WO2021059331A1 - Smoothing filter device and smoothing method - Google Patents

Smoothing filter device and smoothing method Download PDF

Info

Publication number
WO2021059331A1
WO2021059331A1 PCT/JP2019/037289 JP2019037289W WO2021059331A1 WO 2021059331 A1 WO2021059331 A1 WO 2021059331A1 JP 2019037289 W JP2019037289 W JP 2019037289W WO 2021059331 A1 WO2021059331 A1 WO 2021059331A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
smoothing
time
standard deviation
error
Prior art date
Application number
PCT/JP2019/037289
Other languages
French (fr)
Japanese (ja)
Inventor
網嶋 武
龍平 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/037289 priority Critical patent/WO2021059331A1/en
Priority to JP2021544721A priority patent/JP6952944B2/en
Publication of WO2021059331A1 publication Critical patent/WO2021059331A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Definitions

  • the present invention relates to a smoothing filter device and a smoothing method for smoothing time-series data of observed values.
  • Non-Patent Document 1 describes a Kalman filter, which is one of smoothing filters.
  • the smoothing process the information of the observation error covariance matrix and the drive noise covariance matrix set in the smoothing filter is used.
  • the observation error covariance matrix is a covariance matrix of the error from the true value of the observed value, and is derived using the observation error standard deviation.
  • Observation error The standard deviation is a parameter that indicates the observation accuracy of the observation method for obtaining the observed value. For example, when smoothing time-series data in which observation values obtained by observation methods having different observation accuracy are mixed, an observation error covariance matrix for each observation method is set in the smoothing filter.
  • the drive noise covariance matrix is a covariance matrix of the drive noise vector representing the ambiguity of the motion of the observation target, and is derived using the drive noise standard deviation.
  • the drive noise covariance matrix is a filter setting parameter that represents the magnitude of ambiguity in the motion model to be observed.
  • the smoothing performance of the smoothing filter depends on the setting value of the observation error standard deviation for deriving the observation error covariance matrix and the setting value of the drive noise standard deviation for deriving the drive noise covariance matrix.
  • the conventional smoothing filter device is driven according to the difference in the observation method when smoothing the time series data in which the observation values in which the common observation target is observed by multiple observation methods having different observation accuracy and observation timing are mixed. No adjustment of the noise co-dispersion matrix is performed. Therefore, there is a problem that the smoothing performance of the smoothing filter differs depending on the observation method and uniform smoothing may not be possible.
  • the present invention solves the above-mentioned problems, and is used in a plurality of observation methods in smoothing processing of time-series data in which observation values in which a common observation target is observed by a plurality of observation methods having different observation accuracy and observation timing are mixed. It is an object of the present invention to obtain a smoothing filter device and a smoothing method capable of matching the smoothing performance corresponding to each of the above.
  • the smoothing filter device inputs time-series data in which observation values in which a common observation target is observed by a plurality of observation methods having different observation accuracy and observation timing are input, and the time interval of the observation time of the observation values is input.
  • the smoothness error standard deviation corresponding to each of the multiple observation methods can be obtained.
  • the second calculation unit that calculates the drive noise standard deviation at each observation time, the time interval of the observation time calculated by the first calculation unit, and the second calculation unit calculated so that the values are the same.
  • the prediction unit that calculates the prediction vector and prediction error covariance matrix of the state of the observation target, and each observation
  • a smoothing unit for calculating a smoothing vector and a smoothing error covariance matrix using the observation error standard deviation at time and the prediction vector and the prediction error covariance matrix calculated by the prediction unit is provided.
  • the driving noise standard deviation at each observation time is calculated by using the tracking index so that the smoothing error standard deviation corresponding to each of the plurality of observation methods has the same value, and the calculated driving noise standard is calculated.
  • the deviation is used to smooth the time-series data of the observed values.
  • it is possible to match the smoothing performance corresponding to each of the multiple observation methods. ..
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the smoothing filter device according to the first embodiment
  • FIG. 6B is a block diagram that executes software that realizes the function of the smoothing filter device according to the first embodiment. It is a block diagram which shows the hardware configuration.
  • FIG. 1 is a block diagram showing a configuration of a smoothing filter device 1 according to the first embodiment.
  • the smoothing filter device 1 is, for example, a Kalman filter that smoothes time-series data of observed values using a motion model and an observation model.
  • the motion model to be observed includes a constant velocity linear motion model, and the constant velocity linear motion model is defined by using the following equations (1) to (6).
  • x k is the state vector representing the state of the observed object (the position and velocity of the observation target) at time t k.
  • ⁇ k is a transition matrix of the state vector x k from the time t k to the time t k + 1.
  • T k is the difference between the previous time t k-1 and the time t k. That is, T k is the time interval of the observation time.
  • w k is a driving noise vector and indicates the ambiguity of the motion of the observed object. That is, the drive noise vector w k represents an error when the observation target deviates from the constant velocity linear motion.
  • s k is the true value of the object of observation state
  • s k dot is the time rate of change of the true value s k.
  • T is a transposed vector of the vector A.
  • Q k is a drive noise covariance matrix, and is a covariance matrix of the drive noise vector w k .
  • the drive noise covariance matrix Q k represents the magnitude of the ambiguity of the motion model to be observed.
  • E is the symbol representing the average, q k is the power spectral density of the drive noise at time t k.
  • ⁇ w and k are the driving noise standard deviations at time t k.
  • the observation model of the sensor that observes the observation target can be represented by, for example, the following equations (7) to (9).
  • z k is the observed value at time t k
  • H is a known observation matrix for extracting only the position vector from the state vector x k
  • v k is the observation noise of the observed value at time t k (also referred to as the observation error).
  • R k is the observation error covariance matrix at time t k, represented by a scalar value.
  • ⁇ v, k 2 is the observation error variance at time t k
  • ⁇ v, k is the observation error standard deviation at time t k.
  • the smoothing filter device 1 includes an initial value setting unit 10, a first calculation unit 11, a second calculation unit 12, a prediction unit 13, and a smoothing unit 14.
  • Prediction unit 13 uses the driving noise standard deviation sigma w, k at time interval T k and the time t k of the observation time, the equation (2) and (4), the time t k in the driving noise covariance matrix Q Calculate k and the transition matrix ⁇ k.
  • the prediction unit 13 uses a [Phi k driving noise covariance matrix Q k and the transition matrix at time t k, the observation target at time t k and a smoothing vector x k hat and smoothing the error covariance matrix P k hat ,
  • the prediction vector x k + 1 bar of the observation target and the prediction error covariance matrix P k + 1 bar at the next time t k + 1 are calculated according to the following equation (10).
  • ⁇ k T is a transposed matrix of the transition matrix ⁇ k.
  • Smoothing unit 14 the above equation (9) using the observation error standard deviation ⁇ v, k + 1 at the next time t k + 1, and calculates the observation error covariance matrix R k + 1 at the next time t k + 1.
  • Smoothing unit 14 the next time t observation error covariance matrix in k + 1 R k + 1, and the observation matrix at the next time t k + 1, to be observed at the next time t k + 1 prediction vector x k + 1 bar and the prediction error both at the next time t k + 1
  • the smoothing vector x k + 1 hat of the observation target and the smoothing error covariance matrix P k + 1 hat at the next time t k + 1 are calculated according to the following equation (11).
  • H k + 1 T is a transposed matrix of the observation matrix H k + 1 at the next time t k + 1.
  • the smoothing process by the smoothing filter device 1 requires a drive noise covariance matrix Q k and an observation error covariance matrix R k as shown in the above equations (10) and (11). That is, the smoothing process requires information on the drive noise standard deviation ⁇ w, k and the observation error standard deviation ⁇ v, k for deriving them.
  • the smoothing performance in the smoothing filter device 1 depends on the set values of the drive noise standard deviation ⁇ w, k and the observation error standard deviation ⁇ v, k.
  • the Kalman filter is an ⁇ - ⁇ filter whose gain is determined from the prediction error covariance matrix P k + 1 bar and the observation error standard deviation ⁇ v, k. Therefore, there is a relationship shown in the following equations (12) and (13) between the steady-state gain K in the Kalman filter and the filter setting parameters initially set in the Kalman filter.
  • is the gain of position in the ⁇ - ⁇ filter
  • is the gain of velocity
  • T is the time interval (sampling interval) of the observation time.
  • the tracking index ⁇ is a parameter representing the behavior of the observation error and the drive noise, and is a function of the observation error standard deviation ⁇ v , the drive noise standard deviation ⁇ w, and the time interval T of the observation time, as shown in the following equation (14). It is expressed as. Further, the tracking index ⁇ has the relationship shown in the following equation (14) using ⁇ and ⁇ . However, q is the power spectrum density of the driving noise. From the above equation (13) and the following equation (14), it can be seen that if the tracking index ⁇ is determined, ⁇ and ⁇ are uniquely determined.
  • FIG. 2 is an image diagram showing a smoothing process by the smoothing filter device 1.
  • the observation error standard deviation ⁇ v, k is a parameter corresponding to the observation accuracy of the observation method.
  • the observation timing interval (sampling interval) of the observation time is T k.
  • the observation error standard deviation in the observation method (1) is ⁇ v, k (1)
  • the sampling interval is T (1).
  • the observation error standard deviation in the observation method (2) is ⁇ v, k (2)
  • the sampling interval is T (2).
  • ⁇ v, k (1) and ⁇ v, k (2) are different from each other, and T (1) and T (2) are different from each other.
  • FIG. 2 it is assumed that the observation method (1) has higher observation accuracy than the observation method (2).
  • time-series data in which observation values in which common observation targets are observed by the observation method (1) and the observation method (2) are mixed is input to the smoothing filter device 1, it is shown on the left side of FIG.
  • the observation method (1) since the observation method (1) has higher observation accuracy than the observation method (2), the observed values shown by the circled plots are close to the true values.
  • the observed values (indicated by the plot of square marks) observed by the observation method (2) having low observation accuracy have a large degree of deviation from the true values. Since the observation timings of the observation method (1) and the observation method (2) are different, the time interval between the observed values is also different from moment to moment.
  • the conventional smoothing filter When smoothing time-series data in which the observed values observed by the observation method (1) and the observation method (2) are mixed, the conventional smoothing filter has an observation error standard deviation (for the observation accuracy of the observation method). (Equivalent) is set for each observation method, but the drive noise standard deviation associated with the motion model to be observed is set regardless of the observation method. For this reason, in the conventional smoothing filter, when smoothing time-series data in which observation values in which common observation targets are observed by the observation method (1) and the observation method (2) are mixed, the observation method is different. The drive noise co-dispersion matrix Qk was not adjusted accordingly, and there was a possibility that the smoothing performance would differ depending on the observation method and the observed values could not be smoothed uniformly.
  • FIG. 3 is an image diagram showing smoothing processing for random noise.
  • N1 is random noise before smoothing
  • N2 is random noise after smoothing by the smoothing filter device 1.
  • S ( ⁇ , ⁇ ) As an index of the smoothing performance of the smoothing filter that smoothes the random noise N1 to the random noise N2 as shown in FIG. 3, there is a noise suppression ratio S ( ⁇ , ⁇ ) of the smoothing value in the steady state.
  • the noise suppression ratio S ( ⁇ , ⁇ ) can be calculated from the following equation (15).
  • the noise suppression ratio S ( ⁇ , ⁇ ) is a function of only ⁇ and ⁇ . Therefore, if the tracking index ⁇ is determined, the noise suppression ratio S ( ⁇ , ⁇ ) is uniquely determined. Further, when the noise suppression ratio S ( ⁇ , ⁇ ) is determined, the smoothing error standard deviation ⁇ smoothing error can be calculated from the following equation (16) using the square root of the noise suppression ratio S ( ⁇ , ⁇ ). it can.
  • ⁇ v is the observation error standard deviation.
  • the initial value setting unit 10 sets the initial values ⁇ 1,0 and ⁇ 2,0 for the tracking index ⁇ so that the smoothing error standard deviation ⁇ smoothing error is the same in the observation method (1) and the observation method (2).
  • the calculated initial values ⁇ 1,0 and ⁇ 2,0 are set in the second calculation unit 12.
  • ⁇ 1,0 is the initial value of the tracking index in the observation method (1)
  • ⁇ 2 , 0 is the initial value of the tracking index in the observation method (2).
  • the initial value setting unit 10 can be a component provided in an external device provided separately from the smoothing filter device 1. In this case, the second calculation unit 12 included in the smoothing filter device 1 sets the initial value of the tracking index from the initial value setting unit 10 included in the external device.
  • the observation method (1) and observation methods observations of common observation target is observed by (2) inputs the time-series data are mixed, the time interval T k of observation time of observations Is calculated.
  • the second calculation unit 12 uses the tracking index gamma, as smooth error standard deviation ⁇ smoothing errors of observation methods (1) and observation method (2) of the same value, the driving noise standard deviation at time t k Calculate ⁇ w and k.
  • the second calculation unit 12 calculates the drive noise standard deviation ⁇ w, k at time t k so that the tracking index ⁇ k at time t k and the initial value ⁇ 1, 0 or ⁇ 2, 0 match.
  • the smoothing filter device 1 uses the drive noise standard deviations ⁇ w and k calculated by the second calculation unit 12, and observes that a common observation target is observed by the observation method (1) and the observation method (2). In the smoothing process of time-series data in which values are mixed, the smoothing performance for the observed value by the observation method (1) and the smoothing performance for the observed value by the observation method (2) can be matched.
  • FIG. 4 is a flowchart showing the setting process of the initial values ⁇ 1,0 and ⁇ 2,0.
  • time-series data in which observation values in which common observation targets are observed by the observation methods (1) and observation methods (2), which have different observation accuracy and timing, are input to the smoothing filter device 1.
  • the time interval T 0 of the observation time of the observation method (1) and the observation method (2) is 1.0 (seconds), respectively.
  • the initial value setting unit 10 calculates the initial value ⁇ 1,0 of the tracking index ⁇ related to the observation method (1) having higher observation accuracy than the observation method (2) (step ST1).
  • the initial value setting unit 10 has a known observation error standard deviation ⁇ v1 corresponding to the observation method (1) for deriving a predetermined constant smoothing error standard deviation ⁇ smoothing error , and an observation method ( A known observation error standard deviation ⁇ v2 corresponding to 2) is set.
  • the initial value setting unit 10 determines the drive noise standard deviation ⁇ w1 , 0 corresponding to the observation method (1). For example, the initial value setting unit 10 determines the initial value ⁇ w1,0 of the drive noise standard deviation from the above equations (15) and (14) by using the smoothing error standard deviation represented by the following equation (17). ..
  • the drive corresponding to the appropriate smoothing error standard deviation is performed.
