WO2021048272A1 - Methods of increasing biotic stress resistance in plants - Google Patents

Methods of increasing biotic stress resistance in plants Download PDF

Info

Publication number
WO2021048272A1
WO2021048272A1 PCT/EP2020/075315 EP2020075315W WO2021048272A1 WO 2021048272 A1 WO2021048272 A1 WO 2021048272A1 EP 2020075315 W EP2020075315 W EP 2020075315W WO 2021048272 A1 WO2021048272 A1 WO 2021048272A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
mutation
homologous
amsh2
seq
Prior art date
Application number
PCT/EP2020/075315
Other languages
French (fr)
Inventor
Saskia Adriane Hogenhout
Sam Thomas Mugford
Friederike Bernsdorff
Claire Drurey
Christine Wilson-Lefevre
Adi KILOT
Joshua Joyce
Sigrid Vanstraelen
Aude Darracq
Original Assignee
John Innes Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Innes Centre filed Critical John Innes Centre
Publication of WO2021048272A1 publication Critical patent/WO2021048272A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

The invention relates to methods of increasing biotic stress resistance in a plant as well as plants with increased biotic stress resistance and methods of screening plants for the beneficial phenotype

Description

Methods of increasing biotic stress resistance in plants
FIELD OF THE INVENTION
The invention relates to methods of increasing biotic stress resistance in a plant as well as plants with increased biotic stress resistance and methods of screening plants for the relevant phenotype.
BACKGROUND OF THE INVENTION
Sap-feeding hemipteran insects, including aphids, feed from plants via specialised mouthparts that pierce the plant tissue and extract the phloem (orxylem) sap. This group of insects presents a major threat to global food production through direct damage to crop plants, and more importantly as vectors of disease. In particular aphids are the major vectors of the majority of plant viruses, many of which are significant agricultural problems. Plants defend themselves from attack by sap-feeding insects via innate immune-signalling networks; however aphids have evolved mechanisms to overcome these defences. During feeding, aphids deploy effector proteins in their saliva, which are delivered into the host plant and supress plant defence mechanisms and allow successful colonisation of the plant (Hogenhout and Bos Jl. 2011). The protein targets of these effectors thus represent susceptibility factors, and as such it may be possible to increase insect resistance by engineering effector targets that are not bound by insect effectors, thus enabling the plant to mount an effective defence response to attack by sap-feeders.
Mp10 is an effector protein from the green peach aphid Myzus persicae that supresses plant defences, and is required for successful colonisation of host plants. During the early stages of aphid feeding Mp10 is delivered into the plant mesophyll cells where it supresses the early stages of plant immune signalling (Bos et al. 2010; Drurey et al. 2017; Mugford et al. 2016). The same immune-signalling pathways supressed by Mp10 are also active against virus infection (Nicaise 2014), and so targeting the action of Mp10 may offer a route to achieve resistance to insects and also the viruses they transmit. Mugford et al. 2016). Interestingly, Mp10 is conserved across plant-feeding hemipteran insects (Drury et al. 2017). Thus, insect (and virus) resistance mechanisms in plants directed at the action of Mp10 have the potential to provide broad spectrum resistance to a wide range of important agricultural pests, and the diseases they vector. Understanding the genetic mechanisms that underlie biotic resistance is particularly important since there is increasingly a demand to develop alternatives to chemical pesticides as a means to protect crops against damage caused by insects.
There therefore exists a need to identify new genetic solutions that will increase resistance to biotic stresses. The present invention addresses this need.
SUMMARY OF THE INVENTION
In the present invention, we show that the Mp10 effector protein binds to a conserved plant protein, AMSH2 (Associated Molecule with the SH3 domain of STAM 2: AT1G10600.1) to disrupt plant immune signalling, and that this interaction is conserved across pairings of Mp10 and AMSH2 homologues from diverse plants and hemipteran insects. We have also identified natural variants of the AMSH2 protein from the model plant Arabidopsis thaliana that do not interact with the Mp10 protein, and show that plant tissues expressing these alleles are resistant to the immune-suppressive effects of Mp10. Furthermore, we show that changes at certain conserved amino acid positions that confer resistance to Mp10-binding can be altered in AMSH2 from crop plant species to predictably confer resistance to Mp10 binding. This allows us to introduce aphid and/or virus resistance into a wide range of crop plant species through targeted engineering of the AMSH2 gene, and also provides a method to accelerate traditional breeding approaches to achieve resistance, for example by screening AMSH2 alleles from existing diversity in breeding populations for interactions with Mp10.
In addition, we have found that Mp10 also binds RPN11 , a ubiquitin carboxyl-terminal hydrolase component of the 26s proteasome. The ubiquitin proteasome pathway is known to play a key role in mediating plant immunity (Trujillo & Shirasu 2010) and as such, disruption of Mp10 binding to RPN11 also increases plant immunity and biotic resistance.
In addition we also found that Mp10 binds to CSN5A- a component of the COP9 signalosome that catalyses the de-nedylation of cullin, acting as a master regulator of the ubiquitin proteasome pathway. CSN5A has important roles in plant immunity (Mukhtar e al. 2011) and as such, disruption of Mp10 binding to CSN5A also increases plant immunity and biotic resistance.
In one aspect of the invention, there is provided a method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least one AMSH2 (Associated Molecule with the SH3 domain of STAM2) gene. In an embodiment of the invention, the method further comprises introducing at least one mutation into at least one RPN11 gene. In an embodiment of the invention, the method further comprises introducing at least one mutation into at least one CSN5A gene.
In another aspect of the invention, there is provided a method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least one gene selected from AMSH2, RPN11 and CSN5A. In one embodiment, the method comprises introducing a mutation into AMSH2 and RPN11. In another embodiment, the method comprises introducing a mutation into RPN11 and CSN5A. In another embodiment, the method comprises introducing a mutation into AMSH2 and CSN5A. In a further embodiment, the method comprises introducing a mutation into AMSH2, RPN11 and CSN5A.
Preferably, the mutation reduces or abolishes binding of AMSH2and/or RPN11 , and/or CSN5A to a chemosensory protein.
In another aspect of the invention, there is provided a method of making a plant having increased biotic resistance, the method comprising introducing at least one mutation into at least one AMSH2 and/or RPN 11 , and/or CSN5A gene in a plant.
In a further aspect of the invention, there is provided a method of altering an immune response in a plant, the method comprising introducing at least one mutation into at least one AMSH2 and/or RPN11 , and/or CSN5A gene.
In another aspect of the invention, there is provided a method of preventing the suppression of a plant defence response in response to a biotic stress, the method comprising introducing at least one mutation into at least one AMSH2 and/or RPN11, and/or CSN5A gene. In one embodiment, the at least one mutation is introduced using mutagenesis. More preferably, the mutation is introduced using targeted genome modification, preferably CRISPR.
In one embodiment, the method comprises introducing one or more mutations into the AMSH2 amino acid sequence, where preferably the one or more mutations is at a position selected from positions 49, 76, 113, 179, 208, 210 and 212 in SEQ ID NO: 3 or a homologous position in a homologous sequence or introducing at least one or more mutations into the RPN11 amino acid sequence, wherein preferably the one or more mutations is at a position selected from positions 30, 55, 93, 171, 205, 207 and 209 in SEQ ID NO: 38 or a homologous position in a homologous sequenceor introducing at least one or more mutations into the CSN5A amino acid sequence, wherein preferably the one or more mutations is at a position selected from positions 59, 84, 123, 208, 243, 245 or 247 in SEQ ID NO: XX1 or a homologous position in a homologous sequence.
Preferably, the increase in biotic resistance is relative to a control or wild-type plant.
In another aspect of the invention, there is provided a genetically altered plant, part thereof or plant cell, wherein the plant comprises at least one mutation in at least one AMSH2, RPN11, and/or CSN5A gene. Preferably, the at least one mutation reduces or abolishes binding of AMSH2, RPN11, and/or CSN5A to a chemosensory protein.
In one embodiment, the plant comprises at least one mutation in a AMSH2 amino acid sequence, wherein the at least one mutation is at a position selected from positions 49, 76, 113, 179, 208, 210 and 212 in SEQ ID NO: 3 or a homologous position in a homologous sequence and/or at least one mutation in a RPN11 amino acid sequence, wherein the at least one mutation is at a position selected from positions 30, 55, 93, 171, 205, 207 and 209 of SEQ ID NO: 38 or a homologous position in a homologous sequence, and/or at least one mutation in a CSN5A amino acid sequence, wherein the at least one mutation is at a position selected from positions 59, 84, 123, 208, 243, 245 or 247 in SEQ ID NO: XX1 or a homologous position in a homologous sequence.
Preferably, the plant is characterised by an increase in biotic resistance, wherein preferably said increase is compared to a control or wild-type plant. In one embodiment, the mutation is introduced by mutagenesis, preferably targeted genome modification such as CRISPR.
In a further aspect of the invention, there is provided a method of identifying and/or selecting a plant that has or will have an increased biotic resistance, the method comprising detecting in the plant or plant germplasm at least one polymorphism in a AMSH2, RPN11 , and/or CSN5A gene (or in a AMSH2, RPN11 , and/or CSN5A protein) and selecting said plant or progeny thereof.
In one embodiment, AMSH2 polymorphism is at one or more position in a AMSH2 gene, wherein the one or more position is selected from positions 410, 597, 1099-1101 , 1554, 1642, 1647 and 1654 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and/or wherein the RPN11 polymorphism is at one or more position in a RPN11 gene, wherein the one or more position is selected from positions 843-845, 1095- 1097, 1209-1211, 1715-1717, 1908-1910, 1914-1916 and 1920-1922 of SEQ ID NO: 37 or a homologous position in a homologous sequence, and/or wherein the CSN5A polymorphism is at one or more position in a CSN5A gene, wherein the one or more position is selected from positions 175-177, 250-252, 367-369, 622-624, 727-729, 733- 735, and 739-741 of SEQ ID NO: 71 or a homologous position in a homologous sequence.
In a further aspect of the invention, there is provided a plant obtained or obtainable by any of the methods described above.
In a yet further aspect of the invention, there is provided the use of a plant described herein for growing in a field affected by by an organism that can cause biotic stress, for examples insects from the order Hemipstera.
In one embodiment, the plant is a crop plant. Preferably, the plant is selected from rice, wheat, maize, soybean, tomato, barley, pea, sorghum, cacao, grape, potato and brassicas. In one embodiment, the plant part is a seed.
In one embodiment, the homologous AMSH2 amino acid sequence is selected from one of SEQ ID NOs: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 34, 36, or a functional variant thereof. In a further embodiment, the homologous nucleic acid sequence is selected from one of SEQ ID Nos: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 33, 35, or a functional variant thereof. In a further embodiment, the homologous position in the amino acid and genomic sequence of the above homologous sequences is shown in Figure 9, as is the mutated residue. In another embodiment, the homologous RPN11 amino acid sequence is selected from one of SEQ ID Nos 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60 and 62 or a functional variant thereof. In a further embodiment, the homologous RPN11 nucleic acid comprises or consists of a nucleic acid sequence selected from SEQ ID Nos 39, 41, 43, 45, 47, 49, 51 , 53, 55, 57, 59 and 61 or a functional variant thereof. In another embodiment, the homologous CSN5A amino acid sequence is selected from one of SEQ ID Nos 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 and 102 or a functional variant thereof. In a further embodiment, the homologous CSN5A nucleic acid comprises or consists of a nucleic acid sequence selected from SEQ ID Nos 73, 75, 77, 79, 81, 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 and 103 or a functional variant thereof.
DESCRIPTION OF THE FIGURES
The invention is further described in the following non-limiting figures:
Figure 1 shows that Mp10 interacts with Arabidopsis AMSH2 but not AMSH1 or 3. Yeast 2-hybrid assays using Mp10 fused to the Activation domain (AD) and AMSH proteins fused to the DNA-binding domain (BD) show that growth on selective media (SD -L, -T, - H + 75 mM 3-AT) occurs in the presence of Mp10 and AMSH2, but not AMSH 1 , AMSH3 or the empty AD or BD vectors.
Figure 2 shows that AMSH2 homologues from diverse plant species interact with Mp10 homologues from diverse hemipteran insects. A: Yeast 2-hybrid assays using Mp10 or its homologues fused to the Activation domain (AD) and AMSH2 proteins fused to the DNA-binding domain (BD) show growth on selective media (SD -L, -T, - H, + 5 mM 3-AT (left) or the more stringent SD -L, -T, - H, -A (right)). Mp10 orthologues (CSP4) (from left to right) with the EV-control followed by Myzus persicae (Mp), Bemisia tabaci (silverleaf whitefly; Bt), Macrosteles quadrilineatus (aster leafhopper; Mq), Dalbulus maidis (Corn leafhopper; Dm), Circulifer tenellus (beet leafhopper; Ct), Rhodnius prolixus (assassin bug; Rp), and also the Mp10 paralogue, MpCSP2 from Myzus persicae, were tested with AMSH2 orthologues (from top to bottom) with the EV-control followed by Arabidopsis thaliana, Beta vulgaris, and Nicotiana benthamiana. Growth in the presence of a CSP homologue together with an AMSH2 protein, but not with the EV controls in either of the 2 media indicates an interaction. Growth in the presence of the EV control in both media (i.e. for DmCSP4) indicates autoactivation, and conclusions about presence or absence of interaction cannot be drawn for this protein. B) Mp10 also interacts with AMSH2 orthologues from oil seed rape Brassica napus (Bn), sweet orange Citrus sinesis (Cs), and pea Pisum sativum (Ps).
Figure 3 shows the identification of naturally occurring alleles of Arabidopsis AMSH2 that do not interact with Mp10. Yeast 2-hybrid assays using Mp10 or its homologues fused to the Activation domain (AD) and AMSH2 proteins fused to the DNA-binding domain (BD) show 2 alleles (V49D and T76I) do not interact with Mp10, but all others tested did.
Figure 4 shows that Arabidopsis AMSH2 proteins that do not interact with Mp10 block the immune-suppressive activity of Mp10 in plants. Nicotiana benthamiana leaf discs transiently expressing Mp10 (fused to RFP) show a supressed reactive oxygen species (ROS) burst in response to treatment with the bacterial elicitor-flg22, compared to control leaf discs (RFP-EV). In leaf discs co-expressing non-interacting alleles of AMSH2 (fused to GFP; V49D or T76I) together with Mp10, Mp10 is no longer able to supress the fig- induced ROS burst (right), but in leaf discs co-expressing the Mp10-interacting AMSH2 (ColO) or the control (GFP-EV) Mp10 does suppress the ROS burst (left).
Figure 5 shows that AMSH2 residues required for Mp10 binding are conserved across plant species. Protein sequence alignment of AMSH2 orthologues from diverse crop plant species. From top to bottom, Arabidopsis thaliana (ColO) and the V49d and T76I mutants, Brassica oleracea (Bo); Brassica napus (Bn); Pisum sativum (Ps); Citrus sinensis (Cs); Beta vulgaris (Bv); Musa accuminata (Ma) and Hordeum vulgare (Hv). The V49 and T76 positions that affect the interaction of the Arabidopsis AMSH2 with Mp10, and the homologous positions in other species, are indicated with red arrows.
Figure 6 shows targeted mutations in sugar beet AMSH2 from different crop species predictably abolish the interaction with Mp10. Yeast 2-hybrid assays using Mp10 fused to the Activation domain (AD) and either Arabidopsis (At ecotype ColO), Beet (Bv line HR) AMSH2 (A), or Brassica (Bn line Dar) AMSH2c (B) proteins fused to the DNA- binding domain (BD) show the Arabidopsis V49D and the homologous V45D mutation in the beet, and V47D in brassica AMSH2 all abolish the interaction with Mp10. The Arabidopsis T76I and homologous brassica T74I mutations abolish the interaction. In the Beet AMSH2, the homologous position to T76 is a V, and while the V72I mutation does not abolish the interaction the alternative, V72T does.
Figure 7 shows regions of the (A) Brassica oleracea and (B) Hordeum vulgare genomes covering the desired target codons in the AMSH2 gene. Possible sgRNA target sites are indicated to direct Cas9-ApoBec to these positions. The positions of the canonical PAM (NGG) and relaxed PAM (NNG), 11-16bp from the target codon are optimal to direct cytidine deaminase activity against the desired codons.
Figure 8 shows non-interacting alleles of AMSH2 identified from germplasm collections of sugar beet (A) and pea (B). Variants of the AMSH2 gene present in a collection of elite breeding lines, and wild relatives of sugar beet, and in a pea germplasm collection were tested for interaction with Mp10 in Yeast 2 hybrid assays. This shows that the N109I, N109L and F206Y polymorphisms present in the beet germplasm collection abolish the interaction with Mp10. Similarly, the M191 K, N220K and N224K polymorphisms present in the pea germplasm collection also abolish the interaction.
Figure 9 shows a table of point mutations in AtAMSH2 and homologues that affect binding of a chemosensory protein (CSP), such as Mp10 or a homologue thereof. The position of the point mutation, as well as the mutated residue in the amino acid sequence of AMSH2 is shown for each plant. Also shown is the corresponding mutation in the genomic sequence that would result in the described amino acid substitution.
Figure 10 shows biotic resistance to Curly top virus in the field in sugar beet plants expressing the N109I mutation in AMSH2. Scoring scale of 1 (not damaged plants) to 9 (plants completely destroyed by Curly top virus).
Figure 11 shows that Mp10 interacts with Arabidopsis AMSH2, CSN5A and RPN11 , but not with other JAMM domain proteins, nor non-JAMM proteins that contain a MPN domain. A: Yeast 2-hybrid assays using Mp10 fused to the Activation domain (AD) and JAMM/MPN proteins fused to the DNA-binding domain (BD) show that growth on selective media (SD -L, -T, - H + 5 mM 3-AT) occurs in the presence of Mp10 and AMSH2 or RPN11 , but not to RPN2, RPN8a or RPN8b or the empty AD or BD vectors. Bottom: Growth of all clones on unselective (SD -L, -T) media as a control to show all yeast clones are transformed. B: Yeast 2-hybrid assays using Mp10 fused to the Activation domain (AD) and JAMM/MPN proteins fused to the DNA-binding domain (BD) show that growth on selective media (SD -L, -T, - H + 5 mM 3-AT) occurs in the presence of Mp10 and AMSH2, RPN11, or CSN5A but not to AMSH1 , AMSH3, CSN5B, BRC36A or BRC36B, or the empty AD or BD vectors. At the left, the V49D mutation of AMSH2 is shown to abolish the interaction with Mp10, as do the homologues mutations in RPN11 (V30D) and CSN5A (V59D). Bottom: Growth of all clones on unselective (SD -L, -T) media as a control to show all yeast clones are transformed.
Figure 12 shows similarities and differences between Arabidopsis JAMM-domain containing proteins. The multiple protein sequence alignment of AMSH1, AMSH2, AMSH3, RPN11 , CSN5A, CSN5B, BRCC36A and BRCC36B is colour-coded according to the amino acid properties. The position of AMSH2 V49 is indicated with a black arrow.
Figure 13 shows the positions of mutations in Arabidopsis RPN11 homologous to the V30D and T76I in AtAMSH2; N109L/I and Y206F in BvAMSH2; M191K, N220K and N224K in PsAMSH2 , and the corresponding changes required to the coding sequence in the crop species listed. As such, these are examples of sites in AtRPN11 and homologous/corresponding positions in homologous sequences that can be mutated to reduce or abolish Mp10 binding.
Figure 14 shows a multiple protein sequence alignment of the Arabidopsis RPN11 protein, together with orthologues from crop species ( Beta vulgaris BvRPN11- KMS97723, Solarium lycopersicum SIRPN 11 -Solyc04g079200.3.1 , Solarium tuberosum StRPNI 1-PGSC0003DMG400008026, Sorghum bicolor SbRPN11-EES00543, Theobroma cacao TcRPNI 1-Tc08v2_t000850.1, Triticum aestivum TaRPN11- TraesCS3B02G213500.1 , and Vitis vinifera VvRPNI 1-VIT_18s0001g10820.t01). The black arrow indicates the position of the V30D mutation in the Arabidopsis RPN11 protein.
Figure 15 shows the positions of mutations in Arabidopsis CSN5A homologous to the V30D and T76I in AtAMSH2; N109L/I and Y206F in BvAMSH2; M191K, N220K and N224K in PsAMSH2 , and the corresponding changes required to the coding sequence in the crop species listed. As such, these are examples of sites in AtCSN5A and homologous/corresponding positions in homologous sequences that can be mutated to reduce or abolish Mp10 binding.
Figure 16 shows a multiple protein sequence alignment of the Arabidopsis CSN5A protein, together with orthologues from crop species (CDY25761 Brassica napus, CDY12502 Brassica napus, CDY04768 Brassica napus, CDY21400 Brassica napus, Bo5g039030.1 Brassica oleracea, , Bo7g057580.1 Brassica oleracea, Solyd 1g017300.2.1 Solanum lycopersicum, KMT17810 Beta vulgaris, KRH61926 Glycine max, KRH52586 Glycine max, BGIOSGA017266-PA Oryza sativa, Zm00001d002027_P002 Zea mays, HORVU0Hr1G025410.1 Hordeum vulgare, HORVU4Hr1G048730.1 Hordeum vulgare, TraesCS2D02G505300.1 Triticum aestivum, TraesCS2A02G504600.1 Triticum aestivum). The black arrow indicates the position of the V59D mutation in the Arabidopsis CSN5A protein.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will now be further described. In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA technology, bioinformatics which are within the skill of the art. Such techniques are explained fully in the literature.
As used herein, the words "nucleic acid", "nucleic acid sequence", "nucleotide", "nucleic acid molecule" or "polynucleotide" are intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), natural occurring, mutated, synthetic DNA or RNA molecules, and analogs of the DNA or RNA generated using nucleotide analogs. It can be single-stranded or double-stranded. Such nucleic acids or polynucleotides include, but are not limited to, coding sequences of structural genes, anti-sense sequences, and non-coding regulatory sequences that do not encode mRNAs or protein products. These terms also encompass a gene. The term "gene" or “gene sequence" is used broadly to refer to a DNA nucleic acid associated with a biological function. Thus, genes may include introns and exons as in the genomic sequence, or may comprise only a coding sequence as in cDNAs, and/or may include cDNAs in combination with regulatory sequences.
The terms "polypeptide" and "protein" are used interchangeably herein and refer to amino acids in a polymeric form of any length, linked together by peptide bonds.
The aspects of the invention involve recombinant DNA technology and exclude embodiments that are solely based on generating plants by traditional breeding methods.
In a first aspect of the invention, there is provided a method of increasing biotic stress tolerance or resistance (such terms may be used interchangeably) in a plant, the method comprising introducing at least one mutation into the AMSH2 gene (Associated Molecule with the SH3 domain of STAM 2).
As used herein, “biotic stress” refers to harmful effects caused by another (living) organism. In one embodiment, the organism is a plant pathogen, and in a more preferable embodiment, is a harmful insect. In a further preferred embodiment the harmful insect is a hemipteran insect, more preferably a plant-sucking (e.g., sap-sucking) hemipteran insect. In a further embodiment, the insect is from the order Hemiptera, such as, but not limited to aphids (e.g. Myzus persicae ), mealybugs, whiteflies, psyllids, leafhoppers, froghoppers (spittlebugs) stink bugs, and planthoppers. Likewise, “biotic resistance” refers to an ability to resist (for example, reduce) biotic stress. Alternatively or additionally biotic stress may refer to the harmful effect caused by a virus transmitted by the plant pathogen, i.e. a sap-sucking hemipteran insects. In one example, the virus is selected from the genera; Alfamovirus, Ampelovirus, Avsunviroid, Begomovirus, Betaflexiviridae, Bromovirus, Capillovirus, Carlavirus, Carmovirus, Caulimovirus, Closterovirus, Comovirus, Crinivirus, Cucumovirus, Curtovirus, Cytorhabdovirus, Dianthovirus, Enamovirus, Fabavirus, Fijivirus, Furovirus, Hostuviroid, llarvirus, Ipomovirus, Luteoviridae, Macluravirus, Marafivirus, Mastrevirus, Nanovirus, Nepovirus, Nucleorhabdovirus, Oleavirus, Oryzavirus, Panicovirus, Phytoreovirus, Polerovirus, Pospiviroid, Potexvirus, Potyviridae, Potyvirus, Reoviridae, Rhabdoviridae, Rymovirus, Sadwavirus, SbCMV-like virus, Sequivirus, Sobemovirus, Tenuivirus, Tobamovirus, Tombusviridae, Tombusvirus, Tospovirus, Trichovirus, Tungrovirus, Tymovirus, Umbravirus, Vitivirus and Waikavirus. In a particularly preferred embodiment, the virus is selected from Tomato yellow leaf curl virus (TYLCV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), Cauliflower mosaic virus (CaMV), African cassava mosaic virus (ACMV) and Plum pox potyvirus (PPV).
In a further aspect of the invention, there is provided a method of increasing yield (as a consequence of increasing resistance to biotic stress), the method comprising introducing at least one mutation into the AMSH2 gene. The term "yield" in general means a measurable produce of economic value, typically related to a specified crop, to an area, and to a period of time. Individual plant parts directly contribute to yield based on their number, size and/or weight. The actual yield is the yield per square meter for a crop and year, which is determined by dividing total production (includes both harvested and appraised production) by planted square metres.
The term “increased yield” as defined herein can be taken to comprise any or at least one of the following and can be measured by assessing one or more of (a) increased biomass (weight) of one or more parts of a plant, aboveground (harvestable parts), or increased root biomass, increased root volume, increased root length, increased root diameter or increased root length or increased biomass of any other harvestable part. Increased biomass may be expressed as g/plant or kg/hectare (b) increased seed yield per plant, which may comprise one or more of an increase in seed biomass (weight) per plant or an individual basis, (c) increased seed filling rate, (d) increased number of filled seeds, (e) increased harvest index, which may be expressed as a ratio of the yield of harvestable parts such as seeds over the total biomass, (f) increased viability/germination efficiency, (g) increased number or size or weight of seeds or pods or beans or grain (h) increased seed volume (which may be a result of a change in the composition (i.e. lipid (also referred to herein as oil)), protein, and carbohydrate total content and composition), (i) increased (individual or average) seed area, (j) increased (individual or average) seed length, (k) increased (individual or average) seed width, (I) increased (individual or average) seed perimeter, (m) increased growth or increased branching, for example inflorescences with more branches, (n) increased fresh weight or grain fill (o) increased ear weight and (p) increased thousand kernel weight (TKW), which may be taken from the number of filled seeds counted and their total weight. An increase in the TKW may be as a result of an increase in seed size and/or seed weight. All parameters are relative to a wild-type or control plant.
By “at least one mutation” is meant that where the AMSH2 gene is present as more than one copy or homoeologue (with the same or slightly different sequence) there is at least one mutation in at least one gene. Preferably, all genes are mutated.
In one embodiment, an “increase” in resistance or tolerance to biotic stress can be characterised by one or more of the following: (a) a decrease in the survival or reproduction rate of an insect, such as an aphid, that is able to colonise the plant; (b) a decrease in the survival or reproductive rate of an insect, such as an aphid, that is able to colonise the plant that has been previously challenged so as to induce immunity; (c). no loss of yield as a result of insect infestation; (d). a decrease in the rate of infection with an insect-transmitted virus; and/or (e). a reduction in virus-induced symptoms (for example, yellowing of leaves and/or loss of yield in response to virus infection). Any of the above can be determined using standard techniques in the art.
AMSH2 encodes a predicted de-ubiquitinating enzyme that belongs to a family of three paralogues in Arabidopsis. AMSH1 and AMSH3 share the core JAB1/MPN/MOV34 (JAMM) metalloenzyme domain (IPR000555) (SEQ ID NO: 32) with AMSH2, but both have long N-terminal extensions that are missing from AMSH2. AMSH1 and AMSH3 have both been shown to have functions associated with the sorting of endo-membrane vesicles in Arabidopsis. The function of AMSH2 has not been elucidated, although it has been shown to possess the ability to cleave ubiquitin chains in-vitro (Katsiarimpa 2007). All three members of the AMSH family are conserved across higher plants, with the divergence of AMSH2 from AMSH1 and AMSH3 having occurred prior to the diversification of vascular plants (Isono et al. 2010). An orthologue of AMSH2 is present in the genomes of all higher plants. In one embodiment, the sequence of AMSH2 encodes an amino acid as defined in SEQ ID NO: 3 or a functional variant or homologue thereof. In another embodiment, the sequence of AMSH2 comprises or consist of SEQ ID NO: 2 or 3 or a functional variant or homologue thereof. In one embodiment, the homolog is selected from SEQ ID Nos 4 to 29 and 34 to36 and functional variants thereof. In a further embodiment of the invention, the method comprises introducing at least one mutation into at least one AMSH2 gene and at least one mutation into at least one RPN11 gene. RPN11 is also known as ubiquitin carboxyl-terminal hydrolase RPN11 and is a component of the 26S proteasome. RPN11 also has a JAB1/MPN/MOV34 (JAMM) metalloenzyme domain. In one embodiment, the sequence of RPN11 encodes an amino acid as defined in SEQ ID NO: 38 or a functional variant or homologue thereof. In another embodiment, the sequence of RPN11 comprises or consist of SEQ ID NO: 37 or a functional variant or homologue thereof. In one embodiment, the homolog is selected from SEQ ID Nos 39 to 62 and functional variants thereof.
In an alternative aspect of the invention, there is provided a method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least one RPN11 gene (only).
In a further embodiment, the method comprises introducing at least one mutation into at least one gene CSN5A gene. As such, the method comprising introducing at least one mutation into at least one CSN5A gene and at least one AMSH2 and/or RPN11 gene. CSN5A (COP9 signalosome complex subunit 5a) is a protease subunit of the COP9 signalosome complex (CSN). In one embodiment, the sequence of CSN5A encodes an amino acid as defined in SEQ ID NO: 70 or a functional variant or homologue thereof. In another embodiment, the sequence of CSN5A comprises or consist of SEQ ID NO: 71 or a functional variant or homologue thereof. In one embodiment, the homolog is selected from SEQ ID Nos 72 to 103 and functional variants thereof.
In another aspect of the invention, there is provided a method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least one CSN5A gene (only).
In one embodiment, the method comprises introducing at least one mutation into the, preferably endogenous, nucleic acid sequence encoding AMSH2 and/or RPN11 and/or CSN5A. Preferably, the mutation reduces or abolishes the binding of a chemosensory protein (CSP). CSPs may also be known as OS-D like proteins or sensory appendage proteins (SAP). In one embodiment, the chemosensory protein (CSP) is CSP4. As referred to herein, CSP4 from Myzus persicae may also be referred to as Mp10 or MpCSP4 (such terms may be used interchangeably). In one embodiment, the CSP4 protein comprises or consists of a sequence shown in SEQ ID NO: 30, 31, 63, 64, 65, 104, 66, 67, 68, 69 or a functional variant or homologue thereof. As such, in one embodiment, the mutation is at least one mutation in a CSP-binding site, preferably a Mp10 binding site in AMSH2 and/or RPN11 and/or CSN5A or at least one mutation that affects CSP binding in AMSH2 or RPN11 or CSN5A. In a further embodiment, the method may comprise introducing two or more mutations in the nucleic acid sequence encoding AMSH2 and/or RPN11 and/or CSN5A.
In the above embodiments an ‘endogenous’ nucleic acid may refer to the native or natural sequence in the plant genome. In one embodiment, the endogenous nucleic acid sequence encodes a AMSH2 amino acid sequence as defined in SEQ ID NO: 3 or a functional variant or homologue thereof. In a further preferred embodiment, the nucleic acid sequence comprises or consists of a nucleic acid sequence selected from SEQ ID NOs 1 or 2 or a functional variant or homologue thereof. In a further embodiment, the endogenous nucleic acid sequence encodes a RPN11 amino acid as defined in SEQ ID NO: 38 or a functional variant or homologue thereof. In a further preferred embodiment, the nucleic acid sequence comprises or consists of a nucleic acid sequence as defined in SEQ ID NO: 37 or a functional variant or homologue thereof. In another embodiment, the nucleic acid sequence of CSN5A comprises or consists of SEQ ID NO: 71 or a functional variant or homologue thereof.
The term “functional variant” (or “variant”) as used herein with reference to any SEQ ID NO disclosed herein refers to a variant sequence or part of the sequence which retains the biological function of the full non-variant sequence. A functional variant also comprises a variant of the gene of interest which has sequence alterations that do not affect function, for example in non-conserved residues. Also encompassed is a variant that is substantially identical, i.e. has only some sequence variations, for example in non- conserved residues, compared to the wild type sequences as shown herein and is biologically active. Alterations in a nucleic acid sequence which result in the production of a different amino acid at a given site that do not affect the functional properties of the encoded polypeptide are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, could also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products.
In one embodiment, a functional variant has at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%,
46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%,
61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%,
76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%,
91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to the non-variant nucleic acid or amino acid sequence.
The term homolog (or “homologue”), as used herein, also designates a AMSH2 or RPN11 or CSN5A gene orthologue from other plant species. A homolog may have, in increasing order of preference, at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%,
48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%,
63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%,
78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%,
93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to the amino acid represented by SEQ ID NO: 3 or 38 or to the nucleic acid sequences as shown by SEQ ID NOs: 1 or 2 or SEQ ID NO: 37. In one embodiment, overall sequence identity is at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, most preferably 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
Examples of AMSH2 homologs are provided in SEQ ID Nos 4 to 29 and 33 to 36. Accordingly, in one embodiment, the AMSH2 nucleic acid encodes a AMSH2 polypeptide as defined in any of SEQ ID Nos 5, 7, 9, 11, 13, 15, 17, 19, 21 , 23, 25, 27, 29, 34 and 36. In a further embodiment, the AMSH2 nucleic acid comprises or consists of a nucleic acid selected from SEQ ID Nos 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 33 and 35. Functional variants of AMSH2 homologs as described herein are also included within the scope of the invention.
Examples of RPN11 homologs are provided in SEQ ID Nos 39 to 62. Accordingly, in one embodiment, the RPN11 nucleic acid encodes a RPN11 polypeptide as defined in any of SEQ ID Nos 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60 and 62. In a further embodiment, the RPN11 nucleic acid comprises or consists of a nucleic acid sequence selected from SEQ ID Nos 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59 and 61. Functional variants of AMSH2 homologs as described herein are also included within the scope of the invention.
Examples of CSN5A homologs are provided in SEQ ID Nos 72 to 103. Accordingly, in one embodiment, the CSN5A nucleic acid encodes a CSN5A polypeptide as defined in any of SEQ ID Nos 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 and 102. In a further embodiment, the RPN11 nucleic acid comprises or consists of a nucleic acid sequence selected from SEQ ID Nos 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103. Functional variants of CSN5A homologs as described herein are also included within the scope of the invention.
In a further embodiment, there is provided a method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least one AMSH2 (Associated Molecule with the SH3 domain of STAM2) and/or RPN11 and/or CSN5A gene as described herein, wherein the AMSH2 gene comprises or consists of a. a nucleic acid sequence encoding a polypeptide as defined in one of SEQ ID NO: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 or 29; b. a nucleic acid sequence as defined in one of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 or 28; or c. a nucleic acid sequence with at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to either (a) or (b); or d. a nucleic acid sequence encoding a AMSH2 polypeptide as defined herein that is capable of hybridising under stringent conditions as defined herein to the nucleic acid sequence of any of (a) to (c); and wherein the RPN11 gene comprises or consists of e. a nucleic acid sequence encoding a polypeptide as defined in one of SEQ ID NO: 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60 and 62 or a homolog or functional variant thereof; f. a nucleic acid sequence as defined in one of SEQ ID NO: 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59 and 61 or a homolog or functional variant thereof; or g. a nucleic acid sequence with at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to either (e) or (f); or h. a nucleic acid sequence encoding a RPN11 polypeptide as defined herein that is capable of hybridising under stringent conditions as defined herein to the nucleic acid sequence of any of (e) to (f); and wherein the CSN5A gene comprises or consists of: i. a nucleic acid sequence encoding a polypeptide as defined in one of SEQ ID NO: 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100 and 102 or a homolog or functional variant thereof; j. a nucleic acid sequence as defined in one of SEQ ID NO: 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103 or a homolog or functional variant thereof; or k. a nucleic acid sequence with at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity to either (i) or 0; or
L. a nucleic acid sequence encoding a CSN5A polypeptide as defined herein that is capable of hybridising under stringent conditions as defined herein to the nucleic acid sequence of any of (i) to (k);
By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a sequence will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the target can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). In a further embodiment, the mutation in the nucleic acid sequence encoding AMSH2 and/or RPN11 and/or CSN5A may be selected from one of the following mutation types:
1. a "missense mutation", which is a change in the nucleic acid sequence (e.g. a change in one or more nucleotides) that results in the substitution of one amino acid for another amino acid (also known as a nonsynonymous substitution);
2. a "nonsense mutation" or "STOP codon mutation", which is a change in the nucleic acid sequence that results in the introduction of a premature STOP codon and, thus, the termination of translation (resulting in a truncated protein); in plants, the translation stop codons may be selected from "TGA" (UGA in RNA), "TAA" (UAA in RNA) and "TAG" (UAG in RNA); thus any nucleotide substitution, insertion, deletion which results in one of these codons to be in the mature mRNA being translated (in the reading frame) will terminate translation.
3. an "insertion mutation" of one or more nucleotides or one or more amino acids, due to one or more codons having been added in the coding sequence of the nucleic acid;
4. a "deletion mutation" of one or more nucleotides or of one or more amino acids, due to one or more codons having been deleted in the coding sequence of the nucleic acid;
5. a "frameshift mutation", resulting in the nucleic acid sequence being translated in a different frame downstream of the mutation. A frameshift mutation can have various causes, such as the insertion, deletion or duplication of one or more nucleotides.
6. a “splice site” mutation, which is a mutation that results in the insertion, deletion or substitution of a nucleotide at the site of splicing.
In one embodiment the mutation is a missense mutation (nonsynonymous substitution). In a further preferred embodiment, the one or more mutations in the AMSH2 nucleic acid sequence results in an amino acid substitution at one or more of the following positions in SEQ ID NO: 3 or a homologous position (or corresponding position, such terms can be used interchangeably) in a homologous sequence: position 49 of SEQ ID NO: 3. In one embodiment, said mutation results in a D at position 49 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding AMSH2. In one example, the mutation is at position 410 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a T410A substitution; and/or position 76 of SEQ ID NO: 3. In one embodiment, said mutation results in a I, T or V at position 76 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence of AMSH2. In one example, the mutation is at position 597 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a C597T substitution; and/or position 113 of SEQ ID NO: 3. In one embodiment, said mutation results in a L or K at position 113 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence of AMSH2. In one example, the mutation is at positions 1099 to 1101 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a TCC1099-1101TTA/ATA substitution; and/or position 179 of SEQ ID NO: 3. In one embodiment, said mutation results in a K at position 179 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence of AMSH2. In one example, the mutation is at position 1554 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a T1554A substitution ; and/or position 208 of SEQ ID NO: 3. In one embodiment, said mutation results in a K at position 208 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence of AMSH2. In one example, the mutation is at position 1642 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a C1642G substitution; and/or position 210 of SEQ ID NO: 3. In one embodiment, said mutation results in a F at position 210 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence of AMSH2. In one example, the mutation is at position 1647 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a A1647T substitution; and/or position 212 of SEQ ID NO: 3. In one embodiment, said mutation results in a K at position 49 of SEQ ID NO: 3 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence of AMSH2. In one example, the mutation is at position 1654 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a C1654G substitution.
In a preferred embodiment, the mutation is position 49 of SEQ ID NO: 3. In one embodiment, said mutation results in a D at position 49 of SEQ ID NO: 3 ora homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding AMSH2. In one example, the mutation is at position 410 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and even more preferably is a T410A substitution.
In another preferred embodiment, the one or more mutations in the RPN11 nucleic acid sequence results in an amino acid substitution at one or more of the following positions in SEQ ID NO: 38 or a homologous position in a homologous sequence: position 30 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a D at position 30 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions GTT843-845 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or position 55 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a I or T at position 55 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions TTG1095-1097 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or position 93 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a L or I at position 93 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions AAT1209-1211 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or position 171 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a K at position 171 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions CAG1715-1717 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or position 205 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a K at position 205 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions AAC1908-1910 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or position 207 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a F at position 207 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions AGG1914-1916 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or position 209 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a K at position 209 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions AAC1920-1922 of SEQ ID NO: 37 or a homologous position in a homologous sequence.
In a preferred embodiment, the mutation is position 30 in SEQ ID NO: 38 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a D at position 30 of SEQ ID NO: 38 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding RPN11. In one example, the mutation is at positions GTT843-845 of SEQ ID NO: 37 or a homologous position in a homologous sequence.
In another preferred embodiment, the one or more mutations in the CSN5A nucleic acid sequence results in an amino acid substitution at one or more of the following positions in SEQ ID NO: 70 or a homologous position in a homologous sequence: position 59 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a D at position 59 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions GTT175-177GAT of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or position 84 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a T at position 84 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions CTT250-252TAC of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or position 123 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a L at position 123 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions GAA367-369CTA of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or position 208 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a K at position 208 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions CAG622-624AAG of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or position 243 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a K at position 243 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions GAT727-729AAA of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or position 245 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a F at position 245 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions CTT733-735TTT of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or position 247 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a K at position 247 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions AAC739-741AAG of SEQ ID NO: 71 or a homologous position in a homologous sequence.
