WO2021059336A1 - Step-up converter device - Google Patents

Step-up converter device Download PDF

Info

Publication number
WO2021059336A1
WO2021059336A1 PCT/JP2019/037328 JP2019037328W WO2021059336A1 WO 2021059336 A1 WO2021059336 A1 WO 2021059336A1 JP 2019037328 W JP2019037328 W JP 2019037328W WO 2021059336 A1 WO2021059336 A1 WO 2021059336A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
abnormality
boost converter
reactor
current detector
Prior art date
Application number
PCT/JP2019/037328
Other languages
French (fr)
Japanese (ja)
Inventor
敏和 大野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to PCT/JP2019/037328 priority Critical patent/WO2021059336A1/en
Priority to CN201980100712.1A priority patent/CN114503416A/en
Priority to JP2021548005A priority patent/JP7197023B2/en
Publication of WO2021059336A1 publication Critical patent/WO2021059336A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a boost converter device.
  • boost converter device the battery and the motor are connected in parallel to each other, have an upper arm, a lower arm, and a reactor, respectively, and boost the power on the battery side and supply it to the motor side.
  • first and second boost converters have been proposed (see, for example, Patent Document 1).
  • this boost converter device when the battery current is a positive value, the reactor current of the first boost converter is a positive value, and the reactor current of the second boost converter is a negative value, the boost converter is above the second boost converter.
  • the reactor current of the second boost converter is a positive value
  • the reactor current of the first boost converter is a negative value
  • the upper arm of the first boost converter is turned on. To judge.
  • the above-mentioned boost converter device can detect on-failure of the first and second boost converters, abnormality detection of the first and second current detectors that detect the current of the reactors of the first and second boost converters. The method is not described. If an abnormality occurs in the 1st and 2nd current detectors, the 1st and 2nd boost converters cannot be controlled properly, and the 1st and 2nd boost converters are accompanied by excessive current recirculation between the 1st and 2nd boost converters. The absolute value of the actual current of the boost converter reactor may become excessive.
  • a boost converter device equipped with a plurality of boost converters connected in parallel to a power storage device such as a battery and a load such as a motor, a plurality of current detectors for detecting the current of each reactor. It is required to devise a method capable of appropriately detecting each abnormality of.
  • the main purpose of the boost converter device of the present invention is to devise a method capable of appropriately detecting an abnormality in each current detector.
  • the boost converter device of the present invention has adopted the following means in order to achieve the above-mentioned main object.
  • the boost converter device of the present invention A plurality of boost converters that are connected in parallel to the power storage device and the load, have an upper arm, a lower arm, and a reactor, respectively, and can boost the power on the power storage device side and supply the power to the load side.
  • a plurality of current detectors that detect the current of each of the reactors, and
  • a control device that controls so that the difference between the target current of the corresponding reactor and the detection value of the corresponding current detector is canceled out. It is a boost converter device equipped with The control device determines the abnormality for each of the current detectors when the provisional determination of the abnormality continues for the determination time.
  • the fixed time is It is set so that the larger the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the shorter it is, or It is set so that the larger the absolute value of the target current of the reactor corresponding to the current detector for which an abnormality has not been tentatively determined, the shorter the value.
  • Corresponds to the current detector for which an abnormality is tentatively determined which is estimated based on the current of any of the power storage device and the load and the detection value of the current detector for which the abnormality is not tentatively determined.
  • the larger the absolute value of the estimated current of the reactor the shorter it is set.
  • the gist is that.
  • the control device determines the abnormality for each current detector when the provisional determination of the abnormality continues for the determination time.
  • the determination time is set so that the larger the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the shorter it is, or the reactor corresponding to the current detector that has not tentatively determined the abnormality.
  • the absolute value of the detected value of the current detector that has not tentatively determined the abnormality For the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the absolute value of the target current of the reactor corresponding to the current detector that has not tentatively determined the abnormality, and the current detector that has tentatively determined the abnormality. It is assumed that the larger the absolute value of the estimated current of the corresponding reactor, the more likely it is that the absolute value of the actual current of each reactor will become excessive with excessive current recirculation between the multiple boost converters. Therefore, by setting a fixed time for such a tendency, it is possible to prevent the absolute value of the current of each reactor from becoming excessive or continuing to be excessive, and appropriately detect (determine) an abnormality in each current detector. )can do.
  • the "upper arm” and the “lower arm” are configured by connecting a switching element and a diode in parallel with each other.
  • each of the current detectors has first and second current sensors for detecting the current of the corresponding reactor, and the control device has the same for each of the current detectors.
  • the abnormality may be tentatively determined.
  • each of the current detectors may use the detection value of the first current sensor as the detection value of the current detector.
  • the boost converter corresponding to the current detector cannot be appropriately controlled, and an excessive current recirculation between a plurality of boost converters cannot be performed.
  • the fixed time may be set to a relatively short time, considering that the absolute value of the actual current of each reactor may become excessive.
  • the boost converter corresponding to the current detector can be appropriately controlled, so that the determination time is relatively long.
  • the control device should supply from the power storage device side to the load side via the plurality of boost converters so that the difference between the target supply voltage and the supply voltage of the load is canceled.
  • the target supply current may be set, and the target current of each of the reactors may be set based on the target supply current.
  • the control device determines an abnormality in one of the plurality of current detectors, all of the plurality of boost converters are driven or stopped, or the current detection in which the abnormality is confirmed is detected. Only the boost converter corresponding to the device may be driven and stopped.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of an electric vehicle 20 equipped with a boost converter device as an embodiment of the present invention.
  • the electric vehicle 20 of the embodiment includes a motor 22, an inverter 24, a battery 26 as a power storage device, first and second boost converters 40 and 42, and an electronic control unit (hereinafter, "" It is equipped with 50 (referred to as "ECU").
  • ECU electronice control unit
  • the motor 22 is configured as, for example, a synchronous generator motor, and although not shown, the rotor of the motor 22 is connected to a drive shaft connected to the drive wheels via a differential gear.
  • the inverter 24 is connected to the motor 22 and also to the high voltage side power line 32.
  • the motor 22 is rotationally driven by switching control of a plurality of switching elements (not shown) of the inverter 24 by the ECU 50.
  • a smoothing capacitor 33 is attached to the positive electrode side line and the negative electrode side line of the high voltage side power line 32.
  • the battery 26 is configured as, for example, a lithium ion secondary battery or a nickel hydrogen secondary battery, and is connected to the low voltage side power line 34.
  • a smoothing capacitor 35 is attached to the positive electrode side line and the negative electrode side line of the low voltage side power line 34.
  • the first boost converter 40 is connected to the high voltage side power line 32 and the low voltage side power line 34, and has two transistors T11 and T12, two diodes D11 and D12, and a reactor L1. It is configured as a buck-boost converter.
  • the transistor T11 is connected to the positive electrode side line of the high voltage side power line 32.
  • the transistor T12 is connected to the transistor T11 and the negative electrode side line of the high voltage side power line 32 and the low voltage side power line 34.
  • the reactor L1 is connected to a connection point between the transistors T11 and T12 and a positive electrode side line of the low voltage side power line 34.
  • the ratio of the on-time of the transistors T11 and T12 is adjusted by the ECU 50 to boost the power of the low voltage side power line 34 and supply it to the high voltage side power line 32, or to supply the high voltage side power line 32.
  • the power of the voltage side power line 32 is stepped down and supplied to the low voltage side power line 34.
  • the second boost converter 42 is connected in parallel to the first boost converter 40 with respect to the high voltage side power line 32 (inverter 24 side) and the low voltage side power line 34 (battery 26 side). Like the first boost converter 40, the second boost converter 42 is connected to the high voltage side power line 32 and the low voltage side power line 34, and has two transistors T21 and T22 and two diodes D21 and D22. It is configured as a well-known buck-boost converter having a reactor L2 and a reactor L2. The second boost converter 42 boosts the power of the low voltage side power line 34 and supplies it to the high voltage side power line 32 by adjusting the ratio of the on-time of the transistors T21 and T22 by the ECU 50. The power of the high voltage side power line 32 is stepped down and supplied to the low voltage side power line 34.
  • the ECU 50 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, and an input / output port in addition to the CPU.
  • Signals from various sensors are input to the ECU 50 via the input port.
  • the rotation position ⁇ m of the rotor of the motor 22 from a rotation position sensor (not shown) that detects the rotation position of the rotor of the motor 22 and the current flowing through each phase of the motor 22 are detected.
  • the phase currents Iu and Iv of each phase of the motor 22 from a current sensor (not shown) can be mentioned.
  • the voltage Vb of the battery 26 from the voltage sensor 26a attached between the terminals of the battery 26 and the current Ib of the battery 26 from the current sensor 26b attached to the output terminal of the battery 26 can also be mentioned.
  • the voltage VH of the high voltage side power line 32 (capacitor 33) from the voltage sensor 33a attached between the terminals of the capacitor 33 and the low voltage side power line from the voltage sensor 35a attached between the terminals of the capacitor 35.
  • the voltage VL of 34 (capacitor 35) can also be mentioned.
  • the current flows from the current sensors 41a and 41b of the first current detector 41 that detects the current flowing through the reactor L1 of the first boost converter 40 to the currents IL1a and IL1b of the reactor L1 and to the reactor L2 of the second boost converter 42.
  • the currents IL2a and IL2b of the reactor L2 from the current sensors 43a and 43b of the second current detector 43 that detect the current can also be mentioned.
  • the ignition signal from the ignition switch the shift position SP from the shift position sensor that detects the operation position of the shift lever, and the accelerator opening Acc from the accelerator pedal position sensor that detects the amount of depression of the accelerator pedal.
  • the brake pedal position BP from the brake pedal position sensor that detects the amount of depression of the brake pedal and the vehicle speed V from the vehicle speed sensor can also be mentioned.
  • the signals output from the ECU 50 include, for example, a switching control signal for a plurality of switching elements of the inverter 24, a switching control signal for the transistors T11 and T12 of the first boost converter 40, and a transistor T21 of the second boost converter 42.
  • a switching control signal to T22 can be mentioned.
  • the ECU 50 calculates the electric angle ⁇ e and the rotation speed Nm of the motor 22 based on the rotation position ⁇ m of the rotor of the motor 22. Further, the ECU 50 calculates the storage ratio SOC of the battery 26 based on the integrated value of the current Ib of the battery 26.
  • the storage ratio SOC is the ratio of the capacity of the electric power that can be discharged from the battery 26 to the total capacity of the battery 26.
  • the "boost converter device” includes the first and second boost converters 40 and 42, the first current detector 41 (current sensors 41a and 41b), and the second current detector 43 (current sensor 43a, 43b) and ECU 50 correspond. Further, for each “boost converter”, the “upper arm” corresponds to the transistor T11 and the diode D11, the transistor T21 and the diode D21, and the “lower arm” includes the transistor T12 and the diode D12, the transistor T22 and the like. The diode D22 corresponds.
  • the motor 22 and the first and second boost converters 40 and 42 are controlled as the traveling control, for example, as follows.