  • the noise standard deviation ⁇ w1,0 may be determined. If the smoothing error standard deviation is smaller than the observed error standard deviation ⁇ v1 , it can be said that it is an appropriate value that gives a smoothing effect. However, if the smoothing error standard deviation is significantly smaller than the observation error standard deviation ⁇ v1 , the tracking performance of the smoothing filter device 1 to the observation target deteriorates. Therefore, it is necessary to determine the smoothing error standard deviation within an acceptable range.
  • the actual gains ⁇ 1 and ⁇ 1 cannot be obtained analytically. Therefore, in the smoothing filter device 1, the update equation of the Kalman filter shown in the above equations (10) to (11) is repeatedly executed until the value of the steady gain K shown in the above equation (12) converges, and then converges. The gains ⁇ 1 and ⁇ 1 are determined from the values of the steady gain K obtained.
  • the initial value setting unit 10 calculates S ( ⁇ 1 , ⁇ 1 ) ⁇ v1 2 corresponding to the observation method (1) (step ST2).
  • the smoothing error standard deviations corresponding to the observation method (1) and the observation method (2) to have the same value, the following equation (19) must be established.
  • the initial value setting unit 10 calculates the drive noise standard deviation ⁇ w2 , 0 by solving the optimization problems shown in the following equations (20) and (21). Since the following optimization problem cannot be solved analytically, the search range from the minimum value ⁇ w2,0, min to the maximum value ⁇ w2,0, max is searched for each step ⁇ w2,0 of a constant value. By doing so, the drive noise standard deviation ⁇ w2 , 0 corresponding to the observation method (2) is determined.
  • the initial value setting unit 10 sets the minimum value ⁇ w2,0, min to the drive noise standard error ⁇ w2,0 (step ST3). Subsequently, the initial value setting unit 10, gain alpha 1 and beta 1 when the same procedure was determined from the value of the steady gain K of the gain alpha 2 and beta 2, gain alpha 2 and beta 2 and known observation using the error standard deviation sigma v2, according to the above formula (15) and (17), S ( ⁇ 2 , ⁇ 2) corresponding to the observation method (2) ⁇ v2,0 2 is calculated (step ST4). Next, the initial value setting unit 10 confirms whether or not the calculated value satisfies the above equation (21) (step ST5).
  • step ST5 If not satisfying the above formula (19) (step ST5; NO), the initial value setting unit 10, a value obtained by adding the step .DELTA..sigma W2,0 to the current sigma W2,0, next drive noise standard deviation sigma w2, Set to 0 (step ST6).
  • the process from step ST4 is executed using the drive noise standard deviation ⁇ w2, 0 set at this time. These processes are repeated within the above search range.
  • step ST5 the initial value setting unit 10 adopts the drive noise standard deviation ⁇ w2, 0 at this time.
  • the above equation (19) holds, so from the above equation (21), J ( ⁇ w2,0 ) becomes almost zero.
  • FIG. 5 is a flowchart showing a smoothing method according to the first embodiment.
  • time-series data in which observation values in which common observation targets are observed by the observation method (1) and the observation method (2) are mixed is input to the smoothing filter device 1, and a second calculation unit is used.
  • the initial value ⁇ 1,0 and the initial value ⁇ 2,0 calculated by the initial value setting unit 10 are set in 12.
  • the time series data observed value common observation target is observed by the observation method (1) and observation method (2) are mixed is input, the time interval T k of observation time Calculate sequentially (step ST1a).
  • the second calculation unit 12 updates the drive noise standard deviations ⁇ w and k at time t k (step ST2a).
  • the second calculation unit 12, the driving noise standard deviation sigma w, k at time t k, is calculated according to the following equation (23) or the following formula (24).
  • the relationship of the following equation (25) is derived using the drive noise standard deviation ⁇ w, k calculated by the second calculation unit 12 according to the following equation (23) and the above equation (14).
  • the tracking index gamma 1, k is at time t k, a tracking index corresponding to the observation method (1).
  • the drive noise standard deviation ⁇ w, k at time t k is calculated so that the tracking index ⁇ 1, k and the initial value ⁇ 1, 0 match.
  • the relationship of the following equation (26) is derived by the same procedure as the following equation (25).
  • Tracking Index gamma 2 k is at time t k, a tracking index corresponding to the observation method (2).
  • the smoothing filter device 1 the smoothing error standard deviation at each time t k is kept constant.
  • the prediction unit 13 performs prediction processing (step ST3a). For example, the prediction unit 13 calculates the prediction vector x k + 1 bar of the observation target and the prediction error covariance matrix P k + 1 bar at the next time t k + 1 according to the above equation (10). Subsequently, the smoothing portion 14 performs a smoothing process (step ST4a). For example, the smoothing unit 14 calculates the smoothing vector x k + 1 hat of the observation target and the smoothing error covariance matrix P k + 1 hat at the next time t k + 1 according to the above equation (11). The smoothing unit 14 outputs the smoothing vector x k + 1 hat and the smoothing error covariance matrix P k + 1 hat as the smoothing result of the observed value, and feeds it back to the prediction unit 13.
  • the smoothing filter device 1 includes a processing circuit for executing the processing from step ST1a to step ST4a shown in FIG.
  • the processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • CPU Central Processing Unit
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the smoothing filter device 1
  • FIG. 6B is a block diagram showing a hardware configuration that executes software that realizes the function of the smoothing filter device 1.
  • the input interface 100 is an interface that relays time-series data of observed values input from the sensor to the smoothing filter device 1.
  • the output interface 101 is an interface that relays information on the smoothing result output from the smoothing filter device 1 to the outside.
  • the processing circuit 102 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field-Programmable Gate Array), or a combination of these.
  • the functions of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14 in the smoothing filter device 1 may be realized by separate processing circuits, and these functions may be realized. May be realized in one processing circuit collectively.
  • the functions of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14 in the smoothing filter device 1 are software. , Firmware or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 104.
  • the processor 103 By reading and executing the program stored in the memory 104, the processor 103 reads and executes the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit in the smoothing filter device 1. It realizes 14 functions.
  • the smoothing filter device 1 includes a memory 104 for storing a program in which the processes from steps ST1a to ST4a in the flowchart shown in FIG. 5 are executed as a result when executed by the processor 103. These programs cause the computer to execute the procedure or method of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14.
  • the memory 104 is a computer-readable storage medium in which a program for making a computer function as an initial value setting unit 10, a first calculation unit 11, a second calculation unit 12, a prediction unit 13, and a smoothing unit 14 is stored. You may.
  • the memory 104 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile) semiconductor, an EPROM (Electrically-volatile), or the like.
  • the initial value setting unit 10 realizes the function by the processing circuit 102 which is the dedicated hardware, and the processor 103 sets the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14.
  • the function is realized by reading and executing the program stored in the memory 104.
  • the processing circuit can realize the above-mentioned functions by hardware, software, firmware or a combination thereof.
  • the MLAT synchronously receives signals transmitted from the aircraft by a plurality of sensors installed on the airport surface, and based on the arrival time difference (Time Difference Of Arrival; TDOA) between the signals received by the multiple sensors, the airport surface. Position the aircraft that exist in. However, since there is a time synchronization error (hereinafter referred to as clock offset) between the actual sensors, it is necessary to observe and estimate the value of the clock offset in advance.
  • the clock offset observation method includes a reference station method and a GPS (Global Positioning System) method.
  • the reference station method signals transmitted from reference stations with known positions are received by a plurality of receiving stations (corresponding to sensors) with known positions, which are distributed on the airport surface, and the reception times are relative to each other. This is a method of observing the target deviation as a clock offset.
  • GPS method GPS pulse signals are received from GPS satellites by each of a plurality of receiving stations (corresponding to sensors), and GPS between receiving stations is based on the GPS time obtained for each 1PPS (Pulse Per Second). This is a method of observing the relative time lag as a clock offset.
  • FIG. 7 is an image diagram showing an outline of positioning of the aircraft 30 in MLAT.
  • the receiving stations 21 to 24 installed on the airport surface 20 synchronously receive the signals transmitted from the aircraft 30, and solve the following equation (27) using the time difference in the reception timing between the receiving stations to solve the aircraft 30. Positioning is performed.
  • the positions of the receiving stations 21 to 24 on the airport surface 20 are known.
  • TDOA ij is the arrival time difference between the signal arriving at the i-th receiving station and the signal arriving at the j-th receiving station.
  • x is a position vector of the aircraft 30 to be positioned.
  • p i is the position vector of the i-th receiving station is a known value. For example, when performing three-dimensional positioning, at least three TDOAs are required, so four or more receiving stations are required.
  • the clock value of each receiving station at the time when the signal is received by each receiving station is referred to.
  • the clocks of the receiving station are not actually synchronized, it is necessary to estimate the asynchronous component by some method and compensate the TDOA by using the estimated asynchronous component.
  • FIG. 8 is an image diagram showing an outline of time management of the receiving station in MLAT.
  • the receiving stations 26 to 28 receive the same signal (radio wave) transmitted from the reference station 25.
  • the clocks of the receiving stations 26 to 28 are not synchronized, as shown in the following formula (28)
  • the arrival time difference of the above signal measured by using the clock provided by the receiving station and each receiving station from the reference station 25
  • the reference station method is a method of observing this difference ⁇ as a clock offset.
  • delta ij, reference station is an observation target in a reference station method
  • the i-th receiving station is a clock offset observations between the j-th receiving station, T i, the reference station, the i It is the reception time of the above signal measured by the clock provided in the second receiving station.
  • the difference ⁇ between the GPS time measured by the GPS pulse signal for each 1PPS and the time measured by the clock provided in the receiving station is observed as a clock offset. ..
  • delta ij GPS is a observation target in the GPS method is a clock offset observations between the i-th receiving station and the j th receiving station
  • T i GPS is the i It is the reception time of the above signal measured by the clock provided in the second receiving station.
  • Smoothing filter device 1 uses the tracking index gamma, as a smoothing error standard deviation corresponding to the smoothing error standard deviation and GPS method corresponding to the reference station method is the same value, the driving noise standard deviation at time t k sigma Calculate w and k.
  • the smoothing filter device 1 uses the calculated drive noise standard deviation ⁇ w, k at the time t k , and observes by the reference station method in the smoothing process of the time series data in which the observed values ⁇ ij, the reference station and ⁇ ij, and GPS are mixed. It is possible to match the smoothing performance with respect to the value and the smoothing performance with respect to the observed value by the GPS method.
  • FIG. 9 is a graph showing the relationship between the observation time of the clock offset and the smoothing error absolute value of the observed value.
  • the relationship shown in FIG. 9 is obtained by simulating clock offset observations by the reference station method and the GPS method, and smoothing time-series data in which the observed values obtained by these simulations are mixed.
  • the smoothing process is performed by the smoothing filter device 1 and a conventional smoothing filter.
  • the observation accuracy in the reference station method that is, the observation error standard deviation ⁇ v1 is set to 1 (nanosecond)
  • the observation error standard deviation ⁇ v2 in the GPS method is set to 15 (nanosecond).
  • the accuracy is inferior to the reference station method.
  • the relationship A showing the absolute smoothing error value by the square plot is the result of the smoothing process by the conventional smoothing filter device.
  • Relationship B which shows the absolute value of smoothing error by a round plot, is the result of smoothing processing by the smoothing filter device 1.
  • the processing for matching the smoothing performance between the reference station method and the GPS method is not performed. Therefore, the smoothing process of the conventional smoothing filter has a larger smoothing error than the smoothing process of the smoothing filter device 1.
  • FIG. 10 is a graph showing the results of Monte Carlo trials of smoothing the observed values of the clock offset, and the Monte Carlo simulation was performed 100 times for the smoothing processing of the observed values obtained by the simulation of the clock offset observation shown in FIG. It shows the mean squared error (RMSE) in each trial when it was tried.
  • RMSE mean squared error
  • the relationship C showing the RMSE by the square plot is the result of the smoothing process by the conventional smoothing filter device.
  • Relationship D which indicates RMSE by a round plot, is the result of smoothing by the smoothing filter device 1.
  • the smoothing process of the smoothing filter device 1 has a smaller RMSE than the smoothing process of the conventional smoothing filter.
  • the bistatic radar system is a system in which the transmitter and receiver of radar waves are placed apart from each other and connected by communication, and the communication between the transmitter and receiver is highly synchronized. It is required to be.
  • accuracy control of absolute time using an atomic clock for example, a rubidium clock
  • the time measurement in the atomic clock has lower measurement accuracy than the time measurement in GPS, and the time measured by the atomic clock may gradually drift and deviate from the true value. Therefore, the time measured by the atomic clock needs to be corrected using the GPS time.
  • the smoothing filter device 1 uses the tracking index to drive the smoothing error standard deviation ⁇ w, k so that the smoothing error standard deviation becomes the same value between the time measurement by the atomic clock and the time measurement by GPS. Is calculated, and smoothing is performed using the calculated drive noise standard deviations ⁇ w and k.
  • the smoothing performance with respect to the time measured by the atomic clock and the time measured by GPS It is possible to match the smoothing performance with respect to.
  • Time-series data in which observation values observed by two observation methods with different observation accuracy and timing are mixed, but the smoothing filter device 1 has observed values observed by three or more observation methods.
  • Time-series data in which is mixed can be smoothed. That is, the smoothing filter device 1 is set with the initial value of the tracking index ⁇ calculated so that the smoothing error standard deviations corresponding to each of the three or more observation methods have the same value. The smoothing filter device 1 can match the smoothing performance corresponding to three or more observation methods by using this initial value.
  • the driving noise standard at each observation time is used so that the smoothing error standard deviation corresponding to each of the plurality of observation methods becomes the same value by using the tracking index.
  • the deviation is calculated, and the calculated drive noise standard deviation is used to smooth the time-series data of the observed values.
  • the present invention is not limited to the above-described embodiment, and within the scope of the present invention, it is possible to modify any component of the embodiment or omit any component of the embodiment.
  • the smoothing filter device according to the present invention can be used for, for example, MLAT.
  • 1 smoothing filter device 10 initial value setting unit, 11 first calculation unit, 12 second calculation unit, 13 prediction unit, 14 smoothing unit, 20 airport surface, 21 receiving station, 22, 23, 24, 26, 27 , 28 receiving station, 25 reference station, 30 aircraft, 100 input interface, 101 output interface, 102 processing circuit, 103 processor, 104 memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Complex Calculations (AREA)

