WO2021053786A1 - Aerial vehicle - Google Patents

Aerial vehicle Download PDF

Info

Publication number
WO2021053786A1
WO2021053786A1 PCT/JP2019/036728 JP2019036728W WO2021053786A1 WO 2021053786 A1 WO2021053786 A1 WO 2021053786A1 JP 2019036728 W JP2019036728 W JP 2019036728W WO 2021053786 A1 WO2021053786 A1 WO 2021053786A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
wing
flight
attack
airframe
Prior art date
Application number
PCT/JP2019/036728
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木陽一
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to CN201980100835.5A priority Critical patent/CN114502464A/en
Priority to PCT/JP2019/036728 priority patent/WO2021053786A1/en
Priority to JP2019552634A priority patent/JPWO2021053786A1/ja
Publication of WO2021053786A1 publication Critical patent/WO2021053786A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded

Definitions

  • the present invention relates to an air vehicle, and more particularly to a thrust portion and a wing portion that are displaceably connected to each other.
  • tilt rotor system Two types of aircraft, the so-called tilt rotor system and the tilt wing system, are known as aircraft equipped with a rotor (rotor wing) and a main wing.
  • Patent Document 1 discloses an aircraft in which the main wing is fixed to the main body and the entire rotor including the motor is displaceable in the vertical direction and the flight direction (tilt rotor method).
  • Patent Document 2 discloses an aircraft in which the main wing and the main body are displaceable in the vertical direction and the flight direction, and the entire motor and rotor are fixed to the main wing (tilt wing). method).
  • the flight efficiency of the main wing is poor because the main wing enters a wide range of the wake of the propeller when ascending.
  • the present invention has been made in view of the above circumstances, and provides an air vehicle that enables an efficient and safe transition from hovering to level flight.
  • a flight unit having a wing portion and a rotary wing provided on the wing portion, Equipped with the airframe
  • the wing It is configured to be able to maintain a negative angle of attack, at least in the direction of travel.
  • An air vehicle is obtained.
  • the illustrated flying object is the state at the time of landing. It is the figure which looked at the flying body from the top. It is a figure explaining the flying object which concerns on embodiment of this invention.
  • the illustrated flying object is in the ascending state. It is a figure explaining the flying object which concerns on embodiment of this invention.
  • the illustrated flying object is a flight state in the direction of travel. It is a graph which showed the lift and resistance characteristics of an airfoil. It is a functional block diagram of the flying object of this invention.
  • the invention according to the present embodiment includes the following configurations.
  • [Item 1] A flight unit having a wing portion and a rotary wing provided on the wing portion, Equipped with the airframe The wing It is configured to be able to maintain a negative angle of attack, at least in the direction of travel. Aircraft.
  • [Item 2] The flying object according to item 1.
  • the wing It is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the rotor at least during hovering.
  • Aircraft. [Item 3] The flying object according to item 1 or item 2.
  • a boarding section that can be displaced independently of the fuselage section is provided.
  • [Item 4] The flying object according to item 3.
  • the fuselage extends horizontally and perpendicularly to the flight direction.
  • the boarding portion is provided substantially in the center of the aircraft portion in a side view. Aircraft.
  • the airframe 1 roughly includes a flight unit 10, an airframe unit 20, and a boarding unit 30.
  • the flight unit 10 includes a wing unit 100, a motor 102, and a propeller (rotor blade) 104.
  • the wing portion 100 is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the propeller 104 at least during hovering, and is fixed to the airframe portion 20.
  • various known methods can be adopted.
  • the airframe unit 20 (and the flight unit 10 fixed to the airframe unit 20) and the boarding unit 30 are configured to be displaceable independently.
  • the flying object 1 has an H-shape when viewed from above. That is, the flight body 1 includes two flight sections 10 provided in the front-rear direction and a body section 20 (and a boarding section 30) connecting them.
  • the flight unit 10 includes a wing unit 100, a motor 102, and a propeller 104.
  • the correspondence between the X-axis, the Y-axis and the Z-axis in the figure and the direction corresponds as follows.
  • X-axis 1st horizontal direction (+ X direction: left, -X direction: right)
  • Y-axis 2nd horizontal direction (+ Y direction: front, -Y direction: rear)
  • Z axis vertical direction (+ Z direction: up, -Z direction: down)
  • the wing portion 100 extends in the X direction and is a portion where lift is generated by the motor 102. In the initial state (the state shown in FIG. 1), the front edge faces upward and the trailing edge faces downward.
  • the wing portion 100 is composed of a front wing portion 100 and a rear wing portion 100.
  • the thrust generating unit 10 generates a propulsive force forward from the thrust generating unit 10 by rotating the propeller (thrust generating unit) 104.
  • the motor 102 can be replaced by an engine or the like.
  • the propeller 104 is driveable by the motor 102 and rotates clockwise and / or counterclockwise around the axis of rotation of the motor 102 (eg, the major axis of the motor).
  • the motor 102 can rotate the propellers 104 in the same direction, or can rotate the propellers 104 independently. Some of the propellers 104 rotate in one direction and the other propellers 104 rotate in the other direction.
  • the blades constituting the propeller 104 can all rotate at the same rotation speed, and can also rotate at different rotation speeds. The number of rotations can be automatically or manually determined based on the dimensions (for example, size, weight) and control state (speed, moving direction, etc.) of the moving body.
  • the propeller 104 rotates in response to the output from the motor 102.
  • the rotation of the propeller 104 generates a propulsive force for taking off the flying object 1 from the ground G, moving it horizontally, and landing it at the destination.
  • the propeller 104 can rotate to the right, stop, and rotate to the left.
  • the blade has an elongated shape. Any number of blades (rotors) (eg, 1, 2, 3, 4, or more blades) may be used. Further, the shape of the blade can be any shape such as a flat shape, a bent shape, a twisted shape, a tapered shape, or a combination thereof.
  • the shape of the blade can be changed (for example, expansion / contraction, folding, folding, etc.).
  • the blades may be symmetrical (having the same upper and lower surfaces) or asymmetric (having different shaped upper and lower surfaces).
