WO2021046739A1 - A two encoder scheme for unequal error protection - Google Patents

A two encoder scheme for unequal error protection Download PDF

Info

Publication number
WO2021046739A1
WO2021046739A1 PCT/CN2019/105285 CN2019105285W WO2021046739A1 WO 2021046739 A1 WO2021046739 A1 WO 2021046739A1 CN 2019105285 W CN2019105285 W CN 2019105285W WO 2021046739 A1 WO2021046739 A1 WO 2021046739A1
Authority
WO
WIPO (PCT)
Prior art keywords
information bits
bits
error correction
forward error
correction encoder
Prior art date
Application number
PCT/CN2019/105285
Other languages
French (fr)
Inventor
Jian Li
Changlong Xu
Liangming WU
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/105285 priority Critical patent/WO2021046739A1/en
Publication of WO2021046739A1 publication Critical patent/WO2021046739A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape

Definitions

  • the following relates generally to wireless communications, and more specifically to a two encoder scheme for unequal error protection.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a transmitting device may encode some information bits before modulating the bits into a symbol. Some techniques for encoding information bits can be improved.
  • a transmitting device may encode a first set of information bits and not encode a second set of information bits.
  • the transmitting device may be, for example, a user equipment (UE) or a base station.
  • a UEP scheme may be power efficient for the encoding (e.g., transmitting) and decoding (e.g., receiving) devices.
  • UEP schemes may be implemented for any quadrature amplitude modulation (QAM) size to reduce power consumption while maintaining similar levels of communications quality.
  • QAM quadrature amplitude modulation
  • the coded bits may be mapped to an inner constellation of a QAM map, and the uncoded bits may be mapped to an outer constellation of the QAM map.
  • the coded and uncoded bits may then be mapped to the QAM map as a layered constellation.
  • a wireless communications system described herein may employ techniques for enhanced UEP schemes.
  • a transmitting device may use two encoders.
  • a first encoder may protect the inner constellation bits, and a second encoder may protect the outer constellation bits.
  • the encoders may be, for example, forward error correction (FEC) encoders. If some symbols are destroyed, the receiving device may use FEC to recover the destroyed symbols.
  • FEC forward error correction
  • the techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits.
  • the two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
  • FIG. 1 illustrates an example of a system for wireless communications that supports a two encoder scheme for unequal error protection (UEP) in accordance with aspects of the present disclosure.
  • UDP unequal error protection
  • FIG. 2 illustrates an example of a wireless communications system that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a UEP encoding scheme that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a UEP decoding scheme that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a user equipment (UE) that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • UE user equipment
  • FIG. 10 shows a diagram of a system including a base station that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • FIGs. 11 through 13 show flowcharts illustrating methods that support a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • a wireless communications system may employ an unequal error protection
  • a transmitting device may encode a first set of information bits and not encode a second set of information bits (e.g., such that the second set of information bits are uncoded) .
  • a UEP scheme may be power efficient for the encoding and decoding devices. For example, UEP schemes may have reduced complexity, or devices may spend less time encoding and decoding. UEP schemes may be implemented for any QAM size to reduce power consumption while maintaining similar levels of communications quality.
  • the coded bits may be mapped to an inner constellation of a quadrature amplitude modulation (QAM) map, and the uncoded bits may be mapped to an outer constellation of the QAM map. The coded and uncoded bits may then be mapped to the QAM map as a layered constellation.
  • QAM quadrature amplitude modulation
  • Some techniques for UEP may use one encoder for the inner constellation bits and apply no encoding for the outer constellation bits. However, if some symbols are destroyed due to poor channel conditions, the outer constellation bits may not be recoverable. For example, in some channel conditions, such as for fading channels, the uncoded bits for the outer constellation may be destroyed, and the modulated symbol may not be decodable at the receiver. To decrease the likelihood of the symbols being destroyed, the wireless communications system may employ techniques for enhanced UEP schemes. For example, a transmitting device may use a two encoder scheme for UEP. A first encoder may protect the inner constellation bits, and a second encoder may protect the outer constellation bits. The encoders may be, for example, forward error correction (FEC) encoders.
  • FEC forward error correction
  • the receiving device may use FEC to recover the destroyed symbols.
  • the techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits.
  • the two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
  • aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to a two encoder scheme for unequal error protection.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini- slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • the wireless communications system 100 may support UEP schemes for encoding and decoding transmissions.
  • a transmitting device may encode a first set of information bits and not encode a second set of information bits.
  • the transmitting device may be, for example, a UE 115 or a base station 105.
  • a UEP scheme may be power efficient for the encoding (e.g., transmitting) and decoding (e.g., receiving) devices.
  • UEP schemes may be implemented for any quadrature amplitude modulation (QAM) size to reduce power consumption while maintaining similar levels of communications quality.
  • the coded bits may be mapped to an inner constellation of a QAM map, and the uncoded bits may be mapped to an outer constellation of the QAM map. The coded and uncoded bits may then be mapped to the QAM map as a layered constellation.
  • the wireless communications system 100 may employ techniques for enhanced UEP schemes.
  • a transmitting device may use two encoders.
  • a first encoder may protect the inner constellation bits, and a second encoder may protect the outer constellation bits.
  • the encoders may be, for example, FEC encoders. If some symbols are destroyed, the receiving device may use FEC to recover the destroyed symbols.
  • the techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits.
  • the two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communication system 100.
  • the wireless communications system 200 may include UE 115-a and base station 105-a, which may be respective examples of a UE 115 and a base station 105 described with reference to FIG. 1.
  • UE 115-a may be an example of a transmitting device
  • base station 105-a may be an example of a receiving device.
  • UE 115-a may be an example of the receiving device
  • base station 105-a may be an example of the transmitting device.
  • the wireless communications system 200 may employ a UEP scheme for encoding and decoding transmissions.
  • a transmitting device e.g., UE 115-a or base station 105-a
  • the first set of information bits and the second set of information bits may be information bits to be transmitted in a transmission 205 as a modulated symbol 210.
  • a UEP scheme may be power efficient for the encoding and decoding devices, for example based on reduced complexity or reduced time spend for the encoding and decoding.
  • UEP schemes may be implemented for any QAM size to reduce power consumption while maintaining similar levels of communications quality.
  • the coded bits may be mapped to an inner constellation 225 of a quadrature amplitude modulation (QAM) constellation 235, and the uncoded bits may be mapped to an outer constellation 230 of the QAM constellation 235.
  • the coded bits may be mapped as the inner constellation (x i , y i )
  • the uncoded bits may be mapped as the outer constellation (x o , y o )
  • the coded bits and the uncoded bits may then be mapped as a layered constellation.
  • the point on the layered constellation, (x l , y l ) may be based on the points of the inner and outer constellations and Hamming distances of the inner and outer constellations.
  • a modulated symbol may have three coded bits and four uncoded bits.
  • the four uncoded bits may correspond to one of sixteen points on the outer constellation 230.
  • Each point on the outer constellation 230 may have a corresponding inner constellation on the QAM constellation 235.
  • the center of each point on the outer constellation 230 may correspond to the center of the inner constellation 225.
  • there may be 16 points on the outer constellation 230 so there may be 16 repetitions of the inner constellation 225 distributed over the QAM constellation 235.
  • the three coded bits, an example of the inner constellation bits 220 may correspond to one of the eight points on the inner constellation 225. Therefore, together, the inner constellation 225 and the outer constellation 230 can be layered together to indicate one point of the 128 possible points on the QAM constellation 235.
  • the information bits are ‘1110010’
  • the first three bits (e.g., the uncoded bits) of ‘111’ may correspond to the bottom right point 240 of the outer constellation
  • the last four bits ‘0010’ may correspond to the bottom left point 245 of the inner constellation. Therefore, when layered, ‘1110010’ may correspond to point 250 of the QAM constellation 235.
  • modulation schemes may be applied.
  • the techniques described herein may be used for different QAM formats (e.g., 64QM, 256QAM, etc. ) , or the split between coded bits and uncoded bits may be different (e.g., 128QAM may use three uncoded bits and four coded bits) .
  • Some techniques for UEP use one encoder for the inner constellation bits 220 and no encoding for the outer constellation bits 215. However, if some symbols are destroyed due to poor channel conditions, the outer constellation bits may not be recoverable. For example, in some channel conditions, such as for fading channels, the uncoded bits for the outer constellation 230 may be destoryed, and the modulated symbol 210 may not be decodable at the receiver.
  • the wireless communications system 200 may employ techniques for enhanced UEP schemes.
  • a transmitting device may use a two encoder scheme for UEP.
  • a first encoder may protect the inner constellation bits 220, and a second encoder may protect the outer constellation bits 215.
  • the encoders may be, for example, forward error correction (FEC) encoders. If some symbols are destroyed, the receiving device may use FEC to recover the destroyed symbols.
  • FEC forward error correction
  • the techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits 215.
  • the two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
  • Techniques for encoding information bits using a two encoder UEP scheme are described in more detail with reference to FIG. 3, and techniques for decoding a modulated symbol generated using a two encoder UEP scheme are described in more detail with reference to FIG. 4.
  • FIG. 3 illustrates an example of a UEP encoding scheme 300 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • UEP encoding scheme 300 may implement aspects of wireless communication system 100.
  • a transmitting device such as a UE 115 or a base station 105 as described with reference to FIG. 1, may generate modulated symbols using a two encoder UEP scheme as described herein.
  • the transmitting device may identify a set of information bits, (e.g., b0, b1, 2, ...) to be transmitted to a receiving device.
  • the transmitting device may apply a serial to parallel procedure 305 to the information bits to split them into a first set of information bits and a second set of information bits.
  • the first set of information bits may correspond to an inner constellation
  • the second set of information bits may correspond to an outer constellation.
  • the first set of information bits may be encoded by a first encoder 310-a.
  • the first encoder 310-a may be an example of an FEC encoder.
  • the second set of information bits may be encoded by a second encoder 310-b, which may also be an example of an FEC encoder.
  • the second encoder 310-b (e.g., FEC2) may, in some cases, have a higher coding rate than the first encoder 310-a (e.g., FEC1) .
  • the transmitting device may have a first set of coded bits (e.g., c0, c1, ...cm) after encoding the first set of information bits using FEC1, and the transmitting device may have a second set of coded bits (e.g., u0, u1, ...un) after encoding the second set of information bits FEC2.
  • a first set of coded bits e.g., c0, c1, ...cm
  • a second set of coded bits e.g., u0, u1, ...un
  • the first encoder 310-a and the second encoder 310-b may use different types of codes to encode the corresponding set of information bits.
  • FEC1 310-a may use polar codes
  • FEC2 310-b may use low density parity check (LDPC) codes or reference signal codes.
  • LDPC low density parity check
  • FEC1 310-a may use LDPC codes
  • FEC2 310-b may use Polar codes or reference signal codes.
  • FEC1 310-a may use Turbo codes
  • FEC2 310-b may use Polar codes, reference signal codes, or LDPC codes.
  • a base station 105 may configure a UE 115 with a coding scheme for FEC1, FEC2, or both.
  • the coding schemes may be configured via RRC signaling.
  • a coding scheme may be enabled or toggled by the base station via a MAC CE.
