WO2021033812A1 - Heterogeneous stereo camera system and camera calibration method - Google Patents

Heterogeneous stereo camera system and camera calibration method Download PDF

Info

Publication number
WO2021033812A1
WO2021033812A1 PCT/KR2019/010699 KR2019010699W WO2021033812A1 WO 2021033812 A1 WO2021033812 A1 WO 2021033812A1 KR 2019010699 W KR2019010699 W KR 2019010699W WO 2021033812 A1 WO2021033812 A1 WO 2021033812A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
camera
narrow
wide
lane
Prior art date
Application number
PCT/KR2019/010699
Other languages
French (fr)
Korean (ko)
Inventor
이윤희
Original Assignee
(주)캠시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)캠시스 filed Critical (주)캠시스
Priority to PCT/KR2019/010699 priority Critical patent/WO2021033812A1/en
Publication of WO2021033812A1 publication Critical patent/WO2021033812A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region

Definitions

  • the present invention relates to a heterogeneous stereo camera system and a camera calibration method.
  • the driver's visibility inside the vehicle is mainly directed to the front, and the driver's left and right sides and rear view are substantially obscured by the vehicle body and are very limited.
  • vision assistance means such as side mirrors have been used, and in recent years, technologies for photographing the outside of the vehicle with a camera means and providing it to the driver are also variously applied to the vehicle.
  • FIG. 1 is a diagram illustrating camera devices provided in a vehicle.
  • an Around View Monitoring (AVM) system that displays images in all directions around the vehicle by mounting a plurality of cameras 111, 113, 115, and 117 on the vehicle. .
  • the AVM system combines images around the vehicle captured by cameras 111, 113, 115, and 117 provided at each location of the vehicle, and is an AVM in the form of a Top View image, as if the driver is looking at the vehicle from the sky. Provide video.
  • the AVM system has the advantage of eliminating blind spots and allowing the driver to easily check obstacles around the vehicle.
  • a front narrow angle camera 120 is additionally provided in order to enable the driver to effectively recognize the condition of a long-distance road in front of the vehicle.
  • the cameras for the AVM system described above are implemented to shoot a relatively short distance area in a wide angle, but the narrow angle camera is implemented to take a relatively long distance area in a narrow angle.
  • the wide-angle camera 111 and the narrow-angle camera 120 for an AVM system provided to photograph the same direction (for example, the front) among a plurality of cameras provided in the vehicle may be used as a stereo camera as needed.
  • correction processing for each camera is required.
  • a method of capturing a predetermined correction pattern and correcting it from a three-dimensional coordinate to the position of a camera has been used.
  • a camera correction method uses the position of each point in each pattern image, and there is a problem that a lot of time is required during the correction operation.
  • the present invention is a heterogeneous stereo camera system that can quickly perform a stereo camera correction process by acquiring and matching 3D information of each camera using lane images taken from each of a wide-angle camera and a narrow-angle camera arranged to photograph the same direction. And a camera calibration method.
  • a wide-angle lane is detected from a wide-angle image image captured by a wide-angle camera using a predetermined lane detection technique.
  • An edge detection unit for detecting a narrow-angle lane in a narrow-angle image image captured by a narrow-angle camera;
  • a camera beam that converts the wide-angle video image and the narrow-angle video image into a top-view image and updates conversion rules for the wide-angle camera and the narrow-angle camera so that each of the wide-angle lane and the narrow-angle lane satisfies a predefined vanishing point infinite condition.
  • a heterogeneous stereo camera system including a matching unit is provided.
  • the camera correction unit is a rotation matrix (R) according to an angle obtained by accumulating the rotation angle ⁇ of the camera calculated immediately before until the rotation angle ⁇ of the camera calculated using the following equations satisfies the infinite vanishing point condition.
  • the process of recalculating the rotation angle ⁇ of the camera may be repeated using.
  • the above equations are,
  • x i is the coordinates of the vanishing point in the captured video image
  • x v is the coordinates of the vanishing point in the top view image
  • K is an internal parameter of the camera
  • R is a rotation matrix according to the rotation angle in each axis direction of the camera
  • Is a rotation matrix calculated by the product of R x , R y and R z
  • T is a translation matrix
  • Is It is the direction component value calculated as
  • v u is [0 1 0] T.
  • a stereo camera correction process is quickly performed by acquiring and matching 3D information of each camera using lane images taken from each of the wide-angle camera and the narrow-angle camera arranged to photograph the same direction. There is.
  • FIG. 1 is a diagram illustrating camera devices provided in a vehicle.
  • FIG. 2 is a block diagram of a heterogeneous stereo camera system according to an embodiment of the present invention.
  • FIG 3 is a view for explaining a correction process of each camera according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a matching process for configuring a stereo camera according to an embodiment of the present invention.
  • ... unit means a unit that processes at least one function or operation, which is hardware or software, or hardware and It can be implemented as a combination of software.
  • FIG. 2 is a block diagram of a heterogeneous stereo camera system according to an embodiment of the present invention
  • FIG. 3 is a view for explaining a correction process of each camera according to an embodiment of the present invention
  • FIG. 4 is A diagram for describing a matching process for configuring a stereo camera according to an embodiment of
  • the heterogeneous stereo camera system 200 may include a wide-angle camera 210, a narrow-angle camera 220, a matching unit 230, and a conversion rule storage unit 240.
  • the wide-angle camera 210 is a camera for an AVM system, for example, cameras (111, 113 in FIG. Among 115 and 117, it may be a camera arranged to photograph the same direction as the narrow angle camera 220.
  • the wide-angle camera 210 may use, for example, a wide-angle lens (or fisheye lens) having an angle of view of around 180 degrees so that a wide area close to the vehicle may be used as a photographing area.
  • a wide-angle lens or fisheye lens having an angle of view of around 180 degrees so that a wide area close to the vehicle may be used as a photographing area.
  • the narrow-angle camera 220 may be a camera in which a narrow-angle lens having an angle of view of 30 to 50 degrees is used, for example, so that an area relatively far from the vehicle can be taken as a photographing area compared to the wide-angle camera 210.
  • Each of the wide-angle camera 210 and the narrow-angle camera 220 generates a captured image image corresponding to a photographing angle in a mounted state and provides it to the matching unit 230.
  • an input unit and a storage unit for providing image data captured by each of the wide-angle camera 210 and the narrow-angle camera 220 to the matching unit 230 may be further included.
  • the matching unit 230 may include an edge detection unit 232, a camera correction unit 234 and a matching unit 236.
  • the edge detection unit 232 and the camera correction unit 234 perform predetermined correction processing on the wide-angle image image captured by the wide-angle camera 210 and the narrow-angle image image captured by the narrow-angle camera 220, respectively.
  • the matching unit 236 matches the processed wide-angle and narrow-angle image images, and processes the wide-angle camera 210 and the narrow-angle camera 220 to function as heterogeneous stereo cameras.
  • the edge detection unit 232 detects a lane using a predetermined lane detection technique in each of the wide-angle and narrow-angle image images.
  • An example of detecting a lane 310 using a lane detection technique in a wide-angle image and a narrow-angle image is illustrated in FIG. 3A.
  • a lane detection technique for recognizing the existence of the lane 310 in an image image and detecting an outline of the recognized lane 310 may be, for example, a sobel edge detection technique.
  • Sobel edge detection technique there may be various techniques for recognizing the lane and detecting the outline, and this is obvious to a person skilled in the art (a person having ordinary knowledge in the technical field to which the invention belongs), so a description thereof will be omitted.
  • the camera correction unit 234 corrects each of the wide-angle camera 210 and the narrow-angle camera 220 by using the lane detection result by the edge detector 232 for each of the wide-angle and narrow-angle image images.
  • the correction for each of the wide-angle camera 210 and the narrow-angle camera 220 may be based on finding a location where each camera is installed and a current installation angle.
  • the position of each camera may be fixed, but the angle of the camera may be changed due to vibration of the vehicle, so that correction processing such as updating the conversion rule of each camera may be performed by finding the rotation angle of each axis.
  • the camera correction unit 234 converts the lane detection results (refer to (a) of FIG. 3) of the wide-angle image image and the narrow-angle image image into a top-view image, respectively, using conversion rules previously stored in the conversion rule storage unit 240 ( 3(b) and 4(a) and (b)), the installation angles of the wide-angle camera 210 and the narrow-angle camera 220 satisfying the predetermined vanishing point infinite condition are calculated, respectively, and The conversion rules of the camera 210 and the narrow angle camera 220 are updated.
  • the two lanes in the top view image are not only parallel to each other, but also the outer and inner boundary lines of each of the left and right lanes are parallel to each other, so the vanishing point (Fig. 3(a)) P) is a condition that must be an infinite point (see Fig. 3(b)).
  • the camera correction unit 234 calculates the rotation angle of the wide-angle camera 210 and the narrow-angle camera 220 by referring to the corresponding video image among the wide-angle and narrow-angle video images, and each corresponding conversion rule satisfies the infinite vanishing point condition. Equations 1 to 3 below may be used in order to update.
  • x i denotes the coordinates of the vanishing point in the captured image image
  • x v denotes the coordinates of the vanishing point in the real world (top view image) in a three-dimensional space
  • K is an intrinsic parameter determined by the camera itself, such as the focal length of the camera
  • R is a rotation matrix and rotation matrices (R x , R y , which are rotation angles in each axis direction of the camera) It is calculated as the product of R z )
  • T is a translation matrix that is the distance from the origin.
  • x i , K and T can be said to be known values.
  • the camera correction unit 234 is a rotation matrix R corresponding to the rotation angle ⁇ 0 in each axial direction at a reference point of view (eg, a time when the camera is first mounted or a previous rotation angle calculation time, etc.) And Equations 1 and 2 can be used to calculate the coordinates (x v ) of the vanishing point in the real world in 3D space.
  • the camera correction unit 234 can calculate the rotation angle of the camera by Equation 3 below using the coordinates (x v ) of the vanishing point in the real world in the three-dimensional space calculated using Equations 1 and 2. have.
  • is the calculated rotation angle of the camera
  • Is It is calculated as the direction component value
  • v u is [0 1 0] T.
  • the camera correction unit 234 determines whether or not the calculated rotation angle ⁇ of the camera is equal to or less than a predetermined threshold. This is the direction component value This is because as the dot product of and v u approaches 0, it can be determined that the infinite vanishing point condition is satisfied.
  • the camera correction unit 234 determines that the conversion rule for the current camera is appropriate.
  • the above-described process is repeatedly performed until the calculated rotation angle ⁇ of the camera satisfies a predetermined threshold. That is, the process of calculating the camera rotation angle ⁇ using equations 1 and 3 and a rotation matrix calculated by summing all the camera rotation angles calculated in each step and the camera rotation angle at the above-described reference point of view is prescribed in advance. Repeat until the infinite vanishing point condition is satisfied.
  • the camera correction unit 234 updates the conversion rule for the corresponding camera to a conversion rule corresponding to the finally calculated camera rotation angle, and the conversion rule storage unit ( 240).
  • the wide-angle video image captured by the wide-angle camera 210 according to each conversion rule updated by the above-described process is converted into a first top-view image (refer to (a) of FIG. 4), and photographed by the narrow-angle camera 220
  • the narrow angle image image may be converted into a second top view image (refer to FIG. 4B).
  • reference numeral 310a denotes a lane photographed by the wide-angle camera 210 (hereinafter, referred to as a wide-angle lane)
  • 310b denotes a lane photographed by the narrow-angle camera 220 (hereinafter, referred to as a narrow-angle lane).
  • the first top-view image is generated by the wide-angle camera 210 and has a characteristic specialized for a short-range image
  • the second top-view image is a narrow-angle camera 220 It is produced by and has features specialized for distant images.
  • the wide-angle lane 310a of the first top-view image may be shown to have a relatively wide width compared to the narrow-angle lane 310b of the second top-view image. Therefore, when the first top-view image and the second top-view image overlap, As illustrated in (c) of FIG. 4, the widths of the lane areas are displayed in a manner that does not match each other.
  • the matching unit 236 processes the wide-angle lane 310a and the narrow-angle lane 310b to be displayed with the same lane width. It can be (see Fig. 4(d)).
  • the matching unit 236 overlaps the first top-view image and the second top-view image, and updates the conversion rule of the wide-angle camera 210 or the narrow-angle camera 220 so that the lane images displayed in each top-view image match each other. .
  • the following Equations 4 to 9 may be used.
  • x denotes one point of the narrow-angle lane
  • x'de denotes one point of the wide-angle lane
  • K is an internal parameter of the camera itself, Is the difference between the camera rotation angle of the wide-angle camera 210 and the narrow-angle camera 220 ( Represents a rotation function corresponding to ).
  • Equation 5 can be simplified as in Equation 6 below, and y and y'in Equation 6 can be expressed as Equation 7, and if Equation 6 is expressed as a matrix using Equation 7, Equation 8 It can be expressed as, Equation 8 can be simplified as Equation 9.
  • the matching unit 236 is the rotation angle of any one of the wide-angle camera 210 and the narrow-angle camera 220 calculated to meet the infinite vanishing point condition by the camera correction unit 234 (for example, when the wide-angle camera is referenced, ⁇ _wide angle) and summing the difference in rotation angle to the other rotation angle (for example, ⁇ _narrow angle+ ) And applied, the difference between each camera rotation angle using Equations 4 to 9 described above until the widths of the wide-angle lane 310a and the narrow-angle lane 310b become the same ( ) Is repeatedly calculated. In the process of being repeatedly performed, all differences between the rotation angles calculated up to the previous step are summed (for example, ⁇ _narrow angle + ⁇ Applied) and applied.
  • the difference between x and x' is the angle parameter ( ), and the difference between each camera rotation angle ( ) Represents a modified angle from the existing installation angle, and the rotation function (R matrix) is changed by repeated processing until the widths of the wide-angle lane 310a and the narrow-angle lane 310b become the same, resulting in a corresponding The camera's calibration result is changed.
  • the conversion rules are updated so that the lanes of the wide-angle and narrow-angle video images respectively photographed by the wide-angle camera 210 and the narrow-angle camera 220 satisfy the infinite vanishing point condition, they correspond to the wide-angle video image.
  • the wide-angle camera 210 and the narrow-angle camera 220 are composed of heterogeneous stereo cameras. Can be used.
  • the heterogeneous stereo camera system and the camera correction method according to the present embodiment use the lane images taken by the wide-angle cameras and narrow-angle cameras respectively arranged to photograph the same direction. There is an advantage of being able to quickly perform a stereo camera correction process by acquiring and matching 3D information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Abstract