  • the blade can be formed into an air wheel, wing, or geometric shape suitable for generating dynamic aerodynamic force (eg, lift, thrust) as the blade moves through the air.
  • the geometry of the blade can be appropriately selected to optimize the dynamic air properties of the blade, such as increasing lift and thrust and reducing drag.
  • the airframe portion 20 extends rearward from the center of the front wing portion 100 and is connected to the center of the rear wing portion 100.
  • the machine body portion 20 can be formed of a material appropriately selected from carbon, stainless steel, aluminum, magnesium and the like, alloys thereof, combinations and the like.
  • the body unit 20 has a substantially annular accommodating unit that includes the boarding unit 30.
  • the accommodating portion is provided in the vicinity of substantially the center of the airframe portion 20.
  • the boarding portion 30 has a substantially annular shape corresponding to the shape of the accommodating portion, and is located inside the accommodating portion.
  • the boarding section 30 and the accommodating section are configured to be independently displaceable in the circumferential direction of a substantially annular shape.
  • the propeller 104 is provided in front of the front edge of the wing portion 100.
  • the front edge of the wing portion 100 is directed upward, and the motor unit is oriented to generate at least an upward propulsive force.
  • the leg portion 202 and the rear side wing portion (and the motor 102) function as a portion that supports the flying object 1 at the time of landing.
  • the wing portion 100 has a negative angle of attack with respect to the rotation center axis of the propeller 104.
  • both the front propeller 104 and the rear propeller 104 have a negative angle of attack with respect to the rotation center axis of the propeller 104.
  • the wing portion 100 has a negative angle of attack with respect to the rotation center axis of the propeller 104 even during horizontal movement.
  • both the front propeller 104 and the rear propeller 104 have a negative angle of attack with respect to the rotation center axis of the propeller 104.
  • both the front propeller 104 and the rear propeller 104 have a negative angle of attack with respect to the rotation center axis of the propeller 104.
  • FIG. 5 is a graph showing the lift / resistance characteristics of the airfoil.
  • the horizontal axis of FIG. 5 indicates the angle of attack, and the vertical axis indicates the resistance coefficient and lift coefficient.
  • the negative angle of attack has a smaller drag coefficient than the positive angle of attack.
  • the airframe is manufactured with an angle of attack of -6 degrees, the lift of the main wing equivalent to that of an airframe with a zero angle of attack can be obtained.
  • the wing portion 100 has a negative angle of attack with respect to the rotation center axis of the propeller 104, it is possible to suppress an excessive angle of attack of the wing portion 100 while suppressing the drag force of the wake of the propeller.
  • the flying object of the present embodiment it is possible to safely shift from the hovering time to the horizontal flight transition.
  • FIG. 6 is a functional block diagram of the flying object of the present invention.
  • the above-mentioned flying object may have, for example, a configuration as shown in FIG.
  • the flight controller can have one or more processors such as a programmable processor (eg, central processing unit (CPU)).
  • processors such as a programmable processor (eg, central processing unit (CPU)).
  • the flight controller has a memory (not shown) and can access the memory.
  • the memory stores the logic, code, and / or program instructions that the flight controller can execute to perform one or more steps.
  • the memory may include, for example, a separable medium such as an SD card or random access memory (RAM) or an external storage device.
  • a separable medium such as an SD card or random access memory (RAM) or an external storage device.
  • the data acquired from the cameras and sensors may be directly transmitted and stored in the memory. For example, still image / moving image data taken by a camera or the like is recorded in an internal memory or an external memory.
  • the flight controller includes a control module configured to control the state of the aircraft.
  • the control module adjusts the spatial placement, velocity, and / or acceleration of an air vehicle with six degrees of freedom (translational motion x, y and z, and rotational motion ⁇ x , ⁇ y and ⁇ z).
  • the control module can control one or more of the states of the mounting unit and the sensors.
  • the flight controller is capable of communicating with a transmitter / receiver configured to transmit and / or receive data from one or more external devices (eg, terminals, display devices, or other remote controls).
  • the transmitter / receiver can use any suitable communication means such as wired communication or wireless communication.
  • the transmitter / receiver uses one or more of local area network (LAN), wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) network, telecommunications network, cloud communication, and the like. be able to.
  • LAN local area network
  • WAN wide area network
  • infrared wireless
  • WiFi point-to-point
  • P2P point-to-point
  • telecommunications network cloud communication, and the like. be able to.
  • the transmitter / receiver can transmit and / or receive one or more of data acquired by sensors, processing results generated by a flight controller, predetermined control data, user commands from a terminal or a remote controller, and the like. ..
  • the sensors according to this embodiment may include an inertial sensor (accelerometer, gyro sensor), GPS sensor, proximity sensor (eg, rider), or vision / image sensor (eg, camera).
  • an inertial sensor accelerelerometer, gyro sensor
  • GPS sensor GPS sensor
  • proximity sensor eg, rider
  • vision / image sensor eg, camera
  • the air vehicle of the present invention can be expected to be used as an air vehicle dedicated to home delivery services over medium and long distances, and as an industrial air vehicle in wide area monitoring operations and reconnaissance / rescue operations in mountainous areas. Further, the air vehicle of the present invention can be used in airplane-related industries such as multicopter drones, and further, the air vehicle of the present invention is suitably used as an air vehicle equipped with a camera or the like and capable of performing aerial photography missions. In addition, it can be used in various industries such as security field, agriculture, and infrastructure monitoring.
  • the flying object of the present invention may be applied to an unmanned flying object.
  • the blade portion 100 is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the rotary blade at least during hovering.
  • the wing portion 100 may be configured so as to be able to maintain at least a negative angle of attack with respect to the traveling direction.
  • Air vehicle 10 Flight unit 100 Wing unit 102 Motor 104 Propeller (rotor blade) 20 Aircraft section 30 Boarding section