  • the UE 115 may be pre-configured with the coding schemes for FEC1 and FEC2.
  • the transmitting device may modulate the first and second set of coded bits into a modulated symbol using a modulator 315.
  • the transmitting device may map the first set of encoded bits (e.g. c1, c2, ...cm) to the inner constellation and map the second set of encoded bits (e.g., u1, u2, ...un) to the outer constellation.
  • the first set of coded bits and the second set of coded bits may be mapped as a layered constellation to a QAM constellation as described with reference to FIG. 2.
  • the transmitting device may then transmit the modulated symbol to the receiving device.
  • FIG. 4 illustrates an example of a UEP decoding scheme 400 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • UEP decoding scheme 400 may implement aspects of wireless communication system 100.
  • a receiving device may receive modulated symbols, generated as described with reference to FIG. 3.
  • the receiving device may first perform inner constellation demodulation at 405.
  • the receiving device may demodulate the encoded bits corresponding to the inner constellation, then decode the inner constellation encoded bits based on the FEC1 encoder used by the transmitting device.
  • the receiving device may perform outer constellation demodulation and decode the encoded bits corresponding to the outer constellation. In some cases, the receiving device may decode the outer constellation bits based on the FEC1 decoding.
  • the receiving device may perform a Polar decoding at 405.
  • the inner constellation bits may have been encoded using LDPC codes or Turbo codes, and the receiving device may decode the inner constellation bits using corresponding decoders or corresponding decoding techniques.
  • the outer constellation may have been encoded using LDPC codes, reference signal codes, or Polar codes, and the receiving device may use a corresponding decoder, or a corresponding decoding procedure, at 410.
  • the receiving device may apply a parallel-to-series procedure 415 to the information bits.
  • the parallel-to-series procedure 415 may provide the information bits (e.g., b0, b1, b2, ...) of the modulated symbol in the correct order.
  • FIG. 5 illustrates an example of a process flow 500 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the process flow 500 may implement aspects of wireless communication system 100.
  • the process flow 500 may include UE 115-b and base station 105-b, which may be respective examples of a UE 115 and a base station 105 as described herein.
  • UE 115-b is the transmitting device
  • base station 105-b is the receiving device.
  • the techniques of the receiving device and the transmitting device may be performed by either a base station 105 or a UE 115.
  • UE 115-b may be the receiving device
  • base station 105-b may be the transmitting device.
  • UE 115-b may identify a set of information bits pending transmission to a receiving device (e.g., base station 105-b.
  • the information bits may be, for example, b0, b1, ..., bn as described with reference to FIG. 3.
  • UE 115-b may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation. For example, UE 115-b may apply a serial-to-parallel conversion to the set of information bits.
  • UE 115-b may encode the information bits.
  • UE 115-b may encode the first set of information bits with a first FEC encoder (e.g., FEC1) to obtain a first set of coded bits.
  • the first set of coded bits may correspond to the inner constellation (e.g., c1, c2, ...cn) .
  • UE 115-b may encode the second set of information bits with a second FEC (e.g., FEC2) encoder to obtain a second set of coded bits.
  • the second set of coded bits may correspond to the outer constellation (e.g., u1, u2, ..., un) .
  • UE 115-b may modulate the first set of coded bits and the second set of coded bits into a modulated symbol at 520. In some cases, UE 115-b may map the first set of coded bits to the inner constellation and map the second set of coded bits to the outer constellation. At 525, UE 115-b may transmit the modulated symbol to base station 105-b.
  • Base station 105-b may receive the modulated symbol from UE 115-b at 525. Base station 105-b may demodulate a first portion of the modulated symbol corresponding to the inner constellation to obtain a first set of coded bits. At 530, base station 105-b may decode the first set of coded bits to obtain a first set of information bits based on a first FEC encoder (e.g., FEC1) used at the transmitting device.
  • FEC1 FEC encoder
  • base station 105-b may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to the outer constellation to obtain a second set of coded bits.
  • Base station 105-b may decode the second set of coded bits to obtain a second set of information bits based on a second FEC encoder (e.g., FEC2) used at the transmitting device and the first set of information bits.
  • base station 105-b may combine the first set of information bits and the second set of information bits, for example using a parallel-to-series conversion.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 or base station 105 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a two encoder scheme for unequal error protection, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 920 or 1020 as described with reference to FIGs. 9 and 10.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may identify a set of information bits pending transmission to a receiving device, segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulate the first set of coded bits and the second set of coded bits into a modulated symbol, and transmit the modulated symbol to the receiving device.
  • the communications manager 615 may also receive a modulated symbol from a transmitting device, demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device, demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combine the first set of information bits and the second set of information bits.
  • the communications manager 615 may be an example of aspects of the communications manager 910 or 1010 as described herein.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • Transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 920 or 1020 as described with reference to FIGs. 9 and 10.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, a UE 115, or a base station 105 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 780.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a two encoder scheme for unequal error protection, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 920 or 1020 as described with reference to FIGs. 9 and 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include an information bit identifying component 720, a segmenting component 725, an inner constellation encoding component 730, an outer constellation encoding component 735, a modulating component 740, a modulated symbol transmitting component 745, a modulated symbol receiving component 750, an inner constellation demodulating component 755, an inner constellation decoding component 760, an outer constellation demodulating component 765, an outer constellation decoding component 770, and a bit set combining component 775.
  • the communications manager 715 may be an example of aspects of the communications manager 910 or 1010 as described herein.
  • the information bit identifying component 720 may identify a set of information bits pending transmission to a receiving device.
  • the segmenting component 725 may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation.
  • the inner constellation encoding component 730 may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits.
  • the outer constellation encoding component 735 may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits.
  • the modulating component 740 may modulate the first set of coded bits and the second set of coded bits into a modulated symbol.
  • the modulated symbol transmitting component 745 may transmit the modulated symbol to the receiving device.
  • the modulated symbol receiving component 750 may receive a modulated symbol from a transmitting device.
  • the inner constellation demodulating component 755 may demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits.
  • the inner constellation decoding component 760 may decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device.
  • the outer constellation demodulating component 765 may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits.
  • the outer constellation decoding component 770 may decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits.
  • the bit set combining component 775 may combine the first set of information bits and the second set of information bits.
  • Transmitter 780 may transmit signals generated by other components of the device 705.
  • the transmitter 780 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 780 may be an example of aspects of the transceiver 920 or 1020 as described with reference to FIGs. 9 and 10.
  • the transmitter 780 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include an information bit identifying component 810, a segmenting component 815, an inner constellation encoding component 820, an outer constellation encoding component 825, a modulating component 830, a modulated symbol transmitting component 835, a serial-to-parallel component 840, a mapping component 845, a modulated symbol receiving component 850, an inner constellation demodulating component 855, an inner constellation decoding component 860, an outer constellation demodulating component 865, an outer constellation decoding component 870, a bit set combining component 875, and a parallel-to-series component 880. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the information bit identifying component 810 may identify a set of information bits pending transmission to a receiving device.
  • the segmenting component 815 may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation.
  • the inner constellation encoding component 820 may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits. In some examples, the inner constellation encoding component 820 may encode the first set of information bits using Polar coding. In some examples, the inner constellation encoding component 820 may encode the first set of information bits using LDPC coding. In some examples, the inner constellation encoding component 820 may encode the first set of information bits using Turbo codes.
  • the outer constellation encoding component 825 may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits.
  • the outer constellation encoding component 825 may encode the second set of information bits using reference signal coding.
  • the outer constellation encoding component 825 may encode the second set of information bits using LDPC coding.
  • the outer constellation encoding component 825 may encode the second set of information bits using Polar coding.
  • the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  • the modulating component 830 may modulate the first set of coded bits and the second set of coded bits into a modulated symbol.
  • the modulated symbol transmitting component 835 may transmit the modulated symbol to the receiving device.
  • the serial-to-parallel component 840 may apply a serial-to-parallel conversion to the set of information bits.
  • the mapping component 845 may map the first set of coded bits to the inner constellation. In some examples, the mapping component 845 may map the second set of coded bits to the outer constellation.
  • the modulated symbol receiving component 850 may receive a modulated symbol from a transmitting device.
  • the inner constellation demodulating component 855 may demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits.
  • the inner constellation decoding component 860 may decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device.
  • the first set of coded bits are encoded using Polar coding.
  • the first set of coded bits are encoded using LDPC coding.
  • the first set of coded bits are encoded using Turbo codes.
  • the outer constellation demodulating component 865 may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits.
  • the outer constellation decoding component 870 may decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits.
  • the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  • the second set of coded bits are encoded using LDPC coding.
  • the second set of coded bits are encoded using reference signal coding.
  • the second set of coded bits are encoded using Polar coding.
  • the bit set combining component 875 may combine the first set of information bits and the second set of information bits.
  • the parallel-to-series component 880 may apply a parallel-to-serial conversion to the first set of information bits and the second set of information bits.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, a transceiver 920, an antenna 925, memory 930, a processor 940, and an I/O controller 950. These components may be in electronic communication via one or more buses (e.g., bus 955) .
  • buses e.g., bus 955
  • the communications manager 910 may identify a set of information bits pending transmission to a receiving device, segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulate the first set of coded bits and the second set of coded bits into a modulated symbol, and transmit the modulated symbol to the receiving device.
  • the communications manager 910 may also receive a modulated symbol from a transmitting device, demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device, demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combine the first set of information bits and the second set of information bits.
  • Transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include RAM, ROM, or a combination thereof.
  • the memory 930 may store computer-readable code 935 including instructions that, when executed by a processor (e.g., the processor 940) cause the device to perform various functions described herein.