  • the ECU 50 first obtains the required torque (required for the drive shaft) for traveling based on the accelerator opening Acc from the accelerator pedal position sensor and the vehicle speed V from the vehicle body speed sensor. Set Td *.
  • the torque command Tm * of the motor 22 is set so that the set required torque Td * is output to the drive shaft.
  • switching control of a plurality of switching elements of the inverter 24 is performed so that the motor 22 is driven by the torque command Tm *.
  • the ECU 50 For the first and second boost converters 40 and 42, the ECU 50 first sets the voltage command (target voltage) VH * of the high voltage side power line 32 based on the torque command Tm * of the motor 22. Subsequently, the voltage VH of the high voltage side power line 32 from the voltage sensor 33a and the voltage command VH * are canceled (by voltage feedback control) from the low voltage side power line 34 (battery 26 side). 1. Set the supply current command (target supply current) IL * to be supplied to the high voltage side power line 32 (inverter 24 side) via the second boost converters 40 and 42.
  • the supply current command IL * is multiplied by the distribution rates D1 and D2 of the first and second boost converters 40 and 42 to calculate the current commands (target currents) IL1 * and IL2 * of the reactors L1 and L2.
  • the sum of the distribution rates D1 and D2 is a value 1, and for example, 0.5 is used as the distribution rate D1.
  • the first and second boost converters 40 so that the difference between the currents IL1a and IL2a of the reactors L1 and L2 from the current sensors 41a and 43a and the current commands IL1 * and IL2 * is canceled (by current feedback control).
  • the duty commands Du1 * and Du2 * of 42 are set.
  • the duty commands Du1 * and Du2 * are used to control the switching of the transistors T11, T12, T21, and T22 of the first and second boost converters 40 and 42.
  • FIG. 2 is a flowchart showing an example of an abnormality detection routine executed by the ECU 50. This routine is repeatedly executed when the abnormality of the first current detector 41 is not detected (determined).
  • the ECU 50 When the abnormality detection routine of FIG. 2 is executed, the ECU 50 first inputs the currents IL1a and IL1b of the reactor L1 from the current sensors 41a and 41b of the first current detector 41 (step S100), and the input reactor.
  • the current difference ⁇ IL1 is calculated as the difference between the currents IL1a and IL1b of L1 (the absolute value of the value obtained by subtracting the current IL1b from the current IL1a) (step S110).
  • the ECU 50 compares the current difference ⁇ IL1 with the threshold value ⁇ IL1ref (step S120).
  • the threshold value ⁇ IL1ref is a threshold value used to determine whether or not an abnormality has occurred in the first current detector 41 (any of the current sensors 41a and 41b), and the threshold value of the current sensors 41a and 41b. It is set in consideration of manufacturing error.
  • the ECU 50 determines that the first current detector 41 is normal, that is, both the current sensors 41a and 41b are normal (step S130), and ends this routine. To do.
  • the ECU 50 tentatively determines an abnormality of the first current detector 41, that is, an abnormality of any of the current sensors 41a and 41b (step S140), and the previous time. (Previous ⁇ IL1) is compared with the threshold value ⁇ IL1ref (step S150). This process is a process of determining whether or not it is immediately after the start of the provisional determination of the abnormality of the first current detector 41.
  • step S150 When the previous current difference (previous ⁇ IL1) is equal to or less than the threshold value ⁇ IL1ref in step S150, the ECU 50 determines that it is immediately after the start of the provisional determination of the abnormality of the first current detector 41, and sets the duration Tt of the provisional determination to 0. After resetting to, the timing is started (step S160). On the other hand, when the previous current difference (previous ⁇ IL1) is larger than the threshold value ⁇ IL1ref, the ECU 50 determines that it is not immediately after the start of the provisional determination of the abnormality of the first current detector 41 (the provisional determination is continuing), and steps. The process of S160 is not executed.
  • the ECU 50 inputs the current IL2a of the reactor L2 from the current sensor 43a (step S170), and uses the absolute value of the input current IL2a of the reactor L2 and the fixed time setting map to be used as the first current detector.
  • the confirmation time Tc for confirming the abnormality of 41 is set (step S180).
  • the fixed time setting map is preset as the relationship between the current IL2a of the reactor L2 and the fixed time Tc, and is stored in a ROM (not shown).
  • FIG. 3 is an explanatory diagram showing an example of a fixed time setting map. As shown in the figure, the fixed time Tc is set so that the larger the absolute value of the current IL2a of the reactor L2, the shorter it becomes. The reason for this will be described later.
  • the ECU 50 compares the duration Tt of the provisional determination of the abnormality of the first current detector 41 with the determination time Tc (step S190), and the duration Tt of the provisional determination of the abnormality of the first current detector 41 is the determination time. If it is less than Tc, the process returns to step S100 without confirming the abnormality of the first current detector 41. In this way, the processes of steps S100 to S120 and S140 to S190 are repeatedly executed, and when the duration Tt of the provisional determination of the abnormality of the first current detector 41 reaches the fixed time Tc or more in step S190, the first current detector 41 Is detected (confirmed) (step S200), and this routine is terminated.
  • the first and second boost converters 40 and 42 are driven and stopped. Even if the first and second boost converters 40 and 42 are stopped, if the voltage VH of the high voltage side power line 32 reaches the voltage VL or less of the low voltage side power line 34, the motor 22 is driven. Current (electricity) is supplied from the battery 26 side to the inverter 24 side via the diodes D11 and D21 of the first and second boost converters 40 and 42.
  • FIG. 4 shows the voltage command VH * and voltage VH of the high voltage side power line 32, the current command IL1 * of the reactor L1 and the actual current IL1act and the current when an abnormality occurs in the current sensor 41a of the first current detector 41.
  • It is explanatory drawing which shows typically the state of the current command IL2 * of IL1a and reactor L2, the actual current IL2act, and the current IL2a.
  • the voltage VH is the detected value of the voltage sensor 33a
  • the currents IL1a and IL2a are the detected values of the current sensors 41a and 43a.
  • FIG. 4 shows a case where the second current detector 43 is normal, that is, the current sensor 43a detects the actual current IL2act of the reactor L2 as the current IL2a.
  • the second boost converter 42 is controlled so that the actual current IL2act of the reactor L2 increases, and the actual current IL2act and the current IL2a increase.
  • the first boost converter 40 is controlled so that the actual current IL1act of the reactor L1 is further reduced, and the actual current IL1act is further reduced. Due to the deviation of the actual currents IL1act and IL2act of the reactors L1 and L2, a current return occurs between the first and second boost converters 40 and 42.
  • the fixed time Tc is set so that the larger the absolute value of the current IL2a of the reactor L2 detected by the current sensor 43a, the shorter the fixed time Tc.
  • the current IL1a of the reactor L1 detected by the current sensor 41a is used for controlling the first boost converter 40
  • the current sensor 41b is used for determining whether or not the current sensor 41a is normal. Therefore, when an abnormality occurs in the current sensor 41a, as described above, the first boost converter 40 cannot be properly controlled, and the reactor is accompanied by an excessive current return between the first and second boost converters 40 and 42.
  • the absolute values of the actual currents IL1act and IL2act of L1 and L2 may become excessive, and the fixed time Tc may be set to a relatively short time.
  • the first boost converter 40 can be appropriately controlled, so that the fixed time Tc is set to a relatively long time.
  • the current difference ⁇ IL1 as the difference between the currents IL1a and IL1b of the reactor L1 from the current sensors 41a and 41b of the first current detector 41 is from the threshold value ⁇ IL1ref.
  • the abnormality of the first current detector 41 is tentatively determined, and when the duration Tt of the tentative determination of the abnormality of the first current detector 41 is equal to or longer than the confirmation time Tc, the abnormality of the first current detector 41 is confirmed.
  • the fixed time Tc is set so that the larger the absolute value of the current IL2a of the reactor L2, the shorter it becomes. As a result, the abnormality of the first current detector 41 can be appropriately detected (determined).
  • the abnormality detection process of the first current detector 41 has been described using the abnormality detection routine of FIG. 2, but the abnormality detection process of the second current detector 43 can be performed in the same manner.
  • the ECU 50 determines the fixed time Tc based on the absolute value of the current IL2a of the reactor L2 when tentatively determining the abnormality of the first current detector 41. It was supposed to be set. However, the ECU 50 may set the fixed time Tc based on the absolute value of the current command IL2 * of the reactor L2 when tentatively determining the abnormality of the first current detector 41. In this case, for example, the horizontal axis of the fixed time setting map in FIG. 3 is replaced with "absolute value of the current IL2a of the reactor L2" to "absolute value of the current command IL2 * of the reactor L2".
  • the second boost converter 43 Since the second boost converter 43 is controlled so that the difference between the current IL2a of the reactor L2 and the current command IL2 * from the current sensor 43a is canceled, it is carried out even when the absolute value of the current command IL2 * of the reactor L2 is used. The same effect as the example can be achieved. The same can be considered when the abnormality of the second current detector 43 is tentatively determined.
  • the ECU 50 when the ECU 50 tentatively determines the abnormality of the first current detector 41, the larger the absolute value of the current IL2a of the reactor L2, the shorter the length.
  • the fixed time Tc was set.
  • the ECU 50 estimates the reactor L1 by subtracting the current IL2a of the reactor L2 from the current sensor 43a from the current Ib of the battery 26 from the current sensor 26b.
  • the current IL1es may be calculated, and the fixed time Tc may be set based on the estimated current IL1es of the reactor L1. In this case, for example, the horizontal axis of the fixed time setting map in FIG.
  • the ECU 50 when the ECU 50 detects (determines) an abnormality of the first current detector 41, the first and second boost converters 40 and 42 are driven and stopped. .. However, when the ECU 50 detects an abnormality in the first current detector 41, it may stop driving only the first boost converter 40, that is, continue driving the second boost converter 42. In this way, even if the abnormality of the first current detector 41 is detected, the voltage VH of the high voltage side power line 32 can be made higher than the voltage VL of the low voltage side power line 34. At this time, since the transistor T11 of the first boost converter 40 is off, no current flows from the high voltage side power line 32 to the low voltage side power line 34 via the transistor T11. Therefore, no current return occurs between the first and second boost converters 40 and 42. The same can be considered when an abnormality of the second current detector 43 is detected (determined).
  • the boost converter device mounted on the electric vehicle 20 of the embodiment includes first and second boost converters 40 and 42 connected in parallel to the battery 26 side and the inverter 24 side. However, it may be provided with three or more boost converters connected in parallel to the battery 26 side and the inverter 24 side.
  • the battery 26 is assumed to be used as the power storage device.
  • a capacitor may be used as the power storage device.
  • the boost converter device is mounted on the electric vehicle 20 provided with the traveling motor 22.
  • the boost converter device may be mounted on a hybrid vehicle that includes an engine in addition to a traveling motor.
  • the boost converter device may be mounted on a moving body such as a vehicle, a ship, or an aircraft other than an automobile.
  • the boost converter device may be mounted on non-moving equipment such as construction equipment.
  • the first and second boost converters 40 and 42 having transistors T11, T12, T21, T22, diodes D11, D12, D21, D22 and reactors L1 and L2 correspond to "plurality of boost converters".
  • the first, second and first current detectors 41 and 43 correspond to "a plurality of current detectors"
  • the ECU 50 corresponds to a "control device”.
  • the present invention can be used in the manufacturing industry of boost converter devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present invention confirms an abnormality if, with regard to respective current detectors, a provisional determination of abnormality has been sustained over a confirmation period. In such a case, the confirmation period is set: so as to be shorter the greater the absolute value of a detection value of a current detector that has not made a provisional determination of abnormality; or so as to be shorter the greater the absolute value of a target current of a reactor corresponding to a current detector that has not made a provisional determination of abnormality; or so as to be shorter the greater the absolute value of an estimated current of a reactor corresponding to a current detector that has made a provisional determination of abnormality, which is estimated on the basis of a current of either a power storage device or a load and a detection value of a current detector that has not made a provisional determination of abnormality.