In a preferred embodiment, the position 59 in SEQ ID NO: 70 or a homologous position in a homologous sequence. In one embodiment, said mutation results in a D at position 59 of SEQ ID NO: 70 or a homologous position in a homologous sequence. Preferably, said mutation arises from a substitution of one or more nucleotides in the nucleic acid sequence encoding CSN5A. In one example, the mutation is at positions GTT175- 177GAT of SEQ ID NO: 71 or a homologous position in a homologous sequence.
In a preferred embodiment, the mutation is at position 49 of SEQ ID NO: 3 or a homologous position in a homologous sequence and/or at position 30 in SEQ ID NO: 38 or a homologous position in a homologous sequence and/or at position 59 in SEQ ID NO: 70 or a homologous position in a homologous sequence. More preferably the mutation is a substitution, preferably to a D.
The skilled person would understand that suitable homologues and the homologous positions in these sequences can be identified by sequence comparisons and identifications of conserved domains. There are predictors in the art that can be used to identify such sequences. The function of the homologue can be identified as described herein and a skilled person would thus be able to confirm the function. Homologous positions can thus be determined by performing sequence alignments once the homologous sequence has been identified.
For example, homologues can be identified using a BLAST search of the plant genome of interest using the Arabidopsis AMSH2 or RPN11 or CSN5A as a query. For AMSH2 the most similar hits can be distinguished as AMSH2 as opposed to AMSH1 or AMSH3 by 1) a reciprocal BLAST search against the Arabidopsis genome to verify that AMSH2 is the most similar sequence, 2) a multiple sequence alignment to show that the sequence is more similar to AMSH2 than to AMSH1, AMSH3 or other sequences, this can also show whether the sequence lacks the N-terminal dimerization domain present in AMSH1 and AMSH3 but absent in AMSH2, and 3) a phylogenetic analysis to show that the sequence is more similar to AMSH2 than to AMSH1, AMSH3 or other sequences. In all plant species analysed we found a single AMSH2 gene per haploid genome, but it is possible that in some plant species there may be more copies as a result of gene-duplication.
Identification of the amino acid residues in any AMSH2 or RPN 11 or CSN5A homologous sequence can be performed by making a multiple sequence alignment of an AMSH2 or RPN11 or CSN5A gene with the Arabidopsis AMSH2 or RPN11 or CSN5A. For AMSH2 the conserved JAB1/MPN/MOV34 domain (SEQ ID NO: 32) includes at least the V49 and T76 residues of the Arabidopsis sequence, and the homologous positions in other AMSH2 proteins will align with these.
Thus, the nucleotide sequences of the invention and described herein can also be used to isolate corresponding sequences from other organisms, particularly other plants, for example crop plants. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences described herein. Topology of the sequences and the characteristic domains structure can also be considered when identifying and isolating homologs. Sequences may be isolated based on their sequence identity to the entire sequence or to fragments thereof. In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e. , genomic or cDNA libraries) from a chosen plant. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labelled with a detectable group, or any other detectable marker. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook, et al., (1989) Molecular Cloning: A Library Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).
Accordingly, in a preferred embodiment, the nonsense mutation in the nucleic acid sequence causes a substitution of one amino acid for another in the resulting amino acid sequence. In one embodiment, the mutated amino acid is selected from aspartic acid (D), isoleucine (I) and threonine (T). Examples of homologous sequences and the corresponding homologous mutation and positions thereof for AMSH2 and RPN11 and CSN5A homologs are described in Figure 9 and Figure 13 and 15 respectively.
In one embodiment, the mutation is introduced using mutagenesis or targeted genome editing. That is, in one embodiment, the invention relates to a method and plant that has been generated by genetic engineering methods as described above, and does not encompass naturally occurring varieties.
Targeted genome modification or targeted genome editing is a genome engineering technique that uses targeted DNA double-strand breaks (DSBs) to stimulate genome editing through homologous recombination (HR)-mediated recombination events.
In a preferred embodiment, the targeted genome editing technique is CRISPR. The use of this technology in genome editing is well described in the art, for example in US 8,697,359 and references cited therein. In short, CRISPR is a microbial nuclease system involved in defence against invading phages and plasmids. CRISPR loci in microbial hosts contain a combination of CRISPR-associated (Cas) genes as well as non-coding RNA elements capable of programming the specificity of the CRISPR-mediated nucleic acid cleavage (sgRNA). Three types (l-lll) of CRISPR systems have been identified across a wide range of bacterial hosts. One key feature of each CRISPR locus is the presence of an array of repetitive sequences (direct repeats) interspaced by short stretches of non-repetitive sequences (spacers). The non-coding CRISPR array is transcribed and cleaved within direct repeats into short crRNAs containing individual spacer sequences, which direct Cas nucleases to the target site (protospacer). The Type II CRISPR is one of the most well characterized systems and carries out targeted DNA double-strand break in four sequential steps. First, two non-coding RNA, the pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus. Second, tracrRNA hybridizes to the repeat regions of the pre-crRNA and mediates the processing of pre- crRNA into mature crRNAs containing individual spacer sequences. Third, the mature crRNA:tracrRNA complex directs Cas9 to the target DNA via Watson-Crick base-pairing between the spacer on the crRNA and the protospacer on the target DNA next to the protospacer adjacent motif (PAM), an additional requirement for target recognition. Finally, Cas9 mediates cleavage of target DNA to create a double-stranded break within the protospacer. One major advantage of the CRISPR-Cas9 system, as compared to conventional gene targeting and other programmable endonucleases is the ease of multiplexing, where multiple positions or sites on genes can be mutated simultaneously simply by using multiple sgRNAs each targeting a different site. In addition, where two sgRNAs are used flanking a genomic region, the intervening section can be deleted or inverted (Wiles et al. , 2015). In the present invention, multiple sgRNAs can be used to simultaneously introduce two or more mutations, for example, the specific mutations described above, into the AMSH2 and/or RPN11 and/or CSN5A gene. In this embodiment, self-cleaving RNAs or cleavable RNA molecules, such as csy4, ribozyme or tRNA sequences can be used to process a single construct into multiple sgRNAs.
Cas9 is thus the hallmark protein of the type II CRISPR-Cas system, and is a large monomeric DNA nuclease guided to a DNA target sequence adjacent to the PAM (protospacer adjacent motif) sequence motif by a complex of two noncoding RNAs: CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). The Cas9 protein contains two nuclease domains homologous to RuvC and HNH nucleases. The HNH nuclease domain cleaves the complementary DNA strand whereas the RuvC-like domain cleaves the non-complementary strand and, as a result, a blunt cut is introduced in the target DNA. Heterologous expression of Cas9 together with an sgRNA can introduce site-specific double strand breaks (DSBs) into genomic DNA of live cells from various organisms. Codon optimized versions of Cas9, which is originally from the bacterium Streptococcus pyogenes, can also be used to increase efficiency. Cas9 orthologues may also be used, such as Staphylococcus aureus (SaCas9) or Streptococcus thermophilus (StCas9).
The single guide RNA (sgRNA) is the second component of the CRISPR/Cas system that forms a complex with the Cas9 nuclease. sgRNA is a synthetic RNA chimera created by fusing crRNA with tracrRNA. The sgRNA guide sequence located at its 5' end confers DNA target specificity. Therefore, by modifying the guide sequence, it is possible to create sgRNAs with different target specificities. The canonical length of the guide sequence is 20 bp. In plants, sgRNAs have been expressed using plant RNA polymerase III promoters, such as U6 and U3. Accordingly, using techniques known in the art it is possible to design sgRNA molecules that targets the AMSH2 or RPN11 or CSN5A gene as described herein. In one embodiment, the method comprises using any of the nucleic acid constructs or sgRNA molecules described herein.
Alternatively, Cpf1 , which is another Cas protein, can be used as the endonuclease. Cpf 1 differs from Cas9 in several ways: Cpf1 requires a T-rich PAM sequence (TTTV) for target recognition, Cpf1 does not require a tracrRNA, and as such only crRNA is required unlike Cas9 and the Cpf 1 -cleavage site is located distal and downstream to the PAM sequence in the protospacer sequence (Li et al., 2017). Furthermore, after identification of the PAM motif, Cpf1 introduces a sticky-end-like DNA double-stranded break with several nucleotides of overhang. As such, the CRISPR/Cpf1 system consists of a Cpf1 enzyme and a crRNA.
Cas9 and Cpf1 expression plasmids for use in the methods of the invention can be constructed as described in the art. Cas9 or Cpf1 and the one or more sgRNA molecule may be delivered as separate or as a single construct. Where separate constructs are used for the delivery of the CRISPR enzyme (i.e. Cas9 or Cpf1) and the sgRNA molecule (s), the promoters used to drive expression of the CRISPR enzyme/sgRNA molecule may be the same or different. In one embodiment, RNA polymerase (Pol) ll-dependent promoters can be used to drive expression of the CRISPR enzyme. In another embodiment, Pol Ill-dependent promoters, such as U6 or U3, can be used to drive expression of the sgRNA.
In one embodiment, the method uses a sgRNA to introduce a targeted SNP or mutation, in particular one of the substitutions described herein, into a AMSH2 gene. As explained below, the introduction of a template DNA strand, following a sgRNA-mediated snip in the double-stranded DNA, can be used to produce a specific targeted mutation (i.e. a SNP) in the gene using homology directed repair. In an alternative embodiment, at least one mutation may be introduced into the AMSH2 gene and/or promoter, particularly at the positions described above, using any CRISPR technique known to the skilled person. In another example, sgRNA (for example, as described herein) can be used with a modified Cas9 protein, such as nickase Cas9 or nCas9 or a “dead” Cas9 (dCas9) fused to a “Base Editor” - such as an enzyme, for example a deaminase such as cytidine deaminase, or TadA (tRNA adenosine deaminase) or ADAR or APOBEC. These enzymes are able to substitute one base for another. As a result no DNA is deleted, but a single substitution is made (Kim et al., 2017; Gaudelli et al. 2017). The genome editing constructs may be introduced into a plant cell using any suitable method known to the skilled person. In an alternative embodiment, any of the nucleic acid constructs described herein may be first transcribed to form a preassembled Cas9- sgRNA ribonucleoprotein and then delivered to at least one plant cell using any of the above described methods, such as lipofection, electroporation, biolistic bombardment or microinjection.
The terms "introduction", “transfection” or "transformation" as referred to herein encompass the transfer of an exogenous polynucleotide or construct into a host cell, irrespective of the method used for transfer. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.
The transfer of foreign genes into the genome of a plant is called transformation. Transformation of plants is now a routine technique in many species. Any of several transformation methods known to the skilled person may be used to introduce one or more genome editing constructs of interest into a suitable ancestor cell. The methods described for the transformation and regeneration of plants from plant tissues or plant cells may be utilized for transient or for stable transformation.
Transformation methods include the use of liposomes, electroporation, chemicals that increase free DNA uptake, injection of the DNA directly into the plant (microinjection), gene guns (or biolistic particle delivery systems (biolistics)) as described in the examples, lipofection, transformation using viruses or pollen and microprojection. Methods may be selected from the calcium/polyethylene glycol method for protoplasts, ultrasound- mediated gene transfection, optical or laser transfection, transfection using silicon carbide fibers, electroporation of protoplasts, microinjection into plant material, DNA or RNA-coated particle bombardment, infection with (non-integrative) viruses and the like. Transgenic plants can also be produced via Agrobacterium tumefaciens mediated transformation, including but not limited to using the floral dip/ Agrobacterium vacuum infiltration method as described in Clough & Bent (1998) and incorporated herein by reference.
Optionally, to select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, seeds obtained in the above- described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility is growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. As described in the examples, a suitable marker can be bar-phosphinothricin or PPT. Alternatively, the transformed plants are screened for the presence of a selectable marker, such as, but not limited to, GFP, GUS (b- glucuronidase). Other examples would be readily known to the skilled person. Alternatively, no selection is performed, and seeds obtained in the above-described manner are planted and grown and AMSH2 and/or RPN11 and/or CSN5A expression or protein levels measured at an appropriate time using standard techniques in the art. This alternative, which avoids the introduction of transgenes, is preferable to produce transgene-free plants.
Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using PCR to detect the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, integration and expression levels of the newly introduced DNA may be monitored using Southern, Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art.
The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and homozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. Specific protocols for using the above described CRISPR constructs would be well known to the skilled person. As one example, a suitable protocol is described in Ma & Liu (“CRISPR/Cas-based multiplex genome editing in monocot and dicot plants”) incorporated herein by reference.
In an alternative embodiment, the method comprises reducing or abolishing the expression of AMSH2 and/or RPN11 and/or CSN5A. This may be achieved by introducing at least one mutation into the endogenous AMSH2 and/or RPN11 and/or CSN5A endogenous gene to reduce or abolish expression by any of the methods described herein or introducing and expressing a silencing construct, such as an RNAi into the plant to reduce or abolish expression. Such constructs can be introduced using the transformation methods described herein. Reduce or abolish expression is relative to the levels of expression in a control or wild-type plant - i.e. a plant that does not contain the mutation or express a silencing construct.
In a further aspect of the invention, there is provided a genetically altered plant, part thereof or plant cell characterised in that the plant has increased resistance to biotic stress compared to a control or wild-type plant. In a preferred embodiment, the plant has at least one mutation in the AMSH2 gene and/or a RPN11 gene and/or CSN5A gene, as defined herein. More preferably, the at least one mutation is in a CSP, preferably a Mp10 (or homologue thereof) binding site, as defined above. Alternatively, the at least one mutation reduces or abolishes binding of a CSP, such as Mp10, to AMSH2 and/or RPN11.
The plant may be produced by introducing at least one mutation, preferably a substitution, into at least one nucleic acid sequence encoding a AMSH2 and/or RPN11 and/or CSN5A protein. More preferably, the mutation is a nonsense mutation and results in an amino acid substitution at the amino acid level. The mutation may be introduced by any of the methods described above. Preferably, the at least one mutation is introduced into at least one plant cell and a plant regenerated from the at least one mutated plant cell.
For the purposes of the invention, a “genetically altered plant” or “mutant plant” is a plant that has been genetically altered compared to the naturally occurring wild type (WT) plant. In one embodiment, a mutant plant is a plant that has been altered compared to the naturally occurring wild type (WT) plant using a mutagenesis method, such as any of the mutagenesis methods described herein. In one embodiment, the mutagenesis method is targeted genome modification or genome editing. In one embodiment, the plant genome has been altered compared to wild type sequences using a mutagenesis method. Such plants have an altered phenotype as described herein, such as an increased resistance to biotic stress. Therefore, in this example, increased resistance to biotic stress is conferred by the presence of an altered plant genome, for example, a mutated endogenous AMSH2 and/or RPN11 and/or CSN5A gene. In one embodiment, the endogenous AMSH2 and/or RPN11 and/or CSN5A gene sequence is specifically targeted using targeted genome modification and the presence of a mutated gene is not conferred by the presence of transgenes expressed in the plant. In other words, the genetically altered plant can be described as transgene-free.
A plant according to the various aspects of the invention, as well as the methods and uses described herein, may be a monocot or a dicot plant. Preferably, the plant is a monocot plant. In a more preferred embodiment, the plant is a crop plant. By crop plant is meant any plant, which is grown on a commercial scale for human or animal consumption or use. In a preferred embodiment, the plant is a cereal. In another embodiment, the plant is Arabidopsis.
In one embodiment, the plant is selected from rice, wheat, maize, barley, oilseed rape, brassica, such as Brassica napus, soybean, sorghum, cotton, tomato, pea, cocoa, grape, banana and orange.
The term "plant" as used herein encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, fruit, shoots, stems, leaves, roots (including tubers), flowers, tissues and organs. The term "plant" also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores.
The invention also extends to harvestable parts of a plant of the invention as described herein, but not limited to seeds, leaves, fruits, flowers, stems, roots, rhizomes, tubers and bulbs. The aspects of the invention also extend to products derived, preferably directly derived, from a harvestable part of such a plant, such as dry pellets or powders, oil, fat and fatty acids, starch or proteins. The invention also relates to food products and food supplements comprising the plant of the invention or parts thereof. In one embodiment, the food products may be animal feed. In another aspect of the invention, there is provided a product derived from a plant as described herein or from a part thereof.
In a most preferred embodiment, the plant part or harvestable product is a seed or grain. Therefore, in a further aspect of the invention, there is provided a seed produced from a genetically altered plant as described herein. In an alternative embodiment, the plant part is pollen, a propagule or progeny of the genetically altered plant described herein. Accordingly, in a further aspect of the invention there is provided pollen, a propagule or progeny of the genetically altered plant as described herein.
A control plant as used herein according to all of the aspects of the invention is a plant, which has not been modified according to the methods of the invention. Accordingly, in one embodiment, the control plant does not have at least one mutation, such as one of the above described mutations in the nucleic acid sequence of AMSH2 and/or RPN11 and/or CSN5A. In one embodiment, the control plant is a wild type plant. The control plant is typically of the same plant species, preferably having the same genetic background as the modified plant.
In a further aspect of the invention, there is provided a method of altering an immune response in a plant, the method comprising introducing at least one mutation in at least one AMSH2 and/or RPN11 and/or CSN5A gene as described above.
In another aspect of the invention, there is provided a method of preventing the suppression of a plant defence response in response to a biotic stress, the method comprising introducing at least one mutation in at least one AMSH2 and/or RPN 11 and/or CSN5A gene as described above. As described herein (and shown in Figure 4), an effect on a plant immune response can be seen by measuring the reactive oxygen burst (ROS) in response to treatment with a bacterial elicitor. Other techniques for determining an effect on a plant defence response would be known to the skilled person.
In a further aspect of the invention, there is provided a method of making a plant (i.e. obtaining the genetically modified plant of the present invention), the method comprising introducing at least one mutation in at least one AMSH2 and/or RPN 11 and/or CSN5A gene as described herein. The method may also comprise the step of screening the genetically modified plant for at least one mutation, preferably at least one of the positions described above. The method may comprise obtaining a DNA sample from a transformed plant and carrying out DNA amplification to detect at least one of the mutations.
In one embodiment, the method may comprise the steps of a. selecting a part of the plant; b. transfecting at least one cell of the part of the plant of paragraph (a) with at least one genome editing construct using the transfection or transformation techniques described above; c. regenerating at least one plant derived from the transfected cell or cells; d. selecting one or more plants obtained according to paragraph (c) that show increased biotic stress resistance and/or decreased binding to a CSP protein, such as Mp10, as described above.
The method may further comprise the step of obtaining the progeny from the transformed plant.
In one embodiment, the progeny plant is stably transformed with the genome editing constructs described herein and comprises the exogenous polynucleotide, which is heritably maintained in the plant cell. The method may include steps to verify that the construct is stably integrated. The method may also comprise the additional step of collecting seeds from the selected progeny plant.
In a further embodiment, the method may further comprise at least one or more of the steps of assessing the phenotype of the genetically altered plant, specifically, measuring or assessing an increase in biotic stress resistance, wherein preferably said increase is relative to a control or wild-type plant.
In a further embodiment, the methods comprise generating stable T2 plants that are preferably homozygous for the mutation (that is a mutation in at least one AMSH2 and/or RPN11 and/or CSN5A gene). Plants that have a mutation in at least one AMSH2 and/or RPN11 and/or CSN5A gene can also be crossed with another plant also containing at least one different mutation in the AMSH2 and/or RPN11 and/or CSN5A gene to obtain plants with a mutation in a AMSH2 gene and a RPN11 gene and/or CSN5A gene or two or more mutations in an AMSH2 and/or RPN11 and/or CSN5A gene. The combinations will be apparent to the skilled person. Accordingly, this method can be used to generate T2 plants with mutations on all or an increased number of homoeologs, when compared to the number of homoeolog mutations in a single T 1 plant transformed as described above.
In another aspect, the invention extends to a plant obtained or obtainable by any of the methods described herein.
A genetically altered plant of the present invention may also be obtained by transference of any of the sequences of the invention by crossing, e.g., using pollen of the genetically altered plant described herein to pollinate a wild-type or control plant, or pollinating the gynoecia of plants described herein with other pollen that does not contain a mutation in at least one of the AMSH2 and/or RPN11 and/or CSN5A gene. The methods for obtaining the plant of the invention are not exclusively limited to those described in this paragraph; for example, genetic transformation of germ cells from the ear of wheat could be carried out as mentioned, but without having to regenerate a plant afterwards.
In a further aspect of the invention, there is provided a method for screening a population of plants and identifying and/or selecting a plant that has an increased biotic stress resistance. Preferably, the method comprises detecting in the plant or plant germplasm at least one polymorphism in the AMSH2 and/or RPN11 and/or CSN5A gene, preferably in a CSP binding site or in a JAMM-domain. Preferably, said screening comprises determining the presence of at least one polymorphism, wherein preferably said polymorphism is at least one substitution.
In one specific embodiment, said polymorphism in AMSH2 may comprise at least one substitution selected from the following: a substitution at position 410 of SEQ ID NO: 1 or a homologous position in a homologous sequence; and/or a substitution at position 597 of SEQ ID NO: 1 or a homologous position in a homologous sequence; and/or a substitution at position 1099 and/or 1010 and/or 1101 of SEQ ID NO: 1 or a homologous position in a homologous sequence; and/or a substitution at position 1554 of SEQ ID NO: 1 or a homologous position in a homologous sequence; and/or a substitution at position 1642 of SEQ ID NO: 1 or a homologous position in a homologous sequence; and/or a substitution at position 1647 of SEQ ID NO: 1 or a homologous position in a homologous sequence; and/or a substitution at position 1654 of SEQ ID NO: 1 or a homologous position in a homologous sequence.
In a preferred embodiment, said polymorphism in AMSH2 may comprise at least one substitution selected from a substitution at position 410 of SEQ ID NO: 1 ora homologous position in a homologous sequence.
In another embodiment, said polymorphism in RPN11 may comprise at least one substitution selected from the following: a substitution at position 830 and/or 831 and/or 832 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or a substitution at position 1095 and/or 1096 and/or 1097 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or a substitution at position 1209 and/or 1210 and/or 1211 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or a substitution at position 1715 and/or 1716 and/or 1717 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or a substitution at position 1908 and/or 1909 and/or 1910 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or a substitution at position 1914 and/or 1915 and/or 1916 of SEQ ID NO: 37 or a homologous position in a homologous sequence; and/or a substitution at position 1920 and/or 1921 and/or 1922 of SEQ ID NO: 37 or a homologous position in a homologous sequence.
In a preferred embodiment, the polymorphism in RPN11 may comprise at least one substitution selected from a substitution at position 830 and/or 831 and/or 832 of SEQ ID NO: 37 or a homologous position in a homologous sequence. In another embodiment, said polymorphism in CSN5A may comprise at least one substitution selected from the following: a substitution at position 175 and/or 176 and/or 177 of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or a substitution at position 250 and/or 251 and/or 252 of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or a substitution at position 367 and/or 368 and/or 369 of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or a substitution at position 622 and/or 623 and/or 624 of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or a substitution at position 727 and/or 728 and/or 729 of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or a substitution at position 733 and/or 734 and/or 735 of SEQ ID NO: 71 or a homologous position in a homologous sequence; and/or a substitution at position 739 and/or 740 and/or 741 of SEQ ID NO: 71 or a homologous position in a homologous sequence.
In a preferred embodiment, the polymorphism in CSN5A may comprise at least one substitution selected from a substitution at position 175 and/or 176 and/or 177 of SEQ ID NO: 71 or a homologous position in a homologous sequence.
In another embodiment, the polymorphism may be selected from at least one substitution selected from a substitution at position 410 of SEQ ID NO: 1 or a homologous position in a homologous sequence and/or a substitution at position 830 and/or 831 and/or 832 of SEQ ID NO: 37 or a homologous position in a homologous sequence and/or a substitution at position 175 and/or 176 and/or 177 of SEQ ID NO: 71 or a homologous position in a homologous sequence.
Examples of homologous positions in a number of AMSH2 and RPN11 and CSN5A homologous sequences are shown in the table of Figure 9 and Figure 13 and Figure 15 respectively. Accordingly, in one embodiment, the at least one AMSH2 polymorphism is selected from one of the genomic mutations shown in the table of Figure 9 and at least one of the RPN11 polymorphisms is selected from one of the genomic mutations shown in the table of Figure 13 and the CSN5A polymorphism is selected from one of the genomic mutations shown in the tavel of Figure 15.
Suitable tests for assessing the presence of a polymorphism would be well known to the skilled person, and include but are not limited to, Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length polymorphisms (AFLPs), Simple Sequence Repeats (SSRs-which are also referred to as Microsatellites), and Single Nucleotide Polymorphisms (SNPs). In one embodiment, Kompetitive Allele Specific PCR (KASP) genotyping is used.
In one embodiment, the method comprises a) obtaining a nucleic acid sample from a plant and b) carrying out nucleic acid amplification of one or more AMSH2 and/or RPN11 and/or CSN5A alleles using one or more primer pairs.
In a further embodiment, the method may further comprise introgressing the chromosomal region comprising a AMSH2 and/or RPN11 and/or CSN5A polymorphism into a second plant or plant germplasm to produce an introgressed plant or plant germplasm. Preferably, said second plant will display an increase in biotic stress resistance compared to a control or wild-type plant that does not carry the polymorphism.
Accordingly, in a further aspect of the invention there is provided a method for increasing biotic stress resistance, the method comprising a. screening a population of plants for at least one plant with at least one AMSH2 and/or RPN11 and/or CSN5A polymorphism as described herein; b. further modulating the binding of AMSH2 and/or RPN 11 and/or CSN5A to a CSP protein, as described herein, in said plant by introducing at least one mutation into the nucleic acid sequence encoding AMSH2 and/or RPN 11 and/or CSN5A as described herein.
While the foregoing disclosure provides a general description of the subject matter encompassed within the scope of the present invention, including methods, as well as the best mode thereof, of making and using this invention, the following examples are provided to further enable those skilled in the art to practice this invention and to provide a complete written description thereof. However, those skilled in the art will appreciate that the specifics of these examples should not be read as limiting on the invention, the scope of which should be apprehended from the claims and equivalents thereof appended to this disclosure. Various further aspects and embodiments of the present invention will be apparent to those skilled in the art in view of the present disclosure.
"and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be taken as specific disclosure of each of (i) A, (ii) B and (iii) A and B, just as if each is set out individually herein.
Unless context dictates otherwise, the descriptions and definitions of the features set out above are not limited to any particular aspect or embodiment of the invention and apply equally to all aspects and embodiments which are described.
The foregoing application, and all documents and sequence accession numbers cited therein or during their prosecution ("appln cited documents") and all documents cited or referenced in the appln cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.
The invention is now described in the following non-limiting example.
EXAMPLE
The Mp10 protein was used as bait in a yeast-2-hybrid screen of a library of A. thaliana cDNAs (derived from pooled plants that had been exposed to a range of hemipteran insects). The screen yielded 3 independent Mp10-interacting clones that did not self- activate, and all four contained inserts encoding the full-length coding sequence of AMSH2 (ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM 2; AT1G 10600).
We have previously shown that Mp10 (CSP4) is conserved across sap-feeding hemipteran insects, with orthologues from other aphid species, whitefly and leafhoppers that possess the immune-suppressive activity of Mp10 in planta (Drurey et al. 2017). We found that Mp10 is able to interact with AMSH2, but not with AMSH1 or AMSH3 from Arabidopsis (Figure 1). Also, we found that Mp10 can interact with AMSH2 proteins from other plant species, including the crop plants sugar beet, pea, orange and oilseed rape (Figure 2). Furthermore, we found that homologues of Mp10 (CSP4 proteins) from other plant-feeding hemipteran insects, including other important pests of crop plants, can interact with AMSH2 proteins from various plant species (Figure 2) although not with the closely related CSP2 protein from Myzus persicae. This is consistent with the modulation of plant immune responses by CSP4 via the interaction with AMSH2 being a conserved feature of the interaction of sap-feeding hemipterans with their host plants.
We hypothesised that the interaction of Mp10 with AMSH2 may be involved in the immune-suppressive activity of Mp10. To test this, we screened natural variation in AMSH2 for alleles that do not interact with Mp10. These alleles might be expected to confer resistance to aphids through evading the immune-suppressive effects of Mp10. Within the genomes of over 1000 sequenced natural Arabidopsis accessioned, we identified 11 SNPs within the AMSH2 gene that give rise to amino acid changes, relative to the ColO reference sequence. We screened these SNPs for their effect on the interaction with Mp10 using yeast-2-hybrid assays (Fig 3). Two of these variant proteins: Valine 49 to aspartate (v49d) and threonine 76 to isoleucine (t76i) showed no evidence of interaction with Mp10, while all other tested alleles did. When tested for interaction with homologues of Mp10 from other hemipteran species, both the v49d and t76i similarly failed to show an interaction.
To test whether the loss of interaction of AMSH2 with Mp10 blocks the ability of Mp10 to suppress plant immunity, we transiently expressed the Mp10 protein together with the interacting- and non-interacting alleles of AMSH2 in leaves of Nicotiana benthamiana. We measured the activity of the immune response in these plants, by measuring the reactive oxygen species (ROS) burst in response to the bacterial elicitor peptide flg22. The expression of Mp10 in plants is sufficient to strongly suppress this response. However, we found that when Mp10 was co-expressed with a non-interacting allele of AMSH2 (v49d or t76i), the ability of Mp10 to suppress the ROS-burst was eliminated (Fig.4), showing that the interaction of Mp10 with AMSH2 is required for the activity of Mp10.
One of the positions in the AMSH2 protein that was identified to affect the binding to Mp10 shows strong conservation across plant species, with similar amino acids in the same positions in most species (Fig 5). The v49 position is found exclusively to be a similar branched-chain hydrophobic amino acid (leucine, valine or isoleucine) across all dicotyledonous plants, or a similarly hydrophobic methionine in monocots. Conversely, the T76 position in Arabidopsis (and the homologous T74 position in Brassica) seems to be somewhat unusual, in that at this position in all other species is a branched-chain hydrophobic amino acid.
We introduced the homologous mutations corresponding to V49D and T76I into AMSH2 sequences from two crop plants, sugar beet ( Beta vulgaris) and oilseed rape ( Brassica napus ). The protein sequence alignment in Fig. 5 shows that the Arabidopsis V49 is homologous to the beet V45, and brassica V47. Similarly, the Arabidopsis T76 is homologous to the beet V72, and brassica T74. Changes at both positions in the sugar beet and the Brassica AMSH2 protein also abolished the interaction with Mp10 (Fig. 6), indicating that these key residues may be targeted in any plant species to modulate the plant-insect interaction. While the mutations created at the V49 position were simple to interpret - in all three cases a V-D mutation abolishes the interaction - the position homologous to T76 in sugar beet is a valine residue (V72), so we tested the effect of changing this to a threonine (to match the interacting Arabidopsis protein) and to an isoleucine (to match the non-interacting variant). Somewhat counter-intuitively the V72T mutation abolished the interaction, and the V72I mutation appears to strengthen it. Nonetheless, both positions may be modified to modulate the interaction with the insect effector protein.
We further validated these results in a field trial. Sugar beet plants carrying a heterozygous and homozygous N109I mutation in SEQ ID NO: 13 were tested in a field trial for resistance towards Curly top virus. Beet curly top virus were loaded on the beet leafhopper before challenge of the sugar beet plant. As shown in Figure 10, plants carrying a homozygous N109I mutation showed a marked reduction of curly top symptoms compared to wild-type plants. The heterozygote plants showed an intermediate phenotype.
Materials and methods
Y2h library screen
Yeast-2-Hybrid experiments were performed using the DualHybrid system (Dualsystems) according to the manufacturer’s instructions. Briefly, the coding sequence of the mature Mp10 protein was cloned into the EcoRI site of the pLexA-N yeast-2-hybrid bait plasmid, and transformed into the NMY51 strain of S. cerevisiae. Mp10 transformed yeast was co-transformed with an Arabidopsis Yeast-2-hybrid cDNA library cloned into the Sfil site of the prey vector pGAD-HA. Transformed cells were plated on SD-Trp, Lue, His (Melford) plus 1mM 3-amino triazole (Sigma) to select for interactors. Plasmids were extracted from colonies, sequenced, and re-transformed into NMY51 together with the pLexA-N empty vector, or with the pl_exA-N-Mp10 plasmid to test for autoactivation. The only three pLexA-N clones that grew under selective conditions, only in the presence of Mp10, contained the full-length coding sequence of AMSH2 (AT1G10600).
Identifying Arabidopsis orthologues in other crop species
Orthologues of AMSH2 from other plant species were identified by reciprocal best blast searching the protein sequence of Arabidopsis AMSH2 against other plant species present in the EnsembIPIants (http://plants.ensembl.org/) database. This indicated that all tested plant genomes contain a 1:1 orthologue of AMSH2 per haploid genome, in agreement with Katsiarimpa et al. (2013). Protein sequence alignments performed using CLC Main Workbench (CLC) could distinguish orthologues of AMSH2 from AMSH1 and AMSH3 based on the absence of the extended N-terminal dimerization domain present in AMSH1 and AMSH3 but absent from AMSH2. Full length coding sequences of AMSH2 from Brassica napus, Beta vulgaris, Pisum sativum, and Nicotiana benthamiana were cloned by PCR into the EcoRI site of pLexA-N and tested for interaction with Mp10 as described above.
Identifying seouence variants in natural populations
Natural variation in the Arabidopsis AMSH2 gene was identified from the 1001 genomes project (Weigel and Mott 2009) using EnsembIPIants, 11 non-synonymous SNPs were identified. Whole genome resequencing of elite sugar beet breeding lines revealed 17 non-synonymous variants in the AMSH2 gene (SE Svanderhave, unpublished data). PCR amplification and sanger sequencing of the partial AMSH2 gene from pea varieties from the JIC pea diversity germplasm collection (Rayner et al. 2018) identified 91 high confidence non-synonymous SNPs. Exome capture data from diversity collections of wheat (the Watkins collection, Gardiner et al. (2018)), and Brassica napus (Judith Irwin, JIC, unpublished data), were interrogated for variation in the AMSH2 genes, but no non- synonymous SNPs were found in either.
Yeast 2 hybrid experiments with variants
Non-synonymous SNPs of interest were introduced into the pLexA-N clones containing the AMSH2 genes from different plant species using site directed mutagenesis with the QuickChange XL II kit according to the manufacturer’s instructions (Agilent). Mutagenized clones were verified by sanger sequencing and tested for interaction with Mp10 as described above.
Identifying targeted mutations based on homology to Arabidopsis Full length sequence alignments of AMSH2 orthologues (Fig5) shows strong sequence similarity. Positions homologous to the v49 and t76 residues from the Arabidopsis protein were identified in other species based on this alignment. Mutations to change these positions in the Beta vulgaris, and Brassica napus were introduced by site directed mutagenesis and tested for interaction with Mp10 as described above.
Plant immune suppression assays
The Arabidopsis AMSH2 coding sequence variants were cloned into the pB7WGF2 construct, for expression in planta with GFP-fused to the N-terminus of the protein. Plasmids were transformed into Agrobacterium Gv3101 by cold shock. Overnight cultures of transformed agrobacterium were resuspended in 10mM MgCI2, 10mM MES pH 5.0, 10mM acetosyringone to a final density of OD600 = 0.3. Cultures were mixed 1 :1 with stains carrying the pTRBO-plasmid containing the coding sequence for the mature Mp10 protein fused to RFP, or the corresponding empty vector. Mixed cultures were infiltrated into 3-week old N. benthamiana leaves, and after 3 days leaf discs were harvested and assayed for reactive oxygen species bursts produced in response to flg22 as described in Drurey et al (2017). Introducing targeted amino acid changes in the AMSH2 gene in barley and brassica
We have shown that the specific mutations in the Brassica AMSH2 have the desired effect in abolishing the interaction with Mp10. Here we describe using the CRISPR/Cas system to introduce specific mutations into Brassica oleracea and also into Barley (Hordeum vulgare).
The design of small guide RNA (sgRNA) to target Cas9 to specific positions in a gene is limited by the protospacer adjacent motif (PAM) requirements. Similarly, the ability to design specific amino acid changes at these positions is limited by the mutational capacity of cytidine deaminase (ApoBec, that catalyzes C-T changes, and also -with lower efficiency- other mutations). Thus to generate the desired changes both these criteria must be met at the target site.
We have identified a suitable sgRNA design that will target the V47 position in the diploid Brassica oleracea (for which the AMSH2 protein sequence is identical to B. napus shown in Fig. 6). However, the T74 position, and also both the M103 and 1130 positions in the H. vulgare AMSH2 do not have a suitable canonical PAM (NGG) site within the desired range. In the case of this mutation we will use a relaxed-PAM (NNG) CAS9-ApoBec variant to target the gene-edit. This has been tested in other species, but not in Brassica. Similarly, neither of the target sites in the barley AMSH2 have suitable PAM sites, so both of these will also be performed using the relaxed-PAM CAS9-ApoBec. Position of suitable regions in B.oleracea (A) and Hordeum vulgare (B) for targeting by sgRNAs are shown in Figure 7. Sequence of the sgRNAs to be used are as follows:
BOAMSH2 V47 AACAT CT CT CAGT AT CT (SEQ ID NO: 105)
BOAMSH2 T74 AACTCTCGCTGCCTTCC (SEQ ID NO: 106)
HvAMSH2 M103 T CT GOAT GTCATGCAAA (SEQ ID NO: 107)
HvAMSH2 1130 AGAATTCCACAGGTCTC (SEQ ID NO: 108)
Brassica oleracea and Hordeum vulgare will be transformed with constructs containing a single sgRNA plus the CAS9-ApoBec fusion that catalyses C-T transitions (and less frequently other mutations). Primary transformants will be screened for the presence of the desired induced mutations, grown for seed, and T2 plants will be screened for homozygous mutants, which will be tested for aphid- and virus-resistance. In addition to the 4 ApoBec-mediated mutations, we will also test 2 of these sites using the cata lytically active CAS9 without ApoBec and screen for cleavage events to test for proof of principle that the relaxed PAM -CAS9 is also effective for the other CAS9-based applications.
EXAMPLE II
In order to identify further targets of the Mp10 effector protein, we performed an immuno- precipitation (IP) experiment to pull down proteins associated with Mp10 from aphid- infested Arabidopsis plants. One protein that pulled-down with Mp10 from aphid-infested plants (but was not detected from IP of uninfested control plants) was RPN2 (AT2G32730). RPN2 is a component of the 26S proteasome, a large multi-protein complex responsible for the degradation of proteins that are targeted to it via ubiquitination. The ubiquitin-proteasome system has numerous roles in regulating plant immunity (Trujillo and Shirasu 2010), making this a strong candidate for a role in resistance to aphids. Interestingly several other components of the 26s proteasome (Rpn11 (AT5G23540), Rpn8a (AT5G05780) and Rpn8b (AT5G05780)) are JAMM- domain containing proteins, a domain shared by AMSH2. Immunoprecipitation may pull down proteins that do not directly interact with the bait protein (Mp10), but rather precipitate as part of a multi-protein complex. Mp10 can directly interact with a JAMM domain protein of the proteasome, and that RPN2 might be pulled down in complex with these. To test whether Mp10 can bind directly to components of the proteasome, we performed a yeast-2-hybrid experiment to test interactions between Mp10 and Rpn2, Rpn11 , Rpn8a and Rpn8b. This showed that Mp10 interacts with RPN11 in yeast, but not with RPN2, RPN8a or RPN8b (Fig 11 a). As also shown in Figure 11b, yeast 2-hybrid assays using Mp10 fused to the Activation domain (AD) and JAMM/MPN proteins fused to the DNA-binding domain (BD) show that growth on selective media (SD -L, -T, - H + 5 mM 3-AT) occurs in the presence of Mp10 and AMSH2, RPN11, or CSN5A but not to AMSH1 , AMSH3, CSN5B, BRC36A or BRC36B, or the empty AD or BD vectors. At the left, the V49D mutation of AMSH2 is shown to abolish the interaction with Mp10, as do the homologues mutations in RPN11 (V30D) and CSN5A (V59D).
Despite the conserved JAMM-domain, AMSH and RPN proteins are quite distinct, and share only limited sequence homology. Figure 12 shows a multiple sequence alignment that indicates conserved positions between the 3 AMSH and 3 JAMM-domain containing RPN proteins. Interestingly, RPN11 has a valine residue at the position homologous to the AMSH2 V49, mutation of which disrupts the interaction of Mp10. This suggests that we can block the binding of Mp10 to RPN11 by mutating this residue. Materials and methods
Immuno-precipitation
Four-week old Arabidopsis plants were infested with 1000 Myzus persicae adults for 24- hours. Aphids were removed, the rosettes of the plants were carefully cleaned of aphid debris. Arabidopsis tissues from aphid-infested and control, uninfested plants, were frozen, ground under liquid nitrogen, and proteins were extracted in 150 mM Tris-HCI pH7.5, 150 mM NaCI, 10% glycerol, 10 mM EDTA, 20mM NaF, 10mM DTT, 0.5% (w/v) PVPP, 1% protease inhibitor cocktail (Sigma), and 0.5% TritonX-100 at 1ml per 200mg of plant tissue, at 4°C for 20mins prior to clearing by centrfifugation. Extract was mixed with 50 pi of protein-A magnetic dynabeads (Invitrogen Thermo Fisher Scientific 10002D) conjugated to Anti-Mp10 antibody (Mugford et al. 2016), and incubated with constant mixing overnight at 4°C. The supernatant was removed and beads were washed 5 times in 150 mM Tris-HCI pH7.5, 150 mM NaCI, 10 mM EDTA. The Immuno-precipitate was loaded onto a 10% PAGE, and proteins were trypsin-digested, extracted from the gel and analysed using a Orbitrap-Fusion Mass Spectrometer (Thermo) with nanoLC.