  • a processor e.g., the processor 940
  • the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting a two encoder scheme for unequal error protection) .
  • the I/O controller 950 may manage input and output signals for the device 905.
  • the I/O controller 950 may also manage peripherals not integrated into the device 905.
  • the I/O controller 950 may represent a physical connection or port to an external peripheral.
  • the I/O controller 950 may utilize an operating system such as or another known operating system.
  • the I/O controller 950 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 950 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 950 or via hardware components controlled by the I/O controller 950.
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 605, device 705, or a base station 105 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a network communications manager 1015, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an inter-station communications manager 1045. These components may be in electronic communication via one or more buses (e.g., bus 1055) .
  • buses e.g., bus 1055
  • the communications manager 1010 may identify a set of information bits pending transmission to a receiving device, segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulate the first set of coded bits and the second set of coded bits into a modulated symbol, and transmit the modulated symbol to the receiving device.
  • the communications manager 1010 may also receive a modulated symbol from a transmitting device, demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device, demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combine the first set of information bits and the second set of information bits.
  • Network communications manager 1015 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1015 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • Transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include RAM, ROM, or a combination thereof.
  • the memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (e.g., the processor 1040) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1040
  • the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting a two encoder scheme for unequal error protection) .
  • Inter-station communications manager 1045 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1045 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1045 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 6 through 10.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a set of information bits pending transmission to a receiving device.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by an information bit identifying component as described with reference to FIGs. 6 through 10.
  • the UE or base station may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a segmenting component as described with reference to FIGs. 6 through 10.
  • the UE or base station may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by an inner constellation encoding component as described with reference to FIGs. 6 through 10.
  • the UE or base station may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by an outer constellation encoding component as described with reference to FIGs. 6 through 10.
  • the UE or base station may modulate the first set of coded bits and the second set of coded bits into a modulated symbol.
  • the operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a modulating component as described with reference to FIGs. 6 through 10.
  • the UE or base station may transmit the modulated symbol to the receiving device.
  • the operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a modulated symbol transmitting component as described with reference to FIGs. 6 through 10.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 6 through 10.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may identify a set of information bits pending transmission to a receiving device.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by an information bit identifying component as described with reference to FIGs. 6 through 10.
  • the UE or base station may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a segmenting component as described with reference to FIGs. 6 through 10.
  • the UE or base station may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by an inner constellation encoding component as described with reference to FIGs. 6 through 10.
  • the UE or base station may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by an outer constellation encoding component as described with reference to FIGs. 6 through 10.
  • the UE or base station may map the first set of coded bits to the inner constellation.
  • the operations of 1225 may be performed according to the methods described herein. In some examples, aspects of the operations of 1225 may be performed by a mapping component as described with reference to FIGs. 6 through 10.
  • the UE or base station may map the second set of coded bits to the outer constellation.
  • the operations of 1230 may be performed according to the methods described herein. In some examples, aspects of the operations of 1230 may be performed by a mapping component as described with reference to FIGs. 6 through 10.
  • the UE or base station may modulate the first set of coded bits and the second set of coded bits into a modulated symbol.
  • the operations of 1235 may be performed according to the methods described herein. In some examples, aspects of the operations of 1235 may be performed by a modulating component as described with reference to FIGs. 6 through 10.
  • the UE or base station may transmit the modulated symbol to the receiving device.
  • the operations of 1240 may be performed according to the methods described herein. In some examples, aspects of the operations of 1240 may be performed by a modulated symbol transmitting component as described with reference to FIGs. 6 through 10.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or base station 105 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 6 through 10.
  • a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
  • the UE or base station may receive a modulated symbol from a transmitting device.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a modulated symbol receiving component as described with reference to FIGs. 6 through 10.
  • the UE or base station may demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by an inner constellation demodulating component as described with reference to FIGs. 6 through 10.
  • the UE or base station may decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by an inner constellation decoding component as described with reference to FIGs. 6 through 10.
  • the UE or base station may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by an outer constellation demodulating component as described with reference to FIGs. 6 through 10.
  • the UE or base station may decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by an outer constellation decoding component as described with reference to FIGs. 6 through 10.
  • the UE or base station may combine the first set of information bits and the second set of information bits.
  • the operations of 1330 may be performed according to the methods described herein. In some examples, aspects of the operations of 1330 may be performed by a bit set combining component as described with reference to FIGs. 6 through 10.
  • Example 1 is a method for wireless communication that includes identifying a plurality of information bits pending transmission to a receiving device, segmenting the plurality of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encoding the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encoding the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulating the first set of coded bits and the second set of coded bits into a modulated symbol, and transmitting the modulated symbol to the receiving device.
  • Example 2 the method of example 1 includes that the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  • the encoding the first set of information bits with the first forward error correction encoder method of any of examples 1-2 further includes encoding the first set of information bits using Polar coding.
  • the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-3 further includes encoding the second set of information bits using reference signal coding.
  • Example 5 the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-4 further includes encoding the second set of information bits using LDPC coding.
  • Example 6 the encoding the first set of information bits with the first forward error correction encoder method of any of examples 1-5 further includes encoding the first set of information bits using low density parity check (LDPC) coding.
  • Example 7 the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-6 further includes encoding the second set of information bits using Polar coding.
  • Example 8 the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-7 further includes encoding the second set of information bits using reference signal coding.
  • Example 9 the encoding the first set of information bits with the first forward error correction encoder method of any of examples 1-8 further includes encoding the first set of information bits using Turbo codes.
  • the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-9 further includes encoding the second set of information bits using Polar coding.
  • the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-10 further includes encoding the second set of information bits using reference signal coding.
  • Example 12 the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-11 further includes encoding the second set of information bits using LDPC coding.
  • Example 13 the segmenting the plurality of information bits of any of examples 1-12 further includes applying a serial-to-parallel conversion to the plurality of information bits.
  • the method of any of examples 1-13 includes mapping the first set of coded bits to the inner constellation and mapping the second set of coded bits to the outer constellation.
  • Example 15 is a method for wireless communication that includes receiving a modulated symbol from a transmitting device, demodulating a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decoding the first set of coded bits to obtain a first set of information bits based at least in part on a first forward error correction encoder used at the transmitting device, demodulating, based at least in part on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decoding the second set of coded bits to obtain a second set of information bits based at least in part on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combining the first set of information bits and the second set of information bits.
  • Example 16 the method of example 15 includes that the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  • Example 17 the method of any of examples 15 or 16 includes that the first set of coded bits are encoded using Polar coding.
  • Example 18 the method of any of examples 15-17 include that the second set of coded bits are encoded using LDPC coding.
  • Example 19 the method of any of examples 15-18 include that the second set of coded bits are encoded using reference signal coding.
  • the method of any of examples 15-19 include that the first set of coded bits are encoded using LDPC coding.
  • Example 21 the method of any of examples 15-20 include that the second set of coded bits are encoded using Polar coding.
  • Example 22 the method of any of examples 15-21 include that the second set of coded bits are encoded using reference signal coding.
  • the method of any of examples 15-22 include that the first set of coded bits are encoded using Turbo codes.
  • the method of any of examples 15-23 include that the second set of coded bits are encoded using Polar coding.
  • the method of any of examples 15-24 include that the second set of coded bits are encoded using reference signal coding.
  • the method of any of examples 15-25 include that the second set of coded bits are encoded using low density parity check (LDPC) coding.
  • the combining the plurality of information bits of any of examples 15-26 further includes applying a parallel-to-serial conversion to the first set of information bits and the second set of information bits.
  • LDPC low density parity check
  • Example 28 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of examples 1-14.
  • Example 29 is a non-transitory computer-readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of examples 1-14.
  • Example 30 is a system including one or more processors and memory in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of examples 1-14.
  • Example 31 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of examples 15-26.
  • Example 32 is a non-transitory computer-readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of examples 15-26.
  • Example 33 is a system including one or more processors and memory in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of examples 15-26.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A wireless device may utilize two forward error correction (FEC) encoders in an unequal error protection (UEP) scheme. For example, the wireless device may identify information bits pending transmission to a receiving device and segment the information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation. The transmitting device may encode the first set of information bits with a first FEC encoder and encode the second set of information bits with a second FEC encoder. The transmitting device may modulate the coded bits into a modulated symbol and transmit the modulated symbol to the receiving device. The receiving device may then decode the modulated symbol based on the two FEC encoders used by the transmitting device.

