WO2021035565A1 - Bessel beam with axicon for glass cutting - Google Patents

Bessel beam with axicon for glass cutting Download PDF

Info

Publication number
WO2021035565A1
WO2021035565A1 PCT/CN2019/102977 CN2019102977W WO2021035565A1 WO 2021035565 A1 WO2021035565 A1 WO 2021035565A1 CN 2019102977 W CN2019102977 W CN 2019102977W WO 2021035565 A1 WO2021035565 A1 WO 2021035565A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
axicon
approximately
aspects
glass cutting
Prior art date
Application number
PCT/CN2019/102977
Other languages
French (fr)
Inventor
Long Zhang
Andreas Oehler
Jan-Willem Pieterse
Original Assignee
Lumentum Operations Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumentum Operations Llc filed Critical Lumentum Operations Llc
Priority to PCT/CN2019/102977 priority Critical patent/WO2021035565A1/en
Priority to PCT/CN2020/070126 priority patent/WO2021036155A1/en
Priority to US16/915,373 priority patent/US20210060707A1/en
Priority to CN202010616737.1A priority patent/CN112440005A/en
Publication of WO2021035565A1 publication Critical patent/WO2021035565A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons

Definitions

  • a Bessel beam is a non-diffraction beam with an extended Rayleigh range and a characteristic of self-reconstruction.
  • An extended Rayleigh range enables generation of an elongated focal area and results in a uniform distribution of pulse energy in a transparent material.
  • Some aspects described herein enable less than 1.1 millimeter (mm) glass cutting. For example, some aspects enable cutting of 0.33 mm glass with a low-power, low-pulse-energy ultrafast laser source.
  • Figure 1 shows an example of an optical setup for glass cutting.
  • a Bessel beam may be generated by a 178° axicon.
  • An intersectional range (X1) of approximately 190 mm may be generated in a near field after the axicon when an input Gaussian beam is approximately 3 mm.
  • an annular beam with an annular width (B1) of approximately 1.5 mm may be provided.
  • a beam expander with an axial magnification of 1/280 may be used to get a subsidiary “Rayleigh range” (X2) .
  • X2 may be sensitive to a distance Y2 between the two lenses L1 and L2.
  • Y2 may be optimized to obtain a uniform distribution of pulse energy in X2.
  • the distance Y2 may be optimized by using a tick glass (e.g., approximately 5 mm) measured filament length from a side.
  • X2 may be approximately 400 micrometers ( ⁇ m) in the air and may be usable to cut an approximately 0.3 mm gloat glass.
  • an input beam may be enlarged or a magnification may be increased.
  • X2 may be increased to approximately 2 mm in the air if the input beam is increased to approximately 15 mm or an axial magnification is increased to 1/100.
  • an ultrafast laser with a burst mode may be used for glass cutting.
  • an optical filament may be generated as a result of a self-focusing effect in a high-power-density area.
  • glass with a certain thickness may be modified in a long filament area.
  • an approximately 0.3 mm glass sample may be processed using a 3-pulse, flat burst mode. Since the sample is associated with a threshold thinness, cutting may be achieved with a burst energy of ⁇ 100 micro-Joules ( ⁇ J) and an approximately 8 Watt (W) output power at 78 kilohertz (kHz) .
  • a limited X2 may not enable cutting of such a thick glass (e.g., without a threshold thinness) .
  • an incident beam may be enlarged to approximately 15 mm.
  • the burst energy may be increased to approximately 250 ⁇ J and approximately 20 W output power at 78 kHz, which results in a successful processing result.
  • Other values for an incident beam, a burst energy, an output power and/or the like may be used for, for example, thicker glass and other transparent materials.
