WO2021042317A1 - Radio resource preemption for full-duplex - Google Patents

Radio resource preemption for full-duplex Download PDF

Info

Publication number
WO2021042317A1
WO2021042317A1 PCT/CN2019/104491 CN2019104491W WO2021042317A1 WO 2021042317 A1 WO2021042317 A1 WO 2021042317A1 CN 2019104491 W CN2019104491 W CN 2019104491W WO 2021042317 A1 WO2021042317 A1 WO 2021042317A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
frequency resources
request
over
time period
Prior art date
Application number
PCT/CN2019/104491
Other languages
French (fr)
Inventor
Min Huang
Chao Wei
Qiaoyu Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/104491 priority Critical patent/WO2021042317A1/en
Publication of WO2021042317A1 publication Critical patent/WO2021042317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the following relates generally to wireless communications, and more specifically to radio resource preemption for full-duplex.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station may schedule communication resources for wireless devices to communicate directly with one another in an unscheduled manner.
  • a wireless device that uses half-duplex operations can either transmit or receive data over the scheduled communication resources, but not both at a same time.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support radio resource preemption for full-duplex.
  • a method of wireless communication at a first wireless device may include scheduling a first transmission over first frequency resources during a first time period, performing the first transmission over the first frequency resources during the first time period based on the scheduling, receiving, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determining whether to suspend the first transmission based on the received request, and suspending, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to schedule a first transmission over first frequency resources during a first time period, perform the first transmission over the first frequency resources during the first time period based on the scheduling, receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determine whether to suspend the first transmission based on the received request, and suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
  • the apparatus may include means for scheduling a first transmission over first frequency resources during a first time period, performing the first transmission over the first frequency resources during the first time period based on the scheduling, receiving, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determining whether to suspend the first transmission based on the received request, and suspending, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
  • a non-transitory computer-readable medium storing code for wireless communication at a first wireless device is described.
  • the code may include instructions executable by a processor to schedule a first transmission over first frequency resources during a first time period, perform the first transmission over the first frequency resources during the first time period based on the scheduling, receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determine whether to suspend the first transmission based on the received request, and suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
  • the receiving may include operations, features, means, or instructions for detecting the request in the second frequency resources, where the suspending includes suspending the first transmission over all of the first frequency resources for a remainder of the first time period based on a priority level of the first transmission and detecting the request.
  • the determining further may include operations, features, means, or instructions for determining that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device may have a higher priority than the first transmission over the first frequency resources based on an indication of a priority of the second transmission included in the received request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the portion of the first frequency resources based on an indication of the portion of the first frequency resources that may be included in the request, where the first transmission may be suspended over the portion of the first frequency resources based on the identifying.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a beginning of the subset of the first time period based on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that may be included in the request, where the first transmission may be suspended over the at least the portion of the first frequency resources based on the identifying.
  • the identifying may include operations, features, means, or instructions for identifying an end of the subset of the first time period based on an indication of a length of the subset of the first transmission that may be included in the request.
  • the first transmission may be resumed based on identifying the end of the subset of the first time period.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources.
  • the monitoring includes monitoring the second frequency resources for a signal pattern, where the signal pattern indicates a priority of a second transmission by the second wireless device.
  • the monitoring includes monitoring the second frequency resources for one of a set of signal patterns, where the set of signal patterns include at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission.
  • the monitoring includes monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
  • the monitoring may include operations, features, means, or instructions for determining a time unit associated with the first time period, and decoding a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
  • the first frequency resources and the second frequency resources may be completely overlapping, partially overlapping, or non-overlapping.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, an indication that the request may be approved in response to the received request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a third wireless device, or both, an indication that the first transmission may be suspended over the at least the portion of the first frequency resources and during the subset of the first time period based on suspending the first transmission.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of a set of frequency resources scheduled for communications between wireless devices, where the set of frequency resources include the first frequency resources or the second frequency resources, or both.
  • a method of wireless communication at a first wireless device may include scheduling a first transmission over first frequency resources during a first time period, detecting that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmitting, over second frequency resources, a request that the second wireless device suspend the second transmission, and performing the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to schedule a first transmission over first frequency resources during a first time period, detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmit, over second frequency resources, a request that the second wireless device suspend the second transmission, and perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • the apparatus may include means for scheduling a first transmission over first frequency resources during a first time period, detecting that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmitting, over second frequency resources, a request that the second wireless device suspend the second transmission, and performing the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • a non-transitory computer-readable medium storing code for wireless communication at a first wireless device is described.
  • the code may include instructions executable by a processor to schedule a first transmission over first frequency resources during a first time period, detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmit, over second frequency resources, a request that the second wireless device suspend the second transmission, and perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication from the second wireless device that the request may be approved and the second transmission will suspend in response to the request, where the first transmission may be performed over the first frequency resources and during the first time period based on receiving the indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication from the second wireless device that the request may be rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, where the first transmission may be performed over the first frequency resources and during the first time period based on receiving the indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for retransmitting, over the second frequency resources, the request based on failing to receive an indication that the request was accepted or received.
  • the request may be retransmitted with an increased transmission power.
  • the first frequency resources and the second frequency resources may be completely overlapping, partially overlapping, or non-overlapping.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for synchronizing with the second transmission before transmitting the request based on detecting the second transmission.
  • the synchronizing includes identifying symbol boundaries within the second transmission.
  • the transmitting the request may include operations, features, means, or instructions for transmitting the request over a sidelink control channel, a sidelink random access channel, or both.
  • transmitting the request may include operations, features, means, or instructions for transmitting a signal pattern that indicates a priority of the first transmission.
  • the request includes an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
  • the request includes an indication of a priority of the second transmission.
  • FIG. 1 illustrates an example of a wireless communications system that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • FIG. 2 illustrates aspects of a wireless communications subsystem that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • FIGs. 3A and 3B illustrate aspects of exemplary preemption requests that support preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • FIGs. 4A and 4B illustrates aspects of exemplary communication resource map for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • FIG. 5 and 6 illustrate aspects of processes for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a device that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • FIGs. 10 and 11 show flowcharts illustrating methods that support preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • Wireless devices that use half-duplex technology may be unable to receive communications while performing a transmission.
  • other wireless device may be unable to access resources (e.g., contention-based sidelink resources) used by another wireless device, even if the other wireless device has higher priority data to transmit.
  • resources e.g., contention-based sidelink resources
  • a wireless device transmitting over contention-based sidelink resources may be unable to receive a request ( “preemption request” ) from another wireless device to suspend the transmission over all or a portion of the sidelink resources.
  • a wireless device that supports full-duplex technology may be capable of receiving communications while performing a transmission.
  • a wireless device that supports full-duplex operations and transmits over communication resources may be configured to monitor for a preemption request from another wireless device (a “requesting device” ) while transmitting over the communication resources.
  • a requesting devices may be able to access contention-based communication resources that are currently occupied by a transmitting device.
  • wireless devices including transmitting devices that support full-duplex operation, may be configured to monitor dedicated communication resources ( “preemption resources” ) for a preemption request.
  • preemption resources are included within scheduled sidelink resources.
  • the preemption resources are completely overlapping, partially overlapping, or non-overlapping with resources used by a transmitting device for an ongoing transmission.
  • a full duplex-device may monitor the preemption resources while performing a transmission -e.g., while performing a transmission over scheduled sidelink resources.
  • a transmitting device that is transmitting over sidelink resources may receive a preemption request and compare a priority of its transmission (an “ongoing transmission” ) with a priority of a transmission planned by the requesting device (a “requested transmission” ) -e.g., based on information included in or indicated by the preemption request. After comparing the priorities, the transmitting device may determine whether to suspend its transmission over all or a portion of the sidelink resources, freeing up at least the portion of the sidelink resources for the requested transmission. In some cases, the transmitting device may decide to suspend at least a portion of the transmission based on determining that a priority of the requested transmission exceeds a priority of the ongoing transmission.
  • the transmitting device transmits an acceptance response to the requesting device, indicating that at least the portion of the transmission has been suspended.
  • the requesting device may perform the requested transmission over sidelink resources that were originally scheduled for the ongoing transmission.
  • the transmitting device may suspend the ongoing transmission over a portion of the sidelink resources scheduled for the ongoing transmission on resources indicated in the preemption request. That is, in some cases, in addition to indicating a priority of the requested transmission, the preemption request may also indicate particular resources -e.g., resources located within particular subbands during a particular duration -over which the requesting device plans to transmit the requested transmission.
  • the transmitting device may maintain the entire ongoing transmission based on determining that a priority of the requested transmission is less than or equal to a priority of the ongoing transmission. In some examples, the transmitting device transmits a rejection response to the requesting device, indicating that no portion of the transmission has been suspended. After receiving the rejection response, the requesting device may refrain from performing the requested transmission over the sidelink resources. In some cases, the requesting device may ignore the rejection response and perform the requested transmission -e.g., if the requested transmission contains data corresponding to a highest priority level of possible priority levels.
  • aspects of the disclosure are initially described in the context of a wireless communications system. Specific examples are then described of preemption request formats for preempting radio resources using full-duplexing. Specific examples of communication resource maps and processes illustrating exemplary preemption of radio resources using full-duplexing are also described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to preempting radio resources using full-duplexing.
  • FIG. 1 illustrates an example of a wireless communications system that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base station
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or another interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • a wireless communications system 100 may be configured to support half-duplex communications and may include wireless devices (e.g., base stations 105 or UEs 115) that support half-duplex communications.
  • a wireless device that supports half-duplex communications may be able to wirelessly transmit or wirelessly receive communications, but not both at the same time. That is, a wireless device using half-duplex communications may be unable to receive communications while transmitting, and vice versa.
  • a wireless communications system 100 may be configured to support full-duplex communications and may include wireless devices that support full-duplex communication.
  • a wireless device that supports full-duplex communications may be able to wirelessly transmit and receive communications at a same time -e.g. by canceling self-interference between the downlink and uplink transmissions.
  • a wireless communications system 100 may be configured to have central scheduling nodes (e.g., base stations 105) that communicate with wireless devices (e.g., UEs 115) within a coverage area 110 of a central scheduling node.
  • the central scheduling node may act as an intermediary for communications between wireless devices located within the coverage area of the central scheduling node -e.g., a UE 115 may send data intended for another UE 115 to a base station 105, and the base station 105 may relay (or forward) the data to the other UE 115.
  • a wireless communications system 100 may be configured to support direct communications between wireless devices (e.g., UEs 115) within a coverage area of a central scheduling node. Such communications may be referred to as device to device (D2D) communications or sidelink communications.
  • a base station 105 may schedule explicit resources for a UE 115 to perform sidelink communications with another UE 115 -i.e., the base station 105 may inform the UEs 115 when and where (in time and frequency) to transmit information.
  • a base station 105 may generally schedule resources for sidelink communications ( “sidelink resources” ) , and any UE 115 may schedule its own communications with another UE 115 over the sidelink resources -e.g., after determining the sidelink resources are available.
  • sidelink resources may be referred to as contention-based resources, which allow devices to access the contention-based resources in an unscheduled manner.
  • a transmission by the UE 115 may interfere with transmissions by other UEs 115 over the sidelink resources and/or prevent other UEs 115 from accessing the sidelink resources.
  • a UE 115 that supports half-duplex operations may be unable to receive any communications while transmitting over sidelink resources.
  • other UEs 115 seeking to access the sidelink resources used by the UE 115 may be unable to inform the UE 115 of a desire to access the sidelink resources once the UE 115 begins transmitting over sidelink resources.
  • a transmitting UE 115 may be unable to receive a request from another UE 115 (or “requesting UE 115” ) requesting that the transmitting UE 115 (and other UEs 115 in the area) refrain from transmissions over all or a portion of the sidelink resources.
  • a request may be referred to as a “preemption request.
  • a requesting UE 115 having high priority data e.g., data that should be transmitted with low latency and/or using high reliability methods such as ultra-reliable low-latency communication (URLLC) techniques -to transmit over sidelink resources that are in use (or occupied) by a transmitting UE 115 may be prevented from transmitting over the sidelink resource.
  • the requesting UE 115 may transmit over (or on top of) the ongoing transmission of the transmitting UE 115 -e.g., when the requesting UE 115 has high priority data to transmit -causing interference between the two transmissions.
  • a half-duplex UE 115 may set aside time and frequency resources during a transmission in which the UE 115 monitors for a preemption request. But setting aside time and frequency resources may increase overhead and/or decrease throughout for communications in a wireless communications system 100.
  • a UE 115 that supports full-duplex operations may be able to receive communications while transmitting over communication resources, even over the same communication resources being used for the transmission.
  • requesting UEs 115 seeking to access sidelink resources used by a full-duplex UE 115 may be able to inform the full-duplex UE 115 of a desire to access the sidelink resources while the full-duplex UE 115 is transmitting over the sidelink resources.
  • a requesting UE 115 having high priority data to transmit over occupied sidelink resources may be able to access and/or control sidelink resources without interference from the transmitting UE 115 if the transmitting UE 115 suspends an ongoing transmission based on receiving a preemption request from the requesting UE 115.
  • a UE 115 that supports full-duplex operations may be configured to monitor for a preemption request while transmitting over sidelink resources, enabling requesting UEs 115 to access sidelink resources that are currently occupied by the transmitting UE 115.
  • FIG. 2 illustrates aspects of a wireless communications subsystem that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Wireless communications subsystem 200 may include base station 205, which may be an example of a base station described above with reference to FIG. 1.
  • Wireless communications subsystem 200 may include transmitting UE 212, receiving UE 214, requesting UE 216, and intended UE 218, which may be examples of a UE described above with reference to FIG. 1.
  • Transmitting UE 212 may support full-duplex communications or both full-duplex and half-duplex communications.
  • Receiving UE 214, requesting UE 216, and intended UE 218 may each support full-duplex and/or half-duplex communications.
  • Base station 205 transmitting UE 212, receiving UE 214, requesting UE 216, and intended UE 218 may communicate with one another within coverage area 210, as described above with reference to FIG. 1.
  • a half-duplex device may be unable to receive transmissions concurrently with performing a transmission.
  • a half-duplex device that is transmitting over contention-based communication resources may be unable to receive requests from another device ( “requesting device” ) to suspend a transmission to free up the communication resources for transmissions by the requesting device -e.g., for time-sensitive or safety critical transmissions.
  • a full-duplex device may be capable of receiving such requests while transmitting over contention-based communication resources.
  • a full-duplex device may be configured to continuously monitor communication resources for a preemption request, including while the full-duplex device performs transmissions, even if the full-duplex device performs transmissions over the monitored communications resources.
  • transmitting UE 212 may transmit information to receiving UE 214 over contention-based sidelink resources scheduled by base station 205 via first link 220.