Yeast 2-Hybrid As described above.
EXAMPLE III
Identification of non-interacting RPN alleles
We previously identified that mutation of the valine at position 49 (V49) of AMSH2 to an aspartic acid was sufficient to disrupt the interaction of AMSH2 with Mp10 (Fig 3), and to block the ability of Mp10 to supress PAMP-triggered immune (PTI)-signalling in planta (Fig 4). The V49 position is conserved across AMSH2 orthologues in dicot plants (Fig 5), and also in RPN11 (Fig 12). We will mutagenize the V30 position of RPN11 (homologous to AMSH2 V49) to an aspartic acid using site directed mutagenesis, and test for an interaction with Mp10 using yeast-2-hybrid as previously described.
In addition, we will search available sequence data for variation in the RPN11 coding sequence from different Arabidopsis accessions, clone these sequence variants (or the identified introduce mutations by site-directed mutagenesis) and test for interactions with Mp10 using yeast-2-hybird.
EXAMPLE IV Testing the function of Mp10-RPN11 interactions on plant immune signalling and defence against aphids.
Based on our previous experience the approaches described above have a high likelihood to provide us with alleles of RPN11 that no longer interact with Mp10. We have cloned these alleles into a suitable plant-expression construct. These constructs have been used to transiently express the WT and non-interacting RPN11 proteins in leaves of Nicotiana benthamiana, used to stably transform Arabidopsis.
Heterologous expression of Mp10 in plant tissue results in suppression of PTI-signalling (Bos et al 2010), and also the induction of Salicylic acid (SA)- and Jasmonic acid (JA)- signalling pathways (Rodriguez et al 2014). We transiently co-expressed Mp10 with WT and non-interacting alleles of RPN11 and determined that the loss of interaction with RPN11 was sufficient to block the suppression of PTI (as we previously showed for non interacting alleles of AMSH2)- by measuring the flg-22 induced ROS burst. We also tested the ability of the non-interacting RPN11 (and AMSH2) to block the Mp10-induced activation of SA- or JA-signalling, by measuring the expression of SA- and JA- induced transcripts (for example PR1 , PR4, VSP1 and VSP2).
We also transformed the expression constructs bearing the WT and non-interacting RPN11 alleles into Arabidopsis plants to produce stable transgenic plants. The constructs were transformed into WT ColO Arabidopsis, and also into plants already over expressing the non-interacting AMSH2 alleles (in the WT, and in the amsh2- null mutant background). These plants enabled us to test the effect of the non-interacting RPN11 alleles alone or in combination with the non-interacting AMSH2 alleles on aphid performance and virus transmission. We have also generated primary T1 transgenic plants and screened for lines that express the protein(s) of interest.
REFERENCES
Katsiarimpa et al. (2013) The Deubiquitinating Enzyme AMSH1 and the ESCRT-III Subunit VPS2.1 Are Required for Autophagic Degradation in Arabidopsis. The Plant Cell, Vol. 25: 2236-2252
Weigel and Mott (2009). he 1001 Genomes Project for Arabidopsis thaliana. Genome Biology 10: 107.
Gardiner et al. (2018). Hidden variation in polyploid wheat drives local adaptation. Genome Research 28:1319-1332.
Rayner et al. (2018) Genetic diversity and strategies for seed quality enhancement in Pisum (pea). Aspects of Applied Biology 138: 141-147
Drurey et al. (2017) Chemosensory proteins in the CSP4 clade evolved as plant immunity suppressors before two suborders of plant-feeding hemipteran insects diverged. BioRxiv doi: https://doi.ora/10.1101/173278.
Mugford, S. T., Barclay, E., Drurey, C., Findlay, K. C., & Hogenhout, S. A. (2016). An immuno-suppressive aphid saliva protein is delivered into the cytosol of plant mesophyll cells during feeding. Molecular Plant-Microbe Interactions, 29(11), 854-861.
Nicaise, V. (2014). Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science, 5, 660.
Trujillo, M., & Shirasu, K. (2010). Ubiquitination in plant immunity. Current Opinion in Plant Biology, 13(4), 402-408.
Mukhtar, M. S., Carvunis, A. R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., ... & Pevzner, S. J. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333 596-601. SEQUENCE LISTING
Examples of suitable mutation positions (in the wild-type sequence) or mutated nucleotides/amino acids (in the mutated sequences) are highlighted in bold. The invention is not limited to these mutation positions. Upper case denotes the coding sequence.
Arabidopsis
(Arabidopsis thaliana ColO ecotype)
SEQ ID NO: 1 >AtAMSH2-AT1G10600-Col0-genomic (wild-type) ccgtgacctcaacacgtgtcatgtttctgaaacatcttcattaaaactacccttatatttttttatatatttaagattgaccttataa ctttgactaatactgattacaccctctattctccgaatcggttatcaaaaccaatttcactggaccgtgatatcagaaaccggt tcactgaggtgggcgagattttttgttgtcactctcctctcctcgttcttcgatgctcatccattagaggaggagccgatgtttctg cttccatggtaacgctctcgtctccatctccctcgctctcttgcgtagagaacgtgacatgtaaatcttctcacgtttctcgggtt ctaatctccggtaccgataatattaatcacggtgaatcgtcggaagccaaaatactgagagatgttcatatcgtaagaactt tgagatttttctttgaatctcagttctctgtgatttggtacgttcaattacggatatctaatttgagttaatcgttgttgtgtttgtgcttct tagtcagaaaggttattggaggatttcactgagcttgcaagagagaacactgagaaggacctcgagacttgtgggactct cgctgcctttcttgtaagattgttttgctttcttcgcattcaagttgattactttgggtgataagagaatctgggtggtgagaaaat caaggaaaatgttagaaagtttcagactttattgttcctaattacaacttctaacagagatctttgcaaatttgaatttttagtga aactcgatctatgctattgtttaaagtttacaccttgttttgacttttgtggtcatgattcatggttgttttgcttctgttccagggttcttc gtttttcgagtttcatgaacctgatggtaattacatttctatttctgttcatgctgtaggaaagaggaattttttatgtaaccactctg ataatacctaagcaagaatcaacttctaattctgtgagttatcttagaaagattatctcgatcattttgtggtattcaaaatgag gtgcttactcaggtgctaaaattggcagtgtcaggctatgaatgaagtggaagtgttttccattcaaaacgaaagagaact ctatcccgtaggatggattcatgtatatctctctcttctagctccctccatgtttagtgatctgtttatctactttgtcttgacttactat aacgaggttatgcatattttccagactcatccttctcagggttgtttcatgtcatctgtagatctgcatacacattattcgtatcag gtacatctctgctgtttccaaattgcatatatactaggtttgagacaattctgatctcagtttcccatcatgtcattcttaggtaatg gtgccagaggcttttgcaatcgtcgtagctccaactgatagctctaagtatgttcttccaaagctatggagtcaattatacagt caacatatttccttgatagactctcaaactgatctttttggcaggagttacgggatatttaagctaacggaccctggaggaat ggaggtactgagaggctgctcagagactggattccacccgcacaaagaaccagaagatgggaacccagtttatgagc attgctcaaacgtctacaagaactcgaaccttaggttcgagatttttgatctacgttaaggtaacgacttctgtggacttatca gtaaaaaggttcaaactttatccactgtgggctaaggatgtcaataataaccgtcatcataaccaccaccctaaccagaa ctgtatacttggtctgagaaggctgtctgattcgggttatgaacacaaggtaccttctattaagcttagcaatgttaataaattg tcatgtccttagatttggatcaattggttccattatggaagaacaacaatgaccatagacataagacattgtattggcgtatg caattgttatatatctgtacaaatgtatacattggca
SEQ ID NO: 2 >AtAMSH2.1-ColO-CDS (wild-type) atggtaacgctctcgtctccatctccctcgctctcttgcgtagagaacgtgacatgtaaatcttctcacgtttctcgggttctaat ctccggtaccgataatattaatcacggtgaatcgtcggaagccaaaatactgagagatgttcatatctcagaaaggttatt ggaggatttcactgagcttgcaagagagaacactgagaaggacctcgagacttgtgggactctcgctgcctttcttgaaa gaggaattttttatgtaaccactctgataatacctaagcaagaatcaacttctaattcttgtcaggctatgaatgaagtggaa gtgttttccattcaaaacgaaagagaactctatcccgtaggatggattcatactcatccttctcagggttgtttcatgtcatctgt agatctgcatacacattattcgtatcaggtaatggtgccagaggcttttgcaatcgtcgtagctccaactgatagctctaaga gttacgggatatttaagctaacggaccctggaggaatggaggtactgagaggctgctcagagactggattccacccgca caaagaaccagaagatgggaacccagtttatgagcattgctcaaacgtctacaagaactcgaaccttaggttcgagattt ttgatctacgttaa
SEQ ID NO: 3 >AtAMSH2-ColO-AA
MVTLSSPSPSLSCVENVTCKSSHVSRVLISGTDNINHGESSEAKILRDVHISERLLEDF
TELARENTEKDLETCGTLAAFLERGIFYVTTLIIPKQESTSNSCQAMNEVEVFSIQNERE LYPVGWIHTHPSQGCFMSSVDLHTHYSYQVMVPEAFAIVVAPTDSSKSYGIFKLTDPG
GMEVLRGCSETGFHPHKEPEDGNPVYEHCSNVYKNSNLRFEIFDLR
Oileseed rape
Brassica napus (AST PRJEB5043 v1 reference genome)
A-genqme homeolqgue: BnAMSH2A
SEQ ID NO: 4 > BnAMSH2A BnaA06a06480D-1-aenomic ctttcggtttggatttccgtaaagtccttaactcataattatatacgcatatataatagatacatacaaatatatgtatattaagg acccaagaacaaggaccatcaataatcatgctctaaccgtagtttcatgacctgaacacgtgtcacgtccttttaaaaaaa tattcaggccttgaattttgtaaaacattgagatttggccttgggatatctattatatatgcgtatataattgtgagctaaggacttt acggaaacccaaacggaaagttccttaattaaggaactttcggtttggatttccgtaaagtccttaactcataattatatacg catatataatagatacatacaaatatatgtatattaaggacccaagaacaaggaccatcaataatcatgctctaaccgtag tttcatgacctgaacacgtgtcacgtccttttaaaaaaatattcaggccttgaattttgtaaaacattgagatttggccttgggat ttttaatatctacaaattagaccccggttttttttatccgaaccggttcattaaaaccggttcactatatgcgacggtttgtttgatc atcttccactcactaaaagcaagctcatcagcatccattagagcacagatgcttcgatggtaacgctgtcgtttccatctccc tcgctctctttcgtagagagcgggacatgtagtaaatcaactcacgtttctcgggttctgttctctggtccagatgaggttcacg gagaatcgtctgaaccatccaagatactaagagatgttcatatagtaagagtttctcttcttcttttttttttttgacgaaaagga acgatttttatgtgatataatgggattgttgtgggtttagtcagagaggttgatggaggatttcactgagctagcgagagaga acactgagaaggacctcgagacttgtggaactctcgctgccttcctcgtaagattagtctctcaatcttgatgatatgatgtttt tgataagtttattaaagtcttattttaattgcatgattaaatgatttaaggaaagaggagttttttatgtgaccactctgataatac ctaagcaagaatcaactgctaactctgtgagtatctttctcgatcatttcgtggtggtgttagacgtgacgatggttgcttaactt atagtactaataaaaatgggcagtgtcaagccatgaatgaagtggatgtgttttctatacaaaacgaaagagagctttatc ctgttgggtggattcatgtacatttatatctctgctccctcctcaatgttttgatttgtcttggctttgctataatgagttgtatgcgtgc tttacagactcacccttctcagggctgtttcatgtcatcagtcgatctgcatacccattactcgtatcaggttgttatgtgttgtttct ttatgggtttgagacgattcagttctcagtttctatcatgtccttttcaggtaatggtgccagaggcttttgcaattgtcgtggctcc aacagatagctctaggtatgtgtttccaaatccatcttaacttcattaccgtggagtcaattatggactcctcatactgattctgt tgcaggagttatgggatatttaagctaacggaccctggaggaatggagatactgagaggctgctcggagacaggattcc acccacacaaagaaccggaagatggaaacccggtttatgagcaatgctcaaacgtctacaagaactccaaccttaggt tcgagattttcgatctgcgctgaggtcaaaaaaagatcaagcttgatccattccactgtgagctgatgatatcaaacatcatt accataaacctaaccggaactgtatatttttatctaaaaagtcttctctttattgaggttataacacacaaaaagtcacctttgt attaagctaaacaatgttaataatttttagtaagttgaataatttacttccttgtccatactgttagtataaaagagtgtatatttgc tgatatgtacgcggctacacatcctaaagaaccaaaaacagaatcaaagatcggatctttttgaagtattaaagctgaca agctcgtaagtaaatgggtataaaggatgagtttatcaaagtgaaagaaacaaaaaaaaaaggttgaacctttctctact gttaagtgtagctatcaaaaaaaaccatacagtagtccttttcttcttttttgtttgctttcagagaagaaaacctttatggccgttt ttgagagcacatggtaagagtatctccgtacagtcagagtaaaagaccctctttctctctctttctacacatgtcagtcgtata cgtcatggattagtacagacgacgattcaactcatcttcttttctctctctctctctctctctctctctctctctctctctctctctctctct ctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctc
SEQ ID NO: 5 > BnAMSH2A BnaA06a06480D-1 peptide
MVTLSFPSPSLSFVESGTCSKSTHVSRVLFSGPDEVHGESSEPSKILRDVHISERLME
DFTELARENTEKDLETCGTLAAFLERGVFYVTTLIIPKQESTANSCQAMNEVDVFSIQN
ERELYPVGWIHTHPSQGCFMSSVDLHTHYSYQVMVPEAFAIVVAPTDSSRSYGIFKLT
DPGGMEILRGCSETGFHPHKEPEDGNPVYEQCSNVYKNSNLRFEIFDLR
C-qenome homeoloque: BnAMSH2C
SEQ ID NO: 6 >BnAMSH2c- BnaC05g08090D-Dar-genqmic (wild-type) ttaattacagtgataaagatgaagatttttaatctcccagatcattttttcaatcacaacacatccataattggattcgtaaaca cagtaccatcgacacaaagtcaaagctaatcacacaaaaatgtaatctattgaaccaagacagacattcatggaatctc tgattcgagcagatcaaactgatgataagaagacagaaatcgatttttgaactcagcttacgtattgagagagaagagac gacttaaaaggcgatcagatctgttgttgatgagatgatgataatacacacacaaagacgcggcgtgttttttttttgtctgaa attcataaatattaatacctaaccgtagtttcaatgacctgaacacgtgtcacgtcctttaaaaaaatatccgggccttcaatt ttgtaaaacattgagatttggccttgggattttaaatatctacaagttagaccccgctttttttttaatccgaaccggtttaataaa ccggttccctattcagcaagattttggttatgcgacggtttgtttgtttgtttgatcaaaagcgagagagctcatcagcatccatt agagcagatgcttcgatggtaacgctgtcgtttccatctccctcgctctctttcgtagagagcgggacatgtagtaaatcgac tcacgtttctcgggttctcttctctggtcctcacggagaatcgtctgaaccatccaagatactgagagatgttcatatagtaag cctttcccttcttcttattcttctttttttcacaaaaaggaacgatttttatgtgattttatcggattgttgcggtttagtcagagaggttg atggaggatttcactgagctagcgagagagaacactgacaaggacctcgagacttgtggaactctcgctgccttcctcgt aagattagtctcaatcttaagtccaagtgatgatgaagtttattaagtcttattttaattccatgatttaaatgctctaggaaaga ggagttttttatgtgaccactctgataatacctaagcaagaatcaactgctaactctgtgagtatctttctcgatcatttcgtggt gtttaacttttgcaatgatttgcttaactcagtactaaaaaaaatggcagtgccaagctatgaatgaagtggatgtgttttccat acagaacgaaagagagctttatcccgttggatggattcatgttcatttatatctctgctccctcctcaatgttttgatttgtcttgg ctttgctataatgagttgtatgcgtgcgtgctttacagactcatccttctcagggctgtttcatgtcatcagtagatttgcataccc attactcgtatcaggtactcttaagtttctcagtaataatatatttaagatattgtttcctttgtatttgcatatacatacaaggtttga ggtttctatcatttccttctttataaaggtaatggtgccagaggcttttgcaatcgtggtggctccaactgatagctctaggtttttg cttccaaagccagtcttaacacgttaccatgtagtcgattatgaacgctcatactgattcttttgcaggagttatgggatattta agctaacggaccctggaggaatggaggtactgagaggctgctcagagacaggattccacccgcacaaagaaccgg aagatggaaagccggtttatgagcaatgctcaaacgtctacaagaactccaaccttaggttcgagattttcgatctgcgct gaggtaaggtaagcaacccttcagtgggaggcaatatcagtggaaaaaaaggatcaagcttgatccactgtgagctaa aaagatatcaatttaaataaccataaacttaaccggaactgtatatttttttttatctaaaaagtcttgtctttattgaggttatatg aacaccaagtcagtcatcttgtaataagctaagaaaatgttaataaagtgttaattgtataaatgagtgtatctttgctcttttaa ttaccatataataaatgatacgtatactcagcctctgaagaaccaaaaaacagaatcaaagatccgatctttttttttttgaaa tattaaagctatcaagctttcaagtaaatgggtacagaggatgagtttatcaaagtgaaagaaacaaataaaaaaaagg ttgaacctttctctattgttaagcgtagctatcaaaaaacaatacaagtccttttcttctttttgtttgctttcagagaagaaaacct ttttggccgtttttctttttgagcacatgataaagagtatctccgtacagtcagagtaacagatgtgtcagtcttctacgtcatgg attggtacagacgacgattcaactcatcttcttttcttctctttaatttcaaaaagcgaagtcggttagtactattgtcctgtacga tcgtatattcgcgttatgatttgttttgacagagtacctgaagatttgtatatgccaaaacatctctctctctctctctctctctctcct tgtcccagtttaaagtaagaacaaaagagatcacaaagttgca
SEQ ID NO: 7 >BnAMSH2c-Dar-AA (wild-type)
MVTLSFPSPSLSFVESGTCSKSTHVSRVLFSGPHGESSEPSKILRDVHISERLMEDFT
ELARENTDKDLETCGTLAAFLERGVFYVTTLIIPKQESTANSCQAMNEVDVFSIQNERE
LYPVGWIHTHPSQGCFMSSVDLHTHYSYQVMVPEAFAIVVAPTDSSRSYGIFKLTDPG
GMEVLRGCSETGFHPHKEPEDGKPVYEQCSNVYKNSNLRFEIFDLR
Brassica oleracea
SEQ ID NO: 8 >BoAMSH2-Bo5g012120-gene tcagcaagattttggttatgcgacggtttgtttgatcaaaagcgagagagctcatcagcatccattagagcagatgcttcgat ggtaacgctgtcgtttccatctccctcgctctctttcgtagagagcgggacatgtagtaaatcgactcacgtttctcgggttctc ttctctggtcctcacggagaatcgtctgaaccatccaagatactgagagatgttcatatagtaagcctttcccttcttcttattctt ccttttttcacaaaaaggaacgatttttatgtgatttttatcggattgttgtggtttagtcagagaggttgatggaggatttcactg agctagcgagagagaacactgacaaggacctcgagacttgtggaactctcgctgccttcctcgtaagattagtctcaatct taagtccaagtgatgatgatgatgtttttgatacgtttattaagtcttattttaattccatgatttaaatgctctaggaaagaggag ttttttatgtgaccactctgataatacctaagcaagaatcaactgctaactctgtgagtatctttctcgatgtgtttaacttttgcaa tgatttgcttaactcagtacttaaataaatggcagtgccaagctatgaatgaagtggatgtgttttccatacagaacgaaag agagctttatcccgttggatggattcatgtacatttatatctctgctccctcctcaatgttttgatttgtcttggctttgctataatgag ttgtatgcgtgcgtgctttacagactcatccttctcagggctgtttcatgtcatcagtagatttgcatacccattactcgtatcagg tactcttaagtttctcagtaataatatactatttaagatattgtttcctttgtattacatatacatacaaggaggtttgagacaattc agttctcagtttctatcatttccttctttataaaggtaatggtgccagaggcttttgcaatcgtggtggctccaactgatagctcta ggtttttgcttccaaagccaatcttaacacgttaccatgtagtcgattatgaacgctcatactgattcttttgcaggagttatggg atatttaagctaacggaccctggaggaatggaggtactgagaggctgctcagagacaggattccacccgcacaaaga accggaagatggaaagccggtttatgagcaatgctcaaacgtctacaagaactcaaaccttaggttcgagattttcgatct gcgctgaggtaaggtaagcaacccttcagtgggaaaaaaaggatcaagcttgatccactgtgagctaaaaagatatca atttaaataaccataaacttaac SEQ ID NO: 9 >BoAMSH2-Bo5g012120.1_peptide
MVTLSFPSPSLSFVESGTCSKSTHVSRVLFSGPHGESSEPSKILRDVHISERLMEDFT
ELARENTDKDLETCGTLAAFLERGVFYVTTLIIPKQESTANSCQAMNEVDVFSIQNERE
LYPVGWIHTHPSQGCFMSSVDLHTHYSYQVMVPEAFAIVVAPTDSSRSYGIFKLTDPG
GMEVLRGCSETGFHPHKEPEDGKPVYEQCSNVYKNSNLRFEIFDLR
Pea
Pisum sativum (Jl 2822 ectoype)
SEQ ID NO: 10 >PsAMSH2-genomic-JI 2822 tgtaaatttattattcttataaatattataaatatgattggagagaaattataattatttatttactttttgttcacccatctttgtaagc aaaagtacaatgttaccgacatgataagagcaaggttggtcacttattaatatacgtgcacacttttctgcttctttccgtggc agattcacttttttcctcggaacaaaagcttcaacatagcaaagataaccactaacatgtaacaattctcttctaattttatcat aatttagttgatagtaacaagataattgtctcctagttactctttcagtctttctagttatatgattgttgattcttatttatagcaatga aattgcttctcttcttttggtttgaattctgttcgatcattctttggttgaggaaaattaggattttcactaagttgtgtaaagtgagttt aataatattttagctcacaacattaattttttctgtttctttgggatgcagcttaagggtcattgatggaagcagctgggattttca ctgttggtggagctaactgatttttttttaatcactttgtgctatggaattcagtaaatcctttttgaatcataaagtaactaagtcct ctccttcccctgcactgtgttgtgtggagacagtgcctaaagatgaacaaaattctcatgttacagcttttaattcaggagatg gatctaccaattcctgtaatgaatcgtcttcatcaactaccatccgcgatgtacatatagtaagaaccactactgcaaatttta ttgaagatgtgtctggtgtctgacatgtgtatggtgtctgacacatatattctattaagtgtgttgacatgtcagggttgtgtccct gtttgtgtgggtgattcataggctttacaactagtgaactattcatgtctattataagcctcttagaggccatgattctcgaagat tatttatgcttaacaagtattcattttgtattttctagtcaatgcggttaatggaggactttcttgatcttgctaaagaaaatacaga aaaggatcttgaaacgtgcggtatactcggtgcctttctggtaagaatcgatttaaagccttaaaaattgctaaattggtctg cgcgccgaaggctttaccaagactgatattagttttatcagtatatggcataattatagcttttggaagaatatccaaagtata gcttttggaaatcatactgaaatcgtgattccgttgaatatccaaagtatagcttttggaaaaatcacggtggcaaaccgtg attctgccaaatgtacctcaatccaaacatgttttcaaatctttcttatcttccttaggagtactttatggaagagaaacacata acttgatctgataaaatgatttatagaatttgaagtttatatgcaacaatgtctttcaattatccaggagaaaggaaccctctat atgactacactaatcataccgaagcaggaatcagcatctaattctgttagtatctggttattcaatcctacattcttttggccttg ttttgcattattttagcacatgttttcaagagaacttgtttttattaccgcatgttgctaactttctgcgcggtattgcagtgtaatgct acaaatgaggaggaagttttcacaattttcaatgaaagatccctttatcctgttggatggatccatgtaagttctcctagcctgt tgctatgttatgacactagttttagacttttagcgcaacaactcaacagaattagcagtattattggttcctaatggttttacttat atctaatgcttagatttttctaaacgtttttagacgcacccttctcaaagttgtttcatgtcatcggtggatctgcacactcaatact cctaccaggtaattgatccatatataaccgtttcttgtaaaagcatttctttgttccactatctactaaactggcttgtatattgact tcaaatgtattcgaattctgtatattttttctctgcaatccaaatttgaacttacagtttggtgttgtttttccaggcgatgattccgga ggcatttgcaattgtattggcaccaacagatacgtcaaggtctaatactcgtctttctttttaaaaatgattccttgtagtttgcat aatgctgcaaaaaatggatcggaatatagattattttgaacaaagccggattatttttcctctagatatagaatgctagagta cttttactagcctctcttgaacaaaaactttagccttcacttcgacgacacaacaaatttgtatgttatttttccaggagctgtgg actctttcgcataaccgaacctgatgggatgaatattctaaaaaattgtccggagagaggatttcatccgcacaaagaac cagataatgggaaccctgtgtatgagcactgctccaatgtgtacaaaaactccaatctaaggtttgaaatatttgatttacgc taaaatgactctgattctgcacatattattccgcaaaggatatatatagtataattacaagaaacatgtattatttacacccaa aaattctgatatacagttattgtaacaattggtttaatgtaataaagtcagttagatgcatatcccttggacggtcatactcaat aaagatttctttgatttgtagctctgcttgcatcagaatctactcatgaaatgcacttctaatcacagaaagttgacattattact gtgattagttattgcattttcgaaacttggaaattgacgcaatacacaatctaaacattaaagtgagtaatgttttggctgcgtg aattttaaatgaacaagcatatatgtgttgagactttgagttacagt
SEQ ID NO: 11 >PsAMSH2-AA-JI 2822 (wild-type)
MEFSKSFLNHKVTKSSPSPALCCVETVPKDEQNSHVTAFNSGDGSTNSCNESSSSTT
IRDVHISMRLMEDFLDLAKENTEKDLETCGILGAFLEKGTLYMTTLIIPKQESASNSCNA
TNEEEVFTIFNERSLYPVGWIHTHPSQSCFMSSVDLHTQYSYQAMIPEAFAIVLAPTDT
SRSCGLFRITEPDGMNILKNCPERGFHPHKEPDNGNPVYEHCSNVYKNSNLRFEIFDL
R
Sugar beet Beta vulgaris (RefBeet-1 .2.2 reference genome)
SEQ ID NO: 12 > BvAMSH2_6_dna:chromosome_chromosome:RefBeet- 1.2.2:6:51999454:52013718:-1 ttgaaataaagggttatgcttagttaggcttaggcctcctcaaaccatgttctatgacaatttttgttgtaaaaaggtaccacttt caaacacacatctttttaaatttatcattgttgatttgttttttaagtaagataaattaccatattgaactaaaatatctcgcaaata tatcccgtcaagacgtcaattttgtaggtcaaactttttaaaagggagggaaaatgataaaggaacctcgtttttaaagagg tatacctctaatacggtttgattttgatcctataaaataaaagtgataatgccaaacttttaccattaggcgattcttggtgacgt tattgatatgagtactgattttgaatctattagttttatgcatgttcagagagatgggaatactgttgcccataatctcgctagatt atttccttttggtgtgaaacaatgttgggagaatcattgtccggttaatgtagttccgtatgtactcatggactcgttatctatgga ttaatgaaatcacgttccctttcaaaaaaaaaaaaaaaaaacaatctttcccccaaagtatcatcagaattgcaattacta ccgttattctccacttcttccctctccttcaaattagcaatttatttgttcacaaacatacagaaattatcgtatatagtcacttatttt aaagcaatttcacctcttttcctccctcatccttctcaaacatgcaggaataagacgtacgaacatcaaaggtaagcaaat atcatcatttaaaattaccttttttccatatcaattcatctttctttcttcaattatctaattaattctattaatcaaaaatattttttcaattt aaagacaaaattggaggatcataaatattaacataatttcctaagcttttaatttatacttattgatttcctttcatgattttgtcaat ttaaagactttgcatttctttttctgggtatcttcatcgtcttccttttctttttttggtcgtgtggtttaattatgggctttgctaaacgagt gaacttttgaaattggaggtgggtttaggaaagtatataaatacagtataaaaatacgatatgtagggcgttagtaggaaa ttatccatgaacttttgaaaagacaatcacaatatgtcaatttcttttttgatgagatcatattgtgattgtcttggttcagttcatga attgatgccctttttatttgagaggcccatttagcagctacatggataattgttcttatttggcaagtgatcattaccctattagtgg gtttgatcaattggaaattgtagtgtttggcaaaatttaaatgtaagtggtttgcttgtagtgttctcagcgcgcggtatctgatgc acatctttgattattaatatctttaatcacgtattattaacagttataaagacatatatgagacttaatttaacgtgatctcatatga ctatgtttttttttttttgtgtgtgtactatatggttagataaattagatagcataaaacctttacttttctaaatgaaattgggagcgt atcttatgtccattacttgggcattgagacatttggacacaaatacacaattatagatgttctaccttaaattattcctcaaattg actaaatagactaaactatgggtcatcaaacaaaatagagtgaacttaacaaagcctagatggtgcacacgttggtactt agagcatggtgtgcacatgtacatggataacacgccaaatgtacatggataactagtcgaatgaaacacatgtatatgg ataacaagccaaatgaacatatgtattgatctttgtgtttgtaatttagtccttcatgtttatcgtgtgtatggttctaatcattcgta catgtgtatgtactaatctgggtgaactaaaggatcatatagaagaaagactaaactattagccgtgctaacaaaaatag acttagtgaccttgaatatggattttcaggcctccaaacgactgataaaaggaaaaaattaggcatctacaaaagaagtt cttttcttcattcatattagtgatagagatgtgtgaatttcaaaatgttttcttttttcttccctctgaaaataagttaaaattttaaaaa aacatgagctttcttgctggccaaggatgtagcacaagcatcttaagagtaggcactttatagaggctaccttaagagaaa ttagaccaagcaaatgcaatacccaacatgctagatggagtggcatacatgggctcgttaaagatgcgaattttgctgaa attgactaaaatttccttattaaacataagcattaaatacttgtaaggtgaaagagaagggaaaatcggagagcttatatc aaatgcttcatcaatgtattaaaataacttgttttacggggaaatcttattgtgcttatagagttatagtgtgaaatagaggaag ttcggaaactatttattcttcggagactagttatctcaaaaatgccgtaagtaggtattgaggaatcttaatcacctttgttacat aacaattcaaaattaagttgatttgacctcaaaagttaaaaatggacctctaatttggaggaagggagttcaaagaatttgt agtataggctttcgagcaagatcttaagctcatcactggctgttaatggacaataaagtgtaactgggtaggttgggactta gggcgtattgggcggaggggttctgatttatgcactcttatgcccaggatagcattaaggttgtttttgttacaaatgttgactc gaagtctcaaaccttatgaccatctgctacttcactgtagaagtcacactaatactgtagtttaatgatttatattttcccactat aatccaataccaaagattagtgtatcactaaatcttttagctctgaagatgcggcagggttgcagaggccatgattgaacct tgtaactattgccacttgcagaattatgtgcacgtgttagacatgaccctgtatttcagaaagaaaattcttttatgcatttagctt aaaactgcacttgaaaattctaagctagattttcaaatgacatcttatttctgtctgattactagttagcttcctgagattgtattct caatattgatctggagtggaaaaattttgagcaccgcggggagtagtatatctgagattaatgtcaagcttttaccctgtgaa ttgtgaagaatttcgatagctgctcttaggtagatatagtcagtgcataaaagagtataatcattgtattccaccctcacatga gatgttcactattagaaggcatttaacgtaaagcttcttctccatgtaagctgtgtgtcttgaatgtattgggtgctgttggacttc ttactttgtggttaaaatttccttctaaaacattttgctctcagaataaattaccaaccactagcttatacttatttcttagggaata gaaatatggtcactcattacccttctgcaccaatctcttgcacggaggttccacctaatgctggacaagtttcacaagtgac agctgcagattcacgatatgcatattcagactctgcgattcatgttcttaaaaatgtacatattgtaagtgagaaaagacaa ctgtatctgcttctatatctatacaaaattattctcatgtgttgttagtttatatgggttcttgcaggtctcagaattatttacctcttgtc atttgtacagtttaatgtcaaatgctaaggttttcttatattgttgtatttttactcgtcagtcagctcaattaacagatgattttcttga acttgcccgcaacaacaccaacaacgatctcgagacatgtggggttcttggtgcttccctcgtgagtctttcctttctctattga ggtctaattttgatcgagttgtgctagatttcagatcaatattagcaaatttaactatttaagcatagaataaaaaaattttgaa gcttaattaactcatttaacccgattgtattcaagatcagtgtgttctaaagcaattacaatctttcactattcaagatgtgagaa tctcctaatttgtttccttttttttttaatatttttctcttcatacacaccttttttttacccacttatccttacttgctctcctctgctccttaatt aacttatgaaagtttcgctacttgagcttttttctccctatccatacaaatttgttgcccaataactaagttacccttggctgtcttct agcataaatgaagtggagaccaggttgtggtctgggtgtgcttttgcagagggaggaagatctagttgcacaactgattac ttgcattgcccctcacccaaacagccaccttgtcctcaaggtataacgggggaaacctttggtgatttctgtgtaatcttccca agtagccttaagatccaggagcccttgccaagctatcaaacttcatccttacccaaattgcctaaccaacatttctaactcct agcactctgtcaggttctgcttccagcgccaacagcagtagtggctggtggaatggcggtagtatgataaactgatatagg ggagagggaaggcatggaaaatacgttagtaattagtggcttggagaatatgttactaggataaaaactttgtacattgag gaattgagagtagggaaggtgtggaaaatatcgttagttttagtagtttcttgtgagagatttaagcctcttgaaattatattttat ttcctgtaattttccagttatcaatttgaagtccattttcagtccttagtcattttcatcagattgttccagccatgtcagttcattacgt ggagacataagtagttcctatggctttcttcagttgagtgatgtgaaagcctgggtgtgcttttgctgagggaggaagatttag ttggtaggtcagcttgccagttcttcgcaccagttaaaaggaacctgaaaaatctggcagccaatttagcaaaaggtctcg tcgctatggaagtttcaactggactcagtctctcacttcaaactctatttctctctgcttagagtcttgttttgttctcacatcctctgt tgggttacaaacaagtgagtctttaggtcatccaggatgcatccctatccagtagtatgtcttctagagatgatacagctgtc gtgcctgcattggcttctgtagttgaggggggtctctccctcgtaaggccttaaatggggcgccagcattcaacacacgtga gcaagtattgtaccaatatatagcctatggaagccatgtagccaggttttaggttggccatgaataaaacatctaagatag gtctcaagggtgttgttcaccactgcagtctgcccaacagtttgtgggtgataggcataggcagtgctcctgtgaggggctg taccctgtaacttgaataattacccccacataatgtttataaaccatgcactctcaccacctccttaacaaaggccattgcca tcgtgtatgttttaaagggatgcttcaagcctagaaatgagaatacttggtgagtctgtcagccacctaactagcaccaaga tataagacatataaggggatggaacggagttgaaaaagaaaaaaatcacaattagagttctacttttacagttcctttttag cttatgaatgtggtagtatgatctataagatttaagatagttaacaattacacaaacatgggcttgttgttgacagtgacttgtg ctatagctgggccataaatgaagaactaatgcctgcattttgctgctgcattaacttgatgcttgttcatctgatttacagtgag acgagagggtctctaagcacgtacttatttcttaataaagaaatcgccaatctaagacgaaaatggttgaaagcatttggt ctaatttttatgaagctcctagtttagctcatttatatcatatttggtgagtagtacatgttgacatataatctgtctatatatatgca aaaaattaaaatggggaatggggatgctagacctctagttacttatgtgagaaggggaaacaacaatatgccacctcac agttttttgaaggatcgccacatcacagttagttatgagcaaatggaattttttctgccttggacagacctcacctctcgaata gtgagggttgtaaatggtagctttactctgcattcatcatacaactttgcctaattttggtgtatttctctgttaaattcttgctgtgttt gtctgattagcaatataaggcctaataaattcctcagaaattgacaattaaataataaacaattgatttaggatcaataacg gattttttggagtaatgttttggtatactttataagaaaaaaaaatataccctattatttactcttttaaaccgtgtatgacacgggt cataagtctagttttgacatatttgtataccattgaaaattgtagatttttctggtttgactcctttattatatggtttagtcttgttgcct attctacctggccgtaaacctttcaggcttagttaattattatgcttagctgataacagctgtctgttccctgaaataattctagttt tctgattctggcatttagaaagaagagacattctatgctacaacgttaataataccgaagcagaaatcaacttccagctca gtgagtctctgataagttacctctctctatcttcaatatgatcatttttttagtaccttgcatttacctaatcgttcttattgttagtgtca ggcattaagggaagaggagatctttaacatacagaatgatcggtccctatttcccgtaggatggatccatgtatgcgcctc atctctcttgtttcctttttgataccttttagtgtatgtttggttcaagtcatggaatggaaagagaagggaatcaaatagattgtta cctttattggttgtttagttgcagtatgatgaaaaggattcatttataactgtgggattgaggaggataataattgggtgggaa tagttatcttcaaggcaaggaaatcattaccccacccatgataccaaataatctctaaaggaattggtttcttatttctatgtgc aacactcaaaaatctcatgcccaacatgctcttagtatattcgtattatcgtaaactttaaagtatacatcagtcattttccttga catcatgacatgttttacatgaagtttctgtcaattttgcttgaccatgatatgttgactgaaagcactgtctatcaacaaccaa agattggatacaaacaccatgttctttaacatctttaattatcttgcaaatttttagcattcactcctattattattattcttctgagac atgaaagatgaagtttagttttgtatgaaaaataaactgatctgaccaaggtgctcttttctattttccagacacatccatctca aagttgtttcatgtcatcgatagatctgcacacgcaatatccttatcaggtaaccagttgagatagttccctttaaaatatgga acccacaatattttctctctctgtttactgaagtcttaatgtaaaaatatacaatccaaagcatgtgttttcattctcaaccttcatc gccttcaatgatgtaatgcaggttcagttattgtcctgtaatccattatctcagtgaaatctctacactaattgagctttttttgtgttt tacattggacattttactgattttgtactctgattgagtcagatcaaatgttctgactcttgatatatgatggaccaacttaaaaa gggctctacttatcgataaatcagggttcgtatttattttgaactagtataggcattgcgtgtgtatgaggggtaatttgaaaaa acttctttgttatcacaagggtaaaaccagtgtaacccttccttgcaccatcaaaacaggagcctctttagagacattgggat aatgttgaatttaatgtgccatacttcccagttagctgttgctatgcaggtaatggtgccggaggctatcgccattgtcgtggct cccactgataagacaaggtctgcactcttcagtctaacttgtcacttcaagttcttagcatccatcaccttgacatgtcaaatg tgcaacagatatgtacccatgcttgcttctttttttatatctttagcatttggaagggaatgtctaatcatttgtgattgttaattcact ttattggagatgcttaatttaactaaattttatgtgaacttctctaaacttattggaagttatcataataacctatttaaacctatctg aactttttagtatatagtggggcttattttgtaatttgttggagcttatattactacttattaataactttaacttattttttctgtaatagt caaaataagtttagcaatgtgctaccttagacattggagcttttgaaacagattgtatatataatacgacaagcgtagtcac attggtcattctaatcttgggaaggttcaataatttgctatcttcatcttttattttcttcataatcctcatcctggtaaactctaaatg caaaagaactctttatcagttcagccaaaaaaactcttaattatgtcatatgctatgactatcttagccattcgggtactttgtc caaaacttaaaagatgaaaaggaaactgaaagattcagacaagggaggatgaattattgatttcatggaagagtagaa tggcgttactttgttgttttttccttgtgtactaggtacaaaaatagtttactctgataattgatgtccttcaggaattatggtatattc cggctgacggatcctagtggaatgaacgttgttaaggaatgcgaagagaacgggttccaccctcaccgggattccaccg acggtaggccgttgtatgaacaatgctcacatgtttatatcaacccaaacctaagatttgaaatctttgatcttcgttgatatga ctgaacatactgctttgtttccacatttgaagacaattgaggtacatttctttgcaatcatgcatgtaaagcttagtacggcttag catcagtagtcagttccaacttccaaatgtagtacaaactcttgttgtgcacaaggttacatagatccatctcctgtagattgtt aaaaaagtgtaaatgcttctaattgtccactgctcaatatgaatataggattaacttaaaaggactaaataaaatttgatgta ttttttcttttgcatgagtttgtactctgatatgaataaagaaaaacatgattcagcatttcagctagagtatgctgtatgtatgcct attaattcaacattctaaaatcgaaaataatttctaaaatcagtaatgggttaagaaaaaaagattgttttttcttttcttttaatta gttaacgggtttttaagtgatatgaaaaataaggtcacattatatagggttagtttatggtcaaacttcttattcctactataatttt gcacaaaacgaggttaccatgtagaattttccattaagaatcggaacccaacatgtatgcaagggtgatgataacgttaa aaagacaattgtggtcaagtattaagtgatctgaatagaagtatgttgtaagtttgtaactgtctagcaagccaagtttaatcc aattaaaaataaaagtttgaaaattttgtactacaaaagatgaggacagttaattcttttttactagataactgcaaagtgata gtccaaaacatgcacgatgtgagtagccaccacctctaaacaaaactatatatcagggctaaatatatgccgcaactac cctatctgagatgttaaaggcgttgagattaacatcagactatcagagtaacatggaatattggatatttggatattgacattg ttgcaatattcctactctatcaactcgtatttatatacttcatccgtttcaatttagttatgacattttttattttaggaagtttcaatttgg ttacgacactttcattttgagtaataacttctctctatctctctcctatcacatgagacttttttattttctttctctttttctatctctatcta aaaattgtcaaagagtgtgtgattttaaaagtgccataactaaattgaaacggatagagtagtagtaaatatgatactaata aataaggaacacaacactatccaattctgagtgttatgtttgatattaaatcttagttttaatggttaggaattgtttagtaccac cacttgcatagttgcattggcagctgtttgtgaactgtcaacttgctctgatatttgtactatttggactttggtactcactatggtg aatggtctatggagtatggaccatactgttcttaatcatgtactatttttgataattgtaaggatatttgtgttattttgctggggaa cccaaatcacacacgttattttgctatgtcatttaaataaatttgtgactagttaaactacccaagcaaaatgaaagaacttg ctacgtcatttaagtgaaaaaacaagcacttgttaacattttttgagtagcgaatgccaagtgacattctctttattttattgatct attttattttgttctctaaacacatttcaataatttattttctttattctaaagaaaaaataaataaattgtcataatatttattaatata ctttttttagagagaaataaagtagataacaaaaaaatgagaggttgagtgtcacttaggggtgtcaatggtgcgagtcga gttcgagtttgagctagctcgattcgactcgactcgttagcatttcgagtcgagtttgaattgagccgagcccactcgagtcg agttttgactgaactttgactgagtcgagtattgaccaagtcgagctttgaccgagtagatttcgagtcgcttgtaagtgtttca tgttaaaaagcaacaataaggtagaaaatgttgaattaagaattttgctattgataattgggtgttcgaacttctcacgagtttt tgactcgaatatcgagttgctcaacttgattcaccaacatctcaagttgagctcgattcgagtcgaatcgagctttgatcgag ttttgacagagacaatttcgagtagctcgcgaattgtctcgtctcattgacacattgtcgctcttcattcagaatgggttagcaa gtttatttctcacttatgtagacagagttttcttttcacttggtgatcaacaagtaaaagtttacttgattggttgcagtacttgggtg gtttagcaagacttttgtggtcactttaagtcaagcttaaattattcattggattaaataaagttgattaccgatgtatgaaatta gaggatattgatgtattcgaaattagtctcctttagcattgttagaggtaggaacactgaaacaataatgtgaacttgtttaaa tcccgcgtgaggtttttttttattctctaggagatgaaactacaactgtatgtctgtatccctaggagggagaatttcagatttgc atagagattgaagaggcgcacactctaatgcatatgtaggagtaaacaaagataaaagagaacgtattgtgtcagaca atttggtcggacgactttcagttggttttaatttttttcagttggtttcaaatgtttttcagttggtttcaatttttttttcagttggtttcaattt tttttcagttggtttcaatttttgttcaaaagtccaaatgaaagaaaaacaacacaagctgaaaaaatttacacaccaactg aaagaacacagaagaccaaatgaaagaaaaacaacacaagctgaaagatataacacaccaactgaaagtcaaca gaagaccaaatgaaagaaaaacaacacaaactgaaagaacacagaagaccaaatgaaagaaaaataacacaa actgaaagaatttacacaccaactgaaagtcaagtaatctctcaccaaattattactatcttcttctctactcctacctcacac caactgctatgtctcactcccactctctctcctccaaactctcgaatctactgtgaagattagcaaaagcttaagattatcatta actctcgtacgatatttatacaatagtacatcaactatagatataagaagataatgcaaagtggttacaaaagatagagct aagagtataatactaagaatattcacagcatctaggagataatattatccataatacaggttgactaagttagcatctaaga gtataactaactcaagaagtttagtgatgttgcagtcagtaaagatcttccgaaacatcagaaatggagggagactgttaa atttaagaggtttgtaaggtcgtccgacggaaagtattgggtcagacggtctgacacaatactttcacaagataaaaagtt gatattatgaatgtacacattgtggcaaatctaacaagactccacatgagtatgtttttttttatatactttagtgaggatatttggt caaagtttttaaaatttgactcccaaaacagaaacaagaactatattttgagacggatggagtagttgaaactggcttttata ataattctcagtaaaatatttcaacgcaactactaatgagatccgatcattctttattaatgaatagtgaaggggtgatttaattt cattaaataaaagtcattcggacatttacaaatgattttttaagagatttgaaatttcaatacaagtattaagcacccatgtact gatatcacgctgtatgaaataggatatgagaagtacaatatgtaacatctacacatgctaagacttaaacttgtaacttgga acttggaagtcctgagatggcttttcacttggagaatttagtgaaaatgacatgatactatcaaactatcgacttctaaacac attcctacaatttcataagcctaatttctacctaatttcacaactatattttcgcctatctaaataaataaataaataactcattctt aaagtcatacttcctctgttttttaattgatcattttaattttaacattctttacatgctctttttcaattaccaacgtaaactcttattag atatgtcttacattttgattttaacattctttgcatgttctactttaattaccaaaacaccaatattacattacaagtgtgcataaag aaagaaatcaactaaaaaatagacaaagtatatatagaaagtaaaaaccacaccaaattcttattcttattccttatctttat tcctcataaagaacataaatctgcaaagaattaaaaaaaaaggggcatttgcatttatttttgtcacacgtgcccataatca caagattaatttctaagttctaaccaccaccaaacttacatgtgaataatccacaagatatcgttaacaaataatactacta acagccgcccccccaaaaaaaatcaaaacgtcatatcaaattccaagaaatggacaacattttagccgaccattacat caacattttattacaaggagatcacatccacatgacattacacggatattagtccacttgtcgaagacagtgaaaaactcg atttaccctattgcattattcgtacaaggagagtagttcgacacccacttgccgaaggcagtgaaaaactcgtcgtacacta ttacattactaagattagtcagtaagaaacgaccaaatatatcattatgctaataatattaccataaaaatgcaatgaattag tcattgattaaaactaacaactcaatattatctttatacaacaaaataacaaaataatatttgtttgaacttgatttaattttttttga ttttttagtctaataaggatgaacattcctactcatgccactaccatttgtaaaaaaccctaccaaatcttgcctatatggcaaa tatgatttattattattattcccacctcctttctttttgtctttccctccaccataaaacacctcatatgccgacttcttcaattttctctct cctccatacgccgtcgtttcaccaccctttctccttacttctatcttctccaatttcacctccttcttctttttcttctccttctccttattcg a eg aeg eg aetteg g ccg eg ttg tctcttttta ag
SEQ ID NO: 13 >BvAMSH2_KMT07250_peptide_KMT07250_pep_protein_coding
MVTHYPSAPISCTEVPPNAGQVSQVTAADSRYAYSDSAIHVLKNVHISAQLTDDFLEL
ARNNTNNDLETCGVLGASLKEETFYATTLIIPKQKSTSSSCQALREEEIFNIQNDRSLFP
VGWIHTHPSQSCFMSSIDLHTQYPYQVMVPEAIAIVVAPTDKTRNYGIFRLTDPSGMN
VVKECEENGFHPHRDSTDGRPLYEQCSHVYINPNLRFEIFDLR
Barley
Hordeum vulgare (Morex reference genome)
SEQ ID NO: 14
>HvAMSH2_chr3H_dna:chromosome_chromosome:IBSC_v2:chr3H:453793988:45380
2810:-1 gtgtttaatttgtttagtattttgcctatgtttacgtatttggtatttattttttagttaccacactcatctcttttctcttagttcacttattaca ttagatttatctacatgacagccttagcatctgtacttcctccgtttcgttttagtataaagtttgactaacttaaaaggaaaaata ttaatatttacaatacaaaattaatattattagatgcatcatcaaattaacttttataatatactcccttcgtctgaaaataagtgt cgttgttttatataaaatttgtaataacttagtataaaatttgcttcatttattttggacagagggagtataactttaacactgtgga tgttgatatcttttgtacaaattttgtttagtttgactttgaccaaaatttatatgaaaagtaaaaaagaaatgaaggaagtaca agctatatagcattgggaggggccttaagcagagcagatcactagcggagccgatgctcaaacgtgacgcttccctaa aaactgtccactccgcgccaggcagaggcagaggcaggtcggcaccgtcgcacgcagcctcacacctcgcgccgag tgcccagccgacacacagacagggacacgggacacggcgccgccagccacggcgctcccctctctcgatgatgcatt tttcattcccgtcggcaccttcggggcctcggacttgtcgtccttatctcaaaattctgtttcgtttttcttttctgtgcgacggacga tatgatgtgtatggcatgcacggcccttccgacggcgacgtgtgtgtgtgtacgcaatctcactctgaaaccggctgcttattt cgattcgcgtcggacaacacaagaagagcatcagcatcacgcgcccatcgcttgctcgcctttcccctcccctcttcccctt cggctttccctcggctccaactccaagcagctgaaacggcccgcggagctcctccagcccaggttactcacggtgagcg g ccg ccctttccctcttccccg acccccctccccttctccg tg tg tteg eg g ccg ccctttccctcttccccg acccccctcccc ttctccgtgtgttcgcggctcatctgccctagctccccttttacgaaattcttagccaggaggccccggttctacccccccccc cccccccctctgacaacgtggtagcttgtctttgtacatgtttggttgctcgtacccttcacaaatagaagatgttttggatttgg atattccaatatgagttaagtaccgactaaaataagggagcaaacacactaaaatgtgtttacaccctaaaaaagttaga atgtccttttgtatagaaaatatgcttgtattcaaatcacaaaataatacaaagtccttgacacgtacaagcacaccctaac ggacccacaaagaaccagaacaacaaggatcaccctaaaataactagtgaagcacgaagatctccggagctccgtg tcattatccctagaccttgcgagaagacccatgcaacacaaggctctgcagctagacccaagcagatcgtcctcttcaac catggcatatcttatatttgtgaaagctagggagtatgttgagttgagctgatccgtgatccaactagttattaggtaggcgat gtgtattccatcaccggtggttacggttttcttcttttaaagcaacacatgaacacggtcacaaccattatcccattgatcgcg agattgaggcactgagcagcggagcacatgtgactatggtctattgcactactacttcatatgttttagatgatgttgatcattc tttattaggattgaaaaaaaaaacaattccgtttagttttgactaactgatgcttaataccgcgtgctgctgctgttaagatctcc tgaagctgctacattttaaaatgaatgcgtaaaatgttgtcgctcttttctctgttcctaattgtttgacaatttccgatttccaggtt ggaattaggccctgctgagcacccccagccatgagttgcgggaggtataccgtaccagctagtctcttccttctctgtatctc gactgtaattctgccacaacattatgagttcataatattttgacatgtgatgctgatggcagttctgaaaacactaccagaaa atgcaggacacattcaacaccaggtgaaacgatgtatctacatactgccaatgctaaaaagatcactcactaccaagct aatctgccaacagaaatggatcgcaataccggcgcctaccctgtgaagcaccactttccgtctcctatagtttcttggatag aagacctttcgagctttggtgatgttccttttacccatgatactgaatacgtggatgagcaatcaacaccttcgttcgggcagt cttctgcatctagcaatttgcatgacatgcagatagtacggtttttttttttcatttttcatccccttctctgagtgtgtgctcttcctag gagcgtgtgaaggcactcaagttttagataaaattgctgatgtatgcgtgtcttgcagtcagtgagattgacagacgaattc atggaacttgcaaaggagaacacaagcaataatctagagacctgtggaattcttggtgcttcatttgtaagtgcagttggg agaagaattagatagatttaccaatgtgaccaccgatagtcttgctatattcacatttgcatcttaatttatttgcagagagatg gaacatattatgtgacaacattgatcattccaaagcaagaaggaactgctcactcagtatgtcagtaactgtatgggttgta aaaaaaagacattattttgtttaatttgtcattttaccttttaacatattatttgtcatctcactttaatgtgtcttgcttccatttatctatc tgaatctgcctatttctaaatgcagtgtcaagcttctaacgaggaggagatacacgccgtattatcagagcagtcactttac cctgcagggtggatacatgtatatatctgaacatttccatacttcatcgaattcaattatctgttggtttaatattgaaaatgaaa taatacatatggctagttacctcatatagtctaagaacataggtatgatgagataaaactgtatcagtgtatccagtgttcagt gccaagttagggtgtgtaatctgacttgcctgtcttctgattagaagctagcattatttttcctaaaaaatatcactggaggtaa gaacatagatattttaagatatatattcataatggttatcattgactatccactgttactatggataagagcgtgaatacagcct caccacttaataatatactgcaattgtggccattgctgcagccaatataaaactattgtgtttgtcaattctaatacatttgaaa caagactgacataaatcacaactgataccaatatttttcttaaaacacactgaacttagcagcatcgaatccatctttttatac caaaacattgttacttgagcatatactttcttagtatgcttagatgcagtaactactgtaatttaacagttagtcaacaattgac attttgctttgtcttttccagactcacccttcacaaacatgctttctatcgtcgatcgatttgcatactcaattctcttatcaggtatct aataagttttgttgatgtttatgatttaaggatattgggccttgttaactgtagacattttatgcttcttttcatgaaaatcctcttgtct catataccatggatatcctccatgaaaaaaatcagctagaaattatatttgccgaatccttcaaccactagagtagctaac aaatatgatcttaatttgtactccctccgtcccaaaattcttgtcttatatttgtctaaatatgaatgtatctagtcacgttttagtattt tgatacatcaatttctagacaaacctaagacaagaattttgggacggagggagtatgcaacaacgcgcatttgaaactttt gagttattggtatgacgtgccatatctgatggtcgaaccacttaaggggtttgtatgctgctaggcataaaatgtataaaata atatgctgctctcaaaatgctgaatagaaacaatcacaagttcaccaatattaactccaaaagacaccatgtcatctgcac acatggtctatcctttattgagtaggggttgacttgctgtcacttgttaggaccttgagctgatactttatcttcagatgggaaca atctcatattgtatggtacacgggctaaggcatatggggcttaagctgcatcagtgtctttgttttcgaaatgttaagcttggta gacatacataagattgaacgttgttacctaactttatagcaggatagaccacccaagttaatgcaaattcacagaagcatg acctaactcagttagtgtgattgttgtgttctccctggtttgcactagtgagccaacattgatagaaacatgtagtcttatcttag aattgctggccttatttaacaatctgccgggagctcacactaagagcctgttcggaaatagtccggctcctcggaatcctca actccatctcctccatccgaaatgctgctccttgtgaatcgggagctccaggagaaactgttcggcaggcagcttcactac ccattcacgaggagaggcagaagcgagctagtcggacgctgcagctcgaaccgtttttcacttcgcggtggcaattcctt cgtaaatcttaccaactctgtgatttgaaagatctgagatcctgaaaacgacggctccgtaaaattgcactgtagcccgctc cgctccagaatttcaactccacggagttcaagcgttcggcgctgctctgccggctccgggagcggagagagtccgaaca cgctctaagacaatcatgctttacttgacctgcttttcacgccgttatcccttttacataaaattgtcaacttcatgcaggtcatgt taccagaagctgttgcgattgttgctgctcccaccgatcccactaggcatgtgttttcttgcttaaaattacaacagttaacata cagtggcgagtcattcattttattgttatacctaattgtccgcggtgatgccacctggctacaatatggtaaaatagtctgaaa gtcttcctgatgtttgcaaaccttccaggagctatggtatattcaggttgacagatccaggaggcatggatgtgctcaggga gtgcagtgagagtgggttccatactcaccgagagacgacgaacggcggtccaatatatgaaacctgctccaatgtgcat ttcaaacctaatttgcggtttgagattgtcgatctgcgttctggtgcgtgaccaatcaggcataccctctggcatagtatgtaa gtatgtgacgcatatgccatagataatatatcttactggtgactgttagtcagtttgatgggcgtgttaaaaaatggtgttaccc aacctaagatgtcaactactagctctgaactgtttcgttgtaatgtggtgcgcctgaaaaaacaggcacgctcgtctgatgt gtttaatgtaccagataattgccagtgcgttgcaatgaggccaaataaaattatgttttttgaaaaaataaatgcttaccgaa caaaatattgaaaaatttcctttacaaaaatcatactatgtaaatattcctagagacaataataattctattttttattttgatgtttg cagttaagttcaaaaaaataaatgcttaccgaacaaaatattgaaaaaatttcctttacaaaaatcatactatgtaaataat cctagagacaataataattctattttttattttgatgtttgcagttaagttcacgttccgtgctacagcagcaatgattcacgcgtc tgtaaatccaatagtctcgaaggaaaaacctatgtgcatgtgtgtaataataatgatgtctcaaaaaaatgtgtgtaataat aataaacggtaaaatcgatttcagtcttgcgtctaagactagctaagtgtcgttggttagtgtaacaaaggttgccaataact ttgaggacacgatgttacaagaacacttgtgttgggcttagattattctgtcataaattaatgatcaataacttaggaaattaa cgttcgcataatttcttagaccatgaaagtatcaagtaccttgaggcataaaagtatacttcggggtttgtcaaacaccacat gtaacaaggtgatcatactgacaacttacagatgcattagaaaagtatgacaaggtacttgataggtcaagattaggattt gctcatcagatgatggagagatattcgttgataggtcaagattaggatttgctcatcagatgatggagagatattctttgggc ccttttagtatgacggtatccatcatcatttgatcaaagacaatgtgatttgatcaaatgggatgccgaaacacggaaaag aggaagagaacaaaactagaaaattgacaagttattaattcacggggatgtcgataaatctcacctcgagtttgtaacat attgccaagcaaaagaaacaacacatggtagtgacacgttcactcaaatatcattcctgtgggcataagggtcaatgtgg atgtccacagttcgctatgatcattgttcagaagaagtttcagtcatgtctatacttcatcaaacttatagagtcacacgtttaa gcgtcatcaatttgctgagtactagtcgtcgtaaagttttaaagatgttaatttttttggagaaaaccaaaaaaaccgaagag ctgatttttttccaaactgcatccggaaatattgtgagggttttgggtcttctctagattttctggaaggaagcaaggggttgcc atttggctggaacaaagtggggcatcccacagaatggacggggggctttgcacccacatggtgtggcgcctgatggga ggcaccccggcatggctgacacccaatgggaggggttcccttttgggggaagccccttggaaagtggtgcctaatggaa gccctccctcattttgtgtgaaaagttctcgaggtggggtggggtgtgggctttgaaaggaaacttttggattgggcaccccc atttagggatgcatccttccatgcccccctccccattttattctataaaaaactaaaggaggagggcacacatcattgacac atcaaagttctaatcatacgataagtaatgatttctttcttcattaatttgttttgtctagctccacccctgcctagtctctcatgatg attattatggacgacaaagcattgtcggatcggtgacaccgtatgcatgcaacctcgtgaagagatcatgttttcaatctttat ccgagggagaaaattctcacgattgagaggtcgtaaatcccaactgcgggaatctgcaccaacgatcttcaccaactttt cttccgctgctactttgagttggtaacaatgagatcaaaccttgtatgcatgttcacagaggtcttgggctttgcacgtaggac gatgcttttctattgcgttatccaacagtggcatcatgaaccagtctatgcgtagatgcatgttatgatctagaatacatgagat gcataggtaaaatttgtgcgagtagtagataagatggtaatatatgttgttagtggatgaaatttattacctgatgttattgttgct tcccttgaatttgcgttttttctgatcttgaggatatggtggaattttgctacaaaggtgtgctatccttctatgcacagttcaaatct agaatcactcacatcattatgtgtatacacatatgtaggaatgagcaatctcttggtacatacggatatgagtcgatctccca gctggattggtgacaatatttcttctcatgggagtcattgtagtgatgatgttcttagtttaggaaattaactagaatgagcaat agttattagttatttttatccttcaactattatgtatccgcattagtgatattgttctcctatttattgtcttcgcctatttaacaaaaact aaaataaatataagacaatctatatatatataggaaaaatacatcctaccatccaggggtagttaccccacatgttcaatat gttacaatgcgggagtatatatactaatttattattttaattatgttcatatactatatacaagattttttaaagtgagttacatgaa aaaattacaagttgacccatagtttttattatatttgtaaaatacatatatatttgtatgtaaaaaagagcatacacaaaatatg atacatactataaaaaaaacagtatatatactacctaaacatgattatatactacatactacacatacatactctccaatttg atacatactccatactccatacaacactcaagtggtggtaactaccaccggtggtaactacatcctatatatatatatatata aacaaagatataaagttacgctggagcgtaagcaatctgtgccgcacgttatatgtcgaggtacgtgcacgtgtgtatgtg catgtgagagagaaccttatctacaagaaagtgcgaatctcgatgcaaacaaacggttcagatagcaacaaccccaa ctagtgttgatagcaaatccgtgccctatatatacatatataacctaacttaaaacaaaaaaatccaactaaaaaaataac ccaaattaaattgaacataaatgtgaaacaa
SEQ ID NO: 15 >HvAMSH2_HORVU3Hr1G059700.6_peptide
MSCGSSENTTRKCRTHSTPGETMYLHTANAKKITHYQANLPTEMDRNTGAYPVKHHF
PSPIVSWIEDLSSFGDVPFTHDTEYVDEQSTPSFGQSSASSNLHDMQISVRLTDEFME
LAKENTSNNLETCGILGASFRDGTYYVTTLIIPKQEGTAHSCQASNEEEIHAVLSEQSL
YPAGWIHTHPSQTCFLSSIDLHTQFSYQVMLPEAVAIVAAPTDPTRSYGIFRLTDPGG
MDVLRECSESGFHTHRETTNGGPIYETCSNVHFKPNLRFEIVDLRSGA
Wheat
Triticum aestivum (IWGSC reference genome)
A, B, and D genome homeolouges: TaAMSH2A, TaAMSH2B, and TaAMSH2D.
SEQ ID NO:16
>TaAMSH2A_dna_chromosome_chromosome_IWGSC_3A_450014353_450020482 gatgcgttgaatctgagatcaacggcggtgtcagctgaaactttcctgcggatcacaagcgcgcaaacgtgacgcctcc cgattccccaacaaactgtccaccctctccgtcccgcgctgcgcccggcacacgcaggtcggcaccgtcgcacgccag caaactgtccaccctctccgtcccacgctgcgtcaggcacaggcaggtcggcaccgtcgcacgcgtcgacacgagcc gacacgcagacacgggacacggagtcccaacgcaccgcggcgccgccagccacggcgctctctctttgatgcattttt gcttcccgtcggcaccttccgggcctcggacttgtcgtccttatctcaaaattatgtctcgtttttcttttccgtgcgacgggcgat gatgtgtatggcatgcacggcccctctgacggcgatgtgtgtgtgtacgcaatctcgttctgaaaccggctgcggctttcgat tcgcgtcgcgtcggacaacacaagagcatcagcatcacgcgcccatcgtttgctcgcctttcccctccctctcccccctcg gcttcccctctcgactccagcaaaactcctccagtccagactacacccggtgagcgccctttccctcttccccgacctccca tcccttctccgtgcgttcgccgctgctttgccctagctgggtggcaggcggcccacgaaattcttggacagagattagtaga tttcccggccccggccgggggaagataaggatagtctccttcggcgaggtggtagcttgtccttttttaattttctttttgctaac aacgtggtggcttgtcttcgtacatgtttggtagttcggtggttgctggtactccctctgttgttcacaaatagtgtaagatgttttg gtcttttgatatttcaatatgaactgcatactgactgaaatgagtgaacatacacactaaaacgtgtctatatacattcggttca gaaaatagttagaatatcttatacttcctccgcctgaaattacttgtcacataaatggatgtatgtagacatatttttagttaagt ccatttctatccatttctgcgacaagtaattcgggatggcgggagtatttgtcaatggagggagtatgtcgagctgagctgat ccttaatcagactaattattatgtactccctccgcccggaattacttgtcatgtaaaatggatgtacctagacatatttttagttat agatacatccatttctgcgacaaataattcgggacggagggagtaggtggttacatttttgttcttctaaagcaatatgtggc cacggccactaccgttaccccattgatcgtgagtttgaggctttgatcagtggtgcatgtgactgggttcatggtctatggca gcactactttatgtgttttagatgatgttgatcattctttattaggattgaaaaaagcaaatctgtttagtttgactacctgatgctta acgccacgtgctgctgctgttgagatctcctgaagctgctacattttaaaataaatgagtaaaatgctgccactcttttctctgtt cctaattgtttgacaattcttgatttctaggttggaattaggccccactgagcgcccccagccatgagttgcgggaggtatac cataccagctagtctcttatttttctttatctcgactgtagttctgctacaattatgagttcataacattttgacatgtgatgctcatg cagatctgaaaacactaccagaaaatgcaggacgcgttcaacacctggtgaaacgatgtatctacatactgcagatgct aaaaagatcacccactaccaagctaatctaccaacaacaatggatcgcgatatcggcgcctaccctgtgaagcaccac tttccgtctcctatagtttcttggatagaagacctttctagctttggcgatgttccttttagtcatgatactgaatacgtggatgatc aatcaacaccttcatttgggcagtcttttgcatctagcaatttgcatgacatgcaaatagtacgttctgttttcatttctaatcccct tctctgagtgtgtgctcttccttggagcatgtgaagacactcaagttttagataaaattgctgatgtatgtgtgtcttgcagtcag tgagattgacagacgaattcatggaacttgcaaaggagaatacaagcaataatctagaggcctgtggaattcttggtgctt catttgtaagtgcagttgggagaagaattagataccaatgtgaccactgatagtcttgctatattcacatttgcgtcttaattta ttttacatttatttgcagagggatggaacttattatgtgacaacattgatcattccaaagcaagaaggaactgctcactcagt atgtcagtaactgcatggttaaaaaaaaagacattatgttgtttaacttgtcattttacctttcaacatatcatttgtcatcttacttt aatgtgtcttgcttccatttatctatctgaatctgcctgtttccaaatgcagtgtcaagcttctaacgaggaggagatacacgcc gtattatcagagcagtcactttaccctgcagggtggatacatgtagatatctgaacattcccatacttcatcgaattcagttttc tgttggtttataatattgtaaatgaaataaatacacatggctagcctacctcatatggtctaagaacataggtatgatgagac aaaactgtatcagtgtatccagtgtttagtgcgaagttagggtgtgtaatctgactttcctgtcttctgatttgaaactagcattat ttaaaaaaatatatcacgggaggtaagaacataaatattttaagatatatattcataatggttaccattgaatatccactgtta ctgttaataaaagcatgaatacagcctccaccacttaataatatactgcaattgtggccattgctgcagccaatttaaaact attgtgtttgtcaattctaatacatttgaaagaagattgtgaaagaagattaacataaagcacaattaataccaatatttttctt atagaaaacacactgaacttagcagcatggaatccatcttttttaaccaaaacttgttacttgagcatatgctttcttagtgtgc ttagatgcagtaacttctgtaatttaacagttaagtcaacaattgacattttgctttgtcttttccagactcacccttcacaaacat gctttctatcgtcgatcgatttgcacactcaattctcttatcaggtatctaaataagttttgttgatgtttatgaattaaggatattgc ttctttttatgaaaatcctagtctcatataccatggacatcctccatgaaaaaattcagctagaaattatatttgccgaatccttc aaccactagagtagctaacaaatatgattttaatctgtatgcaacaacgcacatttgaaacttttgagttattggtattggtac gacagtgccatatctgatgatcaaaccacttaaggggcttgtatgctgctaggcataaaatgtataaaataataagttcgct ctcaaaatgctgaatagaaacaatcacaagttcaccaatattaactccaaaaggcaccatgtcatctgcaaacatggtct atcctttattgagtaggggttgacttgctgtcacttgttaggcctttgagccgatactttatcttcagatgggaaaaatcacatatt gtatggtacacggcctaaggcatatcgggcttaagctgcatcagtgctttagttgaacgttgtcacctaactttatagcaggg tagaccagccaagttaatgcaaatttacagaagcatgacctaactgagttagtgtgattgttgtgttctccctggtttgcacta gcgagccaacattgataaaaacatgcacgcttcgtttggatgtctgtattgagcccactgaattgaattgggatgcaatacc aaattaaccaacacattgagatgcaataccaaattaaccaacacatttggatgcgcggtgggagacggctgggggttgt gaggtgggaggtcaccgccctcttctgtgctgcccctttcttcgtttctgttgggggcaagtgaaccggcaccttttgcggga gcgagacaattgagagcattatggaccgtctctagcttggtaacaagggagagagcatgcaattgtgagagtagagatc agaactgaggcaagtttccaagagtcaatgcggtgatcatccatccaaacagccgtattggagtctagacaacaccaat tcacgattccagggtcaaatacatacatccaaacacagcggtagtcttatctcagaatagctggctttgtgtaacaatctgtc gggagctcacactaattcacgagtaaacagtaagcatggcaaaaacggtatgcatctcataccgatacctaagcatgtg agcacatacaatacatagaaccgaaacattcccgcaacccgcggcgcgcgcgtcgtggcgaggcgggcggcggag gaggagcgggcgtgtacaactcctatttccaagctcccaatagcatgtgatggggcagcccttataaagaggtcttactctt cttactgtagcagtatggtactaaacttcccacactttccaccacttgccgtacacatgcatgggccttagagattaaccag ggattattgtcttatatgggcctaagcccatccataatccaacactttcatgcagttatcactttttttacatagaactatcaacttt atgcaggtcatgctaccagaagctgttgccattgttgctgctcccaccgatcctactaggcatgtgttttcttgcttaaaattaa gttaagatgcagtggcgagtcattcattttattgttatacctaattgcccgcggtgatgccacctggctaggcatcacctggct aacaatatcgtagaataaagtctgaaagtctttctgctgtttgcaaaccttccaggagctatggtatattcaggttgacagatc caggaggcatggatgtgctcagggagtgcagtgagagtgggttccatactcaccgagagacgacggatggcggtcca atatatgaaacctgcaccaacgtgcatttcaaacctaatttgcggtttgagattgtcgatctgcgttctggtgcgtgaccaatc cggcataccctctggcatactgtaatatgtaagtatgtgatgtgacgcatatgccatagatgatgatagatcttaccggtgac tgttggtcagcttgatgggcgtgttaaaaaatggtgttaccaacctatgatgtcaactattccctccgtcccggagtaactctt aactggtctgttgtaatgtggtgtgcctgaaaaaacagacacgctcgtctaatgtattttatgtactaccccctccattcggaa atacaagtcttttttttaagattccaatatagtctacatatggagcaaaatgagtgaatctacattttaaaatacgtcaatattca tccgtgtgtagtttatattaaagtctttaaaaagacttatatttaggaacgcagaagaaagtagataattgccagtgcgttgca acaatatcatgaatatttaagtaggttagcatgggatgtacctgctcctcatgttagtgtgattttgtaaaaataatggtgattttt attcgctaagcattttctttatcaaagaacacaataatttagcatataatattttgtgagcactctcacgacaaaactgggttaa tagatgttggatgcataagtagtatctctacttgatgtaaaagatttggctagcataagatgagaagtaagcttaaacatgtt ggagatccatgacaatataacttctattcggatataagaaaacataacacattatattgttttccttgtccgacatcactttttag catataatattttaatgaatgctcacaataacaaaagaggttcaagatagtatatttatacatgaaatctttttttctttattacttc ctattaattgtaacaataactaaaa
SEQ ID NO: 17 >TaAMSH2A_2TraesCS3A02G240000.2 peptide:
T raesCS3A02G240000.2 pep:protein_coding
MSCGRSENTTRKCRTRSTPGETMYLHTADAKKITHYQANLPTTMDRDIGAYPVKHHF
PSPIVSWIEDLSSFGDVPFSHDTEYVDDQSTPSFGQSFASSNLHDMQISVRLTDEFME