Description

A TWO ENCODER SCHEME FOR UNEQUAL ERROR PROTECTION BACKGROUND
The following relates generally to wireless communications, and more specifically to a two encoder scheme for unequal error protection.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A transmitting device may encode some information bits before modulating the bits into a symbol. Some techniques for encoding information bits can be improved.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support a two encoder scheme for unequal error protection (UEP) . For some UEP schemes, a transmitting device may encode a first set of information bits and not encode a second set of information bits. The transmitting device may be, for example, a user equipment (UE) or a base station. A UEP scheme may be power efficient for the encoding (e.g., transmitting) and decoding (e.g., receiving) devices. UEP schemes may be implemented for any quadrature amplitude modulation (QAM) size to reduce power consumption while  maintaining similar levels of communications quality. The coded bits may be mapped to an inner constellation of a QAM map, and the uncoded bits may be mapped to an outer constellation of the QAM map. The coded and uncoded bits may then be mapped to the QAM map as a layered constellation.
A wireless communications system described herein may employ techniques for enhanced UEP schemes. For example, a transmitting device may use two encoders. A first encoder may protect the inner constellation bits, and a second encoder may protect the outer constellation bits. The encoders may be, for example, forward error correction (FEC) encoders. If some symbols are destroyed, the receiving device may use FEC to recover the destroyed symbols. The techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits. The two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports a two encoder scheme for unequal error protection (UEP) in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a UEP encoding scheme that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a UEP decoding scheme that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a user equipment (UE) that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a base station that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
FIGs. 11 through 13 show flowcharts illustrating methods that support a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A wireless communications system may employ an unequal error protection
(UEP) scheme for encoding and decoding transmissions. For some UEP schemes, a transmitting device may encode a first set of information bits and not encode a second set of information bits (e.g., such that the second set of information bits are uncoded) . A UEP scheme may be power efficient for the encoding and decoding devices. For example, UEP schemes may have reduced complexity, or devices may spend less time encoding and decoding. UEP schemes may be implemented for any QAM size to reduce power consumption while maintaining similar levels of communications quality. The coded bits may be mapped to an inner constellation of a quadrature amplitude modulation (QAM) map, and the uncoded bits may be mapped to an outer constellation of the QAM map. The coded and uncoded bits may then be mapped to the QAM map as a layered constellation.
Some techniques for UEP may use one encoder for the inner constellation bits and apply no encoding for the outer constellation bits. However, if some symbols are destroyed  due to poor channel conditions, the outer constellation bits may not be recoverable. For example, in some channel conditions, such as for fading channels, the uncoded bits for the outer constellation may be destroyed, and the modulated symbol may not be decodable at the receiver. To decrease the likelihood of the symbols being destroyed, the wireless communications system may employ techniques for enhanced UEP schemes. For example, a transmitting device may use a two encoder scheme for UEP. A first encoder may protect the inner constellation bits, and a second encoder may protect the outer constellation bits. The encoders may be, for example, forward error correction (FEC) encoders. If some symbols are destroyed, the receiving device may use FEC to recover the destroyed symbols. The techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits. The two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
Aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to a two encoder scheme for unequal error protection.
FIG. 1 illustrates an example of a wireless communications system 100 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a  radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for  distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management  and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular  orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to  different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for  user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307, 200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini- slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a  downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of  carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
The wireless communications system 100 may support UEP schemes for encoding and decoding transmissions. For some UEP schemes, a transmitting device may encode a first set of information bits and not encode a second set of information bits. The transmitting device may be, for example, a UE 115 or a base station 105. A UEP scheme may be power efficient for the encoding (e.g., transmitting) and decoding (e.g., receiving) devices. UEP schemes may be implemented for any quadrature amplitude modulation (QAM) size to reduce power consumption while maintaining similar levels of communications quality. The coded bits may be mapped to an inner constellation of a QAM map, and the uncoded bits may be mapped to an outer constellation of the QAM map. The coded and uncoded bits may then be mapped to the QAM map as a layered constellation.
The wireless communications system 100, and other wireless communications systems described herein, may employ techniques for enhanced UEP schemes. For example, a transmitting device may use two encoders. A first encoder may protect the inner constellation bits, and a second encoder may protect the outer constellation bits. The encoders may be, for example, FEC encoders. If some symbols are destroyed, the receiving device may use FEC to recover the destroyed symbols. The techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits. The two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate.
FIG. 2 illustrates an example of a wireless communications system 200 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement  aspects of wireless communication system 100. The wireless communications system 200 may include UE 115-a and base station 105-a, which may be respective examples of a UE 115 and a base station 105 described with reference to FIG. 1. In some cases, UE 115-a may be an example of a transmitting device, and base station 105-a may be an example of a receiving device. In other examples, UE 115-a may be an example of the receiving device, and base station 105-a may be an example of the transmitting device.
The wireless communications system 200 may employ a UEP scheme for encoding and decoding transmissions. For some UEP schemes, a transmitting device (e.g., UE 115-a or base station 105-a) may encode a first set of information bits and not encode a second set of information bits (e.g., such that the second set of information bits are uncoded) . In some cases, the first set of information bits and the second set of information bits may be information bits to be transmitted in a transmission 205 as a modulated symbol 210. A UEP scheme may be power efficient for the encoding and decoding devices, for example based on reduced complexity or reduced time spend for the encoding and decoding. UEP schemes may be implemented for any QAM size to reduce power consumption while maintaining similar levels of communications quality.
The coded bits may be mapped to an inner constellation 225 of a quadrature amplitude modulation (QAM) constellation 235, and the uncoded bits may be mapped to an outer constellation 230 of the QAM constellation 235. For example, the coded bits may be mapped as the inner constellation (x i, y i) , and the uncoded bits may be mapped as the outer constellation (x o, y o) . The coded bits and the uncoded bits may then be mapped as a layered constellation. The point on the layered constellation, (x l, y l) , may be based on the points of the inner and outer constellations and Hamming distances of the inner and outer constellations. For example, x l=x o*L+X i and y l=y o*L+y i. The Hamming distance parameter, L, may be the scale to keep the same Hamming distance for the inner and layered constellation (e.g., d H { (x l, y l) } =d H { (x o, y o) } .
In an example of a 128QAM format, a modulated symbol may have three coded bits and four uncoded bits. The four uncoded bits, an example of the outer constellation bits 215, may correspond to one of sixteen points on the outer constellation 230. Each point on  the outer constellation 230 may have a corresponding inner constellation on the QAM constellation 235. The center of each point on the outer constellation 230 may correspond to the center of the inner constellation 225. For example, there may be 16 points on the outer constellation 230, so there may be 16 repetitions of the inner constellation 225 distributed over the QAM constellation 235. The three coded bits, an example of the inner constellation bits 220, may correspond to one of the eight points on the inner constellation 225. Therefore, together, the inner constellation 225 and the outer constellation 230 can be layered together to indicate one point of the 128 possible points on the QAM constellation 235.
If, for example, the information bits are ‘1110010’ , the first three bits (e.g., the uncoded bits) of ‘111’ may correspond to the bottom right point 240 of the outer constellation, and the last four bits ‘0010’ may correspond to the bottom left point 245 of the inner constellation. Therefore, when layered, ‘1110010’ may correspond to point 250 of the QAM constellation 235.
In other examples, other modulation schemes may be applied. For example, the techniques described herein may be used for different QAM formats (e.g., 64QM, 256QAM, etc. ) , or the split between coded bits and uncoded bits may be different (e.g., 128QAM may use three uncoded bits and four coded bits) .
Some techniques for UEP use one encoder for the inner constellation bits 220 and no encoding for the outer constellation bits 215. However, if some symbols are destroyed due to poor channel conditions, the outer constellation bits may not be recoverable. For example, in some channel conditions, such as for fading channels, the uncoded bits for the outer constellation 230 may be destoryed, and the modulated symbol 210 may not be decodable at the receiver.
To decrease the likelihood of the symbols being destroyed, the wireless communications system 200 may employ techniques for enhanced UEP schemes. For example, a transmitting device may use a two encoder scheme for UEP. A first encoder may protect the inner constellation bits 220, and a second encoder may protect the outer constellation bits 215. The encoders may be, for example, forward error correction (FEC) encoders. If some symbols are destroyed, the receiving device may use FEC to recover the  destroyed symbols. The techniques for a two encoder scheme for UEP may provide improved fading channel performance for the outer constellation bits 215. The two encoder scheme may still be an example of a UEP scheme, as the encoder for the inner constellation may have a lower coding rate, and the encoder for the outer constellation may have a higher coding rate. Techniques for encoding information bits using a two encoder UEP scheme are described in more detail with reference to FIG. 3, and techniques for decoding a modulated symbol generated using a two encoder UEP scheme are described in more detail with reference to FIG. 4.
FIG. 3 illustrates an example of a UEP encoding scheme 300 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. In some examples, UEP encoding scheme 300 may implement aspects of wireless communication system 100.
A transmitting device, such as a UE 115 or a base station 105 as described with reference to FIG. 1, may generate modulated symbols using a two encoder UEP scheme as described herein. The transmitting device may identify a set of information bits, (e.g., b0, b1, 2, …) to be transmitted to a receiving device. The transmitting device may apply a serial to parallel procedure 305 to the information bits to split them into a first set of information bits and a second set of information bits. The first set of information bits may correspond to an inner constellation, and the second set of information bits may correspond to an outer constellation.
The first set of information bits may be encoded by a first encoder 310-a. The first encoder 310-a may be an example of an FEC encoder. The second set of information bits may be encoded by a second encoder 310-b, which may also be an example of an FEC encoder. The second encoder 310-b (e.g., FEC2) may, in some cases, have a higher coding rate than the first encoder 310-a (e.g., FEC1) . The transmitting device may have a first set of coded bits (e.g., c0, c1, …cm) after encoding the first set of information bits using FEC1, and the transmitting device may have a second set of coded bits (e.g., u0, u1, …un) after encoding the second set of information bits FEC2. In some cases, for each QAM symbol, there may be m FEC1 coded bits and n FEC2 coded bits. In some cases, the first set of coded  bits and the second set of coded bits may still be unequally protected based on the different encodings at the different encoders 310.
In some cases, the first encoder 310-a and the second encoder 310-b may use different types of codes to encode the corresponding set of information bits. In some cases, FEC1 310-a may use polar codes, and FEC2 310-b may use low density parity check (LDPC) codes or reference signal codes. In some cases, FEC1 310-a may use LDPC codes, and FEC2 310-b may use Polar codes or reference signal codes. In some cases, FEC1 310-a may use Turbo codes, and FEC2 310-b may use Polar codes, reference signal codes, or LDPC codes.
In some cases, which encoding scheme is used (e.g., LDPC, Polar, reference signal, or Turbo codes) may be configured by a base station 105. For example, the base station may configure a UE 115 with a coding scheme for FEC1, FEC2, or both. In some cases, the coding schemes may be configured via RRC signaling. In some examples, a coding scheme may be enabled or toggled by the base station via a MAC CE. In some cases, the UE 115 may be pre-configured with the coding schemes for FEC1 and FEC2.