  • Some aspects described herein may be deployed with a relatively compact configuration.
  • an axicon with a small apex angle may be used. This may result in a large divergence and short X1, and may result in a shortening of the propagation distance (Y1) .
  • Y1 may be defined by an NA of L1.
  • Y2 may be determined based on adding focal length of L1 + approximately 1.5 times an FL of L2. Then, a relatively short focal length may be used for L1 so that a large divergence generated by an axicon is compensated.
  • a clear aperture, and a working distance an axial magnification may be optimized accordingly. For example, a 170° axicon may be selected and lenses may be optimized with a focal length of 30 mm and 8 mm, respectively. In this way, a layout may be approximately 100 mm or less.
  • a length of X1 may be determined (e.g., X1 depends on an axicon angle and an input beam diameter) .
  • X1 depends on an axicon angle and an input beam diameter
  • axial magnification may be determined by X1/X2.
  • a large divergence angle may be achieved when a laser passes through.
  • divergent light generated by the axicon does not converge using a lens (L1) with a large focal length (e.g., 100 mm) .
  • a tight-focus lens may be selected (e.g., 30mm) .
  • the focal length of L2 may be determined as approximately X1/X2.
  • the focal length of approximately 8 mm may be determined.
  • a larger L2 may improve cutting of thick glass.
  • a limited size L2 may ensure a threshold power density to ensure generation of a filament inside glass.
  • a shorter L2 may have a small aperture, which may block some power.
  • a distance between L2 and X2 is decreased for a shorter L2.
  • a 175° or 178° axicon may be selected to ensure availability of different values for L1 and L2.
  • a glass cutting system may use a Bessel beam and an ultrafast burst laser for glass cutting.
  • such a glass cutting system may improve glass cutting relative to other methods for glass cutting, such as high aberration, polarization induced focal shifts, holographic refraction or reflection, and/or the like.
  • such a glass cutting system may be applicable to any other transparent material beside glass, such as silicon at 1.5 ⁇ m is, green transparent materials, red transparent materials, non-ultraviolet (UV) blue transparent materials, and/or the like.
  • a laser requirement could be further reduced for thin (e.g., less than approximately 0.7 mm) glass cutting, resulting in a reduced heat affected zone and lower cost.
  • such a glass cutting system may enable debris free cutting of transparent materials.
  • such a glass cutting system may include a burst mode laser, a Bessel beam, an axicon, an ultrafast laser, and/or the like to enable ultrafast glass cutting.
  • Some aspects provide glass cutting with a Bessel beam using an optical axicon. Some aspects elongate a focal range (e.g., a Raleigh range) by 10 to 20 times. Some aspects provide added sideways motion to create an energy curtain inside transparent material. Some aspects use an elongated high energy beam with fluence to alter (crack) a material as a preparation for mechanical/thermal separation.
  • a focal range e.g., a Raleigh range
  • Some aspects provide added sideways motion to create an energy curtain inside transparent material.
  • Some aspects use an elongated high energy beam with fluence to alter (crack) a material as a preparation for mechanical/thermal separation.
  • component is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A method for cutting glass comprises: generating an incident Gaussian beam with a ultrafast laser; converting the incident Gaussian beam into a Bessel beam with an axicon; transmitting the Bessel beam through a lens with the large focal length and a tight-focus lens successively; and focusing the beam on glass for cutting the glass.