  • the transmission by transmitting UE 212 may create interference for other potential transmissions within coverage area 210 -e.g., the transmission may create interference that would interfere with a communication between requesting UE 216 and intended UE 218.
  • transmitting UE 212 may monitor communication resources (e.g., may monitor a portion of the sidelink resources) for a preemption request transmitted by another UE within coverage area 210. In some examples, transmitting UE 212 monitor a portion of the sidelink resources that are located within a certain frequency range. By monitoring for preemption requests in the sidelink resources, other UEs that are configured to transmit during the sidelink resources may be able request the sidelink resources for their own transmission (e.g., a safety-critical transmission) and the transmitting UE may be able to suspend transmissions over all or a portion of the resources to accommodate the transmission by another UE. Monitoring for a preemption request is discussed in more detail herein and with reference to FIGs. 4A and 4B.
  • requesting UE 216 may determine that data (e.g., high priority data) is ready to be sent to intended UE 218. Requesting UE 216 may then send a preemption request to transmitting UE 212 via second link 225. In some cases, sending the preemption request via second link 225 includes transmitting the preemption request over the sidelink resources or a monitored portion of the sidelink resources. In some cases, the preemption request may include an indication of a priority of the transmission scheduled by requesting UE 216. Alternatively, a format of the preemption request may indicate a priority of the transmission scheduled by requesting UE 216 (which may also be referred to as a “competing transmission” ) . Additionally, or alternatively, the preemption request may include an indication of particular time and frequency resources within the sidelink resources. The format of a preemption request is discussed in more detail herein and with reference to FIGs. 3A and 3B.
  • Transmitting UE 212 may determine whether to suspend the ongoing transmission to receiving UE 214 based on receiving the preemption request. In some cases, if transmitting UE 212 decides to suspend the ongoing transmission, transmitting UE 212 may suspend the transmission for a remainder of the ongoing transmission or a predetermined interval, which may encompass the remainder of the ongoing transmission. Suspending transmissions is discussed in more detail herein and with reference to FIG. 4A. In some cases, if transmitting UE 212 decides to suspend the ongoing transmission, transmitting UE 212 may suspend the transmission over particular time and/or frequency resources -e.g., based on information included in the preemption request. Suspending transmissions is discussed in more detail herein and with reference to FIG. 4B.
  • transmitting UE 212 may decide to suspend the ongoing transmission based on determining that the priority of the competing transmission is higher than the priority of the ongoing transmission. In other cases, transmitting UE 212 may refuse to suspend the ongoing transmission based on determining that the priority of the ongoing transmission is comparable or greater than the priority of the competing transmission. In either case, transmitting UE 212 may transmit a response to the preemption request that informs requesting UE 216 of the decision made by transmitting UE 212.
  • requesting UE 216 may refrain from performing the competing transmission to intended UE 218.
  • requesting UE 216 may begin transmitting over third link 230 after sending the preemption request and before a response is received and may continue transmitting over third link 230 regardless of whether an acceptance or rejection response is later received -e.g., if requesting UE 216 has data of the highest priority to transmit.
  • FIG. 3A illustrates aspects of an exemplary preemption request that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Preemption request 300-a may be configured to convey information pertaining to a transmission scheduled by a device that is requesting access to occupied resources. Preemption request 300-a may include priority field 305-a and resource indication field 310-a. In some cases, preemption request 300-a may be configured to only include priority field 305-a.
  • Priority field 305-a may include an indication of a priority of a transmission scheduled by the device ( “requesting device” ) that is transmitting preemption request 300-a.
  • priority field 305-a may indicate that the scheduled transmission is one of a high-priority transmission, a medium priority transmission, or a low priority transmission.
  • Resource indication field 310-a may include an indication of resources that the requesting device intends to use to transmit the scheduled transmission. In some cases, resource indication field 310-a includes an indication of a range of frequencies over which the transmission is scheduled to be transmit. In some cases, the resource indication field 310-a includes an indication of a starting subband and a frequency length. In some cases, the resource indication field 310-a includes an indication of a starting subband and an ending subband. In some cases, resource indication field 310-a indicates the range of frequencies relative to the communication resources being used to transmit preemption request 300-a-e.g., resource indication field 310-a may include an indication of a frequency offset from a center of the resources used to transmit preemption request 300-a.
  • resource indication field 310-a includes an indication of time resources where the transmission is scheduled to begin -e.g., by indicating a starting symbol or starting subframe index. In some cases, resource indication field 310-a includes an indication of a length of the scheduled transmission -e.g., by indicating a number of symbols or subframes. In some cases, resource indication field 310-a includes an indication of an end of the scheduled transmission -e.g., by indicating an ending symbol or ending subframe index. Resource indication field 310-a may include any one or any combination of the foregoing indications. In some cases, a requesting device encodes preemption request 300-a before transmitting preemption request 300-a.
  • resource indication field 310-a may include a bitmap that indicates a time and frequency resource group within a designated time and frequency interval.
  • a first bit in a four-bit bitmap may correspond to a first quadrant of scheduled sidelink resources (e.g., a top half of available frequencies and a first half of a time period including the sidelink resources)
  • a second bit in the four-bit bitmap may correspond to a second quadrant of sidelink resources (e.g., a top half of available frequencies and a second (subsequent) half of a time period including the sidelink resources) , and so on.
  • a requesting UE seeking to access resources (e.g., sidelink resources) occupied by a transmitting UE may transmit preemption request 300-a over other resources.
  • the other resources may be the same as or include a portion of the occupied resources.
  • the other resources may be non-overlapping with the occupied resources in frequency but overlapping in time.
  • a transmitting UE (and any other UE) that receives preemption request 300-a may determine a priority of a transmission scheduled by a requesting UE.
  • the UEs that receive preemption request 300-a may also identify resources that are intended to be used for the transmission by the requesting UE.
  • the receiving UEs may assume that the requesting UE intends to use resources across all of the available frequencies (e.g., all of the frequencies dedicated to sidelink resources) for a predetermined duration.
  • a transmitting UE may assume that the requesting UE intends to use resources across all of the available frequencies used for the transmission by the transmitting UE for the remainder of a period during which the transmission is scheduled.
  • a transmitting UE that receives preemption request 300-a may decide to suspend a transmission based on a priority level indicated in priority field 305-a. For example, the transmitting UE may suspend an ongoing transmission if a priority level of the ongoing transmission is lower than a priority level indicated in priority field 305-a. In some cases, a transmitting UE that receives preemption request 300-a may suspend a transmission over resources indicated by resource indication field 310-a. For example, the transmitting UE may suspend an ongoing transmission over the resources indicated by resource indication field 310-a but may continue a portion of the ongoing transmission over resources that do not interfere with the indicated resources.
  • FIG. 3B illustrates aspects of an exemplary preemption request that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Preemption request 300-b may be configured to convey information pertaining to a transmission scheduled by a device that is requesting access to occupied resources.
  • preemption request 300-b may be configured to be a unique sequence or signal pattern -e.g., ⁇ 01101 ⁇ .
  • the unique sequence may indicate that a transmission scheduled by the device transmitting preemption request 300-b is a high priority transmission.
  • preemption request 300-b may be configured to be one of multiple unique sequences, where each sequence may indicate a different priority level for a transmission scheduled by the device transmitting preemption request 300-b.
  • a transmitting UE may monitor resources for preemption request 300-b while performing a transmission. In some cases, the transmitting UE may monitor for preemption request 300-b by decoding, during the transmission, signals received at a beginning of each symbol boundary for a duration associated with a length of the signal pattern configured for preemption request 300-b. In some cases, a transmitting UE that receives preemption request 300-b may suspend a transmission over all of the frequencies allocated to sidelink resources. Similarly, all other UEs that receive preemption request 300-b may refrain from transmitting over all of the frequencies allocated to the sidelink resources.
  • FIG. 4 illustrates aspects of exemplary communication resource map for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Communication resource map 400-a may represent the partitioning of wireless spectrum into time and frequency resources for performing communications between wireless devices.
  • communication resource map 400-a may partition wireless spectrum by time and frequency resulting in communication resources.
  • communication resource map 400-a may partition wireless spectrum into multiple frequency ranges (e.g., subbands) and multiple time units (e.g., subframes, slots, symbols, etc. ) .
  • Wireless devices may schedule, or be scheduled for, transmissions during particular communication resources.
  • Communication resource map 400-a may include transmission resources 405-a, monitoring resources 415-a, and suspended transmission resources 420-a.
  • Transmission resources 405-a may be resources that are scheduled for a transmission by a UE. In some cases, transmission resources 405-a may be scheduled for the transmission for transmission duration 410-a.
  • Monitoring resources 415-a may be resources that are monitored by a UE for a preemption request. In some cases, monitoring resources 415-a are included within transmission resources 405-a (as depicted in FIG. 4A) . In other cases, monitoring resources 415-a are partially overlapping with transmission resources 405-a. In yet other cases, monitoring resources 415-a are non-overlapping with transmission resources 405-a. In some cases, monitoring resources 415-a may extend for at least the duration of transmission resources 405-a. In some cases, transmission resources 405-a include monitoring resources 415-a. That is, a transmitting UE may transmit over monitoring resources 415-a and monitor monitoring resources 415-a at a same time.
  • Suspended transmission resources 420-a may be resources that a UE planned to use for the transmission until preemption request 425-a is received. Suspended transmission resources 420-a may be suspended for suspension duration 430-a.
  • a base station schedules contention-based sidelink resources for direct communications between UEs.
  • a UE wins control of at least a portion of the sidelink resources and schedules a transmission over transmission resources 405-a and suspended transmission resources 420-a-i.e., schedules a transmission over a set of subbands included in the sidelink resources for transmission duration 410-a. After scheduling the transmission, the UE may begin transmitting over transmission resources 405-a.
  • the transmitting UE may also monitor monitoring resources 415-a for a preemption request from another UE -e.g., a nearby UE.
  • the transmitting UE monitors monitoring resources 415-a by continuously decoding signals received over monitoring resources 415-a during a sliding interval. For example, the transmitting UE may decode a signal received over monitoring resources that occur during a monitoring window (e.g., monitoring window 435-a) .
  • a length of monitoring window 435-a is based on a length of preemption request.
  • a transmitting UE monitors monitoring resources 415-a using multiple monitoring windows of varying lengths.
  • a transmitting UE employs a shifting monitoring window and decodes signals within each instance of the shifting monitoring window -e.g., the transmitting UE may decode a signal that occurs over communication resources that extend across a first time unit and a second time unit, a signal that occurs over communication resources that extend across the second time unit and a third time unit, and so on.
  • a requesting UE may determine that data is ready to be transmitted to another UE. Before transmitting the data, requesting UE may monitor resources for communications between UEs to determine whether an ongoing transmission will interfere with the transmission from the requesting UE. In some cases, the requesting UE determines that a transmission over transmission resources 405-a will interfere with the transmission planned by the requesting UE. After determining that an ongoing transmission will interfere with the transmission planned by the requesting UE, the requesting UE may transmit preemption request 425-a over monitoring resources 415-a. In some cases, preemption request 425-a spans two time units. In some cases, preemption request 425-a is configured according to the format described with reference to FIG. 3A -e.g., preemption request 425-a includes priority field 305-a of FIG. 3A. In some cases, preemption request 425 is transmitted according to a signal pattern as described with reference to preemption request 300-b.
  • the requesting UE before transmitting preemption request 425-a, synchronizes with the transmission detected over transmission resources 405-a. Synchronizing with the detected transmission may include identifying symbol boundaries of the detected transmission. By synchronizing with the detected transmission, the requesting UE may transmit preemption request 425-a in alignment with the symbol boundaries of the transmission, facilitating reception and detection of preemption request 425-a at the transmitting UE.
  • the transmitting UE may detect and/or receive preemption request 425-a over monitoring resources 415-a based on the monitoring operation described above. After receiving preemption request 425-a, the transmitting UE may determine whether to suspend transmissions based on a format of preemption request 425-a and/or information included in preemption request 425-a.
  • the transmitting UE may determine a priority of the transmission planned by the requesting UE based on receiving preemption request 425-a. For instance, the transmitting UE may determine that a priority of the planned transmission has a high priority based on receiving an indication in a priority field of preemption request 425-a that indicates a high priority level. In another instance, the transmitting UE may determine that a priority of the planned transmission has a high priority based on receiving preemption request 425-a as a signal pattern that corresponds to a high priority level.
  • the transmitting UE may decide to suspend its ongoing transmission over suspended transmission resources 420-a. In some cases, transmitting UE decides to suspend its ongoing transmission over the entire frequency range of transmission resources 405-a for suspension duration 430-a. In some cases, suspension duration 430-a extends until an end of the remaining transmission resources scheduled for the transmission by the transmitting UE -i.e., extends until an end of transmission duration 410-a. In other cases, suspension duration 430-a encompasses a portion of the remaining transmission resources scheduled for the transmission by the transmitting UE.
  • FIG. 4B illustrates aspects of exemplary communication resource map for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Communication resource map 400-b may similarly represent the partitioning of wireless spectrum into time and frequency resources for performing communications between wireless devices.
  • Communication resource map 400-b may include transmission resources 405-b, monitoring resources 415-b, and suspended transmission resources 420-b, which may be similarly configured to transmission resources 405-a, monitoring resources 415-a, and suspended transmission resources 420-a of FIG. 4A.
  • a transmitting UE may schedule transmission resources 405-b and suspended transmission resources 420-b for a transmission.
  • the transmitting UE may transmit over transmission resources 405-b and monitor monitoring resource 415-b at a same time. While the transmitting UE transmits over transmission resources 405-b, the transmitting UE may receive preemption request 425-b from a requesting UE that determined the transmission over transmission resources 405-b is likely to interfere with a transmission planned by the requesting UE.
  • the transmitting UE may transmit and monitor resources for a preemption request and/or receive a preemption request as described above with respect to FIG. 4A. Similarly, the requesting UE may transmit a preemption request 425-b as described above with respect to FIG. 4A.
  • preemption request 425-b may include both priority information for a transmission planned by a requesting device and an indication of particular communication resources the requesting device plans to use for the transmission (the “requested transmission” ) .
  • preemption request 425-b is configured according to the format described with reference to FIG. 3A -e.g., preemption request 425-a includes priority field 305-a and resource indication field 310-a of FIG. 3A.
  • preemption request 425-b may indicate beginning 440-b of the requested transmission -e.g., by indicating a starting subframe or starting symbol index included in a resource indication field of the preemption request.
  • Preemption request 425-b may also include an indication of a length of the requested transmission, which may be equivalent to a length of suspension duration 430-b.
  • preemption request 425-b also indicates end 445-b of the requested transmission.
  • preemption request 425-b instead of indication a length of the requested transmission, preemption request explicitly indicates end 445-b of the requested transmission -e.g., by indicating an ending subframe or ending symbol index.
  • Preemption request 425-b may also indicate a range of frequencies that are planned to be occupied by the requested transmission. In some cases, the range of frequencies include a subset of the range of frequencies used by transmission resources 405-b.
  • preemption request 425-b may include a bitmap that indicates a time and frequency location of communications resources planned to be occupied by the requested transmission. That is, a bitmap included in preemption request 425-b may partition a group of communication resources into equal sections and each bit in the bitmap may indicate a particular section.
  • the transmitting UE may determine that a requesting UE has requested that the transmitting UE suspend a portion of the ongoing transmission over suspended transmission resources 420-b -e.g., after identifying suspended transmission resources 420-b based on the information included in preemption request 425-b.
  • the transmitting UE may suspend transmissions over suspended transmission resources 420-b for suspension duration 430-b and may resume communications over the frequencies spanned by suspended transmission resources after an expiration of suspension duration 430-b.
  • FIG. 5 illustrates aspects of a process for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Process flow 500 may be performed by transmitting UE 512, receiving UE 514, requesting UE 516, and intended UE 518, which may be examples of UEs described above with reference to FIGs. 1 through 4B.
  • process flow 500 illustrates a process for preempting a transmission being performed by a transmitting device (e.g., transmitting UE 512) over particular resources (e.g., contention-based sidelink resources) .
  • a requesting device e.g., requesting UE 5166 may perform a requested transmission after receiving an indication that the transmitting device has agreed to suspend an ongoing, interfering transmission.
  • transmitting UE 512, receiving UE 514, requesting UE 516, and intended UE 518 may receive RRC and/or control signaling.
  • the RRC or control signaling indicates that full-duplex communications are supported in a wireless communications system.
  • the RRC or control signaling indicates that sidelink communications are supported in the wireless communications system.
  • the RRC or control signaling may also indicate that sidelink resources are configured for contention-based communications.
  • the RRC or control signaling indicates a schedule for sidelink resources -e.g. by indicating time periods during which resources are available for direct transmissions between UEs.
  • transmitting UE 512 may perform a transmission (an “ongoing transmission” ) to receiving UE 514 that uses particular frequency resources. For example, transmitting UE 512 may perform a transmission over all or a portion of scheduled sidelink resources. In some cases, transmitting UE 512 may schedule the transmission over a first range of subbands dedicated to the sidelink resources for a first duration.
  • transmitting UE 512 may monitor certain resources for the transmission of a preemption request ( “preemption resources” ) .
  • preemption resources completely overlap with the resources used for the ongoing transmission.