The transmitting device may modulate the first and second set of coded bits into a modulated symbol using a modulator 315. In some cases, the transmitting device may map the first set of encoded bits (e.g. c1, c2, …cm) to the inner constellation and map the second set of encoded bits (e.g., u1, u2, …un) to the outer constellation. In some cases, the first set of coded bits and the second set of coded bits may be mapped as a layered constellation to a QAM constellation as described with reference to FIG. 2. The transmitting device may then transmit the modulated symbol to the receiving device.
FIG. 4 illustrates an example of a UEP decoding scheme 400 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. In some examples, UEP decoding scheme 400 may implement aspects of wireless communication system 100.
A receiving device may receive modulated symbols, generated as described with reference to FIG. 3. The receiving device may first perform inner constellation demodulation at 405. The receiving device may demodulate the encoded bits corresponding to the inner constellation, then decode the inner constellation encoded bits based on the FEC1 encoder  used by the transmitting device. At 410, the receiving device may perform outer constellation demodulation and decode the encoded bits corresponding to the outer constellation. In some cases, the receiving device may decode the outer constellation bits based on the FEC1 decoding.
For example, if the inner constellation bits were encoded using Polar codes, the receiving device may perform a Polar decoding at 405. In other examples, the inner constellation bits may have been encoded using LDPC codes or Turbo codes, and the receiving device may decode the inner constellation bits using corresponding decoders or corresponding decoding techniques. The outer constellation may have been encoded using LDPC codes, reference signal codes, or Polar codes, and the receiving device may use a corresponding decoder, or a corresponding decoding procedure, at 410.
After the information bits are decoded using an FEC1 decoder at 405 and an FEC2 decoder at 410, the receiving device may apply a parallel-to-series procedure 415 to the information bits. The parallel-to-series procedure 415 may provide the information bits (e.g., b0, b1, b2, …) of the modulated symbol in the correct order.
FIG. 5 illustrates an example of a process flow 500 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. In some examples, the process flow 500 may implement aspects of wireless communication system 100.
The process flow 500 may include UE 115-b and base station 105-b, which may be respective examples of a UE 115 and a base station 105 as described herein. In the example shown by process flow 500, UE 115-b is the transmitting device, and base station 105-b is the receiving device. However, the techniques of the receiving device and the transmitting device may be performed by either a base station 105 or a UE 115. For example, in other cases, UE 115-b may be the receiving device, and base station 105-b may be the transmitting device.
At 505 UE 115-b may identify a set of information bits pending transmission to a receiving device (e.g., base station 105-b. The information bits may be, for example, b0, b1, …, bn as described with reference to FIG. 3. At 510, UE 115-b may segment the set of  information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation. For example, UE 115-b may apply a serial-to-parallel conversion to the set of information bits.
At 515, UE 115-b may encode the information bits. UE 115-b may encode the first set of information bits with a first FEC encoder (e.g., FEC1) to obtain a first set of coded bits. The first set of coded bits may correspond to the inner constellation (e.g., c1, c2, …cn) . At 520, UE 115-b may encode the second set of information bits with a second FEC (e.g., FEC2) encoder to obtain a second set of coded bits. The second set of coded bits may correspond to the outer constellation (e.g., u1, u2, …, un) . UE 115-b may modulate the first set of coded bits and the second set of coded bits into a modulated symbol at 520. In some cases, UE 115-b may map the first set of coded bits to the inner constellation and map the second set of coded bits to the outer constellation. At 525, UE 115-b may transmit the modulated symbol to base station 105-b.
Base station 105-b may receive the modulated symbol from UE 115-b at 525. Base station 105-b may demodulate a first portion of the modulated symbol corresponding to the inner constellation to obtain a first set of coded bits. At 530, base station 105-b may decode the first set of coded bits to obtain a first set of information bits based on a first FEC encoder (e.g., FEC1) used at the transmitting device.
At 535, base station 105-b may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to the outer constellation to obtain a second set of coded bits. Base station 105-b may decode the second set of coded bits to obtain a second set of information bits based on a second FEC encoder (e.g., FEC2) used at the transmitting device and the first set of information bits. At 540, base station 105-b may combine the first set of information bits and the second set of information bits, for example using a parallel-to-series conversion.
FIG. 6 shows a block diagram 600 of a device 605 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 or base station 105 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a  transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a two encoder scheme for unequal error protection, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the  transceiver  920 or 1020 as described with reference to FIGs. 9 and 10. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may identify a set of information bits pending transmission to a receiving device, segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulate the first set of coded bits and the second set of coded bits into a modulated symbol, and transmit the modulated symbol to the receiving device. The communications manager 615 may also receive a modulated symbol from a transmitting device, demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device, demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combine the first set of information bits and the second set of information bits. The communications manager 615 may be an example of aspects of the  communications manager  910 or 1010 as described herein.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination  thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
Transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the  transceiver  920 or 1020 as described with reference to FIGs. 9 and 10. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a device 705 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, a UE 115, or a base station 105 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 780. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a two encoder scheme for unequal error protection, etc. ) .  Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the  transceiver  920 or 1020 as described with reference to FIGs. 9 and 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include an information bit identifying component 720, a segmenting component 725, an inner constellation encoding component 730, an outer constellation encoding component 735, a modulating component 740, a modulated symbol transmitting component 745, a modulated symbol receiving component 750, an inner constellation demodulating component 755, an inner constellation decoding component 760, an outer constellation demodulating component 765, an outer constellation decoding component 770, and a bit set combining component 775. The communications manager 715 may be an example of aspects of the  communications manager  910 or 1010 as described herein.
The information bit identifying component 720 may identify a set of information bits pending transmission to a receiving device. The segmenting component 725 may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation. The inner constellation encoding component 730 may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits. The outer constellation encoding component 735 may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits. The modulating component 740 may modulate the first set of coded bits and the second set of coded bits into a modulated symbol. The modulated symbol transmitting component 745 may transmit the modulated symbol to the receiving device.
The modulated symbol receiving component 750 may receive a modulated symbol from a transmitting device. The inner constellation demodulating component 755 may demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits. The inner constellation decoding component 760 may decode the first set of coded bits to obtain a first set of information bits based on a first forward error  correction encoder used at the transmitting device. The outer constellation demodulating component 765 may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits. The outer constellation decoding component 770 may decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits. The bit set combining component 775 may combine the first set of information bits and the second set of information bits.
Transmitter 780 may transmit signals generated by other components of the device 705. In some examples, the transmitter 780 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 780 may be an example of aspects of the  transceiver  920 or 1020 as described with reference to FIGs. 9 and 10. The transmitter 780 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include an information bit identifying component 810, a segmenting component 815, an inner constellation encoding component 820, an outer constellation encoding component 825, a modulating component 830, a modulated symbol transmitting component 835, a serial-to-parallel component 840, a mapping component 845, a modulated symbol receiving component 850, an inner constellation demodulating component 855, an inner constellation decoding component 860, an outer constellation demodulating component 865, an outer constellation decoding component 870, a bit set combining component 875, and a parallel-to-series component 880. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The information bit identifying component 810 may identify a set of information bits pending transmission to a receiving device. The segmenting component 815 may  segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation.
The inner constellation encoding component 820 may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits. In some examples, the inner constellation encoding component 820 may encode the first set of information bits using Polar coding. In some examples, the inner constellation encoding component 820 may encode the first set of information bits using LDPC coding. In some examples, the inner constellation encoding component 820 may encode the first set of information bits using Turbo codes.
The outer constellation encoding component 825 may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits. In some examples, the outer constellation encoding component 825 may encode the second set of information bits using reference signal coding. In some examples, the outer constellation encoding component 825 may encode the second set of information bits using LDPC coding. In some examples, the outer constellation encoding component 825 may encode the second set of information bits using Polar coding. In some cases, the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
The modulating component 830 may modulate the first set of coded bits and the second set of coded bits into a modulated symbol. The modulated symbol transmitting component 835 may transmit the modulated symbol to the receiving device.
The serial-to-parallel component 840 may apply a serial-to-parallel conversion to the set of information bits. The mapping component 845 may map the first set of coded bits to the inner constellation. In some examples, the mapping component 845 may map the second set of coded bits to the outer constellation.
The modulated symbol receiving component 850 may receive a modulated symbol from a transmitting device. The inner constellation demodulating component 855 may  demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits.
The inner constellation decoding component 860 may decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device. In some cases, the first set of coded bits are encoded using Polar coding. In some cases, the first set of coded bits are encoded using LDPC coding. In some cases, the first set of coded bits are encoded using Turbo codes.
The outer constellation demodulating component 865 may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits. The outer constellation decoding component 870 may decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits.
In some cases, the second forward error correction encoder has a higher coding rate than the first forward error correction encoder. In some cases, the second set of coded bits are encoded using LDPC coding. In some cases, the second set of coded bits are encoded using reference signal coding. In some cases, the second set of coded bits are encoded using Polar coding.
The bit set combining component 875 may combine the first set of information bits and the second set of information bits. The parallel-to-series component 880 may apply a parallel-to-serial conversion to the first set of information bits and the second set of information bits.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, a transceiver 920, an  antenna 925, memory 930, a processor 940, and an I/O controller 950. These components may be in electronic communication via one or more buses (e.g., bus 955) .
The communications manager 910 may identify a set of information bits pending transmission to a receiving device, segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulate the first set of coded bits and the second set of coded bits into a modulated symbol, and transmit the modulated symbol to the receiving device. The communications manager 910 may also receive a modulated symbol from a transmitting device, demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device, demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combine the first set of information bits and the second set of information bits.
Transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include RAM, ROM, or a combination thereof. The memory 930 may store computer-readable code 935 including instructions that, when executed by a processor (e.g., the processor 940) cause the device to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting a two encoder scheme for unequal error protection) .