Disclosed are a heterogeneous stereo camera system and a camera calibration method. The heterogeneous stereo camera system includes: an edge detection unit which uses a pre-designated lane detection technique to detect a wide angle lane from a wide angle image captured by a wide angle camera, and detect a narrow angle lane from a narrow angle image captured by a narrow angle camera; a camera calibration unit which converts the wide angle image and the narrow angle image into top view images, and updates respective conversion rules for the wide angle camera and the narrow angle camera so that the wide angle lane and the narrow angle lane each meet pre-defined infinite vanishing point conditions; and a matching unit which uses the conversion rules updated in order to meet the infinite vanishing point conditions to further update the conversion rules for at least one of the wide angle camera and the narrow angle camera so that the widths of the wide angle lane and the narrow angle lane, which have been converted into the top view images, become the same.

Description

이종 스테레오 카메라 시스템 및 카메라 보정 방법Heterogeneous stereo camera system and camera calibration method
본 발명은 이종 스테레오 카메라 시스템 및 카메라 보정 방법에 관한 것이다.The present invention relates to a heterogeneous stereo camera system and a camera calibration method.
일반적으로, 차량 내부에 탑승한 운전자의 시계는 주로 전방을 향하게 되고, 운전자의 좌우측과 후방 시계는 차체에 의하여 상당부분 가려져 매우 한정된다.In general, the driver's visibility inside the vehicle is mainly directed to the front, and the driver's left and right sides and rear view are substantially obscured by the vehicle body and are very limited.
이러한 문제를 해결하기 위하여, 사이드 미러 등의 시계 보조수단이 사용되었으며, 최근에는 카메라 수단으로 차량의 외부를 촬영하여 운전자에게 제공하는 기술들도 차량에 다양하게 적용되고 있다.In order to solve this problem, vision assistance means such as side mirrors have been used, and in recent years, technologies for photographing the outside of the vehicle with a camera means and providing it to the driver are also variously applied to the vehicle.
도 1은 차량에 구비되는 카메라 장치들을 예시한 도면이다. 1 is a diagram illustrating camera devices provided in a vehicle.
도 1에 예시된 바와 같이, 차량에 복수의 카메라들(111, 113, 115, 117)를 장착하여 차량 주변의 전방향의 영상을 보여주는 어라운드 뷰 모니터링(Around View Monitoring, AVM) 시스템이 제공되고 있다. As illustrated in FIG. 1, an Around View Monitoring (AVM) system is provided that displays images in all directions around the vehicle by mounting a plurality of cameras 111, 113, 115, and 117 on the vehicle. .
AVM 시스템은 차량 각 위치에 구비된 카메라들(111, 113, 115, 117)에 의해 촬영된 차량 주변의 영상을 조합하여, 운전자가 하늘에서 차량을 바라보는 듯한 탑뷰(Top View) 이미지 형식의 AVM 영상을 제공한다. AVM 시스템은 사각 지대를 해소하고 또한 운전자가 차량 주변의 장애물을 쉽게 확인할 수 있도록 하는 장점이 있다. The AVM system combines images around the vehicle captured by cameras 111, 113, 115, and 117 provided at each location of the vehicle, and is an AVM in the form of a Top View image, as if the driver is looking at the vehicle from the sky. Provide video. The AVM system has the advantage of eliminating blind spots and allowing the driver to easily check obstacles around the vehicle.
이외에도, 최근에는 운전자가 차량 전방의 원거리 도로 상황까지 효과적으로 인식할 수 있도록 하기 위해, 전방 협각 카메라(120)도 추가적으로 구비되고 있다. In addition, in recent years, a front narrow angle camera 120 is additionally provided in order to enable the driver to effectively recognize the condition of a long-distance road in front of the vehicle.
전술한 AVM 시스템용 카메라들은 상대적으로 짧은 거리의 영역을 광각 촬영하도록 구현되지만, 협각 카메라는 상대적으로 긴 거리의 영역을 협각 촬영하도록 구현된다. The cameras for the AVM system described above are implemented to shoot a relatively short distance area in a wide angle, but the narrow angle camera is implemented to take a relatively long distance area in a narrow angle.
이와 같이, 차량에 구비된 복수의 카메라들 중 동일한 방향(예를 들어 전방)을 촬영하도록 구비된 AVM 시스템용 광각 카메라(111)와 협각 카메라(120)는 필요에 따라 스테레오 카메라로 활용될 수도 있다.In this way, the wide-angle camera 111 and the narrow-angle camera 120 for an AVM system provided to photograph the same direction (for example, the front) among a plurality of cameras provided in the vehicle may be used as a stereo camera as needed. .
이를 위해 각 카메라에 대한 보정 처리가 요구된다. 종래에는 미리 지정된 보정 패턴을 촬영하여 3차원 좌표에서 카메라의 위치로 보정하는 방법이 이용되고 있었다. 그러나, 이러한 카메라 보정 방법은 각 패턴 영상에서의 각 점의 위치를 이용하는 방법으로써, 보정 작업시 많은 시간이 소요되는 문제점이 있었다. For this, correction processing for each camera is required. Conventionally, a method of capturing a predetermined correction pattern and correcting it from a three-dimensional coordinate to the position of a camera has been used. However, such a camera correction method uses the position of each point in each pattern image, and there is a problem that a lot of time is required during the correction operation.
전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.The above-described background technology is technical information possessed by the inventors for derivation of the present invention or acquired during the derivation process of the present invention, and is not necessarily known to be publicly known prior to filing the present invention.
본 발명은 동일한 방향을 촬영하도록 배치된 광각 카메라와 협각 카메라 각각에서 촬영된 차선 이미지를 이용하여 각 카메라의 3차원 정보를 획득하고 매칭시킴으로써 스테레오 카메라 보정 처리가 신속하게 수행될 수 있는 이종 스테레오 카메라 시스템 및 카메라 보정 방법을 제공하기 위한 것이다. The present invention is a heterogeneous stereo camera system that can quickly perform a stereo camera correction process by acquiring and matching 3D information of each camera using lane images taken from each of a wide-angle camera and a narrow-angle camera arranged to photograph the same direction. And a camera calibration method.
본 발명의 이외의 목적들은 하기의 설명을 통해 쉽게 이해될 수 있을 것이다.Objects other than the present invention will be easily understood through the following description.
본 발명의 일 측면에 따르면, 미리 지정된 차선 검출 기법을 이용하여, 광각 카메라에서 촬영된 광각 영상 이미지에서 광각 차선을 검출하고. 협각 카메라에서 촬영된 협각 영상 이미지에서 협각 차선을 검출하는 에지 검출부; 상기 광각 영상 이미지와 상기 협각 영상 이미지를 탑뷰 이미지로 변환하여 상기 광각 차선과 상기 협각 차선 각각이 미리 규정된 소실점 무한 조건을 만족하도록 상기 광각 카메라와 상기 협각 카메라에 대한 변환 규칙을 각각 갱신하는 카메라 보정부; 및 상기 소실점 무한 조건을 만족하도록 갱신된 변환 규칙을 이용하여 탑뷰 이미지로 변환된 상기 광각 차선과 상기 협각 차선의 폭이 동일해지도록 상기 광각 카메라 및 상기 협각 카메라 중 하나 이상에 대한 변환 규칙을 더 갱신하는 매칭부를 포함하는 이종 스테레오 카메라 시스템이 제공된다. According to an aspect of the present invention, a wide-angle lane is detected from a wide-angle image image captured by a wide-angle camera using a predetermined lane detection technique. An edge detection unit for detecting a narrow-angle lane in a narrow-angle image image captured by a narrow-angle camera; A camera beam that converts the wide-angle video image and the narrow-angle video image into a top-view image and updates conversion rules for the wide-angle camera and the narrow-angle camera so that each of the wide-angle lane and the narrow-angle lane satisfies a predefined vanishing point infinite condition. government; And a conversion rule for at least one of the wide-angle camera and the narrow-angle camera so that the width of the wide-angle lane and the narrow-angle lane converted into a top-view image by using the updated conversion rule to satisfy the infinite vanishing point condition is further updated. A heterogeneous stereo camera system including a matching unit is provided.