LAKENTSNNLEACGILGASFRDGTYYVTTLIIPKQEGTAHSCQASNEEEIHAVLSEQSL
YPAGWIHTHPSQTCFLSSIDLHTQFSYQVMLPEAVAIVAAPTDPTRSYGIFRLTDPGG
MDVLRECSESGFHTHRETTDGGPIYETCTNVHFKPNLRFEIVDLRSGA
SEQ ID NO: 18
>TaAMSH2C_dna_chromosome_chromosome_IWGSC_3B_431584738_431590235_
1 ttgcgcgcaggtacagcagcctcttagatgcgttggatctgagatccaacggcccaaaacccgtataccctaggtctcgtt atcacctgaaactttcctgcagatcacaagcgcgcaaacgtgacgcctcccgattccccaacaaactgtccacccaagc tcaaaaaaaaaaaaaaactgtccaccctctccgtcccgcgctgnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnttcccctcggctccagcaaagttcctcc agtccagactactcccggtgagcgccctttccctctttcccgacctcgcttctccgtgcgttcgcggctgcttttccctagctgtc tggcaggctgcccacgaatttcttagacagagattagtagatttcccggccccggccgggggaagataaggatagtctcc ttcggcgaggtggtagcttgtcttctttttcttttctttttgctgacaacgtggtagcttgtccttgtacatgtttggtagttcggtggttg ctggtactccctccgttgttcacaaatagtgtaagatgttttggtcttttggatatttcaatatgaactacgtaccgactgaaatg agtgaacaaacgcactaaaacgtgtctatatacatccggttcaggaaatagttagaatatcttatactccctccgtcccaaa ataagtgtcttgaccccgtcgcaaaataagtgtcttgaccttagtacaactttgtactaagacacttatttttgggacggaggt agtatttgtcgatggagggagtatgtcgagttgagctgatctgtaatccgagtatcggactaattattatgtactccctccgtct ggaattacttgtttcacataaatggatgtatctagacatatctttagttattgatatatccatttttatccatttttgtgacaagtaatt cggaatggagggagtaggtgtttacgttttttttgttcctctaaagcgacaagtgaccacggtcactaccattatcccattgat cgcgagtttgaggctttgagcagtggttcatggtctatggcagcactactttatatgttttagatgatgttgatcattttttattagg attgaaaaaagcaaatctgtttagtttgactaactgatgcttaacgccacgtgctgctgctgttgggatctcctgaagctgcta cattttaaaataaatgagtaaaatgctgtcactcttttctctgttcctaattgtttggcaattctcaatttccaggttggaattaggtc ccgctgagtgcccccagccatgagttgcgggaggtataccataccagctagtctcttatttttctgtatctcaactgtagttctg ctacaacattatgagttcataacattttgacatgtgatgctgatggcagatctgaaaacactaccagaaaatgtaggacgc gttcaacacctggtgaaacgatgtatctccatactgccgatgctaaaaagatcacccactaccaatctaatctgccaaca acaatggatcgcgatatcggtgcctaccctgtgaagcaccactttccatctcctatagtttcttggatagaagacctttctagc tttggcgatgctccttttagccatgatactgaatacgtggatgatcaatcaacaccttcattcgggcagtcttctgcatctaaca atttgcatgacatgcaaatagtacgttttgttttcatttctcatccccttcactgagtgtgtgcgcttcctaggagcatgtgaaga cagtcaagttttagataagatcgctgatgtatgtgtgtcttgcagtcagtgagattgacagacgaattcatggaacttgcaaa ggagaatacaagcaataatctagagacctgtggaattcttggtgcttcatttgtaagtgcagttgggagaagaattagata gatttaccaatgtgaccactgatagtcttgctatattcacatttgcatcttcattttttacatttatttgcagagggatggaacttact atgtgacaacattgatcattccaaagcaagaaggaactgctcactcagtatgtcagttactgtatggtttggggaaaaaag acattattttgtttaatttgtcattttaccttttaacatatcatttgtcatcttactttaatgtgtcttgcttccatttatctatatgaatctgc ctgtttccaaatgcagtgtcaagcttctaacgaggaggagatacacgccgtattatcagagcagtcactttaccctgcagg gtggatacatgtagatatctgaacatttccatacttcatcgaattcagttttctgttggtttaatattgtaaatgaaataaatacac atggctagcctacatcatatggtctaagaacattaggtatgatgagataaaactgtatcagtgtatccagtgtttagtgccaa gttagggtgtgtaatctgaatttcctgtcttctgatttgaaactagcattattttttgaatttttttatcacaggaggtaagaacataa atatttaagatatatattcataatggttaccattgaatatccactgttactgtgaataaaagcgtgaatatagcctccaccactt aataatatactgcaattgtggccattgctgcagccaatataaaactattgtgttcgtcaattctaatacatttgaaagaagatt gacataaagcacaattaataccaatatttttcttatagaaaacacactgaacttagtagcatggaacccatctttttatacca aaacttgttacttgagcatatgctttcttagtgtgcttagatgcagtaactactgtaatttactaacagttagttgacaattgacat tttgctttgttttttccagactcacccttcacaaacatgctttctatcgtcgatcgatttgcacactcaattctcttatcaggtatcta aataagttttgttgatgtttatgaattaaggatattgtttctttttatgaaaatcctccagtctcatataccatggacatcctccatg agaaattcagctggaaattatatttgccgaatccttcaaccactagagtagctaacaaatatgattttaatctgtatgcaaca acgcacatttgaaacttttgagttattggtatgacagtgccatatctgatgatcgaaccacttaaggggcttgtatgctgctgg gcataaaatgtataaaataataagttcgctctcaaaatgctgaatagaaacaatcacaagttccaccaatattaactccga aaggcaccatgtcatctgcacacatggtctatcctttattgagtaggggttgacttgctgtcacttgttaggcctttgagctgac actttatcttcagatgggaaaatcgcatattgtatggtatagttgaaaggttgtcacctaactttatatcaggatagaccagcc aagttaatgcaaatttacagaagcatgacctaactgagttggtgtgattgttgtgttctccctggtttgcactagcgagccaa cattgataaaaacatgtacgattcgtttggatgtctgtattgagcccactgaattgaaatgggatgcaataccaaattaacc aacgcattgggatgtgttgtgggagacggctgggggttgtgaggtgggagatcgccgctctcttctgtgcctgccccttcctt tcttcatttatgttcggggcaagtgaactggcaccttttgcgggagcgaaacaattgagaggattactgaccgtctctggctt ggtaacaagggagagagcatgcaattgtgagagagtcgagatcagaactgaggcaagtttccaggagtcaatacggt gaccatccaaacagccgtattggagtctagacaacaccaattcacgattccagggttgaatacagacatccaaacgca gcagtagtcttatttcagaattgctggcttgtgtaacaatctgtcgggagacgaccgtgtgctttatttgacctgcttttcatgctg ttatcacttttacatagaagtatcaactttatgcaggtcatgttaccagaagctgttgcgattgttgctgctcccaccgatcctac taggcatgtgttttcttgcttaaaattacaacagttaacatgcagtggcgggtcattcattttattgttatacctaattgcccgcgg tgatgccacctggctaataatagtagaataaagtctgaaagtctgtctgctgtttgcaaacattccaggagctatggtatattc aggttgacagatccaggaggcatggatgtgctcagggagtgcagtgagagtgggttccatactcaccgagagacgacg gatggcggtccaatatatgaaacctgcaccaacgtgcatttcaaacctaatttgcggtttgagattgtcgatctgcgttctggt gcgtgaccaatcaggcataccctctggcatactgtaatatgtaagtatgtgatgtggcgcatatgccatagatgatgataga tcttaccggtgactgttagtcagcttgatgggcgtgttaagaaatggtgttaccaacctatgatgtcaactattccctaactctt aactgttctgttgtaatgtggtgtgcctgaaaaaacagccacgctcgtctaatgtattttatgtactactccctccattcgcaaat ataagtctttccaatatagtctacatatggagtaaaatgagtgaatcttacctaaaatacgtcaatattcatccgtatgtagttc atattaaaatctttaaaaatacttatatttaggaacgaaggaaatagatacttgccagtgctttgcgacaaggtcataaatatt ttagtaggttagtatgtgatgtacctgctcatgttagtgtgattttgtaaaagaatggcaatttttatttgctaagcattttctttatca aagaacacaataattttatttggcaagtcagtaggaggtggaacaataaatgggcttgtcatgaaaaaccagtaaaagc cgaagatgagaggagaacaaccaagaaaggacagaggaaggagaaagggaaagtaaagtatcatgagatcgca tcactaacgccttcagatgtgacct
SEQ ID NO: 19 >TaAMSH2C_TraesCS3B02G268400.1 peptide: TraesCS3B02G268400.1 pep:protein_coding
MSCGRSENTTRKCRTRSTPGETMYLHTADAKKITHYQSNLPTTMDRDIGAYPVKHHF
PSPIVSWIEDLSSFGDAPFSHDTEYVDDQSTPSFGQSSASNNLHDMQISVRLTDEFME
LAKENTSNNLETCGILGASFRDGTYYVTTLIIPKQEGTAHSCQASNEEEIHAVLSEQSL
YPAGWIHTHPSQTCFLSSIDLHTQFSYQVMLPEAVAIVAAPTDPTRSYGIFRLTDPGG
MDVLRECSESGFHTHRETTDGGPIYETCTNVHFKPNLRFEIVDLRSGA
SEQ ID NO: 20
>TaAMSH2D_dna_chromosome_chrc>mosomeJWGSC_3D_332633452_332639298_
1 ttcacgtttcttgacacgaaaacgtaggagaaccttacaaccttcttgacacttgctccgtttatgttgcactctggctgtgggg agcagatcacaagcgtacccacgcgcgcaaacgtgacgcctcccgattccccaacaaactgtccaccctctccgtccc gcgctctgccaggcacaggcaggtcggcaacgtcgcacgcggcgtcacgcccctcgcccgaatgcccagccgacac gcagacagaggacacggagtcccaacgcaccgcggcgccgccagccacggcgctcgcttcccgtcggcaccttccg ggcctcggacttgtcgtccttatctcaaattctctgtcgcttttttttatagttgaaattctgtctcgcttttaatcccttcttttcttttcttt gctgtgcgacggacgatgatgtgtatggcatgcacggcccctctgacggcgacgtgtgtgtgtacgcaatctcattctgaa accggctgcggctttcgattcgcgtcggacaacacaagagcatcagcatcacgcgcccatcgcttgctcgcctttcccctc cctctcccccctcggcttcccctcggctccagcaaaactcctccagtccagactacccccggtgagcgcccgcccttccc ctcttccccgacctcccttcccttctccgtgcgttcgcggctgctttgccctagctggctggctggcggcccacgaaattcttg gacagagattagcagatttcccggtcccggccggggaagataaggatagtctccttcggcgaggtggtagcttggctttttt tcttttctttttgctaacaacgtggtggcttgtctttgtacatgtttggtagttcggtggttgctggtactccctccgttgatcacaaat agtgcaagatgttttggtcttttggatatttcaatatgaactacatgctgactcaaatgagtgaacaaacacactaaaacgtg tctatatacatccggttcagaaaatagttagaatatcttatactccctccgcccgaaattacttgtcacataaatggatgtatgt agacatatttttagttaagtccatttctatccatttctgcgacaagtaattcgggacggcgggagtatttgtcaatggagggag tatgtcgagctgagctgatccttaatcagactaattattatgtactccctctgtccggaattactcgtcacgtaaaatggatgta tctagacatatttttagttatagatacatccatttctatccatttatgcgacaagtaattcgggacggagggagtaggttgttac atttttgttcttctaaagcaatacatggccacggccactaccgttacccattgatcgcgagcttgaggctttgatcagtggtgc atgtgactgggttcatggcctatggcagcgctactttatgtgttttagatgatgttgatcattctttattgggattggaaaaagca agtctgtttagtttgactaactgatgcttaaggccacgtgctgctgcggttgagatctcctgaagctgctacattttaaaataaa tgagtaaaatgctgccactcttttctctgttcctaattgtttgacaattcttgatttccaggttggaattaggccccactgagcgcc aacagccatgagttgcgggaggtataccataccagctagtctcttatttttctttatctctgactgtagttctgctacaacatcct cctaggaggcatgtactctctcaccttttcaatgcaatgaaacgcaaaaatcgctttgcgttttctcgaaaaaaaaagttctg ctacaacattatgagtttataacattttgacatgtgatgctgatgcagatctgaaaacactaccagaaaatgcaggacgcgt tcaacacctggtgaaacgatatatctacatactgcagatgctaaaaagatcacccactaccaagctaatctaccaacaa caatggatcgcgatatcggcgcctaccctgtgaagcaccactttccgtctcctatagtttcttggatagaagacctttctagct ttggcgatgttccttttagtcatgatactgaatacgtggatgatcaatcaacaccttcatttgggcagtcttctgcatctagcaat ttgcatgacatgcaaatagtacgttctgttttcatttctaatccccttctctgagtgtgtgctcttccttggagcatgtgaagacact caagttttagataaaattgctgatgtatgtgtgtcttgcagtcagtgagattgacagacgaattcatggaacttgcaaaggag aatacaagcaataatctagagacctgtggaattcttggtgcttcatttgtaagtgcagttgggagaagaattagataccaat gtgagcactgttagtcttgatatatattcacatttgcatcttaatttattttacatttatttgcagagggatggaacttattatgtgac aacattgatcattccaaagcaagaaggaactgctcactcagtatgtcagtaactgtatggtttgaaaaaaaaagacattat gttgtttaacttgtcattttacctttcaacatatcatttgccatcttactttaatgtgtcttgcttccatttatctatctgaatctgcctgttt ccaaatgcagtgtcaagcttctaacgaggaggagatacacgccgtattatcagagcagtcactttaccctgcagggtgg atacatgtagatatctgaacatttccatacttcatcgaattcagttctctgttggtttataatattgtaaatgaaataaatacacat ggctagcctacctcatatggcctaagaacataggtatgatgagacaaaactgtatcattgtatccagtgtttagtgctaagtt agggtgtgtaatctgactttcctgtcttctgatttgaaactagcattattttttcaaaagaatatcacgggaggtaagaacataa atattttaagatatatattcataatggttaccattgaatatccactgttactgttaataaaagcgtgaatacagtctccaccactt aataatatactgcaattgtggccattgctgcagccaatttaaaactattgtgtttgtcaattctaatacatttgaaagaagattgt gaaagaagattaacataaagcacaattaataccaatatttttcttatagaaaacacactgaacttagcagcatggaatcc atcttttttaaccaaaacttgttacttgagcatatgctttcttagtgtgcttagatgcagtaacttctgtaatttaacagttaag tcaacaattgacattttgctttgtcttttccagactcacccttcacaaacatgctttctatcgtcgatcgatttgcacactcagttct cttatcaggtatctaaataagttttgttgatgtttatgaattaaggatattgcttctttttatgaaaatcctccagtctcatataccat ggacatcctccatgaaaaaattgagctagaaattatatttgccgaatccttcaaccactagagtagctaacaaatatgatttt aatctgtatgcaacagcgcacatttgaaacttttgagttattggtatgacagtgccatatctgatgatcgaaccacttaaggg gcttgtatgctgctaggcataaaattgtataaaataataagttcgctctcaaaatgctgaacagaaacaatcacaagttcac caatattaagttattaactccaaaaggcaccatgtcatctgcacacatggtctatcctttattgagtaggggttgacttgctgtc acttgttaggcctttgagctgatactttatattcagatgggaaaaatcgcatattgtatggtacacgcctaaggcatatcgggc ttaagcttattgtactcaggcatatcgggcttaagctgcatcagtgctttagttgaacgttgtcacctaattttatagcaggatag accagccaagttaatgcaaatttacagaagcatgacctaactgagttagtgtgattgttgtgttctccctggtttgcactagcg agccagcattgataaaaacatgcccgcttcgtttggatgtctctgtattgagcccactgaattgaattgggatgcaatacca aattaaccaacgcattgggatgaaataccaaattaacaaaagcattgggatgcgcggtgggagacggctgggggttgt gaggtgggaggtcgccgctctcttctgtgctgccccttccttcatttctgttcagggcaagtgaaccggtaccttttgcgggag cgagataattgagaggattacggaccgtctctggcttgttaacaagggagagagcatgcaattgtgagagtcgagatca gaattgcggcaagtttctaagagtcaatacggtgaccatccaaacagccgtattggagtctagacaacaccaattcacg attccagggtcgaatacagacatccaaacgcagcagtagtctatctcagaattgctggccttgtgtaacaatctgtcgcgat atcacactgagacaaccgtgtgctttatttgaccttcttttcacgctgttatcacctttttttacatagaactatcaactttatgcag gtcatgctaccagaagctgttgcgattgttgctgctcccaccgatcctactaggcatgtgttttcttgcttaaaatgaagttaac atacagtgcgagtcattcattttatgccacctggctaacaatatcgtataatgaagtctgaaagtctttctgctgtttgcaaacc ttccaggagctatggtatattcaggttgacagatccaggaggcatggatgtgctcagggagtgcagtgagagtgggttcc atactcaccgagagacaacagatggcagtccaatatatgaaacctgctccaacgtgcatttcaaacctaatttgcggtttg agattgtcgatctgcgttctggtgcgtgaccaatcaggcacaccctcaggatagaccagccaacgtgcatatgtaagtatg tgacacatgtgccatagatgatgatagatcttactggtgactgttagtcagcttgatgggcgtgttaaaaaatggtgttacca acctatgatgtcaactagctctgaactgttttgttgtaaccagtaatcgtgtacgtgcactgaatgtccagtttgacagtaatnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnntatatgcgccccctccgctttga gacgcaactatatatacccaaggggcgccccctccgctttgagacgcaggttctcctgcgatcttgggcgcccctttgaac ttgggcgcccctctcttcatctagttctacaggaatttgtgaacgccgcaaggctgctcctccctcctcttctactccgacattg cctagctctagatgacgaagcattgtccatattattggtgtcgtacatgtgcaatc
SEQ ID NO: 21 >TaAMSH2D_TraesCS3D02G240400.1 peptide: TraesCS3D02G240400.1 pep:protein_coding
MSCGRSENTTRKCRTRSTPGETIYLHTADAKKITHYQANLPTTMDRDIGAYPVKHHFP
SPIVSWIEDLSSFGDVPFSHDTEYVDDQSTPSFGQSSASSNLHDMQISVRLTDEFMEL
AKENTSNNLETCGILGASFRDGTYYVTTLIIPKQEGTAHSCQASNEEEIHAVLSEQSLY
PAGWIHTHPSQTCFLSSIDLHTQFSYQVMLPEAVAIVAAPTDPTRSYGIFRLTDPGGM
DVLRECSESGFHTHRETTDGSPIYETCSNVHFKPNLRFEIVDLRSGA
Nicotiana benthamiana (v1.0.1. reference genome)
SEQ ID NO: 22 >NbAMSH2_genomic_Niben101Scf00231:790641..809451_AMSH2- gene taattaagcactcataattcaaaaaatctgaatccgcggtaagtaactccaaaaggtacatatatttgggtcgggttgactt gacgaacttttttctttctttttcatgtctttcggcggtgctaagatgaaaagaagcaagcaagcataaaatacacagagata gaggagaattcaccttcagcttgcttatcaggttcttctcttccattctttattatgttgtgtttaatttggtcaagttattttatggtact gttttcagtttgctgaataacgaaataatttccatgttatgtagctgttcttctattggactgtggcttattagctataaatcttgaaa atcctttgtatttggagtagtagtactgacaatcaggaaataaaaatggaattttgtgtatttccagttgatttgcagaactgag agtaataattatgatcatagtaattgatcataatttgcagaactgagagtaataattatgatgagtttgctatcagtctatttcac cttccgttggatcatcatagtaagtgatccgaatgtgaagagaaaaaagttagaaaagaaaagagtgactataatgattg ggaattagggatggcagtagtctgggcgggttgggcttaactcccaataatttcaatccgctcatcttgccacgcatagcat attttcatcttttcaatccaccctgcctgctaaatattccttttatttatttcactttgtcatttttatttatttgtgcttttctattatatttataa cataattgccaatctaagttttcatttatgaagggcagaatagtctaaatggcacttatacttgtgccactttgtcattccggtcc ccaaacttaatgaagtttcatctagacacctctactcgttcaaaagtaatgttttaaacccttctcaccatgtgtgttcgtcaatc gtctcaccgtatgatccatgtcagataaaaatattccacgtcattattttatttacaaaaactatttttagataagaaaaagttg aatcataaagtattccctcacaaacgccttcatgcctttctctctcttaaaagcacccgttagactaagtatccttggttcaag aaatactggtgggaagttgcaattagaaaggattgagggaatcaaacccacatgaagagctaagggtaaagagagc ggaaaccatagtccctaagtggctatatccgcccacacgcaccctgccctcttctgctaaggacccattttttctctcttctctt caatttctgcacctgtgtccataactgttcatggccattacactgtacggatgaaagcaatatatcatacataactactgtcatt ttttaaggcttaatagacttagaccgaccctatcaccgcacagccgctacaacaacaagtagcagtacaacaagtgagc tctttatctgtttcacttccgcctttcttcttcatcttctttccatgaaactctccaaacctattctcaatcctggagaggcgaaaga agaatggtgtgtgtgtgccccaaaagagtaaaaactgagagggggaaaggacctcggctgggtgaattcttttgtgcaa gaatatttatttttctccttttttttggtatttttagttagaattataaacttttactcgcttcttaaagcatgtagtcatgcattttatccaa cttagcaaagcaaacgccacataagcttagtcaatggtcaaaagggtttaaaatattacttttgaatgagtagaggtgtcta gatgaaaattcattaagtttgaggaccgggatgaaaaagtggcacatgtataagtgtcatttaggctattctgcctttatgaa gcccccagtgtctagctcaagtggcaaatggtggtggatttgtatcttaggtcacaggtttaagccttcaccccatgcaaag caaagcttggtatttaagtggagaaggatagaggggcgggcccattatccactaagtttcgaaggctgcggttggtccaa aggattgactccagatgaatttctcggtcaccaaaaaaaaaattcatttgtgaactgatgggttatcataaaactttggaga gtatcctctgctttagctattttaaagagtcatcctattctgttgaaatcaatactggtcaattataaaatcagattggtgccattg gtgccatgttcctctggatcaagtgaagttccctccatgcaatggcaaatagggaaagcaatgggattnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngtacatat gatttatatgcaccagcttgagggggagtgttagaatatgcaatagtagaaccctaatccaatgtttattaggagtaggata ggttatgtgtgtgtatatagggctcattgtatcatgtttaatatcagttatatttttctcccgtgctttctcacaggagatccaagtct agttagacctatcttttgaactaaaacctaaaaggctaaaaacaaagttttcccaactgcgactgcaagtctacatgactg catttcccaactctcttgaccaagaagctcttaagaagaagctttaaaatctcattctctctcatctctgttaatactctaactctc taccttttgcttcttttatccgtttttactgaatctttcttggttatttgattcaaatttagctttgttactcaaatttgctcctcatggtagat tttaggttttcttgatcagggtctcttcttttacaaaataacaacaacaacaacaacaacccagtataatcccacttagtggtg gggtctggggagggtagtgtgtacgcagaccttacccctacccttgggtagagaagctgtttccaaatagacccccggca tccttccctccaagaacttcccaccttgctcttggggagactcgaactcacaacctctcgattggaagtgggggttgcttacc atcagagcaacccctcttgtctcttcttcttttacaaaatatttttcaaaatataattttcaagaatcagtgaaagtgaagttattg aagaatttaaggcatgaaaggtggggaaagaattatttacttgtttagttttaagaatctaatatagtggatgaatgaagacc attttgtaatgatctgatgcatttatgaatgttgcttgtagtattgggtgccattttttgttataaaattgatgatttaaaattgtattttc gttctatctgtagaacagtagaaggtctttttccttcttggtaaactttaaacttgtctctgcttatagataagtatggagtttcaga atgaactctgttcatcctataatacttttaccattcagagtgacagtcaaaggcctatgtatgccaatgaaactactaaagac tttattcaaactacaaagaaaaaattgacctctagagcatggccacattttagggtgtgatgattgatgatgttttcctggtgat tgtaagtattgtaatacttgtattaaaacaattaaatgatatatgagaaaatcattcttaggtaatattggttgatgtctgaaaaa gccaactttgaaagtgagggtggttcaggtggtgatgattgtaaccaacaatattatttcgatcaagatgtttcacgtagaga actttcacacaccatcaatttgtatctattgttgttgttataaagtttgttgctggtctgtatcaattgttcaaattagtttcagaaaa cacaactgagaataatattgtgaagatttttgacgatataaaaataaaacattctaagttattgaaaaattcacaagtggaa ttgcaataacagttgatacgcagatttcatataacaacaaaaaagatatatggctattacttgacattttattgatgttcatgga ggcttcatagccatattctaaggttttatatatgtctctaccacacatgataatgattttttgtgtagtgcattgcttgattatttgtttc agtgaaatctgaaatggagaatatcagtataaacaatgtcatgatgaaaatattattagatgagaaacttagtaaaagag attttctattgttatgtccagtgtgtcacgagcattgtgttatgcacatcttgaatttgattgtgcaagaagtgcaaatgtgataga aaatagtattggaaaaatgtgtggaagcgtctttcattggattagatcattggacacatttgagagattgaagaagccacac catttgctgcacaaatattataacaagaagttgttgtgtgattgacctactcgttgaaactcaataaatgtaatattgaggaca accataaagtacaaagaggtgtttaagaaattgagtctaattgacactagttatcaatgttattcaacggaaagacaatgg agtgatagctgtttgtgataagttgagacttttcttaccatatcgctaaataatttttaggaattctgcatctaactttcaagtcaat aattttcacaaatttgtgtaaatatgctataattggaagttcaggaaaagagtttaaattctttgattggcgttacaacttcggtg atgttgaaatttatggaatcttaagatgatgtgcgtattttgatggtgtagctgttatctttgacccaagatataagttaaagttgg tggacttttttcttccataaatttgtggtaaagaagctttaagtaaagttcaataagcaacccattgttatgatctcttttaacagt ataagagtagattattttcttcaatggggtcatttgaagcatcgttatagtgaagtcattgaccttattgaggttgatcgactgttc agtcttgatagatttgtcgcatcaagtagggctaacgtgtaaataagaaaggagttagatttgcatttagaaaaaacctgct atctcgagctctatcattttatagcttaagttagtggaagacaaactgagtgacaacaaactgtatcaacatattgtactctctt tctcttcaaagtagtagactggtgagaccacgtgaatcagttcttcctcctcatcgagtaatgttggacatgaagctttattgat cctcgaagtcttttcttaaaagaaaaatatatgattcaatgcatcaaaatagtattaaaaacaaaattattaaggtaaaaag tcgttggaaaattacttactggttatttcgtttcataaccaaatgcgagcccacatcaaagcttccgaagtggcaggatgaa gcctactgtgatgcaaactaatcaactttccactagtactaaatatgcaactgtagacacaagaatggctaagaggtaac gagcaaacttctgtaaagtaagaagtttcaatctgtttgtcgtccaccaacttaaattatcaaatgatatagttcgagacaac atgatttcttctaaatacaaatccaactccgatcttctctttacgttagtactacttgcgacaaatctatcaaagtttgactgtcca tcactctcaataagattagttacttcactagaaccatatgcttcgatgacccatatgaggaagataatctactcttatactcttg gaagagatcatagcagtggattcgaacttcttggatcttaattgaagcttcttcactatgaatttgtggaagaaagagctcca ccaagttcatcttctacccttgatcaaagataacgttatacccatcaaaatagtacgtcattccaattcttttttatggttcactat cttcgactccatagcactaatcaaagcattaaagctcgtttttcgagcttccaattctaagctttattgtacaaacttttgaaaat tattgacatgaagttgaatactaaattcctgaaaattgttcagtgatatggtaaaagttttaatttatcacaaacatcttttgcatc actccattcccttttcgttggataacatcgataataagtgtccgttagactcaacttcttagatacctctttgtactctatggatgtc ctcaacatcagatatattgagtttcaaacatgcggcattttcaaacctctcaaatctactcgattgaaccctcaggggttggc atagtgacagttgacttgacaatggggtttgctccctttcaaggtctcaagttcgaaacccactaggtgcaaacaatttctga gggccattggattgggtaaaaactgaattaaccgtggtgcacgggaaactccttgctgagggcctgtgcaccctcgggat tagtcggggctcttagagactcagacggccggtgcaaataaaaaaaagtctactcgattgtccaatcaaatacaagatat ctttatgcattttgccaatactatctcctataacctttagtccttttagcatatcaaattctagatgtgcgcaacccaatacttatga aaaatctacctatctacaataaatcttttttactaagcttctcatccaataaggttttcatcatggcattatctgtactagaattatc aactttgatagttgatattccccatatcagattccccactcaaacaaacaattatgtaatgcactatacaaaccaacctccat gaatcatcaataaaatgtttgttagtagccataaactcttttttgttgttaagtttacatatcaatttttgttgcaactctagttgtgatt tttcccattaaactagaaattcttatttcagattgttaaaaatcttcaaaattcttgattatgtttcttgcaactattttgaacaatgg atgcggaatagcaataaaatttttaaacccccataagcaacaatgctcatgcaaagtgatggcatttggcaagttctctatg cgaaacatcttgatgagaactttgttagctaccattatcactattctaacaatcctaactctccaagttgactttttgggacatta agcaatacgatctaacatggattttgtcctacattttatagttgttttaaaaacaagtattgcagtactgaccatcactactttaa aatgtgtccatgctctagaagtcaatttcatctttctagtttaagtaacttcattggcttgtgtaggcctttgactcccactttcaat gggaaaagtaataagatgaacatatcgaattttgtttgtcttgaaacgtcatacttagctataagcagagacaagttgatag tttgtgacgaagaaaaaggtacccttctatccaacaaactgaacaaaaatttaatctcaaaatcatcaattttgtaacaaaa atgacacccagttttacatgcaacactcaaatgaatcacataaaaaacattctttattcatccatttaattagtttaagattcac caagtaaatgattctttccccacctttcatgccttattcaataactacactttcacttaatgttgaaaattatttattgaaaggaatt ttgttaaagaagagaccgagactaagaaaacctaaaatctaccatgaaaaataaatttggatagcaaatctagatttgaa tcagacaaccaagaaaatttcagtgaaaatttgagaaaagaacaaagtagaaagttagagttaccagggatgagata gagagagagatgagactttttaaagcttctccttctgggcttcttcgtcgggaaacatagtcatgcagactcgcaggtggca aaactttgtttttaatctttaggtaagataggtctaattaatcttggatctccaacctgcacccctttggaatttatttaaaaatata ttttaacccaccccgcccccgcttatattctaatcagccctgcccccacatccctcttagcctgccctgctccattgccgtccct aattggactgtgaaaggggaagaagtacgcaacgttcattgttagatttggacgctatatcttgtactcgactaatcaaagt gaaagtgattcaattggtgtgatgaaagagcaaattttttaaccttatctacctatatataagtatgagcccaatgttcaagtg cctttatctatgcgctgagtggataccgactgtgcaagtgaccactaaggaatgctgtctttattatattatagttaatccttttaa atatgtggttatatttactctggtgactaatggagacctgcttgaaaaacagagtgaaaaatccaatcctaaatgttgtggaa accttatctgggttacactttttctttggcttgctttctatatcgatctgctaatagtttatacgtagtagcataagcttacttctgttatt taatgttaataggtaacttttacaatggtcagcaaatctgagcacgtgtgacttctggcttgaattcctcaaagttcatggcgg gtggagtatgttgccagactaatgtgcatacagtttcacagactgctccttctccgggaatctccttgatacacactttgcctg atggagctgaaatctcaagtgtctcaactactgattcatcaagcggtccttctaattattcacgcaatgtactggcagcatctg gaactctcaaagatgtacatgttgtaagtagtcaataactatgccttttgaaatacaaccgagtaactttgtccagcgatagc ctaaatacttcgtttcactattttccttcccatgttacgaaaaatccagggtgccgtgcagggcatacaagctcatgcacaat aataaatccttgacaaggtaacacttttttttccttagccaacaaggttgatggagaattttctggaaattgccatcaacaaca ctaagaaggatatagagacctgtggagttcttggtgccatccttgtaagatcactagtatttactttgctttctagaatgatactt ttggaacattgttgaacaatgagtatctcctatggtgatgtcagaacttctaaattttttgtgcgtaattttttcatttgtatgactggt tatgaaagttttaagcaatgtattttaaagtgtcaaacatgtagattttaatagacgtgttctagagcatttggtgtcaaatctgtt cttgcatttgtcatggaaatttgctccattcgaagtagtagtgatgcttgagctgaagattactggaatttctccatctttgcttgat tatctcatccttccaatacggatccaagcaagatgagctcattactgtgctcaataaaaccgtattgtgttctaactattgtaa aattatagggacaacacatcttttaactcttcttttgaaactaaaagtacagctattggctaactaactttatagcaaaaaatt ggtttctgagtcttaacatatttaaagacaccacactattttttcattataagtaatgcttttgtcttcttcagttccttcactaatattc aaactttgaagttaaggccttcaagagtacttacctgatcaattcctagatattcagatcaccaatgaactttctcgaaatcat ttgcttttcccaaagtactcaagtacttatgatgtggattgttgagtgtgtaattgtaattgctaatgctaatccatacaagttaaa gggagtgacaatagagattatgtaggagataaagcaccctgaggaaagttttctgagagtaatcatcatattattcaaaa gaggaaaggaagttctggtagactagctaaattacctaaagcatgtgagttgcttcaccttaaagggaaaacaagatgttt gtgattgactggaatacatctaaagtatatgttgtgcagtgatgaagctacaatttactcattagaccattctccaagccaact gtagtactttgatgtaagaccattctccaagccaaccatagtactttagtggtctaatcagtaaaatggtagtggtgaggaa gctacaatttactcattagaccattgagactgagttccgtattcttgtctgccaagcatgcctttcatcgagctctactgtcttgtg gcaatctataatagattatccgagtgttgccacataacctgctctacttggcatgaaatggtgttactagttattgttccatctct aaaacacccttactttttgtagtgatgacttctcgtaaagtagaaactacaaagatcatatggtggctgtattttttatcctaattt tatattag aatctttttg ag atg ccttctag g atcatg ttcatttg actg aattttttttttttg atataattttgg gg cgtcaactatg ca tctgtttaatggcaccttccttcaaagttttcttcctttgtctccttctaggaccatgttcatttgcccgcaatttttttttttggatataatt ttggggcgtcaactatgcatctgttcaatggcacattccttcaaagttttcttcctttatcttttctttttgatagtaaactatgtaccc atttactggcaccttccggtagacttttcttccccttttgttacagagaatgttacagcagattgaaactgagttctcaatgcact gacttctggctattttcgcccttaattcatgcagaaagatggaaccttttatattacctctctaataataccaaaacaagaatc aacctccaattctgtaagtatttcaaaatctgaagatccatgtccaattttggtaagaagaacgtattctaatttatttgtagtta ctgctagtgtcaggccctacaagaggaggagatgtttgccatactacatgaacaatccctccttccaattggatggattcat gttagttctcttctctttctcaatttccttttatgtgtttcctgtttatttggatggaatttctcaatagaagacctattgtaatgcttattatt ctgaaatcaaggcagaaatagttgaaagagctgaattttaagtgatttaatgcatttggagatccgttaatttgtctcatttgg gtcttgacgttctatgacttggataacctcgagataattaaatatgtaagaaaatcctgagctccgatattgtagcatctccgg agcatgtgctaaagctattgtttccttcaattctgcaccagtttccttcaattctgcaccaccagtcaaggtatccaccgtgata tgttttgacaaggatgatttgtcactgttagcatcttcactattaatagtttacacgacaccttaaatatgaactggctagatcta attgattgtcaagtttaatattcatatttccgttatccttagataatcacttaaatatatagttgaaaatcaacattttttgccgttgg cttccttctttgtactttcctttgtttagttcacatgtttcagctattgaatagttaaagggcatgtaacacggtataacttaacgtgt gaccgtttatgtttttctccagacgcatccatctcagagctgttttatgtcatcgattgatttgcatactcaatattcgtatcaggta catttactcctgatggctttgtacctttgtgcatttcattattggagataactagaatgttgaaaacttaatgggacagaatatttc tgttcatttatgcaatattgcaattggtagaatggagttacaggtataacttgtgcaacaagatatgagggaatacctagaa gtgtatctgtaattataaataattagtgtgccggtcatgaaaaagtcttttacaaattaaatactaaaatcataaatttaatgga agaaaaatgaaaaatacaaaaaaaaaataaaatagacatagataagtaaaatataggtataggatttaattcccacatt tagtaaaaaataattgtttctagcaaagaaatgaaattttacgatagaaacgcacgatgtcgaactaacatgctaaaaag cacaaaatgagcctagcttcctgaagagaactccatgagaattcatctattttgtggttcgctttatcctccatagctttgtcatg ccccacctggtgggagtatactgggtagtagttgttgttattgttgttgttgttgatagctttgtcatgcaaaattaactattaccct ccccagaccccactttgtgggactatacagggtagttgttgttgttctttggaagtgttgagttgtcccacatcggagagatttg aggtccttggtctccttatatggcttgggcaatcctcacctcataagctagcttttggggttgagttaggcccaaagtccattctt ctcatggtatcagagtcaggccaatctcaattattgttgacgatgttgggcccccatttatgttgtccacgctgcagagatctg ggcgtgaggggggtgttgaattgtcccacatcggagtgatttgaggtccttggtctccttatatggcttgggcaatcctcacct cataagctagcttttggggttgagttaggcccaaggtccattcttatcatggtattagagccaggtccatcctaattattgttac cgatgttgggcccccatttatattgtccacgcttcagagatctgggcgtgaggggggtgttgagttgtcccacatcagaggg atttgaggtcccttgataagaatggaccttgggcctaactcaaccccaaaagctagcttttgggggttgagttaggcccaa ggtctattcttatcatggtatcagagccagatccatcccaattattgttaccgatgttgggcccccatttatgttgtccacgctcc annnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnaggggtgttgagtggtccacatc ggagagatttgaggtccttagtctccttatatggcttgggcaatcctcacctcataagctagcttttgcggttgagttaggccc aaggtccattcttatcatggtatcagagccaggcccatcccaattattgttaccgatgttgggcccccatttatgttgtccacg ctccagagatctgggcgtgagggggggtgttgagttgtcccacatcggagggatttgaggtccttggtctccttatatggctt gggcaatcctcacctcataagctagcttttggggttgagttaggcccaaggtccattcttatcatggtattagagccaggtcc atcctaattattgttaccgatgttgggcccccatttatattgtccacgcttcagagatctgggcgtgaggggggtgttgagttgt cccacatcagagggatttgaggtcccttgataagaatggaccttgggcctaactcaaccccaaaagctagcttttgggggt tgagttaggcccaaggtctattcttatcatggtatcagagccagatccatcccaattattgttaccgatgttgggcccccattta tgttgtccacgctccagagatctgggcgtgggggaggggtgttgagtggtccacatcggagagatttgaggtccttagtctc cttatatggcttgggcaatcctcacctcataagctagcttttgcggttgagttaggcccaaggtccattcttctcaggaagttat gtgttccatgaagataagtacatttcagcatgtattaaaggacattgcgatgtgatggtgattgaatagatgtataaatgaac gtgcatgtacgctgaaagaaagtttttgaggcatctccaatataatttagaaagtaccaaaaaccagtattctaataactca agtaatcatacaacaaagtgtatccttgtcaagttggttaccaaaagacaacaagctaaaagcacatcaaatgagaaa agtggcttactaatgtatttccaagttggatttctctcttcctctgttagctctaacattctccgtatcaccaattccatacaataat aaataaataacaacgtttattctgcaggaggataaattacaagaatttgtgaatataatagaagaaccaacatctagtaca gtaaatttgtttgggaaactacaagctcaaaagctagaagtgccaaatgaataatttttataggatcattacacgaaaaatt ggatatgtaagattcaactacttctagttaataactaactttcaaaatgatcattatcttagacaaacaaaaatctggttaggc aatcatacaaatccgagtttcacatatatacttgtttaccaataaaaaggttctacttttcggaaaaaagttcaatttgtttccttc aaatctatgcatctaactttgaaagtaatccaaatacaagttaaactaaaaagggatgatgaattatatgtatcgcatgtaa atcttcgtcatctaaagcgcaataaaagttatagaaggtcttattatttgtgcacaaaaagatctctgtttaatatcaccaatg accaatcagtgacactctgcatgttcagttttcttcagctagcagataactgcaagttttcctctattattcatagaatggatgg cgcaatatcaatgatctatctcattaagttctcttacattaaacaaataattccaaatgttttcttttattgtatataatattgaatac cgcaacattatcaaacttcttggatttcacatgtttgtgctgcattttttgtaaagtgagagatcaagaaactttgcttatgaaat gagcttttggctgtgcacttagttacttgtgaaacactactgttgaataaatgcaagttagggtgtcattaatccctattactactt cctctgtttcaatttatttgtctacattacaatttagggagtctacgaggttcatcttgaccatgggtttcttgagtatttcgaaatat aaattattatgacttatcgtactttatatgtagtttccaaatatgtaaattttattaaagacttgaaattcttttctaatttcatggtga aaattaagaattttgaccctcgtactccgaatcaagacatataaattgaaatcgagggagcgttatttagaaaagaaaattt aaatgatataagcagtctaatcctttattctcttttccattttttgctgtccatttgtcaaattaatagttaaacttgtatgaacttcaat ttgtaagtacagtaattaacttcaaaattatttatatctatatctatttggaattgaacttatcagaatgccatttcttgtgttagacc atacaattattatgcaaatggtatcagctaaagcattattttcttatcaaaccatgtttaacatattgcatttcacttaattacttcc ctatgttttccattaaacttatctgaagttattgtgcttcaatacacgttgtcgttctgattcttcatttatctacatgttttttctctctact ttctcactttctgatcgatatagatcatggtaccagaggctattggaattgtcatggctcctatcgataaatcaaggtcatttcta tattctttcctcgttttgtatttgcatatttagtataagcgtacttatcatgtttgagatgcttctttgccttcaaaattttggtacataact ggtataggtgcgttaagtcacatgcatatttggtggaaaaccatgttattcatgagaattcccctgtcatctctgtatagctaaa tgagtcactcgtattagatctctaggagtcgtttggcaggatgtattaggaaaaataatacatgtattagctttgtattattaatc acttgtttgctaagtttctcggacacagatatgggtgtccgacccgggtacggatctagaggttggatccttcgagatgtaaa ttctaagattcggggatatggatatggatgtggggatccggctaaaaataattcaaaaaaataaaaaaataagaaatgtc taatatggtcaatttcattgctaattaatgttaagaggtgggtttcttaatcggtgtgagaactgccaaaaaattacttattttgg accggagggagtagtgtttttcaacctatgtataactaatttctatattagttgtacaccctattcagtactattgttatacattagc aataacatgatttttaatgcatggataaatgggtgttcattgggcggattgggcggctttttactttaacggtttggcttatcggtt atcggtttttaaatgtattcatctgttagccacccgataagatatcgggcggattggtannnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnncactatactgaaatatcaagctcatagctttg acaatttgttgatcagtatattgatgaacttcttaagaggtcaccaactaggacgcagcacaccaaataacttttatttgctat ctgtatggactatagagtacagaagtgacggtggggggttttgtttttctaatttatttgtattatagttttatacacttatacttattc attttaaggttttttatttttatattttatatatataattatgtaagtaaaagtaaattatatatatttatattcttaatggcttaacggatt accccttaagaaaattgaataattcgcccccaaaccgctaagccattaataaaaaaaattcaatccgttctccgtccgtta agccgttaagccgttaccattaagccattaagcttcggttcggttttcggtttcggatcggttttgagcccccctagataaatgt ataaagacataactaccctctaccctttttaaaatccttttccaaaaccttcagtgagtatttctgtaaacaaataaattattaa acaaactatgaaatatatgttatttttaatataccaaatcaaatagttgataagtaagaaatatcgcagcataactcactgtat tcagtactattcttatacgccctaccgaacgactcctgaaggttttacaaaagcacctaggatctatgagtagtgcctattag attaacctcatttagtaattgcaaaatactttaacagggggcttctagataagaatctatgcttgcaggtcataattcttagata aattatgggaattcattactttagggaaaagaaaaataaggggcatttgctgcattttttgactgtttgcaccattaagccactt cttttatggaattgaaatgtaatagtccttgtgaaaggtactgatatgccatgtaattattagaaacaatgaacaataatctga aacacagacagccacaaggttgctgatgtgtgtgacatagtttattatggatccaacagttaagcttatcttcaagtgcaatg tgttagggcatatggaatattccggctatctgatggcggaatgaaaatcctcaaggactgccccgagaagggatttcatcc tcataaagaaccagttgatgggagccctctgtacgacgattgctccactgtctatattaattcatgtctacgattagagatattt gatttacgatgactgcatgaagtagcagtaacatgtatttatttacaggctttatcttgaaaatagttaaaccgtcaaaactttt gcagaagttgtaaataaaataatactccttccgtcaaatttatatcgtactctttcctttttagtctgtatcaaaaatagtatcacc tttccctatttagaaacaatttatctttaaagttcct
SEQ ID NO: 23 >nbamsh2-protein
MAGGVCCQTNVHTVSQTAPSPGISLIHTLPDGAEISSVSTTDSSSGPSNYSRNVLAAS GTLKDVH VPTRLMEN FLEI Al N NTKKDI ETCGVLGAI LKDGTFYITSLI I PKQESTSNSCQ ALQEEEMFAILHEQSLLPIGWIHTHPSQSCFMSSIDLHTQYSYQIMVPEAIGIVMAPIDK SRAYGIFRLSDGGMKILKDCPEKGFHPHKEPVDGSPLYDDCSTVYINSCLRLEIFDLR*
SEQ ID NO: 24 >ZmAMSH2 8 dna:chromosome chromosome: B73_RefGen_v4:8: 152927515: 152935907: 1
CGGCAGTGGCCCATGCAGTACTGCAGGGGATCCCGATCCTCAACGCCCTCTCCC TTTTGCGATGCGTTAACGGCTGACCTGGCGATGACAGGCAACAATAGCGCCAAGC C AACGGTCAGT CG ATCG AT CCCATGCCGGT ATGCCGT CCCCTCCTCG ATT CTT CC CCAGATT ATT ATT ATT AACCGATGCACCGCACCCAGCATCGCCGT CAGGAGCGT G AGCCCCATGCGCCGGCGCCGAAAGCGCGCCGGGCCGACACCTCATCATCCCCT GATCCGCACCGCGGCGCTGCACTCCGCTGCAGCTGCCGACGTCGCTGGCTCAC CTCGCCGAGCCAGCGCAACCGTGACCGTGACCGGCGTCCCGCTGACCCGCCCT T CGGTCCAGCGCCCCCGGACTTTTTT CGT CCCT AT AT CCAGAACT CTCCATTGCTT T GCT CT CAGT CTCCCACCCGCCCAGGCCAGCGCCCCTCTTCT CTTT GT GAT GT GG GCGGCATGCACTGCACGATAGCGACGTGGCGCGCCCATCCAATTCCGTGAGCCC ATCCAGTTCGTGTTCGCGTAAGAATAACGGCAGCCAGCCACAGCCCACAGGCCC CCAAGGACTCTCGTCGCTCGCCTTTCCCCCAACTTTCTCCCCCCGCTCGGCCATA CGGCCACTCGCCTCGCCTCGCTGAAACCAATCGCCTCTTCTCTCCCTCTCCCTCT CCCTCCAATGCTTCCCACCGATCGCTCCTGAAGCGGCTCAACTGCTCCAGATTTT CTCG AGGT G AGT G AGCT CTGTCTCGT G ACCG AT G ACCT ACTTTGCGG AAGTT G AC ACTGCCCAGCCGCGAGATTCGCGGTCCGCTAGGCGTGAGGTCGTGCTTATCTGG TTGGCTTTTAGGGTTTAACTTCTAGCGGGGAGGCTCGGCGGGGAGCTAAGGATT GGTACT ACTTTCCGT GGCT GTTT CTGGGGTGGTTAGT GAT G AAG AGGTCGTT CTT AATTCGAATT ATT GTTGGACT ATT ACTTTT GTTCGGCGCAGGTTGGTTTT CT GTT GT TTGAAGCAGCGCAGAGT CTTCAATTGCT ATGCATTT GTTT AT GGGACCT GCT AGAA TTT GTGCCT GAACTTT AGCTT AGCTTT CTTTCAGGCAAAGGTT ACT GTT GT AGTT C GGTTCT GAT AAT AAAAAAACTCGTCGG AT G AAACCAT AAGCTCG ACAAAGT AT GAT CCGT GTTTGGAACAAAGACAATT AACAATT ATTTCAAT AGT CAAACAAGGACAAAA AAACT AAT AT GTT AT ACAAAGAT GAAT AACAAAT CAAAAAACTCGGCCAGGGAGGA AAAAACCGCCCT CT CCT GT ATT AT ATT AAG AAG AGT CCG AAACAT GGTCCT G ACCG AGAAACT CCCCTCACCCTGGT ACCCCATCACT AGCGGGTCAT CACCGCCCAGT CT GCAACGGCACAACCGAAGGGTGGCATGCAAGACGTAACCCAGAGCGGGCGCGA CACATCGAGGGGATTTTTTTAACCAAGCCCGAACTTCGCCCCCAAGGGGAATCGA ACCCACGGCCT AGAGGT GCT ACTCGGAAGCCTT AAT CATT ACGCTCCT GAATCAT CTT AAAATTCAGGCACTT AAT AT AGGAGAAGT GTTT ATTT ATT AGAAAAGAAAATGG T GT ACCTGCCCT GAACTTCAT CGATTGCTCGCCAAT GTTTTT GTT AGTT CGCTT AA AT GAT GTTCAACAAT AGCAATGCT CT GGT GTT GTCACTT GTT AGATGCCTT AT CAA ACTGCT GT CATTT CTTT CCAG AT CCT CG ACT CTTTT GT CTT CAGT ATTT CT AAAT GT T CG AT ATTTTT GT AAAAAAAAAAATTGCAGGCT G AAATTTT GGT GTCCTTGCT CAGC CATGGGT AGT AGGAGGT AT GCAGT GCTTT ACCTTCT GT AGCGGT CGACAATTTT G TTT AT GAT ACAT CAT GACAT GAT CAAT GCAAAATTGGCAGAT AT GACATT GAT ACGA GGAGAT GTGGGATCCACT CAAGACCAACCAAAT CAAT GT ATCTGGATGCTCAACA AAT CGT CAGCTGCCAAACT AGAGTGGGAGACCACGAT GTT GGTTCCT GT GCT GT G AAGCAT CACTT CCCGTCT CCAATCGT AT CTTGG AT AG AAG AT CTTTCCAGCTTTGG CAAT GCTTCTTTT AATCCT GT CT CT GAAT AT GTGGAT GAGCAAGCCAGAGCTTCAG T GGGACAGT CTT CAGCAT CAAGT AATTT GCAT GACATGCAAAT AGT ACGTTCTCTT T CGTT CCCCATCATTTTCTTTT AAGAAT AT ACAGT GTTT CTTGGAGGATGGT AAGAC T GAAG ATT GAG AT G AAAT AACAT CCTT ACAT GTT ATT CAGT CAGT G AGATT G ACAG CCGAATT CATGGAGCTTGCAAAGGAGAAT ACAAGCAAT AATCT AGAGACTT GT GG AATTCTT GGTGCTTCATTT GT AAGT GAAGCGGGCAACAAGTT ACCT AT GT GACAAG AAT ACCT AATTGTCAGATT AG AT CTT G AGT ATTTT AT GTTT CT ATGCAG AGGG ATGG AACTT ATTTT GTCACGAT GTT GATT AT ACCAAAGCAAG AAGG AACTGCT CACT CAG T AT GT CAGT AACT G AGTGGTTT CT AACATT ATT CTT AAT AT ATTTTT GTT AGTTT ATT AT AT GT CAT G ACAACT AT CTAGCT ATCCCATT CT G AAGT CTT CCTTT CTTTTCCAAA T AGT GT CAGGCT GTT AGT GAGGAGGAGAT ACATGCCGT GTT AT CAGAGCAGTCAC TTT ATCCTGCAGGGTGGATTCAT GT AT AT ATTCT AGCATTT CCCT ACTT CAT GAAAT TT CT CTT AAATGCACGT ACAAGTT ACATGCTTCGT AT AAT CT G AAAAG AT AAAT AAG CT GAT ACAT GT GCAAGAT GATTT CCTT GTTGCAGCAT GT ACT GT GTT AGAT GTTTT C CTTGTTG CAGCAT GT AAT CT CATT CAT CATTT AC ACTT AGTTTT CTTT CTTTTTT AT T GCAGTT G AG AGCCGAGCCTTTTTTT CATTTT GTCTTGCTGCAATT CTTTTTTTTT G T GAAT GAAGCAGGAGAGCTGCGT GT CATTTCATT AAGAT AGAAAGAGT AT AAAACG AGTT GGATTTT GAAAGAAGCCCAACT CGCCGT AAAT AACCGAACACACT CCCACC CACACTGAAAAAAGGGAGGGGTGGGAAGATACATGACCAGGACCTGAACAAACT ACTCCAAACACT GGGT AATCTGGACCAACGACCTTGCT AGCAATT CATTCAGCTTT GAT GCTT CAGCCAT ACACCACAAACT GCATTCAT CATCT AT GGTCT GAAGAAGGGT ATGGAT ATT AGACAGCCCCTT CAAACACACAAGAATT CCGGTGCTT CCACACAAG GTTTTCAAGTCAGTAAGTCGAGTCGAGTCGACAAGGTACCGACTTGGTGACTAGT CGAT AAGT CAGTCGACT AGTCGTGGACTTGCCAAT AT AGTGGCT GTTTTGCCT AT A T AAT GGCTTCAT AT AGACAAT AT AT CAATT AT AT AT GAAGAAAGAGGAT GTTTT ACC T CTTTT G AAGTTT G AAATT G AACG AAACT G AAAT AAACAGCAAGTCTT ACCT CATTT G AAGCCT CAAACT G AACCAAAT CAGCCACAT AAGT GAT AAGT CAT AAACT CAT AAG T CAT AACAGT CAT AT AGTT CAAATTGG AAAACAAAT AGCAAG AAAAT AT AGTT CAAA CTT GAAAGGAAAT AAACT CCATT AGATCT AAGCTGCT GTT GT AGCT AGAT AGAT AC T AG AT ACCCT AAAT AT CT CCCAAAT CAAG AT CAT CCATTGCATTTT CTT CACCACCA GCACCAGCTT GAGTTGGACT GTT AT GT GGGGATTCACCAAAGT CATCCACTTCTTC AT CAT AATT AG ACAT GTACT CTTCGT CAT CTT GTT CATTGCCCT CATTGCCTTGCT C TTCCT CTTCCAT AACT CT CTCCTCCTGTGT AGCAGCAGCTT G ACAACGCCTT G AAT AAACAGACTCAT AT CGGGCT CTT CTT GGGAAGTTGCGACCTT GAAGT GAACT AGA AGCACCG ATTGCAT CATCCACAT G AGCCCATGCAAG AT CATCCCCTT CT CT AATT G TTT CATTTT GACT GTCCACCCAACAAGGT GCTGCTT CAACCTT CT AACACTTGCAT GAACAATTTTT CCACAAAGGATGCACTT CACCACAT CTTTTTT GTT CAAATCCGGC C AAT AACAAT AGTT CT AT GT CGG AT CCTTCG ATTTTGCCTTT CT CTT AGG AT CTTT A GCTGGATCATATGGCTGCTGGCTTCCTGACTCCCCTTGTGGTCGATCTGCAGATG CATCTTCCAT AT CCCT AGAGCTT GTT GT GACTT GT GAGGGCGGCGCAGGTTGCCG AGACTTGTCAGGGCGTGCAGAGGGGCGGCACAGGACTCACCACCAGAGGCTTC GACGGCCAGAGGTGGGCGGCGGCCAGAGGAGGGCGGCGTAGGCCTCGACGGC T GGAGGT GGGCGCCTGGGCGGCGGCCAGAGGAGGGT AGGCGGCCAGAGGAGG GCAGCGGGCAGAGGTGGGGCTGGAGGTGGGCGGCCGGTGGCGGGCAGAGGAG GGCCTGGCGGCGAGCAGGACGACGTGAGGGACTAGAGGCGGCTGTTGGGTTTA GGGTTTATGGTGTGTAATGGACTAATGGGCCTTTCTGATGTTTGGGACGAATTAG GGGCAAGT CGGCCGACT AGTTCGACCAAGT CGACGACT AGTCGACT AAT AT ATTC CAGTCGCTGGCAAGTCGACCGACTTGCCAGAAAAGTCGAGCCGAGCTCCCAAGT CGGCCTCCCAT GACCGACT GGACGACT AATCGACGACTT GAAAT CAGGGGTTCCA C ACCTCCCAT AAAACG AG AAT AAT G AGCG AGTT AAGCCCTTTCGCCAT CT CCTTT G GAACT CAT GT AACAGCCTTT CTT CT AATCAGT GAAATTTGCT GTT CT CGCCCTTT CC GCAT CTCCTTTGG AACT CAT GT AACAGCCTTT CTT CT AAT CAGT G AAATTT GAT GTT CTCTT GTT AATTTT G AG G GAG AAAAT GTT CAT CT ATTT AG C ATT G G AGTT C ACTTTT AAT ACAG AT G AACAG AAT AT ATTT AGTT CAT AT AG AAACT AAT AAT AAT AAT AAT CAA GAT AAACGTT CAG AACAGTCACTTT ATCGCT ACATT CG AACAT GTTT CAGCAATT AT ATT GAACT GAT AACATTCAT CGCAGAAAGT ACT ACAGAT AAGT AT AT AACATGCCTT T CTTGCATT AGCCAT AT CGAGGAGCAGT AT AAAAT GT ACTGGATTCTTTCTGGGAA CAGT AACACGCT GACTTTGGCATCTGCCCCTT AAT AGT AT GAT AGTTGCAT GT CT C ACAT GAAAT GAG AATT AACAT GGT ATT ATT GTT ACCTT GG AT CCTT CAG AAT AAGC GGCAAGT AGAAATTT CATT AGCT ATT CT AT AT ATT GT GTTTGCT GTTTCGAAAACGC T GCAG AAAT AAG ATGCAT GT CAT AAGG AGT AAT CTACTCCCT CT GTTT CAAATT GT AAGT CGTTTT AGCTTT GTCTT AAATT AAAGTTGCCT AACTTT GACT AAGT CAGAAAA AAT AT ATT AAT ATT AT AAT ACCT AAT AAAT GCACT AT CAG AAT AT ATTT CAT GTGTAT CT AAT G AAT CTT ATT ACTT GTT GT AGAT ATTT GT GCATTTTT CT AT AG ACTT GGTCAA AGCT AGACAAGTTT GACTT AAAAT AAAGCT AAACT ACTT ACAATTTGGAAGAGAGG GACT ACCT AT AT AG AAAAGG AT G AAG AAAG AGT GAT AT CAT GT CAAT CAAATT CAA CTT GTTTT ATT ACTGCAGAGCATGGACCTCATCTTTTTTT ACT ATTTGCACATT CTT G CT CTT AAATT CTTTT CTAGTGTTCTTAGAGGCTTGGAAG G A AT GGT CATTTT CTTT AACT GTT CCT GAG AATT G ACGCCTT CTT CACCTTTT CCAG ACT CAT CCTT CACAAA C ATGCTTT CT AT CAT CGAT CG ACTTGCAT ACT CAAT ACT CTT ACCAGGT AATT AAAG AAGCT GTGCT GAGTTGAT CT AT AAAAGGAGGT GTTTTTT AT ATT AAAAAT GAT AGGA CTT CT AT AGT ATTCATTTTTTT AT GT GACAACTT CT GCTT GAAT GAT CTGCT GTT AAA CAT CAAGT AATT G ACAT GTT CTTGCCAG AGTTTGGT AT CT GTTT CCT AG AAT AT AAT CCTTTT GCACTT AAT AAT AAT ACTT AGAT AATTT ATGGT CATCCTTTTT GACCAGAT GAT CTCTTT AGGT ACCAT GAGT AGCT AGATGCAT CACCT GATTT GCAT ACT AT AAA CT AT ACAGAATT AT AGACATCGCCGCACAATT AAAGAT GACCAAAGATT GTGGCCT CGG AGTTT AGCT AAAAACT AACTT AATTTTCGCCCT GAT AT CT G AAAACT GTCCCC T AACCTTT GTTT AGT AGCCATT AGGCTT AGAAGCT GATTTTT GACGGTCACAT ACC TTCCCCTT GT CCCAT AAAAGCAT GAGT AGTCCAAT ACT GAAAAGGCAGTCCAATGG AT ACCAT CT ATTTTT AAGTTTTT GTT CT CTGGTT GT GAACAT AAA CAT GTGCACAAG T AGCAACAGTGCTTCCACTTTTT CAT ATTT CAACT CT GT AG AAT AAAATCCATTT AC CT AACAG AAGT AT ATT AACT G ACACT AGG AAT GAT AAACCATGCTCCT ACAGTT AG CAAAAT CATT ATTT GACCAGTT AGCATTCTCATGGTTGCACT AACATT GAGAAT AAC TT ACACT GT AGCTT AG AATT GTT AG AT ACGT GTGT G ACAAT AT GTCAAGTT AT CAT C T CAG AACTT CAACCAG AGTCTTT CACCTGCTTT AACTTT GTT AT G ACACTTT GCCAT GCCTTT AACTTT GATT GAT GAAAAAT GCTGGATT CTT GT AGGTT AT GTT ACCAGAG GCTGTTGCAATTGTGGTCGCACCCACAGATCCAACCAGGCAAGTGTTCTTTGCTA AT AAAT ACT ACACTT GT GTT ACTT GT ACAT AAAATGGCTGGCAT ACATCTGCAGTTC CTTT GTT CTT AATTT CTTTTGCT CCT ACATT CTGGTT CTGGGT AAACTT AT AT AACGT AAT CT GAAAAT GCCCT ATTT GTTT CTCAAATTTTT CAGGAGTT ACGGAAT ATT CAGG CT GACT GAACCT GGAGGGATGGAT GTTCTT AGGGAGT GT GACGAAAGT GGGTT C CACACT CACCGAGAGACAACCAACGGCAGCCCAATCT AT GAAACCTGCT CGAAAG T GCACTTCAATCCCAACTT GCGGTTT GAGATT GT CGACCTGCGCT CGGCT CAAT G ATCAATGGGACTAAAGCTATGGCAGCACGTGCTCCCTTGTGCTCCCTCTTGGCAG AAGT AT AT ACCAT AGAGCTT GCT GACGATGCGT GAT AGGT AT AGT GACAGCGCCA AGCCGGAACCAAGATGCTCAT GTT ACTT AT CT GACAT CTGCGCTGGT ATTT GT CAA AGAAAAGGAGT AACT GAAAACT AGCACTGGTT ATCTT GTCT GTT CGGCCAGCCTTT GAGTTGGT ATTTT AAGT AAT ACT GT AT AT AACAT ACAACTGGGGCAAAACACACAC ACACACT ATT AACTTGGT CT GGGAT GT GATT GT AACGT AGCGCAAT AGCGCTT GAC T GTTT CTGTGGCACT GCCAATTT ACTT ACT AATT GTCAGT GACT GG AGT AT G AAG A AAT ACATT AATTTGGCAGTT CCTT ACT AAACCAATT CT CT ATTT CT ACT ATT CT AT AT GGCTTATATGGCTCTACTGTGGGCGTCCATACCTTAACTGGTGAAGCACGCCCTT GCCTTGTCTCCTCGTCGCACTATCCACCGCGATCTAGTTCTCCTCGGCGTGGCGC AGAT CT CCT CGGTGCGGTTT AGATCGGCACGAT CCACT CCCCCACCCAT CTGCTC T CCAT CGGCGCGATCCACT CCCGT GT CGCT GT CCACT CCCTCACCCATCGGCGC GAT CCCCTCCCGT GTCGCAGCACAGATCT CCT CCTCGGCGTGCAAAT CCGGCT G TCCTCGCCCCACTTTCCTCTCTCGCCGCAATCCCTGCTCTCTCTCGCCCGGATCG CTGCCCCAG AATCCCATCCGT GTT CGCGCT CTCCAG AAT CCCAT CCACT CCCCAA AATCCCATCCGCGTCCGCGCACTCCATGGCGAGTCCTCCGCCCTCCGCTCGGAT CACGCCCCAGCCT CCATGGAAGGGGAGTCCTCTCGAT CAGACT CCGCGT CCGCA ATCCCATCCG AAT CT GT CT CGTTT CGTCGCAATCCCT CT CG AT CCACGT CT GTGCT GTCCATGGAAGGAGAATCAGACGCTCCAG
SEQ ID NO: 25 Maize Zea mays (B73_RefGen_v4)>ZmAMSH2 Zm00001d011512_T002 peptide: Zm00001d011512_P002 pep:protein_coding
MGSRRYDIDTRRCGIHSRPTKSMYLDAQQIVSCQTRVGDHDVGSCAVKHHFPSPIVS WIEDLSSFGNASFNPVSEYVDEQARASVGQSSASSNLHDMQISVRLTAEFMELAKEN TSN N LETCGI LGASFRDGTYFVTMLI I PKQEGTAHSCQAVSEEEI HAVLSEQSLYPAGW IHTHPSQTCFLSSIDLHTQYSYQVMLPEAVAIVVAPTDPTRSYGIFRLTEPGGMDVLRE CDESGFHTHRETTNGSPIYETCSKVHFNPNLRFEIVDLRSAQ
SEQ ID NO: 26 >OsAMSH2 CH398235.1 dna:supscaffold supscaffold:ASM465v1 :CH398235.1:60659:69166:-1
T AT ATTTT AATT AATT ACAT AAT AT AAAT ATTT CT CAACTTTTT CT CAATTTT CTCGTC TTTT CT CGCCGTTGCAAGT AAAGGCATTTTTTCT AGT GGT AT CAT AAAAGTTT ATT A GAAAAT AATT AACAG CATT AT G AGG AAAAAAG AACT ACAGT AAAGGCGT AAAGCCC ATCTTCTGTTGTGTTCATCTTGCTCGTTCCTCCTCTCGCAGTCGCAGGTCGCGTCG GGACGGCGGCACCTCGGTCTCCTCTCTCTCCTGGTCGCGCCCGGCGCCTCTCTC CTCCTATTCGCCGTGCTAATCGAAGACCGGCGACTGCTGCACTTTCTCCCGCGGG CCTCGCTGCCGCTCCACACCCTTTCCCTCGGTTTATCGCCTCCGCGCCGCGTCGT TCTGCCCACGCCCCACCTGCCTGCCTGGCTGCCGTTCTCTCTTCGTAGCCTGCGT GGCCTTGCCCCTTCGCCTCTGTGCGGCTTCCCGTCTCAACCCCCGCTCTGCCGG AGTGGTCCCGCGCCCTCCACCAGATCTTCGCCTCTGTGCCTCTACTGGATTGGCC T GGACATCGCT GT AAAAGCT GGGCGGAT ATT AGGCACCACGAAGAT GT CCATGCC ATCATCTCGCCAAGCTATGGGAGAAATCAACATCGAGGCGATGGCACGCCCAGTC T CCGT CGACCACCGCATCAGCATCGCCT ACT ATTTCCGCAT CGCCGACAACCTCC TCCGCCAGGTCAAACCCTAAGCCGGAATTCCATCTACAATCAGTCCCGCTGCCTC TT AGAT CT CACCATCT AGTGCTT AGAT GTT AGTTTT GT GT AT AGGAGGGGGCACGT TTTGGAGATATAGGGCATGGTTTAGCGAATCGAGCACTATATTTGCCACGCGATCT ACATT AGATTTGGTTT ACAGTT GGTT GT GTTTT GT AT GTTTTT AGGCCAACAT AT AT AGGG AGG AG AAG AAT CTCGT AG ACCTTT ACAT CAT CCTT CT GAG AT ACTCG AGGT GGGTGCACAATGTTGGTTTATCTTTGCTTTTTAGCGTGTGATTATCGCTTGGAGAC T AATT ATTT AT AT CTGGT GATCACTGGT AATTTT CAGTTTGCT GT GT GAGACT ATCC C AAAACATCGT GATT AT CAT GCATT CAAGCT ACG AG AAAAGG AATT CTT G AAG AAA GGCCCACACAATTCT GAT GT ATTGCTT CTCCT AAACCTTTCAAGTGCCCT GCTT AC T ATTTTCAT CATT CTTT GATT GAAT GT AT GCAT GAACAAATT ATTGCT AGAAT GT ACA AGTTT GT CAGGGT AAAACGCCAT GTGGCATCT GAGGAT CTT AAT ATGCCATTTT GG ACTT AT AAT ACAT AT AGCAAAACTTTT CTTTT GAT GAAT CACT CAAAAAT AT GTT GAT GTTTT GTT GT AGAAACT CTT GAAT GTT GTT AAT GAGCTT GAGACT CT GAAGCCAGT TGTGCT ACGGCAAATTGCT GACCTT AAT AGAGGGGT CACACAAGAACCT AAT AGT CAAAGTGGAACCT CTGCT GCAATT AGT CAGATGGAT CATCTT ACCCAAAGTT CAT G TTT CACACAGGT ACT ACCACT GAT GTTGCATT GAATT GTT GAAT ATTCTT GT GTGGT T ATTCTGGTT AATT CATT AGTT CTTT ACTT GTGCAGCCATT GGTTGGAAGCCCT ACA GGATT ATT GAAGATGCCATTCT CTGGAGGGAAGCATCAAGT GGAACCAACACAAA GTGGCAGACCT GAT AGTCAGCTT GTCAAATCGT GAGT GT ATT ATTTGGCCATT CAT ACGCAT CT GCAT GATGCGGT GT AT CCT AAGT ATCTTT GTTT GATCT AAAT AGT GGC T CAG ACGT AT G AAGT ATGG AATT CCAG ATT AAAAACTT GAT G AAAAT CACGT AAGG T GCAG AT CAGTT G AATTTTT ATT ACCTT G AACATTT CAGT AAATTT G AGCAAT GTTT CAGCACTTT ATGCAT AT AGACTGCAT ATCGAAGCCCAT AGGTTCAAGGT CTCAAGT GCTGGTTGGAACGTTGGGT AT GTCGACTT GTCGAGT GACATGGATTTTT CTT AAT A GAT CT AACT AACCT AGTT ATTT GT AAAAT AAT AAACACGCAT AACTGGTCAGT AT CA GTCG GTT CAT C A AT C AGTTGT GAAT GTAT ACTTT GATATGTGG GAAT G G GT CAT GT ACTT GAT ACTT GAAT AG AAAT CAAT AAATTTTT ACT GCATT CT GATT AACGCGT AT G GTCTT ATT CT G AAAT CATTTT AT AT G AAAATTTT AATT ATT GG ATTTGGTTTGCAAAT T GGTCAG ATT GGCATGCCT AT AACT CTGCCT CT GATT CT CTTTT GAT AT CTTT GTTC T ATCCAACTT GAGGTCAT AT AT GAAT CT CATTTTTTGCTTGCCT G AAA CAT ATT GAG T ATT CTGT ACAACT GTT GAT GTT AGCAT ACA CAGT GT ACATTT CAAT ATTTTTT CT CT T AAT ATGCAGGACAAT GTT ATTT ACTT GAT GT GT AAATT ACGCAGAT ATGGCAATCT GCCTT ATCCT AAAGAAGAAACTCT AT CCAGACATT CGGT ACT GGGGCCT AAT GGG CTT CATGGCAAAT GGACGT CACCT GTT ACTGGT AT CAGGGT AT GATT ATTTT GTTC T CATTTTTT AT AT GTTTTCAATTGGCAACT AGT GACAT ACT AT GAAT GAATT CCATT A CTGCTT GTTGCAGAT CCAAT AT CCAAGT AATGCT GAACT AACCAAAAGT GAT GT CT CT AGGT GAGT ACTCCGTT AGTTGCAGCT ATT CT CTTT AAG AAGT GTTTCCATT CAC ATGGT CACAT CAAT AT CACT G ATGCT GTCTTCCCCGTT GT CCTGCAGTTT AGT ACC AT CAAT CTT G AACCAAG ACCT CTT AT ATGGT CCT AGT AGAT CACAAG ATTTTCCAT C AAAT AAAAAT GAGGAT AT GCAAT CT GTTTT GTCCCT AGACGATGGCCGATT GTCTT T ACCAGT AGAGGAGGCAACCT CT GT GT CT CCTGGTTTT GAAGAAGAATTTTCCCA GTT GAAT AT CAGGCAACCTT CT CCCCCACCT GTCAT GGCACAAGT ACATCCACAG CATAGGGCAATTTCTACATCAACAGTTGCTGATCTGGGGCCAGGAATTGCTAGTT CT AGCACT GGACGCT ATCAGAATTTGCAT GTGGT AAATT CCT ACT GT AGTTT ATTT A CATT ATTTT GGT ACT ATT ACAGATCCACCGCATT AT ATT GAAGGCAT GAAAGT GTCT C ATT CTT CT ATCCCCATTT CAT CT GT ATATGT ACTT CTTTTTTT ACTTT GATT G ACTT AT GAAT GATGCTTTTTT AT ATTTT ACCT ACTT CT CAGCCGGT GACATT AATGGAGT G TTTT CT GAGGGTTGCT GAGGCAAACACT GCAAAT AAT CTGGAAACAT GT GGT ATT C TTGCTGGT ACT CTGGT AT G AGTT ATTGCT GTCAACAT GG AGT AAAAT AG AT CACCA TT AT GT ATGTCT ACATT ACT AACACAGT ATTT AT ATT GT AG AAAAAG AG AACTTTTT A T GT G ACAACACT GAT AATT CCT AAGCAG AG AT CAACAT CT GATT CAGT AAGTT GT C T AT ATT CT GTT AT CTT GTT CAGCACTTT CTT CAATT AG AT GTT G ACT CT GAG AT GAG CCCTTGCCT ACT ATT ACGTGCTT GATCAT GT AGAGTTCTT GT AGAGTCCCTGGTGC T CCATT CT CT ACAGT AT ATTTTT GTAT CACT AACAACT AATTT ACT G AAAT AATT GAT T AACAAACATT AGAAAAGATCAGT GAT AGTT ATGCTTTCAT ATGGCTTTGCAAT GAT GAT AT GACACCAT ACCT AGT ACAAAGT ACGACAGAAG AAAAT ACT ACTCCCTCCGT TT CACAAT GT AAGTCATT CT AGCATTT CCCACATT CAT AGT GAT GTT AAT GAAT CT A G ACAT AT AT AT CT AT CT AG ATT CATT AACAT CACT AT GT AT GAAT ATGCG AAATGCT AGAAT GACTT ACATT GT GAAACGGAGGAAGT ACCAGCCACAT AATT ATTTTT AATTT GTCT ACTGCT AT AAAGATGCAGTCGTT GT CCTCCCT CCCTT ACCGCGCGCAGTGC AAAAAAAT AAACT GAAT CAGCCCACT CCT CCCAG AG AATT GTTCCCAT GT AAAGGC T AACCCACCAAGAAAACCGGAAT AGAGAAAACT AAACCCT AT AAAACCATT AT GCC GT ATT ACT CCAGAT CCCGTTGGAAT GCACGGGCAAGTT GATGCCT GT GTTTTT AG GAGCTTT GTCTT GAT GATT CACT CTT AT AT AT AGT AATT GT ATT CCT GAAAGCGGT G AGCACT AG AAATTTTTT CAGTCTT G AGTT G AAAT AAGTT G ATTT GTTT AGT AGCCT C AGT AAGT GTCAGTT AATTGCCT AT GGATTTTTT GTTTTT GCAT GTT ACTTT AT ACT G CAATTTTGCAT GTT GCAGCACAGT ACT CAAAAGGT AG C ATTTT A AG A AAT AAAT AT A T GAT CTTCCTT GTTTTCCAGT GT CAAGCT ACAAAT G AAG AAG AAAT ATTT G AAGTT C AGG ACAAAGGCT CACTTTT CACT CTT GGTTGG ATT CAT GT AAGT CCAATT G AAAAA ATGT AT ATT GTT GATT GAT CAAGCT AATTTTT GCTCTGAGTGTTG CATT ACTCTGTT T GTGCAATTTTT AAAT GT CTT GAGATTCAGACAT GAGGGAAAT GT AAACGTT AGAC CT AT AT CT GTTTT CT AACTT GCAAT AACT ATT GAAGGCACCACT GATCT AGCAT GAC T AACT GCGGCT ACT CTGCT AT GT CT AGAT ATT GACAT ATT GT ACACTTT GTTTGGG AAGCAT ATTTTGT AAATGGAAT ATTTTTTGGGT GTTT GCATCTCCATTTGCAATTCC T GTTGCATT GTT GAGACAT ATT CGATGGTT ATCTTGGAACT AGGAAGTTT AACAT AT G ATTT ATGTCT AT G AAATT CAAT GTT ACCAT CTTT GTGTT CAAAG AGTTTGCAAT CC AT CAG AT AT ATTT G AGTCT AAT AGTTT AAATT CATT CTGGGGTGCCAT AAT ACT CAT TTTTT CT AT AT GT AGCATTTT AT CTTTTTTTT CCTT AAT AT AAAAT GATT GTTCG AAT G ATGCAGCAAT AT AATT GTTT G ATTTTTTTT CT CAT CG ATTTT CT GTT CTTT CCAG ACA C ATCCAACACAG ACCTGCTT CCT AT CTTCCATT GAT CTT CAT AAT CACT ATT CAT AC CAGGT AAT CT CCT AAACTT ACTGGTGCCAT ACTT GTCTGGT ATT GT GATCAGCT CT CAGCTGCT CAGT ATGCCATTTT GATT AATCCAT GT ACAGTTT ATT GTTCAACAGAGA AAAGTCCT GTTTT GGTCCAT CAACT ATT GCCCTGGTCCAACTT CG AT CCCAAACT A T AAAACCATTT ACTTTTGGT CCCTT AACT CT CAAACTT GT CCACATTT CAT CCCTT G GGTCAAACCAGGGTGATTTTTGTGACTTGGCGCCTATGTGGAGTCCATGTAGGTG GAGT GAT GACATT AACATGCCAAT CAAT AAT AAAT AACAGCAAAAT GAAGAAAAT G CT ACAACCT AGT ACAT GT CAACCAT GCTT CCTTTT CCT CTTTTT CTCCTT AATCG AT T AAT ACT AAT ATTCT AT ACATT ATTT ATTTT AAATTGCT AACT AGGATGCCAT GT GGC ACCATGTCATCAAAAACCACCCAGGGGCCAAATGTGGACGGTTTTGAGAGTTGAG GGACCAAAAGTGTGCGGTTCCATAGTTGAGGGACCAAAGTTGAACCAAGGGCATA GTT GAGGGACCAT AAATGGACTTTT CT CATT GTTCAATT GAACCTT AGATGCTT AC CATT CAAAAT GCAT GTT AGCG ATGCAACTT GGTCAT GT CAAGT ACT GTT CTTT ATT G ACTT GTTT GT CAAAT G AACTTTT GTGT G ACT AAT GTTTTT AT ATTTT AAAAACT GTT G GAT GGAATT GTTT ATTTTTT AACATT GT GTT CTTGGCAT CTTGCT GTCAAT AGGTCA T GCTT CCT GAAGCAATTGCAAT AGTT AT GGCACCT ACT GAT ACAACAAGGT AT CT G TTCCACT GAACATGCTT CCAAAATCT GT GGGCAATCT AGTTGGCAGCT ATGGAT CA TT ATGCT ATGGAT GAGTGCT GACAACT GTT AAGGATTTTT GTTT CTT CTT GT AGATT AT CTT AAAACT GTT G ATTT CAT AT CAGT AGTT CTTTTT CCAAGGG AAT CT AATT CAA CTCTTT AAAATT AACCT ATTGGGATTT GGGAAAAGGAAT AAGGTT GT GTTCGGCAG CCTGGATTGGGAACCCATGCCCCGCGCACGGAAAACGGAGCGGTCCATTAGCAT GCG ATT AATT AAGT ATT AT CTTTTTTTTTT CAAAAAT GGTT CAAT AT G ATTTTTTT AA GCAACTTTCGT AT AGAAACTTTTT GT AAAAAATGCACCGTTT AGCAGTTT GAAAAGC GTGCGCGCGGAAAACGAGAGGAGGGAGTTGGGAAGCAGGGGCAATGAACACAG T CT AAGT CT ACTTCACCCCCT GAAGT ATT GAGGCTGGT CT ACAT AACCCCCAAAAG T ACG AAACCGGGT ATT CTGCCCCCT AAAGT AT CAAAACCAGTTT AAAT AACCCCCT AGAGTGGTTTT AT ACATGGTTTTGCT GT GCACACGAT GACAT GT CAATGGTTTT GG T CT CTT GGACT AT AGAGACT ATT GT AACATGCT AAGCATTTT ATT GACAAGT GAAAC GGGCT GAGAAT GAT GT AAATT AGT GTT AAT AT AT ACTCCCT CCAACCCAT AAT AT G AGGCGCACAAGCATTT CAAGATTCAACTT CT AAAAT ATTT GACCAAT AATT AGT AT A AT AT G AATT G AATTTT ATTT GTT GAGAAT ATT AT CATT GG ATT G ACATTT G AATTT AC TTT CAT AT GATT AT AATTTT GTTGCT AT AAT AAACCTT ATT AT AGGACAT GAGAAATT AT AAGCCAATCGT AT CAAGTTT GACCATT CCTT AT ATT AT AGGAT CGTGGGAGT AA T ATTTTTT AGGCTTGCCGAT CAGT GAGT GAAAAGCAAT AGTT AGAT CAACTT GGGT TT ACT AGACT AATCTTT GT GTCATGCAAGCCAAT ACCGCTGCCACGT AAT CATTT A CATGGCAAAACCACCT ACAAAACT ACT CT AT AGGGGGTT ATTT GAACTGGTTTTCA T ACTTCAAGGGTT AGAAT ATCTGGTTT CGT ACTTT AGGGGGTT AAGT AGACCAACC CCAAT ACTT AT AGGT GGT GAAGT AGACTT ATTCCTTGGGAAAAAAGT CTT GTT GAC T GCAACAACGT ATCCACT AGT AAATGCATTTTGCGAAGT ATT AAATGCAT CCCAAA ACTATGAATGGCGAGTGGCACCTGGGGCAGTAGATACTAGATGCATATAATATTTT AATT GT CT CACT AT CATTTT CAT AT AAAAAAAAT CAAAGGT GCATGCTGGAGACCAT GAT GCT ACGCT AAT GTCAAAT ACGTT ACAT ATT CCT GCACAGAGAATTT CTTT AACC T GCT CACAT GCT GT AAAGCTGCTCT GT AGCCGTTGGTTT CCTTTTTT GAGAT ACTT CAATTT GCTT AACT CAACGT AACAAGGACTGGT ACAGTGGCCCGAT GTCTT GAAAT TGGCGTCCT ATT CAT GTTT ATTCCCATTT GAT CACGTGGCT GTTT CTTTTTT CATT C AACAGAAAGCATGGT AT ATTT CATCT GACGGAT CCAGGTGGT ATGGGT GT GAT AC AT GATT GTCAAG AG AGTGG ATTT CATCCT CAT G AGG AGCCT CTCG ACGGT ACCTC T AT CT AT G AGCATT GCTCCCAT GTGT ACAT G AACCCAAACGT G AAATTT GAT ATGG T GGAT CT CCGT GAACT GT GAGAAGCTT GATT CCGTTT GGGGAAGTT GTTCACTTTT GACCTTTTTCT GACAAAT ACATGCCGCT GAGCTT ATTT ATTTGCT ACGTTGGAAGG CCT GTT AATTTGAT GT AAGCGTTT GT AAAT AGCT AGGCCATT CAATTTCCGTGCAT A GGGATCTT GTTTT GGACCAAT GCT AGTTCT GGTT ATGGAGAGTGGCATCACGAAT GT AAT ATCAT ACATTT AACTGGCCCTTTTT AT ACCCT ACAGCAGAAT AAGT AT CCT A C AGCAATT CAAGTT CT AACT G AATTCCT AAT G ACAATTTTT GGG ACAGCCT AT AT GT GCAAACGCAACTACGCGTCGGGCACCCCATGGATTCCAAAAATTGGGCGCCCCC T GGAGTGCT GT CACCAT GT GCTGCAGT CTGCAT AGCATT GATTTTTCTCTGCACAT GCTCTTTCTCCGCCAGCAACGCAAGCAATGCATTGCACGCATGCAGTCATCGACC GACT AT GAATTGCCT AATTTT AT GGCGCCGGT AGGAT AGAT AGACCCGGAATCCT CCCATT ACCGCGT CCTGCTGCCCCCACATGCGGACGCT AATCACGT GATT ACTGC TGATTAT