  • the monitored preemption resources partially overlap with the resources used for the ongoing transmission.
  • the monitored preemption resources do not overlap with the resources used for the ongoing transmission.
  • transmitting UE 512 monitors for preemption requests by observing monitoring occasions that occur at each symbol boundary of a transmission. At each monitoring occasions, transmitting UE 512 may attempt to demodulate and/or decode a received signal according to one or more formats that are configured for a preemption request.
  • requesting UE 516 may schedule a transmission (a “requested transmission” ) to intended UE 618 over all or a portion of the scheduled sidelink resources.
  • requesting UE 516 may schedule the requested transmission over a range of subbands dedicated to the sidelink resources for a duration.
  • the duration for transmitting the requested transmission overlaps with a duration for transmitting the ongoing transmission.
  • the requested transmission is associated with a high priority level -e.g., the requested transmission is of safety-or operation-critical data and/or URLLC service is being used.
  • requesting UE 516 may determine that the ongoing transmission is likely to interfere with the requested transmission -e.g., based on determining that the sidelink resources used by the ongoing transmission overlap with or are adjacent to the sidelink resources scheduled for the requested transmission. In some cases, requesting UE 516 determines the ongoing transmission is likely to interfere with the requested transmission by detecting and measuring signals in sidelink resources that requesting UE 516 plans to use for the requested transmission.
  • requesting UE 516 may transmit a preemption request over resources that are dedicated to the transmission of preemption requests -i.e., the preemption resources.
  • the preemption request may be transmitted over sidelink resources that are currently being used for the ongoing transmission by transmitting UE 512.
  • the preemption request may be transmitted over sidelink resources that are dedicated to a physical sidelink control channel (PSCCH) or a physical sidelink random access channel (PSRACH) , where PSRACH resources are configured similarly to physical random access channel (RACH) resources used for base station to UE communications.
  • the preemption request may include an indication of a priority of the requested transmission and/or an indication of sidelink resources sought for the requested transmission.
  • the preemption request is configured similarly as preemption request 300-a or preemption request 300-b of FIGs. 3A and 3B. Transmitting UE 512 may detect the preemption request over the preemption resources based on monitoring the preemption resources.
  • requesting UE 516 may synchronize the transmission of the preemption request with the ongoing transmission. For example, requesting UE 516 may identify symbol boundaries within the ongoing transmission so that the transmission of the preemption request may be aligned with the ongoing transmission -e.g., a beginning of the preemption request aligns with a symbol boundary.
  • requesting UE 516 may retransmit the preemption request over the preemption resources if a response to the preemption request is not received after waiting a predetermined duration. In some case, requesting UE 516 retransmits the preemption request at a higher transmission power than previously used to transmit the first version of the preemption request.
  • transmitting UE 512 may determine whether to suspend the ongoing transmission based on the information indicated by the preemption request. In some cases, transmitting UE 512 compares a priority level of the ongoing transmission with a priority level of the requested transmission, and decides to suspend the ongoing transmission based on determining that the priority level of the requested transmission matches or exceeds the priority level of the ongoing transmission. In some cases, transmitting UE 512 receives a preemption request that does not indicate a priority of the requested transmission.
  • transmitting UE 512 may determine whether to suspend the ongoing transmission based on a priority of the ongoing transmission -e.g., transmitting UE 512 may suspend the ongoing transmission if a priority level of the ongoing transmission is a low priority and/or below a priority level threshold.
  • transmitting UE 512 may suspend the ongoing transmission over all or a portion of the sidelink resources scheduled for the ongoing transmission for a predetermined duration or a remainder of the ongoing transmission. If transmitting UE 512 suspends the ongoing transmission for a predetermined duration, requesting UE 516 may retransmit a preemption request to extend the length of the suspension at or before the end of the predetermined duration. In some cases, transmitting UE 512 suspends the transmission over the remaining resources scheduled for the ongoing transmission based on receiving the preemption request -e.g., if the preemption request does not indicate resources for the requested transmission.
  • transmitting UE 512 suspends the transmission in a portion of the sidelink resources scheduled for the ongoing transmission based on the sidelink resources indicated in the preemption request. In some examples, transmitting UE 512 also suspends the transmission in sidelink resources that are adjacent to the sidelink resources indicated in the preemption request to establish guard bands for the requested transmission.
  • transmitting UE 512 may transmit an acceptance response to the preemption request based on deciding to suspend at least a portion of the ongoing transmission.
  • the acceptance response is transmitted over dedicated resources.
  • Requesting UE 516 may receive the acceptance response and determine that the communications resources for the requested transmission are available.
  • the response signal is a pre-defined signal. For example, a first signal pattern may be used to communicate an acceptance response while a second signal pattern may be used to communicate a rejection response.
  • requesting UE 516 may perform the requested transmission over at least a portion of the suspended sidelink resources based on receiving the acceptance response.
  • intended UE 518 may receive the requested transmission.
  • intended UE 518 may decode the requested transmission.
  • transmitting UE 512 may indicate to receiving UE 514 that the ongoing transmission has been suspended in all or a portion of the scheduled resources.
  • receiving UE 514 may decode the ongoing transmission based on the indication -e.g., receiving UE 514 may ignore the demodulated or decoded results at the suspended resources.
  • FIG. 6 illustrates aspects of a process for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
  • Process flow 600 may be performed by transmitting UE 612, receiving UE 614, requesting UE 616, and intended UE 618, which may be examples of UEs described above with reference to FIGs. 1 through 5.
  • process flow 600 illustrates a process for preempting a transmission being performed by a device (e.g., transmitting UE 612) over particular resources (e.g., contention-based sidelink resources) .
  • a requesting device e.g., requesting UE 616 will not perform a requested transmission unless the requesting device receives an indication that the transmitting device has agreed to suspend an ongoing, interfering transmission.
  • a requesting device e.g., requesting UE 616) may perform a requested transmission regardless of whether the transmitting device agrees to suspend an ongoing, interfering transmission.
  • transmitting UE 612, receiving UE 614, requesting UE 616, and intended UE 618 may receive RRC, control signaling, and/or sidelink resource scheduling as similarly discussed with reference to block 520 of FIG. 5.
  • transmitting UE 612 may perform a transmission over sidelink resources to receiving UE 614 as similarly discussed with reference to arrow 525 of FIG. 5.
  • transmitting UE 612 may monitor preemption resources as similarly discussed with reference to block 530 of FIG. 5.
  • requesting UE 616 may schedule a transmission to intended UE 618 over sidelink the resources as similarly discussed with reference to block 535 of FIG. 5.
  • requesting UE 616 may determine the sidelink resources are occupied by another transmission as similarly discussed with reference to block 540 of FIG. 5.
  • requesting UE 616 may transmit a preemption request over preemption resources as similarly discussed with reference to arrow 545 of FIG. 5.
  • requesting UE 616 may perform the requested transmission to intended UE 618 before receiving a response to the preemption request -e.g., immediately after transmitting the preemption request. And intended UE 618 may receive the requested transmission. In some cases, requesting UE 616 performs the requested transmission before receiving a response to the preemption request, if a priority of the requested transmission is above a certain priority level -e.g., if the transmission has a highest priority level of the possible priority levels.
  • requesting UE 616 may perform the transmission immediately after or concurrently with transmitting the preemption request if the requested transmission is associated with safety-critical information that should be sent using low latency and high reliability methods, such as URLLC -e.g., to transmit data used to prevent an accident between two vehicles. Accordingly, the requested transmission may interfere with the ongoing transmission.
  • intended UE 618 may decode the requested transmission.
  • requesting UE 616 may retransmit the preemption request if a response is not received to the preemption request as similarly discussed with reference to arrow 550 of FIG. 5.
  • transmitting UE 612 may determine whether to suspend the ongoing transmission based on information indicated by the preemption request as similarly discussed with reference to block 555 of FIG. 5. In some examples, transmitting UE 612 decides not to suspend the ongoing transmission based on determining that a priority level of the ongoing transmission matches or exceeds a priority level of the requested transmission.
  • transmitting UE 612 may transmit a rejection response to requesting UE 616, indicating that transmitting UE 612 will continue the ongoing transmission over the originally scheduled sidelink resources.
  • Requesting UE 616 may receive the rejection response.
  • the rejection response may be transmitted using a corresponding signal pattern
  • requesting UE 616 may refrain from performing the requested transmission based on receiving the rejection response from transmitting UE 612 (if requesting UE 616 did not perform the requested transmission at 650) . In some cases, requesting UE 616 may similarly refrain from performing the requested transmission if no rejection response is received from transmitting UE 612.
  • receiving UE 614 may decode the transmission received from transmitting UE 612. Because the ongoing transmission was not suspended in all or a portion of the sidelink resources, receiving UE 614 may decode the transmission without performing any additional processing -e.g., without ignoring any demodulated or decoded results.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to radio resource preemption for full-duplex, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • a device 705 receives a preemption request while transmitting over communication resources.
  • the communications manager 715 may schedule a first transmission over first frequency resources during a first time period.
  • the communications manager 715 may also perform the first transmission over the first frequency resources during the first time period based on the scheduling.
  • the communications manager 715 may also receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission.
  • the communications manager 715 may also determine whether to suspend the first transmission based on the received request, and suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
  • a device 705 transmits a preemption request to a device that is transmitting over communication resources that the device 705 seeks to access.
  • the communications manager 715 may schedule a first transmission over first frequency resources during a first time period.
  • the communications manager 715 may also detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period.
  • the communications manager 715 may also transmit, over second frequency resources, a request that the second wireless device suspend the second transmission.
  • the communications manager 715 may also perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of a transceiver.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 715 as described herein.
  • the communications manager 805 may include a sidelink transmission scheduler 810, a transmission manager 815, a preemption resource monitor 820, a preemption manager 825, a suspension manager 830, and a sidelink resource monitor 835. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the sidelink transmission scheduler 810 may schedule a first transmission over first frequency resources during a first time period.
  • the sidelink transmission scheduler 810 may receive an indication of a set of frequency resources scheduled for communications between wireless devices, where the set of frequency resources include the first frequency resources or the second frequency resources, or both.
  • the transmission manager 815 may perform the first transmission over the first frequency resources during the first time period based on the scheduling.
  • the preemption resource monitor 820 may receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission. In some examples, receiving the request include detecting the request in the second frequency resources.
  • the preemption resource monitor 820 may monitor the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources. In some cases, the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping. In some examples, the preemption resource monitor 820 may determine a time unit associated with the first time period. In some examples, the preemption resource monitor 820 may decode a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
  • the monitoring includes monitoring the second frequency resources for a signal pattern, where the signal pattern indicates a priority of a second transmission by the second wireless device. In some cases, the monitoring includes monitoring the second frequency resources for one of a set of signal patterns, where the set of signal patterns include at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission. In some cases, the monitoring includes monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
  • the preemption manager 825 may determine whether to suspend the first transmission based on the received request. In some examples, the preemption manager 825 may determine that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device has a higher priority than the first transmission over the first frequency resources based on an indication of a priority of the second transmission included in the received request. In some examples, the preemption manager 825 may transmit, to the second wireless device, an indication that the request is approved or rejected in response to the received request.
  • the suspension manager 830 may suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining. In some examples, the suspension manager 830 suspends the first transmission over all of the first frequency resources for a remainder of the first time period based on a priority level of the first transmission and detecting the request.
  • the suspension manager 830 may identify the portion of the first frequency resources based on an indication of the portion of the first frequency resources that is included in the request, where the first transmission is suspended over the portion of the first frequency resources based on the identifying. In some examples, the suspension manager 830 may identify a beginning of the subset of the first time period based on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that is included in the request, where the first transmission is suspended over the at least the portion of the first frequency resources based on the identifying. In some examples, the suspension manager 830 may identify an end of the subset of the first time period based on an indication of a length of the subset of the first transmission that is included in the request.
  • the suspension manager 830 may transmit, to the second wireless device, a third wireless device, or both, an indication that the first transmission is suspended over the at least the portion of the first frequency resources and during the subset of the first time period based on suspending the first transmission.
  • the transmission manager 815 may resume the first transmission based on identifying the end of the subset of the first time period.
  • the sidelink resource monitor 835 may detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period.
  • the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  • the preemption manager 845 may transmit, over second frequency resources, a request that the second wireless device suspend the second transmission. In some examples, the preemption manager 845 may transmit the request over a sidelink control channel, a sidelink random access channel, or both. In some cases, the request includes an indication of a priority of the second transmission. In some examples, the preemption manager 845 may transmit the request by transmitting a signal pattern that indicates a priority of the first transmission. In some cases, the request includes an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
  • the preemption manager 845 may retransmit, over the second frequency resources, the request based on failing to receive an indication that the request was accepted or received. In some cases, the request is retransmitted with an increased transmission power. In some examples, the sidelink resource monitor 835 may synchronize with the second transmission based on detecting the second transmission before preemption manager 845 transmits the request. In some cases, the synchronizing includes identifying symbol boundaries within the second transmission.
  • the preemption manager 845 may receive an indication from the second wireless device that the request is approved and the second transmission will suspend in response to the request, where the first transmission is performed over the first frequency resources and during the first time period based on receiving the indication. In some examples, the preemption manager 845 may receive an indication from the second wireless device that the request is rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, where the first transmission is performed over the first frequency resources and during the first time period based on receiving the indication.
  • the transmission manager 850 may perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 705, a transmitting UE, or a requesting UE as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
  • buses e.g., bus 945
  • the communications manager 910 be an example of communications manager 715 or communications manager 805 as described herein with reference to FIGs. 7 and 8.
  • the I/O controller 915 may manage input and output signals for the device 905.
  • the I/O controller 915 may also manage peripherals not integrated into the device 905.
  • the I/O controller 915 may represent a physical connection or port to an external peripheral.
  • the I/O controller 915 may utilize an operating system such as or another known operating system.
  • the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 915 may be implemented as part of a processor.
  • a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
  • the transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 930 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 930 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 940 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 940.
  • the processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting radio resource preemption for full-duplex) .
  • the code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 7 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may schedule a first transmission over first frequency resources during a first time period.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a sidelink transmission scheduler as described with reference to FIGs. 7 through 9.
  • the UE may perform the first transmission over the first frequency resources during the first time period based on the scheduling.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a transmission manager as described with reference to FIGs. 7 through 9.
  • the UE may receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a preemption resource monitor as described with reference to FIGs. 7 through 9.
  • the UE may determine whether to suspend the first transmission based on the received request.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a preemption manager as described with reference to FIGs. 7 through 9.
  • the UE may suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a suspension manager as described with reference to FIGs. 7 through 9.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 7 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may schedule a first transmission over first frequency resources during a first time period.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a sidelink transmission scheduler as described with reference to FIGs. 7 through 9.
  • the UE may detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a sidelink resource monitor as described with reference to FIGs. 7 through 9.
  • the UE may transmit, over second frequency resources, a request that the second wireless device suspend the second transmission.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a preemption manager as described with reference to FIGs. 7 through 9.
  • the UE may perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a transmission manager as described with reference to FIGs. 7 through 9.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A wireless device may receive a request from another device to suspend a transmission over at least a portion of scheduled communications while performing the transmission. The request may include an indication of a priority of a second transmission planned by the other device and/or an indication of communication resources for the second transmission. The wireless device may determine whether to suspend the transmission based on the information indicated by the request.