Description

昇圧コンバータ装置Boost converter device
 本発明は、昇圧コンバータ装置に関する。 The present invention relates to a boost converter device.
 従来、この種の昇圧コンバータ装置としては、バッテリとモータとに対して互いに並列に接続され且つそれぞれ上アームと下アームとリアクトルとを有し且つそれぞれバッテリ側の電力を昇圧してモータ側に供給可能な第1,第2昇圧コンバータを備えるものが提案されている(例えば、特許文献1参照)。この昇圧コンバータ装置では、バッテリの電流が正の値で且つ第1昇圧コンバータのリアクトルの電流が正の値で且つ第2昇圧コンバータのリアクトルの電流が負の値のときには、第2昇圧コンバータの上アームのオン故障を判定する。また、バッテリの電流が正の値で且つ第2昇圧コンバータのリアクトルの電流が正の値で且つ第1昇圧コンバータのリアクトルの電流が負の値のときには、第1昇圧コンバータの上アームのオン故障を判定する。 Conventionally, as this type of boost converter device, the battery and the motor are connected in parallel to each other, have an upper arm, a lower arm, and a reactor, respectively, and boost the power on the battery side and supply it to the motor side. Those provided with possible first and second boost converters have been proposed (see, for example, Patent Document 1). In this boost converter device, when the battery current is a positive value, the reactor current of the first boost converter is a positive value, and the reactor current of the second boost converter is a negative value, the boost converter is above the second boost converter. Judge the on failure of the arm. When the battery current is a positive value, the reactor current of the second boost converter is a positive value, and the reactor current of the first boost converter is a negative value, the upper arm of the first boost converter is turned on. To judge.
特開2017-103876号公報JP-A-2017-103876
 上述の昇圧コンバータ装置では、第1,第2昇圧コンバータのオン故障を検出することができるものの、第1,第2昇圧コンバータのリアクトルの電流を検出する第1,第2電流検出器の異常検出方法については記載されていない。第1,第2電流検出器に異常が生じると、第1,第2昇圧コンバータを適切に制御できずに、第1,第2昇圧コンバータ間の過大な電流還流を伴って第1,第2昇圧コンバータのリアクトルの実電流の絶対値が過大になる可能性がある。こうしたことを踏まえて、バッテリなどの蓄電装置とモータなどの負荷とに対して互いに並列に接続された複数の昇圧コンバータを備える昇圧コンバータ装置において、それぞれのリアクトルの電流を検出する複数の電流検出器のそれぞれの異常を適切に検出可能な方法を考案することが求められている。 Although the above-mentioned boost converter device can detect on-failure of the first and second boost converters, abnormality detection of the first and second current detectors that detect the current of the reactors of the first and second boost converters. The method is not described. If an abnormality occurs in the 1st and 2nd current detectors, the 1st and 2nd boost converters cannot be controlled properly, and the 1st and 2nd boost converters are accompanied by excessive current recirculation between the 1st and 2nd boost converters. The absolute value of the actual current of the boost converter reactor may become excessive. Based on this, in a boost converter device equipped with a plurality of boost converters connected in parallel to a power storage device such as a battery and a load such as a motor, a plurality of current detectors for detecting the current of each reactor. It is required to devise a method capable of appropriately detecting each abnormality of.
 本発明の昇圧コンバータ装置は、それぞれの電流検出器の異常を適切に検出可能な方法を考案することを主目的とする。 The main purpose of the boost converter device of the present invention is to devise a method capable of appropriately detecting an abnormality in each current detector.
 本発明の昇圧コンバータ装置は、上述の主目的を達成するために以下の手段を採った。 The boost converter device of the present invention has adopted the following means in order to achieve the above-mentioned main object.
 本発明の昇圧コンバータ装置は、
 蓄電装置と負荷とに対して互いに並列に接続され且つそれぞれ上アームと下アームとリアクトルとを有し且つそれぞれ前記蓄電装置側の電力を昇圧して前記負荷側に供給可能な複数の昇圧コンバータと、
 それぞれの前記リアクトルの電流を検出する複数の電流検出器と、
 それぞれの前記昇圧コンバータについて、対応する前記リアクトルの目標電流と、対応する前記電流検出器の検出値と、の差分が打ち消されるように制御する制御装置と、
 を備える昇圧コンバータ装置であって、
 前記制御装置は、それぞれの前記電流検出器について、異常の仮判定が確定時間に亘って継続したときに異常を確定し、
 前記確定時間は、
  異常を仮判定していない前記電流検出器の検出値の絶対値が大きいほど短くなるように設定され、または、
  異常を仮判定していない前記電流検出器に対応する前記リアクトルの前記目標電流の絶対値が大きいほど短くなるように設定され、または、
  前記蓄電装置および前記負荷のうちの何れかの電流と異常を仮判定していない前記電流検出器の検出値とに基づいて推定される、異常を仮判定している前記電流検出器に対応する前記リアクトルの推定電流の絶対値が大きいほど短くなるように設定される、
 ことを要旨とする。
The boost converter device of the present invention
A plurality of boost converters that are connected in parallel to the power storage device and the load, have an upper arm, a lower arm, and a reactor, respectively, and can boost the power on the power storage device side and supply the power to the load side. ,
A plurality of current detectors that detect the current of each of the reactors, and
For each boost converter, a control device that controls so that the difference between the target current of the corresponding reactor and the detection value of the corresponding current detector is canceled out.
It is a boost converter device equipped with
The control device determines the abnormality for each of the current detectors when the provisional determination of the abnormality continues for the determination time.
The fixed time is
It is set so that the larger the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the shorter it is, or
It is set so that the larger the absolute value of the target current of the reactor corresponding to the current detector for which an abnormality has not been tentatively determined, the shorter the value.
Corresponds to the current detector for which an abnormality is tentatively determined, which is estimated based on the current of any of the power storage device and the load and the detection value of the current detector for which the abnormality is not tentatively determined. The larger the absolute value of the estimated current of the reactor, the shorter it is set.
The gist is that.
 本発明の昇圧コンバータ装置では、制御装置は、それぞれの電流検出器について、異常の仮判定が確定時間に亘って継続したときに異常を確定する。この場合、確定時間は、異常を仮判定していない電流検出器の検出値の絶対値が大きいほど短くなるように設定され、または、異常を仮判定していない電流検出器に対応するリアクトルの目標電流の絶対値が大きいほど短くなるように設定され、または、蓄電装置および負荷のうちの何れかの電流と異常を仮判定していない電流検出器の検出値とに基づいて推定される、異常を仮判定している電流検出器に対応するリアクトルの推定電流の絶対値が大きいほど短くなるように設定される。異常を仮判定していない電流検出器の検出値の絶対値や、異常を仮判定していない電流検出器に対応するリアクトルの目標電流の絶対値、異常を仮判定している電流検出器に対応するリアクトルの推定電流の絶対値が大きいほど、複数の昇圧コンバータ間の過大な電流還流を伴ってそれぞれのリアクトルの実電流の絶対値が過大になる可能性が高いと想定される。したがって、こうした傾向に確定時間を設定することにより、それぞれのリアクトルの電流の絶対値が過大になるまたは過大な状態が継続するのを抑制し、それぞれの電流検出器の異常を適切に検出(確定)することができる。ここで、「上アーム」および「下アーム」は、スイッチング素子とダイオードとが互いに並列に接続されて構成されている。 In the boost converter device of the present invention, the control device determines the abnormality for each current detector when the provisional determination of the abnormality continues for the determination time. In this case, the determination time is set so that the larger the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the shorter it is, or the reactor corresponding to the current detector that has not tentatively determined the abnormality. The larger the absolute value of the target current, the shorter it is set, or it is estimated based on the current of either the power storage device or the load and the detected value of the current detector that has not tentatively determined the abnormality. It is set so that the larger the absolute value of the estimated current of the reactor corresponding to the current detector that temporarily determines the abnormality, the shorter it becomes. For the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the absolute value of the target current of the reactor corresponding to the current detector that has not tentatively determined the abnormality, and the current detector that has tentatively determined the abnormality. It is assumed that the larger the absolute value of the estimated current of the corresponding reactor, the more likely it is that the absolute value of the actual current of each reactor will become excessive with excessive current recirculation between the multiple boost converters. Therefore, by setting a fixed time for such a tendency, it is possible to prevent the absolute value of the current of each reactor from becoming excessive or continuing to be excessive, and appropriately detect (determine) an abnormality in each current detector. )can do. Here, the "upper arm" and the "lower arm" are configured by connecting a switching element and a diode in parallel with each other.
 本発明の昇圧コンバータ装置において、それぞれの前記電流検出器は、対応する前記リアクトルの電流を検出する第1,第2電流センサを有し、前記制御装置は、それぞれの前記電流検出器について、前記第1,第2電流センサの検出値の差分が閾値以上のときに異常を仮判定するものとしてもよい。こうした手法により、それぞれの電流検出器の異常を仮判定することができる。 In the boost converter device of the present invention, each of the current detectors has first and second current sensors for detecting the current of the corresponding reactor, and the control device has the same for each of the current detectors. When the difference between the detected values of the first and second current sensors is equal to or greater than the threshold value, the abnormality may be tentatively determined. By such a method, it is possible to tentatively determine the abnormality of each current detector.
 この場合、それぞれの前記電流検出器は、前記第1電流センサの検出値を前記電流検出器の検出値とするものとしてもよい。このとき、第1電流センサの異常により電流検出器の仮異常を判定しているときには、その電流検出器に対応する昇圧コンバータを適切に制御できずに、複数の昇圧コンバータ間の過大な電流還流を伴ってそれぞれのリアクトルの実電流の絶対値が過大になる可能性があることを踏まえて、確定時間は、比較的短い時間に設定される場合がある。これに対して、第2電流センサの異常により電流検出器の仮異常を判定しているときには、その電流検出器に対応する昇圧コンバータを適切に制御できるから、確定時間は、比較的長い時間に設定される。 In this case, each of the current detectors may use the detection value of the first current sensor as the detection value of the current detector. At this time, when a temporary abnormality of the current detector is determined due to an abnormality of the first current sensor, the boost converter corresponding to the current detector cannot be appropriately controlled, and an excessive current recirculation between a plurality of boost converters cannot be performed. The fixed time may be set to a relatively short time, considering that the absolute value of the actual current of each reactor may become excessive. On the other hand, when a temporary abnormality of the current detector is determined due to an abnormality of the second current sensor, the boost converter corresponding to the current detector can be appropriately controlled, so that the determination time is relatively long. Set.
 本発明の昇圧コンバータ装置において、前記制御装置は、前記負荷の目標供給電圧と供給電圧との差分が打ち消されるように前記複数の昇圧コンバータを介して前記蓄電装置側から前記負荷側に供給すべき目標供給電流を設定し、前記目標供給電流に基づいてそれぞれの前記リアクトルの前記目標電流を設定するものとしてもよい。 In the boost converter device of the present invention, the control device should supply from the power storage device side to the load side via the plurality of boost converters so that the difference between the target supply voltage and the supply voltage of the load is canceled. The target supply current may be set, and the target current of each of the reactors may be set based on the target supply current.
 本発明の昇圧コンバータ装置において、前記制御装置は、前記複数の電流検出器のうちの1つの異常を確定すると、前記複数の昇圧コンバータの全てを駆動停止する、または、異常を確定した前記電流検出器に対応する前記昇圧コンバータだけを駆動停止するものとしてもよい。 In the boost converter device of the present invention, when the control device determines an abnormality in one of the plurality of current detectors, all of the plurality of boost converters are driven or stopped, or the current detection in which the abnormality is confirmed is detected. Only the boost converter corresponding to the device may be driven and stopped.
本発明の一実施例としての昇圧コンバータ装置を搭載する電気自動車20の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the electric vehicle 20 which mounts the boost converter device as one Example of this invention. ECU50により実行される異常検出ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the abnormality detection routine executed by ECU 50. 確定時間設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the fixed time setting map. 第1電流検出器41の電流センサ41aに異常が生じたときの様子を模式的に示す説明図である。It is explanatory drawing which shows typically the state when an abnormality occurs in the current sensor 41a of the 1st current detector 41.
 次に、本発明を実施するための形態を実施例を用いて説明する。 Next, a mode for carrying out the present invention will be described with reference to examples.