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

[Problem] To provide an aerial vehicle that can efficiently and safely transition from hovering to horizontal flight. [Solution] This aerial vehicle is provided with a flight unit including airfoils and rotary wings disposed to the airfoils, and an airframe unit, the airfoils being configured to be capable of maintaining at least a negative angle of attack relative to the direction of travel. The airfoil is configured to be capable of maintaining at least a negative angle of attack about the rotary center axis of the rotary wing during hovering. The aerial vehicle is provided with a riding unit capable of displacing independently from the airframe unit. The airframe unit extends horizontally and perpendicularly with respect to the flight direction. The riding unit is provided in approximately the middle of the airframe unit when viewed sideways. This configuration enables a safe transition from hovering to horizontal flight.

Description

飛行体Aircraft
 本発明は、飛行体に関し、特に、推力部と翼部とが変位可能に接続されるものに関する。 The present invention relates to an air vehicle, and more particularly to a thrust portion and a wing portion that are displaceably connected to each other.
 ローター(回転翼)と主翼を備えた航空機として、所謂ティルトロータ方式及びティルトウイング方式の2つの方式が知られている。 Two types of aircraft, the so-called tilt rotor system and the tilt wing system, are known as aircraft equipped with a rotor (rotor wing) and a main wing.
 特許文献1には、主翼は本体部に固定されており、モータを含むローター全体が垂直方向及び飛行方向の範囲で変位可能に構成されている航空機が開示されている(ティルトロータ方式)。 Patent Document 1 discloses an aircraft in which the main wing is fixed to the main body and the entire rotor including the motor is displaceable in the vertical direction and the flight direction (tilt rotor method).
 一方、特許文献2には、主翼と本体部とが垂直方向及び飛行方向の範囲で変位可能に構成されており、モータ及びロータ全体は主翼に固定されている航空機が開示されている(ティルトウイング方式)。 On the other hand, Patent Document 2 discloses an aircraft in which the main wing and the main body are displaceable in the vertical direction and the flight direction, and the entire motor and rotor are fixed to the main wing (tilt wing). method).
特表2013-501677号公報Special Table 2013-501677 特開2017-81360号公報JP-A-2017-81360
 特許文献1の技術によれば、上昇時において主翼がプロペラ後流の広範囲に入ることから主翼に飛行効率が悪い。 According to the technique of Patent Document 1, the flight efficiency of the main wing is poor because the main wing enters a wide range of the wake of the propeller when ascending.
 特許文献2の技術によれば、主翼全体が変位することから風の抵抗を受けたりと不安定である。 According to the technique of Patent Document 2, the entire main wing is displaced, so that it is unstable due to wind resistance.
 本発明は、上記事情に鑑みてなされたものであり、ホバリングから水平飛行への効率的かつ安全な移行を可能にした飛行体を提供する。 The present invention has been made in view of the above circumstances, and provides an air vehicle that enables an efficient and safe transition from hovering to level flight.
 本発明によれば、
 翼部と当該翼部に設けられた回転翼とを備える飛行部と、
 機体部とを備え、
 前記翼部は、
 少なくとも進行方向に対して負の迎角を維持可能となるように構成される、
飛行体が得られる。
According to the present invention
A flight unit having a wing portion and a rotary wing provided on the wing portion,
Equipped with the airframe
The wing
It is configured to be able to maintain a negative angle of attack, at least in the direction of travel.
An air vehicle is obtained.
 この発明によれば、ホバリングから水平飛行への効率的かつ安全な移行を可能にした飛行体を提供することができる。 According to the present invention, it is possible to provide an air vehicle that enables an efficient and safe transition from hovering to level flight.
本発明の実施の形態に係る飛行体の図である。図示される飛行体は着陸時の状態である。It is a figure of the flying body which concerns on embodiment of this invention. The illustrated flying object is the state at the time of landing. 飛行体を上から見た図である。It is the figure which looked at the flying body from the top. 本発明の実施の形態に係る飛行体を説明する図である。図示される飛行体は上昇時の状態である。It is a figure explaining the flying object which concerns on embodiment of this invention. The illustrated flying object is in the ascending state. 本発明の実施の形態に係る飛行体を説明する図である。図示される飛行体は進行方向への飛行状態である。It is a figure explaining the flying object which concerns on embodiment of this invention. The illustrated flying object is a flight state in the direction of travel. 翼型の揚力・抵抗特性を示したグラフである。It is a graph which showed the lift and resistance characteristics of an airfoil. 本発明の飛行体の機能ブロック図である。It is a functional block diagram of the flying object of this invention.
 本実施の形態による発明は、以下の構成を備える。
[項目1]
 翼部と当該翼部に設けられた回転翼とを備える飛行部と、
 機体部とを備え、
 前記翼部は、
 少なくとも進行方向に対して負の迎角を維持可能となるように構成される、
飛行体。
[項目2]
 項目1に記載の飛行体であって、
 前記翼部は、
少なくともホバリング時において前記回転翼の回転中心軸に対して負の迎角を維持可能となるように構成される、
飛行体。
[項目3]
 項目1又は項目2に記載の飛行体であって、
 前記機体部と独立変位可能な搭乗部を備える、
飛行体。
[項目4]
 項目3に記載の飛行体であって、
 前記機体部は、飛行方向に対して水平かつ垂直に延び、
 前記搭乗部は、側面視において、前記機体部の略中央に設けられている、
飛行体。
The invention according to the present embodiment includes the following configurations.
[Item 1]
A flight unit having a wing portion and a rotary wing provided on the wing portion,
Equipped with the airframe
The wing
It is configured to be able to maintain a negative angle of attack, at least in the direction of travel.
Aircraft.
[Item 2]
The flying object according to item 1.
The wing
It is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the rotor at least during hovering.
Aircraft.
[Item 3]
The flying object according to item 1 or item 2.
A boarding section that can be displaced independently of the fuselage section is provided.
Aircraft.
[Item 4]
The flying object according to item 3.
The fuselage extends horizontally and perpendicularly to the flight direction.