Description

RADIO RESOURCE PREEMPTION FOR FULL-DUPLEX BACKGROUND
The following relates generally to wireless communications, and more specifically to radio resource preemption for full-duplex.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A base station may schedule communication resources for wireless devices to communicate directly with one another in an unscheduled manner. A wireless device that uses half-duplex operations can either transmit or receive data over the scheduled communication resources, but not both at a same time.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support radio resource preemption for full-duplex.
A method of wireless communication at a first wireless device is described. The method may include scheduling a first transmission over first frequency resources during a first time period, performing the first transmission over the first frequency resources during the first time period based on the scheduling, receiving, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless  device suspend the first transmission, determining whether to suspend the first transmission based on the received request, and suspending, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
An apparatus for wireless communication at a first wireless device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to schedule a first transmission over first frequency resources during a first time period, perform the first transmission over the first frequency resources during the first time period based on the scheduling, receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determine whether to suspend the first transmission based on the received request, and suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
Another apparatus for wireless communication at a first wireless device is described. The apparatus may include means for scheduling a first transmission over first frequency resources during a first time period, performing the first transmission over the first frequency resources during the first time period based on the scheduling, receiving, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determining whether to suspend the first transmission based on the received request, and suspending, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
A non-transitory computer-readable medium storing code for wireless communication at a first wireless device is described. The code may include instructions executable by a processor to schedule a first transmission over first frequency resources during a first time period, perform the first transmission over the first frequency resources during the first time period based on the scheduling, receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission, determine whether to suspend the first transmission based on the received request, and suspend, over at least a portion of the first frequency  resources during a subset of the first time period, the first transmission based on the determining.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the receiving may include operations, features, means, or instructions for detecting the request in the second frequency resources, where the suspending includes suspending the first transmission over all of the first frequency resources for a remainder of the first time period based on a priority level of the first transmission and detecting the request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the determining further may include operations, features, means, or instructions for determining that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device may have a higher priority than the first transmission over the first frequency resources based on an indication of a priority of the second transmission included in the received request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying the portion of the first frequency resources based on an indication of the portion of the first frequency resources that may be included in the request, where the first transmission may be suspended over the portion of the first frequency resources based on the identifying.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a beginning of the subset of the first time period based on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that may be included in the request, where the first transmission may be suspended over the at least the portion of the first frequency resources based on the identifying.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the identifying may include operations, features, means, or instructions for identifying an end of the subset of the first time period based on an indication of a length of the subset of the first transmission that may be included in the  request. In some cases, the first transmission may be resumed based on identifying the end of the subset of the first time period.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the monitoring includes monitoring the second frequency resources for a signal pattern, where the signal pattern indicates a priority of a second transmission by the second wireless device.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the monitoring includes monitoring the second frequency resources for one of a set of signal patterns, where the set of signal patterns include at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the monitoring includes monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the monitoring may include operations, features, means, or instructions for determining a time unit associated with the first time period, and decoding a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first frequency resources and the second frequency resources may be completely overlapping, partially overlapping, or non-overlapping.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  transmitting, to the second wireless device, an indication that the request may be approved in response to the received request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second wireless device, a third wireless device, or both, an indication that the first transmission may be suspended over the at least the portion of the first frequency resources and during the subset of the first time period based on suspending the first transmission.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of a set of frequency resources scheduled for communications between wireless devices, where the set of frequency resources include the first frequency resources or the second frequency resources, or both.
A method of wireless communication at a first wireless device is described. The method may include scheduling a first transmission over first frequency resources during a first time period, detecting that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmitting, over second frequency resources, a request that the second wireless device suspend the second transmission, and performing the first transmission over the first frequency resources during the first time period based on the transmitted request.
An apparatus for wireless communication at a first wireless device is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to schedule a first transmission over first frequency resources during a first time period, detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmit, over second frequency resources, a request that the second wireless device suspend the second transmission, and perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
Another apparatus for wireless communication at a first wireless device is described. The apparatus may include means for scheduling a first transmission over first  frequency resources during a first time period, detecting that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmitting, over second frequency resources, a request that the second wireless device suspend the second transmission, and performing the first transmission over the first frequency resources during the first time period based on the transmitted request.
A non-transitory computer-readable medium storing code for wireless communication at a first wireless device is described. The code may include instructions executable by a processor to schedule a first transmission over first frequency resources during a first time period, detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period, transmit, over second frequency resources, a request that the second wireless device suspend the second transmission, and perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication from the second wireless device that the request may be approved and the second transmission will suspend in response to the request, where the first transmission may be performed over the first frequency resources and during the first time period based on receiving the indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication from the second wireless device that the request may be rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, where the first transmission may be performed over the first frequency resources and during the first time period based on receiving the indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for retransmitting, over the second frequency resources, the request based on failing to receive an indication that the request was accepted or received.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the request may be retransmitted with an increased transmission power.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first frequency resources and the second frequency resources may be completely overlapping, partially overlapping, or non-overlapping.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for synchronizing with the second transmission before transmitting the request based on detecting the second transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the synchronizing includes identifying symbol boundaries within the second transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the transmitting the request may include operations, features, means, or instructions for transmitting the request over a sidelink control channel, a sidelink random access channel, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the request may include operations, features, means, or instructions for transmitting a signal pattern that indicates a priority of the first transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the request includes an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the request includes an indication of a priority of the second transmission.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
FIG. 2 illustrates aspects of a wireless communications subsystem that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
FIGs. 3A and 3B illustrate aspects of exemplary preemption requests that support preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
FIGs. 4A and 4B illustrates aspects of exemplary communication resource map for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
FIG. 5 and 6 illustrate aspects of processes for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
FIG. 7 shows a block diagram of a device that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
FIGs. 10 and 11 show flowcharts illustrating methods that support preempting radio resources using full-duplexing in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Wireless devices that use half-duplex technology may be unable to receive communications while performing a transmission. Thus, other wireless device may be unable to access resources (e.g., contention-based sidelink resources) used by another wireless  device, even if the other wireless device has higher priority data to transmit. For example, a wireless device transmitting over contention-based sidelink resources may be unable to receive a request ( “preemption request” ) from another wireless device to suspend the transmission over all or a portion of the sidelink resources. A wireless device that supports full-duplex technology may be capable of receiving communications while performing a transmission.
A wireless device that supports full-duplex operations and transmits over communication resources (a “transmitting device” ) may be configured to monitor for a preemption request from another wireless device (a “requesting device” ) while transmitting over the communication resources. Thus, a requesting devices may be able to access contention-based communication resources that are currently occupied by a transmitting device.
For example, wireless devices, including transmitting devices that support full-duplex operation, may be configured to monitor dedicated communication resources ( “preemption resources” ) for a preemption request. In some cases, the preemption resources are included within scheduled sidelink resources. In some cases, the preemption resources are completely overlapping, partially overlapping, or non-overlapping with resources used by a transmitting device for an ongoing transmission. As discussed above, a full duplex-device may monitor the preemption resources while performing a transmission -e.g., while performing a transmission over scheduled sidelink resources.
In some examples, a transmitting device that is transmitting over sidelink resources may receive a preemption request and compare a priority of its transmission (an “ongoing transmission” ) with a priority of a transmission planned by the requesting device (a “requested transmission” ) -e.g., based on information included in or indicated by the preemption request. After comparing the priorities, the transmitting device may determine whether to suspend its transmission over all or a portion of the sidelink resources, freeing up at least the portion of the sidelink resources for the requested transmission. In some cases, the transmitting device may decide to suspend at least a portion of the transmission based on determining that a priority of the requested transmission exceeds a priority of the ongoing transmission. In some examples, the transmitting device transmits an acceptance response to the requesting device, indicating that at least the portion of the transmission has been  suspended. After receiving the acceptance response, the requesting device may perform the requested transmission over sidelink resources that were originally scheduled for the ongoing transmission. In some cases, the transmitting device may suspend the ongoing transmission over a portion of the sidelink resources scheduled for the ongoing transmission on resources indicated in the preemption request. That is, in some cases, in addition to indicating a priority of the requested transmission, the preemption request may also indicate particular resources -e.g., resources located within particular subbands during a particular duration -over which the requesting device plans to transmit the requested transmission.
In some cases, the transmitting device may maintain the entire ongoing transmission based on determining that a priority of the requested transmission is less than or equal to a priority of the ongoing transmission. In some examples, the transmitting device transmits a rejection response to the requesting device, indicating that no portion of the transmission has been suspended. After receiving the rejection response, the requesting device may refrain from performing the requested transmission over the sidelink resources. In some cases, the requesting device may ignore the rejection response and perform the requested transmission -e.g., if the requested transmission contains data corresponding to a highest priority level of possible priority levels.
Aspects of the disclosure are initially described in the context of a wireless communications system. Specific examples are then described of preemption request formats for preempting radio resources using full-duplexing. Specific examples of communication resource maps and processes illustrating exemplary preemption of radio resources using full-duplexing are also described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to preempting radio resources using full-duplexing.
FIG. 1 illustrates an example of a wireless communications system that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100  may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous  LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart  metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or another interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For  example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals,  or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive  beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ  feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency  channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a  narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is  allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
wireless communications system 100 may be configured to support half-duplex communications and may include wireless devices (e.g., base stations 105 or UEs 115) that support half-duplex communications. A wireless device that supports half-duplex communications may be able to wirelessly transmit or wirelessly receive communications, but not both at the same time. That is, a wireless device using half-duplex communications may be unable to receive communications while transmitting, and vice versa. Additionally, or alternatively, a wireless communications system 100 may be configured to support full-duplex communications and may include wireless devices that support full-duplex communication. A wireless device that supports full-duplex communications may be able to wirelessly transmit and receive communications at a same time -e.g. by canceling self-interference between the downlink and uplink transmissions.
wireless communications system 100 may be configured to have central scheduling nodes (e.g., base stations 105) that communicate with wireless devices (e.g., UEs 115) within a coverage area 110 of a central scheduling node. In some cases, the central scheduling node may act as an intermediary for communications between wireless devices located within the coverage area of the central scheduling node -e.g., a UE 115 may send data intended for another UE 115 to a base station 105, and the base station 105 may relay (or forward) the data to the other UE 115.
In some cases, a wireless communications system 100 may be configured to support direct communications between wireless devices (e.g., UEs 115) within a coverage area of a central scheduling node. Such communications may be referred to as device to device (D2D) communications or sidelink communications. In some examples, a base station 105 may schedule explicit resources for a UE 115 to perform sidelink communications with another UE 115 -i.e., the base station 105 may inform the UEs 115 when and where (in time and frequency) to transmit information. In other examples, a base station 105 may generally schedule resources for sidelink communications ( “sidelink resources” ) , and any UE 115 may schedule its own communications with another UE 115 over the sidelink resources -e.g., after determining the sidelink resources are available. Such sidelink resources may be referred to as contention-based resources, which allow devices to access the contention-based resources in an unscheduled manner. When a UE 115 schedules its own communications over sidelink resources, a transmission by the UE 115 may interfere with transmissions by other UEs 115 over the sidelink resources and/or prevent other UEs 115 from accessing the sidelink resources.
As discussed above, a UE 115 that supports half-duplex operations may be unable to receive any communications while transmitting over sidelink resources. Thus, other UEs 115 seeking to access the sidelink resources used by the UE 115 may be unable to inform the UE 115 of a desire to access the sidelink resources once the UE 115 begins transmitting over sidelink resources. For example, a transmitting UE 115 may be unable to receive a request from another UE 115 (or “requesting UE 115” ) requesting that the transmitting UE 115 (and other UEs 115 in the area) refrain from transmissions over all or a portion of the sidelink resources. Such a request may be referred to as a “preemption request. ” Thus, a requesting UE 115 having high priority data -e.g., data that should be transmitted with low latency and/or using high reliability methods such as ultra-reliable low-latency communication  (URLLC) techniques -to transmit over sidelink resources that are in use (or occupied) by a transmitting UE 115 may be prevented from transmitting over the sidelink resource. Alternatively, the requesting UE 115 may transmit over (or on top of) the ongoing transmission of the transmitting UE 115 -e.g., when the requesting UE 115 has high priority data to transmit -causing interference between the two transmissions. In some cases, a half-duplex UE 115 may set aside time and frequency resources during a transmission in which the UE 115 monitors for a preemption request. But setting aside time and frequency resources may increase overhead and/or decrease throughout for communications in a wireless communications system 100.
By contrast, a UE 115 that supports full-duplex operations may be able to receive communications while transmitting over communication resources, even over the same communication resources being used for the transmission. Thus, requesting UEs 115 seeking to access sidelink resources used by a full-duplex UE 115 may be able to inform the full-duplex UE 115 of a desire to access the sidelink resources while the full-duplex UE 115 is transmitting over the sidelink resources. Accordingly, a requesting UE 115 having high priority data to transmit over occupied sidelink resources may be able to access and/or control sidelink resources without interference from the transmitting UE 115 if the transmitting UE 115 suspends an ongoing transmission based on receiving a preemption request from the requesting UE 115.
UE 115 that supports full-duplex operations may be configured to monitor for a preemption request while transmitting over sidelink resources, enabling requesting UEs 115 to access sidelink resources that are currently occupied by the transmitting UE 115.
FIG. 2 illustrates aspects of a wireless communications subsystem that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Wireless communications subsystem 200 may include base station 205, which may be an example of a base station described above with reference to FIG. 1. Wireless communications subsystem 200 may include transmitting UE 212, receiving UE 214, requesting UE 216, and intended UE 218, which may be examples of a UE described above with reference to FIG. 1. Transmitting UE 212 may support full-duplex communications or both full-duplex and half-duplex communications. Receiving UE 214, requesting UE 216,  and intended UE 218 may each support full-duplex and/or half-duplex communications. Base station 205 transmitting UE 212, receiving UE 214, requesting UE 216, and intended UE 218 may communicate with one another within coverage area 210, as described above with reference to FIG. 1.
As discussed above and herein, a half-duplex device may be unable to receive transmissions concurrently with performing a transmission. Thus, a half-duplex device that is transmitting over contention-based communication resources (e.g., sidelink resources) may be unable to receive requests from another device ( “requesting device” ) to suspend a transmission to free up the communication resources for transmissions by the requesting device -e.g., for time-sensitive or safety critical transmissions. By contrast, a full-duplex device may be capable of receiving such requests while transmitting over contention-based communication resources.
In some cases, a full-duplex device may be configured to continuously monitor communication resources for a preemption request, including while the full-duplex device performs transmissions, even if the full-duplex device performs transmissions over the monitored communications resources.
For example, transmitting UE 212 may transmit information to receiving UE 214 over contention-based sidelink resources scheduled by base station 205 via first link 220. In some cases, the transmission by transmitting UE 212 may create interference for other potential transmissions within coverage area 210 -e.g., the transmission may create interference that would interfere with a communication between requesting UE 216 and intended UE 218.