 図1は、本発明の一実施例としての昇圧コンバータ装置を搭載する電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図1に示すように、モータ22と、インバータ24と、蓄電装置としてのバッテリ26と、第1,第2昇圧コンバータ40,42と、電子制御ユニット(以下、「ECU」という)50とを備える。 FIG. 1 is a configuration diagram showing an outline of the configuration of an electric vehicle 20 equipped with a boost converter device as an embodiment of the present invention. As shown in FIG. 1, the electric vehicle 20 of the embodiment includes a motor 22, an inverter 24, a battery 26 as a power storage device, first and second boost converters 40 and 42, and an electronic control unit (hereinafter, "" It is equipped with 50 (referred to as "ECU").
 モータ22は、例えば同期発電電動機として構成されており、図示しないが、モータ22の回転子が駆動輪にデファレンシャルギヤを介して連結された駆動軸に接続されている。インバータ24は、モータ22に接続されると共に高電圧側電力ライン32に接続されている。モータ22は、ECU50によって、インバータ24の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。高電圧側電力ライン32の正極側ラインと負極側ラインとには、平滑用のコンデンサ33が取り付けられている。 The motor 22 is configured as, for example, a synchronous generator motor, and although not shown, the rotor of the motor 22 is connected to a drive shaft connected to the drive wheels via a differential gear. The inverter 24 is connected to the motor 22 and also to the high voltage side power line 32. The motor 22 is rotationally driven by switching control of a plurality of switching elements (not shown) of the inverter 24 by the ECU 50. A smoothing capacitor 33 is attached to the positive electrode side line and the negative electrode side line of the high voltage side power line 32.
 バッテリ26は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン34に接続されている。低電圧側電力ライン34の正極側ラインと負極側ラインとには、平滑用のコンデンサ35が取り付けられている。 The battery 26 is configured as, for example, a lithium ion secondary battery or a nickel hydrogen secondary battery, and is connected to the low voltage side power line 34. A smoothing capacitor 35 is attached to the positive electrode side line and the negative electrode side line of the low voltage side power line 34.
 第1昇圧コンバータ40は、高電圧側電力ライン32と低電圧側電力ライン34とに接続されており、2つのトランジスタT11,T12と、2つのダイオードD11,D12と、リアクトルL1と、を有する周知の昇降圧コンバータとして構成されている。トランジスタT11は、高電圧側電力ライン32の正極側ラインに接続されている。トランジスタT12は、トランジスタT11と、高電圧側電力ライン32および低電圧側電力ライン34の負極側ラインと、に接続されている。リアクトルL1は、トランジスタT11,T12同士の接続点と、低電圧側電力ライン34の正極側ラインと、に接続されている。第1昇圧コンバータ40は、ECU50によって、トランジスタT11,T12のオン時間の割合が調節されることにより、低電圧側電力ライン34の電力を昇圧して高電圧側電力ライン32に供給したり、高電圧側電力ライン32の電力を降圧して低電圧側電力ライン34に供給したりする。 The first boost converter 40 is connected to the high voltage side power line 32 and the low voltage side power line 34, and has two transistors T11 and T12, two diodes D11 and D12, and a reactor L1. It is configured as a buck-boost converter. The transistor T11 is connected to the positive electrode side line of the high voltage side power line 32. The transistor T12 is connected to the transistor T11 and the negative electrode side line of the high voltage side power line 32 and the low voltage side power line 34. The reactor L1 is connected to a connection point between the transistors T11 and T12 and a positive electrode side line of the low voltage side power line 34. In the first boost converter 40, the ratio of the on-time of the transistors T11 and T12 is adjusted by the ECU 50 to boost the power of the low voltage side power line 34 and supply it to the high voltage side power line 32, or to supply the high voltage side power line 32. The power of the voltage side power line 32 is stepped down and supplied to the low voltage side power line 34.
 第2昇圧コンバータ42は、高電圧側電力ライン32(インバータ24側)と低電圧側電力ライン34(バッテリ26側)とに対して第1昇圧コンバータ40に並列に接続されている。第2昇圧コンバータ42は、第1昇圧コンバータ40と同様に、高電圧側電力ライン32と低電圧側電力ライン34とに接続されており、2つのトランジスタT21,T22と、2つのダイオードD21,D22と、リアクトルL2と、を有する周知の昇降圧コンバータとして構成されている。この第2昇圧コンバータ42は、ECU50によって、トランジスタT21,T22のオン時間の割合が調節されることにより、低電圧側電力ライン34の電力を昇圧して高電圧側電力ライン32に供給したり、高電圧側電力ライン32の電力を降圧して低電圧側電力ライン34に供給したりする。 The second boost converter 42 is connected in parallel to the first boost converter 40 with respect to the high voltage side power line 32 (inverter 24 side) and the low voltage side power line 34 (battery 26 side). Like the first boost converter 40, the second boost converter 42 is connected to the high voltage side power line 32 and the low voltage side power line 34, and has two transistors T21 and T22 and two diodes D21 and D22. It is configured as a well-known buck-boost converter having a reactor L2 and a reactor L2. The second boost converter 42 boosts the power of the low voltage side power line 34 and supplies it to the high voltage side power line 32 by adjusting the ratio of the on-time of the transistors T21 and T22 by the ECU 50. The power of the high voltage side power line 32 is stepped down and supplied to the low voltage side power line 34.
 ECU50は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポートを備える。 Although not shown, the ECU 50 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, and an input / output port in addition to the CPU.
 ECU50には、各種センサからの信号が入力ポートを介して入力されている。ECU50に入力される信号としては、例えば、モータ22の回転子の回転位置を検出する図示しない回転位置センサからのモータ22の回転子の回転位置θmや、モータ22の各相に流れる電流を検出する図示しない電流センサからのモータ22の各相の相電流Iu,Ivを挙げることができる。また、バッテリ26の端子間に取り付けられた電圧センサ26aからのバッテリ26の電圧Vbや、バッテリ26の出力端子に取り付けられた電流センサ26bからのバッテリ26の電流Ibも挙げることができる。さらに、コンデンサ33の端子間に取り付けられた電圧センサ33aからの高電圧側電力ライン32(コンデンサ33)の電圧VHや、コンデンサ35の端子間に取り付けられた電圧センサ35aからの低電圧側電力ライン34(コンデンサ35)の電圧VLも挙げることができる。加えて、第1昇圧コンバータ40のリアクトルL1に流れる電流を検出する第1電流検出器41の電流センサ41a,41bからのリアクトルL1の電流IL1a,IL1bや、第2昇圧コンバータ42のリアクトルL2に流れる電流を検出する第2電流検出器43の電流センサ43a,43bからのリアクトルL2の電流IL2a,IL2bも挙げることができる。また、図示しないが、イグニッションスイッチからのイグニッション信号や、シフトレバーの操作位置を検出するシフトポジションセンサからのシフトポジションSP、アクセルペダルの踏み込み量を検出するアクセルペダルポジションセンサからのアクセル開度Acc、ブレーキペダルの踏み込み量を検出するブレーキペダルポジションセンサからのブレーキペダルポジションBP,車速センサからの車速Vも挙げることができる。 Signals from various sensors are input to the ECU 50 via the input port. As signals input to the ECU 50, for example, the rotation position θm of the rotor of the motor 22 from a rotation position sensor (not shown) that detects the rotation position of the rotor of the motor 22 and the current flowing through each phase of the motor 22 are detected. The phase currents Iu and Iv of each phase of the motor 22 from a current sensor (not shown) can be mentioned. Further, the voltage Vb of the battery 26 from the voltage sensor 26a attached between the terminals of the battery 26 and the current Ib of the battery 26 from the current sensor 26b attached to the output terminal of the battery 26 can also be mentioned. Further, the voltage VH of the high voltage side power line 32 (capacitor 33) from the voltage sensor 33a attached between the terminals of the capacitor 33 and the low voltage side power line from the voltage sensor 35a attached between the terminals of the capacitor 35. The voltage VL of 34 (capacitor 35) can also be mentioned. In addition, the current flows from the current sensors 41a and 41b of the first current detector 41 that detects the current flowing through the reactor L1 of the first boost converter 40 to the currents IL1a and IL1b of the reactor L1 and to the reactor L2 of the second boost converter 42. The currents IL2a and IL2b of the reactor L2 from the current sensors 43a and 43b of the second current detector 43 that detect the current can also be mentioned. Although not shown, the ignition signal from the ignition switch, the shift position SP from the shift position sensor that detects the operation position of the shift lever, and the accelerator opening Acc from the accelerator pedal position sensor that detects the amount of depression of the accelerator pedal. The brake pedal position BP from the brake pedal position sensor that detects the amount of depression of the brake pedal and the vehicle speed V from the vehicle speed sensor can also be mentioned.
 ECU50からは、各種制御信号が出力ポートを介して出力されている。ECU50から出力される信号としては、例えば、インバータ24の複数のスイッチング素子へのスイッチング制御信号や、第1昇圧コンバータ40のトランジスタT11,T12へのスイッチング制御信号、第2昇圧コンバータ42のトランジスタT21,T22へのスイッチング制御信号を挙げることができる。 Various control signals are output from the ECU 50 via the output port. The signals output from the ECU 50 include, for example, a switching control signal for a plurality of switching elements of the inverter 24, a switching control signal for the transistors T11 and T12 of the first boost converter 40, and a transistor T21 of the second boost converter 42. A switching control signal to T22 can be mentioned.
 ECU50は、モータ22の回転子の回転位置θmに基づいてモータ22の電気角θeや回転数Nmを演算している。また、ECU50は、バッテリ26の電流Ibの積算値に基づいてバッテリ26の蓄電割合SOCを演算している。ここで、蓄電割合SOCは、バッテリ26の全容量に対するバッテリ26から放電可能な電力の容量の割合である。 The ECU 50 calculates the electric angle θe and the rotation speed Nm of the motor 22 based on the rotation position θm of the rotor of the motor 22. Further, the ECU 50 calculates the storage ratio SOC of the battery 26 based on the integrated value of the current Ib of the battery 26. Here, the storage ratio SOC is the ratio of the capacity of the electric power that can be discharged from the battery 26 to the total capacity of the battery 26.
 なお、実施例では、「昇圧コンバータ装置」としては、第1,第2昇圧コンバータ40,42と第1電流検出器41(電流センサ41a,41b)や第2電流検出器43(電流センサ43a,43b)とECU50とが該当する。また、それぞれの「昇圧コンバータ」について、「上アーム」としては、トランジスタT11およびダイオードD11や、トランジスタT21およびダイオードD21が相当し、「下アーム」としては、トランジスタT12およびダイオードD12や、トランジスタT22およびダイオードD22が相当する。 In the embodiment, the "boost converter device" includes the first and second boost converters 40 and 42, the first current detector 41 ( current sensors 41a and 41b), and the second current detector 43 ( current sensor 43a, 43b) and ECU 50 correspond. Further, for each "boost converter", the "upper arm" corresponds to the transistor T11 and the diode D11, the transistor T21 and the diode D21, and the "lower arm" includes the transistor T12 and the diode D12, the transistor T22 and the like. The diode D22 corresponds.
 こうして構成された実施例の電気自動車20では、走行制御として、例えば以下のようにモータ22や第1,第2昇圧コンバータ40,42の制御が行なわれる。モータ22の制御については、ECU50は、最初に、アクセルペダルポジションセンサからのアクセル開度Accと車体速センサからの車速Vとに基づいて走行に要求される(駆動軸に要求される)要求トルクTd*を設定する。続いて、設定した要求トルクTd*が駆動軸に出力されるようにモータ22のトルク指令Tm*を設定する。そして、モータ22がトルク指令Tm*で駆動されるようにインバータ24の複数のスイッチング素子のスイッチング制御を行なう。 In the electric vehicle 20 of the embodiment configured in this way, the motor 22 and the first and second boost converters 40 and 42 are controlled as the traveling control, for example, as follows. Regarding the control of the motor 22, the ECU 50 first obtains the required torque (required for the drive shaft) for traveling based on the accelerator opening Acc from the accelerator pedal position sensor and the vehicle speed V from the vehicle body speed sensor. Set Td *. Subsequently, the torque command Tm * of the motor 22 is set so that the set required torque Td * is output to the drive shaft. Then, switching control of a plurality of switching elements of the inverter 24 is performed so that the motor 22 is driven by the torque command Tm *.
 第1,第2昇圧コンバータ40,42については、ECU50は、最初に、モータ22のトルク指令Tm*に基づいて高電圧側電力ライン32の電圧指令(目標電圧)VH*を設定する。続いて、電圧センサ33aからの高電圧側電力ライン32の電圧VHと電圧指令VH*との差分が打ち消されるように(電圧フィードバック制御により)、低電圧側電力ライン34(バッテリ26側)から第1,第2昇圧コンバータ40,42を介して高電圧側電力ライン32(インバータ24側)に供給すべき供給電流指令(目標供給電流)IL*を設定する。そして、供給電流指令IL*に第1,第2昇圧コンバータ40,42の分配率D1,D2を乗じてリアクトルL1,L2の電流指令(目標電流)IL1*,IL2*を演算する。ここで、分配率D1,D2の和は値1であり、分配率D1としては、例えば0.5が用いられる。 For the first and second boost converters 40 and 42, the ECU 50 first sets the voltage command (target voltage) VH * of the high voltage side power line 32 based on the torque command Tm * of the motor 22. Subsequently, the voltage VH of the high voltage side power line 32 from the voltage sensor 33a and the voltage command VH * are canceled (by voltage feedback control) from the low voltage side power line 34 (battery 26 side). 1. Set the supply current command (target supply current) IL * to be supplied to the high voltage side power line 32 (inverter 24 side) via the second boost converters 40 and 42. Then, the supply current command IL * is multiplied by the distribution rates D1 and D2 of the first and second boost converters 40 and 42 to calculate the current commands (target currents) IL1 * and IL2 * of the reactors L1 and L2. Here, the sum of the distribution rates D1 and D2 is a value 1, and for example, 0.5 is used as the distribution rate D1.
