WO2021042743A1 - 一种微型多层陶瓷带通滤波器 - Google Patents

一种微型多层陶瓷带通滤波器 Download PDF

Info

Publication number
WO2021042743A1
WO2021042743A1 PCT/CN2020/086908 CN2020086908W WO2021042743A1 WO 2021042743 A1 WO2021042743 A1 WO 2021042743A1 CN 2020086908 W CN2020086908 W CN 2020086908W WO 2021042743 A1 WO2021042743 A1 WO 2021042743A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission zero
zero point
input
parallel
dielectric substrates
Prior art date
Application number
PCT/CN2020/086908
Other languages
English (en)
French (fr)
Inventor
肖明
Original Assignee
研创光电科技(赣州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研创光电科技(赣州)有限公司 filed Critical 研创光电科技(赣州)有限公司
Publication of WO2021042743A1 publication Critical patent/WO2021042743A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters

Definitions

  • the invention relates to a band pass filter, in particular to a miniature multilayer ceramic band pass filter.
  • Band pass filter is an important passive component of radio frequency system.
  • a good bandpass filter should have low in-band loss, deep out-of-band rejection, wide stop-band rejection range, and the smallest possible volume.
  • Traditional band-pass filters mostly use planar structures, occupying a large area, and cannot meet the miniaturization requirements of the RF front-end. At the same time, traditional band-pass filters are difficult to integrate.
  • the transmission zeros refer to the transmission function of the filter being equal to zero, that is, from a theoretical point of view At this frequency, energy cannot pass through the network, so it has a complete isolation effect. However, because of electromagnetic radiation and electromagnetic leakage in the actual situation, a small amount of energy will still pass through the network.
  • the current transmission zeros of band-pass filters are usually less, usually no more than 6 transmission zeros (that is, no more than 3 transmission zeros are generated in the stop band above the pass band, and in the stop band below the pass band.
  • the traditional method is to start with materials and use dielectric materials with high dielectric constant and low loss to reduce the volume of the device while improving the performance of the device.
  • the dielectric constant increases, the internal coupling of the device will increase. After the internal coupling increases to a certain level, the performance of the device will be negatively affected; after the dielectric loss is reduced to a certain level, the conductor loss will be Radiation loss will become the main factor affecting device loss. Therefore, if only starting with materials cannot solve the current problems that require both miniaturization and high performance of the device, it is necessary to find a corresponding solution from the perspective of circuit design.
  • the technical problem to be solved by the present invention is to provide a miniature multilayer ceramic bandpass filter, which can generate at least 4 transmission zeros in the stopband above the passband, and generate at least 4 transmissions in the stopband below the passband. Zero point, but also to ensure a small size.
  • a miniature multilayer ceramic bandpass filter comprising a central laminated body and a filter circuit arranged in the central laminated body, the central laminated body comprising a plurality of load-bearing units stacked from top to bottom
  • Each carrying unit is composed of multilayer dielectric substrates stacked from top to bottom, and adjacent dielectric substrates are connected to each other through conduction bands and vias.
  • the surface of the central laminate is provided with a first input and output end and a second Two input and output terminals;
  • the filter circuit includes at least four first transmission zero structures connected in series and at least four second transmission zero structures connected in series.
  • the end of the first transmission zero structure after the series connection is connected to the second transmission after the series connection.
  • the head end of the zero point structure is connected in series, and the first transmission zero point structure at the head end is connected to the first input and output end, and the second transmission zero point structure at the end is connected to the second input and output end;
  • the zero point structure generates a transmission zero point in the stop band above the pass band, and each second transmission zero point structure generates a transmission zero point in the stop band below the pass band;
  • At least one first transmission zero point structure and at least one second transmission zero point structure are respectively an arrangement unit, and each arrangement unit is arranged on one of the carrying units.
  • the filter circuit of the filter of the present invention includes at least 4 first transmission zero structures connected in series and at least 4 second transmission zero structures connected in series, which can generate at least 4 transmissions in the stop band above the passband Zero point, at least 4 transmission zero points are generated in the stop band below the passband, so that the filter can achieve an insertion loss of less than 3.5dB in the 3.17GHz ⁇ 4.22GHz; in the frequency range of 0.1GHz ⁇ 2.77GHz and 4.8GHz
  • the out-of-band suppression of about 35dB or more can be achieved in the frequency range of ⁇ 10GHz; the in-band insertion loss at the center frequency of 3.7GHz is less than 2.3dB.
  • the central laminated body of the filter of the present invention is divided into a plurality of load-bearing units stacked from top to bottom, and each of the load-bearing units is composed of multilayer dielectric substrates stacked from top to bottom, with at least one first transmission zero structure and At least one second transmission zero point structure is an arrangement unit, and each arrangement unit is arranged on one of the load-bearing units, so that the entire product can extend in thickness to minimize the length and width, thereby maintaining
  • the above-mentioned high-performance features such as low insertion loss, high suppression and fast attenuation, but also has the characteristics of small size, its length is only 3.2mm, width is only 2.5mm, the product thickness direction depends on the number of dielectric layers or the thickness of a single layer of dielectric
  • the typical thickness can vary from 1.0mm to 3.0mm, and in extreme cases it can be thinner than 1.0mm or thicker than 3.0mm. It can be processed into a patch form for easy integration in a microwave system. It can be said that both high
  • FIG. 1 is a schematic diagram of the overall structure of Embodiment 1 of the miniature multilayer ceramic bandpass filter of the present invention, in which C4 and L4 are in a folded state.
  • FIG. 2 is a schematic diagram of the exploded structure of the center laminate of the embodiment in FIG. 1.