The boarding portion is provided substantially in the center of the aircraft portion in a side view.
Aircraft.
 次に、図を参照して、本発明の実施の形態による飛行体について説明する。 Next, the flying object according to the embodiment of the present invention will be described with reference to the drawings.
<構造>
 図1に示されるように、本実施の形態による飛行体1は、概略、飛行部10と、機体部20と、搭乗部30と、を備えている。飛行部10は、翼部100と、モータ102と、プロペラ(回転翼)104とを備えている。翼部100は、少なくともホバリング時においてプロペラ104の回転中心軸に対して負の迎角を維持可能となるように構成され、機体部20に対して固定される。固定方法は、公知の種々の方法を採用できる。また、機体部20(及び当該機体部20に固定された飛行部10)と、搭乗部30とは独立変位可能に構成されている。
<Structure>
As shown in FIG. 1, the airframe 1 according to the present embodiment roughly includes a flight unit 10, an airframe unit 20, and a boarding unit 30. The flight unit 10 includes a wing unit 100, a motor 102, and a propeller (rotor blade) 104. The wing portion 100 is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the propeller 104 at least during hovering, and is fixed to the airframe portion 20. As the fixing method, various known methods can be adopted. Further, the airframe unit 20 (and the flight unit 10 fixed to the airframe unit 20) and the boarding unit 30 are configured to be displaceable independently.
 図2に示されるように、本実施の形態による飛行体1は、上から見た場合にH字形状を有している。即ち、飛行体1は、前後に設けられた2つの飛行部10と、これらを接続する機体部20(及び搭乗部30)とを備えている。 As shown in FIG. 2, the flying object 1 according to the present embodiment has an H-shape when viewed from above. That is, the flight body 1 includes two flight sections 10 provided in the front-rear direction and a body section 20 (and a boarding section 30) connecting them.
 上述したように、飛行部10は、翼部100と、モータ102と、プロペラ104とを備えている。なお。以下の説明においては、図におけるX軸、Y軸及びZ軸と、方向との対応は次の通り対応する。
  X軸:第1水平方向(+X方向:左、-X方向:右)
  Y軸:第2水平方向(+Y方向:前、-Y方向:後)
  Z軸:垂直方向(+Z方向:上、-Z方向:下)
As described above, the flight unit 10 includes a wing unit 100, a motor 102, and a propeller 104. In addition. In the following description, the correspondence between the X-axis, the Y-axis and the Z-axis in the figure and the direction corresponds as follows.
X-axis: 1st horizontal direction (+ X direction: left, -X direction: right)
Y-axis: 2nd horizontal direction (+ Y direction: front, -Y direction: rear)
Z axis: vertical direction (+ Z direction: up, -Z direction: down)
 翼部100は、X方向に延びており、モータ102によって揚力を発生させる部位である。初期状態(図1に示される状態)では、前縁が上、後縁が下を向いている。翼部100は、前側の翼部100と後側の翼部100とで構成されている。 The wing portion 100 extends in the X direction and is a portion where lift is generated by the motor 102. In the initial state (the state shown in FIG. 1), the front edge faces upward and the trailing edge faces downward. The wing portion 100 is composed of a front wing portion 100 and a rear wing portion 100.
 推力発生部10は、プロペラ(推力発生部)104を回転させることにより推力発生部10から前方への推進力を生みだす。 The thrust generating unit 10 generates a propulsive force forward from the thrust generating unit 10 by rotating the propeller (thrust generating unit) 104.
 モータ102は、エンジン等により置換することが可能である。プロペラ104は、モータ102によって駆動可能であり、時計方向に及び/または反時計方向に、モータ102の回転軸(例えば、モータの長軸)の周りに回転する。 The motor 102 can be replaced by an engine or the like. The propeller 104 is driveable by the motor 102 and rotates clockwise and / or counterclockwise around the axis of rotation of the motor 102 (eg, the major axis of the motor).
 本実施の形態おいて、モータ102は、プロペラ104を、すべて同一方向に回転可能であるし、独立して回転することも可能である。プロペラ104のいくつかは一方の方向に回転し、他のプロペラ104は他方方向に回転する。プロペラ104を構成するブレードは、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)や制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。 In the present embodiment, the motor 102 can rotate the propellers 104 in the same direction, or can rotate the propellers 104 independently. Some of the propellers 104 rotate in one direction and the other propellers 104 rotate in the other direction. The blades constituting the propeller 104 can all rotate at the same rotation speed, and can also rotate at different rotation speeds. The number of rotations can be automatically or manually determined based on the dimensions (for example, size, weight) and control state (speed, moving direction, etc.) of the moving body.
 プロペラ104は、モータ102からの出力を受けて回転する。プロペラ104が回転することによって、飛行体1を地面Gから離陸させ、水平移動させ、目的地に着陸させるための推進力が発生する。なお、プロペラ104は、右方向への回転、停止及び左方向への回転が可能である。 The propeller 104 rotates in response to the output from the motor 102. The rotation of the propeller 104 generates a propulsive force for taking off the flying object 1 from the ground G, moving it horizontally, and landing it at the destination. The propeller 104 can rotate to the right, stop, and rotate to the left.
 本発明のプロペラ104は、ブレードは細長い形状を有している。任意のブレード(回転子)の数(例えば、1、2、3、4、またはそれ以上のブレード)でよい。また、ブレードの形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。 In the propeller 104 of the present invention, the blade has an elongated shape. Any number of blades (rotors) (eg, 1, 2, 3, 4, or more blades) may be used. Further, the shape of the blade can be any shape such as a flat shape, a bent shape, a twisted shape, a tapered shape, or a combination thereof.
 なお、ブレードの形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。ブレードは対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。 The shape of the blade can be changed (for example, expansion / contraction, folding, folding, etc.). The blades may be symmetrical (having the same upper and lower surfaces) or asymmetric (having different shaped upper and lower surfaces).