While transmitting over the sidelink resources, transmitting UE 212 may monitor communication resources (e.g., may monitor a portion of the sidelink resources) for a preemption request transmitted by another UE within coverage area 210. In some examples, transmitting UE 212 monitor a portion of the sidelink resources that are located within a certain frequency range. By monitoring for preemption requests in the sidelink resources, other UEs that are configured to transmit during the sidelink resources may be able request the sidelink resources for their own transmission (e.g., a safety-critical transmission) and the transmitting UE may be able to suspend transmissions over all or a portion of the resources to  accommodate the transmission by another UE. Monitoring for a preemption request is discussed in more detail herein and with reference to FIGs. 4A and 4B.
During the transmission by transmitting UE 212, requesting UE 216 may determine that data (e.g., high priority data) is ready to be sent to intended UE 218. Requesting UE 216 may then send a preemption request to transmitting UE 212 via second link 225. In some cases, sending the preemption request via second link 225 includes transmitting the preemption request over the sidelink resources or a monitored portion of the sidelink resources. In some cases, the preemption request may include an indication of a priority of the transmission scheduled by requesting UE 216. Alternatively, a format of the preemption request may indicate a priority of the transmission scheduled by requesting UE 216 (which may also be referred to as a “competing transmission” ) . Additionally, or alternatively, the preemption request may include an indication of particular time and frequency resources within the sidelink resources. The format of a preemption request is discussed in more detail herein and with reference to FIGs. 3A and 3B.
Transmitting UE 212 may determine whether to suspend the ongoing transmission to receiving UE 214 based on receiving the preemption request. In some cases, if transmitting UE 212 decides to suspend the ongoing transmission, transmitting UE 212 may suspend the transmission for a remainder of the ongoing transmission or a predetermined interval, which may encompass the remainder of the ongoing transmission. Suspending transmissions is discussed in more detail herein and with reference to FIG. 4A. In some cases, if transmitting UE 212 decides to suspend the ongoing transmission, transmitting UE 212 may suspend the transmission over particular time and/or frequency resources -e.g., based on information included in the preemption request. Suspending transmissions is discussed in more detail herein and with reference to FIG. 4B.
In some cases, transmitting UE 212 may decide to suspend the ongoing transmission based on determining that the priority of the competing transmission is higher than the priority of the ongoing transmission. In other cases, transmitting UE 212 may refuse to suspend the ongoing transmission based on determining that the priority of the ongoing transmission is comparable or greater than the priority of the competing transmission. In either case, transmitting UE 212 may transmit a response to the preemption request that informs requesting UE 216 of the decision made by transmitting UE 212.
In some cases, if requesting UE 216 receives a response from transmitting UE 212 that the ongoing transmission is to be suspended (an “acceptance response” ) , then requesting UE 216 performs the competing transmission to intended UE 218 over third link 230. In other cases, if requesting UE 216 receives a response from transmitting UE 212 that the ongoing transmission will be continue/not suspended (a “rejection response” ) , then requesting UE 216 may refrain from performing the competing transmission to intended UE 218. In yet other cases, requesting UE 216 may begin transmitting over third link 230 after sending the preemption request and before a response is received and may continue transmitting over third link 230 regardless of whether an acceptance or rejection response is later received -e.g., if requesting UE 216 has data of the highest priority to transmit.
Details related to using full-duplex technology to accommodate competing sidelink transmissions between UEs (e.g., details regarding signaling and specific operations) are discussed in more detail herein and with reference to FIGs. 3A through 6.
FIG. 3A illustrates aspects of an exemplary preemption request that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Preemption request 300-a may be configured to convey information pertaining to a transmission scheduled by a device that is requesting access to occupied resources. Preemption request 300-a may include priority field 305-a and resource indication field 310-a. In some cases, preemption request 300-a may be configured to only include priority field 305-a.
Priority field 305-a may include an indication of a priority of a transmission scheduled by the device ( “requesting device” ) that is transmitting preemption request 300-a. In some examples, priority field 305-a may indicate that the scheduled transmission is one of a high-priority transmission, a medium priority transmission, or a low priority transmission.
Resource indication field 310-a may include an indication of resources that the requesting device intends to use to transmit the scheduled transmission. In some cases, resource indication field 310-a includes an indication of a range of frequencies over which the transmission is scheduled to be transmit. In some cases, the resource indication field 310-a includes an indication of a starting subband and a frequency length. In some cases, the resource indication field 310-a includes an indication of a starting subband and an ending  subband. In some cases, resource indication field 310-a indicates the range of frequencies relative to the communication resources being used to transmit preemption request 300-a-e.g., resource indication field 310-a may include an indication of a frequency offset from a center of the resources used to transmit preemption request 300-a. In some cases, resource indication field 310-a includes an indication of time resources where the transmission is scheduled to begin -e.g., by indicating a starting symbol or starting subframe index. In some cases, resource indication field 310-a includes an indication of a length of the scheduled transmission -e.g., by indicating a number of symbols or subframes. In some cases, resource indication field 310-a includes an indication of an end of the scheduled transmission -e.g., by indicating an ending symbol or ending subframe index. Resource indication field 310-a may include any one or any combination of the foregoing indications. In some cases, a requesting device encodes preemption request 300-a before transmitting preemption request 300-a.
In some cases, resource indication field 310-a may include a bitmap that indicates a time and frequency resource group within a designated time and frequency interval. For example, a first bit in a four-bit bitmap may correspond to a first quadrant of scheduled sidelink resources (e.g., a top half of available frequencies and a first half of a time period including the sidelink resources) , a second bit in the four-bit bitmap may correspond to a second quadrant of sidelink resources (e.g., a top half of available frequencies and a second (subsequent) half of a time period including the sidelink resources) , and so on.
In some examples, a requesting UE seeking to access resources (e.g., sidelink resources) occupied by a transmitting UE may transmit preemption request 300-a over other resources. In some cases, the other resources may be the same as or include a portion of the occupied resources. In other cases, the other resources may be non-overlapping with the occupied resources in frequency but overlapping in time.
A transmitting UE (and any other UE) that receives preemption request 300-a may determine a priority of a transmission scheduled by a requesting UE. In some cases, the UEs that receive preemption request 300-a may also identify resources that are intended to be used for the transmission by the requesting UE. In some cases, if preemption request 300-a does not include resource indication field 310-a, the receiving UEs may assume that the requesting UE intends to use resources across all of the available frequencies (e.g., all of the frequencies  dedicated to sidelink resources) for a predetermined duration. In some cases, a transmitting UE may assume that the requesting UE intends to use resources across all of the available frequencies used for the transmission by the transmitting UE for the remainder of a period during which the transmission is scheduled.
In some cases, a transmitting UE that receives preemption request 300-a may decide to suspend a transmission based on a priority level indicated in priority field 305-a. For example, the transmitting UE may suspend an ongoing transmission if a priority level of the ongoing transmission is lower than a priority level indicated in priority field 305-a. In some cases, a transmitting UE that receives preemption request 300-a may suspend a transmission over resources indicated by resource indication field 310-a. For example, the transmitting UE may suspend an ongoing transmission over the resources indicated by resource indication field 310-a but may continue a portion of the ongoing transmission over resources that do not interfere with the indicated resources.
FIG. 3B illustrates aspects of an exemplary preemption request that supports preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Preemption request 300-b may be configured to convey information pertaining to a transmission scheduled by a device that is requesting access to occupied resources. In some cases, preemption request 300-b may be configured to be a unique sequence or signal pattern -e.g., {01101} . In some cases, the unique sequence may indicate that a transmission scheduled by the device transmitting preemption request 300-b is a high priority transmission. In some cases, preemption request 300-b may be configured to be one of multiple unique sequences, where each sequence may indicate a different priority level for a transmission scheduled by the device transmitting preemption request 300-b. By configuring preemption request 300-b to be one or more unique sequences, overhead and latency associated with communicating preemption request 300-b may be reduced.
In some cases, a transmitting UE may monitor resources for preemption request 300-b while performing a transmission. In some cases, the transmitting UE may monitor for preemption request 300-b by decoding, during the transmission, signals received at a beginning of each symbol boundary for a duration associated with a length of the signal pattern configured for preemption request 300-b. In some cases, a transmitting UE that  receives preemption request 300-b may suspend a transmission over all of the frequencies allocated to sidelink resources. Similarly, all other UEs that receive preemption request 300-b may refrain from transmitting over all of the frequencies allocated to the sidelink resources.
FIG. 4 illustrates aspects of exemplary communication resource map for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Communication resource map 400-a may represent the partitioning of wireless spectrum into time and frequency resources for performing communications between wireless devices. In some cases, communication resource map 400-a may partition wireless spectrum by time and frequency resulting in communication resources. For example, communication resource map 400-a may partition wireless spectrum into multiple frequency ranges (e.g., subbands) and multiple time units (e.g., subframes, slots, symbols, etc. ) . Wireless devices may schedule, or be scheduled for, transmissions during particular communication resources.
Communication resource map 400-a may include transmission resources 405-a, monitoring resources 415-a, and suspended transmission resources 420-a. Transmission resources 405-a may be resources that are scheduled for a transmission by a UE. In some cases, transmission resources 405-a may be scheduled for the transmission for transmission duration 410-a.
Monitoring resources 415-a may be resources that are monitored by a UE for a preemption request. In some cases, monitoring resources 415-a are included within transmission resources 405-a (as depicted in FIG. 4A) . In other cases, monitoring resources 415-a are partially overlapping with transmission resources 405-a. In yet other cases, monitoring resources 415-a are non-overlapping with transmission resources 405-a. In some cases, monitoring resources 415-a may extend for at least the duration of transmission resources 405-a. In some cases, transmission resources 405-a include monitoring resources 415-a. That is, a transmitting UE may transmit over monitoring resources 415-a and monitor monitoring resources 415-a at a same time.
Suspended transmission resources 420-a may be resources that a UE planned to use for the transmission until preemption request 425-a is received. Suspended transmission resources 420-a may be suspended for suspension duration 430-a.
In some examples, a base station schedules contention-based sidelink resources for direct communications between UEs. In some examples, a UE wins control of at least a portion of the sidelink resources and schedules a transmission over transmission resources 405-a and suspended transmission resources 420-a-i.e., schedules a transmission over a set of subbands included in the sidelink resources for transmission duration 410-a. After scheduling the transmission, the UE may begin transmitting over transmission resources 405-a.
While transmitting over transmission resources 405-a, the transmitting UE may also monitor monitoring resources 415-a for a preemption request from another UE -e.g., a nearby UE. In some cases, the transmitting UE monitors monitoring resources 415-a by continuously decoding signals received over monitoring resources 415-a during a sliding interval. For example, the transmitting UE may decode a signal received over monitoring resources that occur during a monitoring window (e.g., monitoring window 435-a) . In some cases, a length of monitoring window 435-a is based on a length of preemption request. In some cases, a transmitting UE monitors monitoring resources 415-a using multiple monitoring windows of varying lengths. In some cases, a transmitting UE employs a shifting monitoring window and decodes signals within each instance of the shifting monitoring window -e.g., the transmitting UE may decode a signal that occurs over communication resources that extend across a first time unit and a second time unit, a signal that occurs over communication resources that extend across the second time unit and a third time unit, and so on.
In some cases, a requesting UE may determine that data is ready to be transmitted to another UE. Before transmitting the data, requesting UE may monitor resources for communications between UEs to determine whether an ongoing transmission will interfere with the transmission from the requesting UE. In some cases, the requesting UE determines that a transmission over transmission resources 405-a will interfere with the transmission planned by the requesting UE. After determining that an ongoing transmission will interfere with the transmission planned by the requesting UE, the requesting UE may transmit preemption request 425-a over monitoring resources 415-a. In some cases, preemption request 425-a spans two time units. In some cases, preemption request 425-a is configured according to the format described with reference to FIG. 3A -e.g., preemption request 425-a includes priority field 305-a of FIG. 3A. In some cases, preemption request 425 is  transmitted according to a signal pattern as described with reference to preemption request 300-b.
In some cases, before transmitting preemption request 425-a, the requesting UE synchronizes with the transmission detected over transmission resources 405-a. Synchronizing with the detected transmission may include identifying symbol boundaries of the detected transmission. By synchronizing with the detected transmission, the requesting UE may transmit preemption request 425-a in alignment with the symbol boundaries of the transmission, facilitating reception and detection of preemption request 425-a at the transmitting UE.
In some cases, the transmitting UE may detect and/or receive preemption request 425-a over monitoring resources 415-a based on the monitoring operation described above. After receiving preemption request 425-a, the transmitting UE may determine whether to suspend transmissions based on a format of preemption request 425-a and/or information included in preemption request 425-a.
In some examples, the transmitting UE may determine a priority of the transmission planned by the requesting UE based on receiving preemption request 425-a. For instance, the transmitting UE may determine that a priority of the planned transmission has a high priority based on receiving an indication in a priority field of preemption request 425-a that indicates a high priority level. In another instance, the transmitting UE may determine that a priority of the planned transmission has a high priority based on receiving preemption request 425-a as a signal pattern that corresponds to a high priority level.
After detecting that the planned transmission has a high priority level, the transmitting UE may decide to suspend its ongoing transmission over suspended transmission resources 420-a. In some cases, transmitting UE decides to suspend its ongoing transmission over the entire frequency range of transmission resources 405-a for suspension duration 430-a. In some cases, suspension duration 430-a extends until an end of the remaining transmission resources scheduled for the transmission by the transmitting UE -i.e., extends until an end of transmission duration 410-a. In other cases, suspension duration 430-a encompasses a portion of the remaining transmission resources scheduled for the transmission by the transmitting UE.
FIG. 4B illustrates aspects of exemplary communication resource map for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Communication resource map 400-b may similarly represent the partitioning of wireless spectrum into time and frequency resources for performing communications between wireless devices. Communication resource map 400-b may include transmission resources 405-b, monitoring resources 415-b, and suspended transmission resources 420-b, which may be similarly configured to transmission resources 405-a, monitoring resources 415-a, and suspended transmission resources 420-a of FIG. 4A.
In some examples, a transmitting UE may schedule transmission resources 405-b and suspended transmission resources 420-b for a transmission. The transmitting UE may transmit over transmission resources 405-b and monitor monitoring resource 415-b at a same time. While the transmitting UE transmits over transmission resources 405-b, the transmitting UE may receive preemption request 425-b from a requesting UE that determined the transmission over transmission resources 405-b is likely to interfere with a transmission planned by the requesting UE. The transmitting UE may transmit and monitor resources for a preemption request and/or receive a preemption request as described above with respect to FIG. 4A. Similarly, the requesting UE may transmit a preemption request 425-b as described above with respect to FIG. 4A.
In contrast with FIG. 4A, preemption request 425-b may include both priority information for a transmission planned by a requesting device and an indication of particular communication resources the requesting device plans to use for the transmission (the “requested transmission” ) . In some cases, preemption request 425-b is configured according to the format described with reference to FIG. 3A -e.g., preemption request 425-a includes priority field 305-a and resource indication field 310-a of FIG. 3A.
In some examples, preemption request 425-b may indicate beginning 440-b of the requested transmission -e.g., by indicating a starting subframe or starting symbol index included in a resource indication field of the preemption request. Preemption request 425-b may also include an indication of a length of the requested transmission, which may be equivalent to a length of suspension duration 430-b. In some cases, by indicating beginning 440-b of the requested transmission and a length of the requested transmission, preemption  request 425-b also indicates end 445-b of the requested transmission. In some cases, instead of indication a length of the requested transmission, preemption request explicitly indicates end 445-b of the requested transmission -e.g., by indicating an ending subframe or ending symbol index. Preemption request 425-b may also indicate a range of frequencies that are planned to be occupied by the requested transmission. In some cases, the range of frequencies include a subset of the range of frequencies used by transmission resources 405-b.
In other examples, preemption request 425-b may include a bitmap that indicates a time and frequency location of communications resources planned to be occupied by the requested transmission. That is, a bitmap included in preemption request 425-b may partition a group of communication resources into equal sections and each bit in the bitmap may indicate a particular section.
After receiving preemption request 425-b, the transmitting UE may determine that a requesting UE has requested that the transmitting UE suspend a portion of the ongoing transmission over suspended transmission resources 420-b -e.g., after identifying suspended transmission resources 420-b based on the information included in preemption request 425-b. The transmitting UE may suspend transmissions over suspended transmission resources 420-b for suspension duration 430-b and may resume communications over the frequencies spanned by suspended transmission resources after an expiration of suspension duration 430-b.
FIG. 5 illustrates aspects of a process for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Process flow 500 may be performed by transmitting UE 512, receiving UE 514, requesting UE 516, and intended UE 518, which may be examples of UEs described above with reference to FIGs. 1 through 4B.
In some examples, process flow 500 illustrates a process for preempting a transmission being performed by a transmitting device (e.g., transmitting UE 512) over particular resources (e.g., contention-based sidelink resources) . In some cases, a requesting device (e.g., requesting UE 516) may perform a requested transmission after receiving an indication that the transmitting device has agreed to suspend an ongoing, interfering transmission.
At block 520, transmitting UE 512, receiving UE 514, requesting UE 516, and intended UE 518 may receive RRC and/or control signaling. In some cases, the RRC or control signaling indicates that full-duplex communications are supported in a wireless communications system. In some cases, the RRC or control signaling indicates that sidelink communications are supported in the wireless communications system. The RRC or control signaling may also indicate that sidelink resources are configured for contention-based communications. In some cases, the RRC or control signaling indicates a schedule for sidelink resources -e.g. by indicating time periods during which resources are available for direct transmissions between UEs.
At arrow 525, transmitting UE 512 may perform a transmission (an “ongoing transmission” ) to receiving UE 514 that uses particular frequency resources. For example, transmitting UE 512 may perform a transmission over all or a portion of scheduled sidelink resources. In some cases, transmitting UE 512 may schedule the transmission over a first range of subbands dedicated to the sidelink resources for a first duration.
At block 530 and while performing the ongoing transmission, transmitting UE 512 may monitor certain resources for the transmission of a preemption request ( “preemption resources” ) . In some cases, the monitored preemption resources completely overlap with the resources used for the ongoing transmission. In other cases, the monitored preemption resources partially overlap with the resources used for the ongoing transmission. In other cases, the monitored preemption resources do not overlap with the resources used for the ongoing transmission. In some cases, transmitting UE 512 monitors for preemption requests by observing monitoring occasions that occur at each symbol boundary of a transmission. At each monitoring occasions, transmitting UE 512 may attempt to demodulate and/or decode a received signal according to one or more formats that are configured for a preemption request.