상기 카메라 보정부는 하기 수학식들을 이용하여 산출한 카메라의 회전 각도(θ)가 상기 소실점 무한 조건을 만족할 때까지 직전에 산출된 카메라의 회전 각도(θ)를 누적한 각도에 따른 회전 행렬(R)을 이용하여 카메라의 회전 각도(θ)를 다시 산출하는 과정을 반복할 수 있다. 여기서, 상기 수학식들은, The camera correction unit is a rotation matrix (R) according to an angle obtained by accumulating the rotation angle θ of the camera calculated immediately before until the rotation angle θ of the camera calculated using the following equations satisfies the infinite vanishing point condition. The process of recalculating the rotation angle θ of the camera may be repeated using. Here, the above equations are,
Figure PCTKR2019010699-appb-I000001
Figure PCTKR2019010699-appb-I000001
Figure PCTKR2019010699-appb-I000002
일 수 있고,
Figure PCTKR2019010699-appb-I000002
Can be,
상기 xi는 촬영된 영상 이미지에서의 소실점의 좌표이고, xv는 탑뷰 이미지에서의 소실점의 좌표이며, K는 카메라의 내부 파라미터이고, R은 카메라의 각 축 방향으로의 회전 각도에 따른 회전 행렬들 Rx, Ry 및 Rz의 곱으로 산출된 회전 행렬이며, T는 트랜스레이션 행렬이고,
Figure PCTKR2019010699-appb-I000003
Figure PCTKR2019010699-appb-I000004
로 연산되는 방향 성분값이며, vu는 [0 1 0]T이다.
Wherein x i is the coordinates of the vanishing point in the captured video image, x v is the coordinates of the vanishing point in the top view image, K is an internal parameter of the camera, and R is a rotation matrix according to the rotation angle in each axis direction of the camera Is a rotation matrix calculated by the product of R x , R y and R z, and T is a translation matrix,
Figure PCTKR2019010699-appb-I000003
Is
Figure PCTKR2019010699-appb-I000004
It is the direction component value calculated as, and v u is [0 1 0] T.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명의 실시예에 따르면, 동일한 방향을 촬영하도록 배치된 광각 카메라와 협각 카메라 각각에서 촬영된 차선 이미지를 이용하여 각 카메라의 3차원 정보를 획득하고 매칭시킴으로써 스테레오 카메라 보정 처리가 신속하게 수행되는 효과가 있다.According to an embodiment of the present invention, a stereo camera correction process is quickly performed by acquiring and matching 3D information of each camera using lane images taken from each of the wide-angle camera and the narrow-angle camera arranged to photograph the same direction. There is.
도 1은 차량에 구비되는 카메라 장치들을 예시한 도면. 1 is a diagram illustrating camera devices provided in a vehicle.
도 2는 본 발명의 일 실시예에 따른 이종 스테레오 카메라 시스템의 블록 구성도.2 is a block diagram of a heterogeneous stereo camera system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 각 카메라의 보정 처리 과정을 설명하기 위한 도면.3 is a view for explaining a correction process of each camera according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 스테레오 카메라를 구성하기 위한 매칭 처리 과정을 설명하기 위한 도면.4 is a diagram illustrating a matching process for configuring a stereo camera according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In the present invention, various modifications may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to a specific embodiment, it is to be understood to include all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
또한, 명세서에 기재된 "…부", "…유닛", "…모듈", "…기" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as "... unit", "... unit", "... module", and "... group" described in the specification mean a unit that processes at least one function or operation, which is hardware or software, or hardware and It can be implemented as a combination of software.
도 2는 본 발명의 일 실시예에 따른 이종 스테레오 카메라 시스템의 블록 구성도이고, 도 3은 본 발명의 일 실시예에 따른 각 카메라의 보정 처리 과정을 설명하기 위한 도면이며, 도 4는 본 발명의 일 실시예에 따른 스테레오 카메라를 구성하기 위한 매칭 처리 과정을 설명하기 위한 도면이다.2 is a block diagram of a heterogeneous stereo camera system according to an embodiment of the present invention, FIG. 3 is a view for explaining a correction process of each camera according to an embodiment of the present invention, and FIG. 4 is A diagram for describing a matching process for configuring a stereo camera according to an embodiment of
도 2를 참조하면, 이종 스테레오 카메라 시스템(200)은 광각 카메라(210), 협각 카메라(220), 매칭 유닛(230) 및 변환규칙 저장부(240)를 포함할 수 있다. Referring to FIG. 2, the heterogeneous stereo camera system 200 may include a wide-angle camera 210, a narrow-angle camera 220, a matching unit 230, and a conversion rule storage unit 240.
광각 카메라(210)는 예를 들어 AVM 시스템용 카메라로서 차량의 복수 개소(예를 들어, 전방, 후방, 좌측 및 우측을 각각 촬영하도록 지정된 위치)에 각각 설치된 카메라들(도 1의 111, 113, 115, 117) 중 협각 카메라(220)과 동일한 방향을 촬영하도록 배치된 카메라일 수 있다. The wide-angle camera 210 is a camera for an AVM system, for example, cameras (111, 113 in FIG. Among 115 and 117, it may be a camera arranged to photograph the same direction as the narrow angle camera 220.
광각 카메라(210)는 차량에 근접한 넓은 범위의 영역을 촬영 영역으로 할 수 있도록, 예를 들어 화각이 180도 내외인 광각 렌즈(또는 어안 렌즈)가 이용될 수 있다. The wide-angle camera 210 may use, for example, a wide-angle lens (or fisheye lens) having an angle of view of around 180 degrees so that a wide area close to the vehicle may be used as a photographing area.
협각 카메라(220)는 광각 카메라(210)에 비해 상대적으로 차량에서 먼 영역까지 촬영 영역으로 할 수 있도록, 예를 들어 30 내지 50도의 화각을 가지는 협각 렌즈가 이용되는 카메라일 수 있다.The narrow-angle camera 220 may be a camera in which a narrow-angle lens having an angle of view of 30 to 50 degrees is used, for example, so that an area relatively far from the vehicle can be taken as a photographing area compared to the wide-angle camera 210.
광각 카메라(210)와 협각 카메라(220) 각각은 장착된 상태의 촬영 각도에 상응하도록 촬영한 영상 이미지를 생성하여 매칭 유닛(230)로 제공한다. 도시되지는 않았으나, 광각 카메라(210)와 협각 카메라(220) 각각에서 촬영한 영상 데이터를 매칭 유닛(230)로 제공하기 위한 입력부와 저장부가 더 포함될 수도 있다.Each of the wide-angle camera 210 and the narrow-angle camera 220 generates a captured image image corresponding to a photographing angle in a mounted state and provides it to the matching unit 230. Although not shown, an input unit and a storage unit for providing image data captured by each of the wide-angle camera 210 and the narrow-angle camera 220 to the matching unit 230 may be further included.