Description

BESSEL BEAM WITH AXICON FOR GLASS CUTTING
A Bessel beam is a non-diffraction beam with an extended Rayleigh range and a characteristic of self-reconstruction. An extended Rayleigh range enables generation of an elongated focal area and results in a uniform distribution of pulse energy in a transparent material. Some aspects described herein enable less than 1.1 millimeter (mm) glass cutting. For example, some aspects enable cutting of 0.33 mm glass with a low-power, low-pulse-energy ultrafast laser source.
Figure 1 shows an example of an optical setup for glass cutting. In some aspects, a Bessel beam may be generated by a 178° axicon. An intersectional range (X1) of approximately 190 mm may be generated in a near field after the axicon when an input Gaussian beam is approximately 3 mm. In a far field, an annular beam with an annular width (B1) of approximately 1.5 mm may be provided. A beam expander with an axial magnification of 1/280 may be used to get a subsidiary “Rayleigh range” (X2) . In this case, X2 may be sensitive to a distance Y2 between the two lenses L1 and L2. In some aspects, Y2 may be optimized to obtain a uniform distribution of pulse energy in X2. The distance Y2 may be optimized by using a tick glass (e.g., approximately 5 mm) measured filament length from a side.
As an example, X2 may be approximately 400 micrometers (μm) in the air and may be usable to cut an approximately 0.3 mm gloat glass. In some aspects, to achieve a longer X2, an input beam may be enlarged or a magnification may be increased. For example, X2 may be increased to approximately 2 mm in the air if the input beam is increased to approximately 15 mm or an axial magnification is increased to 1/100.
Additionally, or alternatively, an ultrafast laser with a burst mode may be used for glass cutting. For example, when an ultrashort burst pulse is tightly focused into glass, an optical filament may be generated as a result of a self-focusing effect in a high-power-density area. With respect to an elongated focal area at X2, glass with a certain thickness may be modified in a long filament area. For example, an approximately 0.3 mm glass sample may be processed using a 3-pulse, flat burst mode. Since the sample is associated with a threshold thinness, cutting may be achieved with a burst energy of ~100 micro-Joules (μJ) and an approximately 8 Watt (W) output power at 78 kilohertz (kHz) . As another example, with an approximately 1 mm glass sample, a limited X2 may not enable cutting of such a thick glass (e.g., without a threshold thinness) . As a result, an incident beam may be enlarged to approximately 15 mm. In this case, the burst energy may be increased to approximately 250 μJ and approximately 20 W output power at 78 kHz, which results in a successful processing result. Other values for an incident beam, a burst energy, an output power and/or the like may be used for, for example, thicker glass and other transparent materials.
Some aspects described herein may be deployed with a relatively compact configuration. For example, to minimize the layout, an axicon with a small apex angle may be used. This may result in a large divergence and short X1, and may result in a shortening of the propagation distance (Y1) . Y1 may be defined by an NA of L1. Y2 may be determined based on adding focal length of L1 + approximately 1.5 times an FL of L2. Then, a relatively short focal length may be used for L1 so that a large divergence generated by an axicon is compensated. Further, in view of X2, a clear aperture, and a working distance, an axial magnification may be optimized accordingly. For example, a 170° axicon may be selected and lenses may be  optimized with a focal length of 30 mm and 8 mm, respectively. In this way, a layout may be approximately 100 mm or less.
A length of X1 may be determined (e.g., X1 depends on an axicon angle and an input beam diameter) . For example, if an approximately 2 mm X2 cuts an approximately 1mm glass, axial magnification may be determined by X1/X2. For example, for a 170° axicon, a large divergence angle may be achieved when a laser passes through. In this case, divergent light generated by the axicon does not converge using a lens (L1) with a large focal length (e.g., 100 mm) . As a result, a tight-focus lens may be selected (e.g., 30mm) . Further, the focal length of L2 may be determined as approximately X1/X2. For example, the focal length of approximately 8 mm may be determined. In some aspects, a larger L2 may improve cutting of thick glass. In some aspects, a limited size L2 may ensure a threshold power density to ensure generation of a filament inside glass. In some aspects, a shorter L2 may have a small aperture, which may block some power. In some aspects, a distance between L2 and X2 is decreased for a shorter L2. In some aspects, a 175° or 178° axicon may be selected to ensure availability of different values for L1 and L2.
In this way, a glass cutting system may use a Bessel beam and an ultrafast burst laser for glass cutting. In some aspects, such a glass cutting system may improve glass cutting relative to other methods for glass cutting, such as high aberration, polarization induced focal shifts, holographic refraction or reflection, and/or the like. In some aspects, such a glass cutting system may be applicable to any other transparent material beside glass, such as silicon at 1.5 μm is, green transparent materials, red transparent materials, non-ultraviolet (UV) blue transparent materials, and/or the like. In some aspects, a laser requirement could be further reduced for thin (e.g., less than approximately 0.7 mm) glass cutting, resulting in a reduced heat affected zone  and lower cost. In some aspects, such a glass cutting system may enable debris free cutting of transparent materials. In some aspects, such a glass cutting system may include a burst mode laser, a Bessel beam, an axicon, an ultrafast laser, and/or the like to enable ultrafast glass cutting.
Some aspects provide glass cutting with a Bessel beam using an optical axicon. Some aspects elongate a focal range (e.g., a Raleigh range) by 10 to 20 times. Some aspects provide added sideways motion to create an energy curtain inside transparent material. Some aspects use an elongated high energy beam with fluence to alter (crack) a material as a preparation for mechanical/thermal separation.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the implementations.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the implementations. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of  various implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, a combination of related items, and unrelated items, etc. ) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (1)

