material delivery member 15 is the imaging device 8. Will not be imaged by. Therefore, the actual supply amount of the modeling material M calculated based on the original image is actually supplied from the material nozzle 212 toward the work W even though it has fallen from the holding member 12 toward the material delivery member 15. Does not include the amount of modeling material M that was not present. Therefore, the actual supply amount of the modeling material M supplied by the material nozzle 212 is the target supply according to the constant amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. Get closer to the quantity. As a result, the processing system SYS can form a highly accurate three-dimensional structure ST.
 尚、保持部材12から材料送出部材15に向かって落下したにも関わらず材料ノズル212からワークWに向かって実際に供給されなかった造形材料Mの一例として、保持部材12から材料送出部材15に向かって落下したにも関わらず材料送出部材15の外部にこぼれ落ちてしまった造形材料Mがあげられる。保持部材12から材料送出部材15に向かって落下したにも関わらず材料ノズル212からワークWに向かって実際に供給されなかった造形材料Mの他の一例として、保持部材12から材料送出部材15に向かって落下したにも関わらず材料供給装置1と材料ノズル212とを接続するパイプの内部に滞留してしまった又は詰まってしまった造形材料Mがあげられる。 As an example of the modeling material M that was not actually supplied from the material nozzle 212 toward the work W even though it fell from the holding member 12 toward the material delivery member 15, the holding member 12 sent the material to the material delivery member 15. The modeling material M that has spilled to the outside of the material delivery member 15 even though it has fallen toward it can be mentioned. As another example of the modeling material M that was not actually supplied from the material nozzle 212 toward the work W even though it fell from the holding member 12 toward the material delivery member 15, the holding member 12 sent the material to the material delivery member 15. Examples thereof include the modeling material M that has accumulated or is clogged inside the pipe connecting the material supply device 1 and the material nozzle 212 even though the material has fallen toward the material nozzle 212.
 また、図18に示すように、撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mに加えて、溶融池MPを撮像してもよい。撮像範囲IMAは、材料ノズル212とワークWとの間における造形材料Mの供給経路と、溶融池MPとを含んでいてもよい。このように溶融池MPが撮像装置8によって撮像される場合、溶融池MPが撮像装置8によって撮像されない場合と比較して、元画像に基づいて算出される造形材料Mの実供給量が、溶融池MPに供給される造形材料Mの実供給量に近づく。というのも、図18に示す例では、制御装置7は、元画像に基づいて、材料ノズル212からチャンバ空間63INに供給された後に溶融池MPに実際に供給された造形材料M(つまり、溶融池MPで溶融して3次元構造物STの一部となる造形材料M)と、材料ノズル212からチャンバ空間63INに供給されたにも関わらず溶融池MPには実際には供給されなかった造形材料M(つまり、溶融池MPで溶融しないがゆえに3次元構造物STの一部とならない造形材料M)とを区別することができる。このため、制御装置7は、元画像に基づいて、溶融池MPに実際に供給された造形材料Mの実供給量を算出することができる。従って、溶融池MPに供給される造形材料Mの実供給量は、加工装置2が3次元構造物STを形成するために単位時間あたりに必要とされる一定量の造形材料Mに応じた目標供給量により近づく。その結果、加工システムSYSは、高精度な3次元構造物STを形成することができる。 Further, as shown in FIG. 18, the image pickup apparatus 8 may take an image of the molten pool MP in addition to the modeling material M passing through the supply path between the material nozzle 212 and the work W. The imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and a molten pool MP. When the molten pool MP is imaged by the imaging device 8 in this way, the actual supply amount of the modeling material M calculated based on the original image is melted as compared with the case where the molten pool MP is not imaged by the imaging device 8. It approaches the actual supply amount of the modeling material M supplied to the pond MP. This is because, in the example shown in FIG. 18, the control device 7 is supplied from the material nozzle 212 to the chamber space 63IN and then is actually supplied to the molten pool MP (that is, molten) based on the original image. The modeling material M) that melts in the pond MP and becomes a part of the three-dimensional structure ST, and the modeling that was supplied from the material nozzle 212 to the chamber space 63IN but was not actually supplied to the molten pool MP. It can be distinguished from the material M (that is, the modeling material M which does not become a part of the three-dimensional structure ST because it does not melt in the molten pool MP). Therefore, the control device 7 can calculate the actual supply amount of the modeling material M actually supplied to the molten pool MP based on the original image. Therefore, the actual supply amount of the modeling material M supplied to the molten pool MP is a target according to the constant amount of the modeling material M required per unit time for the processing apparatus 2 to form the three-dimensional structure ST. Closer to the supply. As a result, the processing system SYS can form a highly accurate three-dimensional structure ST.
 材料ノズル212から溶融池MPに供給された造形材料Mの実供給量が目標供給量に一致している場合には、材料ノズル212から溶融池MPに供給された造形材料Mの実供給量が目標供給量と一致していない場合と比較して、加工システムSYSは、より高精度な3次元構造物STを形成することができる。そうすると、上述した撮像対象経路を通過する造形材料Mの実供給量が目標供給量に一致するように搬送部材13の回転の状態を制御する動作は、実質的には、材料ノズル212から溶融池MPに供給された造形材料Mの実供給量が目標供給量に一致するように搬送部材13の回転の状態を制御する動作と等価であるとみなしてもよい。 When the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP matches the target supply amount, the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP is The machining system SYS can form a more accurate 3D structure ST as compared to the case where it does not match the target supply amount. Then, the operation of controlling the rotational state of the transport member 13 so that the actual supply amount of the modeling material M passing through the imaging target path described above matches the target supply amount is substantially the operation of controlling the rotation state from the material nozzle 212 to the molten pool. It may be regarded as equivalent to the operation of controlling the rotational state of the transport member 13 so that the actual supply amount of the modeling material M supplied to the MP matches the target supply amount.
 材料ノズル212から溶融池MPに供給された造形材料Mの実供給量は、ワークWに供給される造形材料Mの供給位置(つまり、供給領域MA)とワークWとの相対的な速度に依存して変動する。というのも、材料ノズル212が単位時間あたりに供給口214からチャンバ空間63INに供給する造形材料Mの分量が一定である状況下では、ワークWに対して供給領域MAが移動する速度が速くなればなるほど、ワークWのある部分に供給領域MAが位置する時間が短くなる。つまり、ワークWに対して供給領域MAが移動する速度が速くなればなるほど、ワークWのある部分に形成された溶融池MPに造形材料Mが供給される時間が短くなる。このため、ワークWに対して供給領域MAが移動する速度が速くなればなるほど、ワークWのある部分に単位時間あたりに供給される造形材料Mの分量が少なくなる。つまり、ワークWに対して供給領域MAが移動する速度が速くなればなるほど、ワークWのある部分に形成された溶融池MPに単位時間あたりに供給される造形材料Mの分量が少なくなる。このため、制御装置7は、上述したように搬送部材13の回転の状態(典型的には、回転速度)を制御することに加えて又は代えて、材料ノズル212とワークWとの相対的な速度を制御することで、材料ノズル212から溶融池MPに供給された造形材料Mの実供給量を目標供給量に一致させてもよい。尚、制御装置7は、典型的には、ヘッド駆動系22を用いてワークWに対して材料ノズル212が移動する速度を制御することで、ワークWと供給領域MAの相対的な速度を制御してもよい。 The actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP depends on the relative speed between the supply position (that is, the supply region MA) of the modeling material M supplied to the work W and the work W. And fluctuate. This is because, under the condition that the amount of the modeling material M supplied by the material nozzle 212 from the supply port 214 to the chamber space 63IN per unit time is constant, the speed at which the supply region MA moves with respect to the work W can be increased. The more, the shorter the time for the supply region MA to be located in a certain portion of the work W. That is, the faster the supply region MA moves with respect to the work W, the shorter the time for the modeling material M to be supplied to the molten pool MP formed in a certain portion of the work W. Therefore, the faster the supply region MA moves with respect to the work W, the smaller the amount of the modeling material M supplied to a certain portion of the work W per unit time. That is, the faster the supply region MA moves with respect to the work W, the smaller the amount of the modeling material M supplied per unit time to the molten pool MP formed in a certain portion of the work W. Therefore, in addition to or instead of controlling the rotational state (typically, rotational speed) of the transport member 13, the control device 7 is relative to the material nozzle 212 and the work W. By controlling the speed, the actual supply amount of the modeling material M supplied from the material nozzle 212 to the molten pool MP may be matched with the target supply amount. The control device 7 typically controls the relative speed between the work W and the supply region MA by controlling the speed at which the material nozzle 212 moves with respect to the work W using the head drive system 22. You may.
 尚、溶融池MPがワークWの一部に形成されるがゆえに、撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mと、ワークWのうちの溶融池MPが形成される部分とを撮像してもよい。撮像範囲IMAは、材料ノズル212とワークWとの間における造形材料Mの供給経路と、ワークWのうちの溶融池MPが形成される部分とを含んでいてもよい。また、溶融池MPに造形材料Mが供給されるがゆえに、撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mと、ワークWのうちの造形材料Mが供給される部分(つまり、ワークWのうちの供給領域MAが設定される部分)とを撮像してもよい。撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mと、ワークWのうちの造形材料Mが到達する部分とを撮像してもよい。撮像範囲IMAは、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mと、ワークWのうちの造形材料Mが供給される部分(造形材料Mが到達する部分)とを含んでいてもよい。この場合も、溶融池MPが撮像装置8によって撮像される場合に享受可能な効果と同様の効果が享受可能となる。 Since the molten pool MP is formed in a part of the work W, the image pickup apparatus 8 includes the molding material M passing through the supply path between the material nozzle 212 and the work W, and the molten pool of the work W. The portion where the MP is formed may be imaged. The imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and a portion of the work W where the molten pool MP is formed. Further, since the modeling material M is supplied to the molten pool MP, in the image pickup apparatus 8, the modeling material M passing through the supply path between the material nozzle 212 and the work W and the modeling material M in the work W are The supplied portion (that is, the portion of the work W in which the supply region MA is set) may be imaged. The image pickup apparatus 8 may take an image of the modeling material M passing through the supply path between the material nozzle 212 and the work W and the portion of the work W reached by the modeling material M. The imaging range IMA includes a modeling material M passing through a supply path between the material nozzle 212 and the work W, and a portion of the work W to which the modeling material M is supplied (a portion reached by the modeling material M). You may be. In this case as well, the same effect as that that can be enjoyed when the molten pool MP is imaged by the imaging device 8 can be enjoyed.
 また、図19に示すように、撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mと、材料ノズル212の少なくとも一部を撮像してもよい。撮像範囲IMAは、材料ノズル212とワークWとの間における造形材料Mの供給経路と、材料ノズル212の少なくとも一部とを含んでいてもよい。撮像装置8は、材料ノズル212とワークWとの間の供給経路を通過する造形材料Mと、材料ノズル212の供給口214とを撮像してもよい。撮像範囲IMAは、材料ノズル212とワークWとの間における造形材料Mの供給経路と、材料ノズル212の供給口214とを含んでいてもよい。 Further, as shown in FIG. 19, the image pickup apparatus 8 may take an image of the modeling material M passing through the supply path between the material nozzle 212 and the work W, and at least a part of the material nozzle 212. The imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and at least a portion of the material nozzle 212. The image pickup apparatus 8 may image the modeling material M passing through the supply path between the material nozzle 212 and the work W, and the supply port 214 of the material nozzle 212. The imaging range IMA may include a supply path of the modeling material M between the material nozzle 212 and the work W, and a supply port 214 of the material nozzle 212.