 次に、電流センサ41a,43aからのリアクトルL1,L2の電流IL1a,IL2aと電流指令IL1*,IL2*との差分が打ち消されるように(電流フィードバック制御により)第1,第2昇圧コンバータ40,42のデューティ指令Du1*,Du2*を設定する。そして、デューティ指令Du1*,Du2*を用いて第1,第2昇圧コンバータ40,42のトランジスタT11,T12,T21,T22のスイッチング制御を行なう。 Next, the first and second boost converters 40, so that the difference between the currents IL1a and IL2a of the reactors L1 and L2 from the current sensors 41a and 43a and the current commands IL1 * and IL2 * is canceled (by current feedback control). The duty commands Du1 * and Du2 * of 42 are set. Then, the duty commands Du1 * and Du2 * are used to control the switching of the transistors T11, T12, T21, and T22 of the first and second boost converters 40 and 42.
 次に、こうして構成された実施例の電気自動車20に搭載される昇圧コンバータ装置の動作、特に、第1電流検出器41の異常検出処理について説明する。図2は、ECU50により実行される異常検出ルーチンの一例を示すフローチャートである。このルーチンは、第1電流検出器41の異常を検出(確定)していないときに繰り返し実行される。 Next, the operation of the boost converter device mounted on the electric vehicle 20 of the embodiment configured in this way, particularly the abnormality detection process of the first current detector 41 will be described. FIG. 2 is a flowchart showing an example of an abnormality detection routine executed by the ECU 50. This routine is repeatedly executed when the abnormality of the first current detector 41 is not detected (determined).
 図2の異常検出ルーチンが実行されると、ECU50は、最初に、第1電流検出器41の電流センサ41a,41bからのリアクトルL1の電流IL1a,IL1bを入力し(ステップS100)、入力したリアクトルL1の電流IL1a,IL1bの差分(電流IL1aから電流IL1bを減じた値の絶対値)として電流差分ΔIL1を演算する(ステップS110)。 When the abnormality detection routine of FIG. 2 is executed, the ECU 50 first inputs the currents IL1a and IL1b of the reactor L1 from the current sensors 41a and 41b of the first current detector 41 (step S100), and the input reactor. The current difference ΔIL1 is calculated as the difference between the currents IL1a and IL1b of L1 (the absolute value of the value obtained by subtracting the current IL1b from the current IL1a) (step S110).
 続いて、ECU50は、電流差分ΔIL1を閾値ΔIL1refと比較する(ステップS120)。ここで、閾値ΔIL1refは、第1電流検出器41(電流センサ41a,41bのうちの何れか)に異常が生じているか否かを判定するのに用いられる閾値であり、電流センサ41a,41bの製造誤差などを考慮して設定される。電流差分ΔIL1が閾値ΔIL1ref以下のときには、ECU50は、第1電流検出器41が正常である、即ち、電流センサ41a,41bの何れも正常であると判定して(ステップS130)、本ルーチンを終了する。 Subsequently, the ECU 50 compares the current difference ΔIL1 with the threshold value ΔIL1ref (step S120). Here, the threshold value ΔIL1ref is a threshold value used to determine whether or not an abnormality has occurred in the first current detector 41 (any of the current sensors 41a and 41b), and the threshold value of the current sensors 41a and 41b. It is set in consideration of manufacturing error. When the current difference ΔIL1 is equal to or less than the threshold value ΔIL1ref, the ECU 50 determines that the first current detector 41 is normal, that is, both the current sensors 41a and 41b are normal (step S130), and ends this routine. To do.
 ステップS120で電流差分ΔIL1が閾値ΔIL1refよりも大きいときには、ECU50は、第1電流検出器41の異常、即ち、電流センサ41a,41bのうちの何れかの異常を仮判定し(ステップS140)、前回の電流差分(前回ΔIL1)を閾値ΔIL1refと比較する(ステップS150)。この処理は、第1電流検出器41の異常の仮判定の開始直後であるか否かを判断する処理である。 When the current difference ΔIL1 is larger than the threshold value ΔIL1ref in step S120, the ECU 50 tentatively determines an abnormality of the first current detector 41, that is, an abnormality of any of the current sensors 41a and 41b (step S140), and the previous time. (Previous ΔIL1) is compared with the threshold value ΔIL1ref (step S150). This process is a process of determining whether or not it is immediately after the start of the provisional determination of the abnormality of the first current detector 41.
 ステップS150で前回の電流差分(前回ΔIL1)が閾値ΔIL1ref以下のときには、ECU50は、第1電流検出器41の異常の仮判定の開始直後であると判断し、仮判定の継続時間Ttを値0にリセットしてからその計時を開始する(ステップS160)。一方、前回の電流差分(前回ΔIL1)が閾値ΔIL1refよりも大きいときには、ECU50は、第1電流検出器41の異常の仮判定の開始直後でない(仮判定の継続中である)と判断し、ステップS160の処理を実行しない。 When the previous current difference (previous ΔIL1) is equal to or less than the threshold value ΔIL1ref in step S150, the ECU 50 determines that it is immediately after the start of the provisional determination of the abnormality of the first current detector 41, and sets the duration Tt of the provisional determination to 0. After resetting to, the timing is started (step S160). On the other hand, when the previous current difference (previous ΔIL1) is larger than the threshold value ΔIL1ref, the ECU 50 determines that it is not immediately after the start of the provisional determination of the abnormality of the first current detector 41 (the provisional determination is continuing), and steps. The process of S160 is not executed.
 続いて、ECU50は、電流センサ43aからのリアクトルL2の電流IL2aを入力し(ステップS170)、入力したリアクトルL2の電流IL2aの絶対値と確定時間設定用マップとを用いて、第1電流検出器41の異常を確定するための確定時間Tcを設定する(ステップS180)。ここで、確定時間設定用マップは、リアクトルL2の電流IL2aと確定時間Tcとの関係として予め設定され、図示しないROMに記憶されている。図3は、確定時間設定用マップの一例を示す説明図である。確定時間Tcは、図示するように、リアクトルL2の電流IL2aの絶対値が大きいほど短くなるように設定される。この理由については後述する。 Subsequently, the ECU 50 inputs the current IL2a of the reactor L2 from the current sensor 43a (step S170), and uses the absolute value of the input current IL2a of the reactor L2 and the fixed time setting map to be used as the first current detector. The confirmation time Tc for confirming the abnormality of 41 is set (step S180). Here, the fixed time setting map is preset as the relationship between the current IL2a of the reactor L2 and the fixed time Tc, and is stored in a ROM (not shown). FIG. 3 is an explanatory diagram showing an example of a fixed time setting map. As shown in the figure, the fixed time Tc is set so that the larger the absolute value of the current IL2a of the reactor L2, the shorter it becomes. The reason for this will be described later.
 そして、ECU50は、第1電流検出器41の異常の仮判定の継続時間Ttを確定時間Tcと比較し(ステップS190)、第1電流検出器41の異常の仮判定の継続時間Ttが確定時間Tc未満のときには、第1電流検出器41の異常を確定することなく、ステップS100に戻る。こうしてステップS100~S120,S140~S190の処理を繰り返し実行して、ステップS190で第1電流検出器41の異常の仮判定の継続時間Ttが確定時間Tc以上に至ると、第1電流検出器41の異常を検出(確定)して(ステップS200)、本ルーチンを終了する。第1電流検出器41の異常を検出(確定)すると、第1,第2昇圧コンバータ40,42を駆動停止する。なお、第1,第2昇圧コンバータ40,42を駆動停止しても、高電圧側電力ライン32の電圧VHが低電圧側電力ライン34の電圧VL以下に至ると、モータ22の駆動用に、第1,第2昇圧コンバータ40,42のダイオードD11,D21を介してバッテリ26側からインバータ24側に電流(電力)が供給される。 Then, the ECU 50 compares the duration Tt of the provisional determination of the abnormality of the first current detector 41 with the determination time Tc (step S190), and the duration Tt of the provisional determination of the abnormality of the first current detector 41 is the determination time. If it is less than Tc, the process returns to step S100 without confirming the abnormality of the first current detector 41. In this way, the processes of steps S100 to S120 and S140 to S190 are repeatedly executed, and when the duration Tt of the provisional determination of the abnormality of the first current detector 41 reaches the fixed time Tc or more in step S190, the first current detector 41 Is detected (confirmed) (step S200), and this routine is terminated. When the abnormality of the first current detector 41 is detected (determined), the first and second boost converters 40 and 42 are driven and stopped. Even if the first and second boost converters 40 and 42 are stopped, if the voltage VH of the high voltage side power line 32 reaches the voltage VL or less of the low voltage side power line 34, the motor 22 is driven. Current (electricity) is supplied from the battery 26 side to the inverter 24 side via the diodes D11 and D21 of the first and second boost converters 40 and 42.
 ここで、図3のように確定時間Tcを設定する理由について説明する。図4は、第1電流検出器41の電流センサ41aに異常が生じたときの、高電圧側電力ライン32の電圧指令VH*と電圧VH、リアクトルL1の電流指令IL1*と実電流IL1actと電流IL1a、リアクトルL2の電流指令IL2*と実電流IL2actと電流IL2a、の様子を模式的に示す説明図である。図中、電圧VHは、電圧センサ33aの検出値であり、電流IL1a,IL2aは、電流センサ41a,43aの検出値である。また、図4では、第2電流検出器43が正常であるとき、即ち、電流センサ43aによりリアクトルL2の実電流IL2actを電流IL2aとして検出する場合を示した。 Here, the reason for setting the fixed time Tc as shown in FIG. 3 will be described. FIG. 4 shows the voltage command VH * and voltage VH of the high voltage side power line 32, the current command IL1 * of the reactor L1 and the actual current IL1act and the current when an abnormality occurs in the current sensor 41a of the first current detector 41. It is explanatory drawing which shows typically the state of the current command IL2 * of IL1a and reactor L2, the actual current IL2act, and the current IL2a. In the figure, the voltage VH is the detected value of the voltage sensor 33a, and the currents IL1a and IL2a are the detected values of the current sensors 41a and 43a. Further, FIG. 4 shows a case where the second current detector 43 is normal, that is, the current sensor 43a detects the actual current IL2act of the reactor L2 as the current IL2a.
 図示するように、電流センサ41aに異常が生じてリアクトルL1の電流IL1aが電流指令IL1*に対して十分に大きい値になると(時刻t1)、リアクトルL1の実電流IL1actが小さくなるように第1昇圧コンバータ40が制御される。すると、リアクトルL1の実電流IL1actの低下に伴って高電圧側電力ライン32の電圧VHが電圧指令VH*に対して低下し、供給電流指令IL*ひいてはリアクトルL1,L2の電流指令IL1*、IL2*が増加する。これにより、リアクトルL2の実電流IL2actが増加するように第2昇圧コンバータ42が制御され、実電流IL2actおよび電流IL2aが増加する。また、リアクトルL1の電流指令IL1*が未だ電流IL1aよりも小さいために、リアクトルL1の実電流IL1actが更に低下するように第1昇圧コンバータ40が制御され、実電流IL1actが更に低下する。このリアクトルL1,L2の実電流IL1act,IL2actのずれにより、第1,第2昇圧コンバータ40,42間で電流還流が発生する。そして、リアクトルL2の電流IL2actの絶対値が大きいほど、第1,第2昇圧コンバータ40,42間の過大な電流還流を伴ってリアクトルL1,L2の実電流IL1act,IL2actの絶対値が過大になる可能性が高いと想定される。実施例では、これを踏まえて、図3に示したように、電流センサ43aにより検出されるリアクトルL2の電流IL2aの絶対値が大きいほど短くなるように確定時間Tcを設定するものとした。これにより、リアクトルL1,L2の実電流IL1act、IL2actの絶対値が過大になるまたは過大な状態が継続するのを抑制し、第1電流検出器41の異常を適切に検出(確定)することができる。 As shown in the figure, when an abnormality occurs in the current sensor 41a and the current IL1a of the reactor L1 becomes a sufficiently large value with respect to the current command IL1 * (time t1), the actual current IL1act of the reactor L1 becomes smaller. The boost converter 40 is controlled. Then, as the actual current IL1act of the reactor L1 decreases, the voltage VH of the high voltage side power line 32 decreases with respect to the voltage command VH *, and the supply current command IL * and thus the current commands IL1 * and IL2 of the reactors L1 and L2 * Increases. As a result, the second boost converter 42 is controlled so that the actual current IL2act of the reactor L2 increases, and the actual current IL2act and the current IL2a increase. Further, since the current command IL1 * of the reactor L1 is still smaller than the current IL1a, the first boost converter 40 is controlled so that the actual current IL1act of the reactor L1 is further reduced, and the actual current IL1act is further reduced. Due to the deviation of the actual currents IL1act and IL2act of the reactors L1 and L2, a current return occurs between the first and second boost converters 40 and 42. The larger the absolute value of the current IL2act of the reactor L2, the larger the absolute value of the actual currents IL1act and IL2act of the reactors L1 and L2 is accompanied by excessive current return between the first and second boost converters 40 and 42. It is assumed that the possibility is high. In the embodiment, based on this, as shown in FIG. 3, the fixed time Tc is set so that the larger the absolute value of the current IL2a of the reactor L2 detected by the current sensor 43a, the shorter the fixed time Tc. As a result, it is possible to suppress the absolute values of the actual currents IL1act and IL2act of the reactors L1 and L2 from becoming excessive or continuing to be excessive, and appropriately detect (determine) the abnormality of the first current detector 41. it can.