  • Fig. 3 is a schematic diagram of an equivalent filter circuit in the embodiment of Fig. 1.
  • Fig. 4 is a schematic diagram of the overall structure of the second embodiment of the miniature multilayer ceramic bandpass filter of the present invention, in which C4 and L4 are connected in sequence.
  • Fig. 5 is a schematic diagram of the exploded structure of the central laminate of the embodiment of Fig. 1.
  • Fig. 6 is a schematic diagram of the equivalent filter circuit of the embodiment of Fig. 4.
  • Fig. 7 is a schematic diagram showing the direction of the input end face of the present invention when C4 and L4 are in a folded state.
  • Fig. 8 is a schematic diagram of a 1/2 rectangle and a 3/4 rectangle.
  • Figure 9 is the actual test data of the filter of the present invention.
  • the miniature multilayer ceramic bandpass filter of the present invention includes a central laminated body and a filter circuit arranged in the central laminated body.
  • the central laminated body includes a plurality of load-bearing units stacked from top to bottom, and each load-bearing unit is composed of Multi-layer dielectric substrates are stacked from top to bottom, adjacent dielectric substrates are connected to each other through conduction bands and via holes, and the surface of the central laminated body is provided with a first input and output end and a second input and output end;
  • the filter circuit includes at least four first transmission zero structures connected in series and at least four second transmission zero structures connected in series.
  • the end of the first transmission zero structure after the series connection is connected to the second transmission after the series connection.
  • the head end of the zero point structure is connected in series, and the first transmission zero point structure at the head end is connected to the first input and output end, and the second transmission zero point structure at the end is connected to the second input and output end;
  • the zero point structure generates a transmission zero point in the stop band above the pass band, and each second transmission zero point structure generates a transmission zero point in the stop band below the pass band;
  • At least one first transmission zero point structure and at least one second transmission zero point structure are respectively an arrangement unit, and each arrangement unit is arranged on one of the carrying units.
  • the first transmission zero structure that is not at the end is realized by a sequential structure, that is, the input end surface of the first transmission zero structure that is not at the end is located on the same side as the first input and output end, and the input end surface Is located on the opposite side of the first input and output terminal;
  • the first transmission zero structure at the end can be realized by a folded structure, that is: the first transmission zero structure at the end.
  • the input end surface of a transmission zero structure is located on the opposite side of the first input and output end, and the input end surface is located on the same side of the first input and output end.
  • the first transmission zero structure may be only an inductor L, or a parallel structure of an inductor L and a capacitor C.
  • the second transmission zero structure may be only a capacitor C; or Inductor L and a capacitor C are connected in parallel.
  • a capacitor C is used to ground between two adjacent first transmission zero-point structures; the front end of any second transmission zero-point structure is grounded through an inductor L.
  • the first transmission zero structure or the second transmission zero structure is a parallel resonator in the circuit, and the grounding through the capacitor C or the grounding through the inductance L can be used for matching between the parallel resonators.
  • the present invention may further include two grounding side plates, the two grounding side plates are located on the sides of the central laminated body, and the dielectric substrate has at least one grounding layer, and the grounding layer is connected to the grounding side plate.
  • the present invention may also include a longitudinal shielding structure, the longitudinal shielding structure is arranged inside the central laminated body and connected to the ground layer; and above the central laminated body is also provided with an end face blank substrate layer, the end face blank
  • the substrate layer is composed of at least one blank multilayer dielectric substrate; the longitudinal shielding structure is located between the blank substrate layers on both ends.
  • This longitudinal shielding structure is that the uppermost and lowermost layers are not exposed outside the filter. Another characteristic is that it is arranged between the input and output electrodes and the internal circuit of the filter, which can effectively prevent the input and output electrodes from affecting the internal circuit of the filter. Unnecessary effects are produced to ensure filter performance.
  • a spaced blank substrate layer is arranged between the two carrying units, and any spaced blank substrate layer is composed of at least one blank multi-layer dielectric substrate.
  • the miniature multilayer ceramic bandpass filter of this embodiment includes a central laminated body 100 and a filter circuit 200 arranged in the central laminated body.
  • the central laminated body 100 includes a plurality of For the lower-stacked carrying units, each carrying unit is composed of multilayer dielectric substrates stacked from top to bottom, and adjacent dielectric substrates are connected to each other through conductive tapes 300 and vias 400.
  • the central laminate 100 The surface is provided with a first input and output terminal S1 and a second input and output terminal S3; it also includes two grounded side plates S2 and S4, and the two grounded side plates S2 and S4 are located on the side of the central laminated body 100.
  • the numbers of the first transmission zero structure and the second transmission zero structure are 4 respectively; and the first transmission zero structure is a parallel structure of an inductor L and a capacitor C.
  • the second transmission zero structure is a parallel structure of an inductor L and a capacitor C.
  • the four first transmission zero-point structures are respectively the parallel structure of L1 and C1, the parallel structure of L2 and C2, the parallel structure of L3 and C3, the parallel structure of L4 and C4; and the parallel structure of L1 and C1 is the same as the parallel structure of L1 and C1.
  • the parallel structure of L2 and C2 is grounded through C5
  • the parallel structure of L2 and C2 and the parallel structure of L3 and C3 are grounded through C6, and the parallel structure of L3 and C3 is connected to the L4 and C4.
  • C7 is grounded between the parallel structures;