 尚、上述した図17から図19の例において、撮像装置8の少なくとも一部と照明装置9の少なくとも一部との少なくとも一方は、材料ノズル212との相対的な位置関係が固定されるように設けられていてもよい。言い換えると、撮像装置8の少なくとも一部と照明装置9の少なくとも一部との少なくとも一方は、移動可能な加工ヘッド21に設けられていてもよい。 In the above-described examples of FIGS. 17 to 19, at least one of at least a part of the image pickup apparatus 8 and at least a part of the illumination apparatus 9 has a fixed relative positional relationship with the material nozzle 212. It may be provided. In other words, at least one of at least a part of the image pickup apparatus 8 and at least a part of the illumination apparatus 9 may be provided on the movable processing head 21.
 (4-3)第3変形例
 上述した説明では、制御装置7は、撮像装置8が撮像した元画像に基づいて、撮像対象経路を通過する造形材料Mの実供給量を算出している。しかしながら、制御装置7は、撮像装置8が撮像した元画像に基づいて、撮像対象経路を通過する造形材料Mの実供給量に加えて又は代えて、撮像対象経路を通過する造形材料Mの任意の供給状態を算出してもよい(つまり、求めてもよい)。
(4-3) Third Modified Example In the above description, the control device 7 calculates the actual supply amount of the modeling material M passing through the image pickup target path based on the original image captured by the image pickup device 8. However, the control device 7 adds or replaces the actual supply amount of the modeling material M passing through the imaging target path based on the original image captured by the imaging device 8, and optionally the modeling material M passing through the imaging target path. The supply status of is calculated (that is, it may be calculated).
 この場合、制御装置7は、算出した造形材料Mの任意の供給状態に基づいて、上述した供給量制御動作と同様に搬送部材13の回転の状態を制御してもよい。或いは、制御装置7は、算出した造形材料Mの任意の供給状態に基づいて、加工システムSYSの動作を制御してもよい。例えば、制御装置7は、算出した造形材料Mの任意の供給状態に基づいて加工装置2(特に、照射光学系211)及び光源4の少なくとも一方を制御することで、照射光学系211による加工光ELの射出態様を制御してもよい。例えば、制御装置7は、算出した造形材料Mの任意の供給状態に基づいてヘッド駆動系22を制御することで、加工ヘッド21の移動態様を制御してもよい。例えば、制御装置7は、算出した造形材料Mの任意の供給状態に基づいて加工装置2(特に、材料ノズル212)及び材料供給装置1の少なくとも一方を制御することで、造形材料Mの供給態様を制御してもよい。尚、上述したように造形材料Mの実供給量が算出される場合においても、制御装置7は、算出した造形材料Mの実供給量に基づいて、加工システムSYSの動作を制御してもよい。 In this case, the control device 7 may control the rotational state of the transport member 13 in the same manner as the supply amount control operation described above, based on the calculated arbitrary supply state of the modeling material M. Alternatively, the control device 7 may control the operation of the processing system SYS based on the calculated arbitrary supply state of the modeling material M. For example, the control device 7 controls at least one of the processing device 2 (particularly, the irradiation optical system 211) and the light source 4 based on the calculated arbitrary supply state of the modeling material M, so that the processing light by the irradiation optical system 211 The injection mode of the EL may be controlled. For example, the control device 7 may control the movement mode of the processing head 21 by controlling the head drive system 22 based on the calculated arbitrary supply state of the modeling material M. For example, the control device 7 controls at least one of the processing device 2 (particularly, the material nozzle 212) and the material supply device 1 based on the calculated arbitrary supply state of the modeling material M, thereby supplying the modeling material M. May be controlled. Even when the actual supply amount of the modeling material M is calculated as described above, the control device 7 may control the operation of the processing system SYS based on the calculated actual supply amount of the modeling material M. ..
 任意の供給状態の一例として、材料ノズル212からの造形材料Mの供給方向があげられる。この場合、撮像装置8は、上述した図19に示すように、材料ノズル212からワークWに供給される造形材料Mの供給経路と、材料ノズル212の少なくとも一部(特に、供給口214)を撮像してもよい。その結果、制御装置7は、撮像装置8が撮像した元画像に基づいて、材料ノズル212からの造形材料Mの供給方向(以下、“実供給方向”と称する)を算出することができる。或いは、撮像装置8が一定の撮像レートで撮像対象経路を繰り返し撮像していることを踏まえ、制御装置7は、時系列データに相当する複数の元画像に写り込んでいる造形材料Mの位置を比較することで、材料ノズル212からの造形材料Mの移動方向(以下、“実移動方向”と称する)を算出してもよい。尚、造形材料Mの移動方向は、造形材料Mの供給方向と等価であるとみなしてもよい。 As an example of an arbitrary supply state, the supply direction of the modeling material M from the material nozzle 212 can be mentioned. In this case, as shown in FIG. 19 described above, the image pickup apparatus 8 provides a supply path of the modeling material M supplied from the material nozzle 212 to the work W and at least a part of the material nozzle 212 (particularly, the supply port 214). You may take an image. As a result, the control device 7 can calculate the supply direction (hereinafter, referred to as “actual supply direction”) of the modeling material M from the material nozzle 212 based on the original image captured by the image pickup device 8. Alternatively, based on the fact that the imaging device 8 repeatedly images the imaging target path at a constant imaging rate, the control device 7 determines the position of the modeling material M reflected in the plurality of original images corresponding to the time series data. By comparing, the moving direction of the modeling material M from the material nozzle 212 (hereinafter, referred to as “actual moving direction”) may be calculated. The moving direction of the modeling material M may be regarded as equivalent to the supply direction of the modeling material M.
 材料ノズル212からの造形材料Mの実供給方向が算出される場合には、制御装置7は、材料ノズル212からの造形材料Mの実供給方向が目標供給方向と一致するように、材料ノズル212からの造形材料Mの実供給方向を制御してもよい。材料ノズル212からの造形材料Mの実移動方向が算出される場合には、制御装置7は、材料ノズル212からの造形材料Mの実移動方向が目標移動方向と一致するように、材料ノズル212からの造形材料Mの実移動方向を制御してもよい。ここで、目標供給方向(目標移動方向)は、材料ノズル212から供給される造形材料Mが加工光ELの照射位置に到達する状態を実現可能な造形材料Mの供給方向(移動方向)であってもよい。目標供給方向(目標移動方向)は、造形材料Mの供給領域MAが加工光ELの照射領域EAと一致する(或いは、少なくとも部分的に重複する)状態を実現可能な造形材料Mの供給方向(移動方向)であってもよい。 When the actual supply direction of the modeling material M from the material nozzle 212 is calculated, the control device 7 controls the material nozzle 212 so that the actual supply direction of the modeling material M from the material nozzle 212 matches the target supply direction. The actual supply direction of the modeling material M from the above may be controlled. When the actual moving direction of the modeling material M from the material nozzle 212 is calculated, the control device 7 controls the material nozzle 212 so that the actual moving direction of the modeling material M from the material nozzle 212 coincides with the target moving direction. The actual moving direction of the modeling material M from the above may be controlled. Here, the target supply direction (target movement direction) is the supply direction (movement direction) of the modeling material M that can realize a state in which the modeling material M supplied from the material nozzle 212 reaches the irradiation position of the processing light EL. You may. The target supply direction (target movement direction) is the supply direction of the modeling material M that can realize a state in which the supply region MA of the modeling material M coincides with (or at least partially overlaps) the irradiation region EA of the processing light EL. The direction of movement) may be used.
 制御装置7は、造形材料Mの実供給方向(実移動方向、以下同じ)を制御するために、ヘッド駆動系22を制御してもよい。この場合、制御装置7は、ヘッド駆動系22を用いて材料ノズル212の位置を制御することで、造形材料Mの実供給方向を制御する。例えば、図20(a)は、実供給方向と目標供給方向とが一致していない加工システムSYSを示す断面図である。この場合、制御装置7は、造形材料Mの実供給方向が目標供給方向と一致するように、ヘッド駆動系22を用いて、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つにおける材料ノズル212の位置を制御してもよい。ここで、θX方向、θY方向及びθZ方向の少なくとも一つにおける材料ノズル212の位置は、材料ノズル212の姿勢と称されてもよい。つまり、制御装置7は、造形材料Mの実供給方向が目標供給方向と一致するように、ヘッド駆動系22を用いて、材料ノズル212の姿勢を制御してもよい。その結果、図20(b)に示すように、造形材料Mの実供給方向が目標供給方向と一致する。 The control device 7 may control the head drive system 22 in order to control the actual supply direction (actual movement direction, the same applies hereinafter) of the modeling material M. In this case, the control device 7 controls the actual supply direction of the modeling material M by controlling the position of the material nozzle 212 using the head drive system 22. For example, FIG. 20A is a cross-sectional view showing a processing system SYS in which the actual supply direction and the target supply direction do not match. In this case, the control device 7 uses the head drive system 22 so that the actual supply direction of the modeling material M coincides with the target supply direction, and the control device 7 uses the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, and the θY direction. And the position of the material nozzle 212 in at least one of the θZ directions may be controlled. Here, the position of the material nozzle 212 in at least one of the θX direction, the θY direction, and the θZ direction may be referred to as the posture of the material nozzle 212. That is, the control device 7 may control the posture of the material nozzle 212 by using the head drive system 22 so that the actual supply direction of the modeling material M coincides with the target supply direction. As a result, as shown in FIG. 20B, the actual supply direction of the modeling material M coincides with the target supply direction.
 尚、図20(a)及び図20(b)に示すように、目標供給方向と一致していなかった実供給方向を目標供給方向と一致させるように材料ノズル212の位置が制御されると、造形材料Mの実供給方向(実移動方向)とワークWの姿勢との関係が変わる。このため、制御装置7は、造形材料Mの実供給方向(実移動方向)とワークWの姿勢との関係を変更することで目標供給方向と一致していなかった実供給方向を目標供給方向と一致させるように、ヘッド駆動系22を制御してもよい。 As shown in FIGS. 20A and 20B, when the position of the material nozzle 212 is controlled so that the actual supply direction that does not match the target supply direction matches the target supply direction, The relationship between the actual supply direction (actual movement direction) of the modeling material M and the posture of the work W changes. Therefore, the control device 7 sets the actual supply direction that does not match the target supply direction as the target supply direction by changing the relationship between the actual supply direction (actual movement direction) of the modeling material M and the posture of the work W. The head drive system 22 may be controlled so as to match.
 尚、目標供給方向を設定するために、図18に示した例のように、撮像装置8は、溶融池MPを撮像してもよい。この場合、制御装置7は、撮像装置8によって撮像された溶融池MPの撮像結果から溶融池MPの位置を算出し、材料ノズル212の供給口214の位置から、算出した溶融池MPの位置に向かう方向を目標供給方向に設定してもよい。このとき、撮像装置8によって材料ノズル212を撮像してもよい。 Note that, in order to set the target supply direction, the imaging device 8 may image the molten pool MP as in the example shown in FIG. In this case, the control device 7 calculates the position of the molten pool MP from the imaging result of the molten pool MP imaged by the imaging device 8, and from the position of the supply port 214 of the material nozzle 212 to the calculated position of the molten pool MP. The direction may be set to the target supply direction. At this time, the material nozzle 212 may be imaged by the image pickup apparatus 8.