 なお、第1電流検出器41の異常を仮判定するときとしては、電流センサ41aに異常が生じたときと、電流センサ41bに異常が生じたときとがある。ここで、電流センサ41aにより検出されるリアクトルL1の電流IL1aは、第1昇圧コンバータ40の制御に用いられ、電流センサ41bは、電流センサ41aが正常であるか否かの判定に用いられる。したがって、電流センサ41aに異常が生じたときには、上述したように、第1昇圧コンバータ40を適切に制御できずに、第1,第2昇圧コンバータ40,42間の過大な電流還流を伴ってリアクトルL1,L2の実電流IL1act、IL2actの絶対値が過大になる可能性があり、確定時間Tcが比較的短い時間に設定される場合がある。これに対して、電流センサ41bに異常が生じたときには、第1昇圧コンバータ40を適切に制御できるから、確定時間Tcは、比較的長い時間に設定される。 Note that there are two cases when the abnormality of the first current detector 41 is tentatively determined: when the abnormality occurs in the current sensor 41a and when the abnormality occurs in the current sensor 41b. Here, the current IL1a of the reactor L1 detected by the current sensor 41a is used for controlling the first boost converter 40, and the current sensor 41b is used for determining whether or not the current sensor 41a is normal. Therefore, when an abnormality occurs in the current sensor 41a, as described above, the first boost converter 40 cannot be properly controlled, and the reactor is accompanied by an excessive current return between the first and second boost converters 40 and 42. The absolute values of the actual currents IL1act and IL2act of L1 and L2 may become excessive, and the fixed time Tc may be set to a relatively short time. On the other hand, when an abnormality occurs in the current sensor 41b, the first boost converter 40 can be appropriately controlled, so that the fixed time Tc is set to a relatively long time.
 以上説明した実施例の電気自動車20に搭載される昇圧コンバータ装置では、第1電流検出器41の電流センサ41a,41bからのリアクトルL1の電流IL1a,IL1bの差分としての電流差分ΔIL1が閾値ΔIL1refよりも大きいときに第1電流検出器41の異常を仮判定し、第1電流検出器41の異常の仮判定の継続時間Ttが確定時間Tc以上のときに第1電流検出器41の異常を確定する。この場合、リアクトルL2の電流IL2aの絶対値が大きいほど短くなるように確定時間Tcを設定する。これにより、第1電流検出器41の異常を適切に検出(確定)することができる。 In the boost converter device mounted on the electric vehicle 20 of the above-described embodiment, the current difference ΔIL1 as the difference between the currents IL1a and IL1b of the reactor L1 from the current sensors 41a and 41b of the first current detector 41 is from the threshold value ΔIL1ref. When the value is large, the abnormality of the first current detector 41 is tentatively determined, and when the duration Tt of the tentative determination of the abnormality of the first current detector 41 is equal to or longer than the confirmation time Tc, the abnormality of the first current detector 41 is confirmed. To do. In this case, the fixed time Tc is set so that the larger the absolute value of the current IL2a of the reactor L2, the shorter it becomes. As a result, the abnormality of the first current detector 41 can be appropriately detected (determined).
 なお、実施例では、図2の異常検出ルーチンを用いて、第1電流検出器41の異常検出処理について説明したが、第2電流検出器43の異常検出処理についても同様に行なうことができる。 In the embodiment, the abnormality detection process of the first current detector 41 has been described using the abnormality detection routine of FIG. 2, but the abnormality detection process of the second current detector 43 can be performed in the same manner.
 実施例の電気自動車20に搭載される昇圧コンバータ装置では、ECU50は、第1電流検出器41の異常を仮判定しているときに、リアクトルL2の電流IL2aの絶対値に基づいて確定時間Tcを設定するものとした。しかし、ECU50は、第1電流検出器41の異常を仮判定しているときに、リアクトルL2の電流指令IL2*の絶対値に基づいて確定時間Tcを設定するものとしてもよい。この場合、例えば、図3の確定時間設定用マップの横軸を「リアクトルL2の電流IL2aの絶対値」から「リアクトルL2の電流指令IL2*の絶対値」に置き換えたものが用いられる。電流センサ43aからのリアクトルL2の電流IL2aと電流指令IL2*との差分が打ち消されるように第2昇圧コンバータ43が制御されるから、リアクトルL2の電流指令IL2*の絶対値を用いる場合でも、実施例と同様の効果を奏することができる。なお、第2電流検出器43の異常を仮判定しているときについても同様に考えることができる。 In the boost converter device mounted on the electric vehicle 20 of the embodiment, the ECU 50 determines the fixed time Tc based on the absolute value of the current IL2a of the reactor L2 when tentatively determining the abnormality of the first current detector 41. It was supposed to be set. However, the ECU 50 may set the fixed time Tc based on the absolute value of the current command IL2 * of the reactor L2 when tentatively determining the abnormality of the first current detector 41. In this case, for example, the horizontal axis of the fixed time setting map in FIG. 3 is replaced with "absolute value of the current IL2a of the reactor L2" to "absolute value of the current command IL2 * of the reactor L2". Since the second boost converter 43 is controlled so that the difference between the current IL2a of the reactor L2 and the current command IL2 * from the current sensor 43a is canceled, it is carried out even when the absolute value of the current command IL2 * of the reactor L2 is used. The same effect as the example can be achieved. The same can be considered when the abnormality of the second current detector 43 is tentatively determined.
 実施例の電気自動車20に搭載される昇圧コンバータ装置では、ECU50は、第1電流検出器41の異常を仮判定しているときに、リアクトルL2の電流IL2aの絶対値が大きいほど短くなるように確定時間Tcを設定するものとした。しかし、ECU50は、第1電流検出器41の異常を仮判定しているときに、電流センサ26bからのバッテリ26の電流Ibから電流センサ43aからのリアクトルL2の電流IL2aを減じてリアクトルL1の推定電流IL1esを演算し、このリアクトルL1の推定電流IL1esに基づいて確定時間Tcを設定するものとしてもよい。この場合、例えば、図3の確定時間設定用マップの横軸を「リアクトルL2の電流IL2aの絶対値」から「リアクトルL1の推定電流IL1esの絶対値」に置き換えたものが用いられる。図4に示したように、電流センサ43aにより検出されるリアクトルL2の電流IL2a(実電流IL2act)の絶対値が大きいほどリアクトルL1の実電流IL1actの絶対値が大きくなるから、リアクトルL1の推定電流IL1esの絶対値を用いる場合でも、実施例と同様の効果を奏することができる。なお、第2電流検出器43の異常を仮判定しているときについても同様に考えることができる。 In the boost converter device mounted on the electric vehicle 20 of the embodiment, when the ECU 50 tentatively determines the abnormality of the first current detector 41, the larger the absolute value of the current IL2a of the reactor L2, the shorter the length. The fixed time Tc was set. However, when the ECU 50 temporarily determines the abnormality of the first current detector 41, the ECU 50 estimates the reactor L1 by subtracting the current IL2a of the reactor L2 from the current sensor 43a from the current Ib of the battery 26 from the current sensor 26b. The current IL1es may be calculated, and the fixed time Tc may be set based on the estimated current IL1es of the reactor L1. In this case, for example, the horizontal axis of the fixed time setting map in FIG. 3 is replaced with "the absolute value of the current IL2a of the reactor L2" to "the absolute value of the estimated current IL1es of the reactor L1". As shown in FIG. 4, the larger the absolute value of the current IL2a (actual current IL2act) of the reactor L2 detected by the current sensor 43a, the larger the absolute value of the actual current IL1act of the reactor L1. Even when the absolute value of IL1es is used, the same effect as in the examples can be obtained. The same can be considered when the abnormality of the second current detector 43 is tentatively determined.
 実施例の電気自動車20に搭載される昇圧コンバータ装置では、ECU50は、第1電流検出器41の異常を検出(確定)すると、第1,第2昇圧コンバータ40,42を駆動停止するものとした。しかし、ECU50は、第1電流検出器41の異常を検出すると、第1昇圧コンバータ40だけを駆動停止する、即ち、第2昇圧コンバータ42の駆動を継続するものとしてもよい。こうすれば、第1電流検出器41の異常を検出しても、高電圧側電力ライン32の電圧VHを低電圧側電力ライン34の電圧VLに対して高くすることができる。このとき、第1昇圧コンバータ40のトランジスタT11はオフであるから、トランジスタT11を介して高電圧側電力ライン32から低電圧側電力ライン34に電流は流れない。このため、第1,第2昇圧コンバータ40,42間で電流還流は発生しない。なお、第2電流検出器43の異常を検出(確定)したときについても同様に考えることができる。 In the boost converter device mounted on the electric vehicle 20 of the embodiment, when the ECU 50 detects (determines) an abnormality of the first current detector 41, the first and second boost converters 40 and 42 are driven and stopped. .. However, when the ECU 50 detects an abnormality in the first current detector 41, it may stop driving only the first boost converter 40, that is, continue driving the second boost converter 42. In this way, even if the abnormality of the first current detector 41 is detected, the voltage VH of the high voltage side power line 32 can be made higher than the voltage VL of the low voltage side power line 34. At this time, since the transistor T11 of the first boost converter 40 is off, no current flows from the high voltage side power line 32 to the low voltage side power line 34 via the transistor T11. Therefore, no current return occurs between the first and second boost converters 40 and 42. The same can be considered when an abnormality of the second current detector 43 is detected (determined).
 実施例の電気自動車20に搭載される昇圧コンバータ装置では、バッテリ26側とインバータ24側とに対して互いに並列に接続された第1,第2昇圧コンバータ40,42を備えるものとした。しかし、バッテリ26側とインバータ24側とに対して互いに並列に接続された3つ以上の昇圧コンバータを備えるものとしてもよい。 The boost converter device mounted on the electric vehicle 20 of the embodiment includes first and second boost converters 40 and 42 connected in parallel to the battery 26 side and the inverter 24 side. However, it may be provided with three or more boost converters connected in parallel to the battery 26 side and the inverter 24 side.
 実施例の電気自動車20では、蓄電装置として、バッテリ26が用いられるものとした。しかし、蓄電装置として、キャパシタが用いられるものとしてもよい。 In the electric vehicle 20 of the embodiment, the battery 26 is assumed to be used as the power storage device. However, a capacitor may be used as the power storage device.
 実施例では、昇圧コンバータ装置は、走行用のモータ22を備える電気自動車20に搭載されるものとした。しかし、昇圧コンバータ装置は、走行用のモータに加えてエンジンも備えるハイブリッド自動車に搭載されるものとしてもよい。また、昇圧コンバータ装置は、自動車以外の車両や船舶、航空機などの移動体に搭載されるものとしてもよい。さらに、昇圧コンバータ装置は、建設設備などの移動しない設備に搭載されるものとしてもよい。 In the embodiment, the boost converter device is mounted on the electric vehicle 20 provided with the traveling motor 22. However, the boost converter device may be mounted on a hybrid vehicle that includes an engine in addition to a traveling motor. Further, the boost converter device may be mounted on a moving body such as a vehicle, a ship, or an aircraft other than an automobile. Further, the boost converter device may be mounted on non-moving equipment such as construction equipment.
 実施例の主要な要素と課題を発明の概要の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、トランジスタT11,T12,T21,T22とダイオードD11,D12,D21,D22とリアクトルL1,L2を有する第1,第2昇圧コンバータ40,42が「複数の昇圧コンバータ」に相当し、第1,第2第1電流検出器41,43が「複数の電流検出器」に相当し、ECU50が「制御装置」に相当する。 The correspondence between the main elements of the examples and the main elements of the invention described in the column of the outline of the invention will be described. In the embodiment, the first and second boost converters 40 and 42 having transistors T11, T12, T21, T22, diodes D11, D12, D21, D22 and reactors L1 and L2 correspond to "plurality of boost converters". The first, second and first current detectors 41 and 43 correspond to "a plurality of current detectors", and the ECU 50 corresponds to a "control device".
 なお、実施例の主要な要素と課題を発明の概要の欄に記載した発明の主要な要素との対応関係は、実施例が発明の概要の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。即ち、発明の概要の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は発明の概要の欄に記載した発明の具体的な一例に過ぎないものである。 It should be noted that the correspondence between the main elements of the examples and the main elements of the invention in which the problems are described in the column of the outline of the invention is specific to the mode in which the examples carry out the invention described in the column of the outline of the invention. Since it is an example for the purpose of explaining, the elements of the invention described in the column of the outline of the invention are not limited. That is, the interpretation of the invention described in the column of the outline of the invention should be made based on the description in the column, and the examples are merely specific examples of the invention described in the column of the outline of the invention. Is.
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above with reference to examples, the present invention is not limited to these examples, and various embodiments are used without departing from the gist of the present invention. Of course, it can be done.
 本発明は、昇圧コンバータ装置の製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of boost converter devices and the like.