  • the four second transmission zero point structures are the parallel structure of L5 and C8, the parallel structure of L6 and C9, the parallel structure of L7 and C10, the parallel structure of L8 and C11; and the front end of the parallel structure of L5 and C8 By grounding through L9, the front end of the parallel structure of L6 and C9 is grounded through L10, the front end of the parallel structure of L7 and C10 is grounded through L11, and the front end of the parallel structure of L8 and C11 is grounded through L12;
  • the central laminate includes a first ground layer D1, a first spaced blank substrate layer K1, a first carrying unit Z1, a second spaced blank substrate layer K2, a second carrying unit Z2, a third spaced blank substrate layer K3, and a
  • the three-carrying unit Z3 and the third ground layer D3; the first ground layer D1 and the third ground layer D3 are both connected to the ground side plates S2 and S4.
  • the upper side of the central laminate also includes a blank substrate layer M on one end, which is formed by stacking three blank dielectric substrates.
  • the first bearing unit Z1 is provided with three first transmission zero-point structures, and the three first transmission zero-point structures are one arrangement unit; the first bearing unit is composed of the first to fourth layers of dielectric substrates, the first and The second layer of dielectric substrates are made of L1, L2, L3, the third and fourth layer of dielectric substrates are made of C1, C2, C3, and the first layer of dielectric substrates are also made of C5 and C6, and the second layer of dielectric substrates are also made of C7, where C1 and L1 are connected to the first input and output terminal S1;
  • the second carrying unit Z2 is provided with one of the first transmission zero-point structures, and the one first transmission zero-point structure is an arrangement unit; that is, the second carrying unit is composed of the 5th to 8th layers of dielectric substrates, The fifth and sixth layers of dielectric substrates are made of L4, the seventh and eighth layers of dielectric substrates are made of C4, and the sixth layer of dielectric substrates are made of horizontal shielding structure P1;
  • the third bearing unit Z3 is provided with four second transmission zero-point structures, and the four second transmission zero-point structures are one arrangement unit, that is, the third bearing unit is composed of the 9th to 18th layers of dielectric substrates,
  • the ninth layer of the dielectric substrate is also the second ground layer D2.
  • the 10th and 11th layer of dielectric substrates are made of L9, L10, L11, L12, and the 12th to the 16th layer of dielectric substrates are made of L5, L6, L7, and L8.
  • the 17th and 18th layers of dielectric substrates are fabricated with C8, C9, C10, and C11, where L8 and C11 are connected to the second input and output terminal S3.
  • the sixth and ninth layer dielectric substrates are also connected to ground terminals S2 and S4.
  • the sixth layer of the dielectric substrate to the 18th layer of the dielectric substrate and the third ground layer D3 form the vertical shielding structure P2 in the shielding structure by punching through holes.
  • the first transmission zero structure at the end that is, the parallel structure of L4 and C4
  • the input end face a4 is located on the opposite side of the first input and output end S1, that is, the input end face a4 and the first input and output terminal S1 are respectively located on the left and right sides of the parallel structure of L4 and C4
  • the output end face b4 is located on the same side as the first input and output terminal S1, that is, both are located in the parallel structure of L4 and C4 To the left.
  • the difference between this embodiment and the first embodiment is that: the first transmission zero structure at the end is the same as the other three first transmission zero structures at the front end, all using common
  • the connection structure, that is, the sequential structure realizes:
  • the parallel structure of L4 and C4 is the same as the input and output ends a1, a2, and a3 of the other three first transmission zero structures, and they are all located on the same side as the first input and output end S1, that is, they are all located at The left side of the parallel structure of L4 and C4, and the output end face b4 is located on the left and right sides of the parallel structure of L4 and C4 with the first input and output end S1.
  • this sequential structure is not compact enough.
  • the parallel structure of L4 and C4 is connected to the parallel structure of L5 and C8 through the metal conduction band 300, the required metal conduction band 300 is longer. Thus, the convenience of the connection operation that affects the reliability of the connection to a certain extent.
  • all the first transmission zero structure adopts a sequential connection structure, so the parallel structure of L4 and C4 can be set in the first carrying unit Z1, but in order to meet the need for sufficient space to arrange the metal conduction band 300
  • the second spaced blank substrate layer K2 between the first carrying unit Z1 and the second carrying unit Z2 can be composed of a multi-layer space substrate, or in order to facilitate wiring, a wiring layer T1 is specially provided.
  • FIG. 5 only wants to express the difference between the unfolded structure and the folded structure, so it is not a complete structure diagram. For example, the vertical shielding structure P2 and the horizontal shielding structure P1 are omitted, and part of the ground layer is also omitted.
  • all inductors L are spiral inductors, such as inductors L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12 are spiral inductors ,
  • Each layer is a 1/2 (see the left picture in Figure 8) or 3/4 (see the right picture in Figure 8) rectangle wound by a metal conduction tape 300 with a width of 0.1mm.
  • the holes connect the metal conduction bands 300 of adjacent layers.
  • the vertical thick black straight line in FIG. 2 and FIG. 5 is the metal conductive tape 300, except for the part of the vertical thick black straight line that represents the longitudinal shielding structure P2 in FIG. 2.
  • the above embodiment can make the filter achieve an insertion loss of less than 3.5dB within 3.17GHz ⁇ 4.22GHz; both within the frequency range of 0.1GHz ⁇ 2.77GHz and within the frequency range of 4.8GHz ⁇ 10GHz Achieve out-of-band suppression of about 35dB or greater; the band interpolation loss at the center frequency of 3.7GHz is less than 2.3dB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种微型多层陶瓷带通滤波器,包括中心层叠体(100)及设于中心层叠体(100)中的滤波电路(200),中心层叠体(100)包括复数个自上而下叠置的承载单元(Z1,Z2,Z3),每个承载单元(Z1,Z2,Z3)由多层介质基板自上而下层叠构成,滤波电路(200)包括至少4个依次串接的第一传输零点结构和至少4个依次串接的第二传输零点结构,每第一传输零点结构在通带上方的阻带内产生一传输零点,每第二传输零点结构在通带下方的阻带内产生一传输零点;以至少一个第一传输零点结构和以至少一个第二传输零点结构分别为一个排布单元,每个排布单元设置于一所述承载单元(Z1,Z2,Z3)上。能在通带上方的阻带内产生至少4个传输零点,在通带下方的阻带内产生至少4个传输零点,不仅性能优异,而且还能保证很小的尺寸。