Abstract

This smoothing filter device (1) calculates, using a tracking index, a driving noise standard deviation at each observation time so that smoothing error standard deviations that respectively correspond to a plurality of observation methods reach the same value, and performs, using the calculated driving noise standard deviation, a smoothing process on time-series data of observed values.

Description

平滑フィルタ装置および平滑化方法Smoothing filter device and smoothing method
 本発明は、観測値の時系列データの平滑処理を行う平滑フィルタ装置および平滑化方法に関する。 The present invention relates to a smoothing filter device and a smoothing method for smoothing time-series data of observed values.
 従来から、センサによって観測された観測値の時系列データのばらつきを抑えることを目的として、平滑フィルタによって、観測値の時系列データの平滑処理が行われている。例えば、非特許文献1には、平滑フィルタの一つであるカルマンフィルタが記載されている。平滑処理には、平滑フィルタに設定された観測誤差共分散行列および駆動雑音共分散行列の情報が用いられる。 Conventionally, the smoothing filter has been used to smooth the time-series data of the observed values for the purpose of suppressing the variation in the time-series data of the observed values observed by the sensor. For example, Non-Patent Document 1 describes a Kalman filter, which is one of smoothing filters. For the smoothing process, the information of the observation error covariance matrix and the drive noise covariance matrix set in the smoothing filter is used.
 観測誤差共分散行列は、観測値の真値からの誤差の共分散行列であって、観測誤差標準偏差を用いて導出される。観測誤差標準偏差は、観測値を得る観測方法の観測精度を示すパラメータである。例えば、観測精度が異なる観測方法によって得られた観測値が混在した時系列データを平滑処理する場合、平滑フィルタには、観測方法ごとの観測誤差共分散行列が設定される。 The observation error covariance matrix is a covariance matrix of the error from the true value of the observed value, and is derived using the observation error standard deviation. Observation error The standard deviation is a parameter that indicates the observation accuracy of the observation method for obtaining the observed value. For example, when smoothing time-series data in which observation values obtained by observation methods having different observation accuracy are mixed, an observation error covariance matrix for each observation method is set in the smoothing filter.
 駆動雑音共分散行列は、観測対象の運動の曖昧さを表す駆動雑音ベクトルの共分散行列であり、駆動雑音標準偏差を用いて導出される。駆動雑音共分散行列は、観測対象の運動モデルの曖昧さの大きさを表すフィルタ設定パラメータである。平滑フィルタの平滑性能は、観測誤差共分散行列を導出するための観測誤差標準偏差の設定値と、駆動雑音共分散行列を導出するための駆動雑音標準偏差の設定値に依存する。 The drive noise covariance matrix is a covariance matrix of the drive noise vector representing the ambiguity of the motion of the observation target, and is derived using the drive noise standard deviation. The drive noise covariance matrix is a filter setting parameter that represents the magnitude of ambiguity in the motion model to be observed. The smoothing performance of the smoothing filter depends on the setting value of the observation error standard deviation for deriving the observation error covariance matrix and the setting value of the drive noise standard deviation for deriving the drive noise covariance matrix.
 従来の平滑フィルタ装置は、観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データを平滑処理する場合、観測方法の違いに応じた駆動雑音共分散行列の調整を行わない。このため、平滑フィルタの平滑性能が観測方法ごとに異なって均一な平滑化が行えない可能性があるという課題があった。 The conventional smoothing filter device is driven according to the difference in the observation method when smoothing the time series data in which the observation values in which the common observation target is observed by multiple observation methods having different observation accuracy and observation timing are mixed. No adjustment of the noise co-dispersion matrix is performed. Therefore, there is a problem that the smoothing performance of the smoothing filter differs depending on the observation method and uniform smoothing may not be possible.
 本発明は上記課題を解決するものであり、観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データの平滑処理において、複数の観測方法にそれぞれ対応する平滑性能を一致させることができる平滑フィルタ装置および平滑化方法を得ることを目的とする。 The present invention solves the above-mentioned problems, and is used in a plurality of observation methods in smoothing processing of time-series data in which observation values in which a common observation target is observed by a plurality of observation methods having different observation accuracy and observation timing are mixed. It is an object of the present invention to obtain a smoothing filter device and a smoothing method capable of matching the smoothing performance corresponding to each of the above.
 本発明に係る平滑フィルタ装置は、観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データを入力し、観測値の観測時刻の時間間隔を算出する第1の計算部と、観測誤差標準偏差、駆動雑音標準偏差および観測時刻の時間間隔の関数として表されるトラッキングインデックスを用いて、複数の観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値となるように、各観測時刻における駆動雑音標準偏差を算出する第2の計算部と、第1の計算部によって算出された観測時刻の時間間隔と、第2の計算部によって算出された各観測時刻における駆動雑音標準偏差と、観測対象の状態の平滑ベクトルおよび平滑誤差共分散行列とを用いて、観測対象の状態の予測ベクトルおよび予測誤差共分散行列を算出する予測部と、各観測時刻における観測誤差標準偏差と、予測部によって算出された予測ベクトルおよび予測誤差共分散行列とを用いて、平滑ベクトルおよび平滑誤差共分散行列を算出する平滑部を備える。 The smoothing filter device according to the present invention inputs time-series data in which observation values in which a common observation target is observed by a plurality of observation methods having different observation accuracy and observation timing are input, and the time interval of the observation time of the observation values is input. Using the first calculation unit that calculates the standard deviation of the observation error, the standard deviation of the driving noise, and the tracking index expressed as a function of the time interval of the observation time, the smoothness error standard deviation corresponding to each of the multiple observation methods can be obtained. The second calculation unit that calculates the drive noise standard deviation at each observation time, the time interval of the observation time calculated by the first calculation unit, and the second calculation unit calculated so that the values are the same. Using the drive noise standard deviation at each observation time and the smoothing vector and smoothing error covariance matrix of the state of the observation target, the prediction unit that calculates the prediction vector and prediction error covariance matrix of the state of the observation target, and each observation A smoothing unit for calculating a smoothing vector and a smoothing error covariance matrix using the observation error standard deviation at time and the prediction vector and the prediction error covariance matrix calculated by the prediction unit is provided.
 本発明によれば、トラッキングインデックスを用いて、複数の観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値となるように、各観測時刻における駆動雑音標準偏差が算出され、算出された駆動雑音標準偏差を用いて観測値の時系列データの平滑処理が行われる。観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データの平滑処理において、複数の観測方法にそれぞれ対応する平滑性能を一致させることができる。 According to the present invention, the driving noise standard deviation at each observation time is calculated by using the tracking index so that the smoothing error standard deviation corresponding to each of the plurality of observation methods has the same value, and the calculated driving noise standard is calculated. The deviation is used to smooth the time-series data of the observed values. In the smoothing process of time-series data in which observation values in which common observation targets are observed by multiple observation methods with different observation accuracy and observation timing are mixed, it is possible to match the smoothing performance corresponding to each of the multiple observation methods. ..
実施の形態1に係る平滑フィルタ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the smoothing filter apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る平滑フィルタ装置による平滑処理を示すイメージ図である。It is an image diagram which shows the smoothing process by the smoothing filter apparatus which concerns on Embodiment 1. FIG. ランダム雑音に対する平滑処理を示すイメージ図である。It is an image figure which shows the smoothing process for random noise. トラッキングインデックスの初期値の設定処理を示すフローチャートである。It is a flowchart which shows the setting process of the initial value of a tracking index. 実施の形態1に係る平滑化方法を示すフローチャートである。It is a flowchart which shows the smoothing method which concerns on Embodiment 1. 図6Aは、実施の形態1に係る平滑フィルタ装置の機能を実現するハードウェア構成を示すブロック図であり、図6Bは、実施の形態1に係る平滑フィルタ装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the smoothing filter device according to the first embodiment, and FIG. 6B is a block diagram that executes software that realizes the function of the smoothing filter device according to the first embodiment. It is a block diagram which shows the hardware configuration. 航空監視システムにおける航空機の測位の概要を示すイメージ図である。It is an image diagram which shows the outline of the positioning of an aircraft in an aviation surveillance system. 航空監視システムにおける受信局の時刻管理の概要を示すイメージ図である。It is an image diagram which shows the outline of the time management of a receiving station in an aviation surveillance system. クロックオフセットの観測時刻と観測値の平滑誤差絶対値との関係を示すグラフである。It is a graph which shows the relationship between the observation time of a clock offset and the smoothing error absolute value of an observed value. クロックオフセットの観測値の平滑処理のモンテカルロ試行した結果を示すグラフである。It is a graph which shows the result of the Monte Carlo trial of the smoothing processing of the observed value of the clock offset.
実施の形態1.
 図1は、実施の形態1に係る平滑フィルタ装置1の構成を示すブロック図である。平滑フィルタ装置1は、例えば、運動モデルおよび観測モデルを用いて観測値の時系列データを平滑化するカルマンフィルタである。観測対象の運動モデルには、等速直線運動モデルがあり、等速直線運動モデルは、下記式(1)から(6)を用いて定義される。下記式において、t(k=0,1,2,・・・)は、観測対象の観測時刻(サンプリング時刻)である。xは、時刻tにおける観測対象の状態(観測対象の位置および速度)を表す状態ベクトルである。Φは、時刻tから時刻tk+1への状態ベクトルxの遷移行列である。Tは、一つ前の時刻tk-1と時刻tとの差である。すなわち、Tは、観測時刻の時間間隔である。wは、駆動雑音ベクトルであり、観測対象の運動の曖昧さを示す。すなわち、駆動雑音ベクトルwは、観測対象が等速直線運動から逸脱したときの誤差を表している。sは、観測対象の状態の真値であり、sドットは、真値sの時間変化率である。[A]は、ベクトルAの転置ベクトルである。Qは駆動雑音共分散行列であり、駆動雑音ベクトルwの共分散行列である。駆動雑音共分散行列Qは、観測対象の運動モデルの曖昧さの大きさを表している。Eは平均を表す記号であり、qは、時刻tにおける駆動雑音のパワースペクトラム密度である。σw,kは、時刻tにおける駆動雑音標準偏差である。
Figure JPOXMLDOC01-appb-I000001
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a smoothing filter device 1 according to the first embodiment. The smoothing filter device 1 is, for example, a Kalman filter that smoothes time-series data of observed values using a motion model and an observation model. The motion model to be observed includes a constant velocity linear motion model, and the constant velocity linear motion model is defined by using the following equations (1) to (6). In the following formula, t k (k = 0,1,2, ···) is an observation target of observation time (sampling time). x k is the state vector representing the state of the observed object (the position and velocity of the observation target) at time t k. Φ k is a transition matrix of the state vector x k from the time t k to the time t k + 1. T k is the difference between the previous time t k-1 and the time t k. That is, T k is the time interval of the observation time. w k is a driving noise vector and indicates the ambiguity of the motion of the observed object. That is, the drive noise vector w k represents an error when the observation target deviates from the constant velocity linear motion. s k is the true value of the object of observation state, s k dot is the time rate of change of the true value s k. [A] T is a transposed vector of the vector A. Q k is a drive noise covariance matrix, and is a covariance matrix of the drive noise vector w k . The drive noise covariance matrix Q k represents the magnitude of the ambiguity of the motion model to be observed. E is the symbol representing the average, q k is the power spectral density of the drive noise at time t k. σ w and k are the driving noise standard deviations at time t k.
Figure JPOXMLDOC01-appb-I000001
 観測対象を観測するセンサの観測モデルは、例えば、下記式(7)から(9)で表すことができる。下記式において、zは、時刻tにおける観測値であり、時刻tにおける観測対象の状態の観測ベクトルである。Hは、状態ベクトルxから位置ベクトルのみを抽出するための既知の観測行列である。vは、時刻tにおける観測値の観測雑音(観測誤差とも呼ばれる)である。Rは、時刻tにおける観測誤差共分散行列であり、スカラー値で表される。σv,k は、時刻tにおける観測誤差分散であり、σv,kは、時刻tにおける観測誤差標準偏差である。
Figure JPOXMLDOC01-appb-I000002
The observation model of the sensor that observes the observation target can be represented by, for example, the following equations (7) to (9). In the following formulas, z k is the observed value at time t k, is the observation vector state of the observation target at time t k. H is a known observation matrix for extracting only the position vector from the state vector x k. v k is the observation noise of the observed value at time t k (also referred to as the observation error). R k is the observation error covariance matrix at time t k, represented by a scalar value. σ v, k 2 is the observation error variance at time t k , and σ v, k is the observation error standard deviation at time t k.
Figure JPOXMLDOC01-appb-I000002
 平滑フィルタ装置1は、図1に示すように、初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14を備える。予測部13は、観測時刻の時間間隔Tおよび時刻tにおける駆動雑音標準偏差σw,kを用いて、上記式(2)および(4)から、時刻tにおける駆動雑音共分散行列Qおよび遷移行列Φを算出する。さらに、予測部13は、時刻tにおける駆動雑音共分散行列Qおよび遷移行列Φと、時刻tにおける観測対象の平滑ベクトルxハットおよび平滑誤差共分散行列Pハットとを用いて、下記式(10)に従い、次時刻tk+1における観測対象の予測ベクトルxk+1バーおよび予測誤差共分散行列Pk+1バーを算出する。なお、Φ は、遷移行列Φの転置行列である。
Figure JPOXMLDOC01-appb-I000003
As shown in FIG. 1, the smoothing filter device 1 includes an initial value setting unit 10, a first calculation unit 11, a second calculation unit 12, a prediction unit 13, and a smoothing unit 14. Prediction unit 13 uses the driving noise standard deviation sigma w, k at time interval T k and the time t k of the observation time, the equation (2) and (4), the time t k in the driving noise covariance matrix Q Calculate k and the transition matrix Φ k. Furthermore, the prediction unit 13 uses a [Phi k driving noise covariance matrix Q k and the transition matrix at time t k, the observation target at time t k and a smoothing vector x k hat and smoothing the error covariance matrix P k hat , The prediction vector x k + 1 bar of the observation target and the prediction error covariance matrix P k + 1 bar at the next time t k + 1 are calculated according to the following equation (10). Note that Φ k T is a transposed matrix of the transition matrix Φ k.
Figure JPOXMLDOC01-appb-I000003
 平滑部14は、上記式(9)に次時刻tk+1における観測誤差標準偏差σv,k+1を用いて、次時刻tk+1における観測誤差共分散行列Rk+1を算出する。平滑部14は、次時刻tk+1における観測誤差共分散行列Rk+1と、次時刻tk+1における観測行列と、次時刻tk+1における観測対象の予測ベクトルxk+1バーおよび次時刻tk+1における予測誤差共分散行列Pk+1バーを用いて、下記式(11)に従い、次時刻tk+1における観測対象の平滑ベクトルxk+1ハットおよび平滑誤差共分散行列Pk+1ハットを算出する。Hk+1 は、次時刻tk+1における観測行列Hk+1の転置行列である。
Figure JPOXMLDOC01-appb-I000004
Smoothing unit 14, the above equation (9) using the observation error standard deviation σ v, k + 1 at the next time t k + 1, and calculates the observation error covariance matrix R k + 1 at the next time t k + 1. Smoothing unit 14, the next time t observation error covariance matrix in k + 1 R k + 1, and the observation matrix at the next time t k + 1, to be observed at the next time t k + 1 prediction vector x k + 1 bar and the prediction error both at the next time t k + 1 Using the variance matrix P k + 1 bar, the smoothing vector x k + 1 hat of the observation target and the smoothing error covariance matrix P k + 1 hat at the next time t k + 1 are calculated according to the following equation (11). H k + 1 T is a transposed matrix of the observation matrix H k + 1 at the next time t k + 1.