SEQ ID NO: 27 Rice Oryza sativa (Indica Genome assembly: ASM465v1)
>OsAMSH2 BGIOSGA040458-TA peptide: BGIOSGA040458-PA pep:protein_coding
MSMPSSRQAMGEINIEAMARPVSVDHRISIAYYFRIADNLLRQANIYREEKNLVDLYIIL
LRYSSLLCETIPKHRDYHAFKLREKEFLKKGPHNSDKLLNVVNELETLKPVVLRQIADL
NRGVTQEPNSQSGTSAAISQMDHLTQSSCFTQPLVGSPTGLLKMPFSGGKHQVEPT
QSGRPDSQLVKSLHIEAHRFKVSSAGWNVGYGNLPYPKEETLSRHSVLGPNGLHGK
WTSPVTGIRIQYPSNAELTKSDVSSLVPSILNQDLLYGPSRSQDFPSNKNEDMQSVLS
LDDGRLSLPVEEATSVSPGFEEEFSQLNIRQPSPPPVMAQVHPQHRAISTSTVADLGP
GIASSSTGRYQNLHVPVTLMECFLRVAEANTANNLETCGILAGTLKKRTFYVTTLIIPKQ RSTSDSCQATNEEEIFEVQDKGSLFTLGWIHTHPTQTCFLSSIDLHNHYSYQVMLPEAI
AIVMAPTDTTRKHGIFHLTDPGGMGVIHDCQESGFHPHEEPLDGTSIYEHCSHVYMNP
NVKFDMVDLREL
SEQ ID NO: 28 >GmAMSH2 1 dna:chromosome chromosome:Glycine_max_v2.1 :1:3182349:3188300:-1
TTTT AAGGTTTTTTTT AT CAAT AAAT ATT AAT AATT AACATGCT AT ATT AGT GAAAGA TT G AAT CT CAT AACCTCCTT AT CACTCCAACACCCTT ATGCAAT CATT AAAAAAAAC T CCAATCCTT AT GT CAGT CTCCCG AAT ACCAAAT CAT CTGTAT G ACTT AAAT CACCT TT AT GACT CTT AT GATCT ATGGGT AT AAAAGCAGGAATT AACTT GTCACT CAT CACG GCCT AT AT AGTTTTTTTTTTT CCGTT ACAACTGCAAAGATTTTGCATTTGCCT GTT A G CTTTTT CGTCT C ATTT CT G ATTTT AGTTG CTTT ATTT CT G ATTTTT C AATTT G ATTTT ACTTCCTTGGTT ACAGGT ACT ATTTGG AAT GTT CT CTT ATT CAAAATT AAAACATT C ACACT AT GAT AAAATT AACT CTTT CAACT AACTGCT AG AGGGG ACT GGTAT CAACA ATATGGT AAT CAAATTTT G AAT CTT AGTT AAAAG AGGT ATT CACAAAT CACAATT AG T CT CT GT ACCAAAAAAATTGGGT AAGGAT AAAGATTT ATTTTTTCAACT AAGCTT AA TTT ACACATTT ACAT AAAACTCCAT GTT GG AGTTCCACGTGGCTTTT GT AGT GAT AG AT AAT GT ACAAATGGAGCCAT ATGCTGCGCAGTTTT CT ATT CAACT GTT CAGAACT TT AG ATTT ATCCAATT AT CTTT CT AT AG AAT AAT ACAATTTT CTGG ATT GAG ATT AT G T ACGGT CT CCT GAAAATTTT AGAT GAACTTT AT AAAACAT AT ATTTGCCTT GT CT AG GAAGGAT AGAGGAGAGGTT GAT CTT GTTTTTGGTT GATTCAGTGGT AAATTCTCT C CAAGGTGCACGTGCAT CT CAGCAACT GAATCATT CATCT CAGTT GAT AAAAGAAAA ACTT CACT GT AACAAAGGT AACAAAT AT G AATCCTTTTCCTT AGTTT CAT GTTT CAT CT AAT ATGCAG AGT ACCAG AAACAAACT AACAG ATTTTTT AGCCAAAACCAAG AAA GAGGGGGAATCTAAAGAAAATATGGAAGAGGGGGAATCTAAAGAAAATATGGATA TTG AT CAT CTTT AG CAT GT G A AAG CTTG G C AA ACT CAAT A ATTTT G C AA AT AA AG G GTTTCCACAATT CATTT ATGCT AG AAAAT GTGCT G AGCAACCGTTTTCCCAGTTT CT CTTTCT GGACT CT GGTT GT GTTGCAT GAGTTT ATTTT ATTT GTT AAAGGGT GGTTT A ATTTGGAT AT CGT AGTT AGCAAAGT ATT GGTTCCTTCT AAGGATTT GAAT AATGCT G CTCATAAAGGGATTAGCCTTGGGCTGAGAAAGGAGGATTGATGTTAAAAAAGAGG AT AAAGT AT CTTT AGT AT AT GATT GT CT ATT ATTT AGGT GTTTT G AGT CTTT G AAAT A T ACAATT G ATTGTT CAACT ATT GAT CT CT CAG AT GT ACAAAAGGT CT AAT G AAG AAA AGGATGTAAGTAGTAAGAAGGTAAAGCTGCACATCTCCCACCCCCTTTTTCCATTT T AAATT ACCTTTGGTGGT CTTT GT CATTT AT AGT ACTTT CT AT GACAGGTT AGAAAT T GT GAT ACAGCAGAAAGCAAT ATTCAAAGGT ACAAAT AT AAT ATT CAACAT CT ATTT CTT ACTT CATCTTTTT AGGAGGT GAGGAGCAAT GATTTTT CT GAGTTTTCT AAAACA GCCCACAGATT GT GT AGGT GTT ATT AGAACAT AATT GT AAT ATTTT GACAT ACATT G GCAATTT GTTTT GTTT GAATGGGATGCAGCGCGATT GT CGAT GGCGAGGACACAT CT G AG ATTCCAT CATT CCCATT AGG AAATTT GAGT ACT AGTT GGTGCT CACTGGTT T GT AAACCGGCTGCT ATT AAGACAGCCAACAGAT ACTT CTTGCTT CAAAAAGT AAC T CAGTCCTGGCCTT CCCCT GCCTT GT GTTTT GTGGAGACAGTGCCTCAAGATGCA C AAAGTT CT CAT GTT ACAGCTTTT AATT CAGGT GAT GG AT CCT CAAAGT CGG ACAA CGAACGGGAT GTT CAT ATT GT AAGAACT AGT ACT CCAT GTCT GAACCT AT CT CACA CT GAACATT AAAATT GTCT ATTTT CAAATTT GTGGCACTGCT GGACTT GT GTTT AAC AT CAAAATT GTCT ATT ACCAT CAT ACAGTCT AT ACT ATT GCAGGCT ATTT AT GTTT AA T AAGT ATT CATTT CAT GTTT CCAGTCAATGCGGTT AATGG AGG ACTTT CTT GAT CTT GCT AAAGAAAAT ACAGAAAAGGATTTGGAAACTT GTGGT AT ACTT GGTGCCT AT CT T GT AAGAAT ATT AATT AT AAAGT AT AAAACCTTT AACTT ATTGCCTTTGGCTGCCAT GT AAGGTTTT GTTTT ATGGAAAAAAAT AAGGAACCT GAT GT GAT CAT ATGCATT ACA AAATTT GAAACT GAAAT ACCATT AT AT CCTT CAATT AT CCAGGAGAAGGGAACCCT CT ATTT GACT ACCCT GAT CAT ACCAAAGCAGGAAT CAGCTTCCAATT CT GTT AGT A T CCAGTTTT ACAAT ATTTTTT AGCACAT ATTTTCAAGAGGGCCT GATTTT ATT ATT AA TTGTTGCT AACTTGCTGCATT GAATCACAGT GTCAAGCT ACAAAT GAGGAGGAAGT TTTT AAAATT CT AAAT GAAAG AT CCCTTT AT CCT GTGGG AT GG AT CCAT GTATGT CT T CCAACCT ATTTTGCAAT CGATTCT GT CAAT GTTGGATGGGT CAGGTTTGGGGAGA AAAT AT CAATCCAAACAAACCT AACTT GTCAACT GTTGGGCTGT AAAT AT CAT CAG A T CAGGGAT GAAACCCAACAATT AACAGCGT GTTTT GATCAT AT CT AT GT CACTT CA T ATTGGT GGT CT AAAACCACAATT CTT AT AAGG AAG ACAAAT GTTCCGTT ACAT ACA TGTGAGGTTGCAGTAG G AA AC AT CCTA AG CAT AT AT CTT AG G GTTG GAT G GGTT AGGCCCAGGGGATTAGATTCAGGGCTGATTGGGTAAGCTTCTCTATAATCACTTC T AAG AT GAT AAAAT AAG AAAAT AATGG AAT G AGTTT CTT AT G AGTT AAAAT G ACCT C T CCATT AACT AAT GTGT AG AT AT CTT CT CAT CTTTT ACAAATT AACT AAT G AG AG AA CTTTT ACAAATT AACT AAT GAAGGGCT CATTTT AGCTT AT GAAAAAACTCAT CATTTT TTT CT CTT AAAATT GTTT CT AGT GAAGCTT ATCCAAACAGGCCCTCACT GT GTTGG GAACAT GT GTT GGGAACAGGTTGCGAT ATT AAAAATTCAAAACT GACCATT GACCT T GTTTTG GTTG GGTT GTCATT AAGT AAGTTT AGTT GGT AAGGGT ACAAACTTT GT C CAAAATT AT AGTTT AAAGCAT GACAAGT ACT AAAGCAT ACT AGGAGTTTTT AT CCAT C AATT AAGTGGTTTTCCCCTT CTTT GAG ATT AT ACCTTTTTTT GATT AAAAT AT ACAT CACTGGT ATT AT CTT AGGGATCACT AT AGCCAAAATT ACTTTT AAAACCT AAAT CT C T AT AAAAG ACAAT AT CCT CCT GGTTT G ACTT CT CT AACCCTT CT CTT CT AAAT AATTT T AG ACA CAT CCTT CT CAAAGTT GTTT CAT GT CATCGGTGG AT CTGCACACT CAAT A TTCCT ACCAGGT GATT GAT CCAAGTTTTTTTT GTT ATT ACACACTTTT CTT GT AAAA GCATTTTTTTTT CAACT ATT GTCAACTT GT AACGGCATT AG AGT ATT AT CTCCTTT AA GCAT ACATTTTGCATTGCATTCCACT CGAT GAATTT AATT AAAATTTT CAACTT AAAA T ATTCCCTTT AAAAT AGCTTT AAGAAGATTGCT GT ACAT AGT AAT AT AT GT GAATTT A ATTCGTTTTGCTT AATTT GAT GATT AAAGTT G AATT GT AAT ACCT AT CT AT CT AATTT GAGAAATT ACAATT ACAAAAT ATT CCCTTT AACAAAT CAACTT AAAAT GAAT AGCAG GT GAT AATT AT AAT CAACCT AACCATT AAAACTCGCATGG AT ATTT ACT AAAAAT AT ATT CTTT CT ATT CTCCCATTGCAG ACCAT GTTTGG ACT CACAGTTTGGT GTT ATTT T ATCAGGT GAT GATT CCT GAGGCATTTGCCATT GT CTT GGCACCAAAT GAT ACCT C AAGGTT ACCT ACT AT CT CTT GTT CT AAG AT ATGG AT G AATT CT CACAAATT CTT AGT T ATCTTTGCGCT AGCAT ATT AGCT GTT GTTTT AAATCTT AAATTTGGAT ATTT AGTTT ATT CT ACTT GT CATTTTT GT CTT CT GTTTTTGCTT AT CTTTTTTT AAGT AATTCCTT AC TT AT GATT G AATCCAATTTT CATTT GAG AT AAT GT ACAAT ATTTT G AACAG AACCAC CTT ACAT GTT CCT GT GAATTT GATTGGATT GTT AT AAGCCT ACTGCAGAT CT ACAAT GAT AAAGT ACTT GTGCCT AGCTT CT CTT GAACCACAAT AT AAGTCT ATTT CCGAGT A T AAAAATGCT AT GTT AAGAAAGGGTT GT AGTCCACGGACGCAAT AAGTT CACT AGT T GT GT AAT ATTTT GT ATT CTTTT AGTTTT ATT AGGAAATGCAAAGAAAAAAT AT AT AT AT AGAAAAAGAATT GT GT GT GAATT ATTTT AACAAATGCT GAT AAAAGCATT CT GGA ACT CAAATTT GT CCAGG AGCT GT GG ATT ATTTCGTCT G ACCAAACCT G AAGG AAT G AATATTCTAAAAAATTGCCAGGAGACAGGATTTCACCCACACAAAGAACCAGACAA T GGCAGCCCCGT AT AT G AGCACTGCTCCAAT GTGT ACAAAAACT CCAAT CTAAGG TTT GAAATCTTT GATTT ACGCCAAAAAT GACTTT GAT GGCAACACACT GT AT CAT AT G ACAG AT AG AAGCAT AGTT ACAAAGG AAT GTCCCAGTT ACACCT G AAAG AAAAAA GCT GAAT ACT GAAT ACAACAGTT GT AAT GTTTGGTTT AAT GT AAT AAGGT AGGTTT A GT AAGTTGG AT ACCAACT AACT ATCCACGCT AAATT CAAAGCTTT AGGAAAT AAATT T AAT G AGG ATT ACTTT GCTTT CT AGCT CCATGCCT CAG AATTT ATT CAT CT AAGT T CACCTT GAATTCCAAAAGGTT GAAGTTGCT GT AACAAGTCAT CACATGCTT GAAA CTT AGAAATT GATGCAACAGACT ATCT AATT GTTCACGT GT GT AAT GTTTTGGCT AC AT GAATCTT GT AT ATTT GAATT AAT GGAAT GAT GTT AGGTTGGATTTTTTGGATT GT TTT AAAAAAAGACAAAAT GAAAT AAAAT ACGGT CAAT ATTGCATT CAATTTCATT GA AT ACT ACATTT CAAT ATTT CATT AGTTTT AT CT GAT ACTCCT GTTT CT CTT CCT CACT GAT CT CTT GG AG AT GTGG AAT AG AACCAGT ATTTTT CTT CCCCTTCCAAGGG ATCC AAAT GAAGCTT AACTT AT CGCTT AAATCTTTCAACTTT CGCCAAGGTT AACAATTT G TTT AATT ACTTGCT AAGCAGTCCAAGT AAT ACAAAT AGT GGTT AT GTTTGGATT AAT GTTGG AAAAGT ACTTTT AT GAATT CCAAT ACAT CATT GT GAATT CT AATGCACAAAT GAAAAAGGAAG AATTT ATT GTTTT AGG AGT AAAAT CACTTTT AAATTTT CACAACT G AAATCCAAACAT CTT CAAT GT AAAT AACTT ATTTTTTT CTTTT G ACTTTTGGT G AAT C T ATTT AGTT ACATGG ATTTTT CTTTGGT AAAATT AT AT AT AGTCTT CT AAATTT AAATT AG AATT CAGTTT CTTGG ATTTTCCCACAT ACTT GTCAT AG ACAT CG ACAGCCTT G A CTCT CAT CCTTTTTTGGGT CAT ATT AT GACT ATTT ATTGGAACATTTT GA
SEQ ID NO: 29 Soybean Glycine max (Genome assembly: Glycine_max_v2.1) >GmAMSH2 KRH74594 peptide: KRH74594 pep:protein_coding
MGCSAIVDGEDTSEIPSFPLGNLSTSWCSLVCKPAAIKTANRYFLLQKVTQSWPSPAL
CFVETVPQDAQSSHVTAFNSGDGSSKSDNERDVHISMRLMEDFLDLAKENTEKDLET
CGILGAYLEKGTLYLTTLIIPKQESASNSCQATNEEEVFKILNERSLYPVGWIHTHPSQS
CFMSSVDLHTQYSYQVMIPEAFAIVLAPNDTSRSCGLFRLTKPEGMNILKNCQETGFH
PHKEPDNGSPVYEHCSNVYKNSNLRFEIFDLRQK
SEQ ID NO: 30>
Mp10_mature_protein_MYZPE13164_G006_v1.0_000014330 _ protein
APQKDAVAASGPAYTTKYDH I Dl DQVLGSKRLVNSYVQCLLDKKPCTPEGAELRKI LP
DALKTQCVKCNATQKNAALKVVDRLQRDYDKEWKQLLDKWDPKREYFQKFQQFLAE
EKKKGVVKF*
SEQ ID NO: 31: Green peach aphid: myzus persicae (clone g006 reference genome) mp10_myzpe13164_g006_v1 0_000014330- protein
MDSRIAVVCVVLAVFAVDQTVGAPQKDAVAASGPAYTTKYDHIDIDQVLGSKRLVNSY
VQCLLDKKPCTPEGAELRKILPDALKTQCVKCNATQKNAALKVVDRLQRDYDKEWKQ
LLDKWDPKREYFQKFQQFLAEEKKKGVVKF*
SEQ ID NO: 32 MPN domain:
VHISERLLEDFTELARENTEKDLETCGTLAAFLERGIFYVTTLIIPKQESTSNSCQAMNE
VEVFSIQNERELYPVGWIHTHPSQGCFMSSVDLHTHYSYQVMVPEAFAIVVAPTDSSK
SYGIFKLTDPG
Cotton: Gossypium raimondii (Graimondii2_0 reference genome- diploid progenitor species of tetraploid cultivated cotton).
SEQ ID NO: 33 > GrAMSH2 KJB72756 genomic 11 dna:chromosome chromosome:Graimondii2_0: 11 :47044805:47051145: 1
AACAAATTT GT AATTT AT AAT AT ACTT AAAT GT ATT ATT AACTT CT ATT CACT CCT AAA T AAAAAT G ACATT ATT GAT GT GAT AT AT AGG AAT AT ATTTTT AT AAAAGAG AAATT AA CAAATTT AACCCT ATT AACT CTT AT GAACCAAAT AAGAGCT ACGT AT AT AT AAT ATT A T AT AG AT AT ACAAATT CT AACAT ATT AAAAAT CT ATT AT AACATGCAT CTCCT AAAAT GATT GGCCCTCT ACTCCTT GT AACAACCGT AGTGG ACAAAACCTTT AT CAT AACTT ACCAT GT CCAG AT AAAT CAAACAAAT ATGCT AT ACAT CCCTAT ATT ATTT AT AAATTT AAAATT G AAT CCTT AT CATTTT ATTTT CAAAAAT CT AAT CT CT CT ACTTTTT AAATTTT AAAATTT GGGTTT AATT CTT AAT ATT ATT AAATT AAT ATGTGT GAT ATTTT G AAAT AC AAAAT ATT CAATTT GTT AAT ATT AT AGT G AATTT AAATTT AACAAAAT AATTTTT AAAA T ATGGACTT AAATTT AAAAATTTT AAAAAT AGAGAGATT AAATT CTT AAAATT AAAAA T AT AGAGAGT AAATT CT AAATTTTGGCAACAGATTTT AACCTTCT GAAACCGACAGA GTTTT CTT CGTTT GT CAATTCGTT AGCCTGCACGTT CAATTT ATTT GAT CT CCG AT C AGACTCTGAAGAAAACGGCAAAATCCATCGGCGAAGGGGAAAAGAATTATTGCAA AACT GAAGAAGAAAT AGAGGAACAAGAT GAAGCTT GACGTCAATGCGATGGCT CG T AG AGTCG AAGT CG AT AATCG AATTCCACTCCGGT ATT ATT ATCG AATCGCCG AT A GTCTCCT CAAGCAGGTT CT CT AT CCG ATTT CT CTGCCT AATCGT ACTGG AT CTT AA T AATT ACG AT GTT AT GATCGTTT AAT CTTT G ATTTT AGCTT AAT CT CT GTTTT AAT AA AT CTTTTTT ATTTTTT CG AAGTTTT AATT GTT ATT G ATTT CAT AGTTT AAAT ACTT AAA TT AT CT CATTT AT CCT AATT AGTT AT CGT AAT ATTT G AAT AT GTTT GT AATTT AAGTT CTCATT AGCTT CATTT ACAGCACTGCCTT GT GAATT CTT AGT AT ATTTCT GTT AGCT AGAAATTT AGGT AT GATT ACAGGTGCTT AAT CT ATCTCCTTT ATTTTTCAGGCGAAC ATTT AT CGT G AGG AAAAAAAT AT AGT AG ATTT GT ACAT AATT CT ACTT AG AT ATT CA AGGT GAGGGAAGCTT ACT ACT GATT GAATTCGAT AATTTT AT ACT GAATT AGTCT G CAT AAGCTT ATTT AT GAACTT ACGTTTT GATT AGTTTGGT ATCAGAAACAAT ACCAT T CCAT CGAGATT ACCAGGTTTTGCTTCCGAAAGAAAAGGCGGT GT AT AGGAAGGT GAGGTTT AATT GTTTTCCTGGGCACCCT GT GAT GT GAGT CCATT CAT ATGGT ATTT GATT AT GTTTTTGGTT GT ATT GTTT CT CATTTGCAG AG ACTTTT AGCT GT ACTCG AT GAGCTT GAGT CT CT AAAACCAGAGGTTCAACAGAGAGTT GAAGAACT AAAT AAAG CTCAT ACAGGGGCTCGATT GGTT GACCTT GAT GACCAT GAAGGCCCTTTCCAT GG CTCAGAT AAGAT GT CACCTTCGGATTGGAACCCT GAAAAT AGACGGTT GAAT AT GA GCTTGGAT ATT AAACAGGT ACGAAACCATTT AT AATT GGTGGATCAAT GT GATTT G AT G AAGT AATT ATT GAT AT CTCCTTT CCCT GTTT CT AT AT CTTT GGTTGT CCAATTTT TT CTT GTTTTTTGCTT GCATTTT CTT GAAT AAAAT GTCTT AT ATTTT AGCT CAGTT CT TTCCTTTTTT ATTTGGTTGCAGCCT GCCAACATGGAAGTT CAATCTTCATGGAAGT A T AACG AT AACCAT AAT CAG ATT G ACAGGCAGTTT CAG AAGTT GT G AGTTT CTTTT G TT CTT GTT AATGCT ACATTT AT G ATTTGG AT CTT G AAACCTCCAAGTCTTT AT CTTT C C AAT GT GAAAAT CCACT GTT GT ATTCGG ATCCACT AAAATTCG ACT CTGT ACTTTT A GTTGGATCTT AAGAAATGGAATCAATT GAT ATCAAAAGCAT GGCCATGCAT AAAAT TT CATT CTGT GTT ACTT CTGCTTT ACAG AATCGCCCT GATTT CTTTTGGTTTTGCTT TGCT CACCGTCAT ATTT GTTT GT GTTT GT CCAT CT AGGT CCTT GTT AGAAAATT GT A TT G AAAAAAG AATT AGTT CCAAAGTT ATT CTTT G AGGCT G ACAT AT AT CAAT CTT AC T GG ATT GTTT CAGGTCT CTT AAT AAACCT CTTCCAAAT AAAG AAACT CTGTCT AG AC ACTCGTTTCTAGGCCCTAACGGCTTTCATGGCCAGTGGCTCGGACCAAGTGCAGA GAT AAAGGTT AACCT CT GT CT GTTTT GTCTCCCT CCAAT CTT CTTTCCCT ACT CATT GTAT AATCCTTTTTGCAT GT GAACTGCAAGGTCT GT ATCAGATT ATT GATT CT GCTT CAT AGT ACAGGTTCAAT AT CCT AGCAAT AAGGACTTGGCACCTGCT GAAAATT CAA GGT AGGACTT CCAAAAT GT CT AATCACT CTTCTTT AAACT GACAT GCAT ATTT CT GT CT ACCCTTT AT CAT ATCCTTT AT CCTTGG AT ATT CTGT AAAT ATT AAAAG AT AAAAAT ATCTGCT GAGATTTCT AGTTT CT GTTGCT ACGACGT AGCTGCTTT AACATTTTT CT A TTTGGT GTT ACAATTTTTT AT AGCCT GAAT CAGGCT GAACAAT ATGGTCCTTT GGCT GT AAAAGAT GGT GAACCAGGAGGGGTTGGTTCT GCT AT GGACTCGGT ACTCT CGT T GG AT GAT GGTCG ATGGTT ACAT CCTGCT G AAG AGTCAT GT ACTT CTTT G ACT AGT G AAGCAAACCAGG AT CTTTT CCAGTTT GTT GGTAT G AAACAACCTT CTCCTCCTCC T GTT ATT GCT CAAGT ACAGCCAGAATTT ACACCAATT CAT CCATCAAAAGTTGCT G ATCCAAG ACCT GGTCCT GCAAAGT CTT CT CAAG ATGG ATTGCCAAACT CT AGTT CA TTT CAA CATTT ACAT GTT GTATGGCTCCTGTAT CAAT CACT GTT CT CCCCT GTT ACT T GGCGG AACTT AAT GTTT ATT AG ATTT GG ACCTT CT ACATT GATTT AT ATT CG AATT TTT GACTT ATT CTGCAGCCAGT ACAAAT GAT GGAGGATTT CTT ACGACTGGCTCGG GCCAAT ACAGAAAAGAACTT GGAAACAT GTGGT GTCTT AGCTGGAT CATTGGT GA GAAAACTTT ATTTTT GAAGTT AAGTTTTTT GTTT AAGAT AATT AGGACAT AGAGGATT CAAAGTCACTGCAGCAGGTCGCTTATACTTTTAATTTTCGTTTCTGTAGAAAAACA GGGTTTTCCACATCACTGCACTTATAATTCCAAAGCAGGAGTCAACTTCAGATTCG GT ACAGT AT ATTTTTCCTTT AACCTTCCGTTT GTT GTT GTT GTTT GT GTTTTTTTT CA G AAAG AGTT AACAACTT CAAT GTAT ATT CTGGCT AT ATGCCT GT ATCCATT GTGCTT T AGT ACT ATGGCAAT GAAGCTTTT ATTTT ATTTTTT AAAAT ACAGT GTTCAACATT AA AT GAAGAAGAGATTTTT GAAGTT CAAGAT AAATT ATCTCTTTTT CCT CTGGGATGGA TT CAT GT AAGTT CACAAGCCTT G AATTTCCAATT GAT AGT GT GAT AACATTTT CTTT TCTTCT ATGTG CTCTGTTGTC AGT GAAT ACATTT GGGTATGAGGTGG G AA AA AG CT CAG AT CTTT AT CAT GT ATTCCATTT CAT AAT GCT ATT ATT ATTGCTTT ATT GTCCT AG T ATT ACACAT ATGCAAACACACAAT AAA CAT GTT AT GTT GAAGTCAACT AGGAATTT GT GT GGTTT ACGAAGCTTCCCTTGGTT GCTT GAGCT CATGGGT AACAT ACACTT CT AGAT AT AAGAAAGGTTAGAGCAT AATT GGTT GATTGCCT GGAAGT AT GCT AGAT AT TTTT ATCCAGAAGGCGCT GTTTT ATCTTTTT GTTGGGCTTT ACACT GAT GTT AT GT A GTAT CTTTTCGGT AAAT CTT G ATTTTT ACTTGCAGTT CCGT AAAGTT CATGCTT CTT T GGGTT CATTT GTTT CACTT GT AATTTTT CT ATT CAATTT CATCCAAT ATTT CATT GT TCTTCCTCCAGTGAGCCTCTCATGGTGCTGTAACATGCCTTGCTTCAGTTGTCCCT T CAT GAAGCAT GGATTT AT GTTTGGTT AAACT AT GTT ATT GACT AGAAACTT GCAT G TTGCCATCT AT ATTGGT AACCAAACTT GATTTTCAAAT A ATTT AACAT ACT ATGCAAT T CTTT GGTTTT CAG ACGCACCCAACT CAG ACTT GTTT CAT GTCAT CAGTT GAT CTT C ACACACATT ACTCGT ACCAGGT AAAAGAACAAGT ACTTGCT AAACAT AT CCCAGCT TATAGTGT GATT CAGT CTT ACTGCAT GT AT CATT ATTTTCCCT CACCTCCTCCAACA T ATG AGTA AC AT ATTTT AC ATT CCTCT G AC ATTTT ATTT CTTTT CTTTT CTGGTGGAT AT GTT AAGATT AT GCT ACCGGAAGCAATT GCAATT GTT AT GGCCCCAACT GACACG T CCAGGT AG ATT CT CATTTTT CTCCCAAT G ACCAT GGCTTT G AAT CT GAT G AAATTT T ACCAACTTT AT ATT GGT G AATGCAAAT CT AT CAT GGTCACACAATT GTTTGCT ATT ATTTGCACT ACACGGT ACTTTTT AGTCAGT AAT CCGGTACT AGT GTTT CAAACCTTT CTT CAT ATTTTCCTTT GGTCAT CTTT AAGT AAACAT AT AAAGT GAT GAT AG AG AAG A T GACAT GT ACCAAAT AGAATT GAACT GCAGACAT ATTTTT CT GCACCAGAGATT CTT TTT ACCTTGCT GT GTGCAGAAGCAT ATT AT GTCTTT AAAT CGTCGTTTT GTTT AGT G GCT GAAACGGAAAAGGATGGGATT AT CCT GATTCCCT GT AT CTT AAACAACT GGTT AAT CT GCT CAGCT AAGGTT GTT GAAAAAT GATT ACAAGT AGCAAT GT GATT AAAGC TT AGCACTT AAAAGT ACAG ACAGT GTTT GT AGG AACCT CTT AGAT CAAAAAG AT ATT CCTT GTT AT ATGCGT GTTTTTTTT ACACGTT AACGATT GTT GT ATT CCATTGCACAG CCCACAT GGT AT CTTT CAT CT GT CT G ATCCT GGTGGTGTGTCTAT CATCCGT AACT GCCAGCAACGAGGGTTCCATCCCCATGAGGAGCCTTCGGATGGAACCCCAATCT AT GAGCATT GCT CT CAT GT GTTT AT GAAT CCCAAGAT AAAGTTT GAT GTT GTT GAT C T CCGGT GAGAT ACGAT AT ATT AATGCACCGTGGT GAAGCATTGCTGGT AAAATTTT CCCCAAACT ACT ATTTT GTT GACAT CG AT CTT GT AAATT CAT CT AAAGGG AATCGT G T AAAT AG AGCAT ATT CAT ATTT CTTTTTT CTTGG AT CAT ACTGT AAG AATT ACCTTCC CTCGTT CCTTT CCCACTTT GT ATT GT ACATT AAG ACACGTTTT GCAGT GG AG AATTT T AGT AGCAT ATT AGCT ACATT ACCATTT ACCACCCAACTTGGTTTT ACTTCCACTGC TTT AAT CT CT CT ACTTT CATTT GAT AT AATT CAGGT CCT CT AT CATT AGCAT GTT CAA ATTGGT AATGCT GTTT ACT CCTT ACCATT AAAGT GAGTT CTTTTTT AAT AAT AAT AAA AACAT AT AAATTT AGT ATT AGTTT AACAT GGGT AATT GAATTTTT AT GTGGTTTT AAT T GT AAT AGTTT CT GAT CATTTT AAT CAATTT AGATTT AAT AAT ATTTT AAAACCAG AG AGT CGAAGT AT ACAAAGT GAGGT AAAATT AT AAATTTT AGCAT AAT AGAT AGAAT AA AACCAT AATT AAT CTT AGAT AT AGT AATT AT ACAT AT G ACAAT GGT GTTTTT AAG AA GAAGTT AT CCT GACAATCAAGAAAT GGAGAAAAAAGT GAAGGGCACTT GATGGT G GAGCATT GAACGGT CGAATTTGAACAATTTT AAAT AGGGGT AAGT GAGCAATGGG TTGG ATT CAG AAG ATTT AAAG ATCCCATT AT ATTTT AAAAATT G AAATT CACT G ACTT G ATG CAT A AAACT AAAT AAT CT C A ATTTTTT AT C AAT C A AT CG ATTT A ACC AG AT ATT AT CAAATTTTT AAAAGTTT ATGCAAACT AC
SEQ ID NO: 34 >GrAMSH2 KJB72756 protein
MKLDVNAMARRVEVDNRIPLRYYYRIADSLLKQANIYREEKNIVDLYIILLRYSSLVSET
IPFHRDYQVLLPKEKAVYRKRLLAVLDELESLKPEVQQRVEELNKAHTGARLVDLDDH
EGPFHGSDKMSPSDWNPENRRLNMSLDIKQPANMEVQSSWKYNDNHNQIDRQFQK
LSLNKPLPNKETLSRHSFLGPNGFHGQWLGPSAEIKVQYPSNKDLAPAENSSLNQAE
QYGPLAVKDGEPGGVGSAMDSVLSLDDGRWLHPAEESCTSLTSEANQDLFQFVGM
KQPSPPPVIAQVQPEFTPIHPSKVADPRPGPAKSSQDGLPNSSSFQHLHVPVQMMED
FLRLARANTEKNLETCGVLAGSLKNRVFHITALIIPKQESTSDSCSTLNEEEIFEVQDKL SLFPLGWIHTHPTQTCFMSSVDLHTHYSYQIMLPEAIAIVMAPTDTSSPHGIFHLSDPG
GVSIIRNCQQRGFHPHEEPSDGTPIYEHCSHVFMNPKIKFDVVDLR
Tomato Solanum lycopersicum (SL3.0 reference genome)
SEQ ID NO: 35 >SIAMSH2 Solyc01g060280.3.1 genomic 1 dna:chromosome chromosome:SL3.0: 1 :69919172:69933193: 1
AATT ATTTT AAATT ATT G AAAT ATTT G ACAAAAAG AT AAT CAAT CAAGTCT AACT AAA AAAT AAAT G ACTTT GCAAT GT G AAAT CT CAAGTCAAT ACTACT AAAAT AAAT G AAAT T GAAAAT AACAT AAGTT CT AG ATT CAAAGCAAAAAATTT AACGCAACACT CTT ATGT CAAATTTT AACAT AAT ACACAT AAAT GT AATTT AAAAGAACAGAAAAT GT AGGCCT A T AACCTT ACAT AACAAT AAATT CT ACTT CAATTT G AAAATT AAAAT ATT AACAAAAAA ATAGGT AAT ACG AAAAAT AT CATGG AATCG ACAT AAAAT AT AAAT AAT AT AGT AAAA AAAT ACTTTTTT AGAAT AT AAAT AAAAAT AGAAGTT AAAAT AATGGAAAT ACCAGCA AT ACAT AGT CT CT CT GAG AATT G AAAACT GT AATT ACCCT CATCG AAT AT ACCAAAT T ATCG ACG AACCAAAT AATT ACAT AGCCAAT CAAACACGTCAG AG AGCAT AGTT AT ATT AAATT CAATT ACGAGG AT G ACTTT CCAAACACT CT CT AAAAAAAT AAAT ATT AA AAAGG ACTT CAGCT AAATT AT CAATTT ATCCCGTAGGTTATAACT ATT G ACAACCTT AAAGT ACT CAT CT ACAAAATT CAATT AAT CAAAT AAACTT ATTTTT CT AAACAAT CAA T AATT CAAAAAGT AAAATT AAT AATTCAAGGTCT CGTTT CT ACAAGGAAGGAAAGAA AAAGAAGAT AGT CCAAGT CTT GGCGAGCACACCAT GTCGACAT AACAAAGAAGCA GCAAACT ACT CTCTT ATTT CAATT GTTT CCTT CT CAACACTT GAGCCT AAT CT AT AC TCCTATTCTTCCTTAAATCGCCGGAAAATCTCTCCCCGGGGCAATGAGGCGGCCA GCGACCAT GAAT AT CGACGCCATGGCGCGGAAAGTCGACGTCGACAAT CGAATT CCT CTTCGCAATT ACT ACAGGAT CGCCAAT AATCTCCT CCGACAGGT AAAAT ATTT T CAAATT CT CCT CCCCCTTT ATTTT GT GTTTT ACAAAT ATCCTGCCCCCAAATT GAT T GAATTGGGT AAGCTCTTT ATTT GATTTTT CAATTGGGGTT AT GATT GTT GT ATT ATT GAT ACAACT ATT AAAGCT GCAACCTTT ACAACT AT ACAT CAAT ACCAAAAT AGTTGC GAT CCGTT AAATT ACT CTT CT AT AT CCCG AG AATT CAAAACTTTT GTTTT CAT AACT CCGGTGCCAACTT GTT AGAGTT GAACTT ATTT GATTTTTCAGTTGGAGTTCT AACTT TTT ACT GAT AT AAGCT GTT AAAT GTGGACCAT AGCAAAT ACATCT ACAGTT GTGCCT CAAT CGT AA ACT AGTTTG AGTTC ACTATCTG CATG ATCTCT ATCT ATTTT G CTCT AC T CATGCCT ATTT G ATTCG AAT ACT G ACATT GTT AT GAT GAT AAAACT GT AACTTTT A CTGCT GATGCCT CT CTCCAAT GTTT GTTGGGTTTGGCT AT AT GT ATCTT GAT AT AT G TTGCATTCAGAAACATTT AT ATT AACAAAATGGTTTT GTTTGGAT AGAGTTTT GT GA TTGTCTT AT GGTTT ACTT ACAGGCT AGT ATT CATCGT GG AG AG AAG AAT AT CAT AG ACTT GTATAT AAT ACTT CT GAG AT ATT CAAGGT GAAT CAAG AAT AATGCTTTTTTT G T AGCCAATTT AT CCTT AGTTGGACCATTT AT GT GTTT GCT GAT AACT AAAT GGT GTT GGTT GT ACAGTTTGGTT ACT GAAACAAT ACCCT CT CAT CGAGATT ACCAGGCTTT G C ATCCT AAAG AAAG AGCATT AT CCAAAAAGGTCAGT ATTT CAT CAGTT CAT CTTCC CAAAT GAT CCTTT ACGAATGGGGTT ACTTT GAAGACATTTTCTT AT ATTT ACT AATT A AC ATTCTG G ACT GC AAATT AATT CTT CAT G G G AT CTTT ATAGGCTCTGTT ATTTTT AACT AAT GT GTCCAGAT ACGATTT GT GAT GGCGGGCTTT AAGTT GACGT CTCGACT T GAAG AT G ACAATTTTT CT ATTTTT GATT GT CT GATT GT CT CATT GTCT CAG ATGCT GTT AACT GTGCT AGAT GAACT AGAGGGTTT AAAACCT GAATT CCAGCGCCAGTTT C AAGCAAT CGGT GAAGTT CAAGT AACAGCTCAGCCTT ACCAAGTCAAT AATTTGGAG AACCATCGAT AT AGACCAGTT GGGAATT CTTTTGGACAACCTTCT ACCAGCAAT AA AGCAT CTT CAT ATT AT GAT AAT CAATGGGT AAACACACT GTTTTTTTTCCGTT GAAT T GTTTGGGTTTTGGTTT ATCT GTTGCATTTT AT GAT ATT ACTTTGGCT ATTT GTTTTT T CT AT CACTTT AT GCT GTTTT CAT ATTT CCTT CTTT AG AAACT AGAAT GGT AAAT AAT TT AAATT AT AACAGTT ATCACGAGAGT ACTT AAATT AT ATT AGTTT AGGGGAAGCTT T CT CTT ACTGG AT GTCACAGTTTCGT ATTTTTTTCCAT CT CAGT G AAGT AAAGCGCA T AATTT CTTTGCCT CCAGT AT CATT CCAATT CAT ATTT AGTTGCT GT AACTTT CAAG A CCTT CT ACTT AGCCTTTTTTT CTTT CTT ACACCTTTT CT CT CTT CTT ATGG AACACAA ATTT GTCTATGGT AA AATT G C AG G CC AT AAC AA AT G C ACCTTC ATCTAC ATG G AA A C AG AACAAT G AAT ATT CT CAT ATTT CAT CCCCAAGTT CATTT G ACAAGCAATT CCAG AAGCT GT GAGT AT CCAAATT AAGAAAGTT ACT AATTTTT CT CAGGGATGGGGGTT G TTGT GTTT CAG AGCAT G AAAAAAT GT ATTT AT AT AATTT GTTT GTCTTT GTT GGTTT C GCGAAGACT CGTTTT GT AGAGTTTTGGAAT ATT CT AGAT AAAT AAT AATTT GACTT A CT ACTTTT G AG ACAAAT AAG ATT G ATTTT AATT AT ACACCT AAACAACACATT AATTT T AACACT CCCCTT AACGT ATCGGTTTT AAACTCCTT AAAGCT CACAAAATTT CTT AA ATTTTCCTTGGGCAATGCTTT ATT GAAAAT ACT ATCAACAT AAATTT CTT AATTT AGT AGCTAT ATTCCCAGT ATT ACT AGT AAAAAT CAAAT CAT CAACCT AAAT AGCAACAAT AAG AAT G AAGTT ACATCGTTT CTTCCAGTT CAAAG AAGT G ACCTT GTTT CTT CGTT A AAGAGTT GGCTCGCTCTTGGAAAAT CT AT GAAT AT GATGCT CAAAGT AGTT GTCAA TTT GATT AT ACCACCACAT AGTGCTTGCTTCAACCCAT ACAAT GCCGTTTT GAGCTT GT ACACTTT ATCCG ATT CT GT CTTTT ACCAT CACGTTT G ATTT CTTTTT G AAGTT CA CCATT CAAAAAT GTTT ATTT AT AT CT AGTT AGT ACAAT AATGGACCTTTTTTT CAAT G AAT GCAACAAGAGTT CAGATT GT GTCCTTGCGAAGAGACGGTGCAAAGGT GTCAT GAT AATCAACTCCTT CCT GGCT GTT GT GAAT ACCCTTTTTGCAGCCATCCTT GCCT AGT ACTT CAAT AGGAAACCAT CCAT AT AAT ACTT GATTTTGGAT AT CCACATT ACTC CAAT GGCTTCT CGATTTT CT AGTTTGCTT ACCAACCCCCAATT CT GATTTTTT CT CA CTT G AAATT CTTCCACCATTTT CTTTTCCG AAG ATT GTTTTT AATTGCTT CTT CAAAA AGCTT ACTGGTTCAACCACT ACCCT GT CTT GAGTTGCT AGAACT CGAACCATCACA T CTT AGAGCTTCTGCACCATT AGTTT CCT CAAATT CTT CAGACT CT ACAACTT AT CA TT CAACCTTGCTT CCCAATTT CAACTTGCTT CTT CGTT GAAT AAT ACAT CT CT ACTT AT AAT AGGCTAT AAAAAT GT ATTT CT CACTT GTTTT AACAAGCAT ATGCCT GTT CT A TTTAGATTTTGAGCATCAAAAATGCAACCTAAAATCTTCAAGTGCTTTGCGGAAGA GGGAGTTCTATTTTGCACCGCAATTTTGCGGTGGAGTGTACCCATAGATACCTGC CTTT CT ATT CCTT AAT CTT CGCAT AACTT ATT AAACT CT CAT G AGGCAT ATT CTT CAC CTCTAT CACTCCT CAACACCTTT AT AT AGT GGCCACTTT GTTTT CCAACAAT ATT AA T AT CT CAG ATTTTT GTTTT AT G AATT AAG ACCAT CT CATT CTT GT ATT AT CATT AGTG AACAAAT AAAGT ACCT ACTTCCGCCAAG AG AT GT CCT CATTGGTCT ACAAACAT CT TT AT GAACCAGCT CCAAT GTTCATTTTGCT CTCT ATGCACCACTT CACAT GTTGCTT TTCAATTGCAGACCCTTCGCTAACACCGCCTTCATTTTCAATTCTTGGCAGCACAT ACACCAT ATT CTTTT CTTTT AG AAGCTT CAT CCGTT GAAT AT ACAAAT ATCCTGGTG ATCAT CCAAGAGT ATGGCCT ACTGGTCAAT GAAAT GGGTT GACAACCAT GAGAT CT GTGGTTCAAATCCCAATAGTAACTAGGTGATTTCATTTGTCTTAGCCTTGGTGGGC GGAGTTACCGGGGTACGTGGTGGTACTAGTTGCTGGTGAGAGGTGGGAGGTATC CCCTT GAATT AGTCGAGGTGCGCGCAAGCTT GTCCT CGCACCACGATT AT AACAA T AATTT AAAAAGT ACAAGT GT CCT AGCCT CTT GT GT CGTGGCCAAG ACTT GTCATT AACTT GT GCTTT CAAGGTT ACAT CTCCCCCAT AGTT G AAG ACT GTCAAA CACTT CT T CCTTTTT CAATCCTT ACATTT GT AGTCCT CACCTTT GACTT G AGTTT CTTTT CTT CT TTT GT AT CAT AGATT GTGCAGT AATT AT CTT GT AAAGAAAT AGCAT ACTT AT CCTCC ACAAGTTGCTT GT AACT AAGT AATTTT ATCT AAAATT AGGAGCGAAAAGT ACAT AAT GGAT AAGTTT AGT ACCTTTGGTT GAATGCAAATT GTGCCTCTTCCAATTGCTT GAA C ACAAATTT CATT ACCCAT CTT CGTTT CAGCCTT CACTTT GTCATT CACCCTT GT AA AGAT ACTTTT GTT CCTGGT CAT AGATT GTTGCACCGGT AAAGATGCATCCACCCTT GT AGGCTT AT AATGCTCGTT CACTT GT GTTTTT GTGGACT AGTT AAGCTTGGATT G TT AAGG ACTT CCAAAG AACAAACAACCTTT CCT CATT AGCTT GT ACCAT CGGTTGC ACACCT AAGGTGG AT AT GT CTTTT AACT CAT CAA CAG AAAT AT AAAAT CATTTTTTT AGT CAAGCT GAT CAAAAT CCT CT G AACAAGTTT CGT AT ATTT AAT CACTT CCCCAT A TAAGCT CACATTT GTTTTGCAAT CT CAACAACTCCAGG AAAAT ACTCCT CAACTTT C AT CAT CCAT CAT CTTT AT AT CCT CAAATT CACTTTTT AAAATT AG ATGCTT AACCTTT GTGTGACTCTGTCATTGCTTGCTGAATGTATGCTACGGCTTTTGCATCTTCTTCTTT ATTCTCCTTT AGAGCCTTCATT CCT ACCGCGAAAGAGCT GCT GTTTTTT AAT GAAG AAGTT ATGGCGTT ACCAAAAAT CACAATTTT CT CCCTT G AAACT AGG AACAG ACAG TT G AGCACGCCTT GTT CACTT GTGCCAAT ATTTT AGCCTTT CT CTT CTT CAAG AT GT TTT ACTCCAAACCCAGATTTT GT AT CGAACAACCTTT GAT ACCGCTTT GTTGGT CTT GT GTTT G AGG AAGT GT AAAAT CAAAAAAGT ACT G AG AAAT AGT AACT CT AGG AT GT TTCGT AGCAAGT CTGGAATGGAATGCAGT CACTT AAAAAGAACAGT AGT AGTTTT A CT GAACGAGCT ATT AT ATT GTTT CAGGAACAATGGT AATTGCTTT ACCTCATT CTTC TTGTT CAAT ACACTTT GTATAT ATT GAT AT AATGG AAACT CT CT AGCTT G AGGCTT C T CCAGATTCATTTTTTGCGAGGCCTTT AGAAT ACT CT AGATT CT GAACAACAT ATT A ACT ACTTTCG AG ACAACCAAAAT CACTT AT AATT AAG ACAAAG ACT ACACT AATTTT ACCT GT ATTT GT GAT CCT AT GT AATTGGT GTTT GAGCAGAGAT ACT GTCGTT GAAG AAGTT AAAACT G ATTT CTT GTCCT AAAGG ATT GAT GT CAT CAAGCTT GCTT G AATGC AGT CAATT AGTCAGTTT ATGCT GT G AAGTT CTGTGGTAT AGG ATTTTT CAGCATT AC GAT AT AT AT GAGT AACT AATT AT AAG CTTTGCTGG AC ATTTT ACATTT AT AGAACTT GCAATT AAATTCAT ATGCTTT AAGTTT ACCT GAAT AAAT CTTTTT CAGGTT AAGAGA ATTGCTTGCCACATGCAGCAATATTGTTGCCAGGGAGAACTAGTGAAATTATCAAT TTT CAGCAT ACCACT AGTCCCT AT ATTTT CAACT ACCT AACTTT G ACT AAT ACAACT TTT CACT CT CAT CT CAACTTTTTTT AATTT GGT ATTTTTTTTTTT GTTTT GGT AATGGT AACTTT ACTT CT AT AT ATCCAT AGGT AT ACT ACAACCT AAGT GT AGTT CCCCTT CAA AAGT GTT AT AACTT ACAACTT GTT ATT CAATT CTGTGCCT CACAAAAAGT AT AAAAC ACCACAAAT AT CTT CT GTTT CAGCT AAT AGTTTTTGCT CACACCAAAAAT AAAAAAG GCCT AAACAATT CATT CT GAAT GTT GTT CT G AGTCCCCT CAAAGCACCTTTT GTTC CTCT CAATCCAAATT GACCACCAAAT GCATGCTGGG ACG AT CTTCCATTTTT CTT C CTT CTT GCT CACATT ACCATCCAT ATT CCAGCAT CT AAGAACGT CTGCT ATGCTT C CAGGTTT CACCCAACT AAT CCCTTTCAAACT GAT GAACAT CCT CCAAAGTTGGT CT GTCCATTTGCAATGCAAAAAAAT ATGGTT GATT GTCT CAGCTT GTT CCCCACAGAA AAAACGCCCGGCGATT AGTT GGTCACCCCTTTT GTT CAGATT ATCAT GAGTT AACA CT GTTTCTTTGGCCAAAAGCCAGAT GAAACAGTT AACTTT GT AGT GAATTTTT GTTT T GCAT AT CTT CCAAGGCCAAT CT CTTT CCTT CACCACTCCT ACATTT AGCATGCAG ATTCG ATGG AATTTTTTTTT ACT GTTT CT ATTCCATT CT AGTCT GTCCACTT CTT C AGTT AAATT GTT GAAT CTTGCT ACT AAGTT AT AG AATT CT GTT AT CCTCCT GAT CT C CCAAT CATT CAAAT AT CTCCTT CG AT AT AG ATTCCATCCTT GT CCAGTCCACAT CAT GGCAACTGGGGCTTGTTGTTGCTGGCTTAGAGTGTATAGCTCCGGATGTTGTTGT TTCCTT GTT AAAAGTGCTGCCCACTT GT CAT GCCAAAAAGAGGTTTTCTGCCCATT T CCT AT CCT CACCTT AGTTCT GATCTGCAT CATTGGCCAAT GATTCCT AAT AGCT CT CCAGTCT GAACAT CCAT AGGGT GTT GT G ACATT CTT AGT CATCCAATT AT CTTCCA T ACCAT ACTT AGCAAGAAT GGCTT CTTTCCA CAA CAAT ACTT CTT CAGT AGCAAATT T CCACT ACT ATTT CTT CAT CAGGCTTT GATT CTGCT CTTT CAT ATT CCT GAT ACTT A G ACCTCCTGCTTT CTT GTT CACT AACAGCTCCTCCCACTT AACT AGGT GAT ACTT A TT AT CTT CATTCCCCTGCCAT AAAAAGTTCCTT CT CAGG ACAT CT ATTT CTTGCT AG CACT AGCAGGCATTGGGAAAAT GGACATCAAGT AGGAAGACCAAT GT GTTTTT AG TTTGCCT CCCATGGAGAGGT GTT GACTCTTCCAATTT GT AAGCCT GTTCGT ACATT TTT CCACCACCCCATTCCAAATT GTTGCGGACTT ACTTTT AGCACCCAAAGACATT CCAAGAT AT GT AGTTGGAAGCT CCCCT ACT CCT CCT AATTTGCTT GCT AGAGCAT C T AT CT CACT GATT GT GTT GAT AGG AT AT AT AAAACT CTTCCCCCGGTTT AT AT GT AA CCCAG AG ACTCCTTT AAAAATT AT GAAG AT G ACCCT CAGT ACT AGAACTT GTTCCT CTTTT GTTT CACAAAACACT AAGGT GTT ATCTGCAT ACT GT AAGT GT GTT ACTT CT A AACT GTTTGTCTCGCT CAACTGG AAACCTTT AAT CCATTTTTT CCTT CTTGCTTT ATT AAAT AGATTGCTCATGCCCTCCATTGCCACT AT GAACAAAAAT GGAGACAAGGGG T CACCCT GT CT CAAACCTTT CAGGG AT AAAAAG AATCCATTTGGTTCCCTGCTT AT TTGCACT GAGAACTT GACT GTGCT AAT GCAATGCT CT ATCCACTT GATCCACCT AA ATGCAAACCCCAT CTT CT CATT AGCTTT AT CAG AAAATTCCAATT CAAGTGGT CAT A T GCCTT CT GAAT GTCCAGCTTGCACATT ATTCCTGGTTT CTT GTTGTTCTGTCT AG A AT CT ACAG ACT CATTT GCAATT AAG ATTGCACCCGTT ATTT GTCTCCCTTT GAT G AA T GTCTT GTTTGCCT ACT AAACCATGGATCACTTT CTTT AAT CATT CTGCT AAT AACT T AGCT AT GAT CTT GT ACACT CCCCCATTCAAGCTT AT AGGTTT GT AATCAT AT AGCT CCTCCGCCCCCACTTTTTTGGAATCAATGCCGCAAATGTAGCATTCAGGCTTTTTT CAAAAAAACCTTTCTCATGGAAATT CT GCGTT GT AGCT ACCAGGT CCACTTT GATT GTTTCCCAGCATTGTACTGAATAAACCATCAGGTCCGGGGGGCTTATCTCCAACA C ATG CTTT G ATG CTTT C AA AA AC AT CTT GG G AACC AA AT G G AG CC AT C A AT ACT AG ATT AT CCTCGGCACT AATCCTGGG ACAATT CTCCATTT G AAGTT GT GGTCTCCATT CCTCCCT CAGTTT CTGTGT CCAGTCTTCCAT AGT AT GAG ACT AT CT CTT G ATTT ACC TCTCTTGGGTCCTCCACCATTAACCCCCCCCCCCCTCCCCCCACAACCCCCCAAC AACTTT CAACTT AACT AT ATT GTT AAATCTCCGGT GGAT ATTTGCAGTTTTGGT AAC TTCACT CT CGTCTT AACTTT ATGCAAGT AGT ATGGAT GTTT AATTT GT AAT AAGAGG TTTCAGATGGGTGAGTTGGGCTT A ATTT GAG C AG GTC A AG ATT GGCTGAGT AAT A A ATGGGCAGGTTATTGACCCGCCCGAAAGCTACTTGGGCTAAAATGGGCTAAAACT GCGG AGTT CTT ACT AGTTTT AATT GTTTTTTTCGTT CT ATT AT AAATTTT AGT ACCT A AT ATT AGTTTT CTTT ATT AT G ACT AAAT ATT ACAT ATT AAAT AAAAAAAT GTCTT CT AA ACATTTTT G ACAAG ATTGCT CAT G AGTCAAATTTGGT AACAT AT CAACCCAATTTTT AAT GGACT GACTT AGATTT AGCTT AAAT AGGTT GAGCT AAT AAAT GAGTGGAT CAA TAACCCACCCAAACTTGAACGGATTGGGCGGGCTGGGTTTGATTTTGCCACCCCT ATTT GT AAT GATGGAAGTTT ATTTTT CAT GT AAGTT CT GT CAGTTT CTT AAGT ATTT G T GT GAT AGTTT GT AT GGT AACTGGAAATTT CCT GAT GT AATTT CAATCGTT GTTGCA T AAAT AT ATT GTTGCAG AT CTTT CAATTTTT CT GTT CCAAAGCAAG AAACGTT AT CA AGGCACTCTTTTTTTGGCCCCAATGGTCTTCGTGGTCAATGGCCAGGACCTAGTT CT GAG AT AAAGGT AGTTTT GTT CAGTT G AAAGGT AGTTTTGG AT CTT AT GAT AG AAT T CAGCCT AAACT AAAT GACCT ATTTTTT CTT CTT ACAGGTT AATT ACCCAGT ACAT G AT GAT CT AGCT CCAAAT GAGATTTGGAGGTT AGGACCCT GCCAAGTTT AATT ATT G CT ATTGCAGCCT ACT AAGAGCT AT GAAGT GTT AT AAGACAGAT AAAT GATTT AGT A ATCGT AGT AGCCCAAAACTTTT CAAT ACT AT GTTT CT CT ATTTT CTT ATTT CT AT AAA TT ACTTTGGT ACAGCATTTT GAAT GTT CTTTT ACT ATTTTT AT AGCCTT AAT CCAGTT GAAGAT AGACCTTTGGT GT CCAAGGACACT AGCTT GAT AGTGGAT AAGT CTTCT AT GGAATCGGTTCTTTCTTTGGATGATGGGCGATGGTTACATCCTACTGAGGATTCCA ATTTTCAATTT CTT GACGAT GTGCGGAGT GAT AACATTCCTTT GAGT AACTT AAGG C AACCTTCGCCTCCTCCAGTTTTGGCACAACT ACAACAGG AGTTT CGTCCT AT AT C T CCGT CCAAAGTTGCAGAT CCAAGACCTGGGCCCGCT AAGTGCATT CAGGAT GT A CCGT CT AGTT CAAATT CTTTT CAACATTTGCAT GTT GT GAGTTCTT ATTTT ATTTT AC ATT ATTTT GGCTT CTGTAT CT CCTT GAT CAATT GT AGG AAATTTT GT GTT AT AGCCT TTGCAGTT GT AGTTTT AAATCAGCTTT ACCT GAT AAATTTTGCT AGT AT GACCTTTT CTT CTTTTTT CTT ATT CT GT AGCCAGT GAGACT GAT GGAAGATTT CTT GAGGTT AGC T CGAGAAAAT ACAAAAAAGAATTT AGAAACTT GTGGAGTT CTTGCTGGTT CACTGG T AT GAATT AAACACAGT AAATCT AAAGGCT AATT ACT AAAT AT GAAATTT AT GAACT CT ACTT AT GT GAT AATT ATGTGTTGT ATTCCT CAACTTGCAG AAAAACCGT GTTTTT C ACAT CACT ACT CTT AT AGTTCCAAAGCAGG AGTCAACTT CAG ATT CAGT AAG AAG ATTTTTT GTTT CAT CT GT ATGCT ACATT AGATTT ATGCTTCAGCTT GACCT CT AGTTT T CAGGAAGCAAATT AGAT GAATT AGGAT AGAGAAAGT CCAAACCCT GCATTT AATC AT CT CT AG ATTTT GAAGT GG AAAACTGCT G AACCTT GTTCGT AAATTGCTTTTT AGG AGGATCTTT GAAGTTTT CCATT GTT GAATTTT AAT AACCT GAAGTGGGAT GT AATT G CT GG AAAT AGTGCT CATT AT GTTTT CAATTCCCT ATTTT CAG AAT CAAAGTT AG AG A GGAACAT AAGAAACAAT GAGTT AGTT GGTT GTTTTT AAATTTCAGAT ACGGTTT CCT AAT ACT CT AT AT ACT GTCCCGATTTT AAAAT GAGAGTGCGAGCAT GAT AT AT GT CAT ACTT GTT CAAG AAT AAAAT ATTT AG AG AT GGTT CAAT GAT AAAAATTGG CTTTT ACA T GTTT CT AAACACAACTTTT GATT CTT AGTGCCAG ACATT AAAT G AAG AGG AG ATTT TTGAT GTT CAAGACAAGCGCT CT CT CTTTCCTCTTGGTTGGAT CCAT GT AAGT AAT GCAAGCAG AT AT GTT GAGTT AT GATT CT AT ACTTGGTCAAACAT AAGT GT CTT CTAC CCT GGAAT AT GAAGATTT GAAT AAT G AATT G ACT AT GTT GT CT CT GTGG AAAAAG AT AAGT AG AT AAG AAAATT CAGC T GAT AT AGAT AT GTT CTT CTT CCAT GAAATT GTTTGGATT GTCT AGCTT ACACCTTT AT AAGTTTT ATGT AG AGT ATTT ACT CT CTT G AAT CTT GT AAAAGTTCCTGCAGT ACT G CTCG AC AG CTATCTGTT AAT AT C ATT ATTTTT CTTT C A AT ATCG GTTG G AGTC AT G GGAGCT AATT AAACACTTGGGT ACCTT GATT ACGTTTT CT ATCTCGAGTT ACTT CAT TTGT ATT CATGGT AGGGGACT CT GTT AT GGTTT ATGCT GACGT AGTT GAT GATTCT GTTTCT CT CATT AAGGT CACAAT ATGCTTT GAT AATGCT AGTGGCTTT GTTT ATTTT T AAAGATTGT AGGGT AT GAATT AAAT ATT GT AGGGT AT GACTT ACGTT GAAT CTTT G ATT GTT CT GACGGCCAT GAGATT CTTT GTT GTCAT AACT GGCCT AAAAT CT ACTT GT TTGG AAACAAAG AT G AAACATTTGCAGG AG AAGT CT CTTCCAT GGTGT AAAT G AAG T AG ATTT AGTTT CT CT CACAT CTT G ACAGGTTTT AT CACCCAT G AGT AT GACTT CTT GGCTTCTT GTTT GTGGT AAATTGCAGACACATCCAT CACAAACAT GTTTT AT GT CAT CAGTTGATCTG CAT ACT CATT ATT CTT ATC AG GT AAAAAG C A AT G CTTT GTGTT ACT TT AT CTT GAT AGG AT GGG AAAACTT CAAAT ATCCATTT CTTT AG AAT ATT AAGTGTA T AT ATTTCT CAGAAGTT GAAACCT CT CCATTTT AAGT AT AAAT GTGGAATGGCAGAA T GT AACT GTT CAT ATTTTT AT CAG AGGGTGCATTTTTT GTTTTT CTT G ACACACTTT C TTTTGGCTCATTTGTAGATTATGTTGCCGGAAGCAATTGCAATTGTGATGGCTCCT ACAGACACAGCCAGGT AT ATCAATT ATCTGGT ATTGCTCGATT AGCTT GTTCAT GAATT AGG ATTTT AAGT CCAGCT CTTGCT AAGT AACATT GTT CT GAT CCCCAGCT C CAT AGTT AACACT CTT GT GAATT GT AATTT AAGT ATGCAAGTCTT GGGT GGAGT AA G CTCTCTTT AA AG A AGT AA ATT ATT GAAT G ATTTT AATT G AGTC AAA ATTTT G GTCTT TCTGCGGCAGTGCTTGGACTTCCCCATGCCTTTGGACTGTTCAGTCTCATGTGAT GCCACT GAGAAAAGCACTT ATT AAAGTT GTTTTT AAAACT AT CGAGT CCT AAAACCT AT AT AGT ACAG AG AT CCAGT ACAT CAT CAT CT GAG AT CT G AAAAAAGTCAAAT AAT GGAAGCGACTCT AAAAT ACT GAT GT AGTTT CTTT AT GT GACAGCCCTCATGGCAT A TTCCACTT GTCT GAT CCT GCTGGT GT AT CT GTT ATTCGG AAAT GTCAACAACGTGG TTTT CATCCT CACG AGG AGCCCG AGG ATGG AAGTCCAAT AT AT G AACACT GTTCTC AT GT CT ACAT GAATGCAAACAT GAAGTTT GAT ATT GTT GACCTTCGGT AAGCT CAC AGTTT AT AAAAACCTTGGAAAGTGCGCATTT AGGAGTTT CAAT GATGGTT GT AT AG T ATT AT ATCTT GGACGTT AAGGT AT ACT GCACTTTT AT GT ACATT CT CAGGGAT CT G AG AAT ACAGTTT ATTT G AAAT G AGCG ATT GTGT ATTT CCCTT GTTTT CTTTT CT AGT CCAAT AAT ATTT AT GTT GT ACAT CAAAT G AAAACTTTT GGTTGT CATT CACATT CTTT CCCT AAAACCAT ATT CAATT G ACTTT ATTTT CAT GAT AT AT GTTT CACTT GT AAT CT G CGGT GTTT GAAGCT GTTT AATT AGGGGTTT AAAAT CGAAT CAT AAT CGAT AAAT CAA T CAT AAAATT AGCTT ATTGGT ATT GAAT AATTGGAGT AATGCTT GGTCAAT AGATT A AAATTTT AT ATTTT AT AGTT AACGGTT CATT GATGCGGGGGATGGATT ACT CAAACT TTCTT ATTGGCT AAACCGTT AAT CT ACT AAAAATT ATT GT AGTTGCATTTT AACCGT A T GT GT AT CT ATT AAGT AAAT ACT AAAGTGCTTGCAACCT CAAAAT AT AGAGTTGCAT GTGTCTCACTAT GACTT ACCAACT CGAGT AGT AAT G AAAG ATT AAT CAAATT GTGT CT G AAAGT G AGT AGT AAT G AAAG ATT AAT CAAATT GTGTCT G AAAGT GAAAG AAGG AAGCAT G AAAT GTT GT AG ACAATTT ATCGCCGATT ACCGTCTCT CAATTCCT AAT A GAT ACCAAACCAACCAAT AGCTT ATT AGTT GACT AGCGGATTCGT AT ATTT AAAATT T GAT AAGCCAAACT GTT AAGT AT AACT ATCCAT ACT AT AAT AGCT CT CT CT AACT AT CATAGC
SEQ ID NO: 36 >SIAMSH2 Solyc01g060280.3.1 protein
MRRPATMNIDAMARKVDVDNRIPLRNYYRIANNLLRQASIHRGEKNIIDLYIILLRYSSL
VTETIPSHRDYQALHPKERALSKKMLLTVLDELEGLKPEFQRQFQAIGEVQVTAQPYQ
VNNLENHRYRPVGNSFGQPSTSNKASSYYDNQWAITNAPSSTWKQNNEYSHISSPS
SFDKQFQKLSFNFSVPKQETLSRHSFFGPNGLRGQWPGPSSEIKVNYPVHDDLAPNE
IWSLNPVEDRPLVSKDTSLIVDKSSMESVLSLDDGRWLHPTEDSNFQFLDDVRSDNIP
LSNLRQPSPPPVLAQLQQEFRPISPSKVADPRPGPAKCIQDVPSSSNSFQHLHVPVRL
MEDFLRLARENTKKNLETCGVLAGSLKNRVFHITTLIVPKQESTSDSCQTLNEEEIFDV QDKRSLFPLGWIHTHPSQTCFMSSVDLHTHYSYQIMLPEAIAIVMAPTDTASPHGIFHL
SDPAGVSVIRKCQQRGFHPHEEPEDGSPIYEHCSHVYMNANMKFDIVDLR
RPN11 Homoloques
Arabidopsis thaliana
SEQ ID NO: 37> AtRPN11 genomic 5 dna:chromosome chromosome:TAIR10:5:7937030:7940204:1
CTTTTCTCTTTGCAGCTGGCCCTAAGGACACACCAATGGAGTTTGTCTGGGAGCA GACAT AT GATGCT AAAACTGGAAAGGGCAT GCCT GATCTTT GAGTT GAAACCTCT C T ACAGTTT CGTTTGG AAAAT GTTGCCTGCT CT CAAAAAGG ATT CTT CTTTTTCCCAT CCATT AGAGTTT GATTTCGGT CT AGAGCT GT GAGGTTTT GTT GGAGAACCTTT GAT CAT G ACT GAAACGG AGT CGTTTT CCTTTTTT CTTT CATT GAT CTT GT G AACTTT CAA GGTGCCAAAT AAAAT CCGTCT GG AAAACAGTT CAAT ATTT ACAT GTTT AGTT ATT GT AT AT ACACT AGCCAG AAGTCT AAACAT AAAACG AAAACT AT AAGCT CT AAGT AAAG T AGATTT AT ATT ATGCAACCGAATT AACAAT ATT AACACAAT GACAT GATTTGCATT GT AAT GAAATTT AAAATTTT GACAAAAAAAAT ATGGAAATT CAAATTGGTT ATT AACT TTT ATTTTT G GG G AT G ATTT G G A AATTT G GT G A ATT ATT G GTT AC A AT A AAT A AAAG G AAAT ATT G AAGG ACTT ATATGT AATT AGT GTCGCCT AATCG AGT AATTCG AT CCAT CTTCGT CT GTCTT GTT AACAAAG AAAACT G AG AAAGGTTTT CTT AT AAG ATCCCATT CTT GT AGCAAAAACCCAGAAGAACAAACTTTCGAAGAAGACGACT AATCAATTCAT CT GATT ATGGAGAGACT ACAGAGAAT CTT CGGAGCTGGT GGCGGTTT AGGT CACG C ATCGCCT GATT CT CCG ACT CTCG AT ACAT CGG AGCAGGTTT ACAT CT CTT CT CT C GCT CT CCT CAAGATGCTT AAGCACGGT AATCAATCCAAACCCAAGCTCT AATTT AG T CTT CT CTTGCTT AGGGTTTT AT G ATTTT GT CTCGTTCTCTGT G ATTTT ACT CT CGT CCT CTTTTGCT CT GG AACT CT AGGGTTTT ATTCG AT CT GTTT CT GAG ATT CAAAAT G CGGATTT GAGT AGAGATTT AAT GAAAATT GATCGGAAT ATTGCAGGAAGAGCTGGT GTTCCT AT GGAAGTCATGGGATT GATGCTT GGAGAGTTT GTGGAT GAAT ACACT GT T AGGGTT GT GGAT GTTTTTGCGATGCCTCAGAGTGGT ACTGGT GTT AGT GTT GAA GCT GTT GATCAT GTTTT CCAGACT AAT ATGCTCGACATGCTT AAACAGACCGGAAG GT AACT AGTT CTT CT CT AAACCT ATTT ACT ACGCTT AAGT G AGGTTTCCT ATTT AGG TTTTGGAT CT GATT CTTCTT GT AT CTT GTTTCAGACCT GAGATGGT GGTTGGTTGG T AT CATT C AC ATCCTG G ATTCG G CTG CTG G CTTT CTG GG GTT G AC ATT AAT ACTC A ACAGGT AGAGTTTT GTTTGCTCT GTTTGCAT ACTT ATCAATTT GT GAATTGCACTT G AG AATTT GTT GTTTGCTTT ATT GAT GGCT CAAAAAACT AAAT AG AAT GTT ACT CATT GTGTTCTAT ACCCT GTT GT GATT CACTTT GT ATT AT AT AT GTT CATT GT GAAT AT CT GT GTGCTTTTGT AGAGTTTT GAAGCTTT GAATCAGCGAGCT GT AGCAGT GGTGGT AGAT CCGATT CAGAGT GT GAAAGGAAAGGT GGT GATT GAT GCGTTCCGCTCCAT A AAT CCACAGACCATT ATGCTTGGGCAGGAACCCCGT CAAACAACATCGAACCTT G GGCACTTGAACAAACCATCGAT CCAGGT GATT AT CACT AACT GAAT GT GT CCT GT TTTT AAGTT G AAACG AAAT CAAAGGTTTT CT CT GAT ACT G ACTTTT GGAT ACT ACTA T GCAGGCTTT GATT CACGGGTT GAACAGACACT ATT ACTCAAT AGCAAT CAACT AT AGGAAGAACGAGCTT GAGGAGAAGAT GTT ACTCAACCT CCACAAGAAGAAATGGA CAGATGGT CT GACGCT AAGACGCTTT GACACCCACT CCAAGACCAACGAACAGAC GGTCCAGGT AAAGAAACACAGGGTT AT GTTTTT ATCT GTTCAAGCAT ATTCT ACAA T CAT GTTCATT GACATTTT CATT AT CTCCT GTTT AACAGGAGAT GTT GAGCTTGGCT GCTAAATATAACAAGGCGGTTCAAGAGGAGGACGAGTTGTCACCAGAGAAGCTG GCAATT GT GAAT GTGGGAAGACAAGATGCAAAGAAGCATCTGGAAGAACAT GTCT CGAACCT CAT GTCAT CCAACATT GTTCAGACACT AGGCACT ATGCT CGACACT GTT GTCTT CT AG AG AGCTT ACTT CTCCAGCCGCTT CAAGTCATT G AGCTTT GTT CTT CT G C ATCT CTTT G G CTT CT ACT GAAT GTT CT CTTTTT AT CTG CT AG CTTTTT AC A AG GT T GT ACT GT ACT AT GT GATTT CGTT CGTT AAGGGCAGGGAT CGATTT CT ATTT CTTT G CAT ATT ATTTT CAGATTTT ATTTT CCTCCCATTTTT AGATTTT ATGCT GCAACTTT CA AGTT AAGTGCTTTT GAT AAGAAT ATGCAATTTCCCTCCTGGATT AAGTCTTT AGCGT AACCAT G ACAAT G AAACT AAAACAAGT GAAGTT AACAT CTT AATTTT GT AGCAAACA GCAAT AACATCCAAAT CT ACGTT AAGTTCCACAGCAAAT AT ACAAAAAACT GTGCT AGGATTT GT GAAGACGT GAACTT GAT GT AAAGAGGCAATT AT AAGCCAT AAAGGG CATGGCACGTT ACCGGTGCAT CAAACAAGTCCT GCTTT GAACACATTTGGAGGAG ATT GACCAAT CGTT CAGCCAGAGCATCAAGGTTTTGGAACAAGAAATCTTT GACCT GAT GTGTGT AAACT GT AGCTT AAAACT CGGT GTCAAAACAAGT CAT G AAG AT CTTT GAGACCAT GGTTCTTGCAAAAGGGAT GT AGCTCAAGCT AT ACCTGCAGTTTT AAAG AACACAAGGGATTCATTCTCCAAGATGAATGTTGACAGCTTTTGTGACAAACTCAG AAACCGT AT AAGG AGCATT AGGTCCACTCGGG AT AAT AT ACT ATT CG AAG AGT AT A T ATCAT GT AATT GT ATT ACT AAGAAAGTT AGGAT AAAAAT GT AAGAGCTT GAAAGCA AGTTTT AGCAT ACCAAATT AGACCAGT GA
SEQ ID NO: 38 > AtRPN11 AT5G23540.1 peptide: AT5G23540.1 pep:protein_coding
MERLQRIFGAGGGLGHASPDSPTLDTSEQVYISSLALLKMLKHGRAGVPMEVMGLML
GEFVDEYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGWYH
SHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRSINPQTIMLG
QEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLT
LRRFDTHSKTNEQTVQEMLSLAAKYNKAVQEEDELSPEKLAIVNVGRQDAKKHLEEH
VSNLMSSNIVQTLGTMLDTVVF
Sugar beet - Beta vulgaris
SEQ ID NO: 39 > >BvRPN11-Bvchr5_un.sca008 dna:supercontig supercontig: Ref Beet- 1.2.2: Bvchr5_un.sca008:933325:939889:-1
ATTTT GATTTTT CACTT GT GCTTT AT AAGAT CAAAACAT GAGT AAT AGAT AT ATT AGT GGTCAAAGTT AT AT AT AGGAAAAT AT AT AAAT AGT AAATTTTTTTT GTT AAATT AATT AT CAT AAG AG AT AATT AAT AAG AATT ATTTTTT AAAGG ACG AATTTT AAT AATT ATT A CTTT AT AAT AAATTTT GAGGGT AGT ATTT ACGTT AGGGGT AAT ATTT AT GTT ATT AAT GGTCAATTTTTTT CT CTT AT AAAGTCAAAT AAGTTT CAAT CAGGT CT AAT AAGTTT CA AT CAGGGCCAAT AAGGT CT AAT AAGTTT CAAT AAGTTCCAAT AAGTTCCAAT CAGG TTT AAT CAGGT CCAAT AAGTT G AAT CAGCTCCAAT AAG ATTT AAT AAGTT CCAAT AA ATT CAGTT CAG ATT AAAT AAATT CAATT CAG AT AAGGT CCAAT AAGTT CAGGGCCAA T AAGTT G AAG AAAACGT ACCT AAGTT AAATTTGCACG AAT CAACCCG ACCCAACT A CACGCCTAAGGTCTAAGGTGGCTTGGAGAGCAAGGCCACTCACAGGGGATCGGT ATTT GTTTT CAAAT CGACG AGG AGT AAAG AAGTCG AATTCGTT CAACT CAG ATCGG CCATTCCATTTCCGTCACCAAAGAAGGAGAAAGAGTGAAAGAGAAGAAAGAAGCA CATCGAAGAGAGAGAGAAAATGGACAGACTCACTAGAATGTTCGCCGGTGCAGG AGGAGCTTT AGGCCACCCACCACCT GATT CCCCAACTCT CGACACCTCT GAACAA GTCT ACAT CT CTT CT CTCGCT CTT CT CAAG ATGCT CAAACACGGT ATT AACCT CT C AAT CCATT CTTTT CTT CAAATTT AT AG AATT CTTT AG AAACCCT AATTTTTTTTT AT AA ATTTTGGGATTT GCAGGACGAGCT GGT GTTCCAATGGAAGTT AT GGGATT GAT GTT GGGTGAATTT GT AGAT GAAT ACA CAGTT AGGGTT GTT GAT GTCTTTGCT AT GCCAC AAAGT GGGACTGGAGTT AGT GTT GAAGCT GTT GACCAT GTTTT CCAGACGAAT AT GCTT GAT ATGCTT AAACAAACTGGAAGGT ATTT GTTT GT GT AATCTTCT GATTTTTT TT AGT ACGAAATT GAT GTT GTTT CTTTTTT ATTTGGAT GAGAAAAAGCTTGCAAT CT T ACTTT G AAGTTT ACGTCTCGTT ACG AAAG AATTTT ATT GT GTT AGGGTTTTT CT GT AT GT GAAATTCTT GT AGAT GCAAT AT AT ATT CGGGGGAT AATT CG GATTTTTT AAT G GAACTT AT GATGGT GAACACCAAAGCTTT AAGAAGT GAAGTT CTTTGGAGCATGGT GGAGTTTTTGCTTCAT GT GAT GTT AT ATCAAT AT AATGGAAATCT AGT GAGCT AAGA GAT GGATT GCAGTT AT AT AGAAAT AACT ATT GAGTT ATTCTTTTCT ATGGAGGTT GT TTGGATGAGGGAATTTGATCGAAGTGGAGTTGGGAGTGCAGGGTCATTAGGAGG ATGGGAT GGGATTGGAATT CGAGGGGATCCTTTTT AAT CCCCCTTTCATT AAAAT G AAT CCGCCATGG AAAGTT CT G AAG AAAAAT GT ACACAGT AACCTT CTCTCGTCTCC CTT CT CTTTCG AAT ACT CGTT CGT AT GTTGCT ACT CAAACACATT ATT AGT GTT GTA ACT AT GAGCT CCAATTTTTT AAAGAAT CGGGT GAAAATGCTCCCAAATTT ATT GAAT TTTT GTT AGG AT CAAT GTT GG AAACT AGG AATT GAGG AAAAT G AGG AAT ACCGT AT ATT ATTTT AGT AT GAGTT AATT GGT AGAGT ACACTT GTGCCAT GTT CAT GTT CAT AG C CT CAT AGGAGTAGAATAACATG CTT AT G GAAT ATG G AT AT CC AA AT AGGCTAGGT TGCTCT CAG AT CAAT GTCTTT CT G AAAAT GAT CT GT ACTT CAT GGG ACAAGTTTTCC TTCTT GCCT AT ACT CTGGCTT GAAAAGTGGTTT GT GAT ATGCACATTTGGGAT GT A GACTTT AGTTTT AAAT GT GACT ATTTGCTT AGGAAGCTTT GAT AT GT CTT CTT GGAG ATGGTT AT AT ATT GT AGGAATCGCACCT AT GTT GT CAGT GAACCCTCAGT AAGTT A AT CACCT ACTTT GT CAT CAAGCCTT CT CTTT GAT GAT AT CTGGTTT ACATT CTTTTT GCT GTCAATGCATTTT CCCCTT AAAGGTTT AAT GT GGT GACT CGACCAAAT CT AGG AG AG AT GTTTGCCCTTT CACTTT GACT AAT ATT G AAGT ATT G ATCCCTT GTCTT GTA T AGT G ATTT AAT AG AT ACTT CAT CT GTTT CTTTTT ACTT GCAAT AGTTT GACTTT CAC ACTTGCT AATGCAT AACAT CAACCATT AAT AT CTTT AATT ACTGGT AACCTTT GAT G T CTTTTT AATT ACAAAAAGTT GAT ATTTGG AAAAT AT ACATT G AG ACG AAT CT AACAT GAT CCGGCATT AACCATCAATCACT AAAGAT AAATT AAGAAGAGT CAAATTGCTGC AAGT AAAAAGAAATGGAAAAAGT AT AT CTT AAGTTTT CTCTTT GACCTTTT CTTTGC TTTT GT GATT CTT ATTTT GTTT AAT CAG AATT CACAT CTTT GTGCTTT ACAACGTT GT GTACT AG ATTT ACCT GTCATT CGG AT CAG AGCAT AT AATTTTT CTT AG AAAGG AT AT CAT CT CGTT CTGCT ACATT CAG ATTGCACT ACTT GT CGCTT CT GATT AT AAT ACAG A AT AT AAATT GAT ACTGCCG ACT AATT ACT ACACAT CT CTT ATTT CTT GCT CT AG AT C T ATGGAT GATTT GAT GT GTT ATGGGTTT GTT AGTTTCAGCCT ACAACATT ACATGG CACCACACGGAAACGGACATTTT AT GAAAT AGTTT ACTTGGT CCGGT GAAAGTCAT ATTT ACAT GTGCAAAAT GTT AGCT GT AAT CATGCTTGCTCCATCCCT CAAT GTTTTT C ACACTTCCCTT AATGG AT GTCCT G AACT GT GTTT CACACTT CTCG ATTGCAT ACC TT CTT GAGTTCTCTCTGTC ACTT CAG CTTT CTTTT CTTTT CATCTCTCT AATTTCCTT T ACCTTTT CTT AACTTT CT AGTTT CT ACT CACTT ACAATTTT AG AT CT ACTT ACATT G T CATCCT CT CAT GTTTTGGT AT AAG ACCT ACCACAT CT AACTTGCCCAT CT ACATTT ACCCT ACTTTGG AAATTT CT AGG ATGG AG AGAGTT CT AAAAAAT CAT CTTCG ACTT CAT GT AT ATT AT CT GATGCACTT ATGGT CACCCCCTCCCCCCCCT CCCCCCCAACA CAT ACACACACAG AG AATT GATT ACTT G AAAGAAATTT CT CAAGT GTTT GTTTT G AA ATGCATT ATG GATCTTC AAAT AT GTCGCT GAT AT AT AT AT AT AAGCCTT ACAATT AC GAT CCATT AAGGCTTTT ACCTTTTT GGGT AGT GT CT ATGGGTTT CACAAAT ATGGTT CCATCT ATTGGGAGGATT ACTTGCTGGCAAT ACAT CTCTTCAT ACCAT GAAAACAT CGGTTCTGTAGGATGTGTTATATCT CAAT CTATG CT CTTT GAT A ATTT AT G A AATT A TCTT CAT GTGTT CTT GCA AAT AT C ATTT AT ATT ATTC AG CTG G GTT AAAT ATTT C ATT T CCTT AATTT ACAGGCCAGAGAT GGTT GTGGGATGGT ACCATTCGCAT CCT GGATT T GGTT GTTGGCT GT CTGGT GTGGAT ATCAACACGCAACAGGTT GAATTTTTCT AT A CATT AGCT GACTTT GGT ATT GT ATTGCT GAT AATTT AT GT CT ACCTT AACAT GTT CT GT AT CAT GT ACT CTGCT GTCT CTGCTCTTTGCAGCAGT GTT ATGCTT AT ATGGACT CT AAAAG AAT CT ATT GAAAT GTGT GTT AG AACT GT AT GTT CAGTCAT GACGTCTT AC ACTCTTGGTT CT GTT AGT GTT GATTGGGT AT AT AT AT GAGACT GAAGAT AGCAGT C ATTTTGCCTCCTTGCTCGGT GTTGGT CCTTT ATCAT GGCAT AT GTCCT GTT AT AT GT CT GTTTT AT GT AGT CACTT GTT CATGCTTT GTTGGGTT GACGAAAAAAT AAT ATT AA TGCTCTCAGCTCTGCTGTTTGGCATGTTTGGGTTTTTTTGCTTATTTCAAGGAGCA GTT AGAAAGCT AGTTTT AGAT ACAAT CT GTT AAT CTTT GCAAAT AAT ACTGCAGAGC TTT GAAGCCTT GAATCAAAGAGCT GTTGCT GT AGTGGTGGAT CCT AT ACAAAGT GT CAAGGGGAAGGT GGTCATT GATGCCTTTCGATT GATCAAT CCACAGACGAT GAT G CTTGGTCAAGAGCCTCGGCAGACAACGTCCAACCTTGGGCATCTTAACAAACCAT CAATT CAGGT CAGCAAGAT CCAGAT GCTGCAGT AATTCACTT GT GT AGCT GTGCT A GGTGT ATTTT ACT AT CT CTT GTT AT CT CT CT GAT GAG AT GTT CTGTGT AGGCATT G A T CCAT GGGTT GAACAGACATT ACT ATT CCAT AGCCATT AACT ACAGGAAGAAT GAA CTT GAGGAGAAGAT GTTGCT GAACCTT CACAAAAAGAAATGGACT GATGGATT GA CACTT AAGAGATTT GATGCTCATT CAAAAACCAACGAGCAGACT GT CCAGGT CAGT GG AG ATTTT G ACT GT CAG AGT AAAAACT AAT CAAT AGCAAG AT AAT CT ATTTT CAAG TTGTCCAT AACATTT GCT ATTT ACCTAT CT ATGCCCAATGCCCAT AAT AGCT AT CTT AT AAGGG AAGTCAAT ACTT GAT AAAAGT AT GGTCTTTT GTGT G AAAG AAAAAAAAA GTCT AAT GAAAG AGGTT AG AAAAT GT ATTTT CAAT CCTT CAGTTT ATT ACTTT ATT AT GCGGGTTGGGCAACTTT GTCAAT AACT GAGT AACT CGT AT AT AGTGCATTTT AT AA T CTT ACCATTTTT GTTTTTTTTGGCAAACT GT CCT CGTT CCAAGGCGTTTTCACATT ACCTCT ATGCT GAAAAAT GAGCCT ATTT ACCCCTT GAAT GAT CACCAT AT AATT ATT T ACTGCCT GT GAAGAGT AGCAAT CAT CACATTTT GTT AT AGT AGCT CTTTGGAAAA GAAATGCAAGCTTGTTTTCAAT AT GTT AT AGT AGGT ACTTGCAGACAGAAT CT CCTT AATTT CAAT GG ACAATTTTTT CT GAT G AAGGTT CTT CT GCAT ATT AT CT ACCACATTT T GGGAGGAAGCT AATT AT AT AGGTT CAACTCAT CAACCAT GAGTT GACATTT AGT G T GCGGAAGCT AGATTTT AAT GT GAAATT GT CAATT AGTCAT AAATT GAAGGTTT AT G GTGCAAATT CT ATT GCT AT ACTT GTT GATTCAGGGAAAT CAAAAT GAGGT GGGAAA T CT GCATTT AG ATT GT CACTTTT ACTTT AT GTCACAG AAACATGCATTT CAT AGTTT CTGCTGGGT AGT GAGAT AACTT GT GT GT GTT GAGACTT GAGGGACT GAAT AAT GT GTTT ACT GTT CT GAGAATTTGCAGGAAATGCT GAAT CT AGCT AT CAAGT AT AACAA AGCAGTTCAGGAGGAAGAT GAGTT GTCCCCAGAGAAGCT AGCAATTGCAAAT GT G GGAAGGCAAGATGCAAAGAAGCATCTGGAAGAACATGTCTCAAACTTAATGTCCG CCAACATCGTT CAGACTTTGGGCACCATGCT AGACACT GTT GT GTTTT AAT ACCTT ACAT ATT AAAATTT AT CT AT AG ACAATTTT CT AGTTT CTT CTGCTT GCAT CAT CT GT G AT AT GAAT CCACTGCTCCGTT CAT CCT AATTTTGG ATT GTT ACATT ATT AAGT GAAT T GG A AC AT GTTG G AC A AACT ATGTT G GTCCTTT CTT ATT AGCT C ATT ATG CTTCTCT T GTT CTTTT CCCGTCT ACAAAT CTGCAATT ATT GTCG AGGG ACT CTT ATTTT CTTT C GT AT GAAGTGGAATT CCT ACT GATT CAGTTT AGTCT CCTT AT GT CAGGAATT ACT C CTCACGTT GT CTTGCTT CCT CAT AATT AAG AAT G ACAATTTTT AT AAGAAAACCCAT CTT GAT AGGACAACCATTT GAAATT GT GAAAAACT ATT GCT AAACT ACT AT ATTT GA AGGAAAAATT GACATT ACTT GTTT CACCT ACGCGT AGAT GACTGGT GTTT CTTTGC AAAAT GGTCTT CATTTT AAT G AACCTGCT AACTTT AAT ACTT AT G ACAG ACT GT ACC CTT CT ATTTT CTTTGGTT AAT CAAAATTTT CACTT GTGGCT G ATGCTCCT CTT CAT C AAT GAGGAT AT CAGAT GACCTT CTGGTT AAGCGCT ACCTTTTCCGAAAGGAT CTTT T AGT GGCT ACACCT GTTCAAGGGT GT AT AATGGT GGTGGAAGATTT GGTGGTGGT TGAGGAGAGGGGGGGGGGGGGGAGGAAGTTGAGAGAGAAAATTGAAAGTCGAT GAAT GAGAGAAAGT GAGAAAGT AGGGAGGGT AAGAGGAGAT AT GT GAGGAAAAT AAATATGGGGGAC
SEQ ID NO: 40 > BvRPNI 1-KMS97723 peptide: KMS97723 pep:protein_coding
MDRLTRMFAGAGGALGHPPPDSPTLDTSEQVYISSLALLKMLKHGRAGVPMEVMGL
MLGEFVDEYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGW
YHSHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRLINPQTM
MLGQEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWT
DGLTLKRFDAHSKTNEQTVQEMLNLAIKYNKAVQEEDELSPEKLAIANVGRQDAKKHL
EEHVSNLMSANIVQTLGTMLDTVVF
Tomato - Solanum lycopersicum
SEC ID NO: 41 > SIRPN11-4 dna:chromosome chromosome:SL3.0:4:63831504:63837729:-1