Description

一种微型多层陶瓷带通滤波器 技术领域
本发明涉及一种带通滤波器,具体涉及一种微型多层陶瓷带通滤波器。
背景技术
带通滤波器是射频系统的重要无源器件。一个优良的带通滤波器应当具有低的带内损耗,深的带外抑制,宽的阻带抑制范围,也需要具有尽可能小的体积。传统的带通滤波器大都采用平面结构,占用面积较大,不能满足射频前端的小型化需求,同时传统的带通滤波器较难集成。
在实际设计的带通滤波器中为了使通带外有较大抑制,就需要在一些特定的频点处引入传输零点,传输零点指的是滤波器传输函数等于零,即在从理论角度上说,这一频点上能量不能通过网络,因而起到完全隔离作用,但是因为实际情况中存在电磁辐射与电磁泄漏,依然会有少量能量通过网络。但目前的带通滤波器的传输零点通常较少,通常是不超过6个左右的传输零点(即在通带上方的阻带内产生不超过3个传输零点,在通带下方的阻带内产生不超过3个传输零点),虽然能够实现不错的性能,但是在面对更严格的性能要求时,现有结构仍无法满足需求。虽然传输零点数量越多,滤波器的带外衰减越快,但是传输零点越多,导致电路元件数量增多,因此空间占用就越多,但是现在又要求小体积,这样就出现一个矛盾,大量的电路元件和有限空间之间的矛盾。
为了满足器件的小型化与高性能的要求,传统的方法是采用从材料入手使用高介电常数与低损耗的介质材料,减小器件的体积同时提升器件性能。但是传统的方法中,对着介电常数的增加,器件内部的耦合会随之增加,内部耦合增加到一定程度之后,器件性能将受到负面影响;介质损耗在降低到一定程度之后,导体损耗与辐射损耗将会变成影响器件损耗的主要因素。所以,仅从材料入手,无法解决目前要求器件的小型化与高性能兼顾的问题的,还要从电路设计的角度出发,寻找对应的解决方案。
技术问题
本发明要解决的技术问题,在于提供一种微型多层陶瓷带通滤波器,能在通带上方的阻带内产生至少4个传输零点,在通带下方的阻带内产生至少4个传输零点,而且还能保证很小的尺寸。
技术解决方案
本发明是这样实现的:一种微型多层陶瓷带通滤波器,包括中心层叠体及设于中心层叠体中的滤波电路,所述中心层叠体包括复数个自上而下叠置的承载单元,每个承载单元由多层介质基板自上而下层叠构成,相邻介质基板之间通过导带及过孔相互相连导通,所述中心层叠体的表面设有第一输入输出端和第二输入输出端;
所述滤波电路包括至少4个依次串接的第一传输零点结构和至少4个依次串接的第二传输零点结构,串接后的第一传输零点结构的末端与串接后的第二传输零点结构的首端串联,且位于首端的第一传输零点结构连接所述第一输入输出端,位于末端的所述第二传输零点结构连接所述第二输入输出端;每所述第一传输零点结构在通带上方的阻带内产生一传输零点,每所述第二传输零点结构在通带下方的阻带内产生一传输零点;
以至少一个第一传输零点结构和以至少一个第二传输零点结构分别为一个排布单元,每个排布单元设置于一所述承载单元上。
有益效果
本发明具有如下优点:
1、本发明滤波器的滤波电路包括至少4个依次串接的第一传输零点结构和至少4个依次串接的第二传输零点结构,能在通带上方的阻带内产生至少4个传输零点,在通带下方的阻带内产生至少4个传输零点,从而使滤波器在3.17GHz~4.22GHz内可以实现小于3.5dB的插损;在0.1GHz~2.77GHz的频率范围内与4.8GHz~10GHz的频率范围内均可实现35dB左右或更大的带外抑制;中心频率3.7GHz上的带内插损小于2.3dB。定义此滤波器的矩形比是35dB带宽除以3.5dB带宽,则可知此滤波器的矩形比是(4.8GHz-2.77GHz)/(4.22GHz-3.17GHz)=1.93,由计算可知,此滤波器的矩形比小于2。
2、本发明滤波器的中心层叠体分成复数个自上而下叠置的承载单元,每个承载单元又由多层介质基板自上而下层叠构成,以至少一个第一传输零点结构和以至少一个第二传输零点结构分别为一个排布单元,每个排布单元设置于一所述承载单元上,使整个产品能在厚度上延伸,以最大限度地减小长度和宽度,从而在保持上述低插损、高抑制与快速衰减等高性能特征的同时,还具备小尺寸的特点,其长度仅3.2mm,宽度仅2.5mm,产品厚度方向根据使用介质层数的不同或单层介质厚度的不用而有所不同,其典型的厚度可以从1.0mm变化到3.0mm,在极端情况下还可以薄于1.0mm或者厚于3.0mm。可以加工成为贴片的形式,便于在微波系统中集成。可以说兼顾了高性能与微型化的要求。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1是本发明微型多层陶瓷带通滤波器实施例一的整体结构示意图,图中的C4与L4处于折叠状态。