 ブレードはエアホイル、ウイング、またはブレードが空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。ブレードの幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、ブレードの動的空気特性を最適化するために適宜選択可能である。 The blade can be formed into an air wheel, wing, or geometric shape suitable for generating dynamic aerodynamic force (eg, lift, thrust) as the blade moves through the air. The geometry of the blade can be appropriately selected to optimize the dynamic air properties of the blade, such as increasing lift and thrust and reducing drag.
 機体部20は、前側の翼部100の中央から後方に延びており、後側の翼部100の中央に接続されている。 The airframe portion 20 extends rearward from the center of the front wing portion 100 and is connected to the center of the rear wing portion 100.
 本実施の形態による機体部20は、カーボン、ステンレス、アルミニウム、マグネシウム等またはこれらの合金又は組合わせ等から適宜選択される素材で形成することが可能である。 The machine body portion 20 according to the present embodiment can be formed of a material appropriately selected from carbon, stainless steel, aluminum, magnesium and the like, alloys thereof, combinations and the like.
 機体部20は、搭乗部30を包含する略環状の収容部を有している。収容部は、機体部20の略中央付近に設けられている。 The body unit 20 has a substantially annular accommodating unit that includes the boarding unit 30. The accommodating portion is provided in the vicinity of substantially the center of the airframe portion 20.
 搭乗部30は、収容部の形状に対応する略環状の形状を有しており、収容部の内側に位置している。搭乗部30と収容部とは、略環状の周方向に独立変位可能に構成されている。 The boarding portion 30 has a substantially annular shape corresponding to the shape of the accommodating portion, and is located inside the accommodating portion. The boarding section 30 and the accommodating section are configured to be independently displaceable in the circumferential direction of a substantially annular shape.
 <飛行形態>
 続いて、図3及び図4を参照して、飛行時の形態及び変形について説明する。
<Flight form>
Subsequently, the form and deformation during flight will be described with reference to FIGS. 3 and 4.
 本実施の形態によるプロペラ104は、翼部100の前縁よりも前に設けられている。図1に示される着陸状態において、翼部100の前縁を上方に向けると共に、モータユニットが少なくとも上方向への推進力を生じる向きとされている。脚部202と後側翼部(及びモータ102)は、着陸時に飛行体1を支える部位として機能する。 The propeller 104 according to the present embodiment is provided in front of the front edge of the wing portion 100. In the landing state shown in FIG. 1, the front edge of the wing portion 100 is directed upward, and the motor unit is oriented to generate at least an upward propulsive force. The leg portion 202 and the rear side wing portion (and the motor 102) function as a portion that supports the flying object 1 at the time of landing.
 図3に示されるように、飛行体1の上昇時及びホバリング時においては、翼部100は、プロペラ104の回転中心軸に対して負の迎角となっている。この際、前側のプロペラ104も後側のプロペラ104もプロペラ104の回転中心軸に対して負の迎角となる。 As shown in FIG. 3, when the flying object 1 is ascending and hovering, the wing portion 100 has a negative angle of attack with respect to the rotation center axis of the propeller 104. At this time, both the front propeller 104 and the rear propeller 104 have a negative angle of attack with respect to the rotation center axis of the propeller 104.
 図3及び図4に示されるように、垂直離陸(図3)から水平移動(図4)へ移行する際に、機体部20が、図の両矢印のように、周方向に変位することにより、水平姿勢から前傾姿勢へと変位する。この際、搭乗部30は、同じ方向を向いたままとなる。 As shown in FIGS. 3 and 4, when shifting from vertical takeoff (FIG. 3) to horizontal movement (FIG. 4), the fuselage portion 20 is displaced in the circumferential direction as shown by the double-headed arrows in the figure. , Displaces from a horizontal position to a forward leaning position. At this time, the boarding section 30 remains facing in the same direction.
 図4に示されるように、水平移動時においても、翼部100は、プロペラ104の回転中心軸に対して負の迎角となっている。この際、前側のプロペラ104も後側のプロペラ104もプロペラ104の回転中心軸に対して負の迎角となる。この際、前側のプロペラ104も後側のプロペラ104もプロペラ104の回転中心軸に対して負の迎角となる。 As shown in FIG. 4, the wing portion 100 has a negative angle of attack with respect to the rotation center axis of the propeller 104 even during horizontal movement. At this time, both the front propeller 104 and the rear propeller 104 have a negative angle of attack with respect to the rotation center axis of the propeller 104. At this time, both the front propeller 104 and the rear propeller 104 have a negative angle of attack with respect to the rotation center axis of the propeller 104.
 図5は、翼型の揚力・抵抗特性を示したグラフである。図5の横軸は、迎え角を示し、縦軸は、抵抗係数及び揚力係数を示す。図5より明らかなように、マイナスの迎角の方が、プラスの迎角よりも抵抗係数が小さいことがわかる。また、仮に、マイナス6度の迎角で機体を製作すると、ゼロ迎角の機体と同等の主翼の揚力が得られることがわかる。このように、翼部100をプロペラ104の回転中心軸に対して負の迎角とすると、プロペラ後流の抗力を押さえつつ、翼部100の過剰な迎角を控えることが可能になる。 FIG. 5 is a graph showing the lift / resistance characteristics of the airfoil. The horizontal axis of FIG. 5 indicates the angle of attack, and the vertical axis indicates the resistance coefficient and lift coefficient. As is clear from FIG. 5, it can be seen that the negative angle of attack has a smaller drag coefficient than the positive angle of attack. Further, it can be seen that if the airframe is manufactured with an angle of attack of -6 degrees, the lift of the main wing equivalent to that of an airframe with a zero angle of attack can be obtained. As described above, when the wing portion 100 has a negative angle of attack with respect to the rotation center axis of the propeller 104, it is possible to suppress an excessive angle of attack of the wing portion 100 while suppressing the drag force of the wake of the propeller.
 したがって、本実施形態の飛行体によれば、ホバリング時から水平飛行移行へと安全に移行することができる。 Therefore, according to the flying object of the present embodiment, it is possible to safely shift from the hovering time to the horizontal flight transition.
<一般的構造>
 図6は、本発明の飛行体の機能ブロック図である。上述した飛行体は、例えば、図6に示されるような構成を有していてもよい。
<General structure>
FIG. 6 is a functional block diagram of the flying object of the present invention. The above-mentioned flying object may have, for example, a configuration as shown in FIG.