매칭 유닛(230)은 에지 검출부(232), 카메라 보정부(234) 및 매칭부(236)를 포함할 수 있다. 후술되는 바와 같이, 에지 검출부(232)와 카메라 보정부(234)는 광각 카메라(210)에서 촬영된 광각 영상 이미지와 협각 카메라(220)에서 촬영된 협각 영상 이미지에 대해 각각 미리 지정된 보정 처리를 수행하고, 매칭부(236)는 각각 처리된 광각 영상 이미지와 협각 영상 이미지를 매칭시켜 광각 카메라(210)와 협각 카메라(220)가 이종 스테레오 카메라로 기능할 수 있도록 처리한다.The matching unit 230 may include an edge detection unit 232, a camera correction unit 234 and a matching unit 236. As will be described later, the edge detection unit 232 and the camera correction unit 234 perform predetermined correction processing on the wide-angle image image captured by the wide-angle camera 210 and the narrow-angle image image captured by the narrow-angle camera 220, respectively. Then, the matching unit 236 matches the processed wide-angle and narrow-angle image images, and processes the wide-angle camera 210 and the narrow-angle camera 220 to function as heterogeneous stereo cameras.
에지 검출부(232)는 광각 영상 이미지와 협각 영상 이미지 각각에서 미리 지정된 차선 검출 기법을 이용하여 차선을 검출한다. 광각 영상 이미지와 협각 영상 이미지에서 차선 검출 기법을 이용한 차선(310)의 검출 예가 도 3의 (a)에 예시되어 있다. The edge detection unit 232 detects a lane using a predetermined lane detection technique in each of the wide-angle and narrow-angle image images. An example of detecting a lane 310 using a lane detection technique in a wide-angle image and a narrow-angle image is illustrated in FIG. 3A.
영상 이미지 내에서 차선(310)의 존재를 인식하고, 인식된 차선(310)의 외곽선을 검출하는 차선 검출 기법은 예를 들어 소벨 에지 검출(sobel edge detection) 기법이 적용될 수 있다. 소벨 에지 검출 기법 이외에도 차선을 인식하고 외곽선을 검출하는 기법은 다양할 수 있으며, 이는 당업자(그 발명이 속하는 기술 분야에서 통상의 지식을 가진 자)에게 자명한 사항이므로 이에 대한 설명은 생략한다. A lane detection technique for recognizing the existence of the lane 310 in an image image and detecting an outline of the recognized lane 310 may be, for example, a sobel edge detection technique. In addition to the Sobel edge detection technique, there may be various techniques for recognizing the lane and detecting the outline, and this is obvious to a person skilled in the art (a person having ordinary knowledge in the technical field to which the invention belongs), so a description thereof will be omitted.
카메라 보정부(234)는 광각 영상 이미지와 협각 영상 이미지 각각에 대해 에지 검출부(232)에 의한 차선 검출 결과를 이용하여 광각 카메라(210)와 협각 카메라(220) 각각을 보정한다. 광각 카메라(210)와 협각 카메라(220) 각각에 대한 보정은 각 카메라가 설치된 위치와 현재 설치 각도를 찾는 것에 기반할 수 있다. 여기서, 각 카메라의 위치는 고정된 것일 수 있으나, 카메라의 각도는 차량의 진동 등에 의해 변경될 수 있으므로 각 축의 회전 각도를 찾아 각 카메라의 변환 규칙 갱신 등 보정처리가 이루어질 수 있다. The camera correction unit 234 corrects each of the wide-angle camera 210 and the narrow-angle camera 220 by using the lane detection result by the edge detector 232 for each of the wide-angle and narrow-angle image images. The correction for each of the wide-angle camera 210 and the narrow-angle camera 220 may be based on finding a location where each camera is installed and a current installation angle. Here, the position of each camera may be fixed, but the angle of the camera may be changed due to vibration of the vehicle, so that correction processing such as updating the conversion rule of each camera may be performed by finding the rotation angle of each axis.
카메라 보정부(234)는 변환규칙 저장부(240)에 각각 미리 저장된 변환 규칙을 이용하여 광각 영상 이미지와 협각 영상 이미지의 차선 검출 결과(도 3의 (a) 참조)를 탑뷰 이미지로 각각 변환(도 3의 (b), 도 4의 (a)와 (b) 참조)한 후, 미리 규정된 소실점 무한 조건을 만족하는 광각 카메라(210)과 협각 카메라(220)의 설치 각도를 각각 산출하여 광각 카메라(210)과 협각 카메라(220) 각각의 변환 규칙을 갱신한다. The camera correction unit 234 converts the lane detection results (refer to (a) of FIG. 3) of the wide-angle image image and the narrow-angle image image into a top-view image, respectively, using conversion rules previously stored in the conversion rule storage unit 240 ( 3(b) and 4(a) and (b)), the installation angles of the wide-angle camera 210 and the narrow-angle camera 220 satisfying the predetermined vanishing point infinite condition are calculated, respectively, and The conversion rules of the camera 210 and the narrow angle camera 220 are updated.
여기서, 소실점 무한 조건은 탑뷰 이미지에서의 두 차선은 서로 평행할 뿐 아니라, 왼쪽 차선 및 오른쪽 차선 각각의 바깥쪽 경계선과 안쪽 경계선이 서로 평행하므로, 소실점(vanishing point)(도 3의 (a)의 P)은 무한(infinite)이 되는 점이어야 한다는 조건이다(도 3의 (b) 참조). Here, in the infinite vanishing point condition, the two lanes in the top view image are not only parallel to each other, but also the outer and inner boundary lines of each of the left and right lanes are parallel to each other, so the vanishing point (Fig. 3(a)) P) is a condition that must be an infinite point (see Fig. 3(b)).
카메라 보정부(234)는 광각 영상 이미지 및 협각 영상 이미지 중 대응되는 영상 이미지를 참조하여 광각 카메라(210)와 협각 카메라(220)의 회전 각도를 산출하여 대응되는 변환 규칙 각각이 소실점 무한 조건을 만족하도록 갱신하기 위해 하기 수학식 1 내지 3을 이용할 수 있다. The camera correction unit 234 calculates the rotation angle of the wide-angle camera 210 and the narrow-angle camera 220 by referring to the corresponding video image among the wide-angle and narrow-angle video images, and each corresponding conversion rule satisfies the infinite vanishing point condition. Equations 1 to 3 below may be used in order to update.
이하, 수학식 1 내지 3을 이용하여 소실점 무한 조건을 만족하도록 대응되는 카메라의 변환 규칙을 갱신하는 과정은 광각 카메라(210) 및 협각 카메라(220)에서 동일하므로 이하에서는 통칭하여 카메라에 대한 변환 규칙 보정 과정으로 함께 설명하기로 한다. Hereinafter, the process of updating the corresponding camera conversion rule to satisfy the infinite vanishing point condition using Equations 1 to 3 is the same in the wide-angle camera 210 and the narrow-angle camera 220, so that the conversion rule for the camera is collectively referred to below. It will be described together as a calibration process.
Figure PCTKR2019010699-appb-M000001
Figure PCTKR2019010699-appb-M000001
Figure PCTKR2019010699-appb-M000002
Figure PCTKR2019010699-appb-M000002
여기서, xi는 촬영된 영상 이미지에서의 소실점의 좌표를 의미하고, xv는 3차원 공간상의 실세계(탑뷰 이미지)에서의 소실점의 좌표를 의미한다. K는 카메라의 초점거리(focal length) 등 카메라 자체에 의해 결정되는 내부 파라미터(intrinsic parameter)이고, R은 회전 행렬로서 카메라의 각 축 방향으로의 회전 각도인 회전 행렬들(Rx, Ry, Rz)의 곱으로 산출되며, T는 원점에서의 거리인 트랜스레이션 행렬(translation matrix)이다. 여기서, xi, K 및 T는 이미 알고 있는 값이라 할 수 있다. Here, x i denotes the coordinates of the vanishing point in the captured image image, and x v denotes the coordinates of the vanishing point in the real world (top view image) in a three-dimensional space. K is an intrinsic parameter determined by the camera itself, such as the focal length of the camera, and R is a rotation matrix and rotation matrices (R x , R y , which are rotation angles in each axis direction of the camera) It is calculated as the product of R z ), and T is a translation matrix that is the distance from the origin. Here, x i , K and T can be said to be known values.