Figure JPOXMLDOC01-appb-I000004
 平滑フィルタ装置1による平滑処理には、上記式(10)および上記式(11)に示すように駆動雑音共分散行列Qおよび観測誤差共分散行列Rが必要である。すなわち、平滑処理には、これらを導出するための駆動雑音標準偏差σw,kおよび観測誤差標準偏差σv,kの情報が必要である。平滑フィルタ装置1における平滑性能は、駆動雑音標準偏差σw,kおよび観測誤差標準偏差σv,kの設定値に依存する。 The smoothing process by the smoothing filter device 1 requires a drive noise covariance matrix Q k and an observation error covariance matrix R k as shown in the above equations (10) and (11). That is, the smoothing process requires information on the drive noise standard deviation σ w, k and the observation error standard deviation σ v, k for deriving them. The smoothing performance in the smoothing filter device 1 depends on the set values of the drive noise standard deviation σ w, k and the observation error standard deviation σ v, k.
 また、カルマンフィルタは、ゲインが予測誤差共分散行列Pk+1バーと、観測誤差標準偏差σv,kとから決定されるα-βフィルタであると言える。このため、カルマンフィルタにおける定常ゲインKと、カルマンフィルタに初期設定されるフィルタ設定パラメータとの間には、下記式(12)および(13)に示す関係がある。下記式において、αは、α-βフィルタにおける位置のゲインであり、βは、速度のゲインである。Tは、観測時刻の時間間隔(サンプリング間隔)である。
Figure JPOXMLDOC01-appb-I000005
Further, it can be said that the Kalman filter is an α-β filter whose gain is determined from the prediction error covariance matrix P k + 1 bar and the observation error standard deviation σ v, k. Therefore, there is a relationship shown in the following equations (12) and (13) between the steady-state gain K in the Kalman filter and the filter setting parameters initially set in the Kalman filter. In the following equation, α is the gain of position in the α-β filter, and β is the gain of velocity. T is the time interval (sampling interval) of the observation time.
Figure JPOXMLDOC01-appb-I000005
 トラッキングインデックスΓは、観測誤差と駆動雑音の挙動を表すパラメータであり、下記式(14)に示すように、観測誤差標準偏差σ、駆動雑音標準偏差σおよび観測時刻の時間間隔Tの関数として表される。さらに、トラッキングインデックスΓは、αおよびβを用いた下記式(14)に示す関係を有している。ただし、qは、駆動雑音のパワースペクトラム密度である。上記式(13)および下記式(14)から、トラッキングインデックスΓが決定されれば、αおよびβが一意に決定されることが分かる。
Figure JPOXMLDOC01-appb-I000006
The tracking index Γ is a parameter representing the behavior of the observation error and the drive noise, and is a function of the observation error standard deviation σ v , the drive noise standard deviation σ w, and the time interval T of the observation time, as shown in the following equation (14). It is expressed as. Further, the tracking index Γ has the relationship shown in the following equation (14) using α and β. However, q is the power spectrum density of the driving noise. From the above equation (13) and the following equation (14), it can be seen that if the tracking index Γ is determined, α and β are uniquely determined.
Figure JPOXMLDOC01-appb-I000006
 図2は、平滑フィルタ装置1による平滑処理を示すイメージ図である。観測誤差標準偏差σv,kは、観測方法の観測精度に相当するパラメータである。また、観測タイミングは、観測時刻の時間間隔(サンプリング間隔)Tである。例えば、観測方法(1)における観測誤差標準偏差がσv,k(1)であり、サンプリング間隔がT(1)である。観測方法(2)における観測誤差標準偏差がσv,k(2)であり、サンプリング間隔がT(2)である。σv,k(1)とσv,k(2)は互いに異なり、T(1)とT(2)は互いに異なる。また、図2において、観測方法(1)が観測方法(2)よりも観測精度が高いものとする。 FIG. 2 is an image diagram showing a smoothing process by the smoothing filter device 1. The observation error standard deviation σ v, k is a parameter corresponding to the observation accuracy of the observation method. Also, the observation timing interval (sampling interval) of the observation time is T k. For example, the observation error standard deviation in the observation method (1) is σ v, k (1), and the sampling interval is T (1). The observation error standard deviation in the observation method (2) is σ v, k (2), and the sampling interval is T (2). σ v, k (1) and σ v, k (2) are different from each other, and T (1) and T (2) are different from each other. Further, in FIG. 2, it is assumed that the observation method (1) has higher observation accuracy than the observation method (2).
 平滑フィルタ装置1に対して、観測方法(1)と観測方法(2)とによって共通の観測対象が観測された観測値が混在した時系列データが入力された場合に、図2の左側に示すように、観測方法(1)は、観測方法(2)よりも観測精度が高いため、丸印のプロットで示す観測値が、真値に近い値となっている。一方、観測精度が低い観測方法(2)によって観測された観測値(四角印のプロットで示す)は、真値から外れる度合いが大きくなっている。観測方法(1)と観測方法(2)では、観測タイミングが異なるため、観測値間の時間間隔も時々刻々とばらばらになっている。 When time-series data in which observation values in which common observation targets are observed by the observation method (1) and the observation method (2) are mixed is input to the smoothing filter device 1, it is shown on the left side of FIG. As described above, since the observation method (1) has higher observation accuracy than the observation method (2), the observed values shown by the circled plots are close to the true values. On the other hand, the observed values (indicated by the plot of square marks) observed by the observation method (2) having low observation accuracy have a large degree of deviation from the true values. Since the observation timings of the observation method (1) and the observation method (2) are different, the time interval between the observed values is also different from moment to moment.
 観測方法(1)と観測方法(2)によって観測対象が観測された観測値が混在した時系列データを平滑処理する場合、従来の平滑フィルタには、観測誤差標準偏差(観測方法の観測精度に相当する)は、観測方法ごとに設定されるが、観測対象の運動モデルに関連した駆動雑音標準偏差は、観測方法によらずに設定される。このため、従来の平滑フィルタでは、観測方法(1)と観測方法(2)とによって共通の観測対象が観測された観測値が混在した時系列データを平滑処理するときに、観測方法の違いに応じた駆動雑音共分散行列Qkの調整が行われず、平滑性能が観測方法ごとに異なって観測値を均一に平滑化できない可能性があった。 When smoothing time-series data in which the observed values observed by the observation method (1) and the observation method (2) are mixed, the conventional smoothing filter has an observation error standard deviation (for the observation accuracy of the observation method). (Equivalent) is set for each observation method, but the drive noise standard deviation associated with the motion model to be observed is set regardless of the observation method. For this reason, in the conventional smoothing filter, when smoothing time-series data in which observation values in which common observation targets are observed by the observation method (1) and the observation method (2) are mixed, the observation method is different. The drive noise co-dispersion matrix Qk was not adjusted accordingly, and there was a possibility that the smoothing performance would differ depending on the observation method and the observed values could not be smoothed uniformly.
 図3は、ランダム雑音に対する平滑処理を示すイメージ図である。図3において、N1は、平滑処理前のランダム雑音であり、N2は、平滑フィルタ装置1による平滑処理後のランダム雑音である。図3に示すようなランダム雑音N1からランダム雑音N2へ平滑化する平滑フィルタの平滑性能の指標として、定常状態における平滑値の雑音抑圧比S(α,β)がある。雑音抑圧比S(α,β)は、下記式(15)から算出することができる。
Figure JPOXMLDOC01-appb-I000007
FIG. 3 is an image diagram showing smoothing processing for random noise. In FIG. 3, N1 is random noise before smoothing, and N2 is random noise after smoothing by the smoothing filter device 1. As an index of the smoothing performance of the smoothing filter that smoothes the random noise N1 to the random noise N2 as shown in FIG. 3, there is a noise suppression ratio S (α, β) of the smoothing value in the steady state. The noise suppression ratio S (α, β) can be calculated from the following equation (15).
Figure JPOXMLDOC01-appb-I000007
 上記式(15)に示すように、雑音抑圧比S(α,β)は、αおよびβのみの関数である。よって、トラッキングインデックスΓが決定されれば、雑音抑圧比S(α,β)は、一意に決定される。さらに、雑音抑圧比S(α,β)が決定されると、平滑誤差標準偏差σ平滑誤差は、雑音抑圧比S(α,β)の平方根を用いて下記式(16)から算出することができる。ここで、σは、観測誤差標準偏差である。
Figure JPOXMLDOC01-appb-I000008
As shown in the above equation (15), the noise suppression ratio S (α, β) is a function of only α and β. Therefore, if the tracking index Γ is determined, the noise suppression ratio S (α, β) is uniquely determined. Further, when the noise suppression ratio S (α, β) is determined, the smoothing error standard deviation σ smoothing error can be calculated from the following equation (16) using the square root of the noise suppression ratio S (α, β). it can. Here, σ v is the observation error standard deviation.
Figure JPOXMLDOC01-appb-I000008
 初期値設定部10は、トラッキングインデックスΓについて観測方法(1)と観測方法(2)で平滑誤差標準偏差σ平滑誤差が同じ値となるように、初期値Γ1,0およびΓ2,0を算出し、算出した初期値Γ1,0およびΓ2,0を第2の計算部12に設定する。Γ1,0は、観測方法(1)におけるトラッキングインデックスの初期値であり、Γ2,0は、観測方法(2)におけるトラッキングインデックスの初期値である。なお、初期値設定部10は、平滑フィルタ装置1とは別に設けられた外部装置が備える構成要素とすることができる。この場合、平滑フィルタ装置1が備える第2の計算部12は、外部装置が備える初期値設定部10から、トラッキングインデックスの初期値が設定される。 The initial value setting unit 10 sets the initial values Γ 1,0 and Γ 2,0 for the tracking index Γ so that the smoothing error standard deviation σ smoothing error is the same in the observation method (1) and the observation method (2). The calculated initial values Γ 1,0 and Γ 2,0 are set in the second calculation unit 12. Γ 1,0 is the initial value of the tracking index in the observation method (1), and Γ 2 , 0 is the initial value of the tracking index in the observation method (2). The initial value setting unit 10 can be a component provided in an external device provided separately from the smoothing filter device 1. In this case, the second calculation unit 12 included in the smoothing filter device 1 sets the initial value of the tracking index from the initial value setting unit 10 included in the external device.
 第1の計算部11は、観測方法(1)および観測方法(2)によって共通の観測対象が観測された観測値が混在した時系列データを入力し、観測値の観測時刻の時間間隔Tを算出する。第2の計算部12は、トラッキングインデックスΓを用いて、観測方法(1)と観測方法(2)の平滑誤差標準偏差σ平滑誤差が同じ値となるように、時刻tにおける駆動雑音標準偏差σw,kを算出する。 First computing unit 11, the observation method (1) and observation methods observations of common observation target is observed by (2) inputs the time-series data are mixed, the time interval T k of observation time of observations Is calculated. The second calculation unit 12 uses the tracking index gamma, as smooth error standard deviation σ smoothing errors of observation methods (1) and observation method (2) of the same value, the driving noise standard deviation at time t k Calculate σ w and k.
 第2の計算部12は、時刻tにおけるトラッキングインデックスΓと初期値Γ1,0またはΓ2,0が一致するように、時刻tにおける駆動雑音標準偏差σw,kを算出する。平滑フィルタ装置1は、第2の計算部12によって算出された駆動雑音標準偏差σw,kを用いることで、観測方法(1)と観測方法(2)によって共通の観測対象が観測された観測値が混在した時系列データの平滑処理において、観測方法(1)による観測値に対する平滑性能と観測方法(2)による観測値に対する平滑性能とを一致させることができる。 The second calculation unit 12 calculates the drive noise standard deviation σ w, k at time t k so that the tracking index Γ k at time t k and the initial value Γ 1, 0 or Γ 2, 0 match. The smoothing filter device 1 uses the drive noise standard deviations σ w and k calculated by the second calculation unit 12, and observes that a common observation target is observed by the observation method (1) and the observation method (2). In the smoothing process of time-series data in which values are mixed, the smoothing performance for the observed value by the observation method (1) and the smoothing performance for the observed value by the observation method (2) can be matched.
 次に、初期値Γ1,0およびΓ2,0の設定処理について詳細に説明する。
 図4は、初期値Γ1,0およびΓ2,0の設定処理を示すフローチャートである。図4において、平滑フィルタ装置1には、観測精度および観測タイミングが互いに異なる観測方法(1)と観測方法(2)によって共通の観測対象が観測された観測値が混在した時系列データが入力される。観測方法(1)および観測方法(2)の観測時刻の時間間隔Tをそれぞれ1.0(秒)とする。この場合、観測方法(1)と観測方法(2)によって観測対象が観測された観測値が混在した時系列データにおいては、観測時刻の時間間隔T(=t-tk-1)は、0(秒)から2(秒)までの間で変動する。
Next, the setting process of the initial values Γ 1,0 and Γ 2,0 will be described in detail.
FIG. 4 is a flowchart showing the setting process of the initial values Γ 1,0 and Γ 2,0. In FIG. 4, time-series data in which observation values in which common observation targets are observed by the observation methods (1) and observation methods (2), which have different observation accuracy and timing, are input to the smoothing filter device 1. To. The time interval T 0 of the observation time of the observation method (1) and the observation method (2) is 1.0 (seconds), respectively. In this case, in the time-series data observed value is observed object observed by the observation method (1) and observation method (2) are mixed, the time interval of the observation time T k (= t k -t k -1) is , Varies between 0 (seconds) and 2 (seconds).
 まず、初期値設定部10は、観測方法(2)よりも観測精度が高い観測方法(1)に関するトラッキングインデックスΓの初期値Γ1,0を計算する(ステップST1)。例えば、初期値設定部10には、予め決定された一定の平滑誤差標準偏差σ平滑誤差を導出するための、観測方法(1)に対応する既知の観測誤差標準偏差σv1と、観測方法(2)に対応する既知の観測誤差標準偏差σv2とが設定されている。 First, the initial value setting unit 10 calculates the initial value Γ 1,0 of the tracking index Γ related to the observation method (1) having higher observation accuracy than the observation method (2) (step ST1). For example, the initial value setting unit 10 has a known observation error standard deviation σ v1 corresponding to the observation method (1) for deriving a predetermined constant smoothing error standard deviation σ smoothing error , and an observation method ( A known observation error standard deviation σ v2 corresponding to 2) is set.
 初期値設定部10は、観測方法(1)に対応する駆動雑音標準偏差σw1,0を決定する。例えば、初期値設定部10は、下記式(17)で表される平滑誤差標準偏差を用いて、上記式(15)および(14)から駆動雑音標準偏差の初期値σw1,0を決定する。
Figure JPOXMLDOC01-appb-I000009
The initial value setting unit 10 determines the drive noise standard deviation σ w1 , 0 corresponding to the observation method (1). For example, the initial value setting unit 10 determines the initial value σ w1,0 of the drive noise standard deviation from the above equations (15) and (14) by using the smoothing error standard deviation represented by the following equation (17). ..
Figure JPOXMLDOC01-appb-I000009
 また、観測誤差標準偏差σv1と時間間隔T=1.0(秒)を用いた平滑処理のシミュレーションを行って平滑誤差標準偏差を評価することにより、適切な平滑誤差標準偏差に対応する駆動雑音標準偏差σw1,0を決定してもよい。平滑誤差標準偏差が観測誤差標準偏差σv1に比べて小さければ、平滑効果を与える適切な値であると言える。ただし、平滑誤差標準偏差が観測誤差標準偏差σv1に比べて著しく小さい場合は、平滑フィルタ装置1における観測対象への追従性能が劣化する。このため、許容可能な範囲内で平滑誤差標準偏差を決定する必要がある。 In addition, by simulating the smoothing process using the observation error standard deviation σ v1 and the time interval T 0 = 1.0 (seconds) and evaluating the smoothing error standard deviation, the drive corresponding to the appropriate smoothing error standard deviation is performed. The noise standard deviation σ w1,0 may be determined. If the smoothing error standard deviation is smaller than the observed error standard deviation σ v1 , it can be said that it is an appropriate value that gives a smoothing effect. However, if the smoothing error standard deviation is significantly smaller than the observation error standard deviation σ v1 , the tracking performance of the smoothing filter device 1 to the observation target deteriorates. Therefore, it is necessary to determine the smoothing error standard deviation within an acceptable range.
 なお、実際のゲインαおよびβは解析的に得られない。このため、平滑フィルタ装置1において、上記式(10)から(11)までに示したカルマンフィルタの更新式を、上記式(12)に示した定常ゲインKの値が収束するまで繰り返し実行し、収束した定常ゲインKの値から、ゲインαおよびβを決定する。 The actual gains α 1 and β 1 cannot be obtained analytically. Therefore, in the smoothing filter device 1, the update equation of the Kalman filter shown in the above equations (10) to (11) is repeatedly executed until the value of the steady gain K shown in the above equation (12) converges, and then converges. The gains α 1 and β 1 are determined from the values of the steady gain K obtained.
 初期値設定部10は、決定した駆動雑音標準偏差の初期値σw1,0と、既知の観測誤差標準偏差σv1と時間間隔T(=1.0(秒))を用いて、下記式(18)に従い、初期値Γ1,0を算出する。
Figure JPOXMLDOC01-appb-I000010
The initial value setting unit 10 uses the determined initial value σ w1 , 0 of the drive noise standard deviation, the known observation error standard deviation σ v1, and the time interval T 0 (= 1.0 (seconds)), and uses the following equation. According to (18), the initial value Γ 1,0 is calculated.