图2是图1实施例的中心层叠体分解结构示意图。
图3是图1实施例的等效滤波电路原理图。
图4是本发明微型多层陶瓷带通滤波器实施例二的整体结构示意图,图中的C4与L4处于顺接状态。
图5是图1实施例的中心层叠体分解结构示意图。
图6是图4实施例的等效滤波电路原理图。
图7是本发明C4与L4处于折叠状态时的输入端面所处方向示意图。
图8是1/2矩形与3/4矩形的示意图。
图9是本发明所述滤波器的实际测试数据。
本发明的最佳实施方式
本发明的微型多层陶瓷带通滤波器,包括中心层叠体及设于中心层叠体中的滤波电路,所述中心层叠体包括复数个自上而下叠置的承载单元,每个承载单元由多层介质基板自上而下层叠构成,相邻介质基板之间通过导带及过孔相互相连导通,所述中心层叠体的表面设有第一输入输出端和第二输入输出端;
所述滤波电路包括至少4个依次串接的第一传输零点结构和至少4个依次串接的第二传输零点结构,串接后的第一传输零点结构的末端与串接后的第二传输零点结构的首端串联,且位于首端的第一传输零点结构连接所述第一输入输出端,位于末端的所述第二传输零点结构连接所述第二输入输出端;每所述第一传输零点结构在通带上方的阻带内产生一传输零点,每所述第二传输零点结构在通带下方的阻带内产生一传输零点;
以至少一个第一传输零点结构和以至少一个第二传输零点结构分别为一个排布单元,每个排布单元设置于一所述承载单元上。
其中,非位于末端的所述第一传输零点结构采用顺接结构实现,即:非位于末端的所述第一传输零点结构的输入端面均位于与所述第一输入输出端的同侧,输入端面则位于与所述第一输入输出端的异侧;
但为了缩短位于末端的第一传输零点结构与第二传输零点结构的首端连接的导带长度,位于末端的所述第一传输零点结构可采用折叠结构实现,即:位于末端的所述第一传输零点结构的输入端面位于与所述第一输入输出端的异侧,输入端面则位于与所述第一输入输出端的同侧。
本发明中,所述第一传输零点结构可以仅为一电感L,或者为电感L与一电容C的并联结构,同理,所述第二传输零点结构可以仅为一电容C;或者为一电感L与一电容C的并联结构。
根据具体的需要,两相邻所述第一传输零点结构之间通过一电容C接地;任一所述第二传输零点结构的前端通过一电感L接地。第一传输零点结构或第二传输零点结构在电路上均为一个并联谐振器,通过电容C接地或通过电感L接地可用于各并联谐振器之间的匹配。
本发明还可包括两接地侧板,两所述接地侧板位于所述中心层叠体的侧面,所述介质基板中至少具有一接地层,该接地层连接所述接地侧板。
本发明还可包括一纵向屏蔽结构,所述纵向屏蔽结构设于所述中心层叠体内部并连接所述接地层;且所述中心层叠体的上方还设有一端面空白基板层,所述端面空白基板层由至少一空白的多层介质基板构成;所述纵向屏蔽结构处于两端面空白基板层之间。此纵向屏蔽结构的一个特点在于其最上层与最下层均不显露在滤波器外部,另一个特点是设置在输入输出电极与滤波器内部电路之间,可以有效防止输入输出电极对滤波器内部电路产生不必要影响,从而保证滤波器性能。
两所述承载单元之间设有一间隔空白基板层,且任一间隔空白基板层由至少一空白的多层介质基板构成。
具体地,下面参照附图结合实施例对本发明作进一步的说明:
实施例一
结合图1至图3所示,本实施例的微型多层陶瓷带通滤波器,包括中心层叠体100及设于中心层叠体中的滤波电路200,所述中心层叠体100包括复数个自上而下叠置的承载单元,每个承载单元由多层介质基板自上而下层叠构成,相邻介质基板之间通过导带300及过孔400相互相连导通,所述中心层叠体100的表面设有第一输入输出端S1和第二输入输出端S3;还包括两接地侧板S2和S4,两所述接地侧板S2和S4位于所述中心层叠体100的侧面。
本实施例中,所述滤波电路中,第一传输零点结构和第二传输零点结构的数量分别为4个;且所述第一传输零点结构为电感L与一电容C的并联结构,所述第二传输零点结构为一电感L与一电容C的并联结构。
4个所述第一传输零点结构分别为L1和C1的并联结构,L2和C2的并联结构,L3和C3的并联结构,L4和C4的并联结构;且所述L1和C1的并联结构与所述L2和C2的并联结构之间通过C5接地,所述L2和C2的并联结构和所述L3和C3的并联结构之间通过C6接地,所述L3和C3的并联结构和所述L4和C4的并联结构之间通过C7接地;
4个所述第二传输零点结构分别为L5和C8的并联结构,L6和C9的并联结构,L7和C10的并联结构,L8和C11的并联结构;且所述L5和C8的并联结构的前端通过通过L9接地,所述L6和C9的并联结构的前端通过L10接地,所述L7和C10的并联结构的前端通过L11接地,所述L8和C11的并联结构的前端通过L12接地;