At block 535, requesting UE 516 may schedule a transmission (a “requested transmission” ) to intended UE 618 over all or a portion of the scheduled sidelink resources. In some cases, requesting UE 516 may schedule the requested transmission over a range of subbands dedicated to the sidelink resources for a duration. In some cases, the duration for transmitting the requested transmission overlaps with a duration for transmitting the ongoing transmission. In some cases, the requested transmission is associated with a high priority  level -e.g., the requested transmission is of safety-or operation-critical data and/or URLLC service is being used.
At block 540, requesting UE 516 may determine that the ongoing transmission is likely to interfere with the requested transmission -e.g., based on determining that the sidelink resources used by the ongoing transmission overlap with or are adjacent to the sidelink resources scheduled for the requested transmission. In some cases, requesting UE 516 determines the ongoing transmission is likely to interfere with the requested transmission by detecting and measuring signals in sidelink resources that requesting UE 516 plans to use for the requested transmission.
At arrow 545, requesting UE 516 may transmit a preemption request over resources that are dedicated to the transmission of preemption requests -i.e., the preemption resources. In some cases, the preemption request may be transmitted over sidelink resources that are currently being used for the ongoing transmission by transmitting UE 512. In some cases, the preemption request may be transmitted over sidelink resources that are dedicated to a physical sidelink control channel (PSCCH) or a physical sidelink random access channel (PSRACH) , where PSRACH resources are configured similarly to physical random access channel (RACH) resources used for base station to UE communications. The preemption request may include an indication of a priority of the requested transmission and/or an indication of sidelink resources sought for the requested transmission. In some cases, the preemption request is configured similarly as preemption request 300-a or preemption request 300-b of FIGs. 3A and 3B. Transmitting UE 512 may detect the preemption request over the preemption resources based on monitoring the preemption resources.
In some cases, before transmitting the preemption request, requesting UE 516 may synchronize the transmission of the preemption request with the ongoing transmission. For example, requesting UE 516 may identify symbol boundaries within the ongoing transmission so that the transmission of the preemption request may be aligned with the ongoing transmission -e.g., a beginning of the preemption request aligns with a symbol boundary.
At arrow 550, requesting UE 516 may retransmit the preemption request over the preemption resources if a response to the preemption request is not received after waiting a predetermined duration. In some case, requesting UE 516 retransmits the preemption request  at a higher transmission power than previously used to transmit the first version of the preemption request.
At block 555, transmitting UE 512 may determine whether to suspend the ongoing transmission based on the information indicated by the preemption request. In some cases, transmitting UE 512 compares a priority level of the ongoing transmission with a priority level of the requested transmission, and decides to suspend the ongoing transmission based on determining that the priority level of the requested transmission matches or exceeds the priority level of the ongoing transmission. In some cases, transmitting UE 512 receives a preemption request that does not indicate a priority of the requested transmission. In such cases, transmitting UE 512 may determine whether to suspend the ongoing transmission based on a priority of the ongoing transmission -e.g., transmitting UE 512 may suspend the ongoing transmission if a priority level of the ongoing transmission is a low priority and/or below a priority level threshold.
After deciding to suspend the ongoing transmission, transmitting UE 512 may suspend the ongoing transmission over all or a portion of the sidelink resources scheduled for the ongoing transmission for a predetermined duration or a remainder of the ongoing transmission. If transmitting UE 512 suspends the ongoing transmission for a predetermined duration, requesting UE 516 may retransmit a preemption request to extend the length of the suspension at or before the end of the predetermined duration. In some cases, transmitting UE 512 suspends the transmission over the remaining resources scheduled for the ongoing transmission based on receiving the preemption request -e.g., if the preemption request does not indicate resources for the requested transmission. In some cases, transmitting UE 512 suspends the transmission in a portion of the sidelink resources scheduled for the ongoing transmission based on the sidelink resources indicated in the preemption request. In some examples, transmitting UE 512 also suspends the transmission in sidelink resources that are adjacent to the sidelink resources indicated in the preemption request to establish guard bands for the requested transmission.
At arrow 560, transmitting UE 512 may transmit an acceptance response to the preemption request based on deciding to suspend at least a portion of the ongoing transmission. In some cases, the acceptance response is transmitted over dedicated resources. Requesting UE 516 may receive the acceptance response and determine that the  communications resources for the requested transmission are available. In some cases, the response signal is a pre-defined signal. For example, a first signal pattern may be used to communicate an acceptance response while a second signal pattern may be used to communicate a rejection response.
At arrow 565, requesting UE 516 may perform the requested transmission over at least a portion of the suspended sidelink resources based on receiving the acceptance response. And intended UE 518 may receive the requested transmission. At block 570, intended UE 518 may decode the requested transmission.
At arrow 575, transmitting UE 512 may indicate to receiving UE 514 that the ongoing transmission has been suspended in all or a portion of the scheduled resources. At block 580, receiving UE 514 may decode the ongoing transmission based on the indication -e.g., receiving UE 514 may ignore the demodulated or decoded results at the suspended resources.
FIG. 6 illustrates aspects of a process for preempting radio resources using full-duplexing in accordance with various aspects of the present disclosure.
Process flow 600 may be performed by transmitting UE 612, receiving UE 614, requesting UE 616, and intended UE 618, which may be examples of UEs described above with reference to FIGs. 1 through 5.
In some examples, process flow 600 illustrates a process for preempting a transmission being performed by a device (e.g., transmitting UE 612) over particular resources (e.g., contention-based sidelink resources) . In some cases, a requesting device (e.g., requesting UE 616) will not perform a requested transmission unless the requesting device receives an indication that the transmitting device has agreed to suspend an ongoing, interfering transmission. In other cases, a requesting device (e.g., requesting UE 616) may perform a requested transmission regardless of whether the transmitting device agrees to suspend an ongoing, interfering transmission.
At block 620, transmitting UE 612, receiving UE 614, requesting UE 616, and intended UE 618 may receive RRC, control signaling, and/or sidelink resource scheduling as similarly discussed with reference to block 520 of FIG. 5. At arrow 625, transmitting UE 612 may perform a transmission over sidelink resources to receiving UE 614 as similarly  discussed with reference to arrow 525 of FIG. 5. At block 630, transmitting UE 612 may monitor preemption resources as similarly discussed with reference to block 530 of FIG. 5. At block 635, requesting UE 616 may schedule a transmission to intended UE 618 over sidelink the resources as similarly discussed with reference to block 535 of FIG. 5. At block 640, requesting UE 616 may determine the sidelink resources are occupied by another transmission as similarly discussed with reference to block 540 of FIG. 5. At arrow 645, requesting UE 616 may transmit a preemption request over preemption resources as similarly discussed with reference to arrow 545 of FIG. 5.
At arrow 650 requesting UE 616 may perform the requested transmission to intended UE 618 before receiving a response to the preemption request -e.g., immediately after transmitting the preemption request. And intended UE 618 may receive the requested transmission. In some cases, requesting UE 616 performs the requested transmission before receiving a response to the preemption request, if a priority of the requested transmission is above a certain priority level -e.g., if the transmission has a highest priority level of the possible priority levels. For example, requesting UE 616 may perform the transmission immediately after or concurrently with transmitting the preemption request if the requested transmission is associated with safety-critical information that should be sent using low latency and high reliability methods, such as URLLC -e.g., to transmit data used to prevent an accident between two vehicles. Accordingly, the requested transmission may interfere with the ongoing transmission. At block 660, intended UE 618 may decode the requested transmission.
At arrow 655, requesting UE 616 may retransmit the preemption request if a response is not received to the preemption request as similarly discussed with reference to arrow 550 of FIG. 5.
At block 665, transmitting UE 612 may determine whether to suspend the ongoing transmission based on information indicated by the preemption request as similarly discussed with reference to block 555 of FIG. 5. In some examples, transmitting UE 612 decides not to suspend the ongoing transmission based on determining that a priority level of the ongoing transmission matches or exceeds a priority level of the requested transmission.
At arrow 670, transmitting UE 612 may transmit a rejection response to requesting UE 616, indicating that transmitting UE 612 will continue the ongoing  transmission over the originally scheduled sidelink resources. Requesting UE 616 may receive the rejection response. In some cases, the rejection response may be transmitted using a corresponding signal pattern
At block 675, requesting UE 616 may refrain from performing the requested transmission based on receiving the rejection response from transmitting UE 612 (if requesting UE 616 did not perform the requested transmission at 650) . In some cases, requesting UE 616 may similarly refrain from performing the requested transmission if no rejection response is received from transmitting UE 612.
At block 680, receiving UE 614 may decode the transmission received from transmitting UE 612. Because the ongoing transmission was not suspended in all or a portion of the sidelink resources, receiving UE 614 may decode the transmission without performing any additional processing -e.g., without ignoring any demodulated or decoded results.
FIG. 7 shows a block diagram 700 of a device 705 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to radio resource preemption for full-duplex, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver. The receiver 710 may utilize a single antenna or a set of antennas.
In some examples, a device 705 receives a preemption request while transmitting over communication resources. In such cases, the communications manager 715 may schedule a first transmission over first frequency resources during a first time period. The communications manager 715 may also perform the first transmission over the first frequency resources during the first time period based on the scheduling. The communications manager 715 may also receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first  transmission. The communications manager 715 may also determine whether to suspend the first transmission based on the received request, and suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining.
In some examples, a device 705 transmits a preemption request to a device that is transmitting over communication resources that the device 705 seeks to access. The communications manager 715 may schedule a first transmission over first frequency resources during a first time period. The communications manager 715 may also detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period. The communications manager 715 may also transmit, over second frequency resources, a request that the second wireless device suspend the second transmission. The communications manager 715 may also perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other  components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of a transceiver. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 715 as described herein. The communications manager 805 may include a sidelink transmission scheduler 810, a transmission manager 815, a preemption resource monitor 820, a preemption manager 825, a suspension manager 830, and a sidelink resource monitor 835. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The sidelink transmission scheduler 810 may schedule a first transmission over first frequency resources during a first time period. In some examples, the sidelink transmission scheduler 810 may receive an indication of a set of frequency resources scheduled for communications between wireless devices, where the set of frequency resources include the first frequency resources or the second frequency resources, or both.
The transmission manager 815 may perform the first transmission over the first frequency resources during the first time period based on the scheduling.
The preemption resource monitor 820 may receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission. In some examples, receiving the request include detecting the request in the second frequency resources.
In some examples, the preemption resource monitor 820 may monitor the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources. In some cases, the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping. In some examples, the preemption resource monitor 820 may determine a  time unit associated with the first time period. In some examples, the preemption resource monitor 820 may decode a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
In some cases, the monitoring includes monitoring the second frequency resources for a signal pattern, where the signal pattern indicates a priority of a second transmission by the second wireless device. In some cases, the monitoring includes monitoring the second frequency resources for one of a set of signal patterns, where the set of signal patterns include at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission. In some cases, the monitoring includes monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
The preemption manager 825 may determine whether to suspend the first transmission based on the received request. In some examples, the preemption manager 825 may determine that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device has a higher priority than the first transmission over the first frequency resources based on an indication of a priority of the second transmission included in the received request. In some examples, the preemption manager 825 may transmit, to the second wireless device, an indication that the request is approved or rejected in response to the received request.
The suspension manager 830 may suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining. In some examples, the suspension manager 830 suspends the first transmission over all of the first frequency resources for a remainder of the first time period based on a priority level of the first transmission and detecting the request.
In some examples, the suspension manager 830 may identify the portion of the first frequency resources based on an indication of the portion of the first frequency resources that is included in the request, where the first transmission is suspended over the portion of the first frequency resources based on the identifying. In some examples, the suspension manager 830 may identify a beginning of the subset of the first time period based on an indication of a beginning of the subset of the first transmission over the first frequency  resources by the second wireless device that is included in the request, where the first transmission is suspended over the at least the portion of the first frequency resources based on the identifying. In some examples, the suspension manager 830 may identify an end of the subset of the first time period based on an indication of a length of the subset of the first transmission that is included in the request.
In some examples, the suspension manager 830 may transmit, to the second wireless device, a third wireless device, or both, an indication that the first transmission is suspended over the at least the portion of the first frequency resources and during the subset of the first time period based on suspending the first transmission. In some examples, the transmission manager 815 may resume the first transmission based on identifying the end of the subset of the first time period.
The sidelink resource monitor 835 may detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period. In some cases, the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
The preemption manager 845 may transmit, over second frequency resources, a request that the second wireless device suspend the second transmission. In some examples, the preemption manager 845 may transmit the request over a sidelink control channel, a sidelink random access channel, or both. In some cases, the request includes an indication of a priority of the second transmission. In some examples, the preemption manager 845 may transmit the request by transmitting a signal pattern that indicates a priority of the first transmission. In some cases, the request includes an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
In some examples, the preemption manager 845 may retransmit, over the second frequency resources, the request based on failing to receive an indication that the request was accepted or received. In some cases, the request is retransmitted with an increased transmission power. In some examples, the sidelink resource monitor 835 may synchronize with the second transmission based on detecting the second transmission before preemption manager 845 transmits the request. In some cases, the synchronizing includes identifying symbol boundaries within the second transmission.
In some examples, the preemption manager 845 may receive an indication from the second wireless device that the request is approved and the second transmission will suspend in response to the request, where the first transmission is performed over the first frequency resources and during the first time period based on receiving the indication. In some examples, the preemption manager 845 may receive an indication from the second wireless device that the request is rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, where the first transmission is performed over the first frequency resources and during the first time period based on receiving the indication.
The transmission manager 850 may perform the first transmission over the first frequency resources during the first time period based on the transmitted request.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 705, a transmitting UE, or a requesting UE as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910, an I/O controller 915, a transceiver 920, an antenna 925, memory 930, and a processor 940. These components may be in electronic communication via one or more buses (e.g., bus 945) .
The communications manager 910 be an example of communications manager 715 or communications manager 805 as described herein with reference to FIGs. 7 and 8.
The I/O controller 915 may manage input and output signals for the device 905. The I/O controller 915 may also manage peripherals not integrated into the device 905. In some cases, the I/O controller 915 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 915 may utilize an operating system such as
Figure PCTCN2019104491-appb-000001
or another known operating system. In other cases, the I/O controller 915 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 915 may be implemented as part of a processor. In some cases, a user may interact with the device 905 via the I/O controller 915 or via hardware components controlled by the I/O controller 915.
The transceiver 920 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 920 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 920 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 925. However, in some cases the device may have more than one antenna 925, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 930 may include random-access memory (RAM) and read-only memory (ROM) . The memory 930 may store computer-readable, computer-executable code 935 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 930 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 940 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 940 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 940. The processor 940 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 930) to cause the device 905 to perform various functions (e.g., functions or tasks supporting radio resource preemption for full-duplex) .
The code 935 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 935 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 935 may not be directly executable by the processor 940 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 10 shows a flowchart illustrating a method 1000 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 7 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1005, the UE may schedule a first transmission over first frequency resources during a first time period. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a sidelink transmission scheduler as described with reference to FIGs. 7 through 9.
At 1010, the UE may perform the first transmission over the first frequency resources during the first time period based on the scheduling. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a transmission manager as described with reference to FIGs. 7 through 9.
At 1015, the UE may receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a preemption resource monitor as described with reference to FIGs. 7 through 9.
At 1020, the UE may determine whether to suspend the first transmission based on the received request. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a preemption manager as described with reference to FIGs. 7 through 9.
At 1025, the UE may suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based on the determining. The operations of 1025 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1025 may be performed by a suspension manager as described with reference to FIGs. 7 through 9.
FIG. 11 shows a flowchart illustrating a method 1100 that supports preempting radio resources using full-duplexing in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 7 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally, or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1105, the UE may schedule a first transmission over first frequency resources during a first time period. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a sidelink transmission scheduler as described with reference to FIGs. 7 through 9.
At 1110, the UE may detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a sidelink resource monitor as described with reference to FIGs. 7 through 9.
At 1115, the UE may transmit, over second frequency resources, a request that the second wireless device suspend the second transmission. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a preemption manager as described with reference to FIGs. 7 through 9.
At 1120, the UE may perform the first transmission over the first frequency resources during the first time period based on the transmitted request. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a transmission manager as described with reference to FIGs. 7 through 9.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions  with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices  (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (108)