카메라 보정부(234)는 기준 시점(예를 들어, 카메라를 처음 장착한 시점 또는 이전의 회전 각도 산출 시점 등)에서의 각 축방향으로의 회전 각도(θ0)에 상응하는 회전 행렬(R)과 수학식 1 및 2를 이용하여 3차원 공간상의 실세계에서의 소실점의 좌표(xv)를 산출할 수 있다. The camera correction unit 234 is a rotation matrix R corresponding to the rotation angle θ 0 in each axial direction at a reference point of view (eg, a time when the camera is first mounted or a previous rotation angle calculation time, etc.) And Equations 1 and 2 can be used to calculate the coordinates (x v ) of the vanishing point in the real world in 3D space.
이어서, 카메라 보정부(234)는 수학식 1과 2를 이용하여 산출된 3차원 공간상의 실세계에서의 소실점의 좌표(xv)를 이용하여 하기 수학식 3에 의해 카메라의 회전 각도를 산출할 수 있다.Subsequently, the camera correction unit 234 can calculate the rotation angle of the camera by Equation 3 below using the coordinates (x v ) of the vanishing point in the real world in the three-dimensional space calculated using Equations 1 and 2. have.
Figure PCTKR2019010699-appb-M000003
Figure PCTKR2019010699-appb-M000003
여기서, θ는 산출된 카메라의 회전 각도이고,
Figure PCTKR2019010699-appb-I000005
Figure PCTKR2019010699-appb-I000006
로 연산되어 방향 성분값이며, vu는 [0 1 0]T이다.
Here, θ is the calculated rotation angle of the camera,
Figure PCTKR2019010699-appb-I000005
Is
Figure PCTKR2019010699-appb-I000006
It is calculated as the direction component value, and v u is [0 1 0] T.
카메라 보정부(234)는 산출된 카메라의 회전 각도(θ)가 미리 지정된 임계값 이하인지 여부를 판단한다. 이는, 각각 방향 성분값인
Figure PCTKR2019010699-appb-I000007
와 vu의 내적이 0에 근접할수록 소실점 무한 조건을 만족하는 것으로 판정될 수 있기 때문이다.
The camera correction unit 234 determines whether or not the calculated rotation angle θ of the camera is equal to or less than a predetermined threshold. This is the direction component value
Figure PCTKR2019010699-appb-I000007
This is because as the dot product of and v u approaches 0, it can be determined that the infinite vanishing point condition is satisfied.
만일 산출된 카메라의 회전 각도(θ)가 미리 지정된 임계값을 만족(즉, 소실점의 좌표가 무한대)한다면, 카메라 보정부(234)는 현재 해당 카메라에 대한 변환 규칙이 적절한 것으로 판단한다. If the calculated rotation angle θ of the camera satisfies a predetermined threshold value (ie, the coordinates of the vanishing point are infinite), the camera correction unit 234 determines that the conversion rule for the current camera is appropriate.
그러나 만일 산출된 카메라의 회전 각도(θ)가 미리 지정된 임계값 이상(즉, 소실점의 좌표가 무한대가 아님)이라면, 카메라 보정부(234)는 기준 시점에서의 회전 각도(θ0)와 전술한 과정에서 산출된 회전 각도(θ)를 합산한 회전 각도(즉, θ10+θ)로 회전 행렬(R)을 산출하고, 산출된 회전 행렬과 수학식 1과 3을 이용하여 다시 산출된 카메라의 회전 각도(θ2)가 미리 지정한 임계값을 만족하는지 여부를 판단한다. However, if the calculated rotation angle θ of the camera is equal to or greater than a predetermined threshold (that is, the coordinates of the vanishing point are not infinity), the camera correction unit 234 determines the rotation angle θ 0 and the above-described Calculate the rotation matrix R as the rotation angle (i.e., θ 10 +θ) that is the sum of the rotation angle θ calculated in the process, and recalculate using the calculated rotation matrix and Equations 1 and 3 It is determined whether or not the rotation angle θ 2 of the camera is satisfied with a predetermined threshold.
산출된 카메라의 회전 각도(θ)가 미리 지정된 임계값을 만족할 때까지 전술한 과정은 반복하여 수행된다. 즉, 전술한 기준 시점에서의 카메라 회전 각도와 각 단계에서 산출된 카메라 회전 각도가 모두 합산되어 산출되는 회전 행렬과 수학식 1 및 3을 이용하여 카메라 회전 각도(θ)를 산출하는 과정을 미리 규정된 소실점 무한 조건이 만족될 때까지 반복한다. The above-described process is repeatedly performed until the calculated rotation angle θ of the camera satisfies a predetermined threshold. That is, the process of calculating the camera rotation angle θ using equations 1 and 3 and a rotation matrix calculated by summing all the camera rotation angles calculated in each step and the camera rotation angle at the above-described reference point of view is prescribed in advance. Repeat until the infinite vanishing point condition is satisfied.
이는, 오차로 인해 소실점 무한 조건을 만족하는 정확한 카메라의 회전 각도가 한 번에 산출되지 못할 수도 있으므로, 이를 반복하여 수행하도록 하여 적절한 값으로 수렴되도록 하기 위한 것이다. This is because the correct rotation angle of the camera that satisfies the infinite vanishing point condition may not be calculated at once due to an error, so this is performed repeatedly to converge to an appropriate value.
이후, 소실점 무한 조건을 만족하는 카메라 회전 각도가 산출되면, 카메라 보정부(234)는 상응하는 카메라에 대한 변환 규칙을 최종적으로 산출된 카메라 회전 각도에 상응하는 변환 규칙으로 갱신하여 변환규칙 저장부(240)에 저장한다. Thereafter, when the camera rotation angle that satisfies the infinite vanishing point condition is calculated, the camera correction unit 234 updates the conversion rule for the corresponding camera to a conversion rule corresponding to the finally calculated camera rotation angle, and the conversion rule storage unit ( 240).
전술한 과정에 의해 갱신된 각 변환 규칙에 의해 광각 카메라(210)에 의해 촬영된 광각 영상 이미지는 제1 탑뷰 이미지(도 4의 (a) 참조)로 변환되고, 협각 카메라(220)에 의해 촬영된 협각 영상 이미지는 제2 탑뷰 이미지(도 4의 (b) 참조)로 변환될 수 있다. 참고로, 참조번호 310a는 광각 카메라(210)에 의해 촬영된 차선(이하, 광각 차선이라 칭함)을 나타내고, 310b는 협각 카메라(220)에 의해 촬영된 차선(이하, 협각 차선이라 칭함)을 나타낸다.The wide-angle video image captured by the wide-angle camera 210 according to each conversion rule updated by the above-described process is converted into a first top-view image (refer to (a) of FIG. 4), and photographed by the narrow-angle camera 220 The narrow angle image image may be converted into a second top view image (refer to FIG. 4B). For reference, reference numeral 310a denotes a lane photographed by the wide-angle camera 210 (hereinafter, referred to as a wide-angle lane), and 310b denotes a lane photographed by the narrow-angle camera 220 (hereinafter, referred to as a narrow-angle lane). .
도 4의 (a)와 (b)에 각각 예시된 바와 같이, 제1 탑뷰 이미지는 광각 카메라(210)에 의해 생성된 것으로서 근거리 영상에 특화된 특징이 있고, 제2 탑뷰 이미지는 협각 카메라(220)에 의해 생성된 것으로서 원거리 영상에 특화된 특징이 있다. As illustrated in FIGS. 4A and 4B, respectively, the first top-view image is generated by the wide-angle camera 210 and has a characteristic specialized for a short-range image, and the second top-view image is a narrow-angle camera 220 It is produced by and has features specialized for distant images.
제1 탑뷰 이미지의 광각 차선(310a)이 제2 탑뷰 이미지의 협각 차선(310b)에 비해 상대적으로 넓은 폭을 가지도록 도시될 수 있고, 따라서 제1 탑뷰 이미지와 제2 탑뷰 이미지가 중첩되었을 때, 도 4의 (c)에 예시된 바와 같이 차선 영역의 폭이 서로 비일치하여 표시된다. The wide-angle lane 310a of the first top-view image may be shown to have a relatively wide width compared to the narrow-angle lane 310b of the second top-view image. Therefore, when the first top-view image and the second top-view image overlap, As illustrated in (c) of FIG. 4, the widths of the lane areas are displayed in a manner that does not match each other.
따라서, 광각 카메라(210)와 협각 카메라(220)가 스테레오 카메라로 기능할 수 있도록 하기 위해, 매칭부(236)는 광각 차선(310a)와 협각 차선(310b)가 동일한 차선 폭으로 표시되도록 처리할 수 있다(도 4의 (d) 참조). Therefore, in order to allow the wide-angle camera 210 and the narrow-angle camera 220 to function as a stereo camera, the matching unit 236 processes the wide-angle lane 310a and the narrow-angle lane 310b to be displayed with the same lane width. It can be (see Fig. 4(d)).