Figure JPOXMLDOC01-appb-I000010
 次に、初期値設定部10は、観測方法(1)に対応するS(α,β)σv1 を算出する(ステップST2)。観測方法(1)と観測方法(2)にそれぞれ対応する平滑誤差標準偏差が同じ値となるためには、下記式(19)が成立する必要がある。
Figure JPOXMLDOC01-appb-I000011
Next, the initial value setting unit 10 calculates S (α 1 , β 1 ) σ v1 2 corresponding to the observation method (1) (step ST2). In order for the smoothing error standard deviations corresponding to the observation method (1) and the observation method (2) to have the same value, the following equation (19) must be established.
Figure JPOXMLDOC01-appb-I000011
 初期値設定部10は、下記式(20)および(21)に示す最適化問題を解くことで、駆動雑音標準偏差σw2,0を算出する。なお、下記の最適化問題は、解析的には解けないため、最小値σw2,0,minから最大値σw2,0,maxまでのサーチ範囲を一定値のステップΔσw2,0ごとにサーチすることで、観測方法(2)に対応する駆動雑音標準偏差σw2,0を決定する。
Figure JPOXMLDOC01-appb-I000012
The initial value setting unit 10 calculates the drive noise standard deviation σ w2 , 0 by solving the optimization problems shown in the following equations (20) and (21). Since the following optimization problem cannot be solved analytically, the search range from the minimum value σ w2,0, min to the maximum value σ w2,0, max is searched for each step Δσ w2,0 of a constant value. By doing so, the drive noise standard deviation σ w2 , 0 corresponding to the observation method (2) is determined.
Figure JPOXMLDOC01-appb-I000012
 まず、初期値設定部10は、駆動雑音標準誤差σw2,0に最小値σw2,0,minを設定する(ステップST3)。続いて、初期値設定部10は、ゲインαおよびβの場合と同様の手順で、定常ゲインKの値からゲインαおよびβを決定し、ゲインαおよびβと既知の観測誤差標準偏差σv2を用いて、上記式(15)および(17)に従い、観測方法(2)に対応するS(α,β)σv2,0 を算出する(ステップST4)。次に、初期値設定部10は、算出した値で上記式(21)を満たすか否かを確認する(ステップST5)。 First, the initial value setting unit 10 sets the minimum value σ w2,0, min to the drive noise standard error σ w2,0 (step ST3). Subsequently, the initial value setting unit 10, gain alpha 1 and beta 1 when the same procedure was determined from the value of the steady gain K of the gain alpha 2 and beta 2, gain alpha 2 and beta 2 and known observation using the error standard deviation sigma v2, according to the above formula (15) and (17), S (α 2 , β 2) corresponding to the observation method (2) σ v2,0 2 is calculated (step ST4). Next, the initial value setting unit 10 confirms whether or not the calculated value satisfies the above equation (21) (step ST5).
 上記式(19)を満たさない場合(ステップST5;NO)、初期値設定部10は、現在のσw2,0にステップΔσw2,0を加算した値を、次の駆動雑音標準偏差σw2,0に設定する(ステップST6)。このとき設定された駆動雑音標準偏差σw2,0を用いて、ステップST4からの処理が実行される。これらの処理は上記サーチ範囲内で繰り返される。 If not satisfying the above formula (19) (step ST5; NO), the initial value setting unit 10, a value obtained by adding the step .DELTA..sigma W2,0 to the current sigma W2,0, next drive noise standard deviation sigma w2, Set to 0 (step ST6). The process from step ST4 is executed using the drive noise standard deviation σ w2, 0 set at this time. These processes are repeated within the above search range.
 上記式(19)を満たす場合(ステップST5;YES)、初期値設定部10は、このときの駆動雑音標準偏差σw2,0を採用する。この駆動雑音標準偏差σw2,0では、上記式(19)が成立するので、上記式(21)から、J(σw2,0)は、ほぼ零になる。 When the above equation (19) is satisfied (step ST5; YES), the initial value setting unit 10 adopts the drive noise standard deviation σ w2, 0 at this time. With this drive noise standard deviation σ w2 , 0, the above equation (19) holds, so from the above equation (21), J (σ w2,0 ) becomes almost zero.
 初期値設定部10は、決定した駆動雑音標準偏差の初期値σw2,0と、観測誤差標準偏差σv2と、時間間隔T=1.0(秒)を用いて、下記式(22)に従い、初期値Γ2,0を算出する(ステップST7)。初期値Γ1,0と初期値Γ2,0では上記式(19)が成立するので、観測方法(1)と観測方法(2)では平滑誤差標準偏差が同じ値である。初期値設定部10は、初期値Γ1,0および初期値Γ2,0を、第2の計算部12に設定する。
Figure JPOXMLDOC01-appb-I000013
The initial value setting unit 10 uses the determined initial value σ w2 , 0 of the drive noise standard deviation, the observation error standard deviation σ v2, and the time interval T 0 = 1.0 (seconds), and uses the following equation (22). According to this, the initial value Γ 2.0 is calculated (step ST7). Since the above equation (19) holds for the initial value Γ 1,0 and the initial value Γ 2,0 , the smoothing error standard deviation is the same value in the observation method (1) and the observation method (2). The initial value setting unit 10 sets the initial value Γ 1,0 and the initial value Γ 2,0 in the second calculation unit 12.
Figure JPOXMLDOC01-appb-I000013
 次に、実施の形態1に係る平滑化方法について説明する。
 図5は、実施の形態1に係る平滑化方法を示すフローチャートである。図5において、平滑フィルタ装置1には、観測方法(1)と観測方法(2)とによって共通の観測対象が観測された観測値が混在した時系列データが入力されて、第2の計算部12には、初期値設定部10によって算出された初期値Γ1,0および初期値Γ2,0が設定されている。
Next, the smoothing method according to the first embodiment will be described.
FIG. 5 is a flowchart showing a smoothing method according to the first embodiment. In FIG. 5, time-series data in which observation values in which common observation targets are observed by the observation method (1) and the observation method (2) are mixed is input to the smoothing filter device 1, and a second calculation unit is used. The initial value Γ 1,0 and the initial value Γ 2,0 calculated by the initial value setting unit 10 are set in 12.
 第1の計算部11は、観測方法(1)と観測方法(2)によって共通の観測対象が観測された観測値が混在した時系列データが入力されると、観測時刻の時間間隔Tを順次算出する(ステップST1a)。なお、時間間隔T(=t-tk-1)は、時刻tと時刻tk-1とで観測方法が異なっていてもよい。 First computing unit 11, the time series data observed value common observation target is observed by the observation method (1) and observation method (2) are mixed is input, the time interval T k of observation time Calculate sequentially (step ST1a). The time interval T k (= t k -t k -1) , the time t k and the time t k-1 and the observation methods may be different.
 第2の計算部12は、時刻tにおける駆動雑音標準偏差σw,kを更新する(ステップST2a)。第2の計算部12は、時刻tにおける駆動雑音標準偏差σw,kを、下記式(23)または下記式(24)に従って算出する。下記式(23)には、時刻tにおける観測誤差標準偏差σv,kとして、既知のσv1が設定され、下記式(24)には、時刻tにおける観測誤差標準偏差σv,kとして、既知のσv2が設定されている。
Figure JPOXMLDOC01-appb-I000014
The second calculation unit 12 updates the drive noise standard deviations σ w and k at time t k (step ST2a). The second calculation unit 12, the driving noise standard deviation sigma w, k at time t k, is calculated according to the following equation (23) or the following formula (24). The following equation (23), as an observation error standard deviation sigma v, k at time t k, the known sigma v1 is set, the following equation (24), the observation at time t k error standard deviation sigma v, k As a known σ v2 is set.
Figure JPOXMLDOC01-appb-I000014
 第2の計算部12によって下記式(23)に従って算出された駆動雑音標準偏差σw,kおよび上記式(14)を用いて、下記式(25)の関係が導出される。下記式(25)において、トラッキングインデックスΓ1,kは、時刻tにおける、観測方法(1)に対応したトラッキングインデックスである。下記式(25)が示すように、時刻tにおける駆動雑音標準偏差σw,kは、トラッキングインデックスΓ1,kと初期値Γ1,0が一致するように算出されている。また、下記式(25)と同様な手順で、下記式(26)の関係が導出される。下記式(26)において、トラッキングインデックスΓ2,kは、時刻tにおける、観測方法(2)に対応したトラッキングインデックスである。これにより、平滑フィルタ装置1において、各時刻tにおける平滑誤差標準偏差が一定に保たれる。
Figure JPOXMLDOC01-appb-I000015
The relationship of the following equation (25) is derived using the drive noise standard deviation σ w, k calculated by the second calculation unit 12 according to the following equation (23) and the above equation (14). In Formula (25), the tracking index gamma 1, k is at time t k, a tracking index corresponding to the observation method (1). As shown by the following equation (25), the drive noise standard deviation σ w, k at time t k is calculated so that the tracking index Γ 1, k and the initial value Γ 1, 0 match. Further, the relationship of the following equation (26) is derived by the same procedure as the following equation (25). In formula (26), Tracking Index gamma 2, k is at time t k, a tracking index corresponding to the observation method (2). Thus, the smoothing filter device 1, the smoothing error standard deviation at each time t k is kept constant.
Figure JPOXMLDOC01-appb-I000015
 予測部13は予測処理を行う(ステップST3a)。例えば、予測部13は、上記式(10)に従い、次時刻tk+1における観測対象の予測ベクトルxk+1バーおよび予測誤差共分散行列Pk+1バーを算出する。続いて、平滑部14は平滑処理を行う(ステップST4a)。例えば、平滑部14は、上記式(11)に従い、次時刻tk+1における観測対象の平滑ベクトルxk+1ハットおよび平滑誤差共分散行列Pk+1ハットを算出する。平滑部14は、平滑ベクトルxk+1ハットおよび平滑誤差共分散行列Pk+1ハットを、観測値の平滑結果として出力するとともに、予測部13にフィードバックする。 The prediction unit 13 performs prediction processing (step ST3a). For example, the prediction unit 13 calculates the prediction vector x k + 1 bar of the observation target and the prediction error covariance matrix P k + 1 bar at the next time t k + 1 according to the above equation (10). Subsequently, the smoothing portion 14 performs a smoothing process (step ST4a). For example, the smoothing unit 14 calculates the smoothing vector x k + 1 hat of the observation target and the smoothing error covariance matrix P k + 1 hat at the next time t k + 1 according to the above equation (11). The smoothing unit 14 outputs the smoothing vector x k + 1 hat and the smoothing error covariance matrix P k + 1 hat as the smoothing result of the observed value, and feeds it back to the prediction unit 13.
 次に、平滑フィルタ装置1の機能を実現するハードウェア構成について説明する。
 平滑フィルタ装置1における初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14の各機能は、処理回路により実現される。すなわち、平滑フィルタ装置1は、図5に示すステップST1aからステップST4aまでの処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
Next, the hardware configuration that realizes the function of the smoothing filter device 1 will be described.
Each function of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14 in the smoothing filter device 1 is realized by the processing circuit. That is, the smoothing filter device 1 includes a processing circuit for executing the processing from step ST1a to step ST4a shown in FIG. The processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
 図6Aは、平滑フィルタ装置1の機能を実現するハードウェア構成を示すブロック図であり、図6Bは、平滑フィルタ装置1の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図6Aおよび図6Bにおいて、入力インタフェース100は、センサから平滑フィルタ装置1へ入力される観測値の時系列データを中継するインタフェースである。出力インタフェース101は、平滑フィルタ装置1から外部へ出力される平滑結果の情報を中継するインタフェースである。 FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the smoothing filter device 1, and FIG. 6B is a block diagram showing a hardware configuration that executes software that realizes the function of the smoothing filter device 1. In FIGS. 6A and 6B, the input interface 100 is an interface that relays time-series data of observed values input from the sensor to the smoothing filter device 1. The output interface 101 is an interface that relays information on the smoothing result output from the smoothing filter device 1 to the outside.
 処理回路が図6Aに示す専用のハードウェアの処理回路102である場合、処理回路102は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。平滑フィルタ装置1における初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14の機能を、別々の処理回路で実現してもよく、これらの機能をまとめて1つの処理回路で実現してもよい。 When the processing circuit is the processing circuit 102 of the dedicated hardware shown in FIG. 6A, the processing circuit 102 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field-Programmable Gate Array), or a combination of these. The functions of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14 in the smoothing filter device 1 may be realized by separate processing circuits, and these functions may be realized. May be realized in one processing circuit collectively.
 処理回路が図6Bに示すプロセッサ103である場合、平滑フィルタ装置1における初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせにより実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ104に記憶される。 When the processing circuit is the processor 103 shown in FIG. 6B, the functions of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14 in the smoothing filter device 1 are software. , Firmware or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 104.
 プロセッサ103は、メモリ104に記憶されたプログラムを読み出して実行することで、平滑フィルタ装置1における初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14の機能を実現する。例えば、平滑フィルタ装置1は、プロセッサ103によって実行されるときに、図5に示したフローチャートにおけるステップST1aからステップST4aまでの処理が結果的に実行されるプログラムを記憶するためのメモリ104を備える。これらのプログラムは、初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14の手順または方法をコンピュータに実行させる。メモリ104は、コンピュータを、初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。 By reading and executing the program stored in the memory 104, the processor 103 reads and executes the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit in the smoothing filter device 1. It realizes 14 functions. For example, the smoothing filter device 1 includes a memory 104 for storing a program in which the processes from steps ST1a to ST4a in the flowchart shown in FIG. 5 are executed as a result when executed by the processor 103. These programs cause the computer to execute the procedure or method of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14. The memory 104 is a computer-readable storage medium in which a program for making a computer function as an initial value setting unit 10, a first calculation unit 11, a second calculation unit 12, a prediction unit 13, and a smoothing unit 14 is stored. You may.
 メモリ104は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。 The memory 104 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile) semiconductor, an EPROM (Electrically-volatile), or the like. This includes discs, flexible discs, optical discs, compact discs, mini discs, DVDs, and the like.
 平滑フィルタ装置1における初期値設定部10、第1の計算部11、第2の計算部12、予測部13および平滑部14の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、初期値設定部10は、専用のハードウェアである処理回路102により機能を実現し、第1の計算部11、第2の計算部12、予測部13および平滑部14は、プロセッサ103がメモリ104に記憶されたプログラムを読み出して実行することにより機能を実現する。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせによって、上記機能を実現することができる。 Some of the functions of the initial value setting unit 10, the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14 in the smoothing filter device 1 are realized by dedicated hardware, and some of them are software. Alternatively, it may be realized by firmware. For example, the initial value setting unit 10 realizes the function by the processing circuit 102 which is the dedicated hardware, and the processor 103 sets the first calculation unit 11, the second calculation unit 12, the prediction unit 13, and the smoothing unit 14. The function is realized by reading and executing the program stored in the memory 104. As described above, the processing circuit can realize the above-mentioned functions by hardware, software, firmware or a combination thereof.
 次に、航空監視システム(Multilatelation;MLAT)に適用された平滑フィルタ装置1について説明する。MLATは、空港面に設置された複数のセンサによって航空機から送信された信号を同期受信し、複数のセンサによって受信された信号間の到来時間差(Time Difference Of Arrival;TDOA)に基づいて、空港面に存在する航空機の測位を行う。ただし、実際のセンサ間には時刻同期誤差(以下、クロックオフセットと呼ぶ)が存在するために、クロックオフセットの値を予め観測して推定しておく必要がある。クロックオフセットの観測方法には、基準局方法と、GPS(Global Positioning System)方法が存在する。 Next, the smoothing filter device 1 applied to the aviation surveillance system (MLAT) will be described. The MLAT synchronously receives signals transmitted from the aircraft by a plurality of sensors installed on the airport surface, and based on the arrival time difference (Time Difference Of Arrival; TDOA) between the signals received by the multiple sensors, the airport surface. Position the aircraft that exist in. However, since there is a time synchronization error (hereinafter referred to as clock offset) between the actual sensors, it is necessary to observe and estimate the value of the clock offset in advance. The clock offset observation method includes a reference station method and a GPS (Global Positioning System) method.