 制御装置7は、造形材料Mの実供給方向(実移動方向、以下同じ)を制御するために、ヘッド駆動系22に加えて又は代えて、ガス供給装置5を制御してもよい。具体的には、制御装置7は、ガス供給装置5が材料供給装置1に供給するパージガスの圧力及び/又は流量(典型的には、単位時間当たりの流量)を制御してもよい。材料供給装置1がパージガスを用いて材料ノズル212に造形材料Mを圧送し且つ当該パージガスによって材料ノズル212の供給口214から造形材料Mがチャンバ空間63INに供給されるがゆえに、パージガスの圧力及び/又は流量が変わると、材料ノズル212からチャンバ空間63INに供給される造形材料Mの勢いが変わる。その結果、材料ノズル212からの造形材料Mの供給方向(移動方向)が変わる。 The control device 7 may control the gas supply device 5 in addition to or in place of the head drive system 22 in order to control the actual supply direction (actual movement direction, the same applies hereinafter) of the modeling material M. Specifically, the control device 7 may control the pressure and / or flow rate (typically, the flow rate per unit time) of the purge gas supplied by the gas supply device 5 to the material supply device 1. Since the material supply device 1 pumps the modeling material M to the material nozzle 212 using the purge gas and the modeling material M is supplied from the supply port 214 of the material nozzle 212 to the chamber space 63IN by the purge gas, the pressure of the purge gas and / Alternatively, when the flow rate changes, the momentum of the modeling material M supplied from the material nozzle 212 to the chamber space 63IN changes. As a result, the supply direction (movement direction) of the modeling material M from the material nozzle 212 changes.
 任意の供給状態の一例として、材料ノズル212から供給される造形材料Mの粒度があげられる。この場合、制御装置7は、撮像装置8が撮像した元画像に基づいて、元画像に写り込んでいる造形材料Mのサイズ(典型的には、直径又は半径等の径)を算出し、算出したサイズに基づいて造形材料Mの粒度を算出してもよい。尚、造形材料Mの粒度は、造形材料Mのサイズ(典型的には、直径又は半径等の径)に基づくパラメータであるがゆえに、造形材料Mのサイズもまた、任意の供給状態の一例であると言える。従って、制御装置7は、造形材料Mの粒度を算出することに加えて又は代えて、造形材料Mのサイズを算出してもよい。 As an example of an arbitrary supply state, the particle size of the modeling material M supplied from the material nozzle 212 can be mentioned. In this case, the control device 7 calculates and calculates the size (typically, a diameter such as a diameter or a radius) of the modeling material M reflected in the original image based on the original image captured by the image pickup device 8. The particle size of the modeling material M may be calculated based on the determined size. Since the particle size of the modeling material M is a parameter based on the size of the modeling material M (typically, a diameter such as a diameter or a radius), the size of the modeling material M is also an example of an arbitrary supply state. It can be said that there is. Therefore, the control device 7 may calculate the size of the modeling material M in addition to or instead of calculating the particle size of the modeling material M.
 造形材料Mの粒度(或いは、サイズ)が算出される場合には、制御装置7は、算出した粒度に基づいて、ワークWに照射される加工光ELの強度を制御してもよい。具体的には、粒度が相対的に粗い(つまり、サイズが相対的に大きい)造形材料Mを溶融するために必要な加工光ELの強度は、通常は、粒度が相対的に細かい(つまり、サイズが相対的に小さい)造形材料Mを溶融するために必要な加工光ELの強度よりも高くなる。このため、制御装置7は、造形材料Mの粒度と加工光ELの強度との相関関係の一例を示すグラフである図21に示すように、造形材料Mの粒度が粗くなるほど加工光ELの強度が高くなるように、加工光ELの強度を制御してもよい。制御装置7は、第1の粒度の造形材料Mが供給される場合の加工光ELの強度が、第1の粒度よりも細かい第2の粒度の造形材料Mが供給される場合の加工光ELの強度よりも高くなるように、加工光ELの強度を制御してもよい。その結果、加工システムSYSは、加工光ELを用いて造形材料Mを適切に溶融させることができる。このため、加工システムSYSは、相対的に高精度な3次元構造物STを形成することができる。 When the particle size (or size) of the modeling material M is calculated, the control device 7 may control the intensity of the processing light EL applied to the work W based on the calculated particle size. Specifically, the intensity of the processing light EL required to melt the modeling material M having a relatively coarse particle size (that is, a relatively large size) is usually relatively fine (that is, a relatively large size). It is higher than the strength of the processing light EL required to melt the modeling material M (which is relatively small in size). Therefore, as shown in FIG. 21, which is a graph showing an example of the correlation between the particle size of the modeling material M and the intensity of the processing light EL, the control device 7 increases the intensity of the processing light EL as the particle size of the modeling material M becomes coarser. The intensity of the processing light EL may be controlled so as to increase the value. In the control device 7, the intensity of the processing light EL when the modeling material M having the first particle size is supplied is the processing light EL when the modeling material M having a second particle size finer than the first particle size is supplied. The intensity of the processing light EL may be controlled so as to be higher than the intensity of. As a result, the processing system SYS can appropriately melt the modeling material M using the processing light EL. Therefore, the processing system SYS can form a relatively high-precision three-dimensional structure ST.
 制御装置7は、加工光ELの強度を制御するために、光源4を制御してもよい。制御装置7は、加工光ELの強度を制御するために、照射光学系211が備える不図示の強度分布制御素子を制御してもよい。 The control device 7 may control the light source 4 in order to control the intensity of the processing light EL. The control device 7 may control an intensity distribution control element (not shown) included in the irradiation optical system 211 in order to control the intensity of the processed light EL.
 尚、第3変形例で説明した造形材料Mの任意の供給状態に基づいて加工システムSYSが制御される場合においても、第1変形例で説明したように、制御装置7は、複数の元画像に基づいて造形材料Mの供給状態を複数回算出し、複数の供給状態を用いた演算を行うことで算出される演算値を算出し、複数の供給状態の演算値に基づいて加工システムSYSを制御してもよい。 Even when the processing system SYS is controlled based on an arbitrary supply state of the modeling material M described in the third modification, the control device 7 still has a plurality of original images as described in the first modification. The supply state of the modeling material M is calculated a plurality of times based on the above, the calculated value calculated by performing the calculation using the plurality of supply states is calculated, and the processing system SYS is calculated based on the calculated values of the plurality of supply states. You may control it.
 (4-4)第4変形例
 上述した説明では、制御装置7は、造形材料Mの実供給量に基づいて、造形材料Mの実供給量に影響を与える搬送部材13の回転の状態をフィードバック制御している。この場合、制御装置7は、搬送部材13の回転の状態をフィードバック制御することに加えて、搬送部材13の回転の状態をフィードフォワード制御してもよい。以下、フィードフォワード制御について説明する。
(4-4) Fourth Modified Example In the above description, the control device 7 feeds back the state of rotation of the transport member 13 that affects the actual supply amount of the modeling material M based on the actual supply amount of the modeling material M. I'm in control. In this case, the control device 7 may feedforward control the rotational state of the transport member 13 in addition to feedback-controlling the rotational state of the transport member 13. The feedforward control will be described below.
 フィードフォワード制御を行うために、制御装置7は、フィードバック制御による搬送部材13の制御量(具体的には、回転速度)と造形材料Mとの実供給量との関係を学習する。具体的には、制御装置7は、搬送部材13の回転速度をフィードバック制御に基づいて定まる目標速度に設定した場合に、造形材料Mの実供給量がどのような値をとるか(つまり、どのように変化するか)を学習する。その結果、図22に示すように、制御装置7は、フィードバック制御による搬送部材13の制御量(具体的には、回転速度)と造形材料Mの実供給量との相関関係を算出することができる。 In order to perform feedforward control, the control device 7 learns the relationship between the control amount (specifically, the rotation speed) of the transport member 13 by feedback control and the actual supply amount of the modeling material M. Specifically, when the control device 7 sets the rotation speed of the transport member 13 to a target speed determined based on feedback control, what value does the actual supply amount of the modeling material M take (that is, which? How it changes). As a result, as shown in FIG. 22, the control device 7 can calculate the correlation between the control amount (specifically, the rotation speed) of the transport member 13 by feedback control and the actual supply amount of the modeling material M. it can.
 制御装置7は、このようにフィードバック制御の結果に基づいて算出された搬送部材13の制御量と造形材料Mの実供給量との相関関係に基づいて、搬送部材13の回転の状態をフィードフォワード制御する。具体的には、制御装置7は、算出した相関関係に基づいて、造形材料Mの目標供給量に対応する搬送部材13の目標制御量(つまり、目標速度)を算出する。つまり、制御装置7は、算出した相関関係に基づいて、造形材料Mの実供給量を目標供給量に一致させるために必要な搬送部材13の目標制御量(つまり、目標速度)を算出する。この際、制御装置7は、撮像装置8が撮像した元画像に基づいて、造形材料Mの実供給量を算出しなくてもよい。その後、制御装置7は、算出した目標制御量で搬送部材13が回転するように、搬送部材13の回転の状態を制御する。 The control device 7 feedforwards the rotational state of the transport member 13 based on the correlation between the control amount of the transport member 13 calculated based on the result of the feedback control and the actual supply amount of the modeling material M. Control. Specifically, the control device 7 calculates the target control amount (that is, the target speed) of the transport member 13 corresponding to the target supply amount of the modeling material M based on the calculated correlation. That is, the control device 7 calculates the target control amount (that is, the target speed) of the transport member 13 required to match the actual supply amount of the modeling material M with the target supply amount based on the calculated correlation. At this time, the control device 7 does not have to calculate the actual supply amount of the modeling material M based on the original image captured by the image pickup device 8. After that, the control device 7 controls the state of rotation of the transport member 13 so that the transport member 13 rotates with the calculated target control amount.
 但し、フィードバック制御が行われていた期間が相対的に短い場合には、フィードバック制御の結果に基づいて算出された搬送部材13の制御量と造形材料Mの実供給量との相関関係の精度が相対的に低い可能性がある。このため、制御装置7は、フィードフォワード制御によって搬送部材13の回転の状態を適切に制御することができない可能性がある。具体的には、制御装置7は、フィードフォワード制御によって搬送部材13の回転の状態を制御するだけでは、造形材料Mの実供給量を目標供給量に一致させることができない可能性がある。そこで、制御装置7は、フィードバック制御を開始してから一定期間が経過するまでは、フィードバック制御とフィードフォワード制御とを並行して(典型的には、交互に)行ってもよい。制御装置7は、フィードバック制御を開始してから一定期間が経過した後には、フィードバック制御を行うことなくフィードフォワード制御を行ってもよい。一定期間は、フィードバック制御を開始してから、フィードフォワード制御単独で搬送部材13の回転の状態を適切に制御することができる(つまり、造形材料Mの実供給量を目標供給量に一致させることができる)ようになるまでに要する期間又は当該期間よりも長い期間に設定されてもよい。 However, when the period during which the feedback control is performed is relatively short, the accuracy of the correlation between the control amount of the transport member 13 calculated based on the result of the feedback control and the actual supply amount of the modeling material M is high. May be relatively low. Therefore, the control device 7 may not be able to appropriately control the rotational state of the transport member 13 by feedforward control. Specifically, the control device 7 may not be able to match the actual supply amount of the modeling material M with the target supply amount only by controlling the rotational state of the transport member 13 by feedforward control. Therefore, the control device 7 may perform the feedback control and the feedforward control in parallel (typically, alternately) until a certain period of time elapses from the start of the feedback control. The control device 7 may perform feedforward control without performing feedback control after a certain period of time has elapsed from the start of feedback control. For a certain period of time, after the feedback control is started, the state of rotation of the transport member 13 can be appropriately controlled by the feedforward control alone (that is, the actual supply amount of the modeling material M is matched with the target supply amount. It may be set to a period required until it becomes possible or a period longer than the period.