所述中心层叠体依次包括第一接地层D1、第一间隔空白基板层K1、第一承载单元Z1、第二间隔空白基板层K2、第二承载单元Z2、第三间隔空白基板层K3、第三承载单元Z3以及第三接地层D3;第一接地层D1和第三接地层D3均连接所述接地侧板S2和S4。
中心层叠体的上方的还包括一端面空白基板层M,其是由三层空白的介质基板层叠而成。
所述第一承载单元Z1设置3个第一传输零点结构,该3个第一传输零点结构即为一个排布单元;所述第一承载单元由第1~4层介质基板构成,第1和第2层介质基板制作有L1、 L2、L3,第3和第4层介质基板制作有C1、C2、C3,且第1层介质基板还制作有C5与C6,第2层介质基板还制作有C7,其中C1、L1与第一输入输出端S1相连;
所述第二承载单元Z2设置1个所述第一传输零点结构,该1个第一传输零点结构即为一个排布单元;即所述第二承载单元由第5~8层介质基板构成,第5和第6层介质基板制作有L4,第7和第8层介质基板制作有C4,第6层介质基板制作有水平面屏蔽结构P1;
所述第三承载单元Z3设置4个所述第二传输零点结构,该4个第二传输零点结构即为一个排布单元,即所述第三承载单元由第9~18层介质基板构成,第9层介质基板同时也为第二接地层D2,第10和第11层介质基板制作有L9、L10、L11、L12,第12层到第16层介质基板制作有L5、L6、L7、L8,第17与第18层介质基板制作有C8、C9、C10、C11,其中L8、C11与第二输入输出端S3相连。
所述第6、第9层介质基板还连接接地端S2和S4。
第6层介质基板到第18层介质基板以及第三接地层D3通过打贯通孔的方式形成屏蔽结构中的纵向屏蔽结构P2。
需要说明的是:本实施例中,位于末端的所述第一传输零点结构,即L4和C4的并联结构,其输入端面a4位于与所述第一输入输出端S1的异侧,即输入端面a4与第一输入输出端S1分别位于L4和C4的并联结构的左、右两侧,输出端面b4则位于与所述第一输入输出端S1的同侧,即均位于L4和C4的并联结构的左侧。这样可以大缩短L4和C4的并联结构与L5和C8的并联结构二者之间连接线的长度。
实施例二
如图4至图7所示,本实施例与实施一相比,不同之处仅在于:位于末端的所述第一传输零点结构,与其前端其余3个第一传输零点结构一样,均采用普通连接结构,即顺接结构实现:
即L4和C4的并联结构,其输入端面a4与其余3个第一传输零点结构的输入输出端a1、a2、a3一样,均位于与所述第一输入输出端S1的同侧,即均位于L4和C4的并联结构的左侧,而输出端面b4则位于与所述第一输入输出端S1则位于L4和C4的并联结构的左、右两侧。这种顺接结构相比折叠结构而言,排布的结构不够紧凑,从L4和C4的并联结构通过金属导带300连接L5和C8的并联结构时,所需的金属导带300较长,从而在一定程度上会影响连接的可靠性的连接操作的便利性。
如图5所示,所有的第一传输零点结构均采用顺接结构,因此可以将L4和C4的并联结构设在第一承载单元Z1内,但为了满足有足够的空间布置金属导带300需将第一承载单元Z1和第二承载单元Z2之间的第二间隔空白基板层K2可由多层空间基板构成,或者为了方便布线,还专门设置了一布线层T1。另外,图5只想表达非折叠结构与折叠结构的不同,因此并非完整结构图,比如将纵向屏蔽结构P2和水平面屏蔽结构P1省略,部分接地层也省略。
再如图8所示,上述实施例中,所有的电感L均为螺旋电感,如电感L1、L2、L3、L4、 L5、L6、L7、L8、L9、L10、L11、L12均为螺旋电感,其每一层都是由0.1mm宽度的金属导带300绕成的1/2(见图8的左图)或者3/4(见图8的右图)矩形,导通时是通过过孔将相邻层的金属导带300连接。其中,图2和图5中的竖向粗黑直线为金属导带300,但图2中表示纵向屏蔽结构P2的部分竖向粗黑直线除外。
再如图9所示,上述实施例可使滤波器在3.17GHz~4.22GHz内实现小于3.5dB的插损;在0.1GHz~2.77GHz的频率范围内与4.8GHz~10GHz的频率范围内均可实现35dB左右或更大的带外抑制;中心频率3.7GHz上的带内插损小于2.3dB。定义此滤波器的矩形比是35dB带宽除以3.5dB带宽,则可知此滤波器的矩形比是(4.8GHz-2.77GHz)/(4.22GHz-3.17GHz)=1.93,由计算可知,此滤波器的矩形比小于2。从而实现了较低的带内插损,而且还实现了阻带快速衰减及宽带抑制的优点。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (10)