 基準局方法は、空港面に分散配置された、位置が既知の基準局から送信された信号を、位置が既知の複数の受信局(センサに相当する)によって受信し、受信局間の受信時刻の相対的なずれを、クロックオフセットとして観測する方法である。また、GPS方法は、複数の受信局(センサに相当する)のそれぞれによってGPS衛星からGPSパルス信号を受信し、1PPS(Pulse Per Second)ごとに得られるGPS時刻に基づいて、受信局間のGPS時刻の相対的なずれを、クロックオフセットとして観測する方法である。 In the reference station method, signals transmitted from reference stations with known positions are received by a plurality of receiving stations (corresponding to sensors) with known positions, which are distributed on the airport surface, and the reception times are relative to each other. This is a method of observing the target deviation as a clock offset. In the GPS method, GPS pulse signals are received from GPS satellites by each of a plurality of receiving stations (corresponding to sensors), and GPS between receiving stations is based on the GPS time obtained for each 1PPS (Pulse Per Second). This is a method of observing the relative time lag as a clock offset.
 図7は、MLATにおける航空機30の測位の概要を示すイメージ図である。空港面20に設置された受信局21~24は、航空機30から送信された信号を同期受信し、受信局間の受信タイミングの時刻差を用いた下記式(27)を解くことにより、航空機30の測位が行われる。なお、空港面20において、受信局21~24の各位置は既知である。下記式(27)において、TDOAijは、第i番目の受信局に到来した信号と第j番目の受信局に到来した信号の到来時間差である。xは、測位対象の航空機30の位置ベクトルである。pは、第i番目の受信局の位置ベクトルであり、既知の値である。例えば、三次元測位を行う場合には、少なくとも3つのTDOAが必要であることから、4局以上の受信局が必要となる。
Figure JPOXMLDOC01-appb-I000016
FIG. 7 is an image diagram showing an outline of positioning of the aircraft 30 in MLAT. The receiving stations 21 to 24 installed on the airport surface 20 synchronously receive the signals transmitted from the aircraft 30, and solve the following equation (27) using the time difference in the reception timing between the receiving stations to solve the aircraft 30. Positioning is performed. The positions of the receiving stations 21 to 24 on the airport surface 20 are known. In the following equation (27), TDOA ij is the arrival time difference between the signal arriving at the i-th receiving station and the signal arriving at the j-th receiving station. x is a position vector of the aircraft 30 to be positioned. p i is the position vector of the i-th receiving station is a known value. For example, when performing three-dimensional positioning, at least three TDOAs are required, so four or more receiving stations are required.
Figure JPOXMLDOC01-appb-I000016
 TDOAの観測には、各受信局によって信号が受信された時刻における各受信局の時計(クロック)の値が参照される。しかしながら、受信局の時計は実際には同期していないため、何らかの方法で非同期成分を推定し、推定した非同期成分を用いてTDOAを補償する必要がある。 For TDOA observation, the clock value of each receiving station at the time when the signal is received by each receiving station is referred to. However, since the clocks of the receiving station are not actually synchronized, it is necessary to estimate the asynchronous component by some method and compensate the TDOA by using the estimated asynchronous component.
 図8は、MLATにおける受信局の時刻管理の概要を示すイメージ図である。例えば、基準局方法では、基準局25から送信された同一の信号(電波)を、受信局26~28で受信する。受信局26~28がそれぞれ備える時計が同期していない場合、下記式(28)に示すように、受信局が備える時計を用いて計測された上記信号の到来時間差と、基準局25から各受信局までの距離から見積もられた電波の到来時間差との間には、差Δが生じる。基準局方法は、この差Δをクロックオフセットとして観測する方法である。下記式において、Δij,基準局は、基準局方法における観測対象である、第i番目の受信局と第j番目の受信局との間のクロックオフセット観測値であり、Ti,基準局は、第i番目の受信局が備える時計によって計測された上記信号の受信時刻である。
Figure JPOXMLDOC01-appb-I000017
FIG. 8 is an image diagram showing an outline of time management of the receiving station in MLAT. For example, in the reference station method, the receiving stations 26 to 28 receive the same signal (radio wave) transmitted from the reference station 25. When the clocks of the receiving stations 26 to 28 are not synchronized, as shown in the following formula (28), the arrival time difference of the above signal measured by using the clock provided by the receiving station and each receiving station from the reference station 25 There is a difference Δ with the arrival time difference of the radio wave estimated from the distance to. The reference station method is a method of observing this difference Δ as a clock offset. In the following formulas, delta ij, reference station is an observation target in a reference station method, and the i-th receiving station is a clock offset observations between the j-th receiving station, T i, the reference station, the i It is the reception time of the above signal measured by the clock provided in the second receiving station.
Figure JPOXMLDOC01-appb-I000017
 GPS方法では、下記式(29)に示すように、1PPSごとのGPSパルス信号によって計測されるGPS時刻と、受信局が備える時計によって計測された時刻との差Δが、クロックオフセットとして観測される。下記式において、Δij,GPSは、GPS方法における観測対象である、第i番目の受信局と第j番目の受信局との間のクロックオフセット観測値であり、Ti,GPSは、第i番目の受信局が備える時計によって計測された上記信号の受信時刻である。
Figure JPOXMLDOC01-appb-I000018
In the GPS method, as shown in the following equation (29), the difference Δ between the GPS time measured by the GPS pulse signal for each 1PPS and the time measured by the clock provided in the receiving station is observed as a clock offset. .. In the following formulas, delta ij, GPS is a observation target in the GPS method is a clock offset observations between the i-th receiving station and the j th receiving station, T i, GPS is the i It is the reception time of the above signal measured by the clock provided in the second receiving station.
Figure JPOXMLDOC01-appb-I000018
 Δij,基準局およびΔij,GPSは、観測精度および観測タイミングが互いに異なる基準局方法とGPS方法とによって観測された観測値である。平滑フィルタ装置1には、これらの観測値が混在した時系列データが入力される。平滑フィルタ装置1は、トラッキングインデックスΓを用いて、基準局方法に対応する平滑誤差標準偏差とGPS方法に対応する平滑誤差標準偏差とが同じ値となるように、時刻tにおける駆動雑音標準偏差σw,kを算出する。平滑フィルタ装置1は、算出した時刻tにおける駆動雑音標準偏差σw,kを用いて、観測値Δij,基準局およびΔij,GPSが混在した時系列データの平滑処理において、基準局方法による観測値に対する平滑性能とGPS方法による観測値に対する平滑性能とを一致させることができる。 Δij, reference station and Δij, GPS are observation values observed by the reference station method and the GPS method, which have different observation accuracy and observation timing. Time-series data in which these observed values are mixed is input to the smoothing filter device 1. Smoothing filter device 1 uses the tracking index gamma, as a smoothing error standard deviation corresponding to the smoothing error standard deviation and GPS method corresponding to the reference station method is the same value, the driving noise standard deviation at time t k sigma Calculate w and k. The smoothing filter device 1 uses the calculated drive noise standard deviation σ w, k at the time t k , and observes by the reference station method in the smoothing process of the time series data in which the observed values Δij, the reference station and Δij, and GPS are mixed. It is possible to match the smoothing performance with respect to the value and the smoothing performance with respect to the observed value by the GPS method.
 図9は、クロックオフセットの観測時刻と観測値の平滑誤差絶対値との関係を示すグラフである。図9に示す関係は、基準局方法とGPS方法によるクロックオフセット観測をそれぞれシミュレーションし、これらのシミュレーションによって得られた観測値が混在した時系列データを平滑処理して得たものである。平滑処理は、平滑フィルタ装置1および従来の平滑フィルタによって行っている。クロックオフセット観測のシミュレーションにおいて、基準局方法における観測精度、すなわち観測誤差標準偏差σv1を1(ナノ秒)とし、GPS方法における観測誤差標準偏差σv2を15(ナノ秒)としており、GPS方法の観測精度は、基準局方法よりも劣っている。 FIG. 9 is a graph showing the relationship between the observation time of the clock offset and the smoothing error absolute value of the observed value. The relationship shown in FIG. 9 is obtained by simulating clock offset observations by the reference station method and the GPS method, and smoothing time-series data in which the observed values obtained by these simulations are mixed. The smoothing process is performed by the smoothing filter device 1 and a conventional smoothing filter. In the simulation of clock offset observation, the observation accuracy in the reference station method, that is, the observation error standard deviation σ v1 is set to 1 (nanosecond), and the observation error standard deviation σ v2 in the GPS method is set to 15 (nanosecond). The accuracy is inferior to the reference station method.
 図9において、四角のプロットによって平滑誤差絶対値を示す関係Aが、従来の平滑フィルタ装置による平滑処理の結果である。丸形のプロットによって平滑誤差絶対値を示す関係Bは、平滑フィルタ装置1による平滑処理の結果である。従来の平滑フィルタでは、基準局方法とGPS方法とで平滑性能を一致させる処理が行われない。このため、従来の平滑フィルタの平滑処理は、平滑フィルタ装置1の平滑処理よりも平滑誤差が大きくなっている。 In FIG. 9, the relationship A showing the absolute smoothing error value by the square plot is the result of the smoothing process by the conventional smoothing filter device. Relationship B, which shows the absolute value of smoothing error by a round plot, is the result of smoothing processing by the smoothing filter device 1. In the conventional smoothing filter, the processing for matching the smoothing performance between the reference station method and the GPS method is not performed. Therefore, the smoothing process of the conventional smoothing filter has a larger smoothing error than the smoothing process of the smoothing filter device 1.
 また、図10は、クロックオフセットの観測値の平滑処理をモンテカルロ試行した結果を示すグラフであり、図9に示したクロックオフセット観測のシミュレーションによって得られた観測値に対する平滑処理についてモンテカルロシミュレーションを100回試行したときの各試行における平均二乗誤差(RMSE)を示している。図10において、四角のプロットによってRMSEを示す関係Cが、従来の平滑フィルタ装置による平滑処理の結果である。丸形のプロットによってRMSEを示す関係Dが、平滑フィルタ装置1による平滑処理の結果である。図10に示すように、平滑フィルタ装置1の平滑処理は、従来の平滑フィルタの平滑処理よりもRMSEが小さいと言える。 Further, FIG. 10 is a graph showing the results of Monte Carlo trials of smoothing the observed values of the clock offset, and the Monte Carlo simulation was performed 100 times for the smoothing processing of the observed values obtained by the simulation of the clock offset observation shown in FIG. It shows the mean squared error (RMSE) in each trial when it was tried. In FIG. 10, the relationship C showing the RMSE by the square plot is the result of the smoothing process by the conventional smoothing filter device. Relationship D, which indicates RMSE by a round plot, is the result of smoothing by the smoothing filter device 1. As shown in FIG. 10, it can be said that the smoothing process of the smoothing filter device 1 has a smaller RMSE than the smoothing process of the conventional smoothing filter.
 次に、バイスタティックレーダシステムに平滑フィルタ装置1を適用した場合について説明する。バイスタティックレーダシステムは、レーダ波の送信機と受信機の間を離して配置し、両者を通信で結んだシステムであり、送信機と受信機との間の通信は高度に同期が取られていることが求められる。バイスタティックレーダシステムでは、送信機と受信機との通信の同期を取るため、一般的に、原子時計(例えば、ルビジウム時計)を用いた絶対時刻の精度管理が行われる。原子時計における時刻計測は、GPSにおける時刻計測よりも計測精度が低く、原子時計によって計測される時刻は、徐々にドリフトして真値から外れることがある。このため、原子時計によって計測される時刻は、GPS時刻を用いて修正をかける必要がある。 Next, a case where the smoothing filter device 1 is applied to the bistatic radar system will be described. The bistatic radar system is a system in which the transmitter and receiver of radar waves are placed apart from each other and connected by communication, and the communication between the transmitter and receiver is highly synchronized. It is required to be. In a bistatic radar system, in order to synchronize communication between a transmitter and a receiver, accuracy control of absolute time using an atomic clock (for example, a rubidium clock) is generally performed. The time measurement in the atomic clock has lower measurement accuracy than the time measurement in GPS, and the time measured by the atomic clock may gradually drift and deviate from the true value. Therefore, the time measured by the atomic clock needs to be corrected using the GPS time.
 バイスタティックレーダシステムにおいて、平滑フィルタ装置1は、トラッキングインデックスを用いて、原子時計による時刻計測とGPSにおける時刻計測とで平滑誤差標準偏差とが同じ値となるように駆動雑音標準偏差σw,kを算出し、算出した駆動雑音標準偏差σw,kを用いて平滑処理を行う。これにより、原子時計によって計測された時刻の値とGPSにおいて計測された時刻の値とが混在した時系列データの平滑処理において、原子時計によって計測された時刻に対する平滑性能とGPSによって計測られた時刻に対する平滑性能とを一致させることができる。 In the bistatic radar system, the smoothing filter device 1 uses the tracking index to drive the smoothing error standard deviation σ w, k so that the smoothing error standard deviation becomes the same value between the time measurement by the atomic clock and the time measurement by GPS. Is calculated, and smoothing is performed using the calculated drive noise standard deviations σ w and k. As a result, in the smoothing process of time series data in which the time value measured by the atomic clock and the time value measured by GPS are mixed, the smoothing performance with respect to the time measured by the atomic clock and the time measured by GPS It is possible to match the smoothing performance with respect to.
 これまで、観測精度および観測タイミングが互いに異なる2つの観測方法によって観測された観測値が混在した時系列データについて説明したが、平滑フィルタ装置1は、3つ以上の観測方法によって観測された観測値が混在した時系列データを平滑処理することができる。すなわち、平滑フィルタ装置1には、3つ以上の観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値となるように算出されたトラッキングインデックスΓの初期値が設定される。平滑フィルタ装置1は、この初期値を用いて3つ以上の観測方法に対応する平滑性能を一致させることができる。 So far, we have described time-series data in which observation values observed by two observation methods with different observation accuracy and timing are mixed, but the smoothing filter device 1 has observed values observed by three or more observation methods. Time-series data in which is mixed can be smoothed. That is, the smoothing filter device 1 is set with the initial value of the tracking index Γ calculated so that the smoothing error standard deviations corresponding to each of the three or more observation methods have the same value. The smoothing filter device 1 can match the smoothing performance corresponding to three or more observation methods by using this initial value.
 以上のように、実施の形態1に係る平滑フィルタ装置1において、トラッキングインデックスを用いて、複数の観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値となるように、各観測時刻における駆動雑音標準偏差が算出され、算出された駆動雑音標準偏差を用いて観測値の時系列データの平滑処理が行われる。観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データの平滑処理において、複数の観測方法にそれぞれ対応する平滑性能を一致させることができる。 As described above, in the smoothing filter device 1 according to the first embodiment, the driving noise standard at each observation time is used so that the smoothing error standard deviation corresponding to each of the plurality of observation methods becomes the same value by using the tracking index. The deviation is calculated, and the calculated drive noise standard deviation is used to smooth the time-series data of the observed values. In the smoothing process of time-series data in which observation values in which common observation targets are observed by multiple observation methods with different observation accuracy and observation timing are mixed, it is possible to match the smoothing performance corresponding to each of the multiple observation methods. ..
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態の任意の構成要素の変形もしくは実施の形態の任意の構成要素の省略が可能である。 The present invention is not limited to the above-described embodiment, and within the scope of the present invention, it is possible to modify any component of the embodiment or omit any component of the embodiment.
 本発明に係る平滑フィルタ装置は、例えば、MLATに利用可能である。 The smoothing filter device according to the present invention can be used for, for example, MLAT.
1 平滑フィルタ装置、10 初期値設定部、11 第1の計算部、12 第2の計算部、13 予測部、14 平滑部、20 空港面、21 受信局、22,23,24,26,27,28 受信局、25 基準局、30 航空機、100 入力インタフェース、101 出力インタフェース、102 処理回路、103 プロセッサ、104 メモリ。 1 smoothing filter device, 10 initial value setting unit, 11 first calculation unit, 12 second calculation unit, 13 prediction unit, 14 smoothing unit, 20 airport surface, 21 receiving station, 22, 23, 24, 26, 27 , 28 receiving station, 25 reference station, 30 aircraft, 100 input interface, 101 output interface, 102 processing circuit, 103 processor, 104 memory.