 また、制御装置7は、搬送部材13の制御量と造形材料Mの実供給量との相関関係を学習する際に、搬送部材13の回転周期と同期して相関関係を学習してもよい。例えば、図23の1段目のグラフは、フィードバック制御が行われていない状況下で、搬送部材13の回転周期と同期して周期的に変動する造形材料Mの実供給量を示すグラフである。この場合、図23の2段目のグラフに示すように、制御装置7は、搬送部材13の回転周期と同期して搬送部材13の回転速度が周期的に変動するように搬送部材13の回転の状態をフィードバック制御する。その結果、図23の3段目のグラフに示すように、搬送部材13の回転周期と同期した造形材料Mの周期的な変動が相殺され、造形材料Mの実供給量が目標供給量に一致する。この場合、制御装置7は、搬送部材13の回転周期と同期して、フィードバック制御による搬送部材の制御量と造形材料Mの実供給量との相関関係を学習してもよい。典型的には、制御装置7は、搬送部材13が1回転する期間中(つまり、1周期分)の、フィードバック制御による搬送部材の制御量と造形材料Mの実供給量との相関関係を学習してもよい。この場合、制御装置7は、搬送部材13が1回転する間に、学習した相関関係が示す回転速度で搬送部材13が回転する(つまり、学習した相関関係が示す回転速度で搬送部材13の回転速度が変化する)ように、搬送部材13の回転の状態をフィードフォワード制御してもよい。つまり、制御装置7は、学習した相関関係が示す1周期分の回転速度で搬送部材13が回転する動作を搬送部材13が繰り返すように、搬送部材13の回転の状態をフィードフォワード制御してもよい。その結果、相対的に短い期間中に造形材料Mの実供給量が変動する場合においても、制御装置7は、造形材料Mの実供給量が目標供給量に一致するように、搬送部材13の回転の状態を適切に制御することができる。 Further, when the control device 7 learns the correlation between the control amount of the transport member 13 and the actual supply amount of the modeling material M, the control device 7 may learn the correlation in synchronization with the rotation cycle of the transport member 13. For example, the first-stage graph of FIG. 23 is a graph showing the actual supply amount of the modeling material M that periodically fluctuates in synchronization with the rotation cycle of the transport member 13 under the condition that the feedback control is not performed. .. In this case, as shown in the second graph of FIG. 23, the control device 7 rotates the transport member 13 so that the rotation speed of the transport member 13 periodically fluctuates in synchronization with the rotation cycle of the transport member 13. Feedback control of the state of. As a result, as shown in the graph in the third row of FIG. 23, the periodic fluctuation of the modeling material M synchronized with the rotation cycle of the transport member 13 is canceled out, and the actual supply amount of the modeling material M matches the target supply amount. To do. In this case, the control device 7 may learn the correlation between the control amount of the transport member by feedback control and the actual supply amount of the modeling material M in synchronization with the rotation cycle of the transport member 13. Typically, the control device 7 learns the correlation between the control amount of the transport member by feedback control and the actual supply amount of the modeling material M during the period of one rotation of the transport member 13 (that is, for one cycle). You may. In this case, the control device 7 rotates the transport member 13 at the rotation speed indicated by the learned correlation (that is, the rotation of the transport member 13 at the rotation speed indicated by the learned correlation) while the transport member 13 rotates once. The state of rotation of the transport member 13 may be feed-forward controlled so that the speed changes). That is, even if the control device 7 feedforward controls the rotation state of the transport member 13 so that the transport member 13 repeats the operation of rotating the transport member 13 at the rotation speed for one cycle indicated by the learned correlation. Good. As a result, even when the actual supply amount of the modeling material M fluctuates during a relatively short period of time, the control device 7 causes the transport member 13 so that the actual supply amount of the modeling material M matches the target supply amount. The state of rotation can be appropriately controlled.
 尚、相対的に短い期間中に造形材料Mの実供給量が変動する状況の一例について、図24(a)から図24(e)を参照しながら説明する。上述したように、造形材料Mは、保持部材12と搬送部材13との間に形成される隙間Gから材料送出部材15へと落下する(図9参照)。ここで、造形材料Mを搬送するために搬送部材13の軸部材131が回転するがゆえに、造形材料Mがこぼれ落ちる保持部材12と搬送部材13との間の隙間Gの位置は、軸部材131の回転に合わせて変化する。具体的には、隙間Gの位置は、軸部材131の中心軸周りに回転する軌跡に沿って隙間Gが移動するように変化する。このため、隙間Gが軸部材131の中心軸よりも上方に位置することもあれば、隙間Gが軸部材131の中心軸よりも下方に位置することもある。尚、図24(a)は、軸部材131の中心軸よりも下方に位置する隙間Gから造形材料Mが落下する様子を示す断面図である。図24(b)は、軸部材131の中心軸よりも下方に位置する隙間Gから造形材料Mが落下する様子を示す正面図である。図24(c)は、軸部材131の中心軸よりも上方に位置する隙間Gから造形材料Mが落下する様子を示す断面図である。図24(d)は、軸部材131の中心軸よりも上方に位置する隙間Gから造形材料Mが落下する様子を示す正面図である。 An example of a situation in which the actual supply amount of the modeling material M fluctuates during a relatively short period will be described with reference to FIGS. 24 (a) to 24 (e). As described above, the modeling material M falls from the gap G formed between the holding member 12 and the conveying member 13 into the material sending member 15 (see FIG. 9). Here, since the shaft member 131 of the transport member 13 rotates to transport the modeling material M, the position of the gap G between the holding member 12 and the transport member 13 where the modeling material M spills is the position of the shaft member 131. It changes according to the rotation of. Specifically, the position of the gap G changes so that the gap G moves along a locus that rotates around the central axis of the shaft member 131. Therefore, the gap G may be located above the central axis of the shaft member 131, or the gap G may be located below the central axis of the shaft member 131. Note that FIG. 24A is a cross-sectional view showing how the modeling material M falls from the gap G located below the central axis of the shaft member 131. FIG. 24B is a front view showing how the modeling material M falls from the gap G located below the central axis of the shaft member 131. FIG. 24C is a cross-sectional view showing how the modeling material M falls from the gap G located above the central axis of the shaft member 131. FIG. 24D is a front view showing how the modeling material M falls from the gap G located above the central axis of the shaft member 131.
 上述したように、隙間Gは、供給口124において溝132が形成する隙間である。このため、隙間Gが軸部材131の中心軸よりも下方に位置する状態は、供給口124において溝132が軸部材131の中心軸よりも下方に位置する状態と等価とみなせる。同様に、隙間Gが軸部材131の中心軸よりも上方に位置する状態は、供給口124において溝132が軸部材131の中心軸よりも上方に位置する状態と等価とみなせる。 As described above, the gap G is a gap formed by the groove 132 at the supply port 124. Therefore, the state in which the gap G is located below the central axis of the shaft member 131 can be regarded as equivalent to the state in which the groove 132 is located below the central axis of the shaft member 131 at the supply port 124. Similarly, the state in which the gap G is located above the central axis of the shaft member 131 can be regarded as equivalent to the state in which the groove 132 is located above the central axis of the shaft member 131 at the supply port 124.
 ここで、造形材料Mは、重力の作用により、保持部材12から材料送出部材15に落下する。このため、隙間Gが軸部材131の中心軸よりも下方に位置する場合には、隙間Gから造形材料Mが落下したことに起因して、本来は溝132に残留して徐々に隙間Gから落下すべき造形材料Mが自重で崩れる可能性がある。その結果、隙間Gが軸部材131の中心軸よりも下方に位置する場合には、隙間Gが軸部材131の中心軸よりも上方に位置する場合と比較して、単位時間当たりに隙間Gから落下する造形材料Mの分量が多くなる可能性がある。 Here, the modeling material M falls from the holding member 12 to the material sending member 15 due to the action of gravity. Therefore, when the gap G is located below the central axis of the shaft member 131, it originally remains in the groove 132 due to the fact that the modeling material M has fallen from the gap G, and gradually from the gap G. The modeling material M to be dropped may collapse due to its own weight. As a result, when the gap G is located below the central axis of the shaft member 131, the gap G is larger than the gap G per unit time as compared with the case where the gap G is located above the central axis of the shaft member 131. There is a possibility that the amount of the molding material M that falls will increase.
 隙間Gの位置が軸部材131の回転に合わせて変化するがゆえに、隙間Gが軸部材131の中心軸よりも下方に位置するタイミングは、軸部材131の回転に同期したタイミングとなる。その結果、隙間Gが軸部材131の中心軸よりも下方に位置することに起因して単位時間当たりに隙間Gから落下する造形材料Mの分量が相対的に多くなるタイミングもまた、軸部材131の回転に同期したタイミングとなる。図24(e)は、搬送部材13の回転速度が一定である状況下で単位時間当たりに隙間Gから落下する造形材料Mの分量(つまり、造形材料Mの実供給量)を示すグラフである。図24(e)に示すように、造形材料Mの実供給量は、軸部材131の回転に同期して周期的に変動する。つまり、造形材料Mの落下量は、軸部材131の回転に同期した相対的に短い期間中に変動する。 Since the position of the gap G changes according to the rotation of the shaft member 131, the timing at which the gap G is located below the central axis of the shaft member 131 is the timing synchronized with the rotation of the shaft member 131. As a result, the timing at which the amount of the modeling material M that falls from the gap G per unit time becomes relatively large due to the gap G being located below the central axis of the shaft member 131 is also the timing of the shaft member 131. The timing is synchronized with the rotation of. FIG. 24E is a graph showing the amount of the modeling material M that falls from the gap G per unit time under the condition that the rotation speed of the conveying member 13 is constant (that is, the actual supply amount of the modeling material M). .. As shown in FIG. 24 (e), the actual supply amount of the modeling material M fluctuates periodically in synchronization with the rotation of the shaft member 131. That is, the amount of drop of the modeling material M fluctuates during a relatively short period synchronized with the rotation of the shaft member 131.
 第4変形例では、このような相対的に短い期間中に造形材料Mの実供給量が変動する場合においても、制御装置7は、造形材料Mの実供給量が目標供給量に一致するように、搬送部材13の回転の状態を適切に制御することができる。 In the fourth modification, even when the actual supply amount of the modeling material M fluctuates during such a relatively short period, the control device 7 ensures that the actual supply amount of the modeling material M matches the target supply amount. In addition, the state of rotation of the transport member 13 can be appropriately controlled.