The I/O controller 950 may manage input and output signals for the device 905. The I/O controller 950 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 950 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 950 may utilize an operating system such as 
Figure PCTCN2019105285-appb-000001
or another known operating system. In other cases, the I/O controller 950 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 950 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 950 or via hardware components controlled by the I/O controller 950.
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but  may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 605, device 705, or a base station 105 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, a network communications manager 1015, a transceiver 1020, an antenna 1025, memory 1030, a processor 1040, and an inter-station communications manager 1045. These components may be in electronic communication via one or more buses (e.g., bus 1055) .
The communications manager 1010 may identify a set of information bits pending transmission to a receiving device, segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulate the first set of coded bits and the second set of coded bits into a modulated symbol, and transmit the modulated symbol to the receiving device. The communications manager 1010 may also receive a modulated symbol from a transmitting device, demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device, demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combine the first set of information bits and the second set of information bits.
Network communications manager 1015 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1015 may manage the transfer of data communications for client devices, such as one or more UEs 115.
Transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include RAM, ROM, or a combination thereof. The memory 1030 may store computer-readable code 1035 including instructions that, when executed by a processor (e.g., the processor 1040) cause the device to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting a two encoder scheme for unequal error protection) .
Inter-station communications manager 1045 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1045 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, inter-station communications manager 1045 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a flowchart illustrating a method 1100 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 6 through 10. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1105, the UE or base station may identify a set of information bits pending transmission to a receiving device. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by an information bit identifying component as described with reference to FIGs. 6 through 10.
At 1110, the UE or base station may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a segmenting component as described with reference to FIGs. 6 through 10.
At 1115, the UE or base station may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by an inner constellation encoding component as described with reference to FIGs. 6 through 10.
At 1120, the UE or base station may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by an outer constellation encoding component as described with reference to FIGs. 6 through 10.
At 1125, the UE or base station may modulate the first set of coded bits and the second set of coded bits into a modulated symbol. The operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a modulating component as described with reference to FIGs. 6 through 10.
At 1130, the UE or base station may transmit the modulated symbol to the receiving device. The operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a modulated symbol transmitting component as described with reference to FIGs. 6 through 10.
FIG. 12 shows a flowchart illustrating a method 1200 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1200 may be  performed by a communications manager as described with reference to FIGs. 6 through 10. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1205, the UE or base station may identify a set of information bits pending transmission to a receiving device. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by an information bit identifying component as described with reference to FIGs. 6 through 10.
At 1210, the UE or base station may segment the set of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a segmenting component as described with reference to FIGs. 6 through 10.
At 1215, the UE or base station may encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by an inner constellation encoding component as described with reference to FIGs. 6 through 10.
At 1220, the UE or base station may encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits. The operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by an outer constellation encoding component as described with reference to FIGs. 6 through 10.
At 1225, the UE or base station may map the first set of coded bits to the inner constellation. The operations of 1225 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1225 may be performed by a mapping component as described with reference to FIGs. 6 through 10.
At 1230, the UE or base station may map the second set of coded bits to the outer constellation. The operations of 1230 may be performed according to the methods described herein. In some examples, aspects of the operations of 1230 may be performed by a mapping component as described with reference to FIGs. 6 through 10.
At 1235, the UE or base station may modulate the first set of coded bits and the second set of coded bits into a modulated symbol. The operations of 1235 may be performed according to the methods described herein. In some examples, aspects of the operations of 1235 may be performed by a modulating component as described with reference to FIGs. 6 through 10.
At 1240, the UE or base station may transmit the modulated symbol to the receiving device. The operations of 1240 may be performed according to the methods described herein. In some examples, aspects of the operations of 1240 may be performed by a modulated symbol transmitting component as described with reference to FIGs. 6 through 10.
FIG. 13 shows a flowchart illustrating a method 1300 that supports a two encoder scheme for unequal error protection in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or base station 105 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 6 through 10. In some examples, a UE or base station may execute a set of instructions to control the functional elements of the UE or base station to perform the functions described below. Additionally or alternatively, a UE or base station may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE or base station may receive a modulated symbol from a transmitting device. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a modulated symbol receiving component as described with reference to FIGs. 6 through 10.
At 1310, the UE or base station may demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by an inner constellation demodulating component as described with reference to FIGs. 6 through 10.
At 1315, the UE or base station may decode the first set of coded bits to obtain a first set of information bits based on a first forward error correction encoder used at the transmitting device. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by an inner constellation decoding component as described with reference to FIGs. 6 through 10.
At 1320, the UE or base station may demodulate, based on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by an outer constellation demodulating component as described with reference to FIGs. 6 through 10.
At 1325, the UE or base station may decode the second set of coded bits to obtain a second set of information bits based on a second forward error correction encoder used at the transmitting device and the first set of information bits. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by an outer constellation decoding component as described with reference to FIGs. 6 through 10.
At 1330, the UE or base station may combine the first set of information bits and the second set of information bits. The operations of 1330 may be performed according to the methods described herein. In some examples, aspects of the operations of 1330 may be performed by a bit set combining component as described with reference to FIGs. 6 through 10.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Example 1 is a method for wireless communication that includes identifying a plurality of information bits pending transmission to a receiving device, segmenting the plurality of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation, encoding the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits, encoding the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits, modulating the first set of coded bits and the second set of coded bits into a modulated symbol, and transmitting the modulated symbol to the receiving device.
In Example 2, the method of example 1 includes that the second forward error correction encoder has a higher coding rate than the first forward error correction encoder. In Example 3, the encoding the first set of information bits with the first forward error correction encoder method of any of examples 1-2 further includes encoding the first set of information bits using Polar coding. In Example 4, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-3 further includes encoding the second set of information bits using reference signal coding.
In Example 5, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-4 further includes encoding the second set of information bits using LDPC coding. In Example 6, the encoding the first set of information bits with the first forward error correction encoder method of any of examples 1-5 further includes encoding the first set of information bits using low density parity check (LDPC) coding. In Example 7, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-6 further includes encoding the second set of information bits using Polar coding. In Example 8, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-7 further includes encoding the second set of information bits using reference signal coding.
In Example 9, the encoding the first set of information bits with the first forward error correction encoder method of any of examples 1-8 further includes encoding the first set of information bits using Turbo codes. In Example 10, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-9 further includes encoding the second set of information bits using Polar coding. In Example 11, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-10 further includes encoding the second set of information bits using reference signal coding. In Example 12, the encoding the second set of information bits with the second forward error correction encoder of any of examples 1-11 further includes encoding the second set of information bits using LDPC coding. In Example 13, the segmenting the plurality of information bits of any of examples 1-12 further includes applying a serial-to-parallel conversion to the plurality of information bits. In Example 14, the method of any of examples 1-13 includes mapping the first set of coded bits to the inner constellation and mapping the second set of coded bits to the outer constellation.
Example 15 is a method for wireless communication that includes receiving a modulated symbol from a transmitting device, demodulating a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits, decoding the first set of coded bits to obtain a first set of information bits based at least in part on a first forward error correction encoder used at the transmitting device, demodulating, based at least in part on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits, decoding the second set of coded bits to obtain a second set of information bits based at least in part on a second forward error correction encoder used at the transmitting device and the first set of information bits, and combining the first set of information bits and the second set of information bits.
In Example 16, the method of example 15 includes that the second forward error correction encoder has a higher coding rate than the first forward error correction encoder. In Example 17, the method of any of examples 15 or 16 includes that the first set of coded bits are encoded using Polar coding. In Example 18, the method of any of examples 15-17 include that the second set of coded bits are encoded using LDPC coding. In Example 19, the method  of any of examples 15-18 include that the second set of coded bits are encoded using reference signal coding. In Example 20, the method of any of examples 15-19 include that the first set of coded bits are encoded using LDPC coding. In Example 21, the method of any of examples 15-20 include that the second set of coded bits are encoded using Polar coding.
In Example 22, the method of any of examples 15-21 include that the second set of coded bits are encoded using reference signal coding. In Example 23, the method of any of examples 15-22 include that the first set of coded bits are encoded using Turbo codes. In Example 24, the method of any of examples 15-23 include that the second set of coded bits are encoded using Polar coding. In Example 25, the method of any of examples 15-24 include that the second set of coded bits are encoded using reference signal coding. In Example 26, the method of any of examples 15-25 include that the second set of coded bits are encoded using low density parity check (LDPC) coding. In Example 27, the combining the plurality of information bits of any of examples 15-26 further includes applying a parallel-to-serial conversion to the first set of information bits and the second set of information bits.
Example 28 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of examples 1-14. Example 29 is a non-transitory computer-readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of examples 1-14.
Example 30 is a system including one or more processors and memory in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of examples 1-14. Example 31 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of examples 15-26. Example 32 is a non-transitory computer-readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of examples 15-26.
Example 33 is a system including one or more processors and memory in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement a method as in any of examples 15-26.
Aspects of these examples may be combined with aspects or embodiments disclosed in other implementations.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions  with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or  state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data  optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations  without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (58)