  1. A method, device, optical device, optical system, glass cutting system, axicon, laser, computer program product, and non-transitory computer-readable medium as substantially described herein with reference to and as illustrated by the accompanying drawings.
PCT/CN2019/102977 2019-08-28 2019-08-28 Bessel beam with axicon for glass cutting WO2021035565A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/102977 WO2021035565A1 (en) 2019-08-28 2019-08-28 Bessel beam with axicon for glass cutting
PCT/CN2020/070126 WO2021036155A1 (en) 2019-08-28 2020-01-02 Bessel beam with axicon for cutting transparent material
US16/915,373 US20210060707A1 (en) 2019-08-28 2020-06-29 Bessel beam with axicon for cutting transparent material
CN202010616737.1A CN112440005A (en) 2019-08-28 2020-06-30 Bessel beam with axicon for cutting transparent materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102977 WO2021035565A1 (en) 2019-08-28 2019-08-28 Bessel beam with axicon for glass cutting

Publications (1)

Publication Number Publication Date
WO2021035565A1 true WO2021035565A1 (en) 2021-03-04

Family

ID=74683492

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/102977 WO2021035565A1 (en) 2019-08-28 2019-08-28 Bessel beam with axicon for glass cutting
PCT/CN2020/070126 WO2021036155A1 (en) 2019-08-28 2020-01-02 Bessel beam with axicon for cutting transparent material

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070126 WO2021036155A1 (en) 2019-08-28 2020-01-02 Bessel beam with axicon for cutting transparent material

Country Status (2)

Country Link
CN (1) CN112440005A (en)
WO (2) WO2021035565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116931286A (en) * 2023-09-15 2023-10-24 成都莱普科技股份有限公司 Beam shaping module, method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112975171B (en) * 2021-03-25 2021-11-02 清华大学 Ultrafast laser micropore rotary-cut processingequipment
CN113828912A (en) * 2021-08-29 2021-12-24 深圳市鼎鑫盛光学科技有限公司 Bessel glass cutting lens capable of adjusting focal depth and spot size