Claims (5)

  1.  蓄電装置と負荷とに対して互いに並列に接続され、それぞれ、上アームと下アームとリアクトルとを有すると共に前記蓄電装置側の電力を昇圧して前記負荷側に供給可能な複数の昇圧コンバータと、
     それぞれの前記リアクトルの電流を検出する複数の電流検出器と、
     それぞれの前記昇圧コンバータについて、対応する前記リアクトルの目標電流と、対応する前記電流検出器の検出値と、の差分が打ち消されるように制御する制御装置と、
     を備える昇圧コンバータ装置であって、
     前記制御装置は、それぞれの前記電流検出器について、異常の仮判定が確定時間に亘って継続したときに異常を確定し、
     前記確定時間は、
      異常を仮判定していない前記電流検出器の検出値の絶対値が大きいほど短くなるように設定され、または、
      異常を仮判定していない前記電流検出器に対応する前記リアクトルの前記目標電流の絶対値が大きいほど短くなるように設定され、または、
      前記蓄電装置および前記負荷のうちの何れかの電流と異常を仮判定していない前記電流検出器の検出値とに基づいて推定される、異常を仮判定している前記電流検出器に対応する前記リアクトルの推定電流の絶対値が大きいほど短くなるように設定される、
     昇圧コンバータ装置。
    A plurality of boost converters connected in parallel to the power storage device and the load, each having an upper arm, a lower arm, and a reactor, and capable of boosting the power on the power storage device side and supplying the power to the load side.
    A plurality of current detectors that detect the current of each of the reactors, and
    For each boost converter, a control device that controls so that the difference between the target current of the corresponding reactor and the detection value of the corresponding current detector is canceled out.
    It is a boost converter device equipped with
    The control device determines the abnormality for each of the current detectors when the provisional determination of the abnormality continues for the determination time.
    The fixed time is
    It is set so that the larger the absolute value of the detected value of the current detector that has not tentatively determined the abnormality, the shorter it is, or
    It is set so that the larger the absolute value of the target current of the reactor corresponding to the current detector for which an abnormality has not been tentatively determined, the shorter the value.
    Corresponds to the current detector for which an abnormality is tentatively determined, which is estimated based on the current of any of the power storage device and the load and the detection value of the current detector for which the abnormality is not tentatively determined. The larger the absolute value of the estimated current of the reactor, the shorter it is set.
    Boost converter device.
  2.  請求項1記載の昇圧コンバータ装置であって、
     それぞれの前記電流検出器は、対応する前記リアクトルの電流を検出する第1,第2電流センサを有し、
     前記制御装置は、それぞれの前記電流検出器について、前記第1,第2電流センサの検出値の差分が閾値以上のときに異常を仮判定する、
     昇圧コンバータ装置。
    The boost converter device according to claim 1.
    Each of the current detectors has first and second current sensors that detect the current of the corresponding reactor.
    The control device tentatively determines an abnormality for each of the current detectors when the difference between the detected values of the first and second current sensors is equal to or greater than the threshold value.
    Boost converter device.
  3.  請求項2記載の昇圧コンバータ装置であって、
     それぞれの前記電流検出器は、前記第1電流センサの検出値を前記電流検出器の検出値とする、
     昇圧コンバータ装置。
    The boost converter device according to claim 2.
    Each of the current detectors uses the detection value of the first current sensor as the detection value of the current detector.
    Boost converter device.
  4.  請求項1ないし3のうちの何れか1つの請求項に記載の昇圧コンバータ装置であって、
     前記制御装置は、前記負荷の目標供給電圧と供給電圧との差分が打ち消されるように前記複数の昇圧コンバータを介して前記蓄電装置側から前記負荷側に供給すべき目標供給電流を設定し、前記目標供給電流に基づいてそれぞれの前記リアクトルの前記目標電流を設定する、
     昇圧コンバータ装置。
    The boost converter device according to any one of claims 1 to 3.
    The control device sets a target supply current to be supplied from the power storage device side to the load side via the plurality of boost converters so that the difference between the target supply voltage of the load and the supply voltage is canceled. The target current of each of the reactors is set based on the target supply current.
    Boost converter device.
  5.  請求項1ないし4のうちの何れか1つの請求項に記載の昇圧コンバータ装置であって、
     前記制御装置は、前記複数の電流検出器のうちの1つの異常を確定すると、前記複数の昇圧コンバータの全てを駆動停止する、または、異常を確定した前記電流検出器に対応する前記昇圧コンバータだけを駆動停止する、
     昇圧コンバータ装置。
    The boost converter device according to any one of claims 1 to 4.
    When the control device determines an abnormality of one of the plurality of current detectors, it drives and stops all of the plurality of boost converters, or only the boost converter corresponding to the current detector for which the abnormality is confirmed. To stop driving,
    Boost converter device.
PCT/JP2019/037328 2019-09-24 2019-09-24 Step-up converter device WO2021059336A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/037328 WO2021059336A1 (en) 2019-09-24 2019-09-24 Step-up converter device
CN201980100712.1A CN114503416A (en) 2019-09-24 2019-09-24 Boost converter device
JP2021548005A JP7197023B2 (en) 2019-09-24 2019-09-24 Boost converter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037328 WO2021059336A1 (en) 2019-09-24 2019-09-24 Step-up converter device