 尚、説明の重複を避けるために詳細な説明は省略するものの、造形材料Mの実供給方向に基づいて造形材料Mの実供給方向(実移動方向)に影響を与える材料ノズル212の位置(姿勢)をフィードバック制御する場合においても、制御装置7は、材料ノズル212の位置(姿勢)をフィードフォワード制御してもよい。造形材料Mの任意の供給状態に基づいて加工システムSYSをフィードバック制御する場合においても、制御装置7は、加工システムSYSをフィードフォワード制御してもよい。つまり、造形材料Mの任意の供給状態に基づいて加工システムSYSをフィードバック制御する場合においても、制御装置7は、加工システムSYSが備える各装置(つまり、材料供給装置1、加工装置2、光源4及びガス供給装置5の少なくとも一つ)をフィードフォワード制御してもよい。 Although detailed description is omitted to avoid duplication of description, the position (posture) of the material nozzle 212 that affects the actual supply direction (actual movement direction) of the modeling material M based on the actual supply direction of the modeling material M. ) Is also fed back controlled, the control device 7 may feedforward control the position (posture) of the material nozzle 212. Even when the machining system SYS is feedback-controlled based on an arbitrary supply state of the modeling material M, the control device 7 may feedforward control the machining system SYS. That is, even when the processing system SYS is feedback-controlled based on an arbitrary supply state of the modeling material M, the control device 7 is provided with each device (that is, the material supply device 1, the processing device 2, and the light source 4) included in the processing system SYS. And at least one of the gas supply devices 5) may be feedforward controlled.
 (4-5)第5変形例
 上述した説明では、加工ヘッド21は、1本の材料ノズル212を備えている。しかしながら、加工ヘッド21は、複数の材料ノズル212を備えていてもよい。この場合、複数の材料ノズル212とワークWとの間には、造形材料Mの供給経路が複数形成されるが、当該複数の供給経路が1つの撮像装置8によって撮像されてもよい。
(4-5) Fifth Deformation Example In the above description, the processing head 21 includes one material nozzle 212. However, the processing head 21 may include a plurality of material nozzles 212. In this case, a plurality of supply paths of the modeling material M are formed between the plurality of material nozzles 212 and the work W, and the plurality of supply paths may be imaged by one imaging device 8.
 図25は、複数の材料ノズル212a及び212bを備えた加工ヘッド21の構成を示している。図25において、加工ヘッド21には、照射光学系211が設けられており、照射光学系211の射出部213の周囲に、複数の材料ノズル212a及び212bと、撮像装置8とが配置されている。撮像装置8は、複数の材料ノズル212a及び212bのそれぞれから供給される(射出される)造形材料Mを撮像する。ここで、撮像装置8の撮像範囲IMAは、複数の材料ノズル212とワークWとの間における造形材料Mの複数の供給経路を包含している。尚、図25の例では、加工ヘッド21が2本の材料ノズル212a及び212bを備えているが、材料ノズル212の数は2本には限定されず、加工ヘッド21は、3本以上の材料ノズル212を備えていてもよい。 FIG. 25 shows the configuration of the processing head 21 provided with a plurality of material nozzles 212a and 212b. In FIG. 25, the processing head 21 is provided with an irradiation optical system 211, and a plurality of material nozzles 212a and 212b and an imaging device 8 are arranged around the injection portion 213 of the irradiation optical system 211. .. The image pickup apparatus 8 images the modeling material M supplied (injected) from each of the plurality of material nozzles 212a and 212b. Here, the imaging range IMA of the imaging device 8 includes a plurality of supply paths of the modeling material M between the plurality of material nozzles 212 and the work W. In the example of FIG. 25, the processing head 21 includes two material nozzles 212a and 212b, but the number of material nozzles 212 is not limited to two, and the processing head 21 is made of three or more materials. The nozzle 212 may be provided.
 図25の例では、溶融池MPからの光により造形材料Mが照明されるため、加工システムSYSは、照明装置9を備えてなくてもよい。例えば、照明装置9は、加工ヘッド21に設けられていなくてもよい。但し、図25に示す例においても、加工システムSYSが照明装置9を備えていてもよい。例えば、加工ヘッド21に照明装置9が設けられていてもよい。尚、図25に示す例では、照射光学系211の光軸AX211と撮像装置8の光軸AX8とがワークW上で交差しているが、照射光学系211の光軸AX211と撮像装置8の光軸AX8とがワークW上で交差していなくてもよい。また、図25に示す例では、撮像装置8が溶融池MPも撮像しているが、撮像装置8は溶融池MPを撮像しなくてもよい。図25に示す例では、撮像装置8は、ワークWを俯瞰するように設けられているが、撮像装置8の光軸AX8がワークWの表面とほぼ平行となるように設けられていてもよい。 In the example of FIG. 25, since the modeling material M is illuminated by the light from the molten pool MP, the processing system SYS does not have to be provided with the lighting device 9. For example, the lighting device 9 may not be provided on the processing head 21. However, also in the example shown in FIG. 25, the processing system SYS may include the lighting device 9. For example, the processing head 21 may be provided with the lighting device 9. In the example shown in FIG. 25, the optical axis AX211 of the irradiation optical system 211 and the optical axis AX8 of the imaging device 8 intersect on the work W, but the optical axis AX211 of the irradiation optical system 211 and the imaging device 8 The optical axis AX8 does not have to intersect on the work W. Further, in the example shown in FIG. 25, the imaging device 8 also images the molten pool MP, but the imaging device 8 does not have to image the molten pool MP. In the example shown in FIG. 25, the image pickup device 8 is provided so as to overlook the work W, but the optical axis AX8 of the image pickup device 8 may be provided so as to be substantially parallel to the surface of the work W. ..
 尚、複数の材料ノズル212a及び212bとワークWとの間の造形材料Mの複数の供給経路が複数の撮像装置8でそれぞれ撮像されてもよい。 Note that the plurality of supply paths of the modeling material M between the plurality of material nozzles 212a and 212b and the work W may be imaged by the plurality of imaging devices 8, respectively.
 (4-6)その他の変形例
 上述した説明では、材料供給装置1は、回転する搬送部材13を用いて造形材料Mを材料ノズル212に供給している。しかしながら、材料供給装置1は、材料ノズル212に造形材料Mを供給することができる限りは、どのような構造を有していてもよい。例えば、国際公開第2019/065713号パンフレットに記載されているように、材料供給装置1は、保持部材12を振動させることで、保持部材12から材料送出部材15に造形材料Mを供給してもよい。この場合、制御装置7は、造形材料Mの供給状態が所望状態と一致するように、保持部材12の振動の状態(例えば、振動の振幅及び周波数の少なくとも一方)を制御してもよい。
(4-6) Other Modification Examples In the above description, the material supply device 1 supplies the modeling material M to the material nozzle 212 by using the rotating transport member 13. However, the material supply device 1 may have any structure as long as the modeling material M can be supplied to the material nozzle 212. For example, as described in the International Publication No. 2019/06571 pamphlet, the material supply device 1 may supply the modeling material M from the holding member 12 to the material delivery member 15 by vibrating the holding member 12. Good. In this case, the control device 7 may control the vibration state (for example, at least one of the amplitude and frequency of the vibration) of the holding member 12 so that the supply state of the modeling material M matches the desired state.
 上述した説明では、加工装置2は、造形材料Mに加工光ELを照射することで、造形材料Mを溶融させている。しかしながら、加工装置2は、任意のエネルギビームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。この場合、加工装置2は、照射光学系211に加えて又は代えて、任意のエネルギビームを照射可能なビーム照射装置を備えていてもよい。任意のエネルギビームは、限定されないが、電子ビーム、イオンビーム等の荷電粒子ビーム又は電磁波を含む。 In the above description, the processing apparatus 2 melts the modeling material M by irradiating the modeling material M with the processing light EL. However, the processing apparatus 2 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam. In this case, the processing device 2 may include a beam irradiation device capable of irradiating an arbitrary energy beam in addition to or in place of the irradiation optical system 211. Any energy beam includes, but is not limited to, a charged particle beam such as an electron beam, an ion beam, or an electromagnetic wave.
 上述した説明では、加工システムSYSは、レーザ肉盛溶接法により3次元構造物STを形成可能である。しかしながら、加工システムSYSは、造形材料Mに加工光EL(或いは、任意のエネルギビーム)を照射することで3次元構造物STを形成可能なその他の方式により造形材料Mから3次元構造物STを形成してもよい。その他の方式として、例えば、粉末焼結積層造形法(SLS:Selective Laser Sintering)等の粉末床溶融結合法(Powder Bed Fusion)、結合材噴射法(Binder Jetting)又は、レーザメタルフュージョン法(LMF:Laser Metal Fusion)があげられる。或いは、加工システムSYSは、造形材料Mに加工光EL(或いは、任意のエネルギビーム)を照射することで3次元構造物STを形成可能な方式とは異なる、付加加工のための任意の方式により3次元構造物STを形成してもよい。 In the above description, the processing system SYS can form the three-dimensional structure ST by the laser overlay welding method. However, the processing system SYS can form the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam). It may be formed. Other methods include, for example, a powder bed melting bonding method (Power Bed Fusion) such as a powder sintering laminated molding method (SLS: Selective Laser Sintering), a binder jetting method (Binder Jetting), or a laser metal fusion method (LMF:). Laser Metal Fusion). Alternatively, the processing system SYS may use an arbitrary method for additional processing, which is different from the method capable of forming the three-dimensional structure ST by irradiating the modeling material M with the processing light EL (or an arbitrary energy beam). The three-dimensional structure ST may be formed.
 粉末床溶融結合法を用いた加工システムの一例が、米国特許出願公開第2018/0370127号明細書に記載されている。この場合、撮像装置8は、米国特許出願公開第2018/0370127号明細書の図3に示す貯蔵容器の粉末吐出口(参照符号は、12a)又は計量装置(参照符号は12b)の下方の供給経路を通過する造形材料を撮像してもよい。更に、制御装置7は、撮像装置8が撮像した元画像に基づいて、造形材料の実供給量を制御してもよい。 An example of a processing system using the powder bed melt bonding method is described in US Patent Application Publication No. 2018/0370127. In this case, the image pickup device 8 is supplied below the powder discharge port (reference code: 12a) or the measuring device (reference code: 12b) of the storage container shown in FIG. 3 of US Patent Application Publication No. 2018/03701127. The modeling material passing through the path may be imaged. Further, the control device 7 may control the actual supply amount of the modeling material based on the original image captured by the image pickup device 8.
 上述した説明では、加工システムSYSは、照射光学系211が加工光ELを照射する照射領域EAに向けて材料ノズル212から造形材料Mを供給することで、3次元構造物STを形成している。しかしながら、加工システムSYSは、照射光学系211から加工光ELを照射することなく、材料ノズル212から造形材料Mを供給することで3次元構造物STを形成してもよい。例えば、加工システムSYSは、材料ノズル212から、造形面MSに対して造形材料Mを吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。例えば、加工システムSYSは、材料ノズル212から造形面MSに対して造形材料Mを含む気体を超高速で吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。例えば、加工システムSYSは、材料ノズル212から造形面MSに対して加熱した造形材料Mを吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。このように照射光学系211から加工光ELを照射することなく3次元構造物STを形成する場合には、加工システムSYS(特に、加工ヘッド21)は、照射光学系211を備えていなくてもよい。 In the above description, the processing system SYS forms the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 toward the irradiation region EA where the irradiation optical system 211 irradiates the processing light EL. .. However, the processing system SYS may form the three-dimensional structure ST by supplying the modeling material M from the material nozzle 212 without irradiating the processing light EL from the irradiation optical system 211. For example, the processing system SYS melts the modeling material M on the modeling surface MS by spraying the modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the melted modeling material M. The three-dimensional structure ST may be formed. For example, the processing system SYS melts the modeling material M on the modeling surface MS and solidifies the molten modeling material M by blowing a gas containing the modeling material M onto the modeling surface MS from the material nozzle 212 at an ultra-high speed. By making it, the three-dimensional structure ST may be formed. For example, the processing system SYS melts the modeling material M on the modeling surface MS by spraying the heated modeling material M onto the modeling surface MS from the material nozzle 212, and solidifies the melted modeling material M. The three-dimensional structure ST may be formed. When the three-dimensional structure ST is formed without irradiating the processing light EL from the irradiation optical system 211 in this way, the processing system SYS (particularly, the processing head 21) does not have to include the irradiation optical system 211. Good.