즉, 매칭부(236)는 제1 탑뷰 이미지와 제2 탑뷰 이미지를 중첩시키고, 각 탑뷰 이미지에 표시되는 차선 영상이 서로 매칭되도록 광각 카메라(210) 또는 협각 카메라(220)의 변환 규칙을 갱신한다. 이를 위해, 하기의 수학식 4 내지 9가 이용될 수 있다.That is, the matching unit 236 overlaps the first top-view image and the second top-view image, and updates the conversion rule of the wide-angle camera 210 or the narrow-angle camera 220 so that the lane images displayed in each top-view image match each other. . To this end, the following Equations 4 to 9 may be used.
Figure PCTKR2019010699-appb-M000004
Figure PCTKR2019010699-appb-M000004
Figure PCTKR2019010699-appb-I000008
Figure PCTKR2019010699-appb-I000008
Figure PCTKR2019010699-appb-M000005
Figure PCTKR2019010699-appb-M000005
여기서, x는 협각 차선의 한 점을 나타내고, x'는 광각 차선의 한 점을 나타내며, x와 x'간에는 수학식 5와 같은 관계를 가진다. x와 x' 각각은 차선에 수직하게 교차하도록 도시된 직선 상의 점들일 수 있다. K는 카메라 자체의 내부 파라미터이고,
Figure PCTKR2019010699-appb-I000009
는 광각 카메라(210)와 협각 카메라(220)의 카메라 회전 각도 사이의 차이(
Figure PCTKR2019010699-appb-I000010
)에 상응하는 회전 함수를 나타낸다.
Here, x denotes one point of the narrow-angle lane, x'denotes one point of the wide-angle lane, and x and x'have the same relationship as in Equation 5. Each of x and x'may be points on a straight line shown to intersect perpendicularly to the lane. K is an internal parameter of the camera itself,
Figure PCTKR2019010699-appb-I000009
Is the difference between the camera rotation angle of the wide-angle camera 210 and the narrow-angle camera 220 (
Figure PCTKR2019010699-appb-I000010
Represents a rotation function corresponding to ).
수학식 5는 하기 수학식 6과 같이 간략화될 수 있고, 수학식 6의 y와 y'는 수학식 7과 같이 표현될 수 있고, 수학식 7을 이용하여 수학식 6을 행렬로 나타내면 수학식 8과 같이 표현될 수 있으며, 수학식 8은 수학식 9와 같이 간략화될 수 있다. Equation 5 can be simplified as in Equation 6 below, and y and y'in Equation 6 can be expressed as Equation 7, and if Equation 6 is expressed as a matrix using Equation 7, Equation 8 It can be expressed as, Equation 8 can be simplified as Equation 9.
Figure PCTKR2019010699-appb-M000006
Figure PCTKR2019010699-appb-M000006
Figure PCTKR2019010699-appb-M000007
Figure PCTKR2019010699-appb-M000007
Figure PCTKR2019010699-appb-I000011
Figure PCTKR2019010699-appb-I000011
Figure PCTKR2019010699-appb-M000008
Figure PCTKR2019010699-appb-M000008
Figure PCTKR2019010699-appb-M000009
Figure PCTKR2019010699-appb-M000009
매칭부(236)는 카메라 보정부(234)에서 소실점 무한 조건에 부합하도록 산출된 광각 카메라(210) 및 협각 카메라(220) 중 어느 하나의 회전 각도(예를 들어, 광각 카메라를 기준한 경우, θ_광각)를 기준하고, 다른 하나의 회전 각도에 회전 각도의 차이를 합산(예를 들어, 협각 카메라에 대해 θ_협각+
Figure PCTKR2019010699-appb-I000012
)하여 적용한 후, 광각 차선(310a)와 협각 차선(310b)의 폭이 동일해질 때까지 전술한 수학식 4 내지 9를 이용하여 각 카메라 회전 각도 사이의 차이(
Figure PCTKR2019010699-appb-I000013
)를 반복 산출한다. 반복 수행되는 과정에서, 직전의 단계까지 산출된 회전 각도 사이의 차이는 모두 합산 처리(예를 들어, 협각 카메라에 대해 θ_협각+ △
Figure PCTKR2019010699-appb-I000014
적용)되어 적용된다.
The matching unit 236 is the rotation angle of any one of the wide-angle camera 210 and the narrow-angle camera 220 calculated to meet the infinite vanishing point condition by the camera correction unit 234 (for example, when the wide-angle camera is referenced, θ_wide angle) and summing the difference in rotation angle to the other rotation angle (for example, θ_narrow angle+
Figure PCTKR2019010699-appb-I000012
) And applied, the difference between each camera rotation angle using Equations 4 to 9 described above until the widths of the wide-angle lane 310a and the narrow-angle lane 310b become the same (
Figure PCTKR2019010699-appb-I000013
) Is repeatedly calculated. In the process of being repeatedly performed, all differences between the rotation angles calculated up to the previous step are summed (for example, θ_narrow angle + △
Figure PCTKR2019010699-appb-I000014
Applied) and applied.
즉, x와 x'의 차이는 카메라 파라미터 중 각도 파라미터(
Figure PCTKR2019010699-appb-I000015
)로 나타낼 수 있고, 각 카메라 회전 각도 사이의 차이(
Figure PCTKR2019010699-appb-I000016
)는 기존의 설치 각도에서 변형된 각도를 나타내며, 광각 차선(310a)와 협각 차선(310b)의 폭이 동일해질 때까지 반복되는 처리에 의해 회전 함수(R matrix)가 변경되어, 결과적으로 상응하는 카메라의 보정 결과가 변경된다.
In other words, the difference between x and x'is the angle parameter (
Figure PCTKR2019010699-appb-I000015
), and the difference between each camera rotation angle (
Figure PCTKR2019010699-appb-I000016
) Represents a modified angle from the existing installation angle, and the rotation function (R matrix) is changed by repeated processing until the widths of the wide-angle lane 310a and the narrow-angle lane 310b become the same, resulting in a corresponding The camera's calibration result is changed.
전술한 바와 같이, 광각 카메라(210) 및 협각 카메라(220)에 의해 각각 촬영되는 광각 영상 이미지와 협각 영상 이미지의 차선이 소실점 무한 조건을 만족하도록 변환 규칙들이 각각 갱신된 후, 광각 영상 이미지에 상응하는 광각 차선(310a)과 협각 영상 이미지에 상응하는 협각 차선(310b)의 폭이 동일해지도록 어느 하나의 변환 규칙이 갱신되면 광각 카메라(210)와 협각 카메라(220)는 이종 스테레오 카메라로 구성되어 이용될 수 있게 된다. As described above, after the conversion rules are updated so that the lanes of the wide-angle and narrow-angle video images respectively photographed by the wide-angle camera 210 and the narrow-angle camera 220 satisfy the infinite vanishing point condition, they correspond to the wide-angle video image. When any one of the conversion rules is updated so that the width of the wide-angle lane 310a and the narrow-angle lane 310b corresponding to the narrow-angle image image are updated, the wide-angle camera 210 and the narrow-angle camera 220 are composed of heterogeneous stereo cameras. Can be used.
이제까지 관련 도면을 참조하여 구체적으로 설명한 바와 같이, 본 실시예에 따른 이종 스테레오 카메라 시스템 및 카메라 보정 방법은 동일한 방향을 촬영하도록 배치된 광각 카메라와 협각 카메라 각각에서 촬영된 차선 이미지를 이용하여 각 카메라의 3차원 정보를 획득하고 매칭시킴으로써 스테레오 카메라 보정 처리를 신속하게 수행할 수 있는 장점이 있다.As described in detail with reference to the related drawings so far, the heterogeneous stereo camera system and the camera correction method according to the present embodiment use the lane images taken by the wide-angle cameras and narrow-angle cameras respectively arranged to photograph the same direction. There is an advantage of being able to quickly perform a stereo camera correction process by acquiring and matching 3D information.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to embodiments of the present invention, those of ordinary skill in the art can variously modify the present invention within the scope not departing from the spirit and scope of the present invention described in the following claims. And it will be appreciated that it can be changed.