ATCGGTT AAAAT CATTT CAAT CGT AACG AT AGT ACCT CAAATT CAAATCCATTT GAG TT ACT GTAT AAGTTTTT ACT AT ACAATTT ACT AATT AAAT AAT ATT AGTT AAT CAAAAA ATT AAAATT AT CT CATT CT AG AACTT CT CT ACAACT ACAACTT CT GTCAGT AT AAAT C T GAAAT CACT ACCT AAT AATTT AT AT AT CTT AAGT AAATT AGT G ATGCTTT CTT ATT G AT AAATTT CAAAAT AT AAT GTTT CG AAGG AAT GTTT ATT CTTT CTT CAAAT ACATTGC GTGG AT AAAT GT ATT CAGCAAAACT GTTT GTCTACTCT ATT AAATTT CAT AAAAAT A GAT ACTT AAAAACTTTTT AT CT AT AACTTT ATT G AAAATT AT ATTTT AGT ACAATT AAT T AAG AAT ATACCT AT AG AGGGCGT AAAT GT AG AATTT CT AT AAAACAATGGT ACAA GT AT CCGATTTT AAAAT AT AGGGGT GT AATCTTT ATTGCGTCAAAAT ATGGGGT ATT TTTT GT AGTT AT ACAAAGT AT AGGGGTCTCAGCGCAAT AAGT ATTTT AGAGT ATTT A AATTCCCAACTT CT CCT CT GAG AT CAAAG AAATTT ACAGTCGCAGT AGTCTT GTT CT CAAAGAAATCCAAAAAGCAAAGCAAAACAAAACCCAATCGGAGAGTATGTCTGGA ATGGAAAGATTGCAGCGGATGTTCGCCGGAGCTGGCGGCGCGTTGGGCCACCC GCCACCGG ACT CTCCAACT CT GG ACT CTT CT G AGCAAGT CT ACAT CT CTT CT CTT G CCCT CCT AAAGATGCTT AAACACGGT AACTT AGGGTTTTCCCCCCCCAACT AT ATT CGTT CTTT AT ACACTT GTT AT CCGGATCT AGCTGCAT AT AT AT ACTT ATCCGT GTT A TTGCATTT AGCT AT ACAT GT GT G A AG AAATT CT AT A ATT GAG ATTT AG CTTT AGCGA GCCT GTGGAGTT CAAATTTT AGATT AGTTT CTCT CT CT GAGT GT AGGT GTT GT AATT AGGGTTTTTTTGTGATGTTAATGTGCAGGGAGGGCTGGAGTTCCTATGGAGGTGA T GGGATT GAT GTT AGGGGATTTCGT CGAT GAGT AT ACAGTGCGT GT AGTT GAT GT GTTTGCAATGCCTCAGAGTGGT ACTGGT GT GAGT GTT GAAGCT GTT GATCAT GTTT TTCAAACCAAT ATGCTT GACATGCT CAAGCAAACT GGGAGGT AAT CACT GTTTT CT ATTGGT AT CAT ACAGG ATT AGTT GT AATT AAAGGTT CTTCCTTT ACTGGGT AAT ATT T CTTT CCCCT ATGGTTCCAT CAT AT GTTT AT AATTGCAT AAAAAATT GAAAAGT GAA AT AT GTTTTCCAGGT AT ATT AATTT GGGT AAATTTGGGGGCTTT GAACATTTT CCTT GT GTTTCTTT GGT AT GACACT GT AAAAGGGATGCTT GACTGCGAATT AGAGAACT G AGCCTTTT CAT GTTTT CT GTT CAACTTTT GAT G AGGTT AAACTTT AT ATGG AAGGTT T C AATTT CTGGCTGCT GTTT G AACT ATTTCCTT AAT AAAT G G GATT ATG G G AAT AT G AT AGT GTTTGGCACCT AAATT GGAAT GTT GT GACTT GT GAGAT AGT ATT CGT CT AT GTTGCAAATTT GT AT GATTT GAAAAGAAAACTTT GTTT GCATTTCATT AT GTTTT ACA ATTTCAGAGT CACTGCACTTTT AGACTGGTTT AACCCCT AAGT GTTCACGGAAGAG TT ATGGCT CTT ATCCAT AAAAGT AGCT AAAT AT AT ACAAGACAAGAT ATT ATGGAT C T GCTGGTT GAAT CTTT AT GT CT ACGCT AAAGT GAGCCGT ATTT GTTT GTTT AAAGAA T AT CTTTT GAT CTT CATTTTTGCCT GG AT AG AT AATTT GGT G AGGT CTGTGT CAACA T AAG AACCAACTTTT AT AT GT GAT CTTCG AG AT AG AGTGGT AACTTT ATTT GT GG AT T CTT CT CTTT G AGCTTT GTGGT AAAG ATCCTGGT GT ATTT GAT GAG AAT GT AGT GG T CAGGCTTTT ATCTT AAT CAATTTCGGCT AGAGGAT GATT GTTT GGAAT AAGGTT C CTT GAGCTTTT GTT AAACCAAACTTCAAAGCTTTT ATT AAAAT CCACCTT CAGAACT GCTGGCATCACAATGTTGAGGGGATGTTGTATAAGAATTTAGGCATGGCGAATTA GCAGGT AAGT GAT AAGAAGATT AAGATT AT CAT GT ACAAT CT GGGAGTT GT CCGC GGTAATTATAAAACCTGGTAAATGATGGGAAACTAAATCAGTTTATATGGCTTGCA ACAT GAGAT AG AAG ATT AAG AT ATTTCGT GAAGCT ATTCCT CAT ACT CAT CTT CT AG TTGT GT AAT GT GTT GTTTTCT AT CGGTTGGGCT GT CCTTT AT GTT GT AAT GT AGCCT AAT CAACTT GT GT ACTT AT GT GTTTT GAT ACT GAGGAT GTGCT CT CAAAT GCCACTT T GCCTTT AT CTT ACAG ACCT G AG ATGGTT GTTGGTTGGT AT CACT CACATCCTGG A TTTGGCTGCT GGCTTTCTGGT GTT GACATCAAT ACACAGCAGGTT ATTCTT GTCCT TTT CCATTT CGAT GGTT AGCTGGTT CCT AAT GAT GTTT GAAATTTTCT AT GT GAAT C AT G AGCCACT GAGT AAG AAT AGTT CAT GAT ACTGTGTT AGTCCTTTT GT AGTT ATT C C AAT CTTCCCG AGTT AAAT G ATTTT CTTT GATT AAT AT GG AATT G AG AAAAAACTTT AT AAAAAT AATGGAATT AAGAAACACAAGATT GAATTTTTTTGCAAT AT GAAATTT G ACT AAT GTGGT GAAAT GT GACATGGT AAT ACCATGCAAAGCT GT ACT ATTT GTT AT CCCACCTTTTT GAAATGGTGGAGAT CAGT AGTTTTTCAT AAGGAGAAGGGTT ACGT T CCT GGAGCCT GT AT AGAAGT ATTGGGAAGTGCTTT GT GAAGAT CTT ATGCACTTT CATCCTTTGAATT AAGTGCT GAATTGGAACAGTTT CTTTT AATTTTT AAAATGCATT C CTCCTT AT AGTT AG ACACTT GT AGTT GTTT CGT ACAAT G ACCAAAT AAGTT AAG AT C GCGAT ACT AT CCAGGT ACAGAGT GTT AT AGATGGGGT AGTGCCT AGT ACT GT GTT T GGT AAAGAAAAGGCAGAGT GAGAGGAAGGGTGGGAGGGAGAGGTT GATTT AGT T CCTT GGGT GAAT CTTAT AT CGT GAT GTTTTT AT AGT AACAGCTT ACAT AT GAACT G T CCAT AACT CT CACCT CT ACCTT AT CACCAG AT AAGGG AG AG AATT CTCACGTCCC TTT ACCAGT CCTT GCACTT ACT GTTT CCACCTT GATT GAACAT AGTGGTT CCT GAAA T CATTTCATGCCTTTTTT ATTTGCAT ATT GATCCTT AT AT AAACAAATTT AGGGAAAA TTTT CCGACAAGGAT GAGATT AAGGGGCAGGGAT GAGAAGAAGAGAGAGT GT GT GTT AGAGTT AATT AGAAGAT GTT GAAAGCTGCCCT GAT CAGTT GT CTTCCGT CT CC ACTCCCCACTTGCTAGTGAGCTTTTTTTCCCGCTTCTCGGGATAAATTTAGCTTTTC AT GAGAAT GAGAT CACATT GTT ATT CTT ACACACACACACCAAAAAT AAAT AAAT AA GACCACACT GAT AT GTTT GTCTTTTGCATT CT AGAGCT GT AATTCGTTTGGAT CT CC AT AT GAT AATT CTGCT CT CT AT GAT AT AAAAT ACG AAGTCT GATT AGCAAG AT AAAT GTT G AACACT CTTT AT GAT AG ACAATCCT CT GG ACAG ACT ATT AT AGCATT CT GT A GT GATT AACAT AT GAGAATT AT AGAAAT GT ATT GAAGCAAAACAAAATT CT GTCTGC AACAAAAATT AGAAAGAT AAGAAAAT AAAAACTT GTGGCGAAGAGAT GT CTCCCAT CTCT CCCTCCCTT CT AG AT AACAG AT AAAGGGG AT AGT AAG AAAT AGAGT GAAT AG TT CAT ACAACTT CACACT CTT G AGT CTTT AGTT GT CG AAT GTT CAATTGCATTTT G A T AT AAGCAGAT GAGCACACGAACCT ATCAGAAT GTCGATTTGGT GT GTTTGGCAT G GT GTCTT CAT GT G AAGT ACGCCAAT AACT AGT GAAT GTT CT ATTT G ACATGGTCTT CAT GT GAAGT ATGCCAGTT ACT AGT GATTT GACATGGT CTT CAAAT CAAGT AAGGT AAT AATT AAT GAAT GTT CT ATT GTGCAGAGTTTT GAAGCACT GAATCAACGAGCAG T GGCT GTGGT GGTGGATCCT ATTCAGAGT GTT AAAGGGAAGGTGGT AATT GATGC CTTTCGCTTGATCAATCCCCAAACTATGATGCTTGGCCAAGAGCCACGTCAGACA ACAT CAAAT CT GGG ACAT CT G AACAAACCAT CT ATT CAAGT AAGTGCCAT GATT AA T CTTT AT ATT GT CTT CG AAAG AT GTT ACT CACT CTCCT CCCG ACCCCCCCACACCC AGT CTT AGT GT AT GAGCGAGACCTCCT ATT GT ACTT CCT GAT ATT CAGCCGTCCGC TGGTGGT GAT ACTT CTAAGT GG AAT AT CTT CT ACAT G ACTT CCACAAGTT ATTT AGT AAAAT AAAGTTTGCT AGTTTT ACCAAGT CT AGTT AGTT CAT ATTTT CCAATTT AAACC T GGTTTCCAAT AACCAAT CTT CAGCTT CT CTT AT AT GT CCAATT GT GTT CTGCGCAA ACTTT GTT G ATGG AGT ACTTT CAGTTT CAATTT CT ATTTCGGGTT CT AAT AG ATGCA T CTTGCAGGCATT G ATCCAT GGTTT G AACAG ACACT ACT ACT CAAT AGCCAT AAAC T ACAGAAAGAAT GAACTT GAAGAGAAGATGCT ACT GAAT CTT CACAAGAAGAAAT G GACAGAT GGACTTGCACTCCAGCGTTTT GATGCT CATTCCAAAACCAAT GAGCAG ACAGTT CAGGT AAT CTTT GT GTTTGCGTGGT ATT GAAT ACAACT GCATT GTT ACATC AAAT G CC AT CTTTT GAT GATT ATA AGTT CAT AT GATT G CT AAT AT ATTTTTT CAT CTC T GCCT CT CCCCCGGAGAGAAACGAAAGAAGAAAACT AGGAAAT ATT GT CCTT GAC AT GT GTGGT GACATTTT CAAAT ATT GT CAT GTGCAGGAGAT GTT AAATCTTGCT GG CAAGT AT AAT AAAGCAGT GCAGCAAGAGGAT GAGTT GACCCCAGAAAAGCT AGCT ATTGCAAAT GT AGGAAGGCAAGATGCAAAGAAGCAT CTT GAAGAACAT GT CTCT G ATTT GAT GTCTT CAAACATT GT CCAG ACATT GGG AACCAT GCT CG ACACT GTT AT C TT CT G AAGTT CATTT AT CCCAT GTCTGCAAAAGTT GT GTTTTT AGT AGT AAAAT AGG AACAATT CTTTTTGCT GTTTTT CTTTT AAAT G AG ACCT AGT ACTT CGTTTT ACT CT GT CAT AGT AGCT CTT AT ACT AT AT AACGTT ACGTT ATTTT AAGAT GACTTTTCGGAAAT AAT AGTCT GT ACCATTTTCCT AATT CAGT GCCTGTCT ATTTCG ACACCATTT AAGT G AAGGAGAT AT ACGTT ACTCCGTTGGT ATTT GTT ATCTTTCACT AGCACAGGTTTT AA AAT GTT CAACAAGGTCATT AGTCGCAAATTT CT GAAT ATT AT AAAAG ATT CAT AT CT T ATTT G AATT ACT CAAATTGCCT AT AAA CAAAT AT ACAAG AAT CCCCCACATTGG A CTTTT CT ACCTT AT GAAT AT GT AT AGGT AAT AGGCCAACCAGAAAGAAAAAT ACTTT TATCTCTGT ATGCCTTTT G ACTT AACAAACTT AT GAAT CATCG AGT AT AAT CAAGGC GCAAAT GAAAGCGATGGAATTT ATTT ATT ATTGCAGT AT ACACAATTTTTT CAT GAA AACAACAGCCT AAAGCACTTT ACCGATT ACACGAAACAAT CACTTTT CATT AAT AAA AGT AGCCCAAGATTT GACCAAAT CAAGTGCTTTTT CACT ATT AGGATT AAAT AT AT G AAAAACAT GAT CTT CCCCTTT AGTTT CAAAG ATTT CAACTTTT CCTTT CCACT G ACT CTT CAT CAAAG ATT CAT AGT ACAAT ATT CCT CT GT CT CT CAGT AT AT CCAATT CTGC T ACA CAAACAAG AACT CT GT CACAGGCCAATT CTT CAAG ATTTGGTGCTT CAT CAA CAAAAGGATTG
SEC ID NO: 42 > SIRPN11-Solyc04g079200.3.1 peptide: Solyc04g079200.3.1 pep:protein_coding
MSGMERLCRMFAGAGGALGHPPPDSPTLDSSECVYISSLALLKMLKHGRAGVPMEV
MGLMLGDFVDEYTVRVVDVFAMPGSGTGVSVEAVDHVFGTNMLDMLKGTGRPEMV
VGWYHSHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRLINP
QTMMLGQEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKK
WTDGLALGRFDAHSKTNEGTVGEMLNLAGKYNKAVGGEDELTPEKLAIANVGRGDA
KKHLEEHVSDLMSSNIVCTLGTMLDTVIF
Potato - Solanum tuberosum
SEQ ID NO: 43 > StRPN11-4 dna:chromosome chromosome:SolT ub_3.0:4:68487601 :68493249:-1
ACTT CACTTTTTT GT AT CACAACACCTTT GT AT AGTCT CT AGTT CCTCGCCCT CCAT GT GT GAT AT ATT AAT CCT CCCAT AAT AGCTGCCATT ATTT CCTTCTT GAATTT CTT C CAAT GCCTT CT CCAT AACCT GTT AAT GTT AAGACCT CCAT ATTTCTTTGGT ACACAA ACTTT AT CCCAAGCT ATT AAT GCT ACCTT ATTCCT GT CCCCCCAAAGAT ACT CCCT A C ATTT CTT AT CAACCT CT ATCCCCAG AAACT AT G AATGCT AAAAT CACCT CT GCAT A GGACAATT GCCTTGCAT AAGT AGTCTT GATT CT CT ATT AATGCTT GACATTCCTT CC ATCTTGCTCCACCTCTTT GAAGGT AAGGGCAACCCCAACT AT CTT AT AAGGGAAAT T ATT AT AGGGT GT ATT CTTT ATTGCGT CAAATT AT AGGGT ATTT AGT GT AGTT AT AC AAAGT AT AGGGGT CT CAGTGCAAT AACT ATTTT ACACT ATTT AAATT CCCAACTTCT CCT CT CAG AT CAAAG AAATTT ACAGTCGCTCGCAGT AGTCTT GTT CT CT AAG AAAT CCAAAAAGCAAAGCAAAACCCAATCGGAGAGCATGTCTGGAATGGAAAGATTGCA GCGGATGTTCGCCGGAGCTGGTGGCGCGTTGGGACACCCGCCACCGGACTCTC C AACT CTGG ACT CTT CT G AGCAAGT CT ACAT CT CTT CT CTTGCCCT CCT AAAG AT G CTT AAACACGGT AACTT AGGGTTTTTCCCCCAACT AT CTT CGCT CTTT AT ACACTT G TT ATCCGGATCT AGCTGCAT AT AT AT ACTT ATCCGT GTT ATTGCTTTT AGGT AT ACA T GT GT GAAGAAATTCT AAAATT GAGAT GT AGCTTT ATCGAGCCTGCGGAGTTT AAA TTTT AGATT AGTTT CT CT CT CT GT GT GT AGGT GTT GT GT AATT AGGGTTTTTTTT GT GATGTTAATGTGCAGGGAGGGCTGGAGTTCCTATGGAGGTGATGGGATTGATGTT AGGGGATTT CGTCGAT GAGT AT ACAGTGCGT GT AGTGGAT GT GTTTGCAATGCCT CAGAGTGGT ACTGGT GT GAGT GTT GAAGCT GTT GATCAT GTTTTTCAGACCAAT AT GCTT GACATGCTCAAGCAAACT GGGAGGT AATCACT GTTTGCT ATT GAT AT CAT AC AGGATT AGTT GT AGTTT AAAGGTTCTTCCTTT AGCT GGGT AAT ATTTTTTTT CCCCT ATGGTTT ATCAT AT GTTT AT AGTTGCCT AGCAAATT GACAAGT GAAACAT GTTTTCC AGGTATATTAATTTGGGTAAATTTGGGGGCTTTGAGCATTTTCTTTGTGTTTCTTTC T CAT GTCAGTTGGT ATGGCACT GT AAAAGGGATGCTT GATTGCGAATT AGAGAACT G AGCCTTTT CAT GTTTT CT GTTCCAACTTTT GAT G AGGTT AAACTT GGCAT GG AAG GTTT C A ATTT CTGGCTGCT GTTT G A ACT ATTTCCTT CAT AAAT G G GATT ATG G G AAT AAGAT AGT GTTT GGCACCT AAATTGGAAT GTT GT GACTT GT GT GAGAT AGT ATTCT GCT AT GTTGCAATTTTT AT GATTT GAAAAGAAAACTTT GTTTGCATTTCATT AT GTTT T ACAATTT CAGAGTCACT GCACTT GT AGACTTTGGTTT AACCCCT AAGT GTT CGCG GAAGAGTT AT GGAT CCT AT CT AT AAAAGT AGCT AAAT AT AT ACAAGACAAGAT ATT A T GAAACTGCT GGCT G AAT CTTT AT GT CT ACGTT AAAGT GAG ACT CATTT GTTT AAAG AAT AT CTTTT GAT CTT CATTTTTGCCT GGAT AG AT AATTT GTT G AGGTCT GT GT CAA CAT AAGAACCAGCTTTT AT AT GT GAT CCT CGAGAT AGAGT GCT AACTTT ATTT GT GA ATT GTT CT CTTT G AGCTTT GTGGT AAAG ATCCTGGT GT GTTTT CT G AGAAT ATAGTG GTCAGGCTTT AT CTT AAT CAATTTT GTCTAGGGGGT GATT ATTT GG AAT AAGGTT C CTT G AGTTTTT GTT AAAACCAAACTT CAAAG CTTTT ATT AGAAT CAACCTT CAAAAC T GCTGGT GTCACAAAGTT AAGGGGCT GT CCT AT AAGAATTT AGGCAT GAT GAATT A GCAGGT AAGT GAT AAG AAG ATT AGGGTT AAT CAT GT ACAAT CT AGG AGTT GTCTAC GGAAATT AGGAAACCT GGT AAAT GATT GGAAACT AAATCAGTTT AGATGGCTTGCA ACAT GAGGT AGAAGAT AAGGAT ATTT CAT GAACCT ATTCCTT GTT CT CAT CTT CT AG TTGTGG AGT ACT GTT GATTT CTATCGGTT G AGTT AT CCTTT AT GTT GT AAT GTTGCC T AAT CAACTT GT GT ACTT AT CTT CTTT GT GTTTT GACACT GAGGAT GTGCCCT AAAA T GCCACTTTGCTTT AT GTT ACAGACCT GAGATGGTT GTTGGTT GGT ATCACTCACA TCCTGGATTTGGCTGCTGGCTTTCTGGTGTTGACATCAATACTCAGCAGGTTATTC TTGTTTTTTTCCATTTT G ATGGTT AGCT GGTTCCT AAT G ACATTT G AAAT GTT CT AT GT G AAT CAT G AGCT ACT G AGT AAG AAAT GTT CAT GAT ACT GT GCG AATCCTTTT GT AGTT AATCCAAT CATCCCG AGTT AAAT G ATTTT CTTT GATT AAT ATGGAATT G AG AA AAGCTTT AT AAAAAT GATGGAATT AAGAAACACAAGACT GATTTTTTT GT AGT AT GA AACTT GACT AAGGTGGTGGGAT GTGGCGTGGT AAT ACCATGCAAAGCT GT ACT AT TTGTT AT CCCACCTTTTT GAAATGGCGGAGATCAAT AGTTTTTT CAT AAGGAGAAG GGTT ACGTTCCTGGAGCCT GT AT AAAAGT ATTGGAAAGTGCTCT AT GAAGATTTT A T GCACTTT CAT CCTTTT G AGTT AAGT GCT G AATTGG AACAGTTT CTTTTT ATTTT AAA ATCCATT CTTCCTTTT AGTT AG ACACT AGT AGTT GTTT CGTGCAAT AACCAAAT AAG TTGAGATCACAATCCCATCCAGGT AGAGAGAGTT AGAGAT GGGGT AGT GCCT AGT ACTGTGTTTGGTAAACAAAGGCAGAATAGAGAGAGGGAGGGAAGAATGGAGGTT GATT ACTT CTT CAGGGTT GAAAAGGGGAGAGAGT GT GT GTT AGAGGT AATT AGAA GAT GTT GAAAGCTGCCCTT AT CAGTT GT CTTCT GT CT CCACTCCCCACTTTGCT AG GGAGGTTTTTTTT CACTT CT CACGAGAAATTT AGCTTTT CAT GAGAAT GAGAT CACA TTGTT ATT CT CACACACACACCAT AAAT AAAT AAAT G AG ACCACAGTGGT ATGGTTA T CTTTT GCATTCT AGAGCT GT AATTT GTTGGGAT CT CCAT AT GAT AATT CT GCTCTC T AT GAT AT AAAT AGT AAGT CT GATTGGAAAGAT ACAGGTT GAACATT CTTT AT GAT A GACAAAATCCT CT GGACAGAGCAT GAT AGCATTCT GT ATT GACT AGT GTTGGAGAA T CAT AGAAATGGACT GAAACAAAACT CT GTTT GT AGCAAAAATT AGAAGAT AAGAA AAT AAAT ACTT GT GGCAAAAG AG AT GT CT CCCAT CT CTCCCTCCCTT CT AG AT AAC AGAT AAAGGGGAT AGT GAGAAAT AGAGT GAAT AGTTT AT ACAGCTTTGCACTCTT G AGT AGTT GAGT GTT CAATTGCATTTT GGT AAAAGCAGAT AAGCACAT GAGCCT ATC AGAAT GT CGATTT GGT GT GTTTGGCATGGT CTT CAT GT GAATT GCGCCAAT ACCT A GT GAAT GTT CT ATTTGACATGGT CTT CAT GT GAAGT GTGCCAGTT ACT AGCT ATTT GACACGGTCTTCATGCGAAGT AGT AAGCCAAT AACT AAT GAAT GTTCT AT GGTGCA GAGTTTT GAAGCACT GAAT CAACGAGCAGTGGCT GTGGT GGTGGATCCT ATTCAG AGT GTT AAAGGGAAGGT GGT AATT GATGCCTTTCGCTT GATCAAT CCCCAAACT AT GATGCTTGGCCAAGAGCCACGACAGACAACATCAAATCTGGGACATCTGAACAAA CCAT CT ATT CAAGT AAGT G ACATT ATT AAT CTTT AT ATT GT CTTT G AAAG AT GTTACT CCCTCTCCTCCCCACCCCCACACATCCAGTCTCAGTGTATGAGCGAAACCTCCTA TTTT ACTTCCT GAT ATT CAGCCGTTCGTT GGTGGT GAT ACTT CT AAATGG AACAT CT ACACG ACCTCCACAAGTT ATTT AGT AAAAT AAAGTTCCACT AGTTTT AG AAAGT CT A GTT AGTT CAT ATTTT CCAATTT AAACCT GGTTTGCAGT AACCAAT CTT CAACTT CTTT T AT AT GT CCAAAT GT GTTTTGCGCAAACTTCGTT GAT GG AGT ACTTT CAGTTT CAAT TTCT ATTTCGGGTTCT AACAGATGCATCTTGCAGGCATT GAT CCAT GGTTT GAACA GACACT ACT ACT CAAT AGCCAT AAACT ACAG AAAG AAT G AACTT G AAG AG AAG AT G CT ACT GAAT CTT CACAAG AAG AAATGG ACAGATGGACTTGCT CTCCAGCGTTTT G A T GCT CATTCCAAAACCAAT GAGCAGACAGTTCAGGT AATCT AT GT GTTTGCATGGT ATTT AAAT ACAACAGCATT GTT ACAT CAAGTGCCAACTTTTTTT GAT GATT AT AAGT ACACAG AAT ATGCTTGCT GAT AT GTTTTT CAT CT CTGCCT CTCCCCGCG AG AAAAG AGAGAAT AAAACAAGGAAT AAT GTCCTT GACATGCCGCGT GACGTTTTCAAAT ATT CTCTT GT GCAGGAGAT GTT AAACCTTGCT GTCAAGT AT AAT AAAGCAGTGCAGCAG GAGGAT GAGTT GTCCCCAGAAAAGCT AGCT ATTGCAAAT GT AGGAAGGCAAGAT G C AAAG AAGCAT CTT G AAG AACAT GT CT CAAATTT GAT GT CTT CAAACATT GT CCAG ACATT GGG AACCAT GCT CG ACACT GTT GTCTT CT G AAGTT CATTT CTCCCAACT CT GGAAAAGTT GT GTTTTT AGT AGT GAAAT AGGAACAATT CTTT CTGCT GTTTTTTTTC CT AAG AAAAT G AG ACCT AGT ACTTT GTTT CT CT GT GAT AGCAGCT GTT AT ACAAT AT GGTTATGTT AT CTT AAG AT G ACTT CGG ACGT AAT AGT GTTTT AT CTT CTTT ACT G AA CCATTTT CCT AATT CAGTGCCTCTCAATTT CAAGACT ATTTT GTGGGAAGGAGGT A CAT GTCACT CCGTTGGGT ATTT GTT AT CTTT CACT ACACCAAGGTCATT AGT CAT AA ATTT CT G AAT ATT ACAAAAG ATTT AT AGT AT CTT ATTT G AATT ACT CAAATTGCCT AT AAACAAAT AT ACAAAT CAAAG AG AATCCTCCACATTT GG ACTTTT CAACCTTT AT GT AT GT AT AGGT AAT AGGCCT ACCGGAAAGAACAAAT AATTTT AT CT AT AT AT ATT CCT TTT GAATT AACAAACTT AAAAAT CACAGGGT AT AATCT ACACGCAAGAT GAAAGCG ATGGAATTT ATTT ATT ATTGCT GT AT AT ACAGATTT GT CAT GAAAACAACAGCCT AA AGCAACATCCA
SEQ ID NO: 44 > StRPNI 1-PGSC0003DMG400008026 peptide:
PGSC0003DMT400020708 pep:protein_coding
MSGMERLQRMFAGAGGALGHPPPDSPTLDSSEQVYISSLALLKMLKHGRAGVPMEV
MGLMLGDFVDEYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMV
VGWYHSHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRLINP
QTMMLGQEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKK
WTDGLALQRFDAHSKTNEQTVQEMLNLAVKYNKAVQQEDELSPEKLAIANVGRQDA
KKHLEEHVSNLMSSNIVQTLGTMLDTVVF
Sorghum - Sorghum bicolor
SEQ ID NO: 45 > SbRPN11-3 dna:chromosome chromosome:Sorghum_bicolor_NCBIv3:3: 11347169: 11351835: 1 GCAACACTTT GTTTT CAT ATCTGT AAAGTTTT CT GCACCCAAACATTT CATT GTACT AAACCTT GAT AT ACCCTCCCCCCAAAAAAAAACT CT AAT AAAT ACATT AAAT AAAAA TTGGGGCAAGGCTT GAACT CAT ACAT ATTGCCT ACCACAAAGTTCCAT GTTTCT CG GATATGGGGCGCAAATGGCCAAAGATACAGATTGGTAATTTCCCTTTTGCTTTTCC TTT CT ATGGAAGTT AGT AGCACCTTT AATTTTT AGCTGCAAAGTT AGTGGCTTCTT G CAACT ACT ACT AGT ACT AGT AGT AGGAGT GTTGGACT GT AGGAGGAT AGAGCT CG CAGTCAAAGCGCGGTCCGGTGGTCGAAGAATAAAATCGCGGCCCAAAAGAGGAT AGCGTCTCGCGGGCAGCCCACGCAAAACCCAGCCAAGCTGACACTGGGCCGAAC CGGTGCCGTCCAGTCTTTCTTTCTCCGGACAAAAGCCTGCTTCCAGCCCACGATT GTTACTCCAAACCGGCCCAACGGTGGCCGATCCGGTCTCGGCACAAGGCGTGCG GTCGAAGAAAGAAAATTTAATAAAAAACGGCGGCCGAGGCCCGGCCGCAAGCCA ACCCACGATTTTTTT CT CACT AGT CCGCAAGCAAATCGAACGAACCCGCAGCCGA AGCGAGAGAGCTGAGCAGGGCGAGGCGGCGATGGAGCGGCTGCAGCGGATCTT CGGCGCCTCCGGCATGGGGCAGCCGCCGACGGACTCGCCGCTGCTCGACTCCT CCGAGCAGGT CT ACATCTCCT CCCT CGCGCTTCTCAAGATGCT CAAGCACGGTGC GTGGATCCTCCCTCTCTTCCCCGCCCCGCCCATCCCCTCGAACCTAGGGTTAGG GTTCGTCTCCGTTCCACCCCCCCCCCCCCCCCCCCCCGCTCTCGGGGACTGATG CGTTGTTTTCGGTCGCAGGGAGGGCGGGCGTGCCCATGGAGGTCATGGGCCTCA TGCT CGGCG AGTT CGT CG ACG ACT ACACCGT CAGGGTCGTCG AT GTCTTCGCCAT GCCGCAGAGCGGGACTGGGGTCAGCGTCGAGGCCGTTGACCACGTCTTCCAGA CAAACATGCTTGACATGCTCAAGCAGACCGGCAGGTAGGGTTCCGCTGATGATTC T CT CAGT GG AT CT GT AAT GTGCGCAT GTTTTTTTT CTTT CAATTTTT AGTTTT ATTGG TT ACATT CAGTGCTT GATTTGCTCGT ACT AGTT AGT AAAATT GT GT AGGATT ATGCT CTT GAACTGCACCGAGGTCCAGAT AT GT GT CT GTT GGT GTTT CTT GTTTGGATT AA ATT GAGGTTTTT GCTTCT CGCGCAT AGT AATTTT GAAGT ATCACCCT AATCT GACCT C CT C AA ATT AG AT AAAT G AAAAT AG A AA AATTTCC AGG G C AAC AATT G G CATT G G C AAT GGCATT GCT AAT AT AGTT ACT AACTT GTT AAAAT AAT ACTT AGTGCATTT GACT T GG AAT AAAAAAACTT AAACAAATTT G ACTT AGCAT GGTCTTT GAT ACG ACT AT ATT CTT AAAAT AT ATT CTT AAAACCT CAT GTT GT AT AT AT AG AAT AGGT G ATGGTCT AT AT CTT GATGCTTT GATT ACCCAT GT ATTTTTT GTTCATT AAAAGCT AAACTTGCCCACA AAT ATTTT ACT AT GATGGT GACCACAAGTT AT ATGGTTT GAATCCT GATGGACTTT G T GCAT AAAT G ATTT GAG AG AT AAT GAT AGT GTT GT AG AAGTCT AT CACAATT CTT CA AAATCACACT CCAGAGCAAGTT AACAGGTT AT AAAACACACAGT AAT GTT AAGGAT CAAT ACACT GAAAAATTGCAAT GTCCT GAAT GGGTT AAGCATT AGCTT GT AT GGGC T AAGCATT ACGTT AAT GTTTCAT AAT GTTTTT AAAAACAT CCCTGCAGTGGGTTT GT TTGAGACAT AAT AT CT GTGGCCACACATTT AGTT GTTTTT CGT AATT GT AAAACT AT ATGCAT CAT AT CT ACCT ACT AAT CATT AAAAT ATTTT GTT AACAT AAT AT CTTT CTTT GGAAATT AAAAGTTCTT CAT ATT GCCCT AAAAATT GTTTGCACATCCAGTTT ATTTT GGAAGTT GACAT CT CAT ACTT GT AAATGGAATTTT GTT AT GTTGCAGCCTGCTTT A GTTTTTT AATT ATT GTT ACCAGCTTT AGATT CTGCAACCT ACTT ATTT GCT ATT AAAT T GGAAT ATTTTGGAAGAGTTT GCACT AATTTTCTT GAT ACATCAATT ATGCACTT AT GTTTTTTAGTTGCGCAAACAGTGGGAGGTTGTTGTGGCTCATACATGGCACACAC CAT CTT AT GT AT CAT AAAAGTT CAT G AACT AT GTTTT AT GTT G ACCAT AAAT CT CTTT GGTTAATGCTTATATTTCTTACTCACGAATGCAAGTGGGTTTGCTTGTGCAAAACA ACCTGCTT AAAATGGCCCATTT GTT GGTTCACT GACAAACCCACTTGCAT CCCT AA TT AAT CAAT ATT GTTTTT ATT CAGTT AATT CTGT AGG AAAAACAAGT AT GTT CAG ATT TTTTTTT CCTTTT ACAGGCCAGAAATGGTT GT AGGCTGGT AT CACTCACATCCTGG CTT CGGTTGCT GGTT AT CAGGCGTT GAT ATCAAT ACT CAGCAGGTCT ATGCAAATC CACTTGTCTTCT AAA AG G G AT CTTTT G ACTT G GTCTGT C AAAAT AGGATAGCTGTT GTCGTCCCACTCT GAT AT AT GTCGTTT CATT AAAT ACT GAT GT GCTTTT CTT ATT AA AACATGGAT AT GAT AAT GT GCT AT AT ACT ACAATT GAT CAGCT GGAGGCACT AGGT AGCTT AT GTTTT CAATTTT CAATTT CACT AT CTT CATT GTGT AG ATTCCAT GTCTCCC T AAAAGTT ATCGGT GAACTT AT CTT GTTGGT AGTTTT AGTT AACCT CACCAGGGAT A CAT GTTTTTT ATTT AT AAAAGAAAAGAAAAAT GGGAGGCATTGGCT AATT ATT GATC CCAACT CACT GT AGTTTTT CTT CT ATT AACT ACCTTTT GT ACTTTTT GAAT AAT CTGT TTT GT ACCTT ATT ATTCT AT ATCT ATT AT CTGGGT AGGCCT AAATTT GTTT AATTT AA TATATAAATGTGCAGAGTTTTGAAGCTTTGAACCCCAGGGCGGTTGCTGTTGTGAT AGACCCCATCCAGAGTGTGAAGGGGAAGGTGGTTATTGATGCATTCCGCCTCATT AAT CCTCAGACCAT GATGCTT GGCCAGGAGCCACGGCAGACAACATCAAAT GTT G GGCAT CT AAAT AAGCCATCT ATT CAGGT AAAT ACT AAGT AAT ATT GT ATCAT AT GAA CTT GTTTT ATTCCCCTTT CTT AT AAAT AATTT G ACAAT AT CT GTT CTTT AT CAGGCT C TT ATCCAT GGGCT GAACAGACACT ACT ACT CAATTGCAAT CAATT ACCGGAAAAAT GAGCTTGAGGAGAAAATGTTGTTGAACTTGCACAAAAAGAAATGGACGGATGGGC T AATTTT G AAG AGGTTT G ACACT CACT CAAAAACCAACG AGCAG ACT GT CCAGGT G CCT AT ACT ACT CAGCTTTCCTTT AGCT GT AT ACCGAGAT GATTT CTGCTCTT GT GTT GAT GCTTTTT ACTT G AGT ATTT CTTTT GTTT GTT CTT G ACATT GT GT CT ATT CTT GTC T AGGAAATGCT GAACCT AGCCATCAAGT ACAAT AAGGCAGTGCAAGAGGAGGACG AGCTGCCACCTGAGAAACTTGCGATAGCAAATGTGGGTCGGCAAGATGCAAAAAA GCATTT GGAAGAGCAT GT GT CGAATTT GAT GTCAT CAAACAT AGTT CAGACCCT AG G AACCATGCTCG ACACGGTTGTCTTTT AGT CTGCT AAT ATT GTT ATTCCAAACT G A AACAT AGCCACT CT ACTT AAGCTT AT CGAAGCAT GACACATTTGGT CCT AAGGTTT GTTT AT GAAT GG ATTT GTCT ACAATT CATT GTT GTT AAACTCCTTGCCTTTT CT AT CA AAGCTT CACT GT GTT CT AGTT ACATTT ATGCCAAT GTGGGT CCAGATGGCAGTCGG GAT GCCATTGCCTT GGGAGAATT GT GT GATGCGATT AT GACCT GTT GT CT GGGCC GTGGCAGATGGCTT ATTTT GTTT GTTCT AT AT AAATT GACACCAAGTTT CTTTTT AG GAT GAT CT ATTT GTTTTT CTT GT GAT ATTTCCTTCG ATGCT ATT GCCT AGCAACCAC AAAACGTTGTT CAAAAGCATTTTTTTT AT AAT ATCCACAAGTT ATTT AGCTT G ACTT G AT GAAACACT GT GAGGCT GGTCT AT AGAGT AGTT CACATT AAT AGATGCCCTCAT G ATT AACT CGTGCT AT GTTTTT AGTGGT AGCGAT GT CTCT GT GAGT CGTTT GT GAT G ACCT CAT G AATTTCGT AACCT AT CGGCT CAAT CTTT CAT AAGT GT AGGGTTT ACAT A TGTGT GTT CAT AG AGGT GAGT GTGCGTGTGTTGT GAGT GTCTT CATT GT ATT GT GT AATTCTTTTT AAAAAAGGTT AT AGACT ACCCACATT AT AGAT ATGGT GTTTT AGGT GGGGCCCTTTT AT AGACT ATTT ATTGGCT GAAT AAT GT GAAAT GAAAAAGT A ATAGT
SEQ ID NO: 46 > SbRPNI 1-EES00543 peptide: EES00543 pep:protein_coding
MERLQRIFGASGMGQPPTDSPLLDSSEQVYISSLALLKMLKHGRAGVPMEVMGLMLG
EFVDDYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGWYHS
H PGFGCWLSGVDI NTQQSFEALN PRAVAVVI DPIQSVKGKVVI DAFRLI N PQTMMLGQ
EPRQTTSNVGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLIL
KRFDTHSKTNEQTVQEMLNLAIKYNKAVQEEDELPPEKLAIANVGRQDAKKHLEEHVS
NLMSSNIVQTLGTMLDTVVF
Cacao - Theobroma cacao
SEQ ID NO: 47 > TcRPN11-VIII dna:chromosome chromosome:Criollo_cocoa_genome_V2:VIII:493190:497256:-1 TTT CTT GTT ACTAT ACTTAG ATT CTTTTT A ATT AGTTG CAT G CTCG G AT AAA AT AC AT CCT AAAAACCCT AAT AGT ACG AAT AACAAAAT ACTTT GAT GGCGT AAACTT AAG AA CAT ACCGCCAT AAACATCT AAAT AGGAAAAT AT AAAAAAAAAAAGGATGGAT ATTCA T GT GAAT AAGGAGGAAT AAT AAAGTT AACTTTGGTTCCATT CAATT GTGGCGACAT GCATGCATGCAAAT GT GCAACGCGT GGTT AAATT AAGCCAACCATT ACT ATTCCAA GTTT AT GTT AT AT ACAGCCAT CT AAAAGGAAAAAAT GCCTT GACTCGT ACT ATTT CA AT GACT ATTCAT GTTGGGT CGAGCT GACCCAATTCAGGGCCGAACATTT CCCGT C AAACTTTGCTATCAAAGACCAAGAAGTAGTTCAAGTCAAGCCCATTAAGCCCAACC T AT AT ATT AAGCT AT AGAT AAT ATT AACT AGGCCAACT GGATCAACAAT ATTTCAAA GAAGCCCAAAT AT ATGGGCCACTT GAAAAATTGGACCGGACCGACAT GAT GAGCC CTCT AT AT AAT AACCTTTT AACAGTGCAGGAGGACCGT GAAGT CTTTTTTTT GTCTT GCTGCCAAAGAAAAGTTGCCAGAACTCCGATCGACAATGTCAGGCATGGAGAGGT TGCAGAGGATGTTCGCCGGTGCTGGAGGCGCGTTGGGTCACCCCCCTCCTGATT CGCCGACTCTGGATTCTTCTGAGCAGGTCTACATCTCCTCTCTCGCCCTCCTCAA AAT G CT C AAG C ACG GT ACTTTT CT ATCTCTCTTCTTCTTA AC ATCTG CTT AAATT G A GTTCTTT CAGTTTTT CTT AT ATTT GCT CACCT GATT AGAGCTTCGGCGCTTTT AT AT TTTT GTTTGGAAAAAT AAAAAGAAACT GGAT AGACTT GT ACT ATTTT GCTTT AGCAA TTT C AG GGTTTTTT CTGGTTACT AAAT C AA AATT GT AATTTT CTG ATCTG CTTT CTAT CT AACTTTTT AT GAGAGACAT GAGCT GTTT CCAT AT AAATTTT AGGGTT AAGGT GTT T GT ACTTT AGCAGAGGGT ATTT GT AATT AT GTTT GT GTTT GGTT GAT GT GAACTTT A T AT AGGAAGAGCTGGGGTTCCCAT GGAAGTT ATGGGTTT GAT GTTGGGAGAGTT C GTT GAT GAGT ACACT GTGCGAGTCGTT GAT GTCTTTGCAATGCCACAGAGTGGT A CT GGT GTT AGT GT AGAAGCT GTGGATCAT GTTTTCCAAACAAAT ATGCTT GAT AT G CTCAAACAAACGGG AAGGT AT GAT CT ACT CT AGTTT CAATCGT ATT CATT CTT ATT A ATTT AT AAT AGTT GTTGG AAAT AACT CAAAAATT G AACAG AT GAT ATTT GT AT GAT A AGATT AGAT GAATTT GT ACTCCTT GAT GACCT ATTGCTTT AGATGGCTTGCT GAT CT TTTTGCTTGGTGTTGCAGGCCAGAGATGGTGGTGGGGTGGTACCATTCACACCCT GGATTTGGCT GTTGGCTTT CT GGT GT GGACAT AAACACACAGCAGGTT GTTTTT AA C ATTTTT G CAT G GTG CTG C AT CAT AT G CAT GCT ACTT AG CTTGTT ATTTT ACTGTTG CTT AG AAG ATTTTCCT GTTACT CACG AGCTTT AAT GT CTTTGGTT GGT ATT ACTTT A C AACT CTTT AAT CAG ATT ATT CTTTTT ACAAAGAAACAAAAACATT CT ACTT ACT AGC T CTT AT GTTT ATT GTCCT GAT ATT ATTT GTT AT ATGGGATT CTT GTT CCT GTGCTTTT TGATTCTTTCTTTTTCTTTGGTTGGAGGGATGGGGTGGGGGTGGGTCAAGAGTAT GGAAATT GCGT GAT AATT CT GCT CTT AGTT GACACT ATT AGGGCCCAAT GATT CGA GTT AT GT AAT GGACAGGAGAGGAAAGGCGTCAT GTTGGACACTGCACGAACT GAG T GACT GT ATT ACTT CT CATT CACG GTTTT GT AACT CCCTT CTCCATTCCCAAAAAAA AT GT AGAT CT GCCTTT ATT GT CAATGCTT AT CAGT AACAAT AAT CAGGTTTCGCACA GACATGGT CACT GTCT AAAACAATGCTTT GT ACAAT GCATCT AAGAT ATTT GAGT AT CT GGCAGTT GAT AGAT ATCTT AAAAGGCT GGAAACACGAAT GT AGTTT ATCAAT AT GTACT AGT ACACGGT CAAG AAGTTTT GAT ACTT CCTT CTTTT GT CCATCCT CTGTCA ATTGGTT AACGTTTT CCATTTT GAT CTTTTT AAGT G AAGAT CATTT CAAT G ATTTTT A T GGTTTT GTTTTT CTTT AACT ATTTGGTT AAT GAAAGCTGGT AT AT CT GTTGCT AAT A TCTGGCACCGCTTGCAGAGTTTTGAAGCTTTGAATCAAAGGGCTGTAGCAGTTGT GGT GGACCCAATTCAGAGT GTT AAAGGGAAGGT GGT GATT GATGCATTCCGTTT G ATCAACCCACAAACCATGATGCTTGGCCAAGAACCACGGCAGACAACATCCAATC TTGGGCATCTT AAT AAGCCATCT AT CCAAGT GAGT GCCCAAAGAAT ATT GT CT GAA T GTTTT CTATTAG CTT CTTTT AT AT G GG G A AT G A ACT CAT CTCGTT ATTTTT C ATT GT CAGGCATT GAT CCATGGGCT AAAT AGACATT ATT ACT CT AT AGCCATT AACT ACAG GAAGAAT GAACTT GAGGAAAAGATGCTCTT GAATCTTCAT AAGAAGAAGTGGACA GAT GGATT GACACTT AGGCGTTTT GAT ACCCATT CCAAAACCAAT GAACAGACT GT T CAGGT GAGT GAAAGTTTT CT GCAGACTTT ATCAT CAT AGT GT AT AAT GTT GAACG GTTGGTT GT GT ATTGGCAAGAT ATGGT AT AT GACTCT AT GTT GTCCTTCATGGGGT GCTTT AAG ACCCCTTCCTT G AAGG AAAG AAAAAACATT AGT AAG AG AT AGCTTCCC TTGCAAT GAGT CACTTT AGGGGCT AT GGAT AAT AT AAT GT CGAAT AAATTTCTTTCT TTTT AT AAAGT AAAAT GTCTT CT AT AAGGCGAAGT CAT GAT GTTGGTTCATTTT GAT ATGTG C AG GAA AT G CT C AATTT AG CT AT A AAAT AC A AC A AG GCAGTGCAGGAGGA AGAT GAATT ACCTCCGGAGAAGCT CGCAAT AGCCAAT GTT GGGCGACAAGATGCC AAG AAGCACTT AG AGG AACAT GT CT CAAACTT GAT GT CCT CAAACAT AGTT CAG AC TTTGGGAACT ATGCTT GACACT GT CGT GTTTT AGACTCATGGT AT CT GT AT ACTCC TTTT CAAGTT GAGGAATTTCAT CT AT GTT GATGCGTT GT ATT GTTGGTCAAGCACAC T GTTT GT GTT ATTTT GT G AAAATT CAAAGT G ACTT CAAGTTGCCT AATT AT ATTT AT G T G A AT GCTTGCTTGACTCTCT CTTT GTGTT ATATG C ATTTT AG CTT GTTT A AC AG AT T AT ACT AATTT GT AGT GTTTT GAGATGCCCAAGGGGCT AAAAATTT ATCTT AT AAAA G AAT GAT AAAAAAAAAT AAAT AAACAAGGGTCAACTT G AAG AGTGCTT GTTGCCCG AGTTGCATTCCCAATTGGT GGTCAT GAACGCAT GACGGGTT GAGCAACAGGAACT G GTGT CAAT GATT GAG ATT ACTTC AT G CC AATT AAA AC ATT CTGGAGTGGGCT AAT GTCATCGT AGGG AAAG AAAAAAGT GGT AGCGTCTT AT ATGGG AAACAAT ACT CTT A G AAAAGT ACAT CG AT CAAGTCT AGTGG AAAAAG AAATCCT GACAAA CAGGT ATCG GGGATTGCGATCT AGGT AGATTTCAATCACACTTTT GAACTT GTTTT ATT ACAAAGC AACCCAGT ACTTTT CACATTTT CACTCG ACAGG AGCCTT CCCTT GGTT CAGG AAAG AAGCCAAGCGTTTGATCAAGCTCTTGGCCTTGGCACAATCAGGGTTAAAGATATG G AAG ACAT GAT CCT CACCTT CT GT CT CCAT AAT CT CT GCCTT ACCCGTCCACCCAG ATTT CACCAATTT AT
SEQ ID NO: 48 > TcRPNI 1-Tc08v2_t000850.1 peptide: Tc08v2_p000850.1 pep:protein_coding
MSGMERLQRMFAGAGGALGHPPPDSPTLDSSEQVYISSLALLKMLKHGRAGVPMEV
MGLMLGEFVDEYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMV
VGWYHSHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRLINP
QTMMLGQEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKK
WTDGLTLRRFDTHSKTNEQTVQEMLNLAIKYNKAVQEEDELPPEKLAIANVGRQDAK
KHLEEHVSNLMSSNIVQTLGTMLDTVVF
Bread wheat - Triticum aestivium
SEQ ID NO: 49 > TaRPN11-3B dna:chromosome chromosome: IWGSC:3B:252929024:252934005:1 AACGGTGGCGGCGGCGGCGGCGCAGGCAAACGATGGCGGCGGCGGCGTGAGA CTTTTTTCTGCCCTAAGTTTTTCTTTGCGGGACATTTGGCGCTGAGGGTTGCGGAC GT AGGACGTGGAT ATTTCTTCACCCGGTGGAGCACGGTCAGCCTGCGGT AATTGC T AAGT GCACACCGTCT CAGG ATTGG ATT AATCCT G ACAGTT AAGTTTT ACTT AAG A GGGAT GAT CT GATGGT ACT AATCT AGTT GT GT ACGTTTCCT GAGCT GT ATTT AAGA AAG AAAAAGTTT GATT GTTT ATT AGT AGT AG AG AT AG AG ATTT CTTT AG AACAGTTT TTT CTTTTTT ACGGAAAGCAGAAGAT ATT AAGAGACCT GACGAAAT CT GAAAGACC TCAAGCCCAGCTTGGTCGGCACTACGGCCCATGCAACAGACAGAGTTCGCCACG GCAGCCCACTTCAAACCAACCGGCCCATGCAACAGACAGAGTTCGCCACGCCAG CCCACTTCAAACCAGTCGGCCTACGCAACAGACAGAGTTCGCCACGCCAGCCCA CTT CAAGCCCAGCTCGGGT GTT AGCTTCGT GTGCTCGAAGAAAGAAAT CCAGTGG TCGCAGTAGAAGAAGAAGCAGCAGGCGCAGCCGAGAAAAAAAAAAACGCCGTCT T CCGCAAGCGCCCT CCGAACCAAATCGAACAACCGAGAGAAGCCATGGAGCGAC TTCAGCGGATCTTCGGCGCCGGCGGGATGGGCCAGCCGCCGTCGGACTCGCCG TTGCTCGACTCCTCCGAGCAGGTCTACATCTCCTCCCTCGCCCTCCTCAAGATGC TCAAGCACGGTCAGTCCCTCAAGCTAGCTCCCTTTTGGTCCCGATCTACGCCCTC CTCCGTCTCCACGAAGCTAGGGTTAACTGGTCGGAAATTACAGGGAGGGCCGGC GTGCCGATGGAGGTCATGGGCCTCATGCTCGGCGAGTTCGTCGACGACTACACG GTCCGGGTGGTCGACGTCTTCGCCATGCCGCAGAGCGGGACGGGGGTCAGTGT CGAGGCCGTCGACCACGTCTTCCAGACCAATATGCTCGACATGCTCAAGCAGACC GGCAGGTATGGCCGCCGATCCGGATCGCAGATCTGTTGCTCCTGTCGTTTTCCTT T CT CCCGCGT CAGATTT GATGCCCTT AACTT GTTCAT ACT CGTT GAT AAAGCT GAA AAGGAT CGACCTCAT CAACTT ATT ATGCCAATT GATTT ACGCACCT GAGCCGAT AC TTTTT GTTCAGGCTT GT GT GGTT GATTTGCT ACT AGTTCCAGAT GTT AATTGGT GG AAGAT AGGCCAT ATGGAGT ACT CGCT CCGTTCATTTTT GT AAGGCGTTTT AGACAT TT AAG ACAACACCCAT AACAGTT CAATTT CAGCT GT CT AAAAT GT CTT ACAAAAGT G AACAG AGGG AGT ACT AT AT ACG ACG ATTTTCG AT CATT GTTT GAT GT AT ATT GTT G CTATAT CTTT CTT AATT ACAT CTT AGTTGCT AT AGTTCCCTT AGGCACAT GT CAGT G ACCAAAGT CAGCCCT GACGCACGTCATGGT AT CCT AGTCCGTTCCCAT AAGCTT C TTGT AT CT GTTGGT ACTTT ATTTGCTT ACCCCATGCTT GATTT CACACTTCCATTT G TTCAAT GCTTT CACT AT AGCAT GTGGTT AT ACTT ATTT AGAAAGAT AT GT AGTT ACT T GG AGCACAGTT CATT AT CATT GT CT AGTT G AAAATTT CAAGGTTT CAT CAGCAGT GAT CCAGTGGAGGATCTGCCATTGGACT AT ACT CCTCACAGCCCTTTCAT GGCT A CCACTGT ACCAACT CT AGGG AT AT ATTGCAT ACAT AGT GT AACAT AAT ACACAG AA GAAGCGAAT AT CGAGT GAACCAAT CT GAT AAGAT ATGCTT GAAT CACTTTTGGAGA AAGACAT AT GTTT GT ACTGGCTT AGCAT CT AACT AT AAATT AAGAATTTTCCTGGAG TTGGCGGGCTTCT AACAGGCTCTGCCCCT AGAGAAGCTCCACCCTTGGTT AT GT A T CAT GAATCGTT GAT GACGAT CT CCAT AGACGAT AT GATGGGCAT GAT GAT GAGC CT AGT GAAT GGAT AAGT CAGGGGT ATT ACAT AACT CAGAT AGT ACTTT ATTT AGATT AG ATG G CTTAACT CAT GTG GT AGTTTT G AATT ATGCTTCTGTT CTTT CT C A ATT GAG CTT GT GTT CAGTT GAAT GT GTT AGG AT AAT ACGTCTT CAT GT GTTTT AT CAT AG AAA T ATTGGT AGGT GGT AGCCCT ACAGCTGGCTT GT GT GAAACTT AAT ATTTCTTCGT A C ATGCG AATT CATTTT GTTT ACAGTT CAGAT AAGT GT ACCTT AGGTCTAT G AGTTT G ACAT GT AAT CTT CT CT AAAACCAGTT ATGGTTTGCCTTTT CGACT AATTCAGCT AT G TTT CATT AT AGAACCAAAGCT GTGCCAGCAAGTT GGAACT ATT GTTT ACAT CAT ATC AT ATT GTT AAAGACGTCGGT AAT AGATT CT GAGCAACAT AGCTT CAAGCAGAATCT CGAATT GT GT CATTGCCAACAGAAT AATTTCAT ATCCT CTTT AGCAAT AT CAATT GT CAAATT GATT GCT AACCACCTTTTGGT GCGGTGGAGGAGTT GTGGGGGCACGACT T CACAACT CCACCCATCAGGGTT CAAAT CCT GCCGCT CACATTT AT ACAGT AT GGG TCTCCCGT ACAGT CTTT CT ATT AG AAAT AAAT GTT G AATTGGTTCCAAAAAT GATTT T GCAACCCGTT CT AGG AATGCAACACCT AAT CAT CAATTT ATT GTGTTAT AGTT AAG C ACAT AT ACACT GT CCATGGTT CACCGTCCATGGTT CT GTT ACCTTT CT AGT AAGT AGCTCT GATGCT AGCTCTT AAT GT GGTCGTT GCCGGAGCCTGGATTTT AAAGAT G GCT GTTCAACT ATTT GT AGTT ACGGGT CT CTT ACAAGCT ATTT GAAGGTTCCGAT A AGAAATT ACT ACAT ATT AT CCTTT AAAAAACTGCCGT GT ATGGAGT ACT AAGGAT GT ATGCTCAGCT GTGCAGT GAACATCAT GTGCACCCTTT GTTTCCCAATTT CT GCAAT T ATTTTTT GAAGAAATT GTT GGCAAT AGCT AT AT CATTGCCACCTT GGAT GTTCATT TTTT GACAAACTT GT CAGTT GAT ACTT GGAATT ACTTT GACAGGCCAGAAATGGT G GTAGGGTGGTATCACTCTCATCCTGGTTTTGGTTGCTGGCTATCGGGTGTTGATAT C AAT ACT CAACAGGT GCACACAT ACACAT ACTTCGCCAAT CTT GTAT AAGTTT GTG AAAAGAGTTT GTT GTCTT GAGGCAAACAGACAT GT AAT AAAGCTT AT AT GT GTT AT A AT GTT GAAT ACT GAACCTGCAGAGTTT CGAAGCTTT GAACCCCAGGGCAGTTGCC GTCGT GATT GACCCCAT CCAGAGT GTCAAGGGGAAGGTGGT CAT CGAT GCATTTC GTCT CATT AACCCT CAGACCAT GATGCTTGGGCAGGAGCCACGTCAGACAACAT C CAAT GTT GGGCACCT GAAT AAGCCGT CT ATTCAGGT AAAATGCT GATT CT ATT AGT AT GAT AGCTT AGAAATTT CT GT ATT GTT CATTCCT AAATGCTT AT ACT GT CT GTTT AC T CCCAGGCTCTT ATT CATGGGCTCAAT AGACACT ACT ACT CT ATTGCAAT AAATT AC CGCAAAAAT GAGCTGGAGGAGAAGATGCT GCT CAACCTTCACAAAAAGAAATGGA CT GAT GGATT AATTCT GAAGAAATTT GACGCACATT CAGAAACCAAT GAGCAGACT GTTCAGGTGTGT AGCATT CAACTTT CT ACTTCCACTGG ACAAT CCTTTTT GTT AAT A TAATGCAGGGTGAAAGTCCATGCAGGTTCTTAGATTTTGGCCATGTTTTTACGTGC AGGAAATGCTGAGCCTAGCCATCAAGTACAACAAGGCAGTGCAAGAGGAGGATG AGTT GT CT CCT GAGAAATT AGCAAT AGCT AAT GT GGGACGGCAAGATGCT AAGAA GCAT CT AG AAG AGCAT GT CT CAAAT CT GAT GTCGT CCAACAT AGTT CAG ACCCT AG GT ACCAT GCTT G ACACGGTT GT CTTTT AGTCT ACCACT AGT GTT GTTCCAAAGT CT ATCATTCATGTTATGTATCCAAAGCCTGCCACAACGCAGCAAGGCACATTCGGGTT CT AACAGTTTGCTCG ACAG ACT CAATTTT CTGT AGT ACT AT ATT CTGCAT GTTT AAT TTCGCAGCAATTTTCATGGGTGTCCTTTAAAATTGCAAGTTCTGGTTCTGCCGAAG T G AC AT GATT G CTG A AGTC AG CT A AAT CTTATGCTGATGGATATGTGGCT G CCC AT GT GTT AAT AT GACTT GTGGT GGAGT AACACAGT GAGATGGCAGCCGCTT CT CTCG T GTTCCGGCGT AAT AT AAT GTGCCGCT CCT AACCCTCTTT ACCCT CT ATT GT AT GT TT AGT AT AGGTT CAT GCACTCCCTT AAATT CAT ATT ACTTT AAGCTGCTTT AACAT G GTTT CAT GTGCAT CTATGT G AATT AGT AAATTTT AAAAAAT ACT AAG AAAATTT AAAA AATT CT AAAATTTTGGT GTAT CAAACTT GGTCG ACAATT CT ACT CT CAT GT G AAGTT T GT GAAGT AT AGACATCT GTGGT ATTTTT AAT GAAGAAAGT AT AATT GGGAT CTT AC T ATT GTT AAT CAGT GTTTT CTT AAT GT AGCTTTGGTTTT GTCT AATTT ACCCTT AGCG GAT GCAT ATTCAAAA CAAAT AGT AAAT AAATTTT AACAGAAT AGCAGT GCTTT GTT A GCAAAAAT AAA AT AAAAT AAAAT GT AAACATTCAGAACTTTT AAAA AT GT ATTT ACT A TTT ATTTT AAATTT ACTGGTCAT CCAGAAACAT ATGCTTCTCT GAGCCAAAACAGCG ATCTCGTT
SEQ ID NO: 50 > TaRPNI 1-TraesCS3B02G213500.1 peptide:
TraesCS3B02G213500.1 pep:protein_coding
MERLQRIFGAGGMGQPPSDSPLLDSSEQVYISSLALLKMLKHGRAGVPMEVMGLML
GEFVDDYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGWYH
SHPGFGCWLSGVDINTQQSFEALNPRAVAVVIDPIQSVKGKVVIDAFRLINPQTMMLG
QEPRQTTSNVGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLI
LKKFDAHSETNEQTVQEMLSLAIKYNKAVQEEDELSPEKLAIANVGRQDAKKHLEEHV
SNLMSSNIVQTLGTMLDTVVF
Grape - Vitis vinifera
SEQ ID NO: 51 > VvRPN11-18 dna:chromosome chromosome: 12X: 18:9085375:9091740:- 1
C AAACT ATTTT CAAAAAT GTTTTT CAAAG AAACCCT AAATT ATTT AT AT AT ACT ACTT CAAACTT ATTCCACTT ATTTT AATT CTT CAAT AT AAAAT AAAAT AATTT AAAAATGCTT A AAATT CT AATT ATTTTTT ATT AT ATTT G ATTTTTTT AAT ATTTTT CAT AAT AT AATT AA AT AAG AG AAAAT CATTTTT CT CAAT ATTTTTTTT ACAAT ATTTTTT AG AAACCAAAGG C AACCTT CAAAG AAAAAT ATT GTT CAAGGT ACT CTT ATTTTT AT AAAAT AT G AAAAAC T ATTTTTT ACT CTTTT AACTT AAGT GATTTTTTTT AAAAAAAT AAAACATGGCGAAAA TGCCCCT CCAATGCTT AAAT AAT AT GT ATTTT CTT CT AAG AAAAAAAAACT ACAATTT AAACT AG ATT CAAAAAAGG AATTT GAT ATTT ATTT G ACGGG AG AAAT AT CAAAT AT C CGTCTTAAAATAGAGTAGGGATATAAATATTGAAAAGTACAGGGGCAGATGTGCG AAAACATCT CAACAAGTT ACAT CCCT GTTT AGGTT GTTTT AT AT AAGACT AGACTGG C ACCCAAAG AG AAAT CTTGCTCCCAAAG AAAT CAAAATCCG ATCG ACCAG AG AG A AACCGAAAGAAACCGAGAGAAAGCCAGAGGAAATTCAGAGATGGAAAGGCTGCA GCGAATGTTTGCCGGTGCAGGAGGGGCATTGGGGCACCCTCCGCCGGATTCGC CGACTCTGGACTCGTCGGAGCAGGTTTACATTTCCTCTCTCGCTCTCCTCAAAATG CTCAAACACGGTAACATCTTGACGCCAAGACAAGTTTTATTTCAATTTTAGGGCTG CTTT GT G ATTTTTTT ATTCGCAT CACTTCCAAACCCT AATT AGGGTTTTT CAATTT GT TTT CTTTT GATTT GGGGATTGGGAAT AAT AGGGAGAGCT GGAGTTCCCATGGAAG T CATGGGTCT GATGCTGGGAGAGTT CGTT GAT GAGT ACACAGTTCGT GT AGT AGA T GT GTTCGCGATGCCGCAGAGT GGT ACT GGCGTT AGT GT CGAGGCCGTT GAT CAT GTTTTCCAGACT AAT ATGCTT GAT ATGCT CAAACAAACT GGAAGGT ATT GTTGCTC G ACTGTTT GATT ATT G GTTTT AT ATTT GAT AT AGTTT G AAG C ATGT ATT GTTTT CTTC GATT AT AAT GT GTT GG ATTT AGTTT ATTTT AT GAACCCT AT CTT ATT AAT CGGTTT G A AAG AAAAG ACAAT AAT AT ATATATATATATATATATGTGTGTGTGTGTGTGTGTGTG T GT GT GT GT GT GT GT GT GT GT GT GTGCGCGCGCAAAAAAGAT GAAATCCGAAT CT CAAGACAGGCCGAT CT ATTT ATT CT GTT ACTT GACCT GTCCTGCT GTT GAGTTTT G T ATTTGCAGTCTT AAAAAG AGT AT CAAG AT AAAACTTT ACT CAAAGCT G AAT ACAT C TT GATT GCATGGT G AAATT GTTT CATT CT GAT GT CAT AT GAT GTT CT AG AGT AATT G AAT ATGCAT ATGCT AGACACCAAT GT AT GT AGAT AT AGACAGATGCCTGGTT CCAC CTTT GATT GAGTT AGCTTTTTCTCGT GTTTGGTGCTGCTGCAGACCT GAGATGGT G GT AGGAT GGT ACCATT CACAT CCTGGATTT GGCTGCT GGCT CT CTGGT GT GGACA TT AACACACAACAGGTTGGT CCTT AT CTT CATCCTTT GT G ACATT ATGT AGTGCTCC T GT GT AATT ATT ATT ATT ATT ATT ATT ATT ACT ATT GAT AAGCAAGT AAGAAGT AAGA AT AT AT AT AGAT AT ATGCTTGT GT GTT AAAAGCAT CAGCCGTCAATCAAAAAGAGG T GCATGCAAT ACAAAATTT GAGAAAACAAAAAGAAGCAACCAACAACCTCAACTT C AATCTAATACTTAGAGCTCAACCACTCAAAATCTATCAAGGCTAGGAAGCCAGCTT GAACATCAT CTT GAAGAT ACTGGT GAGACCACAT GT AT AT ATT AGAT AT AAGGGAG T CCTT AAGAAATTGGTTT GT GATTT CT CCT AGTCTCTTTTTGCTCGT AAGGCT CT CA T CCCAACACATT AGCAAGTCTTT CATT G AAT AAGGGAG AAT CCACAAAAT GCT AAA T AAAGAGAAT AGAAAGT GT CTT AGCCCT CT AGCTT CCTGCAAT AGAT GAGGAGAT G GTCT ACT GATT CTT CT CT AGTTTT ACAT AT GCAT CAAT AAACT ACCAAAAACCATCC T CTTCTTTT AAGTTGGCCCAT GATT AGGAT CCT GT CCT AAGCCACTTGCCACT CGA AGAAACCCACTTTGATAAAAGCCCAAGAGGCCCACACTACCTTTGAGGGGAAAGA C ACTT CACCCT CCAACT CCAAGGCAAAGT AG AAAG ACTT CACT AAG AATTT CACT C T CTTT CT AGTCTTCCACACCATCCT GT CCT ACTTTT CACT ATTT CTT CATT ACACATT T AGCTT CT G AAG AAGCT CCT CAACATT AT ACTT CTTCCAAT CTTT AAAAT GTTT AAA G AAGCAT AGGTT CTCCCGCCTCTATCTCCT AAACAT CATCCACCCATGCCTCCTT G GAAGCTGCAAAGGAAAATAAAGATGGAACATCACCACACCACACATCTTGCCAAA ATTT GTTT CTT CTCCT AGTGCCCTT GTGT AATT GTT GATT GAT ACT CTTT AAAT AATT GCATT AATT CTT CACAATTTTTT AT ATT CT AT AT GTT AGTGCAT ATTT AT ATT AGT AAT TT AT CTGCT GT CTTT GCT CAT CCT CAT CTT CTCCT CT AGTT GT G AAAGTT ATT CT G A CATT AT G AATT CT CT CATGGT ATTTTT ACTTT CTT GT AAGT AG ATT ATCCTTGCT G AC AACTTT ATTT GTTT GAT GTT AGT GAACCTTTTTCGAAGGT GT GTTGGGGGTCT GGG TGGGT GAT AT CAT AT AT GAT ATT AGTCT AT AAAATTT CAAT AAAGT ACTGG AAAG AA ATCTT GTGCCCTT GTT GACTCCTTGGGAAGGAATT AAAGATT AT ACAATTT AAAGTT T AT CTTT GGACCTGATTAT ATTTT CTT G AA AT G AG CTTGT G AC ATTTTTTT CTTATG C CGTGGGAT GACT AAAT AT CT ATCAAT AT GT ATGGAGGCAT GAGT AAGAT AGCCACC AT GTT AT GAATT GAGGAT ACAT ATCACCAT GTGGCAAATCTCAT AGAT AT AT GCCC TCTGTGGTGT AACT CAT CAGT AGT GT G ACCTTT GTCAAT CAACT AG AGGT CCCAAG TTT G AGT CT CCATTT AT GT G ATTTT CTTT AG AG AAGT GAT CCT AT GTCACCT GT AGT TT AATTTT CCAT AAGTTGG AAT AAAT GTCTT GTT GTCAGGGT AG ATT CCCCAT AG AA AAAAAAAAT AGAAAATTT AAT AGAGT AAT AT GT GAGT CAT GTT GAAAAAGGCAT AT A AAGAACCAAATTTT GAT GT AACCTT GT AAT GT AAGAGAT CATGGATTGGCGCAGCT AT AAGCGT GTT CCAGTGGCAAAAAGGAAAAGT AGGAGT GTCCTT ATTTT GT AGATT GCCAATAAAATAAAAAGAGCGCCCACATGAAGCATTTAAAATCGTTGCATATGACC TTT AAAT AG ATGGT GAGT AG AAAG AAT GT AAAAAG ACCT AAAACT ACTTT CT CAAG A C ACT CT G AGGCT AG AGCTT CAATTTT ATTT AGT GAT ACCAT AT CAT AAAG AATT AGG AATTT AAG AACCTT G ATTT GTT GCT GTCTTTT ATT CCT AACCATTT GG ATTT AAG AG GT AGCACCTT CT G ACACATTGCATTTT CTT GTT CTT ATT CTT CTT CTT CTT CTT CTT A TT ATT ATT ATT ATTTTTCCATTTCCATTTT CATTTTTT CTT CTT CTTT GTGTGTGTGTG T GT AT AAACTT ACAACTT AAT ACATTT AGTTTT AGAACAAGCGTCCGCTGGACT AT G GTCT AAATTT AGTTT AATT AGAT GT AACTT AATTTTT AATT CTT GAAGCT ATT AGCAG CTT GCATTGCTT CCACCAAAT GT GTT CT GT GAAT AAAAGGT AATCACTCAAT GCTC ATCCCACTTCCAAGTTCTGGGATGGGTGGGTTGGCAACAGATGCAACCATTAGTT TTT CT GAGT CAAGT CACT GT ACAT AGGAAT GT AGGATT GAGTT GTT GT ATT CATGC TT AAT AGCCCAAGAAATTTT CTT CCCACCTT GCATGGCCCAT AAAGGAGTTTT CAA T GATTTT AATT ACGT GTTTTT AT ATCTTTTT AAAT GAGCAT CAATCCT GTGCTGGTG GTGCCTT GT CTTT GATT GT AGTTT ACAT AACTCAAT GAAT CT CTT GT AGAAGT GTGG CAAAT ACAATT GAACTCT GT GGCAT GCTT ACAT CT GCTTT ATT GTGCAGAGTTTT GA AGCTCT GAAT CAGCGAGCT GTGGCAGT AGTGGTGGATCCAATT CAGAGT GTT AAG GGGAAGGTT GT GATT GATGCTTTCCGTTT GAT AAAT CCCCAAACCAT GAT GCTTGG CCAAGAGCCTCGACAGACAACATCAAATCTTGGGCATCTTAACAAACCATCCATTC AGGTGAGTGCTCCCCTGTCCCCATCTAAAAAAAAAAAACAAAACAAAAAACTGTTA ATT CT GTTGCAT GTT GACCTTTT CCCT CAT AT AATT AT CT CTTTTT CAGGCTTT GAT A CACGGATT GAACAGGCACT ATT ACTCAAT AGCT ATT AATT ACAGGAAGAAT GAACT CGAGGAAAAGAT GTT ACT GAACCT ACACAAGAAGAAATGGACAGAT GGGCTT ACA CTT AAACG ATTT GAT ACCCACTCCAAAACC AAT G AGCAG ACCGTT CAGGTT AGT G A AGGTTT CAGT GACTTTCAAATTT AT AGCGCATT ACAGTT ATGGGAAT AT ATGCT CAA TTT GTTTTT GTGCTGCAT CTGGCACACTCCT ACCCCAGTTT CT AT CTGTGT GAT GT CTT CT ATT CT CTT GG ACGTT CAAATT ATTTT GTT GAG ATTT GAT GTCTT GTT CTCCAT GAGCAACCT AACAGGTT GATGGCCTT CTT GTTT CT ACTT AGT AAT AGCTTT GAACT GTTTGGGATGGGGATCAGTGTGGGGGTTGGTCTTGTTTTATTTGAGTGGAGAGTA GAAAAAGAATTTAACCAATTCAAAATGTTTTGCATTTGTGGGCATGCAACGGGCCC TT AAAT GT AATT AGT AAGAAAGCT GACAAGCTT GTT GT CATGGAAGGGACT AAAGG C AACCTTT CT AT GCAAGTT ACAAT GAG AAG ACT CT ATTT GATT GAT AT AT ATT G AAC AGAT AAACAT GCTTCTCAAAT ATTTTT GGAT GTGCAGGAGATGCTT AGTCT AGCT A T CAAGT ACAACAAGGCT GT ACAGGAAGAGGAT GAGTTGCCACCGGAAAAGCTGG CAATTGCAAATGTTGGAAGGCAAGATGCTAAGAAGCATCTTGAAGAACATGTCTCC AACTT GAT GT CCT CAAACATT GTCCAAACTTTGGG AACCATGCT CG AT ACAGTT GT GTT CT AG ACT G AAAT GTT CAG AACCAAACTT AACACCAGCCT GTT GT AG ACATT GT T GAATT ACAGAT GAACAACAGTTTGGGAATGCTTTCCATT GAATTTTTTTT CT GTT A ATTTGCTTTT AATTGCT AGAAAGACAAT GTT GTTCCAGCGGAAGCAAAAAGT AGT G T GAAAGT AAT GGAGGCCAAGT AT CAT GT GT CTT ACT GATTT GT ACCATGGATGGAT CTT GAT CAT CATTT AT GTTT GTTCCT CATTTTTCGCAT ATTGCAAGTCCTGCG AGCT TTT CTT AT AT GT CGGT GTTTT GT GAAGCCAATGGGAT ACTTT GTTTTT ACATT AAT C CAATT AT CTT CT CT GT GAT GT GTT AGACT GTGGCCTTT GGCAT GAGAAT GT GCT GT GGTTGCT G AG ATGCCCTGCCCTT CTCCTT G AAGT GG AAAATT ATTCCAAAAG AAT G ACCCGGGCAGCCTTTGAATTGGCGTCAAACCACTGGAACCAGCGTTGAACCGGT GAACCGGCT AACCCGGCCAGTTTTGGGT GAATT GAACAGTT AAAAAAACCTCCCT CTCT GCCCCCCTTCCAGCTT CCGCCT CTGCCCCATT CCTT CTTT CCAGCT CT ACAA TTGCGCCCCACCCTCCCTCTCTTCCCAGTACCCAGCATGTGCCTACCCCCGCCCT CTCT CTTGCT ACAGCCCAT CTT CCT CAATTTTTTT AT ATT GTT AT ATTTTT ATTT ACC TTTTT AGTT CAT CT CCATT ATT ATTT ATTTT ATTTT AT ATTT GTT ATTTTTTT AACTTT A T GGTTTTT AAATTTT AT G ATTT AAATTT AAATT AAT G A
SEC ID NO: 52 > VvRPN11-VIT_18s0001g10820.t01 peptide: VIT_18s0001g10820.t01 pep:protein_coding
MERLCRMFAGAGGALGHPPPDSPTLDSSECVYISSLALLKMLKHGRAGVPMEVMGL
MLGEFVDEYTVRVVDVFAMPGSGTGVSVEAVDHVFGTNMLDMLKGTGRPEMVVGW
YHSHPGFGCWLSGVDINTGGSFEALNGRAVAVVVDPIGSVKGKVVIDAFRLINPGTM
MLGQEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWT
DGLTLKRFDTHSKTNEGTVGEMLSLAIKYNKAVGEEDELPPEKLAIANVGRGDAKKHL
EEHVSNLMSSNIVCTLGTMLDTVVF
Oileseed rape - Brassica napus
SEQ ID NO: 53 > BnRPNI 1-BnaC07g30720D-1 LK031821 dna:supercontig supercontig:AST_PRJEB5043_v1 :LK031821 :87335:90387:1
T AAGCTTTCTTT CTT CCCCTT AGGT CGAT AGGGTTGCCTCCACCAAAT AAACTTT G C AAAAGCCACACAG AT AAACT ATTT AT CTT ATTTTT GTT AAAT AAAAT ATTT AT CTT A T AACCCATTTTGT ATT AAAAT CATTTTT ATGCTTT AAAACTTTTT GAT ACAATTT GTT A A ATTT ACTT AT AT AATTT G ATTTT GTT ATTT A AATT G G A AT C A AT ATTT AT AAAT ATAT AAT AT GAAT AGT GAAT AT AACAT GATT ATTCAGCT GTGGTT GTT AGAAAGTT GAGT A AAATT CAAAAGTTT ATT CT AAT AT ATT AAAAGGTT GT CG ACAAATTTTT AGT ACG AT A GGAAGAAGT GAGTTCCT ATT AATTTGGAATCAAAGAAGTGGTT AT AAAACAT GT AT AAG AT AATT ATT GTTGG AGT AAA CTT CAATT GGTCAT G ATCCT GAT GT AAT AGT ATT GGTTTT ACCCAATTT GAAAAGGAAAAAGGCAATTT GTTTTTCTTTGGGTCT AAAAT C AAT G AAAAGG AAAT ATTCG AGG ACT GAT ATGT AAAT AG AT CCGT CTT GTCTT GTTA ATAAAGAAAGGAGGACTCTATCGAGACGAGGTTTTATAAGATCCAAACCAGCTCG ACT GATTTGAGCT GAGATT AT GGAGAGGTT ACAGCGAAT CTT CGGCGCCGGTGGC GGTCT GGGTCACGCATCGCCT GATTCT CCGACT CT CGAT ACGT CGGAGCAAGTTT ACAT CT CTT CTCTCGCCCTCCT CAAG ATGCT CAAGCACGGT ACAACCATCCATCCC C AGCTCCAATTTT ACTTTCGCCGT GCTT AGT GTTTCGCT CTCCT CT GATT CCACG A ACGCTTT GGGTTT CT AAG ATT ATCG AT CT GTTT GT GG ATT G AGTT AG AAG AAG ATT ATTGGAAAATTTT CGTT GT ATT GATTTTT GT GATT GATGCT ACAGGAAGAGCTGGA GTTCCT AT GGAAGT GATGGGATT GATGCTT GGAGAGTT CGTGGAT GAGT ACACT G T ACGT GTTGTGGAT GTTTT CGCT ATGCCTCAGAGTGGT ACTGGT GTT AGCGTT GAA GCT GTT GATCAT GT CTT CCAGACT AAT ATGCTCGACATGCTT AAACAGACGGGAAG GT AAGCT CTT ACT CTT CT CT ACACCCAT GT AAAGTTTGCACTTTT ACAG AAT CT AT G T ACACTT GGT GAGTCTT ATTT GATTTCAGACCT GAAATGGT GGTTGGTTGGT AT CA TTCACATCCTGGGTTTGGATGCT GGCTTTCTGGT GTT GAT ATT AAT ACT CAGCAGG T AT GT ATT GTTTTTTGCT CAGTT CAT ACTT G ATCCT AT ACTCCT AT GCAAT AT CTTT G T GT GAAAATGCACTGCACCT ACGCT AT AGAATT GTTTCCCCTT GT GTCCT GT ACCT TGTTCTGGTTGGGTTTCCATTGTAGGGTTTGTATATTAGGCTTAGGTATCTTTATAT AGTTT GGGTT GGATTGGT GT ATGCT CATT GTT GAA CAT CTT GT GTGCTTTTT GTT A GAGTTTT GAAGCTTT GAACCAGCGAGCT GT GGCAGTGGTT GTT GAT CCAATTCAA AGT GT GAAGGGGAAAGTGGT GATT GATGCGTT CCGCT CGATT AACCCGCAGACCA TTATGCTTGGGCAAGAGCCTCGTCAAACAACGTCTAACCTCGGGCATCTGAACAA ACCAT CG ATCCAGGT GAT GGTT CACAAT AGT G AAAACGT GTTTTTTTT CTT CCAAA GAT GGAACAAAGT AAAAGGGT GACT CT GAT ACGT ACTTTT GGAT ACACT ATT ATGC AGGCTTT GATT CATGGATT GAACAGACATT ACT ACT CAAT AGCCATCAACT AT AGG AAGAACGAGCT CGAGGAGAAGAT GTTGCT AAACCTCCAT AAAAAGAAATGGACAG ATGGT CT GACGCT AAGACGATTT GACACCCACTCCAAGACAAACGAACAGACGGT C CAG GT AAT AG C A AAAT G G G CT ATTTT G CAAT CTTTTT ATTT GTTT AA ACGTT CAT G TTC ACT AC ATT GTCTCTCTCTCTCTCGT GTTT A AC AG GAA AT GTTG AG CTTG G CTG CCAAGTATAACAAGGCGGTACAAGAGGAAGACGAGTTGTCACCGGAGAAACTGG CGATCGT GAAT GTGGGAAGACAAGACGCAAAGAAGCAT CT GGAAGAACACGTTT C CAACTT GAT GT CAT CCAACATT GTTCAGACACT AGGCACCATGCTT GACACT GTT G T CTT CT AG AG AACTT CTTTGCTTT ACCAGCCAGG AGT ACT CTGCTT CAGTCAGTTT GGCT GG AAAGTT GAGCTT CCTT CTGCAT AT CTTT G ATTT CT GTTGG AT CAACT CTTT T AT AT CT CAT CT CCT AGCAAGCAT CT GAT AAGATT GT ATT GT ACT AT GTGGTTTCGT T CTTTT C ATT AAG G CC AT G GATT G ATTT CTAT AAATT CTTG C ATTT ATT CAA AAAATT T CT CT CATTTTTT AGAATTT AAAGCTGCAACATT CGATT GTTTGCAATTGCACTT GG AT AAACTCGT AACT GAGCT AACAAT GAAAT CTTGCTGGGT AAT AT ACTT CAACTT AG AGGAAACTCAAAT GAGT AGGGAT AAGAGAAAT GAACCGCAACCAAAT CT ACAGT G AT ATT CCACAGCAAAAT AT ACAAAAAACT CT GAT ACGAAT AGT GAAGACAT CAT GTT AAGAAGCAAGT AGAAACCAAAACGAGATCCAAAGACT AT AAGAGCTTT GAGCGTTT TT CTT CGTGCACCAAACAAGT CCAGCTTT G AACACAG ACCAAT CATT CAAACAG AT CACAGTGGTTTT GGGACGAAAACT CTTTT GAGT AT AT GGCTGCTTT AAAACTCGGT GTCGAAACAAGT CAT GAACACCTTT GAGACCATGGTCCTTGCGAAAGGGAT GT AG CTCAAGCT AT ACCTGCGGTCCAAGAT GAAT GACAGCTTTT GT GACAAAACTCAGAA ACCAT AT AAGT AGG ATT CGATT CACCAATGCATTCCT AGTT CG AGCTT AATT AAT AG T AT AT GTTT CG AAAG AG
SEQ ID NO: 54 > BnRPNI 1-BnaC07g30720D-1 peptide: CDX80372 pep:protein_coding
MERLQRIFGAGGGLGHASPDSPTLDTSEQVYISSLALLKMLKHGRAGVPMEVMGLML
GEFVDEYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGWYH
SHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRSINPQTIMLG
QEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLT
LRRFDTHSKTNEQTVQEMLSLAAKYNKAVQEEDELSPEKLAIVNVGRQDAKKHLEEH
VSNLMSSNIVQTLGTMLDTVVF
Maize - Zea mays
SEQ ID NO: 55 > ZmRPNI 1-Zm00001d008284 8 dna:chromosome chromosome: B73_RefGen_v4:8:3993984:3998571:-1
TATCCCT GCCTT ACAGCTCCTT CCCATGG AAGCCACCCCCT CT CAT CGCT GTCCT
AAAATT AAAATTTGGCCACACTT AGAGT GTTT AGGGT CT CAAAAGAAATTTTT ACTC
T AACAATT AAGT CTT AAAT AATGCT ATTT AGAAAAT AAATT AT GTT ATT AGAAAGT AA
AT AGTTT GAGGAT AAGATT GT AAT AT ATGGGT ACT AT ATTT AGGAACCGAGACCGA
GTT CT AT AATT ATTT GAT GATT AATT AGG ATCGCAG AT AG AG AGT GTTTT AT G ATTT
T AAATCCT AT ATTTT AAAAT AAGGCCAT GATGCAGTT AGGCCGATT CT AGCAGATT A
TT CAAAGTTT AATCGT AT ACACT ATTTT GT ATT GTTTT GTACTGT AG AAT GTACCGTA
GATCAAGTTTGAATCCGCTTCAGCGCGGTCCGGTGGTCGAAGAATAAAATTGTGG
TTCAAAGGTGGATAGCGTCCTGCGAGCAGCCCACTAGGCAAGCCAAAACTGGGC
CGAACCGATGCCATCCTGTTCTTTCTTGCTCGGACAAAAGCCCGCTTCCAGCCTA
CGACTCACGACTGTACTCCGGACCGGCGCATCGGTTGCCTACGACTGTGCGGTC
GAAGAAAGAAATTAATGAAACGGCAGTCGCAACTCGCAAGCAAATCGAACGAACC
CAGCCGAAGCGCGAGCTGAGCAAGGCGGAGGCGGCGGGACCGGCGATGGAGC
GGCTGCAGCGGATCTTTGGCGCCTCCGGCATGGGGCAGCCGCCGACGGACTCG
CCGCTGCTCGACTCCTCCGAGCAGGTCTACATCTCCTCCCTCGCGCTTCTCAAGA
TGCTCAAGCACGGTGCGTAGATCCTCCCTCTCTTCCCCGTCCCTTCCCTGTAACC
CTAGGGTCAGGGACTCAGGGTTCGTCTCTGCTCCCCCCGCTTTCGTTCGCGCTC
GGGGACTGACGCGTGGTTTCGGACTTCGGTCGCAGGGAGGGCCGGCGTGCCCA
T GGAGGT CATGGGT CT CATGCTCGGCGAGTT CGT CGAT GACT ACACCGT CAGGG
TCGTCGACGTCTTCGCCATGCCGCAGAGCGGGACTGGGGTCAGCGTCGAGGCC
GTCGACCACGTCTTCCAGACAAACATGCTTGACATGCTCAAGCAGACCGGCAGGT
AGGGTTCCGCT GAT GATT CT CT CAGTCG AT CTGT AATGCATT GTTTTT CTTTT CTTT T ATCTCTT GGTTTT ATTGGTT CACATT GAGTGCTT GATTT GCT CGT ACT ATTT AGT A AAATT GT GT AGGATCATGCCCTT GAACTGCACCGAGGT CCAGAT AT GT GT CT GTT GGTTGCAATGCTGTTCCTTGTTTGGATTAATTTGAGGCTGCTTTGCTGCTTCCTGC TTGTGCAT AGT AATTTCG AAGT GTCACAAT CT GT GCT CACCAG AT G AATTTTT CAGT GAT GGCAT CGCCAATGCCACT ACTCAT AGT ACT ACCTTGGT AAAAACACTCT ACAC ATTT AACTT CGCAT GGTCTTT GAT AT GT CCTT G ACCACT AATTT CT AAT AG ACT AT A TT CTT AAAATT G AG AG AGGGT AAAT GTCTAT AT CTT G ATGCTTT CATTACCCAT GT G CTTTT GTT CATT ACAAGTT ACCCACAAACATTTT ACCATT GTGGTGCCCACCATGGT TTTTAAAGCGGTAAGGCGAGACAAGGCGGTGGACCTCCGCCTGGACGCCTAGGC GAT GCCTT AAGAACAGTGGT GCCCACAAGTT AT AT AGTTTT AAT CCT GATGGACTT T CT GCACAAAT GATTT GAAT AAT GAT AGT GTT GT AGAAGT CT GT GAT CACAAT CCTT C AAAAT AT CACT CAT AAGGCAT ACCCAT GT G ATTTT GTT CATT ACATGCT AGTCTT A CCT GATTTTTT AAATT GT GT AACCT ACTT AGTTGCT ATT CAACT GGAAT ATTTT AGAA G AGTT CT CGCCATTTTT CTT GAT ACAT CAATT ATGCT CCTTT ATTTTT AAGT ATTT CT T GAT ACATCAATT ATT AT CT ACACTTTTT AAGT ACACAAACAGT GAGAGGTT GTGGC T CAT ACACG ATT CACACCAT CTT GTGT ACCAT AAAATT AAT G AACT AT GTTTT AT GT TGGCCATAAATCTCTTTGGTTAATGCTTAAGTCTTACTCTGGAATGCAAGTGGGTT CTCCTGT GCG AAACAACCTGCTT AAAATGGT CCAT CT G ACT CT AAAAGT GTGGCC GATTT GTGGGTT CAGT GACAGACT CACTTGCATCT GT AGT ATT AAT GAAT AATT GTT TT AACT CT GTT GT ATT CT GT AGG AAAACAAGT AT GTT G AG ATTTTTTTCCCCTTTT A CAGGCCAGAAATGGTTGTAGGCTGGTATCACTCACATCCTGGCTTCGGTTGCTGG CTATCAGGCGTT GAT AT CAAT ACT CAGCAGGT CTTT ACAAATCCACTT GTTT AAAA GGGACCGGT CT AT GAAAAT AGGAT AGCTTCT GTT GTTGCACT GT ACT AT AT GTCAT GTCATT AT AAAT ACT GAT GT GTTTTTTT AAT AAAACATGGAT AT GAT AAT ATGCT AT A T GCCT AT ACT AT AACT GAT CAACTGGAGGCACT AGGAAGCTTTTCCTTTCCCGCT G T ATTGCCT AT GTTTT CAATTT CACT ACCTT CATT GTGT AGGTT CCAT GTCTCCCT G A AAGTT ATCGGT GAACTT AT CTT GTTGGT AGTT CAGTT AACCT GCAT GTTTT GTT CAT AT AAAAGAAAAAT GGAAGAGGTTGGCT AATT ATT GATCCCAACT CACTGGAGTTCT T CT CAT AACT ACCTTTT GT ATTT CT GTT CT GT AT CTT AT GT AAGT GCCAAT CATTGC ACT CAT AGGT CT AAATTT GTT CAAT AT AT AAAT ATGCAG AGTTTT G AAGCTTT G AAC CCCAGGGCAGTTGCT GTT GT GAT AGACCCCATCCAGAGT GT GAAGGGGAAGGT G GTTATTGATGCATTCCGCCTAATTAATCCTCAGACCATGATGCTTGGCCAGGAGCC ACGGCAGACGACATCAAATGTTGGGCACCTAAATAAGCCATCGATTCAGGTAAAT ACTT AGT AAT ATT GT AT CTT ATGGACTT GTTTT GTT CCGTT GTT AAGAAAT AATTT GA CCAT ATCT GTT ATTT ATCAGGCT CTT AT CCAT GGGCT GAACAGACACT ACT ACTCG ATTGCAATCAATT ACCGAAAAAAT GAACTT GAGGAGAAAAT GTTGCT GAACTTGCA CAAAAAGAAATGGACAGATGGGCTAATTTTGAAGAGGTTTGACACTCATTCAAAAA CCAACGAGCAGACT GT CCAGGTGCCT AT ACCACT CAGCTTCCTTT AGCT GT AT ACT GAG AT GATT GTTTTT CTT GTT ATT G ACAAT CTGCCT ATT CTT GTCCAGG AAATGCT A AACCTAGCCATCAAGTACAACAAGGCGGTGCAGGAGGAGGACGAACTGCCACCT GAGAAACTTGCGATAGCAAATGTAGGTCGGCAAGATGCAAAAAAGCATTTGGAAG AGCAT GTGT CCAATTT GAT GTCAT CAAACAT AGTT CAG ACCCT AGG AACCATGCT C GACACGGTT GT ATTTT AGTCT CT ACT AAT ATT GTT GTT CCAAACT GAAACAT AGCCC ACTCT ATCGAAGCAT GACACATGCAAT GAGCTCGATGCCGGAT ACATTTTTGGTT C T AAG ATTT GTTT ACG AATGG ATTT GT CT ACATT CT GTT GTT AAACTCCCT ACCTTTT CT ATCAAAGCTT CAGT AT GTTCT AGTT AT ATTT AAGCCAAT GTGGGT CCA CATT GT C AATT GGGAT GTCATT ACCCCTGGGAGAAATT GT GT AATGCGATT AT AT GACTT GTT GCGTGGGCCGCGTGTGATGGCTTATTTTGTTTGTTCCACATGCGTTGGCACCAAG TTT CT CATGCAAAT ATTT GAGT GAT CTT GCAAACTCATCT ATT CGGAGCAT GGCCTT GAGAT GTT AATT GTTTT ATGCAAAT ATTT GAGT GATCT CT GTTT GACT GTTGCT ACA CCACTTGTTTTATGGTTGTGGTTAATTGTTGTGGTGCCAAGCACGCAACTTGAATA AAATGCCGT GTGCTTCGTT GGAATT GAATTTT ATT CT AAT AATT AT AAT AATTT AGA CAAAACT AATT AAGTT AAT AT ATTT ATTT AT GT AAT GT ATTT GT ATGGT ATT CT AAATT TT ATT AGAT AGAT AGCT AT ACACT ACATTT AT GTT AT AAAGAAGT GAGT AGAAGAGT GTGTTAT AAATT GT AT ATT AG AAAAAT AT AG AT CACT AAT ATT GTTTTTT GTTGTT GT T GAGATCACCTCGTGCACAT ACTTTTGGAAATGCAACTT ATTTT GAATTT AGCAGTT GTTT AAATTTTCTGGGAGTT AATTTTTGGGGCGTT ACAACACTGCACCT ATTGCTT GT GAGACAT GAGCTGCTT ACCGAAAGGGCAT GTT CTTT AATTCGATTT ATT AGTTT ATTTTTTTGGTT GAGACCACCT CGT GCACAT ACTTTT GGAAAT GCAACTTT AAAATT T ATTTT GAATTT AGCAGTT GGAGAAATTTTCTGGGAGTT ACAACAC