  1. 一种微型多层陶瓷带通滤波器,其特征在于:包括中心层叠体及设于中心层叠体中的滤波电路,所述中心层叠体包括复数个自上而下叠置的承载单元,每个承载单元由多层介质基板自上而下层叠构成,相邻介质基板之间通过导带及过孔相互相连导通,所述中心层叠体的表面设有第一输入输出端和第二输入输出端;
    所述滤波电路包括至少4个依次串接的第一传输零点结构和至少4个依次串接的第二传输零点结构,串接后的第一传输零点结构的末端与串接后的第二传输零点结构的首端串联,且位于首端的第一传输零点结构连接所述第一输入输出端,位于末端的所述第二传输零点结构连接所述第二输入输出端;每所述第一传输零点结构在通带上方的阻带内产生一传输零点,每所述第二传输零点结构在通带下方的阻带内产生一传输零点;
    以至少一个第一传输零点结构和以至少一个第二传输零点结构分别为一个排布单元,每个排布单元设置于一所述承载单元上。
  2. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:
    非位于末端的所述第一传输零点结构采用顺接结构实现,即:非位于末端的所述第一传输零点结构的输入端面均位于与所述第一输入输出端的同侧,输入端面则位于与所述第一输入输出端的异侧;
    位于末端的所述第一传输零点结构采用折叠结构实现,即:位于末端的所述第一传输零点结构的输入端面位于与所述第一输入输出端的异侧,输入端面则位于与所述第一输入输出端的同侧。
  3. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:
    所述第一传输零点结构仅为一电感L,或为电感L与一电容C的并联结构;
    所述第二传输零点结构仅为一电容C;或为一电感L与一电容C的并联结构。
  4. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:两相邻所述第一传输零点结构之间通过一电容C接地;任一所述第二传输零点结构的前端通过一电感L接地。
  5. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:所述电感L是螺旋电感,其每一层都是由0.1mm宽度的金属导带绕成的1/2或者3/4矩形。
  6. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:还包括两接地侧板,两所述接地侧板位于所述中心层叠体的侧面,所述介质基板中至少具有一接地层,该接地层连接所述接地侧板。
  7. 根据权利要求6所述的一种微型多层陶瓷带通滤波器,其特征在于:还包括一纵向屏蔽结构,所述纵向屏蔽结构设于所述中心层叠体内部并连接所述接地层;且所述中心层叠体的上方还设有一端面空白基板层,所述端面空白基板层由至少一空白的多层介质基板构成;所述纵向屏蔽结构处于两端面空白基板层之间。
  8. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:两所述承载单元之间设有一间隔空白基板层,且任一间隔空白基板层由至少一空白的多层介质基板构成。
  9. 根据权利要求1所述的一种微型多层陶瓷带通滤波器,其特征在于:
    所述第一传输零点结构和所述第二传输零点结构的数量分别为4个;
    所述中心层叠体依次包括第一接地层、第一间隔空白基板层、第一承载单元、第二间隔空白基板层、第二承载单元、第三间隔空白基板层、第三承载单元以及第三接地层;
    所述第一承载单元设置3个所述第一传输零点结构;
    所述第二承载单元设置1个所述第一传输零点结构;
    所述第三承载单元设置4个所述第二传输零点结构。
  10. 根据权利要求9所述的一种微型多层陶瓷带通滤波器,其特征在于:
    4个所述第一传输零点结构均为电感L和电容C并联结构,分别为L1和C1的并联结构,L2和C2的并联结构,L3和C3的并联结构,L4和C4的并联结构;且所述L1和C1的并联结构与所述L2和C2的并联结构之间通过C5接地,所述L2和C2的并联结构和所述L3和C3的并联结构之间通过C6接地,所述L3和C3的并联结构和所述L4和C4的并联结构之间通过C7接地;
    4个所述第二传输零点结构均为电感L和电容C并联结构,分别为L5和C8的并联结构,L6和C9的并联结构,L7和C10的并联结构,L8和C11的并联结构;且所述L5和C8的并联结构的前端通过通过L9接地,所述L6和C9的并联结构的前端通过L10接地,所述L7和C10的并联结构的前端通过L11接地,所述L8和C11的并联结构的前端通过L12接地;
    所述第一承载单元由第1~4层介质基板构成,第1和第2层介质基板制作有L1、L2、L3,第3和第4层介质基板制作有C1、C2、C3,且第1层介质基板还制作有C5与C6,第2层介质基板还制作有C7,其中C1、L1与第一输入输出端S1相连;
    所述第二承载单元由第5~8层介质基板构成,第5和第6层介质基板制作有L4,第7和第8层介质基板制作有C4,第6层介质基板制作有水平面屏蔽结构;
    所述第三承载单元由第9~18层介质基板构成,第9层介质基板为接地层,第10和第11层介质基板制作有L9、L10、L11、L12,第12层到第16层介质基板制作有L5、L6、L7、L8,第17与第18层介质基板制作有C8、C9、C10、C11,其中L8、C11与第二输入输出端相连。
PCT/CN2020/086908 2019-09-04 2020-04-26 一种微型多层陶瓷带通滤波器 WO2021042743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910829293.7A CN110429920A (zh) 2019-09-04 2019-09-04 一种微型多层陶瓷带通滤波器
CN201910829293.7 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021042743A1 true WO2021042743A1 (zh) 2021-03-11