 フライトコントローラは、プログラマブルプロセッサ(例えば、中央演算処理装置(CPU))などの1つ以上のプロセッサを有することができる。 The flight controller can have one or more processors such as a programmable processor (eg, central processing unit (CPU)).
 フライトコントローラは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うためにフライトコントローラが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。 The flight controller has a memory (not shown) and can access the memory. The memory stores the logic, code, and / or program instructions that the flight controller can execute to perform one or more steps.
 メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラやセンサ類から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。 The memory may include, for example, a separable medium such as an SD card or random access memory (RAM) or an external storage device. The data acquired from the cameras and sensors may be directly transmitted and stored in the memory. For example, still image / moving image data taken by a camera or the like is recorded in an internal memory or an external memory.
 フライトコントローラは、飛行体の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する飛行体の空間的配置、速度、および/または加速度を調整するために飛行体の推進機構(モータ等)を制御する。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。 The flight controller includes a control module configured to control the state of the aircraft. For example, the control module adjusts the spatial placement, velocity, and / or acceleration of an air vehicle with six degrees of freedom (translational motion x, y and z, and rotational motion θ x , θ y and θ z). Controls the propulsion mechanism (motor, etc.) of the aircraft. The control module can control one or more of the states of the mounting unit and the sensors.
 フライトコントローラは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部と通信可能である。送受信機は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。 The flight controller is capable of communicating with a transmitter / receiver configured to transmit and / or receive data from one or more external devices (eg, terminals, display devices, or other remote controls). The transmitter / receiver can use any suitable communication means such as wired communication or wireless communication.
 例えば、送受信部は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。 For example, the transmitter / receiver uses one or more of local area network (LAN), wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) network, telecommunications network, cloud communication, and the like. be able to.
 送受信部は、センサ類で取得したデータ、フライトコントローラが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。 The transmitter / receiver can transmit and / or receive one or more of data acquired by sensors, processing results generated by a flight controller, predetermined control data, user commands from a terminal or a remote controller, and the like. ..
 本実施の形態によるセンサ類は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。 The sensors according to this embodiment may include an inertial sensor (accelerometer, gyro sensor), GPS sensor, proximity sensor (eg, rider), or vision / image sensor (eg, camera).
 本発明の飛行体は、中長距離における宅配業務専用の飛行体としての利用、及び広域の監視業務、山岳領域の偵察・救助業務における産業用の飛行体としての利用が期待できる。また、本発明の飛行体は、マルチコプター・ドローン等の飛行機関連産業において利用することができ、さらに、本発明に、カメラ等を搭載し空撮任務も遂行可能な飛行体としても好適に使用することができる他、セキュリティ分野、農業、インフラ監視等の様々な産業にも利用することができる。 The air vehicle of the present invention can be expected to be used as an air vehicle dedicated to home delivery services over medium and long distances, and as an industrial air vehicle in wide area monitoring operations and reconnaissance / rescue operations in mountainous areas. Further, the air vehicle of the present invention can be used in airplane-related industries such as multicopter drones, and further, the air vehicle of the present invention is suitably used as an air vehicle equipped with a camera or the like and capable of performing aerial photography missions. In addition, it can be used in various industries such as security field, agriculture, and infrastructure monitoring.
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The above-described embodiment is merely an example for facilitating the understanding of the present invention, and is not intended to limit the interpretation of the present invention. It goes without saying that the present invention can be modified and improved without departing from the spirit thereof, and the present invention includes an equivalent thereof.
 上述した実施の形態では、本発明の飛行体を有人の飛行体に適用する例を示した。しかし、これに限らない。本発明の飛行体を無人の飛行体に適用してもよい。 In the above-described embodiment, an example of applying the flying object of the present invention to a manned flying object is shown. However, it is not limited to this. The flying object of the present invention may be applied to an unmanned flying object.
 上述した実施の形態では、翼部100が、少なくともホバリング時において前記回転翼の回転中心軸に対して負の迎角を維持可能となるように構成される例を示した。しかし、これに限らない。翼部100は、少なくとも進行方向に対して負の迎角を維持可能となるように構成されていればよい。 In the above-described embodiment, an example is shown in which the blade portion 100 is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the rotary blade at least during hovering. However, it is not limited to this. The wing portion 100 may be configured so as to be able to maintain at least a negative angle of attack with respect to the traveling direction.
 1 飛行体
 10 飛行部
 100 翼部
 102 モータ
 104 プロペラ(回転翼)
 20 機体部
 30 搭乗部
1 Air vehicle 10 Flight unit 100 Wing unit 102 Motor 104 Propeller (rotor blade)
20 Aircraft section 30 Boarding section