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994564A (en) * 2017-04-27 2017-08-01 东莞市盛雄激光设备有限公司 A kind of laser cutting device and its cutting method
CN107914080A (en) * 2016-10-11 2018-04-17 财团法人工业技术研究院 Laser uniform processing device and method thereof
US20180265393A1 (en) * 2014-12-04 2018-09-20 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN109514099A (en) * 2018-12-12 2019-03-26 武汉华工激光工程有限责任公司 A kind of laser processing using Bayside light beam cutting frosted fragile material
CN109590618A (en) * 2017-09-28 2019-04-09 上海微电子装备(集团)股份有限公司 A kind of laser cutting system and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495472B (en) * 2011-11-29 2013-10-30 中国科学院上海光学精密机械研究所 Bessel beam generator based on annular Dammann gratings
TWI659793B (en) * 2014-07-14 2019-05-21 美商康寧公司 Systems and methods for processing transparent materials using adjustable laser beam focal lines
US9757815B2 (en) * 2014-07-21 2017-09-12 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser curved filamentation within transparent materials
CN204975690U (en) * 2015-07-15 2016-01-20 武汉华工激光工程有限责任公司 Produce device of bezier laser beam
US10730783B2 (en) * 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
CN106891096B (en) * 2017-04-27 2019-11-26 东莞市盛雄激光先进装备股份有限公司 A kind of laser cutting device and cutting method
CN107030397A (en) * 2017-05-19 2017-08-11 东莞市盛雄激光设备有限公司 The cutter device and cutting method of a kind of composite substrate
CN109570781A (en) * 2017-09-28 2019-04-05 上海微电子装备(集团)股份有限公司 A kind of microwell array processing unit (plant) and method
CN107807451B (en) * 2017-11-15 2024-05-07 广东韵腾激光科技有限公司 Portable variable focal length optical system
CN109031682A (en) * 2018-07-10 2018-12-18 北京润和微光科技有限公司 The generation system and method for Diode laser, small spot based on diffraction optical element
CN110133856B (en) * 2019-05-27 2021-12-17 暨南大学 System and method for generating diffraction-free vector Bessel optical field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180265393A1 (en) * 2014-12-04 2018-09-20 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN107914080A (en) * 2016-10-11 2018-04-17 财团法人工业技术研究院 Laser uniform processing device and method thereof
CN106994564A (en) * 2017-04-27 2017-08-01 东莞市盛雄激光设备有限公司 A kind of laser cutting device and its cutting method
CN109590618A (en) * 2017-09-28 2019-04-09 上海微电子装备(集团)股份有限公司 A kind of laser cutting system and method
CN109514099A (en) * 2018-12-12 2019-03-26 武汉华工激光工程有限责任公司 A kind of laser processing using Bayside light beam cutting frosted fragile material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116931286A (en) * 2023-09-15 2023-10-24 成都莱普科技股份有限公司 Beam shaping module, method and device
CN116931286B (en) * 2023-09-15 2023-11-24 成都莱普科技股份有限公司 Beam shaping module, method and device

Also Published As

Publication number Publication date
WO2021036155A1 (en) 2021-03-04
CN112440005A (en) 2021-03-05
WO2021036155A8 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2021035565A1 (en) Bessel beam with axicon for glass cutting
US11253955B2 (en) Multi-segment focusing lens and the laser processing for wafer dicing or cutting
JP7045372B2 (en) Laser device for cutting brittle materials using aspherical focusing means and beam magnifier
JP5520819B2 (en) Material processing method using laser irradiation and apparatus for performing the same
TW201919805A (en) Apparatuses and methods for laser processing transparent workpieces using an afocal beam adjustment assembly
JP2015519722A (en) Laser scribing with high depth action in the workpiece
JP2010158713A (en) Laser beam machining apparatus
KR101346296B1 (en) Laser processing apparatus and method
US11433483B2 (en) System and method laser for processing of materials
TW201832856A (en) Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11712754B2 (en) Device and method for laser-based separation of a transparent, brittle workpiece
JP2017102474A (en) Arrangement of optical elements for focusing approximately collimated beams
CN103934577A (en) Stray-light-free laser processing system with adjustable cutting width
US9958657B2 (en) Optical element for focusing approximately collimated rays
CN111715624A (en) Laser cleaning device
CN104785923A (en) Multi-point focusing laser processing device
CN203696249U (en) Laser processing system free from generating stray light and capable of adjusting cutting widths
KR102146831B1 (en) laser system
CN104526160A (en) Laser machining method and system
JP2021503373A (en) Systems and methods for laser machining substances
TWI715548B (en) Laser cutting method for hard and brittle materials and laser cutting machine and optical system of laser cutting machine
CN203887387U (en) Multi focus-focused laser machining device
US20210060707A1 (en) Bessel beam with axicon for cutting transparent material
KR101736693B1 (en) Method and apparatus for processing brittle material with filamentation of laser diffraction beam
KR20160001818U (en) Apparatus for processing of brittle material with filamentation of laser diffraction beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.06/22)

122 Ep: pct application non-entry in european phase

Ref document number: 19943754

Country of ref document: EP

Kind code of ref document: A1