Claims (2)

  1. 미리 지정된 차선 검출 기법을 이용하여, 광각 카메라에서 촬영된 광각 영상 이미지에서 광각 차선을 검출하고. 협각 카메라에서 촬영된 협각 영상 이미지에서 협각 차선을 검출하는 에지 검출부;A wide-angle lane is detected from a wide-angle video image captured by a wide-angle camera using a predetermined lane detection technique. An edge detection unit for detecting a narrow-angle lane in a narrow-angle video image captured by a narrow-angle camera;
    상기 광각 영상 이미지와 상기 협각 영상 이미지를 탑뷰 이미지로 변환하여 상기 광각 차선과 상기 협각 차선 각각이 미리 규정된 소실점 무한 조건을 만족하도록 상기 광각 카메라와 상기 협각 카메라에 대한 변환 규칙을 각각 갱신하는 카메라 보정부; 및A camera beam that converts the wide-angle video image and the narrow-angle video image into a top-view image and updates conversion rules for the wide-angle camera and the narrow-angle camera so that each of the wide-angle lane and the narrow-angle lane satisfies a predefined vanishing point infinite condition. government; And
    상기 소실점 무한 조건을 만족하도록 갱신된 변환 규칙을 이용하여 탑뷰 이미지로 변환된 상기 광각 차선과 상기 협각 차선의 폭이 동일해지도록 상기 광각 카메라 및 상기 협각 카메라 중 하나 이상에 대한 변환 규칙을 더 갱신하는 매칭부를 포함하는 이종 스테레오 카메라 시스템.Further updating a conversion rule for at least one of the wide-angle camera and the narrow-angle camera so that the width of the wide-angle lane and the narrow-angle lane converted into a top-view image using an updated conversion rule to satisfy the infinite vanishing point condition Heterogeneous stereo camera system including a matching unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 카메라 보정부는 하기 수학식들을 이용하여 산출한 카메라의 회전 각도(θ)가 상기 소실점 무한 조건을 만족할 때까지 직전에 산출된 카메라의 회전 각도(θ)를 누적한 각도에 따른 회전 행렬(R)을 이용하여 카메라의 회전 각도(θ)를 다시 산출하는 과정을 반복하되,The camera correction unit is a rotation matrix (R) according to an angle obtained by accumulating the rotation angle θ of the camera calculated immediately before until the rotation angle θ of the camera calculated using the following equations satisfies the infinite vanishing point condition. Repeat the process of calculating the rotation angle (θ) of the camera again using,
    상기 수학식들은,The above equations are:
    Figure PCTKR2019010699-appb-I000017
    Figure PCTKR2019010699-appb-I000017
    Figure PCTKR2019010699-appb-I000018
    이며,
    Figure PCTKR2019010699-appb-I000018
    Is,
    상기 xi는 촬영된 영상 이미지에서의 소실점의 좌표이고, xv는 탑뷰 이미지에서의 소실점의 좌표이며, K는 카메라의 내부 파라미터이고, R은 카메라의 각 축 방향으로의 회전 각도에 따른 회전 행렬들 Rx, Ry 및 Rz의 곱으로 산출된 회전 행렬이며, T는 트랜스레이션 행렬이고,
    Figure PCTKR2019010699-appb-I000019
    Figure PCTKR2019010699-appb-I000020
    로 연산되는 방향 성분값이며, vu는 [0 1 0]T인 것을 특징으로 하는 이종 스테레오 카메라 시스템.
    Wherein x i is the coordinates of the vanishing point in the captured video image, x v is the coordinates of the vanishing point in the top view image, K is an internal parameter of the camera, and R is a rotation matrix according to the rotation angle in each axis direction of the camera Is a rotation matrix calculated by the product of R x , R y and R z, and T is a translation matrix,
    Figure PCTKR2019010699-appb-I000019
    Is
    Figure PCTKR2019010699-appb-I000020
    A heterogeneous stereo camera system, characterized in that it is a direction component value calculated as, and v u is [0 1 0] T.
PCT/KR2019/010699 2019-08-22 2019-08-22 Heterogeneous stereo camera system and camera calibration method WO2021033812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/010699 WO2021033812A1 (en) 2019-08-22 2019-08-22 Heterogeneous stereo camera system and camera calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/010699 WO2021033812A1 (en) 2019-08-22 2019-08-22 Heterogeneous stereo camera system and camera calibration method