Claims (4)

  1.  翼部と当該翼部に設けられた回転翼とを備える飛行部と、
     機体部とを備え、
     前記翼部は、
     少なくとも進行方向に対して負の迎角を維持可能となるように構成される、
    飛行体。
    A flight unit having a wing portion and a rotary wing provided on the wing portion,
    Equipped with the airframe
    The wing
    It is configured to be able to maintain a negative angle of attack, at least in the direction of travel.
    Aircraft.
  2.  請求項1に記載の飛行体であって、
     前記翼部は、
    少なくともホバリング時において前記回転翼の回転中心軸に対して負の迎角を維持可能となるように構成される、
    飛行体。
    The flying object according to claim 1.
    The wing
    It is configured to be able to maintain a negative angle of attack with respect to the rotation center axis of the rotor at least during hovering.
    Aircraft.
  3.  請求項1又は請求項2に記載の飛行体であって、
     前記機体部と独立変位可能な搭乗部を備える、
    飛行体。
    The flying object according to claim 1 or 2.
    A boarding section that can be displaced independently of the fuselage section is provided.
    Aircraft.
  4.  請求項3に記載の飛行体であって、
     前記機体部は、飛行方向に対して水平かつ垂直に延び、
     前記搭乗部は、側面視において、前記機体部の略中央に設けられている、
    飛行体。
     