  1. A method for wireless communication, comprising:
    identifying a plurality of information bits pending transmission to a receiving device;
    segmenting the plurality of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation;
    encoding the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits;
    encoding the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits;
    modulating the first set of coded bits and the second set of coded bits into a modulated symbol; and
    transmitting the modulated symbol to the receiving device.
  2. The method of claim 1, wherein the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  3. The method of claim 1, wherein encoding the first set of information bits with the first forward error correction encoder further comprises:
    encoding the first set of information bits using Polar coding.
  4. The method of claim 3, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using reference signal coding.
  5. The method of claim 3, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using low density parity check (LDPC) coding.
  6. The method of claim 1, wherein encoding the first set of information bits with the first forward error correction encoder further comprises:
    encoding the first set of information bits using low density parity check (LDPC) coding.
  7. The method of claim 6, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using Polar coding.
  8. The method of claim 6, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using reference signal coding.
  9. The method of claim 1, wherein encoding the first set of information bits with the first forward error correction encoder further comprises:
    encoding the first set of information bits using Turbo codes.
  10. The method of claim 9, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using Polar coding.
  11. The method of claim 9, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using reference signal coding.
  12. The method of claim 9, wherein encoding the second set of information bits with the second forward error correction encoder further comprises:
    encoding the second set of information bits using low density parity check (LDPC) coding.
  13. The method of claim 1, wherein segmenting the plurality of information bits further comprises:
    applying a serial-to-parallel conversion to the plurality of information bits.
  14. The method of claim 1, further comprising:
    mapping the first set of coded bits to the inner constellation; and
    mapping the second set of coded bits to the outer constellation.
  15. A method for wireless communication, comprising:
    receiving a modulated symbol from a transmitting device;
    demodulating a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits;
    decoding the first set of coded bits to obtain a first set of information bits based at least in part on a first forward error correction encoder used at the transmitting device;
    demodulating, based at least in part on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits;
    decoding the second set of coded bits to obtain a second set of information bits based at least in part on a second forward error correction encoder used at the transmitting device and the first set of information bits; and
    combining the first set of information bits and the second set of information bits.
  16. The method of claim 15, wherein the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  17. The method of claim 15, wherein the first set of coded bits are encoded using Polar coding.
  18. The method of claim 17, wherein the second set of coded bits are encoded using low density parity check (LDPC) coding.
  19. The method of claim 17, wherein the second set of coded bits are encoded using reference signal coding.
  20. The method of claim 15, wherein the first set of coded bits are encoded using low density parity check (LDPC) coding.
  21. The method of claim 20, wherein the second set of coded bits are encoded using Polar coding.
  22. The method of claim 20, wherein the second set of coded bits are encoded using reference signal coding.
  23. The method of claim 15, wherein the first set of coded bits are encoded using Turbo codes.
  24. The method of claim 23, wherein the second set of coded bits are encoded using Polar coding.
  25. The method of claim 23, wherein the second set of coded bits are encoded using reference signal coding.
  26. The method of claim 23, wherein the second set of coded bits are encoded using low density parity check (LDPC) coding.
  27. The method of claim 15, wherein combining the plurality of information bits further comprises:
    applying a parallel-to-serial conversion to the first set of information bits and the second set of information bits.
  28. An apparatus for wireless communication, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a plurality of information bits pending transmission to a receiving device;
    segment the plurality of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation;
    encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits;
    encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits;
    modulate the first set of coded bits and the second set of coded bits into a modulated symbol; and
    transmit the modulated symbol to the receiving device.
  29. The apparatus of claim 28, wherein the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  30. The apparatus of claim 28, wherein the instructions to encode the first set of information bits with the first forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the first set of information bits using Polar coding.
  31. The apparatus of claim 30, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using reference signal coding.
  32. The apparatus of claim 30, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using low density parity check (LDPC) coding.
  33. The apparatus of claim 28, wherein the instructions to encode the first set of information bits with the first forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the first set of information bits using low density parity check (LDPC) coding.
  34. The apparatus of claim 33, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using Polar coding.
  35. The apparatus of claim 33, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using reference signal coding.
  36. The apparatus of claim 28, wherein the instructions to encode the first set of information bits with the first forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the first set of information bits using Turbo codes.
  37. The apparatus of claim 36, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using Polar coding.
  38. The apparatus of claim 36, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using reference signal coding.
  39. The apparatus of claim 36, wherein the instructions to encode the second set of information bits with the second forward error correction encoder further are executable by the processor to cause the apparatus to:
    encode the second set of information bits using low density parity check (LDPC) coding.
  40. The apparatus of claim 28, wherein the instructions to segment the plurality of information bits further are executable by the processor to cause the apparatus to:
    apply a serial-to-parallel conversion to the plurality of information bits.
  41. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    map the first set of coded bits to the inner constellation; and
    map the second set of coded bits to the outer constellation.
  42. An apparatus for wireless communication, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a modulated symbol from a transmitting device;
    demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits;
    decode the first set of coded bits to obtain a first set of information bits based at least in part on a first forward error correction encoder used at the transmitting device;
    demodulate, based at least in part on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits;
    decode the second set of coded bits to obtain a second set of information bits based at least in part on a second forward error correction encoder used at the transmitting device and the first set of information bits; and
    combine the first set of information bits and the second set of information bits.
  43. The apparatus of claim 42, wherein the second forward error correction encoder has a higher coding rate than the first forward error correction encoder.
  44. The apparatus of claim 42, wherein the first set of coded bits are encoded using Polar coding.
  45. The apparatus of claim 44, wherein the second set of coded bits are encoded using low density parity check (LDPC) coding.
  46. The apparatus of claim 44, wherein the second set of coded bits are encoded using reference signal coding.
  47. The apparatus of claim 42, wherein the first set of coded bits are encoded using low density parity check (LDPC) coding.
  48. The apparatus of claim 47, wherein the second set of coded bits are encoded using Polar coding.
  49. The apparatus of claim 47, wherein the second set of coded bits are encoded using reference signal coding.
  50. The apparatus of claim 42, wherein the first set of coded bits are encoded using Turbo codes.
  51. The apparatus of claim 50, wherein the second set of coded bits are encoded using Polar coding.
  52. The apparatus of claim 50, wherein the second set of coded bits are encoded using reference signal coding.
  53. The apparatus of claim 50, wherein the second set of coded bits are encoded using low density parity check (LDPC) coding.
  54. The apparatus of claim 42, wherein the instructions to combine the plurality of information bits further are executable by the processor to cause the apparatus to:
    apply a parallel-to-serial conversion to the first set of information bits and the second set of information bits.
  55. An apparatus for wireless communication, comprising:
    means for identifying a plurality of information bits pending transmission to a receiving device;
    means for segmenting the plurality of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation;
    means for encoding the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits;
    means for encoding the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits;
    means for modulating the first set of coded bits and the second set of coded bits into a modulated symbol; and
    means for transmitting the modulated symbol to the receiving device.
  56. An apparatus for wireless communication, comprising:
    means for receiving a modulated symbol from a transmitting device;
    means for demodulating a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits;
    means for decoding the first set of coded bits to obtain a first set of information bits based at least in part on a first forward error correction encoder used at the transmitting device;
    means for demodulating, based at least in part on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits;
    means for decoding the second set of coded bits to obtain a second set of information bits based at least in part on a second forward error correction encoder used at the transmitting device and the first set of information bits; and
    means for combining the first set of information bits and the second set of information bits.
  57. A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    identify a plurality of information bits pending transmission to a receiving device;
    segment the plurality of information bits into a first set of information bits corresponding to an inner constellation and a second set of information bits corresponding to an outer constellation;
    encode the first set of information bits with a first forward error correction encoder to obtain a first set of coded bits;
    encode the second set of information bits with a second forward error correction encoder to obtain a second set of coded bits;
    modulate the first set of coded bits and the second set of coded bits into a modulated symbol; and
    transmit the modulated symbol to the receiving device.
  58. A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    receive a modulated symbol from a transmitting device;
    demodulate a first portion of the modulated symbol corresponding to an inner constellation to obtain a first set of coded bits;
    decode the first set of coded bits to obtain a first set of information bits based at least in part on a first forward error correction encoder used at the transmitting device;
    demodulate, based at least in part on the first set of information bits, a second portion of the modulated symbol corresponding to an outer constellation to obtain a second set of coded bits;
    decode the second set of coded bits to obtain a second set of information bits based at least in part on a second forward error correction encoder used at the transmitting device and the first set of information bits; and
    combine the first set of information bits and the second set of information bits.
PCT/CN2019/105285 2019-09-11 2019-09-11 A two encoder scheme for unequal error protection WO2021046739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105285 WO2021046739A1 (en) 2019-09-11 2019-09-11 A two encoder scheme for unequal error protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105285 WO2021046739A1 (en) 2019-09-11 2019-09-11 A two encoder scheme for unequal error protection