  1. A method for wireless communication at a first wireless device, comprising:
    scheduling a first transmission over first frequency resources during a first time period;
    performing the first transmission over the first frequency resources during the first time period based at least in part on the scheduling;
    receiving, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission;
    determining whether to suspend the first transmission based at least in part on the received request; and
    suspending, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based at least in part on the determining.
  2. The method of claim 1, wherein the receiving comprises:
    detecting the request in the second frequency resources, wherein the suspending comprises suspending the transmission over all of the first frequency resources for a remainder of the first time period based at least in part on a priority level of the first transmission and detecting the request.
  3. The method of claim 1, wherein the determining further comprises:
    determining that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device has a higher priority than the first transmission over the first frequency resources based at least in part on an indication of a priority of the second transmission included in the received request.
  4. The method of claim 1, further comprising:
    identifying the portion of the first frequency resources based at least in part on an indication of the portion of the first frequency resources that is included in the request, wherein the first transmission is suspended over the portion of the first frequency resources based at least in part on the identifying.
  5. The method of claim 1, further comprising:
    identifying a beginning of the subset of the first time period based at least in part on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that is included in the request, wherein the first transmission is suspended over the at least the portion of the first frequency resources based at least in part on the identifying.
  6. The method of claim 5, wherein the identifying comprises:
    identifying an end of the subset of the first time period based at least in part on an indication of a length of the subset of the first transmission that is included in the request; the method further comprising:
    resuming the first transmission based at least in part on identifying the end of the subset of the first time period.
  7. The method of claim 1, further comprising:
    monitoring the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources.
  8. The method of claim 1, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  9. The method of claim 7, wherein the monitoring comprises monitoring the second frequency resources for a signal pattern, wherein the signal pattern indicates a priority of a second transmission by the second wireless device.
  10. The method of claim 7, wherein the monitoring comprises monitoring the second frequency resources for one of a plurality of signal patterns, wherein the plurality of signal patterns comprise at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission.
  11. The method of claim 7, wherein the monitoring comprises monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
  12. The method of claim 7, wherein the monitoring comprises:
    determining a time unit associated with the first time period; and
    decoding a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
  13. The method of claim 1, further comprising:
    transmitting, to the second wireless device, an indication that the request is approved in response to the received request.
  14. The method of claim 1, further comprising:
    transmitting, to the second wireless device, a third wireless device, or both, an indication that the first transmission is suspended over the at least the portion of the first frequency resources and during the subset of the first time period based at least in part on suspending the first transmission.
  15. The method of claim 1, further comprising:
    receiving an indication of a plurality of frequency resources scheduled for communications between wireless devices, wherein the plurality of frequency resources comprise the first frequency resources or the second frequency resources, or both.
  16. A method for wireless communication at a first wireless device, comprising:
    scheduling a first transmission over first frequency resources during a first time period;
    detecting that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period;
    transmitting, over second frequency resources, a request that the second wireless device suspend the second transmission; and
    performing the first transmission over the first frequency resources during the first time period based at least in part on the transmitted request.
  17. The method of claim 16, further comprising:
    receiving an indication from the second wireless device that the request is approved and the second transmission will suspend in response to the request, wherein the  first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  18. The method of claim 16, further comprising:
    receiving an indication from the second wireless device that the request is rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  19. The method of claim 16, further comprising:
    retransmitting, over the second frequency resources, the request based at least in part on failing to receive an indication that the request was accepted or received.
  20. The method of claim 19, wherein the request is retransmitted with an increased transmission power.
  21. The method of claim 16, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  22. The method of claim 16, further comprising:
    synchronizing with the second transmission before transmitting the request based at least in part on detecting the second transmission.
  23. The method of claim 22, wherein the synchronizing comprises identifying symbol boundaries within the second transmission.
  24. The method of claim 16, wherein the transmitting the request comprises:
    transmitting the request over a sidelink control channel, a sidelink random access channel, or both.
  25. The method of claim 16, wherein transmitting the request comprises:
    transmitting a signal pattern that indicates a priority of the first transmission.
  26. The method of claim 16, wherein the request comprises an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
  27. The method of claim 16, wherein the request comprises an indication of a priority of the second transmission.
  28. An apparatus for wireless communication at a first wireless device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    schedule a first transmission over first frequency resources during a first time period;
    perform the first transmission over the first frequency resources during the first time period based at least in part on the scheduling;
    receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission;
    determine whether to suspend the first transmission based at least in part on the received request; and
    suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based at least in part on the determining.
  29. The apparatus of claim 28, wherein the receiving comprises the instructions to detect the request in the second frequency resources, wherein the suspending are executable by the processor to cause the apparatus to suspend all of the first frequency resources for a remainder of the first time period based at least in part on a priority level of the first transmission and detecting the request.
  30. The apparatus of claim 28, wherein the determining further comprises:
    determine that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device has a higher priority than the first transmission over the first frequency resources based at least in part on an indication of a priority of the second transmission included in the received request.
  31. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify the portion of the first frequency resources based at least in part on an indication of the portion of the first frequency resources that is included in the request, wherein the first transmission is suspended over the portion of the first frequency resources based at least in part on the identifying.
  32. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a beginning of the subset of the first time period based at least in part on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that is included in the request, wherein the first transmission is suspended over the at least the portion of the first frequency resources based at least in part on the identifying.
  33. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify an end of the subset of the first time period based at least in part on an indication of a length of the subset of the first transmission that is included in the request; and
    resume the first transmission based at least in part on identifying the end of the subset of the first transmission.
  34. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    monitor the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources.
  35. The apparatus of claim 34, wherein the monitoring comprises monitoring the second frequency resources for a signal pattern, wherein the signal pattern indicates a priority of a second transmission by the second wireless device.
  36. The apparatus of claim 34, wherein the monitoring comprises monitoring the second frequency resources for one of a plurality of signal patterns, wherein the plurality of signal patterns comprise at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission.
  37. The apparatus of claim 34, wherein the monitoring comprises monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
  38. The apparatus of claim 34, wherein the monitoring comprises:
    determine a time unit associated with the first time period; and
    decode a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
  39. The apparatus of claim 28, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  40. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the second wireless device, an indication that the request is approved in response to the received request.
  41. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the second wireless device, a third wireless device, or both, an indication that the first transmission is suspended over the at least the portion of the first frequency resources and during the subset of the first time period based at least in part on suspending the first transmission.
  42. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an indication of a plurality of frequency resources scheduled for communications between wireless devices, wherein the plurality of frequency resources comprise the first frequency resources or the second frequency resources, or both.
  43. An apparatus for wireless communication at a first wireless device, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    schedule a first transmission over first frequency resources during a first time period;
    detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period;
    transmit, over second frequency resources, a request that the second wireless device suspend the second transmission; and
    perform the first transmission over the first frequency resources during the first time period based at least in part on the transmitted request.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an indication from the second wireless device that the request is approved and the second transmission will suspend in response to the request, wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  45. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an indication from the second wireless device that the request is rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  46. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    retransmit, over the second frequency resources, the request based at least in part on failing to receive an indication that the request was accepted or received.
  47. The apparatus of claim 46, wherein the request is retransmitted with an increased transmission power.
  48. The apparatus of claim 43, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  49. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    synchronize with the second transmission before transmitting the request based at least in part on detecting the second transmission.
  50. The apparatus of claim 49, wherein the synchronizing comprises identifying symbol boundaries within the second transmission.
  51. The apparatus of claim 43, wherein the transmitting the request comprises:
    transmit the request over a sidelink control channel, a sidelink random access channel, or both.
  52. The apparatus of claim 43, wherein the instructions to transmit the request are executable by the processor to cause the apparatus to:
    transmit a signal pattern that indicates a priority of the first transmission.
  53. The apparatus of claim 43, wherein the request comprises an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
  54. The apparatus of claim 43, wherein the request comprises an indication of a priority of the second transmission.
  55. An apparatus for wireless communication at a first wireless device, comprising:
    means for scheduling a first transmission over first frequency resources during a first time period;
    means for performing the first transmission over the first frequency resources during the first time period based at least in part on the scheduling;
    means for receiving, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission;
    means for determining whether to suspend the first transmission based at least in part on the received request; and
    means for suspending, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based at least in part on the determining.
  56. The apparatus of claim 55, wherein the receiving comprises the means for detecting the request in the second frequency resources, wherein the suspending comprises means for suspending all of the first frequency resources for a remainder of the first time period based at least in part on a priority level of the first transmission and detecting the request.
  57. The apparatus of claim 55, wherein the determining further comprises:
    means for determining that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device has a higher priority than the first transmission over the first frequency resources based at least in part on an indication of a priority of the second transmission included in the received request.
  58. The apparatus of claim 55, further comprising:
    means for identifying the portion of the first frequency resources based at least in part on an indication of the portion of the first frequency resources that is included in the request, wherein the first transmission is suspended over the portion of the first frequency resources based at least in part on the identifying.
  59. The apparatus of claim 55, further comprising:
    means for identifying a beginning of the subset of the first time period based at least in part on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that is included in the request, wherein the first transmission is suspended over the at least the portion of the first frequency resources based at least in part on the identifying.
  60. The apparatus of claim 59, further comprising:
    means for identifying an end of the subset of the first time period based at least in part on an indication of a length of the subset of the first transmission that is included in the request; and
    means for resuming the first transmission based at least in part on identifying the end of the subset of the first transmission.
  61. The apparatus of claim 55, further comprising:
    means for monitoring the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources.
  62. The apparatus of claim 61, wherein the monitoring comprises monitoring the second frequency resources for a signal pattern, wherein the signal pattern indicates a priority of a second transmission by the second wireless device.
  63. The apparatus of claim 61, wherein the monitoring comprises monitoring the second frequency resources for one of a plurality of signal patterns, wherein the plurality of signal patterns comprise at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission.
  64. The apparatus of claim 61, wherein the monitoring comprises monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
  65. The apparatus of claim 61, wherein the monitoring comprises:
    means for determining a time unit associated with the first time period; and
    means for decoding a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
  66. The apparatus of claim 55, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  67. The apparatus of claim 55, further comprising:
    means for transmitting, to the second wireless device, an indication that the request is approved in response to the received request.
  68. The apparatus of claim 55, further comprising:
    means for transmitting, to the second wireless device, a third wireless device, or both, an indication that the first transmission is suspended over the at least the portion of the first frequency resources and during the subset of the first time period based at least in part on suspending the first transmission.
  69. The apparatus of claim 55, further comprising:
    means for receiving an indication of a plurality of frequency resources scheduled for communications between wireless devices, wherein the plurality of frequency resources comprise the first frequency resources or the second frequency resources, or both.
  70. An apparatus for wireless communication at a first wireless device, comprising:
    means for scheduling a first transmission over first frequency resources during a first time period;
    means for detecting that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period;
    means for transmitting, over second frequency resources, a request that the second wireless device suspend the second transmission; and
    means for performing the first transmission over the first frequency resources during the first time period based at least in part on the transmitted request.
  71. The apparatus of claim 70, further comprising:
    means for receiving an indication from the second wireless device that the request is approved and the second transmission will suspend in response to the request,  wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  72. The apparatus of claim 70, further comprising:
    means for receiving an indication from the second wireless device that the request is rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  73. The apparatus of claim 70, further comprising:
    means for retransmitting, over the second frequency resources, the request based at least in part on failing to receive an indication that the request was accepted or received.
  74. The apparatus of claim 73, wherein the request is retransmitted with an increased transmission power.
  75. The apparatus of claim 70, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  76. The apparatus of claim 70, further comprising:
    means for synchronizing with the second transmission before transmitting the request based at least in part on detecting the second transmission.
  77. The apparatus of claim 76, wherein the synchronizing comprises identifying symbol boundaries within the second transmission.
  78. The apparatus of claim 70, wherein the transmitting the request comprises:
    means for transmitting the request over a sidelink control channel, a sidelink random access channel, or both.
  79. The apparatus of claim 70, wherein the means for transmitting the request comprises:
    means for transmitting a signal pattern that indicates a priority of the first transmission.
  80. The apparatus of claim 70, wherein the request comprises an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
  81. The apparatus of claim 70, wherein the request comprises an indication of a priority of the second transmission.
  82. A non-transitory computer-readable medium storing code for wireless communication at a first wireless device, the code comprising instructions executable by a processor to:
    schedule a first transmission over first frequency resources during a first time period;
    perform the first transmission over the first frequency resources during the first time period based at least in part on the scheduling;
    receive, over second frequency resources and during the first time period, a request from a second wireless device that the first wireless device suspend the first transmission;
    determine whether to suspend the first transmission based at least in part on the received request; and
    suspend, over at least a portion of the first frequency resources during a subset of the first time period, the first transmission based at least in part on the determining.
  83. The non-transitory computer-readable medium of claim 82, wherein the receiving comprises the instructions to detect the request in the second frequency resources, wherein the suspending are executable by the processor to cause the apparatus to suspend all of the first frequency resources for a remainder of the first time period based at least in part on a priority level of the first transmission and detecting the request.
  84. The non-transitory computer-readable medium of claim 82, wherein the determining further comprises:
    determine that a second transmission scheduled over the at least the portion of the first frequency resources by the second wireless device has a higher priority than the first  transmission over the first frequency resources based at least in part on an indication of a priority of the second transmission included in the received request.
  85. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    identify the portion of the first frequency resources based at least in part on an indication of the portion of the first frequency resources that is included in the request, wherein the first transmission is suspended over the portion of the first frequency resources based at least in part on the identifying.
  86. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    identify a beginning of the subset of the first time period based at least in part on an indication of a beginning of the subset of the first transmission over the first frequency resources by the second wireless device that is included in the request, wherein the first transmission is suspended over the at least the portion of the first frequency resources based at least in part on the identifying.
  87. The non-transitory computer-readable medium of claim 86, wherein the instructions are further executable to:
    identify an end of the subset of the first time period based at least in part on an indication of a length of the subset of the first transmission that is included in the request; and
    resume the first transmission based at least in part on identifying the end of the subset of the first transmission.
  88. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    monitor the second frequency resources during the first time period concurrently with performing the first transmission over the first frequency resources.
  89. The non-transitory computer-readable medium of claim 88, wherein the monitoring comprises monitoring the second frequency resources for a signal pattern, wherein the signal pattern indicates a priority of a second transmission by the second wireless device.
  90. The non-transitory computer-readable medium of claim 88, wherein the monitoring comprises monitoring the second frequency resources for one of a plurality of signal patterns, wherein the plurality of signal patterns comprise at least a first signal pattern that indicates a first priority of a second transmission by the second wireless device and a second signal pattern that indicates a second priority of the second transmission.
  91. The non-transitory computer-readable medium of claim 88, wherein the monitoring comprises monitoring a sidelink control channel within the second frequency resources, a sidelink random access channel within the second frequency resources, or both.
  92. The non-transitory computer-readable medium of claim 88, wherein the monitoring comprises:
    determine a time unit associated with the first time period; and
    decode a signal received at a beginning of each time unit within the first time period in accordance with at least one transmission format.
  93. The non-transitory computer-readable medium of claim 82, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  94. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    transmit, to the second wireless device, an indication that the request is approved in response to the received request.
  95. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    transmit, to the second wireless device, a third wireless device, or both, an indication that the first transmission is suspended over the at least the portion of the first frequency resources and during the subset of the first time period based at least in part on suspending the first transmission.
  96. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    receive an indication of a plurality of frequency resources scheduled for communications between wireless devices, wherein the plurality of frequency resources comprise the first frequency resources or the second frequency resources, or both.
  97. A non-transitory computer-readable medium storing code for wireless communication at a first wireless device, the code comprising instructions executable by a processor to:
    schedule a first transmission over first frequency resources during a first time period;
    detect that a second transmission is being performed by a second wireless device over the first frequency resources during the first time period;
    transmit, over second frequency resources, a request that the second wireless device suspend the second transmission; and
    perform the first transmission over the first frequency resources during the first time period based at least in part on the transmitted request.
  98. The non-transitory computer-readable medium of claim 97, wherein the instructions are further executable to:
    receive an indication from the second wireless device that the request is approved and the second transmission will suspend in response to the request, wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  99. The non-transitory computer-readable medium of claim 97, wherein the instructions are further executable to:
    receive an indication from the second wireless device that the request is rejected and the second transmission will continue over at least a portion of the first frequency resources and during a subset of the first time period in response to the request, wherein the first transmission is performed over the first frequency resources and during the first time period based at least in part on receiving the indication.
  100. The non-transitory computer-readable medium of claim 97, wherein the instructions are further executable to:
    retransmit, over the second frequency resources, the request based at least in part on failing to receive an indication that the request was accepted or received.
  101. The non-transitory computer-readable medium of claim 100, wherein the request is retransmitted with an increased transmission power.
  102. The non-transitory computer-readable medium of claim 97, wherein the first frequency resources and the second frequency resources are completely overlapping, partially overlapping, or non-overlapping.
  103. The non-transitory computer-readable medium of claim 97, wherein the instructions are further executable to:
    synchronize with the second transmission before transmitting the request based at least in part on detecting the second transmission.
  104. The non-transitory computer-readable medium of claim 103, wherein the synchronizing comprises identifying symbol boundaries within the second transmission.
  105. The non-transitory computer-readable medium of claim 97, wherein the transmitting the request comprises:
    transmit the request over a sidelink control channel, a sidelink random access channel, or both.
  106. The non-transitory computer-readable medium of claim 97, wherein the instructions to transmit the request are executable to:
    transmit a signal pattern that indicates a priority of the first transmission.
  107. The non-transitory computer-readable medium of claim 97, wherein the request comprises an indication of the first frequency resources, a beginning of the first transmission, a length of the first transmission, an end of the first transmission, or any combination thereof.
  108. The non-transitory computer-readable medium of claim 97, wherein the request comprises an indication of a priority of the second transmission.
PCT/CN2019/104491 2019-09-05 2019-09-05 Radio resource preemption for full-duplex WO2021042317A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104491 WO2021042317A1 (en) 2019-09-05 2019-09-05 Radio resource preemption for full-duplex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104491 WO2021042317A1 (en) 2019-09-05 2019-09-05 Radio resource preemption for full-duplex