Claims (4)

  1.  観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データを入力し、前記観測値の観測時刻の時間間隔を算出する第1の計算部と、
     観測誤差標準偏差、駆動雑音標準偏差および観測時刻の時間間隔の関数として表されるトラッキングインデックスを用いて、複数の前記観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値となるように、各観測時刻における前記駆動雑音標準偏差を算出する第2の計算部と、
     前記第1の計算部によって算出された観測時刻の時間間隔と、前記第2の計算部によって算出された各観測時刻における前記駆動雑音標準偏差と、前記観測対象の状態の平滑ベクトルおよび平滑誤差共分散行列とを用いて、前記観測対象の状態の予測ベクトルおよび予測誤差共分散行列を算出する予測部と、
     各観測時刻における前記観測誤差標準偏差と、前記予測部によって算出された前記予測ベクトルおよび前記予測誤差共分散行列とを用いて、前記平滑ベクトルおよび前記平滑誤差共分散行列を算出する平滑部と、
     を備えたことを特徴とする平滑フィルタ装置。
    A first calculation unit that inputs time-series data in which observation values in which common observation targets are observed by multiple observation methods with different observation accuracy and observation timing are input and calculates the time interval of the observation time of the observation values. When,
    Using the tracking index, which is expressed as a function of the observation error standard deviation, the drive noise standard deviation, and the time interval of the observation time, each observation has the same smoothing error standard deviation corresponding to each of the plurality of observation methods. A second calculation unit that calculates the drive noise standard deviation at time, and
    Both the time interval of the observation time calculated by the first calculation unit, the driving noise standard deviation at each observation time calculated by the second calculation unit, and the smoothing vector and smoothing error of the state of the observation target. A prediction unit that calculates the prediction vector of the state of the observation target and the prediction error covariance matrix using the variance matrix, and
    Using the observation error standard deviation at each observation time, the prediction vector calculated by the prediction unit, and the prediction error covariance matrix, a smoothing unit that calculates the smoothing vector and the smoothing error covariance matrix, and a smoothing unit that calculates the smoothing error covariance matrix.
    A smoothing filter device characterized by being equipped with.
  2.  複数の前記観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値になるように設定された前記トラッキングインデックスの初期値を算出し、前記トラッキングインデックスの初期値を前記第2の計算部に設定する初期値設定部を備え、
     前記第2の計算部は、前記トラッキングインデックスの初期値、前記観測誤差標準偏差および前記第1の計算部によって算出された観測時刻の時間間隔を用いて、前記駆動雑音標準偏差を算出すること
     を特徴とする請求項1記載の平滑フィルタ装置。
    An initial value of the tracking index set so that the smoothing error standard deviations corresponding to the plurality of observation methods have the same value is calculated, and the initial value of the tracking index is set in the second calculation unit. Equipped with a value setting unit
    The second calculation unit calculates the drive noise standard deviation by using the initial value of the tracking index, the observation error standard deviation, and the time interval of the observation time calculated by the first calculation unit. The smoothing filter device according to claim 1, wherein the smoothing filter device is characterized.
  3.  前記初期値設定部は、雑音抑圧比の平方根と前記観測誤差標準偏差の積である前記平滑誤差標準偏差を算出し、複数の前記観測方法にそれぞれ対応する前記平滑誤差標準偏差が同じ値となるように、前記トラッキングインデックスの初期値を前記観測方法ごとに算出すること
     を特徴とする請求項2記載の平滑フィルタ装置。
    The initial value setting unit calculates the smoothing error standard deviation, which is the product of the square root of the noise suppression ratio and the observed error standard deviation, and the smoothing error standard deviation corresponding to each of the plurality of the observation methods has the same value. The smoothing filter device according to claim 2, wherein the initial value of the tracking index is calculated for each of the observation methods.
  4.  第1の計算部が、観測精度および観測タイミングが互いに異なる複数の観測方法によって共通の観測対象が観測された観測値が混在した時系列データを入力し、前記観測値の観測時刻の時間間隔を算出するステップと、
     第2の計算部が、観測誤差標準偏差、駆動雑音標準偏差および観測時刻の時間間隔の関数として表されるトラッキングインデックスを用いて、複数の前記観測方法にそれぞれ対応する平滑誤差標準偏差が同じ値となるように、各観測時刻における前記駆動雑音標準偏差を算出するステップと、
     予測部が、前記第1の計算部によって算出された観測時刻の時間間隔と、前記第2の計算部によって算出された各観測時刻における前記駆動雑音標準偏差と、前記観測対象の状態の平滑ベクトルおよび平滑誤差共分散行列とを用いて、前記観測対象の状態の予測ベクトルおよび予測誤差共分散行列を算出するステップと、
     平滑部が、各観測時刻における前記観測誤差標準偏差と、前記予測部によって算出された前記予測ベクトルおよび前記予測誤差共分散行列とを用いて、前記平滑ベクトルおよび前記平滑誤差共分散行列を算出するステップと、
     を備えたことを特徴とする平滑化方法。
    The first calculation unit inputs time-series data in which observation values in which common observation targets are observed by a plurality of observation methods having different observation accuracy and observation timing are input, and the time interval of the observation time of the observation values is set. Steps to calculate and
    The second calculation unit uses a tracking index expressed as a function of the observation error standard deviation, the driving noise standard deviation, and the time interval of the observation time, and the smoothing error standard deviation corresponding to each of the plurality of observation methods is the same value. The step of calculating the drive noise standard deviation at each observation time and
    The prediction unit has the time interval of the observation time calculated by the first calculation unit, the drive noise standard deviation at each observation time calculated by the second calculation unit, and the smoothing vector of the state of the observation target. And the step of calculating the prediction vector and the prediction error covariance matrix of the state of the observed object using the smoothing error covariance matrix and
    The smoothing unit calculates the smoothing vector and the smoothing error covariance matrix by using the observation error standard deviation at each observation time, the prediction vector calculated by the prediction unit, and the prediction error covariance matrix. Steps and
    A smoothing method characterized by being provided with.
PCT/JP2019/037289 2019-09-24 2019-09-24 Smoothing filter device and smoothing method WO2021059331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/037289 WO2021059331A1 (en) 2019-09-24 2019-09-24 Smoothing filter device and smoothing method
JP2021544721A JP6952944B2 (en) 2019-09-24 2019-09-24 Smoothing filter device and smoothing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037289 WO2021059331A1 (en) 2019-09-24 2019-09-24 Smoothing filter device and smoothing method