 加工システムSYSは、付加加工に加えて又は代えて、ワークW等の物体に加工光EL(或いは、任意のエネルギビーム)を照射して物体の少なくとも一部を除去可能な除去加工を行ってもよい。或いは、加工システムSYSは、付加加工及び除去加工の少なくとも一方に加えて又は代えて、ワークW等の物体に加工光EL(或いは、任意のエネルギビーム)を照射して物体の少なくとも一部にマーク(例えば、文字、数字又は図形)を形成可能なマーキング加工を行ってもよい。この場合であっても、上述した効果が享受可能である。 In addition to or instead of the additional processing, the processing system SYS may perform a removal processing capable of removing at least a part of the object by irradiating an object such as a work W with a processing light EL (or an arbitrary energy beam). Good. Alternatively, the processing system SYS irradiates an object such as a work W with processing light EL (or an arbitrary energy beam) in addition to or in place of at least one of addition processing and removal processing to mark at least a part of the object. Marking processing capable of forming (for example, letters, numbers or figures) may be performed. Even in this case, the above-mentioned effects can be enjoyed.
 上述した説明では、造形材料Mから3次元構造物STを形成可能な加工システムSYSが材料供給装置1を備えている。しかしながら、任意の粉体を用いた加工処理を行うことが可能な加工システムが、造形材料Mに代えて当該任意の粉体を供給する材料供給装置1を備えていてもよい。このような加工システムの一例として、粒状又は粉状の原料から医薬品を製造する薬品製造システムがあげられる。この場合、材料供給装置1は、粒状又は粉状の原料を供給する。或いは、このような加工システムの一例として、粒状又は粉状の原料から食品を製造する食品製造システムがあげられる。この場合、材料供給装置1は、粒状又は粉状の原料を供給する。或いは、このような加工システムの一例として、ペットボトル又はガラス容器を細かく砕くことで得られる再生ペレットからペットボトル又はガラス容器(或いは、その他の各種製品)を製造するリサイクル製造システムがあげられる。この場合、材料供給装置1は、再生ペレットを供給する。或いは、このような加工システムの一例として、微小な部品から電子製品を製造する電子製品製造システムがあげられる。この場合、材料供給装置1は、微小な部品を供給する。 In the above description, the processing system SYS capable of forming the three-dimensional structure ST from the modeling material M is provided with the material supply device 1. However, a processing system capable of performing a processing process using an arbitrary powder may include a material supply device 1 that supplies the arbitrary powder instead of the modeling material M. An example of such a processing system is a chemical manufacturing system that manufactures a pharmaceutical product from a granular or powdery raw material. In this case, the material supply device 1 supplies granular or powdery raw materials. Alternatively, an example of such a processing system is a food manufacturing system that manufactures food from granular or powdery raw materials. In this case, the material supply device 1 supplies granular or powdery raw materials. Alternatively, as an example of such a processing system, there is a recycling manufacturing system for manufacturing a PET bottle or a glass container (or various other products) from recycled pellets obtained by finely crushing a PET bottle or a glass container. In this case, the material supply device 1 supplies the regenerated pellets. Alternatively, as an example of such a processing system, there is an electronic product manufacturing system that manufactures an electronic product from minute parts. In this case, the material supply device 1 supplies minute parts.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments can be appropriately combined with at least another part of the constituent requirements of each of the above-described embodiments. Some of the constituent requirements of each of the above embodiments may not be used. In addition, to the extent permitted by law, the disclosures of all published gazettes and US patents cited in each of the above embodiments shall be incorporated as part of the text.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う加工システム、制御装置、制御方法及びコンピュータプログラムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification. Control devices, control methods and computer programs are also included in the technical scope of the present invention.
 SYS 加工システム
 1 材料供給装置
 2 加工装置
 21 加工ヘッド
 211 照射光学系
 212 材料ノズル
 22 ヘッド駆動系
 31 ステージ
 7 制御装置
 8 撮像装置
 9 照明装置
 W ワーク
 M 造形材料
 SL 構造層
 MS 造形面
 EA 照射領域
 MA 供給領域
 MP 溶融池
 EL 加工光
SYSTEM processing system 1 Material supply device 2 Processing device 21 Processing head 211 Irradiation optical system 212 Material nozzle 22 Head drive system 31 Stage 7 Control device 8 Imaging device 9 Lighting device W work M Modeling material SL Structural layer MS Modeling surface EA Irradiation area MA Supply area MP melting pond EL processing light

Claims (53)

  1.  粉体を用いて加工処理を行う加工システムであって、
     前記粉体を供給する粉体供給装置と、
     前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、
     前記撮像装置が撮像した前記粉体の画像に基づいて、前記粉体供給装置を制御する制御装置と
     を備える加工システム。
    It is a processing system that performs processing using powder.
    A powder supply device that supplies the powder and
    An imaging device that images the powder passing through the powder supply path, and
    A processing system including a control device that controls the powder supply device based on an image of the powder captured by the image pickup device.
  2.  前記制御装置は、前記粉体の画像に基づいて、前記供給経路を通過する前記粉体の供給状態を求める
     請求項1に記載の加工システム。
    The processing system according to claim 1, wherein the control device obtains a supply state of the powder passing through the supply path based on an image of the powder.
  3.  前記制御装置は、前記供給状態として、前記供給経路を通過する前記粉体の単位時間あたりの供給量を求める
     請求項2に記載の加工システム。
    The processing system according to claim 2, wherein the control device determines the supply amount of the powder passing through the supply path per unit time as the supply state.
  4.  前記制御装置は、前記求められた供給量に基づいて、前記供給経路を通過する前記粉体の単位時間あたりの供給量が目標量となるように、前記粉体供給装置を制御する
     請求項3に記載の加工システム。
    3. The control device controls the powder supply device based on the obtained supply amount so that the supply amount of the powder passing through the supply path per unit time becomes a target amount. The processing system described in.
  5.  前記粉体供給装置は、前記加工処理の対象となる物体に対向する粉体供給口から前記物体に向けて前記粉体を供給する粉体供給部材を含み、
     前記撮像装置は、前記粉体供給口から前記物体へ向かう前記粉体を撮像し、
     前記制御装置は、前記供給状態として、前記供給口からの前記粉体の供給方向を求める
     請求項2から4のいずれか一項に記載の加工システム。
    The powder supply device includes a powder supply member that supplies the powder toward the object from a powder supply port facing the object to be processed.
    The imaging device images the powder from the powder supply port toward the object.
    The processing system according to any one of claims 2 to 4, wherein the control device determines the supply direction of the powder from the supply port as the supply state.
  6.  前記制御装置は、前記求められた供給方向に基づいて、前記供給口からの前記粉体の供給方向が目標方向となるように、前記粉体供給装置を制御する
     請求項5に記載の加工システム。
    The processing system according to claim 5, wherein the control device controls the powder supply device so that the supply direction of the powder from the supply port becomes a target direction based on the obtained supply direction. ..
  7.  前記制御装置は、前記供給状態として、前記供給経路を通過する前記粉体の粒度を求める
     請求項2から6のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 2 to 6, wherein the control device determines the particle size of the powder passing through the supply path as the supply state.
  8.  前記粉体にエネルギビームを照射する照射装置を更に備え、
     前記制御装置は、前記求められた粒度に基づいて、前記照射装置から照射される前記エネルギビームの強度を制御する
     請求項7に記載の加工システム。
    An irradiation device for irradiating the powder with an energy beam is further provided.
    The processing system according to claim 7, wherein the control device controls the intensity of the energy beam emitted from the irradiation device based on the obtained particle size.
  9.  前記粉体にエネルギビームを照射する照射装置を更に備え、
     前記制御装置は、前記粉体の画像に基づいて、前記照射装置を制御する
     請求項1から8のいずれか一項に記載の加工システム。
    An irradiation device for irradiating the powder with an energy beam is further provided.
    The processing system according to any one of claims 1 to 8, wherein the control device controls the irradiation device based on an image of the powder.
  10.  エネルギビームと粉体とを用いた加工処理を行う加工システムであって、
     前記エネルギビームを照射する照射装置と、
     前記粉体を供給する粉体供給装置と、
     前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、
     前記撮像装置が撮像した画像に基づいて、前記照射装置を制御する制御装置と
     を備える加工システム。
    A processing system that performs processing using an energy beam and powder.
    An irradiation device that irradiates the energy beam and
    A powder supply device that supplies the powder and
    An imaging device that images the powder passing through the powder supply path, and
    A processing system including a control device that controls the irradiation device based on an image captured by the image pickup device.
  11.  前記制御装置は、前記粉体の画像に基づいて、前記供給経路を通過する前記粉体の供給状態を求める
     請求項10に記載の加工システム。
    The processing system according to claim 10, wherein the control device obtains a supply state of the powder passing through the supply path based on an image of the powder.
  12.  前記制御装置は、前記供給状態として、前記供給経路を通過する前記粉体の粒度を求める
     請求項11に記載の加工システム。
    The processing system according to claim 11, wherein the control device determines the particle size of the powder passing through the supply path as the supply state.
  13.  前記制御装置は、前記求められた粒度に基づいて、前記照射装置から照射される前記エネルギビームの強度を制御する
     請求項12に記載の加工システム。
    The processing system according to claim 12, wherein the control device controls the intensity of the energy beam emitted from the irradiation device based on the obtained particle size.
  14.  前記制御装置は、前記画像に基づいて、前記供給経路を通過する前記粉体の単位時間当たりの供給量を制御する
     請求項1から13のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 13, wherein the control device controls the supply amount of the powder passing through the supply path per unit time based on the image.
  15.  前記撮像装置は、前記粉体が通過する前記供給経路を複数回撮像し、
     前記制御装置は、前記撮像装置が撮像した複数枚の画像に基づいて前記供給状態を複数求め、前記複数の供給状態に基づいて、前記粉体供給装置を制御する
     請求項1から14のいずれか一項に記載の加工システム。
    The imaging device images the supply path through which the powder passes a plurality of times.
    The control device obtains a plurality of the supply states based on a plurality of images captured by the image pickup device, and controls the powder supply device based on the plurality of supply states. The processing system described in item 1.
  16.  前記制御装置は、前記複数の供給状態の平均に基づいて、前記粉体供給装置を制御する
     請求項15に記載の加工システム。
    The processing system according to claim 15, wherein the control device controls the powder supply device based on the average of the plurality of supply states.