    The flying object according to claim 3.
    The fuselage extends horizontally and perpendicularly to the flight direction.
    The boarding portion is provided substantially in the center of the airframe portion in a side view.
    Aircraft.
PCT/JP2019/036728 2019-09-19 2019-09-19 Aerial vehicle WO2021053786A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980100835.5A CN114502464A (en) 2019-09-19 2019-09-19 Flying object
PCT/JP2019/036728 WO2021053786A1 (en) 2019-09-19 2019-09-19 Aerial vehicle
JP2019552634A JPWO2021053786A1 (en) 2019-09-19 2019-09-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036728 WO2021053786A1 (en) 2019-09-19 2019-09-19 Aerial vehicle

Publications (1)

Publication Number Publication Date
WO2021053786A1 true WO2021053786A1 (en) 2021-03-25

Family

ID=74884439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036728 WO2021053786A1 (en) 2019-09-19 2019-09-19 Aerial vehicle

Country Status (3)

Country Link
JP (1) JPWO2021053786A1 (en)
CN (1) CN114502464A (en)
WO (1) WO2021053786A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4633628B1 (en) * 1966-12-30 1971-10-01
US20180257761A1 (en) * 2016-07-01 2018-09-13 Bell Helicopter Textron Inc. Aircraft having Single-Axis Gimbal Mounted Propulsion Systems
WO2019145704A1 (en) * 2018-01-23 2019-08-01 Kamran Iqbal Airborne urban mobility vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2318273A4 (en) * 2008-09-02 2017-09-06 Urban Aeronautics Ltd. Vtol vehicle with coaxially tilted or tiltable rotors
JP6108077B2 (en) * 2013-01-29 2017-04-05 株式会社Ihi Vertical take-off and landing aircraft
GB2540169B (en) * 2015-07-08 2018-08-08 Ge Aviation Systems Llc Aircraft wing shaped to counter aerodynamic effects of propeller wake
US10513332B2 (en) * 2015-10-05 2019-12-24 Sikorsky Aircraft Corporation Tiltwing aircraft
US10513334B2 (en) * 2017-06-12 2019-12-24 Textron Innovations Inc. X-tiltwing aircraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4633628B1 (en) * 1966-12-30 1971-10-01
US20180257761A1 (en) * 2016-07-01 2018-09-13 Bell Helicopter Textron Inc. Aircraft having Single-Axis Gimbal Mounted Propulsion Systems
WO2019145704A1 (en) * 2018-01-23 2019-08-01 Kamran Iqbal Airborne urban mobility vehicle

Also Published As

Publication number Publication date
CN114502464A (en) 2022-05-13
JPWO2021053786A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP6613423B1 (en) Manned aircraft
US11639221B2 (en) Flying vehicle and flying method therefor
JP2022162125A (en) Air vehicle
US11628951B2 (en) Electronic component and aircraft with electronic component attached thereto
JP6578477B2 (en) Rotorcraft
WO2021024323A1 (en) Aerial vehicle and flying method of aerial vehicle
JP6993711B2 (en) Flying objects and flying methods of flying objects
CN114313241A (en) Flying body
JP2023108065A (en) Manned flight vehicle
WO2021059322A1 (en) Aerial vehicle
JP7006930B2 (en) Rotorcraft
WO2021053829A1 (en) Flying body
WO2021053786A1 (en) Aerial vehicle
WO2021024370A1 (en) Flight vehicle
JP6758697B2 (en) Aircraft and how to fly
CN218258694U (en) Flying body
JP7153351B2 (en) Airplane flight method
JP7244955B2 (en) Aircraft and flight method of the aircraft
JP7265776B2 (en) flying object
WO2021070363A1 (en) Flying body
JP2021062794A (en) Flying body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019552634

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945871

Country of ref document: EP

Kind code of ref document: A1