Publications (1)

Publication Number Publication Date
WO2021059331A1 true WO2021059331A1 (en) 2021-04-01

Family

ID=75165188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037289 WO2021059331A1 (en) 2019-09-24 2019-09-24 Smoothing filter device and smoothing method

Country Status (2)

Country Link
JP (1) JP6952944B2 (en)
WO (1) WO2021059331A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237474A (en) * 1998-02-19 1999-08-31 Mitsubishi Electric Corp Tracking device
JP2003149330A (en) * 2001-11-07 2003-05-21 Mitsubishi Electric Corp Tracking device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237474A (en) * 1998-02-19 1999-08-31 Mitsubishi Electric Corp Tracking device
JP2003149330A (en) * 2001-11-07 2003-05-21 Mitsubishi Electric Corp Tracking device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KALATA, P. R.: "The tracking index: a generalized parameter for alpha-beta and alpha-beta-gamma target trackers", IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. AES-20, no. issue: 2, March 1984 (1984-03-01), pages 174 - 182, XP011245759, ISSN: 0018-9251, DOI: 10.1109/TAES.1984.310438 *

Also Published As

Publication number Publication date
JPWO2021059331A1 (en) 2021-11-18
JP6952944B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
CN107677272B (en) AUV (autonomous Underwater vehicle) collaborative navigation method based on nonlinear information filtering
CN110168396B (en) Time of arrival (TOA) measurements
US9891306B2 (en) Geolocating a remote emitter
WO2014164106A1 (en) Differential ultra-wideband indoor positioning method
CN102455421B (en) Sound positioning system and method without time synchronization
CN111157943B (en) TOA-based sensor position error suppression method in asynchronous network
CN108414974B (en) Indoor positioning method based on ranging error correction
WO2012085868A1 (en) Target altitude estimation based on measurements obtained by means of a passive radar
CN109031261B (en) Time difference estimation method and device
CN110146901A (en) Based on radial base neural net and Unscented kalman filtering multipath estimation method
CN108490465B (en) Ground same-frequency multi-motion radiation source tracking method and system based on time-frequency difference and direction finding
US9645219B2 (en) Systems and methods for off-line and on-line sensor calibration
Murzova et al. The α-β filter for tracking maneuvering objects with LFM waveforms
JP6952944B2 (en) Smoothing filter device and smoothing method
CN104155653A (en) SAR back projection imaging method based on feature distance subspace
US10820152B2 (en) Device diversity correction method for RSS-based precise location tracking
EP2913690B1 (en) Positioning system and method
Molnár et al. Development of an UWB based indoor positioning system
CN107390166B (en) Self-adaptive interference source positioning flight verification method
CN109541540B (en) Motion single-station pseudo range and velocity combined positioning method
Amendolare et al. WPI precision personnel locator system: Inertial navigation supplementation
CN111308521B (en) Code phase estimation and pseudo-range measurement method and device of GNSS (Global navigation satellite System), and terminal
Yi et al. Joint time synchronization and tracking for mobile underwater systems
CN109917330A (en) A kind of angle-of- arrival estimation method there are based on sparse orthogonal matching pursuit theory when phase error
CN106199648B (en) A kind of method and system using the clock rate adjustment receiver system time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946922

Country of ref document: EP

Kind code of ref document: A1