Publications (1)

Publication Number Publication Date
WO2021046739A1 true WO2021046739A1 (en) 2021-03-18

Family

ID=74866901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105285 WO2021046739A1 (en) 2019-09-11 2019-09-11 A two encoder scheme for unequal error protection

Country Status (1)

Country Link
WO (1) WO2021046739A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090129484A1 (en) * 2007-11-16 2009-05-21 Broadcom Corporation Low Density Parity Check (LDPC) Encoded Higher Order Modulation
US20150078486A1 (en) * 2012-05-25 2015-03-19 Huawei Technologies Co., Ltd. Code modulation and demodulation method and apparatus for high order modulation
US20150103956A1 (en) * 2012-06-27 2015-04-16 Huawei Technologies Co., Ltd. High order modulation method, demapping method, and corresponding device
WO2018128873A1 (en) * 2017-01-09 2018-07-12 Intel IP Corporation Systems, methods and devices for meeting cellular data turnaround time
US20190182095A1 (en) * 2017-12-07 2019-06-13 Jung Hoon SUH Semi-orthogonal multiple access with power-adaptive constellation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090129484A1 (en) * 2007-11-16 2009-05-21 Broadcom Corporation Low Density Parity Check (LDPC) Encoded Higher Order Modulation
US20150078486A1 (en) * 2012-05-25 2015-03-19 Huawei Technologies Co., Ltd. Code modulation and demodulation method and apparatus for high order modulation
US20150103956A1 (en) * 2012-06-27 2015-04-16 Huawei Technologies Co., Ltd. High order modulation method, demapping method, and corresponding device
WO2018128873A1 (en) * 2017-01-09 2018-07-12 Intel IP Corporation Systems, methods and devices for meeting cellular data turnaround time
US20190182095A1 (en) * 2017-12-07 2019-06-13 Jung Hoon SUH Semi-orthogonal multiple access with power-adaptive constellation

Similar Documents

Publication Publication Date Title
US10880914B2 (en) Grant free uplink transmission techniques
US11695505B2 (en) Reduced overhead error detection code design for decoding a codeword
US11089598B2 (en) Multiple access signatures for non-orthogonal multiple access (NOMA) wireless communications
US11050523B2 (en) Techniques to interpret control information based on a repetition factor
AU2019215201B2 (en) Modulation table determination and channel quality indicator reporting for short transmission time intervals
US11178671B2 (en) High-reliability modulation coding scheme and logical channel prioritization
US11240839B2 (en) Feedback transmissions using uplink shared channel
US10993215B2 (en) SPDCCH reuse indication constraint under DMRS sharing
US11729783B2 (en) Soft-combining for control channels
WO2019157764A1 (en) Self-decodable redundancy versions for polar codes
US11324040B2 (en) Synchronized uplink grant-free non-orthogonal multiple access transmission design
US10742283B2 (en) Transmit diversity schemes for uplink sequence transmissions
US11329789B2 (en) Transmission methods to handle vulnerable symbols
EP3935765A1 (en) Code division multiplexing group hopping for multi-transmission/reception point
US11611978B2 (en) Reference modulation and coding scheme table in sidelink signaling
WO2020087431A1 (en) Hybrid code design for wireless communications
WO2021046739A1 (en) A two encoder scheme for unequal error protection
US11949434B2 (en) Low latency communication with carrier-aggregation-based fountain codes
WO2021016832A1 (en) Layer modulation of coded and unencoded bits
WO2020024871A1 (en) Signature sequence design for non-orthogonal multiple access system
WO2019169526A1 (en) Wireless devices pairing for downlink mu-mimo transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944922

Country of ref document: EP

Kind code of ref document: A1