SEC ID NO: 56 > ZmRPNI 1-Zm00001d008284_T004 peptide: Zm00001d008284_P004 pep:protein_coding
MERLCRIFGASGMGCPPTDSPLLDSSECVYISSLALLKMLKHGRAGVPMEVMGLMLG
EFVDDYTVRVVDVFAMPGSGTGVSVEAVDHVFGTNMLDMLKGTGRPEMVVGWYHS
H PGFGCWLSGVDI NTCCSFEALN PRAVAVVI DPICSVKGKVVI DAFRLI N PGTMMLGG
EPRQTTSNVGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLIL
KRFDTHSKTNEGTVGEMLNLAIKYNKAVGEEDELPPEKLAIANVGRGDAKKHLEEHVS
NLMSSNIVCTLGTMLDTVVF
Soybean - Glycine max
SEQ ID NO: 57 > GmRPNI 1-GLYMA_17G243800 17 dna:chromosome chromosome:Glycine_max_v2.1 :17:39937326:39942863:-1
GAGTTT AATTT CAAT AGATT GTTT GT GT AAAAT ATTT AAT ATGGT CAACT ATTT GGAA AT CAATT ATT AAAAAAACTCCACAGTTTT AT CAT ACAT AAAAATT CAT AATT AAAT AA T AG CAT AT AAAAT ATTT AT ACTGGT AAT GCATTTT A ATT AAATT AAAATTCT AGTT AA TTTT GAG AAAT AAAAT AAAAAT AAGTT G ACAATTT ATT AAT ATTT AT AAAAAAT AAAA AAT AG AAAT ACATT AT AT GT CTT ATT AATT AA CAATT ATT AAAT ATT CT G ACACT AAT AT ATT GTT AATT ATT AAT AATT G AAT ATT AAGT AAAGTTTT AAATTT AAGTCTT GT G A AT AAAAAAAGCAT AATT GAG AG AG AAT AAT CT CACAAAAG AT AAT CAAT CAAATTT G T CAAAAAACAG ACT AAAT AT CAACAAAATT GAT AAAT AGG AT AACCAAAAAAT CATT G AAT ATT CTT AG ACT AACAAAAACAT ATT AGT CAAGTT AAAAAACAAAAAT AT ATT A GTGGGCCGTTTTTT AT GT GAAGGCCCGAAACAAT GT AGGAAACCTTTTT ATTTT AT TT CTTT CT G AAT ATCGT AGTTT CTT GAT CG AAACGTCAACGTCTGCGACGTCGT AT TT AACCGT CT CCGGGAGCCAT AAGCGAAGCAACGTTT CTT CCT CTTCCCAGTT CC CTGCAACATT AACAAGAGCACAACAGAACAGAGGGAGCACACAAT CTTT CTT CATT CTTTT CGT GAAACAAAAGAAAACT GAAATT AGGTTTTCAT GT CGGGCATGGAGAGG CTTCAGAGGATGTTCGCTGGTGCAGGTGGAGCGCTGGGTCATCCCCCACCGGAT TCTCCCACCCTCGATTCCTCCGAGCAGGTCTACATCTCCTCCCTCGCCCTTCTCA AAATGCT CAAACACGGT AT GCT ATT AG AATT CTT ATTTT CT CTT CT CG AT CCCCTT C TTCGTTT CACTTTCCCAT GTTTTTTTT ATT GTT CAT CTT AT AATTTT G AAAACCCT AA TTT GT GT GT AGGAAGAGCTGGAGT ACCGAT GGAAGT GATGGGTCT GAT GTTGGG GGAGTTCGT GGAT GAGT ACACCGTTCGCGTT GTGGAT GT GTTTGCGATGCCTCAG AGT GGGACCGGT GTT AGCGTT GAAGCT GTT GAT CAT GTTTTTCAGACT AAT ATGCT T GAT AT GTT GAAGCAGACTGGAAGGT ACTTTTTTGGGTTT GTTTT GTT GTTTTTTTT AGTGAAGGAGGGTTTGGTTGCCGTTTTTTGCTGCGTGGTTTATACATGTGTGGGT T GTTTTTT GTT GT AT GAT AGTT GAAACGTTGGCGTTTT GT CGTTGCAGGCCGGAGA TGGTTGTGGGGTGGTATCACTCGCATCCTGGATTTGGGTGTTGGCTTTCTGGAGT G G AC ATT AAT AC AC A AC AG GTTTTT G G CTG CTT ATTT G GTTTTT G GTTTTT G GTTT C AAT GT GGCGGCATTT GTTCGT GAT ATTTT GCACT GTTTT GT GTTTCAAAATT GAAAC T AAGT GG AAAATTCCT AG AT GAGT AT AACAGTT GTTTT CTTTTTT AAAAT G AAAAGT TTTT AGTT GAGCTT AAT GACATT GTTTGGTCCAT GT AACCGGCTTCACCT AGTGGG AT AAGGCTTT GTT GTT GTT CTTCTTCTTTTT AAACAAAAAAAGAGT CACGCACCAAG T GAT AC ATCC A AT ATTTT AAATT G CAATT G C AGTTGTG GTTTT AT CAT G ATCCTTTTT ATTT AGAGGGT AT CGCAAACAAAT GT GGCCACGATT GT GGTCAT GTT ATGGTTTT A GAGACCCCCAAACCT AGACAAT GCAGCT GGT ATT GTGGTTGCGGAGCTTTTT AAA ACCTT GG ATT CAT CT CTT AAAT ATT ACTGCAG ATT G AAAG AGGG AG AG AG AACG AG AGGGGGT GAGAGAGAGTT AT ACAATTT ATTTT ATTTT AACTTTT CATTT ACAGTT AT AACCT CATTTTTT ATT AT CAAATT CAAT CAT ACAAATT GT AAT AT GT AACAT GAT CT C T GTGGAACTT AT GAGGCAAAAGT GAGGATGGAAAATTCCCTT GTT ATTGGT AAT AC GG AT GT AT AG ACAAAGT GAT ATCCTT ACTT AT GAT GATT GTCT GTTCCAAATTT CAT TTGAAAGAAGCATCT AT CGAT GAAAACAATTTTTT ATT AGGT AGACTGGGAAGTGC AAAAGTT GAGGGT GATGGGTTGCCT GGT GT AGGATT GAGT GTTT GT AAT CATCATT GCATACCAATCTTAGATTGGGGCTTGTTATAGTTGTGAGCTATAAGCTTGCTGGAT GAGGGAT GGAAACTT GAGAAGT AAT ACTGCTT GAGTCAT AAT AAAATT GT ACT GT A CT ATT GAAT ATTGGT AAAAGAAAGTTT GAGT ATTTT CATCAGT GATTT AAGT AGCT G CAATT GGATT AAGAAAT GTT GGT AGAAGGGATCAATGGGACAATT AGTGGTT AGAA T CCACTTT AGGTT GAGAAAT GTT AGAT GT GGAATTT AGTT GAGCCAT GACAAACCC TT ATTCCCAAAGGGAT GTTGGTTTT CGAAAATT GT AT AT AAT ATTT AT GT ACTTTT AT TTGATGCAGAGTTTTGAGGCTTTAAATCAACGGGCAGTGGCTGTGGTGGTGGACC CT ATTCAGAGT GTT AAAGGCAAAGT GGT AATT GAT GCTTT CCGGCT GATT AATCCA CAAACT AT GATGCTGGGTCAGGAACCACGACAGACAACTT CCAACCTGGGCCACC T AAACAAGCCAT CT AT CCAAGT GAGT GTT CT G ATTTTT CATT CAAAAGCAT AGCTG CT ACT CT GTTTT CTTTT CTTTTTTT CATTT ACTT ATTTTGCCTTT GT AAT CT CCT CTTT AGGCT CT GATCCATGGCTT GAAT AGACATT ATT ACTCGAT AGCGATT AATT ACAGA AAG AAT G AACTT G AAG AG AAG AT GTT ACTT AACCTT CACAAAAAG AAGTGG ACT G A T GGTTT G ACACT CAGGCATTTT GATT CACATT CT AAAACT AAT G AACAG ACT GTT CA GGTCAGTT G AAATTTTT CAAT GT G AAAT AT AGAT GT AT AGAT GATT CAACCTTTT AA ATCCT GTT CT CTT CTCCCCACTT CAACTT GTTTT CAAACTTTTT CTTGGCCAAATTT A TTGCAT AT AT GAGACTTGCAT GAAT AAT ACAAGGCAAAGT ACAGTTT AAAT GTT ACT GCACACATTCCT GACTT ATTGCACAGCAA CAATT AAT GATT GAT ATGGT ACTCAATT GGAGATTCT GCT GACTTGGTTT AGT AAATTTCAGAAACAT ACT AT AATTGGTTTTTT CTT GTT ACTTT CT GT CATTTT CTT GT CTT ACACAACTT CTCCCT CCCTCCTT AAG AG ATTT AAAGT G AAAT GGTTTTT ACT AATT ATT GT AGT AT G AACGT ACAT GGTATCTGT AGAAGACATTT ACAAACAT AAGAAT ACAAAATT AGTT CAAGAGAAT GAGTT GTGGA T AAAAGGGAAT GAGTGGCACCATCAGTCATGCAGAAACATT AGATT ACGGT AGAA GGGAATGAGTTGTGGACATGAGTGTAGTGGTGGGCTTGGATTCACTCATGGAGG AAT GTTGCT AAT AT AAT GTT G AG AG AAAG AATCCTTT GG AAGT GAG AAT AATTTCCA CACCT AAAATT GACCCTGGGTGGCCT AGAT CTTTT AGAGAAAACTTTT AGGGCTT G TTT AAAGT GGT AAAG AAAAGT AG AATT ATTT CAT GT CAG AAG AAG ATT GT CAACAT A TTCAAGAAAAT AGGT AGT CTTT AGAT CATTTT GAT AAAT AT GT AGATTT AAGAGTGG T GTTT GT GATGCCACAAGTCAT AACCAAGAAGAAAAT AGGT AGT CTTTT AGGGCTT GTTT AAT G CAATT CTTCT GAG AAAG CAATT CAAT G C ACT ATTT CAAT AGTTT GAG AT T GAAT GACT GGACT AAAGGT GTTTT GAAAGCCAATGCT AAAGT GTT AAT GAAT GT C CT ACAAGTCT AGCTTT GTGGT GAGAAT GT AGTT GTT GT GT GATT CCTTCCGGGT AT T AAAACCAAATT GAT GCT CAT AAT ATT GT GAAGAGAT AGATTT GGGACAAGAGT CC AT AT ACTTTT CT CCATTT AGGCT GAGTTT GGGCCTTCCAAAAACACAACAAGACT C CAGAGTTTGGAATGGGAT ATTT AGT GATT GAATTT AGCT GTTTGGTT ATTTGGT ATT AAATGCTCCATACTCGGCACAAGGGCACATAGTTATTGCCATAGCGGTGTAATGG GATT ATTTTT AGAGAAAT AATT GCTT AT ATTTT GAAGATTTT CTT GGAAAAAT GGGA AAAT AGCGAGCATTTTTT AAAACAAGTT GAAAGACACAAATTCGGGAGAT AATTT AT TTATTTTTGCTGGGTAATGCAGGAAATGCTAAGTTTAGCAGCCAAGTACAACAAGG CAGTGCAGGAGGAAGATGAGCTGCCGCCAGAAAAACTTGCAATTGCTAATGTGG GGAGGCAAGATGCT AAGAAGCACCTT GAAGAGCAT GTTT CCAATTT GAT GTCAT C AAA CATT GTT CAGACTTTGGGAAT GATGCTT GACACGGTT GTTTT CT AGAGTT AGC ATCGTCCAAT GT ATT ATTCCTT ACT AT AGT CAGCAACATTT CATT AAT ACT CTT G AC AT GTTT GTT AACAG AAGTT GTTTT AT CAT G AGTTTTTGCATTTT GTGT GTT CTT ACG AAT GCAGGAGCGAAGTT ACAT GTT AGAGGAT GAGAAT CAT ATTTT AATTTT AATCTC T CT AAAT GT AATGGAGATCTTCGT GATCGTGCGCT AGTTTT ATTCCGCATT AGGAT TTT ACAT AT AAACAAAGT GTT GATT CAGTT GT AAGT AGAAACACGGAGCAATT AAAA CTGCAT GT GAATT ATT AT CCCT GAAACT GTT AAGAGGATCAGTT AAATTGGT CT CT G AAAAT AAGT AAAATT AT AGTT ACT G AATTT GT AAACT ATT AATCCATTT CTTCCCT C T GAT AATCGAT GTCAGTCTTT AT GCAT GTTT CACACAATTTGGT CTT AGGGGTT ACT ATGG AAGT ACCTTTT AT CGG AT AAAT CAAAAT ATT AATCCATTT CTT GT CTTT GT G A CGT G ACAATT GTTT AT CT AGTT CACCAT CAGTCAT CT ACTT AACT AAT AAT G AAAT G ATT AATT G ACACAT GT CACTTTT G AGCAT CTT G AAT CTTCG AATT GTGT AAACAAAA CGAATT ACACAAAT CATCATT GAAT GAT AT CGTGCAT GAT CCACACCACAT AATTT A GAG AG AAT AG AAG AAAG ACCAAACAT GTGTAT CAAATT G AAGG AGGCT GGTCTCT GTTGAAGAAAAGAGCCAAGCGTTTGATCAAACACTGAGCCTTATGACTCGCCAAA T CAT AG AG AT G AAACGCAT G ACCCT CCCCAAG AGT CT CTT CAACTTCCACCACAC CCATCCACCCACT CCT ACT CAAAGCATT AT AGT AAAGCCACCCTCT ATCCCT CAGC ACATCCTTCT
SEQ ID NO: 58 > GmRPNI 1-GLYMA_17G243800 KRH05705 peptide: KRH05705 pep:protein_coding
MSGMERLQRMFAGAGGALGHPPPDSPTLDSSEQVYISSLALLKMLKHGRAGVPMEV
MGLMLGEFVDEYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMV
VGWYHSHPGFGCWLSGVDINTQQSFEALNQRAVAVVVDPIQSVKGKVVIDAFRLINP
QTMMLGQEPRQTTSNLGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKK
WTDGLTLRHFDSHSKTNEQTVQEMLSLAAKYNKAVQEEDELPPEKLAIANVGRQDAK
KHLEEHVSNLMSSNIVQTLGMMLDTVVF
Rice - Orvza sativa
SEQ ID NO: 59 > OsRPNI 1-BGIOSGA003218 1 dna:chromosome chromosome: ASM465v1 : 1 : 10077538: 10081938: 1
AACT AAAGT AAACTCGAT CT CTTT CCG AG AAGT GT ATT ATTTT CACGT GT ACCAT CA ATTTTTTT GAAAGT AAAT ATTTTT CCCCTTT AACT AAT GTTCACTTTGGACCGGAT AA T CTT ACCTTT ATTT AACTTTGGGCT AT CT AACT CT CTT CT AAAGCAT AT AAACG AT CT T GAGT ACAT CG ATTCCT ACTT AT CATTT AACT CT CGT AGCTT AAT GT AAG ATT ATTT CTTT GAAAT AT GAT AAATTGGATGCAT AT GAAT GAAAGAGT CAAGGATT AAGT GATT CCT CAAAAAAAAAAAAG AGT G AAATTT ATTT ATTTTTCCCCTTT CG ACACG AAG AAG GGCTT GGTTGGAGGAAAAT GGCCCAGATTCAGAT GACCGAGGCCGAGT ACCAT G GGGCCCACAAGAAT AAT AAGCCCCGAGCCCAAACGCT AAGGCCCACGAGAAGCC GTGCGCTGGAAGAAAGAAAGAAACCGCGGCCGTCTTCACACCGAAGCGGCGGAC GAGACGACTCGCAGTCGCAGCCTCTTTCCTCCTCCGTCTCTCTCTCCCCTCTTCC TCTCCTCCGCGCGGCGAACGAAGCGAGCGAGCGGCGGCCATGGAGCGGCTGCA GCGGATCTTCGGGGCGTCGGGGATGGGGCAGCCGCCGACGGACTCGCCGCTGC TCGACTCCTCCGAGCAGGTCTACATCTCCTCCCTCGCCCTCCTCAAGATGCTCAA GCACGGTCAGT CCCCCTCTCCT CCT CCTCAAT GATGGGGGAT ATT AAGGTTT CCG TTGATTTTGGTTTTGCGGCGCGCGCAGGGCGGGCCGGCGTGCCGATGGAGGTG ATGGGGCTGATGCTCGGGGAGTTCGTCGACGACTACACCGTCAGGGTGGTCGAC GTCTTCGCCATGCCGCAGAGCGGGACGGGCGTCAGCGTCGAGGCCGTCGACCA CGT CTT CCAGACCAACATGCT CGACATGCTCAAGCAGACCGGGAGGT AATCCCCT CTTGCCCCCGCCGCCGATCTAGAGAAAAAAACGGCGGATCTGTTGGTTCCCTTTC T ATCTCTCT CCCTT GTT C AG ATTT G GTG CG CTTT G CTT GATT AAT CTGCGCAGGAT TTGCCCCCCCCCCCCGCCCCCT CTTTCAGGGCACCTT AGAT GAGCT GATCTT GAT ACAT AACAACT ACTACT ATTTT CTCCTT CAG ATTGGT GT AG ATGGTTTT GTGTAT AC ATGCGTT AATTTT GT AAACGGT CCTTTT ATTTTTT AGAT AATGGGAATGGATT ACAT CTCCGGCCTTTTCAGCAGGCACAACCAGAATTGGCTCCATTACAACACTTGGCTC AACT GACTTTGGAAAT AT CT ACT GTTCAT AGTCAT AGAGCAGTTTGGGGCAACT CA TTT AGGCATCACAGCT GAAAAACCCT CT AGGCAGT AGAGT AACATT AGT CT GT GT G AGCACATTTTT CTTTT ATT GTGT ACTT GTTT CAT GAT AACAACCAAATTGCCGTTTT C T GCATTTTTTT GTGGGCTTT GTGCT GT CAT CACAAGTCAGTTTGCAGACTGCATGC TT G AATTTGG AAGCCAAAGT AT AAGTCAAT GTTGGT AAAAGCT CT AG AAT CAGTT G T GTTT CTTGCT CTTT G ATGCATCCAAACATT CAT GT G AAG AG AAT AAGGTCCCAAT GCAATT CTT CT GAAGGATT ACAGT ATTTTT ACTTCCTT GAGAT GTT CT AAGCAAATC CTTT GG AT AGTT G ACAAGGT CCCCCCAAAG AAAAAAAT G AATGCTTT GT GT AAAGT TT GAT AAT AT AT AGT GATT G AGTT GAT GTTGGAG AT AG AT CTTT GTATCT ATTT G AA CACAT ACCACT AACTT GCT GTTCAGT AACAGCT AGGCCT ACCAGTT GT ATT AT AT A ATGCATTGGT AGCAAT GT CAT CCTT ATCGTT GTT GAATTGGT ACATT GGTTCACAT CCTT AT CATT GTT AACACCACAT CGAT GTCT GTGCAT CAT AGTTCT ACGGCT GAT A TTTT GT AT GGAGT ACCT AGCAAACAAGT AAGTTGGGGACAGAAGT ACCT AGCAGC T GT G AACACCTT AT AT ACAT CTT AT GTT CT AATGCGT GTT GT AAAT AGG ATTTT GGT T ACTGGGCCT ACTT GTTT GTT AT GCT AGGGGAAT ATTTT AGAAATTGCTT AAGAAG G AAG ACGCTTT CT AAAT G AACTT CTT CT CAGTTTT GTCG ATGCATTT CT AGG AT AT G TT ACTCCCAAGTGCT AGAAAATT GTTT GT ACAGT AAT ACTGGCCATGGT CTT AT ATC T GTTT CTTTT AT CAACACT CT CAGTCT GAT GAT CT AG AATT ATTT ACTTTT ATTT ACA CCGTTGTTTTT AGGCT GTTT AACGT GATTTT GTGGCCACTT GT GTT ATCTTT ACAGA CCAGAAATGGTGGTGGGCTGGTATCACTCCCATCCTGGATTTGGATGTTGGCTTT CAGGT GTT GAT ATCAACACT CAGCAGGTGCAT ATGCTT ATT CT ACCTTTTT AT AAGT TTT GTT AAAAGGAGCAATT GTTT CACATTT GACAAATGGAAACAATT GAT GT GTCCA AACAT GTGGCACTGCATGCAGCAT GTCAGTT AATCAAAT AT CT AGAAAT AATTT GA T CAATT GAAATGGGT AAAGAGAGT AAAAGGTGGCAT ACATTT GGT ATCTTTT AT GT T AT CTT AT GTTT CTT CTGCTT ATCCCATT GT CAT CAAGT AGTT AT ATGCTT ATATCG GTGGT AGTT GGTCT GCAAGG AT GGTCCAT ACT CTT G AAATT G ACT G ACCAT GTTT C AT AT CT ACCT CGAGCTT CT GTT CACT AATCACT AGCTT GTTGGAGCT GATGCAT AT TTGGT GAACAGT AT GAATCTT AT GT CT AAT CTGGGGCAGGGAT CAT AAAAT AT ACA AATTT AAGAAT ACT AGGTGGT GATTT GT AAATTCTTCCAAGGGTT AAAGCTT AATTT GTTGCAAAAT AT GTT GACACTT ATTTTTCT AT GT AAACATGCGT ATT GAAAGT GAGT AT GT CT AACAGCTT AAATGGAATT GTGCAGAGTTTT GAAGCTTT AAAT CCCAGGGC T GTTGCAGTT GT GAT AGACCCAATCCAGAGT GT CAAGGGGAAGGT GGTCATT GAT GCATTTCGT CT CATT AAT CCTCAGACCAT GATGCTTGGCCAGGAACCGCGACAGA CAACATCAAAT GTT GGGCAT CT AAACAAACCAT CT ATCCAGGT AAAGTT CT CACT A TT AAT AAT ACTGCT ACCAAT GAACTTTTGCTCT AT CAATT AT CT AT ATTT GATT CAAA CTT CTTT GT GTT GT AAGGCT CTT ATTCACGGGCT GAACAGACACT ACT ACTCCATT GCAAT CAATT ACCGCAAAAAT GAACTGGAGGAGAAAAT GTT GCTT AACTT ACACAA AAAGAAATGGACCGACGGATT GATTTT GAAGAGTTTT GACACT CATTCGAAAACCA AT GAGCAGACT GTT CAGGTGCGTGGCATTCT ACTTTCAACCGT ACCAT AGAT GAT C CTT CAGAACAACCCTTT AATT CAT GTTGCAAAGTTTCGT ACT AGTT AGCT ACT ACT A GT ACTT AT AT GT GT GTTTTCACGTGCAGGAAATGCT GAACCT AGCCATCAAAT AT A ACAAGGCAGTGCAGGAGGAGGAT GAGCTGCCACCT GAGAAACT AGCGATTGCCA AT GT GGGACGGCAGGATGCCAAGAAGCACTTGGAAGAGCAT GTCT CAAATTT GAT GTCGTCAAACAT AGTTCAGACCCT AGGAACCATGCT CGACACGGTT GT GTTCT AG T CT CCTT CTACTGTTGTGT CAACCCT AT ACAGACCCCCACCCAAATT ATT ATTT AT G TTT ATCGAAGCCTCT GCCGT AATT CT GT AACTTTTGGTGCCAGCT ACATTTGGGTT CT AACAGTTCG ACTT G AAG AATTT GTTTT CTTTT AGCACGGT GT ACT GTT AAT CTT C T GTT GATTT CGCTGCATTTT CAAGGTTCCAT CACTT GAT G ACT AG AG AT CCT ACGT T ATT GTT CAGGT GT ACCTT CT CT CTT CAT G ATCCATGCAG AT ATCCGT GTTGGGG A C AAACCACTT CATTT AACACAG AT AT GTT GTT AAGTTTTT GTT GT AG AGCAAATT AT T AAAT ACATT GAT ACCAAT GCG AACGCT AAATT ACT ACT CACT CT ATCCCAT AACGT AAT AT ATGCACGT GTTTT AAT AATT AACTTTT AAAAACATTT AACCAAT AATT AGTT G AAAAT ACGT ATT GTT AGTT AAAAAT ACGT ATTTT ATTT ACAGAAAGCACAT GAGCT A T CAATTTT ATTT GTT GAAAAT GAT ATT ATTGGATTGGCAATT GAAT GT ACTTTT AGAT GGTTATAACTTCATTGCAGCAAAGCTTAATT
SEQ ID NO: 60 > OsRPNI 1-BGIOSGA003218-TA peptide: BGIOSGA003218-PA pep:protein_coding
MERLQRIFGASGMGQPPTDSPLLDSSEQVYISSLALLKMLKHGRAGVPMEVMGLMLG
EFVDDYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGWYHS
H PGFGCWLSGVDI NTQQSFEALN PRAVAVVI DPIQSVKGKVVI DAFRLI N PQTMMLGQ
EPRQTTSNVGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLIL
KSFDTHSKTNEQTVQEMLNLAIKYNKAVQEEDELPPEKLAIANVGRQDAKKHLEEHVS
NLMSSNIVQTLGTMLDTVVF
Barley - Hordeum vulgare
SEQ ID NO: 61 > HvRPNI 1-HORVU3Hr1G037790 chr3H dna:chromosome chromosome: I BSC_v2:chr3H:215658992:215663271 : 1
AGCAGGTGGCCGATGCATCTTGCTGCAGCGTCTGCCAGCCATGGATGCGGGTGC TCCACAACGTCGGCTCCCGCGGAGCGGGCTCCGGAGCGACATGCCTCACAGAG GCCGGTGGTGCAGTCCAACGGCTTCCAATACCCACATGGCCGACACCCAGCACC CAGCTTGCCGGCGCGTT CGT CCGAT CT ACAGTGGAGCTCTGCTTGGAAAGAGT G AAGAGATTGGGACGAGCAGTGGAT AACGGAAGGATT AGGAT GAAT GACTCGAT AA GAAAAGGTTCGAT GTTTT AGAGACAAAGTGGGTCAGCGGACAT AT GTT GAGCAT A CGACGCGT CGAT GTTT CACGAGAT ACAT AGGTT GATCCAAAG ACTTTT CT ATTTCC AAATCTT GACAAAGGTT AATT CGCAAGAGGACAT GTTT GTTTTTTCACAAAACAGC AAGCAGGAGATATTAAGAGACGTGACGAAATTTGAAAGGCCTTCAGGCCCAGCTT GGTCTATACTACGGCCCATGCAACAGACAGAGTTCGCCACGGAGTTCGCCACGG CAGCCCACTTCAAACCAGCCGGGCCACT CGGGT GTT AGCT AACCGCCT AACCCT A AAAAAAAT AAT AATCGGGT GTT AGCTTCGT GT ACT CG AAG AAAG AAATCCAGGG AT CCGGGTCGCAGTAGAAGCCGGAAGCAGCAGCCGCAGCGTAGAAAAAGACGCCG TCTTTCCCAAGCGCCCCCCTCCTCCAGGAACCAAATCGAACAACCGAGAGAAGCC ATGGAGCGACTGCAGCGGATCTTCGGCGCCGGCGGGATGGGCCAGCCGCCGTC GGACT CGCCGCTGCTCGACT CCT CCGAGCAGGTCT ACATCT CCT CCCT CGCCCT CCTTAAGATGCTCAAGCACGGTCAGTCCCGCAAGCTAGCTCCCCTTTGGCCCCGA T CT ACGCCCTTT ACCTCTCCACGAATCT GGGGTT AACCGGTT CGAAATT ACAGGG AGGGCCGGCGTGCCGATGGAGGTCATGGGCCTTATGCTCGGCGAGTTCGTCGAC GACTACACGGTCCGGGTGGTCGACGTCTTCGCCATGCCGCAGAGCGGGACAGG GGTCAGTGTCGAGGCCGTCGACCACGTCTTCCAGACCAACATGCTCGACATGCT CAAGCAGACCGGCAGGTATGGCCGCCGATCCGGATCGTAGATCTGTTGGTCCTT GCGTTTTCCCTT CT CCCACGCCAG ATTT G ATGCACTT AGTTT GTT CAT ACTCGTTT A T AAAGCT GAAAAGGATCGACCT CAACTT AAT ATGCCAATT GATTT ACGCACCT GT G CCGAT ACTTTTT GTT CAGGCTT GT GT GGTT GATTTGCT ACT AGT GCAAGAT GTT AA TTTGGGGAAGAT AAGACCTT GT GGAGT ATT AT AT ACGACGATTTTGGATCATT GT G T GAT GT AT ATT GTGGCTATAT CTTT ATT AAGT ACT CCCTCCGTCCCAAAATT CTT GT CTT AG ATTT GTCT AGAT AT GAAT GTATCT AGTCACGCTTT AGT AT AT AGAT ACATT C ATTTCT AAACAAACCT AAGACAAGAATTTTGGGACGGAGGGAGT ACAT ATT AGTT G CT GT AGTTCCCAT AAGCTTTTT GT GACT GT CGGT ACTTT ATTTGCT AATT ACCCCAT GCTT GATTT CCCAATTTCATTT GTT CAATGCTTT GACAAT AACAT ATGGTT AT ACTT A TTT AGAAAGAT AT GTTGGAGCACAGTT CATCACAAATT AT CCT CGT CT AGTT AAAAT TT CAAGGTTT CAT CAGTGGT GAT CCAGTGG AGT AT CTGCCATTT GAAT CCCCCTTT GT AAT AT AATTCTCACAGCCCT GTCAT AGCT ACCACTTT ACCAGCT AT AGGGTTTT A T GACTT ACAT AGTGT AACAT AAT AT ACAG AAG AAGT G AATTGCT GAAT ATT G AGT G AACCAAT CT GAT AAGAT ATGCTT GAAT CACTTTTGGAGAAAGACGT AAGTTT GT ATT GTCTT AGCAT CT AGCT GT AAATT AAG AAG AATTT CAT CAAG AATTTTCCT GT AGTT A GAGGGCTTCT AACAGGCT CTGCCCT AAAGAAGCTCCACCCTT GGTT AT GT AT CAT GCATCGAT GAT GAT GAT GT CT AT AGACAAT AT GATGGGCAT GACGAT GAACCT AGT G AATGG AT AAGTCAGGG AT ATT ACAT ACCT CAG AT AGT ACTTT ATTT AT ATT AG AT A GAT GGCTT AACT CCT GT GACACTTTT GAATT ATGCTT CT GTTGGCAAT AGTT AT ACC ATTGCCTCCTTGG AT GTTTTT CTTT GTCAAACTTTT CAGTT GAT AGTT GG ATTT ACT TTGACAGGCCAGAAATGGTGGT AGGGTGGT ATCACTCTCAT CCT GGTTTTGGTT G CT GGCT AT CGGGT GTCGAT AT CAAT ACT CAACAGGTGCACGCAT ATGCAT ACTTT G CCAAT CTT GT AT ATT AAGCTT GT AAGAGGAGTT GTTTTTCTT GAGACAAACACGCAT GTGGT AAAGCTT GT AT GT CTT AT CATCTT GAAT ACT GAACCT GCAGAGTTTT GAAG CTTT GAACCCCAGGGCAGTTGCT GTT GT GATT GACCCCATCCAGAGT GT CAAGGG GAAGGTT GT CATT GATGCATTT CGTCTCATT AACCCTCAGACCAT GATGCTTGGGC AGGAGCCACGACAGACAACATCGAAT GTTGGGCACCT GAAT AAGCCAT CT ATTCA GGT AAAAT ACT AATTCG AT CAGT AT GAT AGCTT AG AAATTT CTGT ATT GTT CATT CT T GT AAAT GATT AT ACT GTCT GTTT ACTGCCAGGCT CTT ATT CAT GGTCT CAAT AG AC ACTACTACT CCATT GCAAT AAATT ACCGCAAAAAT G AGCTCG AGG AAAAG AT GTTG CTT AACCTTCACAAAAAGAAATGGACCGATGGGTT AATT CT GAAGAAATTT GACGC ACATT CAGAAACCAAT GAGCAGACT GTT CAGGT GT GT AGCATTCAACTTTCT ACTT CCACCGGAAGATCCTTTTT GTTGGT AAT GCAGAGT GT AAGT CGAT GCAGTTTCTT A GTTTTTGGCT GT GTT GT GTTTTT ACTTGCAGGAAATGCT GAGCCT AGCCATCAAGT ACAACAAGGCAGTGCAAGAGGAGGAT GAGTT GT CCCCT GAGAAATT AGCGAT AGC T AAT GTTGGACGGCAAGATGCGAAGAAGCATCT AGAAGAGCAT GT CTCGAATTT G AT GT CGT CGAACAT AGTT CAGACCCT GGGGACCAT GCTT GACACGGTT GT CTTTT AGT CT ACCACT AGT GTT GTT CCAACCAT CT AT AG ACT CACCCAGT CT AT CATT CAT GTTATATGTATCAAAAGCCTGCCTCCACGCAGCAAGGTACATTCGGGTTCTAACA GTTTGCTCG ACAG ACT CAATTTT CTGT AGT ACT AT CTT CTT GT AT GTTT AATTT CGC AGCAAAGTT CATCCCT GT CCTTT ACCATT GT AAGTT CTGGTT AT GCT G AAGT GAT C AT GAT GTCT G AAGT CGGT G AAAT CTT ATGCT CAT GAG ACT AT CCT G ATGGGT ATGT GGAAGT CACT GAGACT GAAGAAT GTGCTT ATTGCAAAGTT CAGATT ACT GT ACT CA GTGCAAAT ATTTCATT AGTTTTTGCCGCAGCTCCT AACTT AAATT AGAACTT CCAAT TT AAATCTGCAT ACAAGTGCAGCAACCT AAAAT AGCACAT CAACAT GATT CAAGAA GCAAATGGCATCACAAAT GT ATCGT CAACACT AATT CT CAT AAT ATGGAAGT CACT GAGACT GAAGAAT GGCGGCGGCGGTTTT ACAACT ACTTTTT AT AAGGTTCT GT AC GGGAGCGCAGCAGAAAACGCATTTTTTGTTGTCCTACGCATCAGTCCAGGACCAT T AT G AAAAT ACAT ACTCCCTCCATTCCT AAAT AT AAGT CTTTT AAAAGATTT CACT A GGCGT CT ACAT ACGAAGCAAAAT GAAT GAAT AT ACACATT AAAAT AT GTCT AT AT AC ATCCGTATGTAGT CCACT AGT GAAAT CT CT AAAAAG ACTT AT ATTT AGG AACGG AG G AGT AG AAAGTTT G ACGTTGGGTCT ACCCAGTTGCACACATT AT GT GTCAT AT ATT CAGCTTAGTCCACTGCTCGTCTCTCAATGCCCAGATGCATCTCGCTATGCGATAG GAAAAT AGT GATTGCTGCCAAGAAT CTGCAT CAACAT GACCAAGAGAATT CCCT GA AAAAAAAAC AT G ACAAAG AG AACACT ACCAT GT ACCCT CATTTGCCT CT C
SEQ ID NO: 62 > HvRPNI 1-HORVU3Hr1G037790.1 peptide: HORVU3Hr1G037790.1 pep:protein_coding
KKNNNRVLASCTRRKKSRDPGRSRSRKQQPQRRKRRRLSQAPPSSRNQIEQPREA
MERLQRIFGAGGMGQPPSDSPLLDSSEQVYISSLALLKMLKHGRAGVPMEVMGLML
GEFVDDYTVRVVDVFAMPQSGTGVSVEAVDHVFQTNMLDMLKQTGRPEMVVGWYH
SHPGFGCWLSGVDINTQQSFEALNPRAVAVVIDPIQSVKGKVVIDAFRLINPQTMMLG
QEPRQTTSNVGHLNKPSIQALIHGLNRHYYSIAINYRKNELEEKMLLNLHKKKWTDGLI
LKKFDAHSETNEQTVQEMLSLAIKYNKAVQEEDELSPEKLAIANVGRQDAKKHLEEHV
SNLMSSNIVQTLGTMLDTVVF
SEQ ID NO: 63 >Macrosteles quadrilineatus CSP4 full-length protein MTSSATLCAVVLLCACVVSTHAQRAYTNKYDNLDLDKILSSKRLVNNYVQCLTDRKPCSPEGQE
LKRALPDAIKTKCAKCSESQKDKAIKVIRKMQKDYPQEWKTLMDKWDPSGKLMKEFEQEAQKRA
QG*
SEQ ID NO: 64 >Circulifer tenellus CSP4 full-length protein
MTTTTTLCAAALLCACLVATQAQQRGYTSKYDNIDLDKILSSKRLVNNYVQCLVDKKpCppEGQ
ELKKALPDAIKTKCAKCSETQKDKAIKVIRKMQKDYPQEWKVVTDKWDPTGNLMREFEQEIAKR
ESQKKKQG*
SEQ ID NO: 65 >Dalbulus maidis CSP4 full-length protein MTSTTTLCAAALLCACLVFAHAQQRAYTNKYDNIDLDKILSSKRLVNNYVQCLVDKKPCPPEGQ ELKKVLPDAIKSRCAKCSEAQKDKAIKVIRKMQKDYPQEWKIMMDKWDPNGMLMREFEQEIQKR AQG*
SEQ ID NO: 104 >Bemisia tabaci CSP4 full-length protein MFKVLVVLCVLGAAFVYAAPAEDKYTDKYDNINVDDILGSKRLLKSYLTCLLDKSPCTPEGSEL KRLLPDALKTACSKCTEKQKEGAARIVERVTAEYPTEWKELSAKWDPTGEYWAKYKPLVQEYLK ASA*
SEQ ID NO: 66 >Macrosteles quadrilineatus CSP4 mature protein
QRAYTNKYDNLDLDKILSSKRLVNNYVQCLTDRKPCSPEGQELKRALPDAIKTKCAKCSESQKD
KAIKVIRKMQKDYPQEWKTLMDKWDPSGKLMKEFEQEAQKRAQG*
SEQ ID NO: 67 >Circulifer tenellus CSP4 mature protein
QQRGYTSKYDNIDLDKILSSKRLVNNYVQCLVDKKPCPPEGQELKKALPDAIKTKCAKCSETQK
DKAIKVIRKMQKDYPQEWKVVTDKWDPTGNLMREFEQEIAKRESQKKKQG*
SEQ ID NO: 68 >Dalbulus maidis CSP4 mature protein
QQRAYTNKYDNIDLDKILSSKRLVNNYVQCLVDKKPCPPEGQELKKVLPDAIKSRCAKCSEAQK
DKAIKVIRKMQKDYPQEWKIMMDKWDPNGMLMREFEQEIQKRAQG*
SEQ ID NO: 69 >Bemisia tabaci CSP4 mature protein
APAEDKYTDKYDNINVDDILGSKRLLKSYLTCLLDKSPCTPEGSELKRLLPDALKTACSKCTEK
QKEGAARIVERVTAEYPTEWKELSAKWDPTGEYWAKYKPLVQEYLKASA*
CSN5A sequences
SEQ ID NO: 70
>AtCSN5A-ATlG22920.1-protein
MEGSSSAIARKTWELENNILPVEPTDSASDSIFHYDDASQAKIQQEKPWASDPNYFKRVHISALALLKMVVH
ARSGGTIEIMGLMQGKTEGDTIIVMDAFALPVEGTETRVNAQSDAYEYMVEYSQTSKLAGRLENVVGWYH
SHPGYGCWLSGIDVSTQMLNQQYQEPFLAVVIDPTRTVSAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKI
EDFGVHCKQYYSLDITYFKSSLDSHLLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAESQLANSR
YGGIAPAGHQRRKEDEPQLAKITRDSAKITVEQVHGLMSQVIKDILFNSARQSKKSADDSSDPEPMITS* SEQ ID NO: 71
>AtCSN5A-ATlG22920.1-Coding-Sequence
ATGGAAGGTTCCTCGTCAGCCATCGCGAGGAAGACATGGGAGCTAGAGAACAACATTCTCCCAGTGGA
ACCAACCGATTCAGCCTCCGACAGTATATTCCACTACGACGACGCTTCACAAGCCAAAATCCAGCAGGA
GAAGCCATGGGCCTCCGATCCTAACTACTTCAAGCGCGTTCACATCTCAGCCCTTGCTCTTCTCAAGATG
GTGGTTCACGCTCGCTCCGGTGGCACAATCGAGATCATGGGTCTTATGCAGGGTAAAACCGAGGGTGA
TACAATCATCGTTATGGATGCTTTTGCTTTGCCTGTTGAAGGTACTGAGACTAGGGTTAATGCTCAGTCT
GATGCCTATGAGTATATGGTTGAATACTCTCAGACCAGCAAGCTGGCTGGGAGGTTGGAGAACGTTGT
TGGATGGTATCACTCTCACCCTGGGTATGGATGTTGGCTCTCGGGTATTGATGTTTCGACACAGATGCT
T AACC A AC AGT ATC AGG AG CC ATT CTT AG CT GTT GTT ATTG AT CC AAC A AG G ACT GTTT CG G CTG GT AA
GGTTGAGATTGGGGCATTCAGAACATATCCAGAGGGACATAAGATCTCGGATGATCATGTTTCTGAGT
AT C AG ACT AT CCCT CTT AACAAG ATT G AGG ACTTTGGT GT AC ATTG C A AAC AGT ACT ACT C ATTGG ACAT
CACTTATTTCAAGTCATCTCTCGATAGTCACCTTCTGGATCTCCTTTGGAACAAGTACTGGGTGAACACT
CTTTCTTCTTCCCCACTGTTGGGCAATGGAGACTATGTTGCCGGGCAAATATCAGACTTGGCTGAGAAG
CTCGAGCAAGCGGAGAGTCAGCTCGCTAACTCCCGGTATGGAGGAATTGCGCCAGCCGGTCACCAAAG
GAGGAAAGAGGATGAGCCTCAACTCGCGAAGATAACTCGGGATAGTGCAAAGATAACTGTCGAGCAG
GT CC ATGG ACT AAT GT C AC AGGTT AT CAAAG ACAT CTT GTT CAATTCCGCT CGT C AGT CCAAG AAGT CT G
CTGACGACTCATCAGATCCAGAGCCCATGATTACATCGTGA
SEQ ID NO: 72
>Bo Bo5g039030.1 Brassica oleracea
M DDSSTIARKTWELENNILTVEQPDSSSSDGIFYYDEASQTKVQQEKPWATDPNYFKRVQ
ISALALLKMVVHARSGGTIEIMGLMQGKTEGDTIIVMDAFALPVEGTETRVNAQADAYEY
MVEYSQTNKLAGRLENVVGWYHSHPGYGCWLSGIDVSTQMLNQQYQEPFLAVVIDPTRTV
SAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDSH
LLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAESQLAHSRFGGIPASLHRKK
EDEPPLAKITRDSAKITVEQVHGLMSQVIKDILFNSARQSDKTPSDPSDPEPM ITS
SEQ ID NO: 73
>Bo5g039030.1 Brassica oleracea
ATGGATGACTCTTCGACCATCGCTCGCAAGACGTGGGAGCTCGAGAACAACATCCTCACC
GTAGAGCAACCGGATTCGTCCTCCTCGGACGGAATATTCTACTACGACGAAGCTTCCCAG
ACCAAGGTCCAGCAGGAGAAGCCGTGGGCCACCGATCCCAACTACTTCAAGCGCGTCCAA ATCTCGGCCCTCGCGCTCCTCAAGATGGTCGTACACGCGCGCTCCGGCGGGACGATCGAG
ATCATGGGTCTTATGCAGGGGAAGACCGAGGGGGATACCATCATCGTCATGGACGCTTTC
GCTTTGCCTGTGGAAGGAACCGAGACTAGGGTTAATGCTCAGGCTGATGCGTATGAGTAC
ATGGTTGAGTACTCTCAGACCAACAAGCTGGCTGGGAGATTGGAGAATGTTGTGGGATGG
TATCACTCTCACCCTGGGTATGGATGCTGGCTCTCGGGTATTGATGTCTCGACTCAGATG
CTTAACCAACAGTATCAGGAGCCTTTCTTGGCTGTTGTTATTGATCCGACGAGGACTGTT
TCGGCTGGTAAGGTTGAGATTGGGGCGTTCAGGACTTATCCGGAGGGGCATAAGATCTCT
GATGATCATGTTTCTGAGTATCAGACTATTCCTTTGAACAAGATTGAGGATTTTGGTGTT
C ATT G C AA AC AGT ACT ATT CGTTG G AC AT C ACTT ACTT C AAGT CAT CT CTTG AT AG CC AC
CTTCTGGATCTCCTTTGGAACAAGTACTGGGTGAACACTCTTTCTTCTTCCCCACTGCTC
GGCAATGGAGACTATGTTGCCGGACAGATATCAGACTTGGCTGAGAAGCTTGAGCAAGCC
GAGAGTCAGCTGGCGCACTCCCGGTTTGGAGGAATACCGGCCAGTCTTCACAGGAAGAAA
GAGGATGAGCCTCCACTTGCTAAGATAACTCGGGACAGTGCAAAGATAACGGTGGAGCAG
GTCC AT G G ATT AAT GTC AC AG GTT AT C A AAG AC AT ATT GTT C A ACT C AG C ACGTC AGTCC
G ACAAAACT CCCAGCG ACCCGT CAG AT CC AG AGCCG ATG ATT ACAT CTT AA
SEQ ID NO: 74
>Bo Bo7g057580.1 Brassica oleracea
M ESSSTIARKTWELENNILTVKLPADSSSDNIFHYDGAAHAKVLKEKTWATNPNYFKRVQ
ISALALLKMVVHARSGSTIEIWVLCRGKQMAIRSLLWTLLLCLLKELRLGLM LRPM RMST
GSVYNSSCFVDYYCNLNHRLGDWRMLLGGITCILGM DAGSRVLM FQHRCLTNSIRSLFLA
VVIDPTRTVSAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDIT
YFKSSLDSHLLELLWNKYWVNTLSSSPLVGNGDYIAGQISDLGK
SEQ ID NO: 75
>Bo7g057580.1 Brassica oleracea
ATGGAGTCTTCGTCTACCATCGCAAGGAAGACATGGGAACTCGAGAACAACATCCTCACC GTGAAACTACCTGCGGATTCATCCTCCGACAACATTTTCCACTACGACGGAGCTGCTCAC GCCAAGGTCCTGAAGGAGAAGACATGGGCCACCAATCCTAACTACTTCAAGCGCGTCCAA ATCTC AG CG CTCG CT CTT CT C A AG AT G GTTGTAC ACG CTCG CTCTG GTAG C ACTATCG AG ATATG G GT CTT ATG CAG G G G AA AAC AG AT GGCGATACGAT C ATT GTT ATG G ACG CTTTT G CTTTGCCTGTTGAAGGAACTGAGACTAGGGTTAATGCTCAGGCCGATGCGTATGAGTACT G G CT C AGT CT AC AATT CAT CTT GTTTT GTT GATT ATT ATT GT A ACTT G AAT CAT AGG CTG GGAGATTGGAGAATGTTGTTGGGTGGTATCACTTGCATCCTGGGTATGGATGCTGGCTCT CGGGT ATT GAT GTTTCAACACAG ATGCTT AACCAACAGT ATCAGG AGCC I I I I I I TGGCT GTTGTTATTGATCCCACAAGGACTGTTTCGGCTGGTAAGGTTGAGATTGGGGCGTTCAGA ACGTATCCAGAGGGTCATAAGATCTCAGATGATCATGTTTCTGAGTATCAGACTATCCCT TT AAACAAG ATCG AGG ACTTTGGT GTT CATTGC AAAC AGT ACT ATT C ATTGG AC AT C ACT TATTTCAAGTCATCTCTTGATAGCCACCTTCTTGAACTCCTTTGGAACAAGTACTGGGTG AACACACTATCTTCCTCCCCACTGGTGGGCAATGGAGACTATATTGCTGGACAAATATCA GACTTGGGTAAATAA
SEQ ID NO: 76
>Bv KMT17810 Beta vulgaris
M D P KALSSS AAM AKQTWE LE N N I ETI D PTT T T T T T T T T T T T T SSDAS DAIFFYD ESAQT
KFQQEKPWANDPHYFKRVKISALALLKMVVHARSGGTIEVMGLMQGKTDGDAIIVMDAFA
LPVEGTETRVNAQADAYEYMVDYSQTNKQAGRLENVVGWYHSHPGYGCWLSGIDVSTQM L
NQQFQEPFLAVVIDPTRTVSAGKVEIGAFRTYPEGFKPADEPISEYQTIPLNKIEDFGVH
CKQYYSLDITYFKSSLDCHLLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAE
NQMAHTRFGSIITPSQRKKEEEPALAKITRDSTKITVEQVHGLMSQVIKDILFNSVRPDR
CQAESSEPEPMVEA
SEQ ID NO: 77
>Bv KMT17810 Beta vulgaris
ATGGACCCAAAAGCTCTCTCCTCGTCCGCAGCAATGGCGAAACAAACCTGGGAATTAGAG AACAACATCG AAAC AAT AG ACCCCAC AACCAC AACC ACAACCACAACCACAACCACAACA ACAACAACATCATCGGACGCTTCAGACGCCATATTCTTCTACGACGAAAGCGCACAAACG AAATTTCAGCAGGAAAAACCATGGGCCAACGACCCACATTACTTCAAACGGGTGAAGATC TCG G C ACTT G CG CT CTT AA AG AT GGTGGTGCACGCGCGTTCTGGTGGT ACC ATTG A AGT G ATGGGTTTGATGCAGGGTAAAACTGATGGTGACGCCATTATTGTTATGGATGCTTTTGCT TTGCCTGTTGAAGGAACTGAAACTAGGGTTAATGCTCAAGCTGATGCTTATGAATATATG GTTGATTATTCTCAGACTAATAAACAGGCTGGACGTCTGGAAAATGTGGTTGGGTGGTAC CACTCTCACCCTGGTTATG GTT G CTGG CTTTCGG GT ATT GAT GTTT C AACT C A AAT G CTC AACCAAC AATT CC AGG AACCCTTT CTGGCT GTT GTT ATTG ACCC AACT AGG ACT GTTT CT
GCTGGAAAAGTTGAAATTGGTGCTTTCAGGACATATCCAGAAGGCTTTAAGCCAGCAGAT
G AGCCT AT CT C AG AAT AT CAG ACC ATCCC ATT AAAT AAG ATT G AAG ACTTTGG AGTGC AT TGT A AAC AGT ACTACTCTCTG G AT ATC ACGT ATTT C A AGT CTT CG CTTG ATT G CC ACCTC
TTG G AT CTT CTGTG G A AC AAGT ATT G G GT C AAT ACT CTTTCCT CAT CT CCTTT G CTGG G A
AATGGAGACTATGTTGCTGGACAAATTTCAGATTTGGCTGAAAAGTTGGAGCAGGCTGAG
A ACC A AAT G G CCC AT ACG CGTTTT G G GTCC AT AAT C AC ACCTT C AC A AAG AA AG A AAG AG
GAAGAGCCAGCACTTGCCAAGATCACTCGTGATAGCACAAAGATAACAGTGGAACAAGTT
CATGGCTTAATGTCACAGGTAATCAAAGACATCCTATTCAATTCCGTCCGGCCAGACCGG
TGTCAGGCAGAGTCATCTGAGCCTGAACCTATGGTTGAGGCATGA
SEQ ID NO: 78
>Bn CDY25761 Brassica napus
M ESSSTIARKTWELENNILTVKPPADSSSDNIFHYDGAAHAKVLKEKPWATDPNYFKRVQ
ISALALLKMVVHARSGGTIEIMGLMQGKTDGDTIIVMDAFALPVEGTETRVNAQADAYEY
MVEYSQTNKLAGRLENVVGWYHSHPGYGCWLSGIDVSTQMLNQQYQEPFLAVVIDPTRTV
SAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDSH
LLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLDQAESQLVQSWFGGKKASLHKKK
KDELPLAKITRDSAKITIEQVHGLMSQVIKDILFNSPRQSDKTPSDPTDPEPMITS
SEQ ID NO: 79
>Bn CDY25761 Brassica napus
ATGGAGTCTTCGTCTACCATCGCAAGGAAGACATGGGAGCTCGAGAACAACATCCTCACC
GTGAAACCACCGGCGGATTCATCCTCCGACAACATATTCCACTACGACGGAGCTGCTCAC
GCCAAGGTCCTGAAGGAGAAGCCATGGGCCACCGATCCTAACTACTTCAAGCGTGTCCAA
ATCTC AG CG CTCG CT CTT CT C A AG AT GGTTGTGCATGCTCGCTCTGGTGG C ACT ATCG AG
ATCATGGGTCTTATGCAGGGGAAAACCGATGGCGATACTATCATCGTTATGGACGCTTTT
GCTTTGCCTGTTGAAGGAACCGAGACTAGGGTTAATGCTCAGGCCGATGCGTATGAGTAC
ATGGTTGAATATTCACAGACAAATAAGCTGGCTGGGAGATTGGAGAATGTTGTTGGATGG
T ATC ACTCTC ATCCTG G GTATG G ATG CTG G CTCTCG G GT ATT GAT GTTT C A AC AC AG AT G
CTTAACCAGCAGTATCAGGAGCCTTTCTTGGCTGTTGTTATTGATCCCACAAGGACTGTT
TCGGCAGGTAAGGTTGAGATTGGGGCGTTCAGAACATATCCAGAGGGGCATAAGATCTCA
GATGATCATGTTTCTGAGTATCAGACTATCCCTTTAAACAAGATCGAGGACTTTGGTGTT
C ATT G C AA AC AGT ACT ATT C ATT G G AC AT C ACTT ATTT C AAGT CAT CT CTT G ATAG CC AC
CTT CTT GAT CTCCTTTGG AAC AAGT ACTGGGT G AACACACT AT CTT CTT CCCCATTGCT G
GGCAATGGAGACTATGTTGCTGGACAAATATCAGACTTGGCTGAGAAGCTTGACCAAGCC GAGAGTCAGCTGGTTCAATCCTGGTTTGGAGGAAAAAAGGCCAGTCTTCACAAGAAAAAA AAGGACGAGCTTCCACTCGCTAAAATAACTCGGGATAGTGCAAAGATAACTATTGAGCAG GTT CAT GG ATT AAT GT C AC AGGTT ATT AAAG ACAT ATT GTT CAATTCCCCACGT CAGT CT G ACAAAACT CCCAGCG ACCCG ACT GAT CC AG AGCCG ATG ATT ACATCGT G A
SEQ ID NO: 80
>Bn CDY12502 Brassica napus
M ESSSTIARKTWELENNILTVKLPADSSSDNIFHYDGAAHAKVLKEKTWATNPNYFKRVQ
ISALALLKMVVHARSGGTIEIWVLCRGKQMAIRSLLWTLLLCLLKELRLGLMLRPMRMST
WLNIHQTNKLAGRLENVVGWYHLHPGYGCWLSGIDVSTQM LNQQYQEPFLAVVIDPTRTV
SAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDSH
LLELLWNKYWVNTLSSSPLLGNGDYIAGQISDLAGKLDQAESQLVQSWFGGKKASLHKKK
KVCLNGYFKFSM FLDCLRFWTM NLNSSTCHLLNFFLIYEFCWNGKLYKDGESV
SEQ ID NO: 81
>Bn CDY12502 Brassica napus
ATGGAGTCTTCGTCTACCATCGCAAGGAAGACATGGGAACTCGAGAACAACATCCTCACC GTGAAACTACCTGCGGATTCATCCTCCGACAACATATTCCACTACGACGGAGCTGCTCAC GCCAAGGTCCTGAAGGAGAAGACATGGGCCACCAATCCTAACTACTTCAAGCGCGTCCAA ATCTC AG CG CTCG CT CTT CT C A AG AT GGTTGTACACGCTCGCTCTGGTGG C ACT ATCG AG ATATG G GT CTT ATG C AG G G G AA AAC AG AT GGCGATACGAT C ATT GTT ATG G ACG CTTTT G CTTTGCCTGTTGAAGGAACTGAGACTAGGGTTAATGCTCAGACCGATGCGTATGAGTACA TGGTTGAATATTCACCAGACAAATAAGCTGGCTGGGAGATTGGAGAATGTTGTTGGGTGG T AT C ACTT G CAT CCTG G GT ATG G ATG CTG G CTCTCG G GT ATT GAT GTTT C A AC AC AG AT G CTT AACCAACAGTAT CAGG AGCCTTTTTTGGCT GTTGTT ATT GAT CCCACAAGG ACTGTT TCGGCTGGTAAGGTTGAGATTGGGGCGTTCAGAACGTATCCAGAGGGTCATAAGATCTCA GATGATCATGTTTCTGAGTATCAGACTATCCCTTTAAACAAGATCGAGGACTTTGGTGTT C ATT G C AA AC AGT ACT ATT C ATT G G AC AT C ACTT ATTT C AAGT CAT CT CTT G ATAG CC AC CTT CTT G AACT CCTTT GG AACAAGT ACTGGGTG AAC AC ACT AT CTT CCTCCCC ACTGCT G GGCAATGGAGACTATATTGCTGGACAAATATCAGACTTGGCTGGGAAGCTTGACCAAGCT GAGAGTCAGCTGGTTCAATCCTGGTTTGGAGGAAAAAAGGCCAGTCTTCACAAGAAAAAA A AG GTTT GT CT AA AT G GTT ACTTT A AGTT CT C A AT GTTT CTCG ACTGTCT G AG ATTTT G G
ACC AT G AACTTG AACT CTT CCACATGCCATTT GTT AAACTTTTTT CTT AT CT ACG AATTT T GTTGG AATGG AAAACTTT AT AAAG ATGG AG AAAGT GTTT AG
SEQ ID NO: 82
>Bn CDY04768 Brassica napus
M DDSSTIARKTWELENNILTVEQPDSSSSDGIFYYDEASQTKVQQEKPWATDPNYFKRVQ
ISALALLKMVVHARSGGTIEIMGLMQGKTEGDTIIVMDAFALPVEGTETRVNAQADAYEY
MVEYSQTNKLAGRLENVVGWYHSHPGYGCWLSGIDVSTQMLNQQYQEPFLAVVIDPTRTV
SAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDSH
LLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAESQLAHSRFGGIPASLHRKK
EDEPPLAKITRDSAKITVEQVHGLMSQVIKDILFNSARQSDKTPSDPSDPEPM ITS
SEQ ID NO: 83
>Bn CDY04768 Brassica napus
ATGGATGACTCTTCGACCATCGCTCGCAAGACGTGGGAGCTCGAGAACAACATCCTCACC
GTAGAGCAACCGGATTCGTCCTCCTCGGATGGAATATTCTACTACGACGAAGCTTCCCAG
ACCAAGGTCCAGCAGGAGAAGCCGTGGGCCACCGATCCCAACTACTTCAAGCGCGTCCAA
ATCTCGGCCCTCGCGCTCCTCAAGATGGTCGTACACGCGCGCTCCGGCGGGACGATCGAG
ATCATGGGTCTTATGCAGGGGAAGACCGAGGGGGATACCATCATCGTCATGGACGCTTTC
GCTTTGCCTGTGGAAGGAACCGAGACTAGGGTTAATGCTCAGGCTGATGCGTATGAGTAC
ATGGTTGAGTACTCTCAGACCAACAAGCTGGCTGGGAGATTGGAGAATGTTGTGGGATGG
TATCACTCTCACCCTGGGTATGGATGCTGGCTCTCGGGTATTGATGTCTCGACACAGATG
CTTAACCAACAGTACCAGGAGCCTTTCTTGGCTGTTGTTATTGATCCGACGAGGACTGTT
TCGGCTGGTAAGGTTGAGATTGGGGCGTTCAGGACTTATCCGGAGGGGCATAAGATCTCT
GATGATCATGTTTCTGAGTATCAGACTATTCCTTTGAACAAGATTGAGGATTTTGGTGTT
C ATT G C AA AC AGT ACT ATT CGTTG G AC AT C ACTT ACTT C AAGT CAT CT CTTG AT AG CC AC
CTTCTGGATCTCCTTTGGAACAAGTACTGGGTGAACACTCTTTCTTCTTCCCCACTGCTC
GGCAATGGAGACTATGTTGCCGGACAGATATCAGACTTGGCTGAGAAGCTTGAGCAAGCC
GAGAGTCAGCTGGCGCACTCCCGGTTTGGAGGAATACCGGCCAGTCTTCACAGGAAGAAA
GAGGATGAGCCTCCACTTGCTAAGATAACTCGGGACAGTGCAAAGATAACGGTGGAGCAG
GTCC AT G G ATT AAT GTC AC AG GTT AT C AAAG AC AT ATT GTT C A ACT C AG C ACGTC AGTCC
G ACAAAACT CCCAGCG ACCCGT CAG AT CC AG AGCCG ATG ATT ACAT CTT AA
SEQ ID NO: 84
>Bn CDY21400 Brassica napus M DDSSTIARKTWELENNILTVEQPDSSSSDGIFYYDEASQTKVQQEKPWATDPNYFKRVQ
ISALALLKMVVHARSGGTIEIMGLMQGKTEGDTIIVMDAFALPVEGTETRVNAQADAYEY
MVEYSQTNKLAGRLENVVGWYHSHPGYGCWLSGIDVSTQMLNQQYQEPFLAVVIDPTRTV
SAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDSH
LLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAESQLAHSRFGGIPASLHRKK
EDEPPLAKITRDSAKITVEQVHGLMSQVIKDILFNSARQSDKTPSDPSDPEPM ITS
SEQ ID NO: 85
>Bn CDY21400 Brassica napus
ATGGATGACTCTTCGACCATCGCTCGCAAGACATGGGAGCTCGAGAACAACATCCTCACC
GTAGAGCAACCGGATTCGTCCTCCTCCGACGGCATATTCTACTACGACGAAGCTTCCCAG
ACCAAGGTCCAGCAGGAGAAGCCGTGGGCCACGGATCCCAACTACTTCAAGCGCGTCCAA
ATCTCGGCCCTCGCGCTCCTCAAGATGGTCGTACACGCGCGCTCCGGCGGCACGATCGAG
ATCATGGGTCTTATGCAGGGGAAGACCGAGGGGGATACCATCATCGTCATGGACGCTTTC
GCCTTGCCTGTTGAAGGAACCGAGACTAGGGTTAATGCTCAGGCTGATGCCTATGAGTAC
ATGGTTGAGTACTCTCAGACCAACAAGCTGGCTGGGAGATTGGAGAATGTTGTGGGGTGG
TATCACTCTCACCCTGGGTATGGATGCTGGCTCTCGGGTATTGATGTCTCGACGCAGATG
CTTAACCAACAGTATCAGGAGCCTTTCTTGGCTGTTGTTATTGATCCGACGAGGACTGTT
TCGGCTGGTAAGGTTGAGATTGGGGCGTTCAGGACTTATCCGGAGGGGCATAAGATCTCT
GATGATCATGTTTCTGAGTATCAGACTATCCCTTTGAACAAGATTGAGGACTTTGGTGTT
C ATT G C AA AC AGT ACT ATT CGTTG G AC AT C ACTT ACTT C AAGT CAT CT CTTG AT AG CC AC
CTTCTGGATCTCCTTTGGAACAAGTACTGGGTGAACACTCTTTCTTCTTCCCCACTGCTC
GGCAATGGAGACTATGTTGCCGGACAGATATCAGACTTGGCTGAGAAGCTTGAGCAAGCC
GAGAGTCAGCTAGCGCACTCCCGGTTTGGAGGAATACCGGCCAGTCTTCACAGGAAGAAA
GAGGATGAGCCTCCACTTGCTAAGATAACTCGGGACAGTGCAAAGATAACGGTGGAGCAG
GTCC AT G G ATT AAT GTC AC AG GTT AT C A AAG AC AT ATT GTT C A ACT C AG C ACGTC AGTCC
G ACAAAACT CC AAGCG ACCCGT CAG AT CC AG AGCCG ATG ATT ACAT CTT AA
SEQ ID NO: 86
>Os BGIOSGA017266-PA Oryza sativa
M EPTSSAAMARQTWELENNIPAAASDPDALDAIYRYDEAAQARVQQEKPWANDPHPFRRA
KISALALLKMVVHARAGGTIEVMGLMQGKCEGDAIVVMDAFALPVEGTETRVNAQADAYE
YMVEYSTINKQIGSHHAIDHNVSEVSVFANTLMTDLAGRLENVVGWYHSHPGYGCWLSGI DVSTQMLNQQFQEPFLAVVIDPTRTVSAGKVEIGAFRTYPKDYKPPDEPVSEYQTIPLNK
IEDFGVHCKQYYALDITYFKSSLDSHLLDLLWNKYWVNTLSSSPLLGNRDYVAGQIFDLA
DKLEQAEGQLAHSRYGMLMPSQRKKEQEESPLAKVTRDSSKITAEQVHGLMSQVIKDILF
NSVHPSNKASTSAPDSSGPEPMVEA
SEQ ID NO: 87
>Os BGIOSGA017266-PA Oryza sativa
ATGGAGCCCACCTCGTCGGCGGCGATGGCGAGGCAGACGTGGGAGCTGGAGAACAACATC
CCGGCGGCGGCCTCCGACCCGGACGCCCTGGACGCGATCTACCGCTACGACGAGGCGGCG
CAGGCGCGGGTGCAGCAGGAGAAGCCCTGGGCGAACGACCCCCACCCCTTCCGCCGCGCC
AAGATCTCCGCCCTCGCGCTCCTCAAGATGGTCGTCCACGCCCGCGCCGGCGGCACTATC
GAGGTCATGGGCCTCATGCAGGGCAAGTGCGAGGGCGACGCCATCGTCGTCATGGACGCC
TTCGCGCTCCCCGTCGAGGGCACCGAGACCAGGGTCAATGCCCAGGCCGACGCCTACGAG
TATATGGTCGAGTACTCCACCATCAACAAGCAGATTGGTTCGCACCATGCTATTGATCAT
AATGTTTCTGAGGTCTCAGTTTTTGCTAACACATTGATGACTGATTTGGCTGGAAGGTTG
G AG AAT GTG GTT G G CTG GTATC ACTC AC ACCCTG GTT ATG G ATG CTG GTT ATC AG G CATT
G ATGTGTCT ACT C AG AT G CTT AAT C AG C AATTT C A AG AG CC ATT CTT G G CT GTT GTG ATA
GACCCTACAAGGACTGTTTCTGCTGGTAAAGTGGAAATTGGAGCTTTTAGGACATATCCA
AAAG ATT ACAAGCCACC AG AT G AACCT GT GT CAG AGT AT CAG ACG AT ACCACT CAACAAG
AT AG AAG ATTTT G GTGT CC ACT G C A AAC AGT ACT ATG CT CTG GAT AT A ACTT ATTT C A AA
T C ATCCCT G G ATT CT CAT CT CCTTG AT CT ACTTT G G A AT A AGT ACTG G GT C AAT ACGTT A
TCTTCATCACCTCTCCTGGGCAACAGGGATTATGTTGCTGGCCAGATATTTGATTTAGCT
GATAAACTAGAGCAAGCTGAGGGTCAACTGGCACACAGTCGATATGGCATGCTTATGCCA
TCGCAACGAAAGAAAGAGCAAGAGGAGTCTCCACTGGCTAAGGTAACTCGGGATAGCTCA
AAAATT ACTGCTG AAC AGGTCCATGGT CT CAT GT CACAGGT CATT AAGG AT ATCCT CTT C
AACTCTGTGCACCCGTCAAACAAGGCAAGCACAAGCGCACCAGATTCATCCGGGCCTGAG
CCTATGGTTGAAGCATGA
SEQ ID NO: 88
>Hv HORVU0HrlG025410.1 Hordeum vulgare
MEPTSSSAMERQTWELENNILAAAFDPDAMDAIYRYDEAANARAHQEKPWATDPHHFRRA
RISALTLLKMVVHARAGGTIEMMGLMEGKFQGDSIIVMDAFALPVEGTETRVNPQADAYE
YMVEYSTINKQAGRLENVVGWYHSHLVYGSWLSGIDVSTHMLNKQFQEPLLAVAIDPTRT VFAGKVDIGAFRTYPKDYKPPDEPVSEYQTIPLNKIEDFGVHCKKYYSLDITYFKSSLDS
HLLDLLWNNYWVNKLSSSPLLGNTDYVVGQIFDFADKLKQAEGQLARSQFGMLMPSQRKK
E
SEQ ID NO: 89
>Hv HORVU0HrlG025410.1 Hordeum vulgare
ATGGAGCCCACCTCGTCGTCGGCGATGGAGCGGCAGACGTGGGAGCTGGAGAACAACATC CTAGCGGCCGCCTTCGACCCGGACGCCATGGATGCGATCTACCGCTACGACGAGGCGGCC AACGCGCGGGCCCACCAGGAGAAGCCCTGGGCCACCGACCCGCACCACTTCCGCCGCGCC AGGATCTCCGCCCTCACGCTCCTCAAGATGGTCGTCCATGCCCGCGCTGGCGGCACCATC GAGATGATGGGCCTCATGGAGGGCAAGTTCCAGGGCGACTCCATCATCGTCATGGACGCC TTCGCGCTCCCCGTCGAGGGCACGGAGACCAGGGTCAACCCCCAGGCCGACGCCTACGAG TACATGGTCGAGT ACTCC ACC AT C AAC A AG C AG G CT G G AAG GTT G G A AA AT GTG GTT G G C TG GT ACC ACT C AC AT CTT GTTT AT G G A AG CTG G CTGT C AG G C ATTG AT GTTT C A ACT CAT ATGCTTAATAAGCAGTTTCAAGAACCATTATTGGCTGTTGCGATAGACCCTACAAGGACT GTTTTTGCTGGTAAAGTGGACATTGGAGCTTTTAGGACATATCCAAAAGATTACAAGCCA CCGG ATG AGCCTGTGTCT G AGT AT C AG ACC AT ACCACT CAACAAG AT AG AAG ATTTT GGT GTT C ACT G C A AA AAGT ACT ATT CTTT G G AT AT A ACCT ATTT C A AGT C ATCCCT G G ACT CT C ACCT CCTTG AT CT ACT CT G G AAC A ACT ACTG G GT C A AC A AATT GT CTTCGT CG CC ACTT CTT GGT A AC ACG G ATT ATGTTGTT G G AC A A AT CTTTG ATTTT G CTG AT A AACT A AAG C A A G CTG A AG G G C AACTG G C ACG C AGT C A ATTT G G C ATG CTT AT G CC AT C AC AG CG A AAG AAA GAG
SEQ ID NO: 90
>Hv HORVU4HrlG048730.1 Hordeum vulgare
M EPTSSSAMERQTWELENNILAAAFDPDAMDAIYRYDEAANARAHQEKPWATDPHHFRRA
RISALTLLKMVVHARAGGTIEM MGLMEGKFQGDSIIVM DAFALPVEGTETRVNPQADAYE
YMVEYSTINKQAGRLENVVGWYHSHLVYGSWLSGIDVSTHMLNKQFQEPLLAVAIDPTRT
VFAGKVDIGAFRTYPKDYKPPDEPVSEYQTIPLNKIEDFGVHCKKYYSLDITYFKSSLDS
HLLDLLWNNYWVNKLSSSPLLGNTDYVVGQIFDFADKLKQAEGQLARSQFGMLMPSQRKK
EH
SEQ ID NO: 91
>Hv HORVU4HrlG048730.1 Hordeum vulgare ATGGAGCCCACCTCGTCGTCGGCGATGGAGCGGCAGACGTGGGAGCTGGAGAACAACATC CTAGCGGCCGCCTTCGACCCGGACGCCATGGATGCGATCTACCGCTACGACGAGGCGGCC AACGCGCGGGCCCACCAGGAGAAGCCCTGGGCCACCGACCCGCACCACTTCCGCCGCGCC AGGATCTCCGCCCTCACGCTCCTCAAGATGGTCGTCCATGCCCGCGCTGGCGGCACCATC GAGATGATGGGCCTCATGGAGGGCAAGTTCCAGGGCGACTCCATCATCGTCATGGACGCC TTCGCGCTCCCCGTCGAGGGCACGGAGACCAGGGTCAACCCCCAGGCCGACGCCTACGAG TACATGGTCGAGT ACTCC ACC AT C AAC A AG C AG G CT G G AAG GTT G G A AA AT GTG GTT G G C TG GT ACC ACT C AC AT CTT GTTT AT G G A AG CTG G CTGT C AG G C ATTG AT GTTT C A ACT CAT ATGCTTAATAAGCAGTTTCAAGAACCATTATTGGCTGTTGCGATAGACCCTACAAGGACT GTTTTTGCTGGTAAAGTGGACATTGGAGCTTTTAGGACATATCCAAAAGATTACAAGCCA CCGG ATG AGCCTGTGTCT G AGT AT C AG ACC AT ACCACT CAACAAG AT AG AAG ATTTT GGT GTT C ACT G C A AA AAGT ACT ATT CTTT G G AT AT A ACCT ATTT C A AGT C ATCCCT G G ACT CT C ACCT CCTTG AT CT ACT CT G G AAC A ACT ACTG G GT C A AC A AATT GT CTTCGT CG CC ACTT CTT GGT A AC ACG G ATT ATGTTGTT G G AC A A AT CTTTG ATTTT G CTG AT A AACT A AAG C A A G CTG A AG G G C AACTG G C ACG C AGT C A ATTT G G C ATG CTT AT G CC AT C AC AG CG A AAG AAA GAGCAT
SEQ ID NO: 92
>Zm Zm00001d002027_P002 Zea mays
M EPTSSASIARQTWELENNIPAAASDPDAM DAIYRYDDASQARAQQEKPWANDPHHFRRT
KISALALLKMVVHARAGGTIEVMGLMQGKCEGDAIIVMDAFALPVEGTETRVNAQADAYE
YMVDYSTINKQAGRLENVVGWYHSHPGYGCWLSGIDVSTQM LNQQFTEPFLAVVIDPTRT
VSAGKVEIGAFRTYPKDYKPPDEPVSEYQTIPLNKIEDFGVHCKSYYALDITYFKSSLDS
HLLDLLWNKYWVNTLSSSSLLGNRDYVAGQIFDLADKLEQAEGQLAHSRFGGMIMPSQRK
KEQEESPLAKVTRDSSKITAEQVHGLMSQVIKDILFNSVHPSSKASTSAPPDSSGPEPMV
EA
SEQ ID NO: 93
>Zm Zm00001d002027_P002 Zea mays
ATGGAGCCCACCTCATCGGCGTCGATCGCGCGGCAGACGTGGGAGCTGGAGAACAATATC
CCCGCGGCGGCCTCCGACCCGGACGCGATGGACGCGATCTACCGCTACGACGACGCGTCT
CAGGCGCGGGCGCAGCAGGAGAAGCCTTGGGCCAACGACCCGCACCACTTCCGCCGCACC
AAGATCTCCGCGCTCGCGCTGCTCAAGATGGTTGTCCACGCCCGCGCCGGGGGCACCATC GAGGTCATGGGGCTCATGCAGGGCAAGTGCGAGGGCGACGCCATCATCGTTATGGACGCA
TTCGCGCTCCCCGTTGAGGGCACCGAGACCAGGGTCAATGCCCAGGCCGATGCCTACGAG
T AC ATG GTTG ACT ACT C A ACC AT C A AC AAG C AG G CTG G AAG GTT G GAG A AT GTGGTTGGC
TGGTATCACTCGCACCCTGGCTATGGATGCTGGCTGTCAGGAATCGACGTGTCAACTCAG
ATGCT C AAT C AACAATT C ACAG AACC ATT CTTGGCAGTT GTG AT AG ACCCCACAAGG ACA
GTTTCTGCTGGTAAAGTGGAGATTGGAGCCTTTAGAACATACCCAAAAGATTACAAGCCA
CCAGATGAGCCTGTATCTGAGTATCAGACTATTCCACTCAACAAGATAGAAGATTTTGGT
GT CC ATT G C A AATCGT ACT AT G CTTT G GAT AT A ACTT ATTT C A AGT C ATCCCT G G ATT CT
C ACCT CCTTG AT CT G CT CT G G AAC A AAT ATT G GGT C A AC ACG CT AT CTT CAT CAT CG CTT
CTGGGCAACAGAGATTATGTTGCTGGGCAGATCTTTGATTTAGCTGATAAACTAGAGCAA
GCTGAAGGCCAGCTGGCACACAGTCGATTTGGTGGTATGATTATGCCATCGCAACGAAAG
AAAGAGCAAGAAGAGTCTCCACTGGCTAAGGTAACACGAGATAGCTCCAAAATCACAGCT
G AG C AG GTT C ACG G CCT CAT GTC AC AG GTC AT AA AAG AC ATCCTTTT C A ACT CTGTTC AC
CCGTCAAGCAAGGCAAGCACAAGTGCTCCACCAGATTCATCCGGTCCTGAGCCTATGGTT
GAAGCCTGA
SEQ ID NO: 94
>Gm KRH61926 Glycine max
MQGKEMEGLSSSSAIAQKTWELENNIIPMDTPGGAAISSTTTTTSADDSIFYYDEAGQNE
FQRDKPWANDPHYFKRVKISALALLKMVVHARSGGTIEVMGLMQGKTDADAIIVMDAFAL
PVEGTETRVNAQADAYEYMVDYSQTNKQAGRLENVVGWYHSHPGYGCWLSGIDVSTQM LN
QQFQEPFLAVVIDPTRTVSAGKVEIGAFRTYPEGYKPPDEPVSEYQTIPLNKIEDFGVHC
KQYYALDITYFKSSLDSHLLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAEN
QLAHSRFGPLIAPTPRKKEEESPLAKITRDSAKITVEQVHGLMSQVIKDILFNSVHQANR
TRTEASGPEPM IES
SEQ ID NO: 95
>Gm KRFI61926 Glycine max
ATGCAAGGCAAAGAAATGGAAGGGTTGTCGTCTTCGTCGGCGATCGCGCAGAAAACATGG
GAACTCGAGAACAACATCATCCCGATGGACACTCCGGGCGGCGCCGCCATCTCCTCCACA
ACCACCACGACAAGCGCCGACGACTCGATCTTCTACTACGACGAGGCGGGCCAGAACGAG
TTCCAGCGCGACAAGCCCTGGGCCAACGACCCCCACTACTTCAAGCGCGTGAAGATCTCC
GCACTCGCGCTCCTCAAGATGGTCGTCCACGCGCGCTCCGGCGGCACCATCGAGGTCATG GGCCTCATGCAGGGCAAGACCGACGCCGACGCCATCATCGTCATGGACGCCTTCGCCCTC CCCGT CG AAGGCACT G AG ACTCGCGTCAATGCCCAGGCCG ATGCGT ACG AGTACATGGT C GATTATTCACAGACAAACAAACAGGCAGGGCGGTTGGAGAATGTAGTGGGATGGTATCAC TCTCACCCTGGTTATGGTTGCTGGCTGTCGGGGATCGATGTTTCGACGCAGATGCTGAAT CAGCAGTTTCAGGAGCCGTTTCTGGCGGTTGTGATTGACCCGACGAGGACCGTTTCGGCG GGGAAAGTTGAGATTGGGGCTTTCAGGACTTACCCTGAAGGGTATAAGCCTCCGGATGAG CCT GTTT CTG AGT ACCAG ACCATT CCT CTT AAT AAG ATT G AGG ACTTTGGT GTT CACT GT AAACAGT ATT AT GC ATTGG ACAT C ACTT ACTTT AAGT CGT CT CTT GATT CACACCT CTT G G ACCTG CTGT G G AAC A AGT ATT G G GTG A AT AC ACT GTCGT CTT CTCCTCTGTTG G GT AAT GGAGATTATGTTGCTGGACAAATCTCTGATTTAGCTGAGAAGCTAGAACAAGCAGAGAAT CAGTTGGCACACTCACGCTTTGGGCCACTAATAGCACCCACACCTAGAAAGAAAGAGGAG GAATCTCCACTTGCTAAGATTACTCGTGACAGTGCAAAAATAACTGTGGAGCAAGTGCAT GGT CT AAT GT CACAGGTT ATT AAGG ACATT CT GTTT AACT CCGTCCAT C AAGC AAAC AG A ACT CGC ACAG AAGC AT CT GGTCCCG AACC AATG ATTG AAAGCTG A
SEQ ID NO: 96
>Gm KRH52586 Glycine max
MQGKEMEGLSSSSAIAQKTWELENNIIPMDTPGGAATSSTATTTTNADDSIFYYDEAGQN
EFQRDKPWANDPHYFKRVKISALALLKMVVHARSGGTIEVMGLMQGKTDADAIIVMDAFA
LPVEGTETRVNAQADAYEYMVDYSQTNKQAGRLENVVGWYHSHPGYGCWLSGIDVSTQML
NQQFQEPFLAVVIDPTRTVSAGKVEIGAFRTYPEGYKPPDEPISEYQTIPLNKIEDFGVH
CKQVFFSFFFSNIYIQLPWFIFIYLFFFFDFTCVILQYYALDITYFKSSLDSHLLDLLWN
KYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAENQLAHSRFGPLIAPTPRKKEEESPLA
KITRDSAKITVEQVHGLMSQVIKDILFNSVHQANRTRTEPSGPEPMIES
SEQ ID NO: 97
>Gm KRFI52586 Glycine max
ATGCAAGGCAAAGAAATGGAAGGGTTGTCGTCTTCATCGGCGATCGCGCAGAAAACATGG
GAACTCGAGAACAACATCATCCCGATGGACACTCCGGGCGGCGCCGCTACCTCCTCCACC
GCTACCACCACGACCAACGCCGACGACTCGATCTTCTACTACGACGAGGCGGGGCAGAAC
GAGTTCCAGCGCGACAAGCCCTGGGCCAACGACCCCCACTACTTCAAGCGCGTGAAGATC
TCCGCACTCGCGCTCCTCAAGATGGTCGTCCACGCGCGCTCCGGCGGCACCATCGAGGTC
ATGGGCCTCATGCAGGGCAAGACCGACGCCGACGCCATCATCGTCATGGACGCCTTCGCC CTCCCAGT CG AAGGCACCGAG ACTCGCGTCAATGCCCAGGCCG ATGCCT ACG AGT ACAT G
GTCGATTATTCCCAGACCAACAAACAGGCTGGGCGGTTGGAGAATGTTGTGGGATGGTAT
CACTCTCATCCTGGTTACGGTTGCTGGCTGTCGGGGATCGATGTTTCGACGCAGATGCTG
AATCAGCAGTTTCAAGAGCCGTTTCTAGCGGTTGTGATTGACCCGACGAGGACTGTTTCG
GCGGGGAAGGTTGAGATTGGGGCTTTCAGGACTTATCCTGAAGGGTATAAGCCTCCGGAT
G AGCCT ATTT CTG AGT ACC AG ACT ATT CCT CT CAAT AAG ATTG AGG ATTTTGGT GTT C AC
TGT A AAC AG GT CTTTTTTT CTTTTTT CTTTT CC AAT ATTT AT AT AC A ATT ACCCTGGTTC
ATTTTT ATTT ATTT G I I I I I I I I I TT CG ATTT C ACTT GTGT G ATTTT GC AGT ATT ATG CC
TTGGATATTACTTACTTTAAGTCCTCTCTTGATTCACACCTCTTGGACCTGCTGTGGAAC
AAGTATTGGGTGAATACACTGTCGTCTTCTCCTCTGTTGGGCAATGGAGATTATGTTGCT
GGACAAATCTCTGATTTAGCTGAGAAGCTAGAACAGGCAGAGAATCAGTTGGCACACTCA
CGCTTTGGGCCACTAATAGCACCCACGCCTAGAAAGAAAGAGGAGGAATCTCCACTTGCT
AAGATTACTCGTGACAGCGCAAAAATAACTGTGGAGCAAGTGCATGGTCTAATGTCGCAG
GT CAT C AAGG ACATT CT GTTT AACT CCGTT CAT CAAGC AAACAG AACTCGC AC AG AACCA
TCTGGT CCCG AACCAATG ATTG AAAGTT G A
SEQ ID NO: 98
>SI Solycllg017300.2.1 Solanum lycopersicum
MDALNSYASSAAMAQQTWELENNIVTTDAPSGSAPENSASDAIFHYDDAAQTKFQREKPW
TSDPHYFKRVKISALALLKMVVHARSGGTIEVMGLMQGKTDGDAIIVMDAFALPVEGTET
RVNAQADAYEYMVEYSQTNKQAGRLENVVGWYHSHPGYGCWLSGIDVTTQMLNQQYQEPF
LAVVIDPTRTVSAGKVEIGAFRTYPEGYKPPDDPISEYQTIPLNKIEDFGVHCKQYYSLD
ITYFKSSLDCHLLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAENQLSHSRF
GHLVAAPQRKKEEESQLAKITRDSAKITVEQVHGLMSQVIKDILFNSVCKSGKSQTEPSD
PEPMVET
SEQ ID NO: 99
>SI Solycllg017300.2.1 Solanum lycopersicum
ATGGACGCTCTGAATTCTTACGCATCGTCGGCGGCGATGGCGCAACAAACATGGGAGTTA
GAAAACAACATCGTGACGACGGACGCGCCATCGGGGTCGGCACCGGAAAACTCTGCGTCG
GATGCAATATTCCACTATGACGATGCGGCACAGACTAAGTTCCAGCGGGAGAAGCCGTGG
ACGAGTGACCCTCACTACTTCAAGCGCGTGAAGATCTCTGCTCTTGCTCTTCTAAAGATG
GTTGTTCACGCGCGTTCTGGAGGTACAATTGAGGTAATGGGACTAATGCAAGGTAAGACG GATGGAGATGCTATTATTGTTATGGACGCTTTTGCCCTTCCAGTTGAAGGAACTGAAACT AG G GTT AAT G CT C A AG CTG ATG CGT ATG AAT AC AT G GTTG A AT ATT C AC AG ACC A AC AAG CAGGCTGGTCGGCTGGAGAATGTGGTCGGATGGTATCATTCTCATCCTGGCTATGGATGC TG G CTCTCTG G C ATT G ATGT A ACT AC AC A AAT G CTT A ACC AG C AGT ATC AG G AG CCCTTT CTTGCAGTTGTTATTGATCCAACAAGAACTGTTTCTGCTGGAAAAGTTGAGATTGGTGCC TTT CG AAC AT ATCCTG AAGG AT AT AAGCCTCCAG ATG ACCCT AT CT C AG AGT ACCAG ACC ATTCCTTTGAACAAAATTGAAGACTTCGGAGTACATTGCAAGCAGTATTATTCATTGGAT ATT ACCT ATTT C AAGT CCT CT CTCG ATTGCC AT CT CTTGG ACCT ACT ATGG AACAAGT AT TGGGTGAACACACTTTCTTCTTCTCCTTTGCTTGGAAATGGAGACTATGTTGCTGGACAG ATATCTGATCTTGCTGAAAAGTTGGAGCAAGCTGAAAATCAGCTGTCCCATTCACGTTTT G G G C ACTT AGTG G C AG CCCCT C A AAG G AAG A AG GAG G A AG A AT CT C AG CTT G CT AAG ATT AC ACGTG AT AGTG CT A AG ATT ACTGTCG AG C AAGTT CAT G G CTT AAT GTCGCAGGTT ATT AAAG AC ATT CTTTT C AAT AGCGTTT GT AAGT C AGGCAAGTCGCAG ACTG AACCCT CTG AT CC AG AGCCG AT GGT CG AAACCT G A
SEQ ID NO: 100
>Ta TraesCS2D02G505300.1 Triticum aestivum
M EPTSSSAVARQTWELENNIPAAASDPDAM DAIYRYDEAANARAHQEKPWATDPHHFRRA
RISALALLKMVVHARAGGTIEIMGLMQGKFEGDSIIVMDAFALPVEGTETRVNAQADAYE
YMVEYSTINKQAGRLENVVGWYHSHPGYGCWLSGIDVSTQM LNQQFQEPWLAVVIDPTRT
VSAGKVDIGAFRTYPKDYKPPDEPVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDS
HLLDLLWNKYWVNTLSSSPLLGNRDYIAGQIFDLADKLEQAEGQLAHSRFGMLMPSQRKK
EQEESPLAKVTRDSSKITAEQVHGLMSQVIKDILFNSVHPSSKSKASASGTAPDSPVPEP
MVEA
SEQ ID NO: 101
>Ta TraesCS2D02G505300.1 Triticum aestivum
ATGGAGCCCACCTCGTCGTCGGCGGTGGCGAGGCAGACGTGGGAGCTGGAGAACAACATC
CCGGCGGCCGCCTCCGACCCGGACGCCATGGACGCGATCTACCGCTACGACGAGGCGGCC
AACGCGCGGGCCCACCAGGAGAAGCCCTGGGCCACCGACCCGCACCACTTCCGCCGCGCC
AGGATCTCCGCCCTCGCGCTCCTCAAGATGGTCGTCCACGCCCGCGCCGGCGGCACCATC
GAGATCATGGGCCTCATGCAGGGCAAGTTCGAGGGCGACTCCATCATCGTCATGGACGCC
TTCGCCCTCCCCGTCGAGGGCACCGAGACCCGGGTCAACGCCCAGGCCGACGCCTACGAG TACATGGTCGAGT ACTCC ACC AT C AAC A AG C AG G CT G G AAG GTT G G A AA AT GTG GTT G G C TG GT ACC ACT C AC ATCCT G GTT ATG G ATG CTG G CTCTC AG G C ATT GAT GTTT C AACT C AG ATGCTTAATCAGCAGTTTCAAGAACCATGGTTGGCTGTTGTGATAGACCCTACAAGGACT GTTTCTGCTGGTAAAGTGGACATTGGAGCTTTTAGGACATACCCAAAAGATTACAAGCCA CCGG ATG AGCCTGTGTCT G AGT AT C AG ACC AT ACCACT CAACAAG AT AG AAG ATTTT GGT GTT C ACT G C A AAC AGT ACT ATT CTTT G GAT AT AACCT ATTT C AAGTC ATCCCTG G ACTCT C ACCT CCTTG AT CT ACT CT G G AAC A AGT ACT G G GT C AAC AC ATT AT CTT CAT C ACC ACTT CTGGGCAACAGGGATTATATTGCTGGACAAATCTTTGATTTAGCTGATAAACTAGAGCAA GCTGAAGGGCAACTGGCACACAGTCGATTTGGCATGCTTATGCCATCACAGCGAAAGAAA GAGCAAGAGGAGTCGCCGCTGGCTAAGGTAACCCGGGATAGCTCCAAAATTACCGCTGAA C AG GTT C ATG GTCTC ATGT C AC AG GT CAT C AAG G AC AT CCT CTT C A ACT CTGTG C ACCCG TCAAGCAAAAGCAAGGCAAGCGCAAGCGGAACCGCCCCAGATTCACCAGTGCCTGAGCCC ATGGTCGAAGCATGA
SEQ ID NO: 102
>Ta TraesCS2A02G504600.1 Triticum aestivum
M EPTSSSAVARQTWELENNIPAAASDPDAM DAIYHYDEAANARAHQEKPWATDPHHFRRA
RISALALLKMVVHARAGGTIEIMGLMQGKFEGDSIIVMDAFALPVEGTETRVNAQADAYE
YMVEYSTINKQAGRLENVVGWYHSHPGYGCWLSGIDVSTQM LNQQFQEPWLAVVIDPTRT
VSAGKVDIGAFRTYPKDYKPPDEPVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDS
HLLDLLWNKYWVNTLSSSPLLGNRDYVAGQIFDLADKLEQAEGQLAHSRFGM LMPSQRKK
EQEESPLAKVTRDSSKITAEQVHGLMSQVIKDILFNSVHPSSKSKASASGTAPDSPVPEP
MVEA
SEQ ID NO: 103
>Ta TraesCS2A02G504600.1 Triticum aestivum
ATGGAGCCCACCTCGTCGTCGGCGGTGGCGAGGCAGACGTGGGAGCTGGAGAACAACATC
CCGGCGGCCGCCTCCGACCCGGACGCCATGGACGCGATCTACCACTACGACGAGGCGGCC
AACGCGCGGGCCCACCAGGAGAAGCCCTGGGCCACCGACCCGCACCACTTCCGCCGCGCC
AGGATCTCCGCCCTCGCGCTCCTCAAGATGGTCGTCCACGCCCGCGCCGGCGGCACCATC
GAGATCATGGGCCTCATGCAGGGCAAGTTCGAGGGCGACTCCATCATCGTCATGGACGCC
TTCGCGCTCCCCGTCGAGGGCACCGAGACCAGGGTCAACGCCCAGGCCGACGCCTACGAG
TACATGGTCGAGT ACTCC ACC AT C AAC A AG C AG G CT G G AAG GTT G G A AA AT GTG GTT G G C TG GT ACC ACT C AC ATCCT G GTT ATG G ATG CTG G CTGT C AGG C ATTG AT GTTT C A ACT C AG ATGCTTAATCAGCAGTTTCAAGAACCATGGTTGGCTGTTGTGATAGACCCTACAAGGACT GTTTCTGCTGGTAAAGTGGACATTGGAGCTTTTAGGACATACCCAAAAGATTACAAGCCA CCGG ATG AGCCTGTGTCT G AGT AT C AG ACC AT ACCACT CAACAAG AT AG AAG ATTTT GGT GTT C ACT G C A AAC AGT ACT ATT CTTT G GAT AT AACCT ATTT C AAGTC ATCCCTG G ACTCT
C ACCT CCTTG AT CT ACT CT G G AAC A AGT ACT G G GT C AAC AC ATT AT CTT CAT C ACC ACTT CTGGGCAACAGGGATTATGTTGCTGGACAAATCTTTGATTTAGCTGATAAACTAGAGCAA GCTGAAGGGCAACTGGCACACAGTCGATTTGGCATGCTTATGCCATCACAGCGAAAGAAA GAGCAAGAGGAGTCGCCGCTGGCTAAGGTAACCCGGGATAGCTCCAAAATTACTGCTGAA C AG GTT C ATG GTCTC ATGT C AC AG GT CAT C AAG G AC AT CCT CTT C A ACT CTGTG C ACCCG
TCAAGCAAAAGCAAGGCAAGCGCAAGCGGAACCGCCCCAGATTCACCTGTGCCTGAGCCC
ATGGTCGAAGCATGA