Publications (1)

Publication Number Publication Date
WO2021042317A1 true WO2021042317A1 (en) 2021-03-11

Family

ID=74852102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104491 WO2021042317A1 (en) 2019-09-05 2019-09-05 Radio resource preemption for full-duplex

Country Status (1)

Country Link
WO (1) WO2021042317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221806A1 (en) * 2021-04-14 2022-10-20 Qualcomm Incorporated Sidelink channel access timeline techniques for wireless communications systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162929A (en) * 2015-04-07 2016-11-23 中兴通讯股份有限公司 The communication means of user terminal and via node and device in equipment direct communication system
CN108141847A (en) * 2015-08-07 2018-06-08 夏普株式会社 It direct transfers allocation of communications resource for wireless sidelinks
WO2018170840A1 (en) * 2017-03-23 2018-09-27 Panasonic Intellectual Property Corporation Of America Method, apparatus and system
CN109548078A (en) * 2017-09-22 2019-03-29 索尼公司 Electronic device, wireless communications method and computer-readable medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162929A (en) * 2015-04-07 2016-11-23 中兴通讯股份有限公司 The communication means of user terminal and via node and device in equipment direct communication system
CN108141847A (en) * 2015-08-07 2018-06-08 夏普株式会社 It direct transfers allocation of communications resource for wireless sidelinks
WO2018170840A1 (en) * 2017-03-23 2018-09-27 Panasonic Intellectual Property Corporation Of America Method, apparatus and system
CN109548078A (en) * 2017-09-22 2019-03-29 索尼公司 Electronic device, wireless communications method and computer-readable medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221806A1 (en) * 2021-04-14 2022-10-20 Qualcomm Incorporated Sidelink channel access timeline techniques for wireless communications systems
US11910434B2 (en) 2021-04-14 2024-02-20 Qualcomm Incorporated Sidelink channel access timeline techniques for wireless communications systems

Similar Documents

Publication Publication Date Title
EP3729707B1 (en) Control monitoring and power control for multi-link deployments
US11844101B2 (en) Timeline considerations for intra-UE multiplexing
US10973034B2 (en) Control resource set monitoring rules based on active quasi-co-location assumption capabilities of a user equipment (UE)
WO2020033901A1 (en) Multiple timing advance design for multiple transmit receive points
US20220376845A1 (en) Repetition techniques for autonomous uplink transmissions
EP3776977B1 (en) Resynchronization signal transmission in wireless communications
US11026225B2 (en) Subslot physical downlink control channel monitoring and downlink preemption indication
US11490434B2 (en) Dual connectivity transmission techniques
US11425746B2 (en) Scheduling requests for grant-free configurations
US10931433B2 (en) Time division duplexing techniques for dual connectivity to different radio access networks
US11722181B2 (en) Default quasi co-location assumption for cross carrier reference signal triggering
US11258546B2 (en) Acknowledgment feedback techniques in wireless communications
EP3970436B1 (en) Mixed capability signaling
US11930521B2 (en) Interference mitigation for remote devices
US11678335B2 (en) Uplink preemption indication
US20200112983A1 (en) Uplink processing techniques for reduced uplink timelines in wireless communications
US11265129B2 (en) Dynamic configuration and adaptation of physical downlink control channel candidates
WO2020029157A1 (en) Feedback prioritization for wireless communications
US20200059952A1 (en) System information block delivery for narrowband user equipment
US11363493B2 (en) Carrier aggregation configurations in wireless systems
US11576172B2 (en) Multiple configurations with overlapping occasions
WO2021042317A1 (en) Radio resource preemption for full-duplex
WO2020142980A1 (en) Indication of existing control channel for target user equipment
WO2020073167A1 (en) Idle mode feedback for uplink resource release

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944627

Country of ref document: EP

Kind code of ref document: A1