Family

ID=68418711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086908 WO2021042743A1 (zh) 2019-09-04 2020-04-26 一种微型多层陶瓷带通滤波器

Country Status (2)

Country Link
CN (1) CN110429920A (zh)
WO (1) WO2021042743A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429920A (zh) * 2019-09-04 2019-11-08 研创光电科技(赣州)有限公司 一种微型多层陶瓷带通滤波器
JP2021164142A (ja) 2020-04-03 2021-10-11 株式会社村田製作所 高周波モジュール、高周波回路及び通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509829A (zh) * 2011-10-27 2012-06-20 无锡南理工科技发展有限公司 C波段低插损高次谐波抑制微型带通滤波器
US20130154769A1 (en) * 2011-12-19 2013-06-20 Murata Manufacturing Co., Ltd. Band-pass filter
CN203690454U (zh) * 2013-07-02 2014-07-02 华南理工大学 基于频率选择性耦合技术的宽阻带ltcc带通滤波器
CN110429920A (zh) * 2019-09-04 2019-11-08 研创光电科技(赣州)有限公司 一种微型多层陶瓷带通滤波器
CN210074116U (zh) * 2019-09-04 2020-02-14 研创光电科技(赣州)有限公司 一种具有折叠结构的微型多层陶瓷带通滤波器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621146B (zh) * 2009-08-11 2014-06-04 南京理工大学 L波段微型双工器
KR101166112B1 (ko) * 2010-03-24 2012-07-23 주식회사 텔레웍스 적층형 밴드패스필터, 다이플렉서 및 멀티플렉서
WO2014156720A1 (ja) * 2013-03-28 2014-10-02 株式会社村田製作所 Lcフィルタ素体およびlcフィルタ
CN107017857B (zh) * 2017-05-22 2023-11-21 中国电子科技集团公司第四十三研究所 一种微型多层陶瓷低通滤波器
CN107508018B (zh) * 2017-09-06 2020-11-17 嘉兴佳利电子有限公司 一种多层超宽带滤波器
CN109889176A (zh) * 2019-04-01 2019-06-14 中国计量大学上虞高等研究院有限公司 一种抑制高次谐波的5g高性能ltcc带通滤波器
CN210380786U (zh) * 2019-09-04 2020-04-21 研创光电科技(赣州)有限公司 一种微型多层陶瓷带通滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509829A (zh) * 2011-10-27 2012-06-20 无锡南理工科技发展有限公司 C波段低插损高次谐波抑制微型带通滤波器
US20130154769A1 (en) * 2011-12-19 2013-06-20 Murata Manufacturing Co., Ltd. Band-pass filter
CN203690454U (zh) * 2013-07-02 2014-07-02 华南理工大学 基于频率选择性耦合技术的宽阻带ltcc带通滤波器
CN110429920A (zh) * 2019-09-04 2019-11-08 研创光电科技(赣州)有限公司 一种微型多层陶瓷带通滤波器
CN210074116U (zh) * 2019-09-04 2020-02-14 研创光电科技(赣州)有限公司 一种具有折叠结构的微型多层陶瓷带通滤波器

Also Published As

Publication number Publication date
CN110429920A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
US6191666B1 (en) Miniaturized multi-layer ceramic lowpass filter
US8018299B2 (en) Band-pass filter circuit and multi-layer structure and method thereof
JP2020510326A (ja) 積層チップバンドパスフィルタ
US9203371B2 (en) Electrical double filter structure
CN103944525B (zh) 一种ltcc高通滤波器
WO2021042743A1 (zh) 一种微型多层陶瓷带通滤波器
US8120446B2 (en) Electronic component
US6903628B2 (en) Lowpass filter formed in multi-layer ceramic
US6335663B1 (en) Multiplexer/branching filter
JP3067612B2 (ja) 積層型バンドパスフィルタ
CN107017857B (zh) 一种微型多层陶瓷低通滤波器
CN210380786U (zh) 一种微型多层陶瓷带通滤波器
CN210074116U (zh) 一种具有折叠结构的微型多层陶瓷带通滤波器
JP4630517B2 (ja) 積層フィルタ、積層複合デバイス、および通信装置
EP1806841A2 (en) Resonant circuit, filter circuit, and multilayered substrate
CN114094292A (zh) 高抑制lc带通滤波器
JP4245265B2 (ja) 複数のフィルタを有する多層配線基板
JP2721626B2 (ja) 積層型誘電体フィルタ
CN211127741U (zh) 一种高通滤波器
CN214672907U (zh) 一种带通滤波器
JP2004328569A (ja) 積層型バンドパスフィルタ
CN105515545B (zh) 叠层式高通滤波器及其制备方法
CN109889176A (zh) 一种抑制高次谐波的5g高性能ltcc带通滤波器
CN114665914B (zh) 超小型化ltcc双工器及射频前端电路
CN219436114U (zh) 一种ltcc小型化带通滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861142

Country of ref document: EP

Kind code of ref document: A1