Claims

CLAIMS:
1. A method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least one AMSH2 (Associated Molecule with the SH3 domain of STAM2) gene.
2. The method of claim 1 , wherein the method further comprises introducing at least one mutation into at least one RPN11 gene.
3. The method of claim 1 or 2, wherein the method further comprises introducing at least one mutation into at least one CSN5A gene.
4. A method of increasing biotic resistance in a plant, the method comprising introducing at least one mutation into at least RPN11 gene.
5. A method of increasing insect resistance in a plant, the method comprising introducing at least one mutation into at least one CSN5A gene.
6. The method of any of claims 1 to 5, wherein the mutation reduces or abolishes binding of AMSH2 and/or RPN11 and/or CSN5A to a chemosensory protein.
7. The method of any preceding claim, wherein at least one mutation is introduced using mutagenesis.
8. The method of claim 7 wherein the mutation is introduced using targeted genome modification, preferably CRISPR.
9. The method of any preceding claim, wherein the method comprises introducing one or more mutations into the AMSH2 amino acid sequence, where preferably the one or more mutations is at a position selected from positions 49, 76, 113, 179, 208, 210 and 212 in SEQ ID NO: 3 or a homologous position in a homologous sequence and/or introducing at least one or more mutations into the RPN11 amino acid sequence, wherein preferably the one or more mutations is at a position selected from positions 30, 55, 93, 171, 205, 207 and 209 in SEQ ID NO: 38 or a homologous position in a homologous sequence and/or introducing one or more mutations into the CSN5A amino acid sequence, where preferably the one or more mutations is at a position selected from positions 59, 84, 123, 208, 243, 245 or 247 in SEQ ID NO: 70 or a homologous position in a homologous sequence.
10. The method of claim 9, wherein the mutation is a substitution.
11. The method of any preceding claim, wherein the increase in biotic resistance is relative to a control or wild-type plant.
12. The method of any preceding claim, wherein the plant is a crop plant.
13. The method of claim 12, wherein the plant is selected from rice, wheat, maize, soybean, tomato, barley, pea, sorghum, cacao, grape, potato and brassicas.
14. The method of any preceding claim, where the biotic resistance is resistance to an insect, preferably a hemipteran insect.
15. A plant or seed obtained or obtainable by the method of any of claims 1 to 14.
16. A genetically altered plant, part thereof or plant cell, wherein the plant comprises at least one mutation in at least one AMSH2 gene and/or at least one mutation in at least one RPN11 gene and/or at least one mutation in a CSN5A gene.
17. The genetically altered plant, part thereof or plant cell of claim 16, wherein the at least one mutation reduces or abolishes binding of AMSH2 and/or RPN11 and/or CSN5A to a chemosensory protein.
18. The genetically altered plant, part thereof or plant cell of claim 16 or 17, wherein the plant comprises at least one mutation in a AMSH2 amino acid sequence, wherein the at least one mutation is at a position selected from positions 49, 76, 113, 179, 208, 210 and 212 in SEQ ID NO: 3 or a homologous position in a homologous sequence and/or at least one mutation in a RPN11 amino acid sequence, wherein the at least one mutation is at a position selected from positions 30, 55, 93, 171, 205, 207 and 209 of SEQ ID NO: 38 or a homologous position in a homologous sequence and/or at least one mutation in a CSN5A amino acid sequence, wherein the at least one mutation is at a position selected from positions 59, 84, 123, 208, 243, 245 and 247 in SEQ ID NO:70.
19. The genetically altered plant, part thereof or plant cell of claim 18, wherein the plant is characterised by an increase in biotic resistance, wherein preferably said increase is compared to a control or wild-type plant.
20. The genetically altered plant, part thereof or plant cell of any of claims 16 to 19, wherein the mutation is introduced by mutagenesis.
21. The genetically altered plant, part thereof or plant cell of any claims 16 to 20, wherein the plant is a crop plant.
22. The genetically altered plant, part thereof or plant cell of claim 21, wherein the plant is selected from rice, wheat, maize, soybean, tomato, barley, pea, sorghum, cacao, grape, potato and brassicas.
23. The genetically plant, part thereof or plant cell of any of claims 16 to 22, wherein the part thereof is a seed.
24. The genetically altered plant part thereof or plant cell of any of claims 16 to 23, where the biotic resistance is resistance to an insect, preferably a hemipteran insect.
25. A method of identifying and/or selecting a plant that has or will have an increased biotic resistance, the method comprising detecting in the plant or plant germplasm at least one polymorphism in the AMSH2 gene and/or RPN11 gene and/or CSN5A gene and selecting said plant or progeny thereof.
26. The method of claim 25, wherein the AMSH2 polymorphism is at one or more position in a AMSH2 gene, wherein the one or more position is selected from positions 410, 597, 1099-1101, 1554, 1642, 1647 and 1654 of SEQ ID NO: 1 or a homologous position in a homologous sequence, and/or wherein the RPN11 polymorphism is at one or more position in a RPN11 gene, wherein the one or more position is selected from positions 843-845, 1095-1097, 1209-1211 , 1715- 1717, 1908-1910, 1914-1916 and 1920-1922 of SEQ ID NO: 37 or a homologous position in a homologous sequence, and/or wherein the CSN5A polymorphism is at one or more position in a CSN5A gene, wherein the one or more position is selected from positions 59, 84, 123, 208, 243, 245 and 247 of SEQ ID NO:70.
27. A method of making a plant having increased biotic resistance, the method comprising introducing at least one mutation into at least one AMSH2 and/or RPN11 and/or CSN5A gene.
28. A plant obtained or obtainable by the method of claim 27.
29. A method of altering an immune response in a plant, the method comprising introducing at least one mutation into at least one AMSH2 and/or RPN11 and/or CSN5A gene.
30. A method of preventing the suppression of a plant defence response in response to a biotic stress, the method comprising introducing at least one mutation into at least one AMSH2 and/or RPN11 and/or CSN5A gene.
31. The method of any of claims 27, 29 or 30, wherein the at least one mutation reduces or abolishes binding of AMSH2 and/or RPN11 and/or CSN5A to a chemosensory protein.
32. The method of claim 31, wherein the method comprises introducing one or more mutations into a AMSH2 amino acid sequence, wherein preferably the one or more mutation is at a position selected from positions 49, 76, 113, 179, 208, 210 and 212 in SEQ ID NO: 3 or at a homologous position in a homologous sequence and/or the method comprises introducing one or more mutations into a RPN11 amino acid sequence, wherein preferably the one or more mutation is at a position selected from positions 30, 55, 93, 171 , 205, 207 and 209 in SEQ ID NO: 38 or at a homologous position in a homologous sequence, and/or introducing one or more mutations into the CSN5A amino acid sequence, where preferably the one or more mutations is at a position selected from positions 59, 84, 123, 208, 243, 245 or 247 in SEQ I D NO: 70 or a homologous position in a homologous sequence.
33. The method of claims 25 to 27 or 29 to 32, wherein the plant is a crop plant.
34. The method of claim 33, wherein the plant is selected from rice, wheat, maize, soybean, tomato, barley, pea, sorghum, cacao, grape, potato and brassicas.
35. The method of any of claims 25 to 27 or 29 to 34, where the biotic resistance is resistance to an insect, preferably a hemipteran insect.
PCT/EP2020/075315 2019-09-10 2020-09-10 Methods of increasing biotic stress resistance in plants WO2021048272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1913060.8 2019-09-10
GBGB1913060.8A GB201913060D0 (en) 2019-09-10 2019-09-10 Methods of increasing biotic stress resistance in plants

Publications (1)

Publication Number Publication Date
WO2021048272A1 true WO2021048272A1 (en) 2021-03-18

Family

ID=68241202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/075315 WO2021048272A1 (en) 2019-09-10 2020-09-10 Methods of increasing biotic stress resistance in plants

Country Status (2)

Country Link
GB (1) GB201913060D0 (en)
WO (1) WO2021048272A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846114A (en) * 2021-10-21 2021-12-28 湖南省植物保护研究所 Bemisia tabaci lethal gene and application thereof, and RNA (ribonucleic acid) interference agent and preparation method and application of RNA interference agent
CN114574508A (en) * 2022-03-18 2022-06-03 安庆市长三角未来产业研究院 Application of PUB22 gene in regulation and control of insect pest stress resistance of plants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
US20140230089A1 (en) * 2011-07-11 2014-08-14 Institut National De La Recherche Agronomique Method for improving the resistance of plants to viruses
US20160076046A1 (en) * 1999-05-14 2016-03-17 Ceres, Inc. Promoter, promoter control elements, and combinations, and uses thereof
US20180258442A1 (en) * 2006-08-17 2018-09-13 Monsanto Technology Llc Transgenic plants with enhanced agronomic traits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160076046A1 (en) * 1999-05-14 2016-03-17 Ceres, Inc. Promoter, promoter control elements, and combinations, and uses thereof
US20180258442A1 (en) * 2006-08-17 2018-09-13 Monsanto Technology Llc Transgenic plants with enhanced agronomic traits
US20140230089A1 (en) * 2011-07-11 2014-08-14 Institut National De La Recherche Agronomique Method for improving the resistance of plants to viruses
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
A. KATSIARIMPA ET AL: "The Deubiquitinating Enzyme AMSH1 and the ESCRT-III Subunit VPS2.1 Are Required for Autophagic Degradation in Arabidopsis", THE PLANT CELL, vol. 25, no. 6, 1 June 2013 (2013-06-01), US, pages 2236 - 2252, XP055743294, ISSN: 1040-4651, DOI: 10.1105/tpc.113.113399 *
ANTHI KATSIARIMPA: "AMSH2 protein, an apoubiquitinilation enzyme", 1 January 2007 (2007-01-01), University of Thessaly Institutional Repository, XP055743311, Retrieved from the Internet <URL:https://ir.lib.uth.gr/xmlui/bitstream/handle/11615/1361/P0001361.pdf?sequence=1&isAllowed=y> [retrieved on 20201023] *
DRUREY ET AL.: "Chemosensory proteins in the CSP4 clade evolved as plant immunity suppressors before two suborders of plant-feeding hemipteran insects diverged", BIORXIV DOI: HTTPS://DOI.ORA/10.1101/173278, 2017
ERIKA ISONO ET AL: "The Deubiquitinating Enzyme AMSH3 Is Required for Intracellular Trafficking and Vacuole Biogenesis in Arabidopsis thaliana", THE PLANT CELL, vol. 22, no. 6, 1 June 2010 (2010-06-01), US, pages 1826 - 1837, XP055744218, ISSN: 1040-4651, DOI: 10.1105/tpc.110.075952 *
GARDINER ET AL.: "Hidden variation in polyploid wheat drives local adaptation", GENOME RESEARCH, vol. 28, 2018, pages 1319 - 1332
KATSIARIMPA ET AL.: "The Deubiquitinating Enzyme AMSH1 and the ESCRT-III Subunit VPS2.1 Are Required for Autophagic Degradation in Arabidopsis", THE PLANT CELL, vol. 25, 2013, pages 2236 - 2252
MUGFORD, S. T.BARCLAY, E.DRUREY, C.FINDLAY, K. C.HOGENHOUT, S. A.: "An immuno-suppressive aphid saliva protein is delivered into the cytosol of plant mesophyll cells during feeding", MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 29, no. 11, 2016, pages 854 - 861
MUKHTAR, M. S.CARVUNIS, A. R.DREZE, M.EPPLE, P.STEINBRENNER, J.MOORE, J.PEVZNER, S. J.: "Independently evolved virulence effectors converge onto hubs in a plant immune system network", SCIENCE, vol. 333, 2011, pages 596 - 601
NICAISE, V.: "Crop immunity against viruses: outcomes and future challenges", FRONTIERS IN PLANT SCIENCE, vol. 5, 2014, pages 660
RAYNER ET AL.: "Genetic diversity and strategies for seed quality enhancement in Pisum (pea", ASPECTS OF APPLIED BIOLOGY, vol. 138, 2018, pages 141 - 147
SAMBROOK ET AL.: "Molecular Cloning: A Library Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
TRUJILLO, M.SHIRASU, K.: "Ubiquitination in plant immunity", CURRENT OPINION IN PLANT BIOLOGY, vol. 13, no. 4, 2010, pages 402 - 408, XP027173295
WEIGELMOTT: "he 1001 Genomes Project for Arabidopsis thaliana", GENOME BIOLOGY, vol. 10, 2009, pages 107

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846114A (en) * 2021-10-21 2021-12-28 湖南省植物保护研究所 Bemisia tabaci lethal gene and application thereof, and RNA (ribonucleic acid) interference agent and preparation method and application of RNA interference agent
CN114574508A (en) * 2022-03-18 2022-06-03 安庆市长三角未来产业研究院 Application of PUB22 gene in regulation and control of insect pest stress resistance of plants
CN114574508B (en) * 2022-03-18 2023-09-01 安庆市长三角未来产业研究院 Application of PUB22 gene in regulation and control of plant resistance to insect pest stress

Also Published As

Publication number Publication date
GB201913060D0 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
CN110494039B (en) Method for modifying resistance spectrum of spinach to downy mildew
AU2005298784B2 (en) Stress tolerant cotton plants
AU2017201713B2 (en) Plant regulatory elements and uses thereof
CN117821495A (en) Novel resistance genes associated with disease resistance in soybean
ES2698154T3 (en) Reduction of heavy metals in plants
AU2019221800A1 (en) Methods of increasing nutrient use efficiency
MX2013015338A (en) Methods and compositions for selective regulation of protein expression.
CN111247244A (en) Genes conferring resistance to fungal pathogens
NZ565205A (en) Cell signalling genes from plants (Eucalyptus and Pinus species) and related methods
WO2016009006A1 (en) Tobacco protease genes
EP3892091A1 (en) Increased protein expression in plants
CA2823467C (en) Qtls associated with and methods for identifying whole plant field resistance to sclerotinia
WO2021048272A1 (en) Methods of increasing biotic stress resistance in plants
US20220396804A1 (en) Methods of improving seed size and quality
CN105586346B (en) A kind of tobacco gene NtTCTP and application thereof
CN104320968B (en) Cotton PHYA1RNAi improves fiber quality, root elongation, flowering, maturation and yield potential of upland cotton
EP4038093A1 (en) Plants having a modified lazy protein
EP3856912A1 (en) Methods for altering starch granule profile
WO2020051683A1 (en) Biological control of cucumber green mottle mosaic virus
CN106754996A (en) A new resistant gene of salt ZmGnTL and its expression vector and application in manilagrass
CN115335392A (en) Suppression of plant shade-avoidance response
AU2021216126A1 (en) Methods of controlling grain size and weight
US20240084320A1 (en) Compositions and methods for altering stem length in solanaceae
CA3225914A1 (en) Methods of increasing plant productivity and tolerance to water &amp; nutrient deficiency
JP2010124701A (en) RICE BLAST FIELD RESISTANCE GENE Pi35(t) AND USE THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20771284

Country of ref document: EP

Kind code of ref document: A1