Publications (1)

Publication Number Publication Date
WO2021033812A1 true WO2021033812A1 (en) 2021-02-25

Family

ID=74660495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010699 WO2021033812A1 (en) 2019-08-22 2019-08-22 Heterogeneous stereo camera system and camera calibration method

Country Status (1)

Country Link
WO (1) WO2021033812A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160034681A (en) * 2014-09-22 2016-03-30 에스엘 주식회사 Environment monitoring apparatus and method for vehicle
KR20170140284A (en) * 2015-05-19 2017-12-20 엘지전자 주식회사 Vehicle driving aids and vehicles
US20180217600A1 (en) * 2015-02-10 2018-08-02 Mobileye Vision Technologies Ltd. Sparse map autonomous vehicle navigation
KR20190067578A (en) * 2017-12-07 2019-06-17 (주)캠시스 Collision warning device and method using heterogeneous cameras having overlapped capture area

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160034681A (en) * 2014-09-22 2016-03-30 에스엘 주식회사 Environment monitoring apparatus and method for vehicle
US20180217600A1 (en) * 2015-02-10 2018-08-02 Mobileye Vision Technologies Ltd. Sparse map autonomous vehicle navigation
KR20170140284A (en) * 2015-05-19 2017-12-20 엘지전자 주식회사 Vehicle driving aids and vehicles
KR20190067578A (en) * 2017-12-07 2019-06-17 (주)캠시스 Collision warning device and method using heterogeneous cameras having overlapped capture area

Similar Documents

Publication Publication Date Title
US6812831B2 (en) Vehicle surroundings monitoring apparatus
WO2019225817A1 (en) Vehicle position estimation device, vehicle position estimation method, and computer-readable recording medium for storing computer program programmed to perform said method
WO2021112462A1 (en) Method for estimating three-dimensional coordinate values for each pixel of two-dimensional image, and method for estimating autonomous driving information using same
WO2011074721A1 (en) Image processing device and method for matching images obtained from a plurality of wide-angle cameras
WO2020235734A1 (en) Method for estimating distance to and location of autonomous vehicle by using mono camera
WO2020036295A1 (en) Apparatus and method for acquiring coordinate conversion information
JP2009085651A (en) Image processing system
WO2021172833A1 (en) Object recognition device, object recognition method and computer-readable recording medium for performing same
WO2018097595A1 (en) Method and device for providing driving information by using camera image
WO2017195965A1 (en) Apparatus and method for image processing according to vehicle speed
JP2017139631A (en) Imaging apparatus
JP5228614B2 (en) Parameter calculation apparatus, parameter calculation system and program
US6697146B2 (en) Range finder for finding range by image realization
EP2914001A9 (en) Image processing device
WO2012148025A1 (en) Device and method for detecting a three-dimensional object using a plurality of cameras
WO2015015542A1 (en) Vehicle-mounted stereo camera system and calibration method therefor
CN104268884B (en) A kind of calibration system and method for the lane departure warning based on car networking
KR20180065758A (en) Apparatus for generating top-view image and method thereof
JP2000293693A (en) Obstacle detecting method and device
WO2022114455A1 (en) Device for correcting position signal of autonomous vehicle by using road surface image information
JP2013024712A (en) Method and system for calibrating multiple camera
WO2021033812A1 (en) Heterogeneous stereo camera system and camera calibration method
WO2021221334A1 (en) Device for generating color map formed on basis of gps information and lidar signal, and control method for same
CN112802109B (en) Method for generating aerial view panorama of automobile
JP3348939B2 (en) Vehicle distance detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942101

Country of ref document: EP

Kind code of ref document: A1