Publications (1)

Publication Number Publication Date
WO2021059336A1 true WO2021059336A1 (en) 2021-04-01

Family

ID=75165196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037328 WO2021059336A1 (en) 2019-09-24 2019-09-24 Step-up converter device

Country Status (3)

Country Link
JP (1) JP7197023B2 (en)
CN (1) CN114503416A (en)
WO (1) WO2021059336A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339625A1 (en) * 2022-08-15 2024-03-20 General Electric Technology GmbH Improvements in or relating to sensors for use in hvdc power transmission networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131787A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Power supply, and vehicle therewith
JP2012105511A (en) * 2010-11-12 2012-05-31 Toyota Motor Corp Driver
JP2013106408A (en) * 2011-11-11 2013-05-30 Toyota Motor Corp Power supply system
JP2017153241A (en) * 2016-02-24 2017-08-31 本田技研工業株式会社 Power supply device, equipment, and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131787A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Power supply, and vehicle therewith
JP2012105511A (en) * 2010-11-12 2012-05-31 Toyota Motor Corp Driver
JP2013106408A (en) * 2011-11-11 2013-05-30 Toyota Motor Corp Power supply system
JP2017153241A (en) * 2016-02-24 2017-08-31 本田技研工業株式会社 Power supply device, equipment, and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339625A1 (en) * 2022-08-15 2024-03-20 General Electric Technology GmbH Improvements in or relating to sensors for use in hvdc power transmission networks

Also Published As

Publication number Publication date
CN114503416A (en) 2022-05-13
JPWO2021059336A1 (en) 2021-04-01
JP7197023B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
JP6911689B2 (en) Power supply
US10737681B2 (en) Drive unit, vehicle, and control method for drive unit
JP6693446B2 (en) Drive
WO2012002082A1 (en) Electric automobile
JP6717239B2 (en) Boost converter device
JP6299734B2 (en) Power supply
WO2006095497A1 (en) Load drive device, vehicle, and abnormality processing method in load drive device
US10348188B2 (en) Vehicle and control method therefor
WO2021059336A1 (en) Step-up converter device
JP2018085882A (en) Drive unit
JP4590960B2 (en) Electric motor drive
JP2011109849A (en) Device for controlling power supply system, and vehicle mounting the same
JP2019075886A (en) Boost converter
US11056975B2 (en) Voltage conversion device
JP7200747B2 (en) power supply
US10432094B2 (en) Boost converter device and control method for boost converter device
JP6740956B2 (en) Vehicle power supply
JP6747181B2 (en) Power supply and automobile
JP6939399B2 (en) Boost converter device
JP6816695B2 (en) Boost converter device
JP7156079B2 (en) Boost converter device
JP6962203B2 (en) Boost system
JP2010239812A (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946821

Country of ref document: EP

Kind code of ref document: A1