  17.  前記撮像装置は、前記粉体が通過する前記供給経路を複数回撮像し、
     前記制御装置は、前記撮像装置が撮像した複数枚の画像に基づいて前記供給状態を複数求め、前記複数の供給状態に基づいて、前記照射装置を制御する
     請求項8から13のいずれか一項に記載の加工システム。
    The imaging device images the supply path through which the powder passes a plurality of times.
    The control device obtains a plurality of the supply states based on a plurality of images captured by the image pickup device, and controls the irradiation device based on the plurality of supply states, any one of claims 8 to 13. The processing system described in.
  18.  前記制御装置は、前記複数の供給状態の平均に基づいて、前記照射装置を制御する
     請求項17に記載の加工システム。
    The processing system according to claim 17, wherein the control device controls the irradiation device based on the average of the plurality of supply states.
  19.  粉体を用いて物体の加工処理を行う加工システムであって、
     前記粉体を供給する粉体供給装置と、
     前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、
     前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置と、
     前記撮像装置が撮像した前記粉体の画像に基づいて、前記位置変更装置を制御する制御装置と
     を備える加工システム。
    A processing system that processes objects using powder.
    A powder supply device that supplies the powder and
    An imaging device that images the powder passing through the powder supply path, and
    A position changing device that changes the positional relationship between the powder supply position supplied to the object and the object, and
    A processing system including a control device that controls the position changing device based on an image of the powder imaged by the imaging device.
  20.  前記制御装置は、前記粉体の画像に基づいて、前記供給経路を通過する前記粉体の供給状態を求める
     請求項19に記載の加工システム。
    The processing system according to claim 19, wherein the control device obtains a supply state of the powder passing through the supply path based on an image of the powder.
  21.  前記制御装置は、前記供給状態として、前記供給経路を通過する前記粉体の単位時間あたりの供給量を求める
     請求項20に記載の加工システム。
    The processing system according to claim 20, wherein the control device determines the supply amount of the powder passing through the supply path per unit time as the supply state.
  22.  前記制御装置は、前記求められた供給状態に基づいて、前記供給位置と前記物体との相対的な速度を変更する
     請求項20又は21に記載の加工システム。
    The processing system according to claim 20 or 21, wherein the control device changes the relative speed between the supply position and the object based on the obtained supply state.
  23.  前記粉体供給装置は、前記加工処理の対象となる物体に対向する粉体供給口から前記物体に向けて前記粉体を供給する粉体供給部材を含み、
     前記撮像装置は、前記粉体供給口から前記物体へ向かう前記粉体を撮像し、
     前記制御装置は、前記供給状態として、前記供給口からの前記粉体の移動方向を求める
     請求項20から22のいずれか一項に記載の加工システム。
    The powder supply device includes a powder supply member that supplies the powder toward the object from a powder supply port facing the object to be processed.
    The imaging device images the powder from the powder supply port toward the object.
    The processing system according to any one of claims 20 to 22, wherein the control device determines the moving direction of the powder from the supply port as the supply state.
  24.  前記制御装置は、前記求められた移動方向に基づいて、前記供給口からの前記粉体の移動方向と前記物体の姿勢との関係を変更するように、前記位置変更装置を制御する
     請求項23に記載の加工システム。
    23. The control device controls the position changing device so as to change the relationship between the moving direction of the powder from the supply port and the posture of the object based on the obtained moving direction. The processing system described in.
  25.  前記粉体供給装置は、供給口から前記粉体を供給し、
     前記供給経路は、前記供給口から前記加工処理の対象となる物体までの前記粉体の経路を含む
     請求項1から24のいずれか一項に記載の加工システム。
    The powder supply device supplies the powder from a supply port and supplies the powder.
    The processing system according to any one of claims 1 to 24, wherein the supply path includes a path of the powder from the supply port to an object to be processed.
  26.  前記供給口を第1供給口とするとき、
     前記粉体供給装置は、前記加工処理の対象となる物体に対向する第2供給口から前記物体に向けて前記粉体を供給する粉体供給部材と、前記粉体供給部材に対して前記第1供給口からの前記粉体を供給する粉体供給源とを含む
     請求項25に記載の加工システム。
    When the supply port is used as the first supply port,
    The powder supply device includes a powder supply member that supplies the powder toward the object from a second supply port facing the object to be processed, and the first powder supply member. 1. The processing system according to claim 25, which includes a powder supply source for supplying the powder from a supply port.
  27.  前記粉体供給装置は、前記加工処理の対象となる物体に対向する粉体供給口から前記物体に向けて前記粉体を供給する粉体供給部材に対して、前記粉体を供給する粉体供給源を含み、
     前記撮像装置は、前記粉体供給源と前記粉体供給部材との間を通過する前記粉体を撮像する
     請求項1から26のいずれか一項に記載の加工システム。
    The powder supply device supplies the powder to a powder supply member that supplies the powder toward the object from a powder supply port facing the object to be processed. Including sources
    The processing system according to any one of claims 1 to 26, wherein the image pickup apparatus images the powder passing between the powder supply source and the powder supply member.
  28.  前記粉体供給源から供給される前記粉体は筐体中を通過し、
     前記撮像装置は、前記筐体に形成された観察窓を介して、前記粉体を撮像する
     請求項27に記載の加工システム。
    The powder supplied from the powder source passes through the housing and passes through the housing.
    The processing system according to claim 27, wherein the imaging device images the powder through an observation window formed in the housing.
  29.  前記粉体供給装置は、前記加工処理の対象となる物体に対向する粉体供給口から前記物体に向けて前記粉体を供給する粉体供給部材を含み、
     前記撮像装置は、前記粉体供給部材から前記物体へ向かう前記粉体を撮像する
     請求項1から28のいずれか一項に記載の加工システム。
    The powder supply device includes a powder supply member that supplies the powder toward the object from a powder supply port facing the object to be processed.
    The processing system according to any one of claims 1 to 28, wherein the image pickup apparatus images the powder from the powder supply member toward the object.
  30.  前記撮像装置は、前記粉体供給口から供給される前記粉体と、前記物体に到達する前記粉体の供給位置とを撮像する
     請求項29に記載の加工システム。
    The processing system according to claim 29, wherein the imaging device images the powder supplied from the powder supply port and the supply position of the powder reaching the object.
  31.  前記加工システムは、前記粉体にエネルギビームを照射して前記物体上に溶融池を形成することで前記物体を加工し、
     前記撮像装置は、前記粉体供給口から供給される前記粉体と、前記溶融池とを撮像する
     請求項29又は30に記載の加工システム。
    The processing system processes the object by irradiating the powder with an energy beam to form a molten pool on the object.
    The processing system according to claim 29 or 30, wherein the image pickup apparatus images the powder supplied from the powder supply port and the molten pool.
  32.  前記撮像装置は、前記粉体供給口から供給される前記粉体と、前記粉体供給部材の少なくとも一部とを撮像する
     請求項29から31のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 29 to 31, wherein the image pickup apparatus images the powder supplied from the powder supply port and at least a part of the powder supply member.
  33.  前記撮像装置は、前記粉体供給口から供給される前記粉体と、前記粉体供給口とを撮像する
     請求項29から32のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 29 to 32, wherein the imaging device images the powder supplied from the powder supply port and the powder supply port.
  34.  前記供給経路を通過する前記粉体を照明光で照明する照明装置を更に備える
     請求項1から33のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 33, further comprising an illumination device that illuminates the powder passing through the supply path with illumination light.
  35.  前記照明装置は、前記撮像装置に向けて前記照明光を照射する
     請求項34に記載の加工システム。
    The processing system according to claim 34, wherein the illumination device irradiates the illumination light toward the image pickup apparatus.
  36.  前記制御手段は、(i)前記粉体の画像に基づいて前記粉体供給装置を制御するための第1供給制御と、(ii)前記第1供給制御による前記粉体供給装置の制御量と前記供給状態との関係を算出し、当該算出した関係に基づいて、前記供給状態を所望供給状態に維持するための目標供給制御量を算出し、前記算出した目標供給制御量に基づいて前記粉体供給装置を制御する第2供給制御とを行う
     請求項1から35のいずれか一項に記載の加工システム。
    The control means include (i) a first supply control for controlling the powder supply device based on the image of the powder, and (ii) a control amount of the powder supply device by the first supply control. The relationship with the supply state is calculated, the target supply control amount for maintaining the supply state in the desired supply state is calculated based on the calculated relationship, and the powder is calculated based on the calculated target supply control amount. The processing system according to any one of claims 1 to 35, which performs a second supply control for controlling a body supply device.
  37.  前記制御手段は、前記第2供給制御単独では前記供給状態を前記所望供給状態に維持することができない期間の少なくとも一部において、前記第1供給制御と前記第2供給制御とを並行して行う
     請求項36に記載の加工システム。
    The control means performs the first supply control and the second supply control in parallel at least a part of the period during which the supply state cannot be maintained in the desired supply state by the second supply control alone. The processing system according to claim 36.
  38.  前記制御手段は、前記第2供給制御単独で前記供給状態を前記所望供給状態に維持することができる期間の少なくとも一部において、前記第1供給制御を行うことなく、前記第2供給制御を行う
     請求項36又は37に記載の加工システム。
    The control means performs the second supply control without performing the first supply control for at least a part of the period during which the supply state can be maintained in the desired supply state by the second supply control alone. The processing system according to claim 36 or 37.
  39.  前記制御手段は、(i)前記粉体の画像に基づいて前記照射装置を制御するための第1照射制御と、(ii)前記第1照射制御による前記照射装置の制御量と前記エネルギビームの照射状態との関係を算出し、当該算出した関係に基づいて、前記照射状態を所望照射状態に維持するための目標照射制御量を算出し、前記算出した目標照射制御量に基づいて前記照射装置を制御する第2照射制御とを行う
     請求項8から13及び17から18のいずれか一項に記載の加工システム。
    The control means include (i) a first irradiation control for controlling the irradiation device based on the image of the powder, and (ii) a controlled amount of the irradiation device and the energy beam by the first irradiation control. The relationship with the irradiation state is calculated, the target irradiation control amount for maintaining the irradiation state in the desired irradiation state is calculated based on the calculated relationship, and the irradiation device is based on the calculated target irradiation control amount. The processing system according to any one of claims 8 to 13 and 17 to 18, which performs a second irradiation control for controlling the above.
  40.  前記制御手段は、前記第2照射制御単独では前記照射状態を前記所望照射状態に維持することができない期間の少なくとも一部において、前記第1照射制御と前記第2照射制御とを並行して行う
     請求項39に記載の加工システム。
    The control means performs the first irradiation control and the second irradiation control in parallel for at least a part of the period during which the irradiation state cannot be maintained in the desired irradiation state by the second irradiation control alone. The processing system according to claim 39.
  41.  前記制御手段は、前記第2制御単独で前記照射状態を前記所望照射状態に維持することができる期間の少なくとも一部において、前記第1照射制御を行うことなく、前記第2照射制御を行う
     請求項39又は40に記載の加工システム。
    A claim that the control means performs the second irradiation control without performing the first irradiation control for at least a part of a period during which the irradiation state can be maintained in the desired irradiation state by the second control alone. Item 39 or 40.
  42.  粉体を用いて加工処理を行う加工システムであって、
     前記粉体を供給する粉体供給装置と、
     前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、
     前記撮像装置が撮像した前記粉体の画像に基づいて前記粉体供給装置を制御するための制御信号を生成する制御装置から、前記制御信号を受信する受信装置と
     を備える加工システム。
    It is a processing system that performs processing using powder.
    A powder supply device that supplies the powder and
    An imaging device that images the powder passing through the powder supply path, and
    A processing system including a receiving device that receives a control signal from a control device that generates a control signal for controlling the powder supply device based on an image of the powder imaged by the imaging device.
  43.  エネルギビームと粉体とを用いた加工処理を行う加工システムであって、
     前記エネルギビームを照射する照射装置と、
     前記粉体を供給する粉体供給装置と、
     前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、
     前記撮像装置が撮像した前記粉体の画像に基づいて前記照射装置を制御するための制御信号を生成する制御装置から、前記制御信号を受信する受信装置と
     を備える加工システム。
    A processing system that performs processing using an energy beam and powder.
    An irradiation device that irradiates the energy beam and
    A powder supply device that supplies the powder and
    An imaging device that images the powder passing through the powder supply path, and
    A processing system including a receiving device that receives a control signal from a control device that generates a control signal for controlling the irradiation device based on an image of the powder imaged by the imaging device.
  44.  粉体を用いて物体の加工処理を行う加工システムであって、
     前記粉体を供給する粉体供給装置と、
     前記粉体の供給経路を通過する前記粉体を撮像する撮像装置と、
     前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置と、
     前記撮像装置が撮像した前記粉体の画像に基づいて前記位置変更装置を制御するための制御信号を生成する制御装置から、前記制御信号を受信する受信装置と
     を備える加工システム。
    A processing system that processes objects using powder.
    A powder supply device that supplies the powder and
    An imaging device that images the powder passing through the powder supply path, and
    A position changing device that changes the positional relationship between the powder supply position supplied to the object and the object, and
    A processing system including a receiving device that receives a control signal from a control device that generates a control signal for controlling the position changing device based on an image of the powder imaged by the imaging device.
  45.  粉体を用いて加工処理を行う加工システムを制御する制御装置であって、
     前記加工システムは、前記粉体を供給する粉体供給装置を備え、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像に基づいて、前記粉体供給装置を制御する制御装置。
    A control device that controls a processing system that performs processing using powder.
    The processing system includes a powder supply device that supplies the powder.
    A control device that controls the powder supply device based on an image of the powder obtained by imaging the powder passing through the powder supply path.
  46.  エネルギビームと粉体とを用いた加工処理を行う加工システムを制御する制御装置であって、
     前記加工システムは、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置とを備え、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像に基づいて前記照射装置を制御する制御装置。
    A control device that controls a processing system that performs processing using an energy beam and powder.
    The processing system includes an irradiation device that irradiates the energy beam and a powder supply device that supplies the powder.
    A control device that controls the irradiation device based on an image of the powder obtained by imaging the powder passing through the powder supply path.
  47.  粉体を用いて物体の加工処理を行う加工システムを制御する制御装置であって、
     前記加工システムは、前記粉体を供給する粉体供給装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置とを備え、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像に基づいて前記位置変更装置を制御する制御装置。
    A control device that controls a processing system that processes objects using powder.
    The processing system includes a powder supply device that supplies the powder, and a position change device that changes the positional relationship between the powder supply position supplied to the object and the object.
    A control device that controls the position changing device based on an image of the powder obtained by imaging the powder passing through the powder supply path.
  48.  粉体を用いて加工処理を行う加工システムを制御する制御方法であって、
     前記加工システムは、前記粉体を供給する粉体供給装置を備え、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、
     前記粉体の画像に基づいて、前記粉体供給装置を制御することと
     を含む制御方法。
    It is a control method that controls a processing system that performs processing using powder.
    The processing system includes a powder supply device that supplies the powder.
    To acquire an image of the powder obtained by imaging the powder passing through the powder supply path, and
    A control method including controlling the powder supply device based on the image of the powder.
  49.  エネルギビームと粉体とを用いた加工処理を行う加工システムを制御する制御方法であって、
     前記加工システムは、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置とを備え、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、
     前記粉体の画像に基づいて前記照射装置を制御することと
     を含む制御方法。
    It is a control method that controls a processing system that performs processing using an energy beam and powder.
    The processing system includes an irradiation device that irradiates the energy beam and a powder supply device that supplies the powder.
    To acquire an image of the powder obtained by imaging the powder passing through the powder supply path, and
    A control method including controlling the irradiation device based on an image of the powder.
  50.  粉体を用いて物体の加工処理を行う加工システムを制御する制御方法であって、
     前記加工システムは、前記粉体を供給する粉体供給装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置とを備え、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、
     前記粉体の画像に基づいて前記位置変更装置を制御することと
     を含む制御装置。
    It is a control method that controls a processing system that processes an object using powder.
    The processing system includes a powder supply device that supplies the powder, and a position change device that changes the positional relationship between the powder supply position supplied to the object and the object.
    To acquire an image of the powder obtained by imaging the powder passing through the powder supply path, and
    A control device including controlling the position changing device based on an image of the powder.
  51.  粉体を用いて加工処理を行う加工システムを制御するコンピュータによって実行されるコンピュータプログラムであって、
     前記加工システムは、前記粉体を供給する粉体供給装置を備え、
     前記コンピュータプログラムは、前記コンピュータに、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、
     前記粉体の画像に基づいて、前記粉体供給装置を制御することと
     を実行させるコンピュータプログラム。
    A computer program executed by a computer that controls a processing system that performs processing using powder.
    The processing system includes a powder supply device that supplies the powder.
    The computer program is attached to the computer.
    To acquire an image of the powder obtained by imaging the powder passing through the powder supply path, and
    A computer program that controls and executes the powder supply device based on the image of the powder.
  52.  エネルギビームと粉体とを用いて加工処理を行う加工システムを制御するコンピュータによって実行されるコンピュータプログラムであって、
     前記加工システムは、前記エネルギビームを照射する照射装置と、前記粉体を供給する粉体供給装置とを備え、
     前記コンピュータプログラムは、前記コンピュータに、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、
     前記粉体の画像に基づいて前記照射装置を制御することと
     を実行させるコンピュータプログラム。
    A computer program executed by a computer that controls a processing system that performs processing using an energy beam and powder.
    The processing system includes an irradiation device that irradiates the energy beam and a powder supply device that supplies the powder.
    The computer program is attached to the computer.
    To acquire an image of the powder obtained by imaging the powder passing through the powder supply path, and
    A computer program that controls and executes the irradiation device based on the image of the powder.
  53.  粉体を用いて物体の加工処理を行う加工システムを制御するコンピュータによって実行されるコンピュータプログラムであって、
     前記加工システムは、前記粉体を供給する粉体供給装置と、前記物体に供給される前記粉体の供給位置と前記物体との位置関係を変更する位置変更装置とを備え、
     前記コンピュータプログラムは、前記コンピュータに、
     前記粉体の供給経路を通過する前記粉体を撮像することで得られた前記粉体の画像を取得することと、
     前記粉体の画像に基づいて前記位置変更装置を制御することと
     を実行させるコンピュータプログラム。
    A computer program executed by a computer that controls a processing system that processes an object using powder.
    The processing system includes a powder supply device that supplies the powder, and a position change device that changes the positional relationship between the powder supply position supplied to the object and the object.
    The computer program is attached to the computer.
    To acquire an image of the powder obtained by imaging the powder passing through the powder supply path, and
    A computer program that controls and executes the position changing device based on an image of the powder.
PCT/JP2019/038922 2019-10-02 2019-10-02 Processing system, control device, control method, and computer program WO2021064895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038922 WO2021064895A1 (en) 2019-10-02 2019-10-02 Processing system, control device, control method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038922 WO2021064895A1 (en) 2019-10-02 2019-10-02 Processing system, control device, control method, and computer program

Publications (1)

Publication Number Publication Date
WO2021064895A1 true WO2021064895A1 (en) 2021-04-08

Family

ID=75336833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038922 WO2021064895A1 (en) 2019-10-02 2019-10-02 Processing system, control device, control method, and computer program

Country Status (1)

Country Link
WO (1) WO2021064895A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396333A (en) * 1992-05-21 1995-03-07 General Electric Company Device and method for observing and analyzing a stream of material
US20040133298A1 (en) * 2002-10-31 2004-07-08 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
US20100304010A1 (en) * 2009-06-02 2010-12-02 First Solar, Inc. Powder feed rate sensor
CN105543836A (en) * 2015-12-15 2016-05-04 西北工业大学 Additive manufacturing coaxial powder feeding nozzle gathering characteristic testing device
JP2016098388A (en) * 2014-11-19 2016-05-30 日本碍子株式会社 Method for imaging flow passage of thermal spray powder and method for adjusting position of injecting thermal spray powder into thermal spray frame
JP2016532781A (en) * 2013-08-22 2016-10-20 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Apparatus and method for constructing an object by selective solidification of powder material
JP2018523011A (en) * 2015-06-11 2018-08-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396333A (en) * 1992-05-21 1995-03-07 General Electric Company Device and method for observing and analyzing a stream of material
US20040133298A1 (en) * 2002-10-31 2004-07-08 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
US20100304010A1 (en) * 2009-06-02 2010-12-02 First Solar, Inc. Powder feed rate sensor
JP2016532781A (en) * 2013-08-22 2016-10-20 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Apparatus and method for constructing an object by selective solidification of powder material
JP2016098388A (en) * 2014-11-19 2016-05-30 日本碍子株式会社 Method for imaging flow passage of thermal spray powder and method for adjusting position of injecting thermal spray powder into thermal spray frame
JP2018523011A (en) * 2015-06-11 2018-08-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
CN105543836A (en) * 2015-12-15 2016-05-04 西北工业大学 Additive manufacturing coaxial powder feeding nozzle gathering characteristic testing device

Similar Documents

Publication Publication Date Title
US20190060998A1 (en) Powder bed re-coater apparatus and methods of use thereof
JP2015178191A (en) Nozzle and lamination molding device
JP2021503397A (en) Equipment for the manufacture of 3D objects
WO2019116943A1 (en) Processing device, processing method, marking method, shaping method, computer program, and recording medium
US11534968B2 (en) Nozzle and additive manufacturing apparatus
CN111479651B (en) Processing device and processing method, molding device and molding method, computer program, and recording medium
WO2021149683A1 (en) Processing system
WO2021064895A1 (en) Processing system, control device, control method, and computer program
JP2024019258A (en) processing system
TW202012149A (en) Shaping system
CN111655455A (en) Processing device, processing method, computer program, recording medium, and control device
WO2020188741A1 (en) Supsupply device, processing system, and processing method
WO2022018853A1 (en) Processing system
US20220250158A1 (en) Nozzle and additive manufacturing apparatus
WO2020194450A1 (en) Processing system
TW201922600A (en) Supply apparatus, processing system and processing method
JP2021042451A (en) Additional manufacturing apparatus and additional manufacturing method
WO2019117076A1 (en) Molding system, molding method, computer program, recording medium, and control device
WO2022157914A1 (en) Processing method
JP7468614B2 (en) Processing System
WO2024057496A1 (en) Processing system, data structure, and processing method
CN113939394B (en) Modeling unit
WO2022003870A1 (en) Processing system and optical device
US20240173773A1 (en) Build apparatus and build method
CN113853272A (en) Molding system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP