WO2021031158A1 - Positioning system and method for movable object, movable object, and storage medium - Google Patents

Positioning system and method for movable object, movable object, and storage medium Download PDF

Info

Publication number
WO2021031158A1
WO2021031158A1 PCT/CN2019/101817 CN2019101817W WO2021031158A1 WO 2021031158 A1 WO2021031158 A1 WO 2021031158A1 CN 2019101817 W CN2019101817 W CN 2019101817W WO 2021031158 A1 WO2021031158 A1 WO 2021031158A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference position
movable object
parameter
relative position
positioning
Prior art date
Application number
PCT/CN2019/101817
Other languages
French (fr)
Chinese (zh)
Inventor
黄振昊
贾向华
陈建林
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/101817 priority Critical patent/WO2021031158A1/en
Priority to CN201980039139.8A priority patent/CN112334790A/en
Publication of WO2021031158A1 publication Critical patent/WO2021031158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves

Definitions

  • the present disclosure relates to the technical field of navigation and positioning, and in particular to a positioning system for a movable object, a positioning method for a movable object, a movable object and a computer-readable storage medium.
  • the present disclosure provides a positioning system for a movable object, a positioning method for a movable object, a movable object, and a computer-readable storage medium, thereby improving at least to a certain extent the existing technology that cannot be moved in a sheltered environment The problem of accurate positioning of objects.
  • a positioning system for a movable object including: the movable object; a positioning device for obtaining positioning parameters of a preset reference position; a measuring device set at the preset reference position, For measuring the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position; and a control device for measuring the relative position parameter between the movable object and the reference position;
  • the relative position parameters between the reference positions and the relative position parameters between the reference positions and the reference positions establish a unified coordinate system, and based on the unified coordinate system, the movable object and the
  • the relative position parameter between the reference positions, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position are calculated to determine the positioning parameter of the movable object .
  • a method for positioning a movable object is provided, which is applied to a positioning system for a movable object.
  • the method includes: acquiring a positioning parameter of a preset reference position; measuring the movable object and the preset The relative position parameter between the reference positions, and the relative position parameter between the reference position and the reference position; according to the relative position parameter between the movable object and the reference position, and the reference position and The relative position parameters between the reference positions establish a unified coordinate system; based on the unified coordinate system, the relative position parameters between the movable object and the reference position, the reference position and the reference position The relative position parameters between the reference positions and the positioning parameters of the reference positions are calculated to determine the positioning parameters of the movable object.
  • a method for positioning a movable object which is applied to a movable object, and the method includes: obtaining a positioning parameter of a preset reference position; obtaining the movable object and a preset reference The relative position parameter between the positions, and the relative position parameter between the reference position and the reference position; according to the relative position parameter between the movable object and the reference position, and the reference position and the reference position.
  • the relative position parameters between the reference positions establish a unified coordinate system; based on the unified coordinate system, the relative position parameters between the movable object and the reference position, the reference position and the reference position
  • the relative position parameter between the positions and the positioning parameter of the reference position are calculated to determine the positioning parameter of the movable object.
  • a movable object including: a fuselage; a power system; and a control device provided in the fuselage; the control device executes the above-mentioned positioning method of the movable object to The movable object is positioned.
  • a computer-readable storage medium on which a computer program is stored, wherein the computer program is characterized in that the above-mentioned method for positioning a movable object is implemented when the computer program is executed by a processor.
  • the positioning device is used to measure the positioning parameters of the reference position, and the measurement device at the reference position is used to measure the relative position parameters of the movable object, the reference position and the reference position, and then the control device
  • the above parameters are calculated in the unified coordinate system to determine the positioning parameters of the movable object.
  • it provides a positioning system for movable objects in a sheltered environment, which can overcome the problem that the movable object cannot receive positioning signals and achieve accurate positioning, so as to facilitate the control and control of movable objects in a sheltered environment.
  • Engineering operations On the other hand, the composition of the positioning system is relatively simple, each component device is a relatively common device in engineering operations, the implementation cost is low, and the practicability is high.
  • Figure 1 shows a sheltered working environment
  • Fig. 2 shows a schematic diagram of a positioning system for a movable object in this exemplary embodiment
  • FIG. 3 shows a schematic diagram of measuring relative position parameters in this exemplary embodiment
  • FIG. 4 shows a schematic diagram of a reflective prism installed on a movable object in this exemplary embodiment
  • FIG. 5 shows a schematic diagram of multiple measuring devices measuring a movable object in this exemplary embodiment
  • Fig. 6 shows a flowchart of a method for positioning a movable object in this exemplary embodiment
  • Fig. 7 shows a flowchart of another method for positioning a movable object in this exemplary embodiment
  • FIG. 8 shows a flowchart of still another method for positioning a movable object in this exemplary embodiment
  • Fig. 9 shows a block diagram of a movable object in this exemplary embodiment.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • the example embodiments can be implemented in various forms, and should not be construed as being limited to the examples set forth herein; on the contrary, the provision of these embodiments makes the present disclosure more comprehensive and complete, and fully conveys the concept of the example embodiments To those skilled in the art.
  • the described features, structures or characteristics may be combined in one or more embodiments in any suitable way.
  • the positioning system 210 may include: a movable object 211, a positioning device 212, a measuring device 213 and a control device 214.
  • the movable object 211 may be an unmanned movable electromechanical device such as an unmanned aerial vehicle, an unmanned vehicle, or a robot.
  • the movable object 211 is in a blocked environment. As shown in FIG. 1, the movable object 211 is in a tunnel, and cannot receive the positioning signal transmitted by the satellite 220, and therefore cannot directly perform positioning.
  • the positioning device 212 may be a GPS (Global Positioning System, Global Positioning System) sensor or a Beidou navigation receiver.
  • the measuring device 213 can be a total station, a laser rangefinder and other instruments for measuring relative positions. It is located at a preset reference position and is mainly used to track and measure the movable object 211.
  • the reference position can be any position selected in advance, usually It is convenient to track the position of the movable object 211, such as the opening of the tunnel, the fork in the tunnel, etc., which is not limited herein.
  • the control device 214 can be a remote control, a mobile phone, a tablet, or a computer for controlling the movable object 211, or the control device 214 is a control device that is set inside the movable object 211 and used to control the movement of the movable object 211.
  • the control device 214 may also be a control device with cloud computing function, etc., which is not limited herein.
  • a reference position may be determined in advance in an unobstructed area. For example, in tunnel operations, a reference position may be selected in an open area outside the tunnel, and then the positioning device 212 may be used to measure the positioning parameters of the reference position. The positioning device 212 is set at the reference position, and the positioning parameters of the reference position are obtained by receiving the positioning signal of the satellite 220. Positioning parameters refer to absolute position coordinates, GNSS coordinates can be used, such as coordinates based on the geodetic coordinate system WGS1984, BD-09 or GCJ-02, etc. The specific coordinate parameters used depend on the type of positioning device 212 and actual requirements; In an embodiment, the positioning parameter may be a positioning parameter in a Gaussian coordinate system.
  • the longitude and latitude coordinates of the reference position can be obtained through static GNSS baseline calculation, and then projected according to the Gaussian 3 degree projection zone to obtain the Gaussian coordinates PAr of the reference position, including the reference position in the true east Gaussian projection coordinates toward and true north, and altitude coordinates (for example, may be altitude), that is, east-north-sky coordinates.
  • the measuring device 213 measures the relative position parameter between the movable object 211 and the reference position, and measures the relative position parameter between the reference position and the reference position.
  • the measurement device 213 can be set up at the reference position to determine the position of the movable object 211 by emitting measurement signals such as laser, infrared, and acoustic waves. After the signal is transmitted, the signal reaches the movable object 211 and then reflects, and the measurement device 213 receives the reflection. Signal, the relative position parameter of the movable object 211 can be calculated by analyzing the reflected signal, which can include at least one of distance, angle, and elevation difference. Referring to the example shown in FIG.
  • the measuring device 213 after the measuring device 213 receives the reflected signal, it can calculate the distance between the movable object 211 and the reference position according to the phase difference between the reflected signal and the transmitted signal; according to the direction of the reflected signal, it is mapped to the horizontal plane, It can calculate the horizontal angle (horizontal angle) of the movable object 211 relative to the reference position; it can also calculate the movable object based on the angle (vertical angle) between the reflected signal signal and the horizontal plane, combined with the distance between the movable object 211 and the reference position 211 The elevation difference ⁇ H relative to the reference position.
  • the position or reference position of the movable object 211 can be used as a reference to indicate the relative position parameter between the two positions, which is not limited here. Measuring the relative position parameters between the reference position and the reference position is similar to the process described above.
  • the measuring device 213 may perform measurement by emitting light signals, for example, it may be a total station; the movable object 211 may be equipped with a reflective component, as shown in FIG. 4, for the reflection measuring device
  • the light signal emitted by the 213 makes the reflected light signal stronger, and the measuring device 213 can detect the position of the movable object 211 more accurately.
  • the reflective component can adopt a reflective prism, such as a 360-degree reflective prism, a total reflection prism, etc., which can reflect light signals from various directions.
  • reflecting prisms can also be installed on multiple surfaces of the body of the movable object 211 to prevent the problem of not reflecting the light signal when the reflecting prisms are located in the opposite direction of the measuring device 213.
  • the reflective component can also be configured to be rotatable, for example, the reflective component is fixedly provided with a rotating component, or is detachably connected to the rotating component, which is not limited herein.
  • the control device 214 can be connected to the positioning device 212 and the measurement device 213 through a wired or wireless connection to maintain communication, and obtain relevant data from the positioning device 212 and the measurement device 213, including the relative relationship between the above-mentioned movable object 211 and the reference position.
  • the position parameter, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position, and then the three parameters are analyzed and calculated to obtain the positioning parameter of the movable object 211.
  • the calculation process is described in detail below:
  • the unified coordinate system can be any type of coordinate system, for example, the earth is referenced An absolute coordinate system, or a relative coordinate system with a reference position as a reference, etc., so as to incorporate the movable object 211, the reference position, and the reference position into the same coordinate system;
  • the relative position parameters between the movable object 211 and the reference position, the relative position parameters between the reference position and the reference position, and the positioning parameters of the reference position are calculated to obtain the movable object 211, the reference position,
  • the coordinates of the reference position in the unified coordinate system are used to determine the positional relationship between each other, which is then mapped to the scale in the positioning parameter to determine the positioning parameter of the movable object 211.
  • control device 214 is responsible for both data communication and data calculation tasks.
  • control device 214 may include: a communication unit responsible for the above-mentioned data communication tasks, a receiving and measuring device 213 and a positioning device 212 data sent; calculation unit, responsible for the task of calculating the above data, calculating the positioning parameters of movable objects.
  • a unified coordinate system can be established in the following manner:
  • the global coordinate system is the absolute coordinate system. If the positioning parameter adopts Gaussian coordinates, the global coordinate system can be a Gaussian coordinate system, such as an east-north-sky coordinate system;
  • the local coordinate system represents the relative coordinate system within the measuring range of the measuring device 213.
  • the true east direction of the horizontal plane may be the +X axis
  • the true north direction of the horizontal plane may be + Y axis
  • the reference position can be included in the local coordinate system, or the reference position can be included in the global coordinate system, thereby placing In a unified coordinate system.
  • the positioning parameters of the movable object 211 can be calculated in the following manner:
  • the relative position parameter between the movable object 211 and the reference position calculate the local coordinate PR1 of the movable object 211, where the local coordinates can be Cartesian coordinates or polar coordinates;
  • the local coordinate system can include the mapping or conversion relationship between the two coordinate systems.
  • the local coordinate PRr of the reference position is calculated, or the reference position Global coordinate PA0 (ie the positioning parameter of the reference position);
  • the local coordinate PR1 of the movable object 211 is mapped to the global coordinate system, and its global coordinate PA1 (that is, the positioning parameter of the movable object 211) is calculated.
  • the relative position parameters between the reference position and the reference position may be mapped from the local coordinate system to the global coordinate according to the positioning parameters of the reference position.
  • the positioning parameter of the reference position is obtained.
  • the relative position parameter between the reference position and the reference position can be used to calculate the offset between the reference position and the reference position in the global coordinate system, and the positioning parameter of the reference position can be added to the offset
  • the relative position parameter between the movable object 211 and the reference position is mapped from the local coordinate system to the global coordinate system by using a similar method to obtain the positioning parameter of the reference position; Positioning parameters of the moving object 211.
  • the measuring device 213 may also include a tracking mode.
  • a tracking mode it will be described by taking the measuring device 213 as a total station supporting the tracking mode as an example.
  • the total station emits pulses to track the movable object at a certain frequency, and the relative position parameter between the movable object 211 and the reference position can be measured in real time by laser.
  • wireless communication between the total station and the control device 214 is established, so that the measurement data of the total station in each epoch can be sent to the control device 214 for analysis.
  • the measurement data is sent in the form of data packets, which can include UTC time (Coordinated Universal Time) at each moment and the relative position parameters between the movable object 211 and the reference position (including distance, azimuth, vertical angle) And elevation difference etc.). Based on this, the state equation of the movable object 211 can be established to achieve precise positioning and control.
  • any suitable mathematical algorithm may be used to improve the positioning accuracy, for example, filtering (such as Kalman filtering, extended Kalman filtering, etc.) may be used to improve the positioning accuracy.
  • the calculation unit can perform Kalman filtering according to the relative position parameters between the movable object 211 and the reference position at the previous time and the current time.
  • Kalman filter can reduce the influence of error through optimization, so as to estimate the optimal relative position parameter of the movable object 211 and the reference position at the current moment, which is closer to the real situation.
  • the optimal relative position parameter between the movable object 211 and the reference position is used to replace the measured relative position parameter for calculation, and the positioning parameter of the movable object 211 is obtained, which is more accurate. high.
  • control device 214 after the control device 214 calculates the positioning parameters of the movable object 211, it can also plan the travel route of the movable object 211 according to the positioning parameters of the movable object 211, so as to realize accurate route planning and automatic navigation. .
  • any number of movable objects 211 can be set to locate each movable object 211, or any number of measuring devices 213 can be set to track and measure the movable objects 211 together; or the positioning device 212 can be set On the measuring device 213, if a GPS sensor is installed on the total station, the reference position and the reference position can be the same position; the control device 214 can also be a control device inside the movable object 211, so that the movable object 211 is flying while flying
  • the data sent by the measuring device 213 and the positioning device 212 are received, and functions such as travel control and automatic navigation are realized by calculating its own positioning parameters.
  • sensors such as visual positioning sensors, ultrasonic sensors, lidars, etc.
  • the acquired data is fused with the above-mentioned relative position parameters to finally obtain the movable object 211 Positioning parameters, the result is more reliable.
  • the positioning system may include N measuring devices, and N is a positive integer not less than 2, that is, at least two measuring devices may be provided.
  • the N measuring devices are respectively located at N preset reference positions, where the first measuring device is set at the first reference position and is used to measure the first relative position parameter of the movable object, and the reference position relative to the first reference position Relative position parameters; the second to Nth measuring devices are respectively set at the second to Nth reference positions, respectively used to measure the second relative position parameter to the Nth relative position parameter of the movable object; wherein, the i-th relative position parameter represents : The relative position parameter of the movable object measured by the i-th measuring device relative to the i-th reference position, i is any integer in [1,N].
  • control device may, based on the above-mentioned unified coordinate system, determine at least one of the relative position parameters of the reference position relative to the first reference position, the positioning parameter of the reference position, the first relative position parameter to the Nth relative position parameter of the movable object A relative position parameter and the position relationship between the N reference positions are calculated to determine the positioning parameter of the movable object. Because the measurement device has errors when measuring the relative position of the movable object, the measurement results are separately measured by N measuring devices, and the measurement results are combined to perform the positioning calculation of the movable object, which can reduce the influence of the error, further improve the positioning accuracy, and guarantee any There are measuring devices that can track movable objects at all times to further improve positioning reliability.
  • the total stations 501, 502, and 503 all track the UAV 504, and separately measure the first to third relative position parameters PR1, PR2, and PR3.
  • PR1, PR2, and PR3 For example, it can be each total station and unmanned
  • the distance and elevation difference between the aircraft 504 and the triangle formed by any two total stations and the UAV 504 are solved to obtain PR1, PR2, and PR3 including the angle.
  • it can be processed in the following two ways:
  • control device can receive the relative position parameters sent by the N measuring devices in real time, analyze it according to the above method, and use the filtering algorithm to optimize the real-time positioning of the drone to obtain its real-time position in the global coordinate system.
  • the preset route and waypoint can be localized. It is identified in the coordinate system, so that the UAV is planned in the local coordinate system, and the local coordinates are tracked in real time to achieve precise flight control.
  • the above method is also applicable to other types of movable objects such as unmanned vehicles and robots.
  • the movable object positioning system provided by this embodiment has a good tracking effect and can achieve sub-centimeter positioning accuracy.
  • the positioning device is used to measure the positioning parameters of the reference position, and the measuring device set at the reference position is used to measure the movable object, the reference position and the reference position.
  • the relative position parameters are calculated by the control device in the unified coordinate system to determine the positioning parameters of the movable object.
  • it provides a positioning system for movable objects in a sheltered environment, which can overcome the problem that the movable object cannot receive positioning signals and achieve accurate positioning, so as to facilitate the control and control of movable objects in a sheltered environment.
  • Engineering operations On the other hand, the composition of the positioning system is relatively simple, each component device is a relatively common device in engineering operations, the implementation cost is low, and the practicability is high.
  • the positioning system provided in this embodiment can also be used in an unobstructed environment.
  • the movable object if the movable object is operated in an unobstructed environment, its positioning parameters can be directly obtained through the positioning sensor on the movable object, and the positioning system 210 of FIG. 2 is used to measure and calculate the position of the movable object.
  • Positioning parameters, fusing the positioning parameters obtained by the two methods is equivalent to adopting a dual positioning method for movable objects, which can reduce the measurement error of either method and achieve higher accuracy and reliability.
  • Exemplary embodiments of the present disclosure also provide a method for positioning a movable object, which can be applied to the above-mentioned positioning system for movable objects, such as the positioning system 210 in FIG. 2.
  • the positioning method may include the following steps S610 to S640:
  • Step S610 obtaining the positioning parameters of the preset reference position
  • Step S620 measuring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position;
  • Step S630 establishing a unified coordinate system according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position;
  • Step S640 based on the unified coordinate system, calculate the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position to determine the position of the movable object parameter.
  • the positioning system includes a movable object, a measuring device, a positioning device and a control device, and the movable object includes at least one of an unmanned aerial vehicle, an unmanned vehicle, and a robot.
  • Step S610 is executed by the positioning device
  • step S620 is executed by the measuring device
  • steps S630 and S640 are executed by the control device.
  • the reference position can be any position point in the unobstructed area.
  • the positioning signal can be better received at the reference position to measure the positioning parameters of the reference position.
  • the positioning parameters can use any type of global coordinates (ie absolute position coordinates), such as Gaussian coordinates etc.
  • the measuring device can perform measurement by emitting light signals, for example, it can be a total station; a reflective component can be installed on the movable object, so that the measuring device can transmit light signals to the reflective component and receive the light signals reflected by the reflective component.
  • the relative position parameter measured by the measuring device may include at least one of distance, angle (including horizontal angle and vertical angle, etc.) and elevation difference.
  • the relative position parameter of the movable object is measured to obtain the distance between the movable object and the reference position. The distance, angle and elevation difference of.
  • the movable object when it is in an occluded environment and cannot receive the positioning signal, it can be calculated based on the relative position relationship between the movable object, the reference position, and the reference position, combined with the positioning parameters of the reference position
  • the positioning parameters of the movable object, and the positioning accuracy is high, so as to solve the problem that the movable object cannot be accurately positioned under the obstructed environment.
  • step S630 can be implemented in the following ways: obtaining the global coordinate system corresponding to the positioning parameter of the reference position; establishing a local coordinate system based on the reference position; establishing a unified coordinate based on the local coordinate system and the global coordinate system system.
  • a unified coordinate system is established, the mapping between the global coordinate system and the local coordinate system is actually realized.
  • the movable object, the reference position, and the reference position can be included in the same coordinate system to facilitate subsequent calculations.
  • step S640 may be specifically implemented in the following manner: according to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system In, the positioning parameters of the reference position are obtained; according to the positioning parameters of the reference position, the relative position parameters between the movable object and the reference position are mapped from the local coordinate system to the global coordinate system to obtain the positioning parameters of the movable object.
  • This method calculates the relative position relationship between the movable object, the reference position, and the reference position separately, and first reduces it to the position analysis problem between the reference position and the reference position. After determining the positioning parameters of the reference position, the problem is simplified It is the problem of position analysis between the movable object and the reference position, thus simplifying the whole calculation process and improving efficiency.
  • the relative position parameter between the movable object and the reference position can be measured in real time; when calculating the positioning parameter of the movable object, it can also be based on the movable object and the reference position.
  • the relative position parameter between the previous moment and the current moment is obtained, and the optimal relative position parameter between the movable object and the reference position at the current moment is obtained.
  • any suitable mathematical algorithm may be used, for example, filtering (such as Kalman filtering, extended Kalman filtering, etc.) may be used, and the purpose is In order to improve the position accuracy: Take Kalman filter as an example.
  • the relative position parameter is measured by the measuring device, there is a measurement error.
  • Kalman filter can reduce the influence of the error, thereby estimating the current moment between the movable object and the reference position
  • the optimal relative position parameter of which is closer to the real situation.
  • the optimal relative position parameter between the movable object and the reference position is used to replace the measured relative position parameter for calculation, and the positioning parameter of the movable object is obtained with higher accuracy.
  • the positioning system of the movable object may include N measuring devices, which are respectively set at N preset reference positions, where N is a positive integer not less than 2, and the reference position is usually a general view. Good, measure the location point with larger coverage.
  • the positioning method of the movable object may be as shown in FIG. 7 and includes the following steps S710 to S750:
  • Step S710 Acquire positioning parameters of a preset reference position
  • Step S720 using N measuring devices to measure the first to Nth relative position parameters of the movable object, the i-th relative position parameter of the movable object is: the i-th reference position of the movable object measured by the i-th measuring device
  • the relative position parameter of, i is any integer within [1,N];
  • Step S730 using the first measuring device among the N measuring devices to measure the relative position parameter of the reference position relative to the first reference position;
  • Step S740 according to the relative position parameter of the reference position relative to the first reference position, at least one relative position parameter from the first relative position parameter to the Nth relative position parameter of the movable object, and the position relationship between the N reference positions , Establish a unified coordinate system;
  • Step S750 Based on the unified coordinate system, at least one relative position parameter of the relative position parameter of the reference position relative to the first reference position, the positioning parameter of the reference position, the first relative position parameter to the Nth relative position parameter of the movable object , And the positional relationship between the N reference positions are calculated to determine the positioning parameters of the movable object.
  • the measurement device may not be able to track the movable object.
  • Multiple measurement devices can improve the reliability of positioning.
  • the measurement of multiple measurement devices is integrated. The result of calculation can further improve the positioning accuracy.
  • the travel route of the movable object may be planned according to the positioning parameters of the movable object, so as to realize accurate route planning and automatic navigation.
  • the exemplary embodiment of the present disclosure also provides another method for positioning a movable object, which can be applied to a movable object, such as the movable object 211 in FIG. 2, which includes unmanned aerial vehicles, unmanned vehicles, and robots. at least one.
  • the positioning method may include the following steps S810 to S840:
  • Step S810 Acquire positioning parameters of a preset reference position
  • Step S820 acquiring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position;
  • Step S830 establishing a unified coordinate system according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position;
  • Step S840 based on the unified coordinate system, calculate the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position to determine the position of the movable object parameter.
  • the positioning parameters of the reference position are measured by the positioning device and sent to the movable object, which can be any type of absolute position coordinates, such as Gaussian coordinates; the relative position parameters between the movable object and the reference position, and the reference position and reference
  • the relative position parameter between the positions is measured by the measuring device set at the reference position and sent to the movable object; the measuring device can be a total station; the relative position parameter can include the distance of the movable object or the reference position from the reference position, At least one of an angle (which may include a horizontal angle and a vertical angle, etc.) and an elevation difference;
  • the movable object may have processing functions, such as various data processing and calculations through a built-in control device.
  • the control device 214 in FIG. 2 is integrated on the movable object 211, and the method shown in FIG. 8 is the method executed by the control device 214 in the positioning process, so that the movable object 211 can realize its own positioning. Based on this, the movable object synchronizes its own positioning during the execution of the work task, and can plan the travel route according to the positioning information to achieve a high degree of automation of the work.
  • step S830 can be implemented in the following ways: obtaining the global coordinate system corresponding to the positioning parameter of the reference position; establishing a local coordinate system based on the reference position; establishing a unified coordinate based on the local coordinate system and the global coordinate system system.
  • a unified coordinate system is established, the mapping between the global coordinate system and the local coordinate system is actually realized.
  • the movable object, the reference position, and the reference position can be included in the same coordinate system to facilitate subsequent calculations.
  • step S840 may be specifically implemented in the following manner: according to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system In, the positioning parameters of the reference position are obtained; according to the positioning parameters of the reference position, the relative position parameters between the movable object and the reference position are mapped from the local coordinate system to the global coordinate system to obtain the positioning parameters of the movable object.
  • This method calculates the relative position relationship between the movable object, the reference position, and the reference position separately, and first reduces it to the position analysis problem between the reference position and the reference position. After determining the positioning parameters of the reference position, the problem is simplified It is the problem of position analysis between the movable object and the reference position, thus simplifying the whole calculation process and improving efficiency.
  • the relative position parameter between the movable object and the reference position can be acquired in real time; when calculating the positioning parameter of the movable object, it can also be based on the movable object and the reference position.
  • the relative position parameter between the previous moment and the current moment is obtained, and the optimal relative position parameter between the movable object and the reference position at the current moment is obtained.
  • any suitable mathematical algorithm may be used, for example, filtering (such as Kalman filtering, extended Kalman filtering, etc.) may be used, and the purpose is In order to improve the position accuracy: Take Kalman filter as an example.
  • the relative position parameter is measured by the measuring device, there is a measurement error.
  • Kalman filter can reduce the influence of the error, thereby estimating the current moment between the movable object and the reference position
  • the optimal relative position parameter of which is closer to the real situation.
  • the optimal relative position parameter between the movable object and the reference position is used to replace the directly obtained relative position parameter for calculation to obtain the positioning parameter of the movable object with higher accuracy.
  • the aforementioned reference positions may include N preset reference positions, where N is a positive integer not less than 2; based on this, step S820 may include:
  • the i-th relative position parameter of the movable object is: the relative position parameter of the movable object relative to the i-th reference position, i is any integer in [1,N] ;
  • step S840 may include:
  • the relative position parameter of the reference position relative to the first reference position, the positioning parameter of the reference position, at least one relative position parameter of the first to Nth relative position parameters of the movable object, and N reference positions is calculated to determine the positioning parameters of the movable object.
  • the N reference positions are usually the position points with good visibility and large measurement coverage; at each moment, due to terrain obstructions and other reasons, the measurement device may not be able to track the movable object.
  • Multiple measurement devices can be set up. Improve the reliability of the positioning, and because the measurement has errors, the measurement results of multiple measuring devices are combined for calculation, which can further improve the positioning accuracy.
  • the travel route of the movable object may be planned according to the positioning parameters of the movable object, so as to realize accurate route planning and automatic navigation.
  • Exemplary embodiments of the present disclosure also provide a movable object, which may include a fuselage, a power system, and a control device provided in the fuselage.
  • the control device can execute the above-mentioned positioning method of the movable object, as shown in FIG. 8 shows the method and so on to locate the movable object.
  • FIG. 9 shows the movable object 900 in the form of a general electronic device. It should be understood that the movable object 900 is only an example, and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
  • the control device of the movable object 900 may include a central processing unit (CPU) 901, which may be loaded to a random access memory (RAM) according to a program stored in a read-only memory (ROM) 902 or from a storage portion 908 )
  • the program in 903 executes various appropriate actions and processing.
  • RAM 903 various programs and data required for system operation are also stored.
  • the CPU 901, the ROM 902, and the RAM 903 are connected to each other through a bus 904.
  • An input/output (I/O) interface 905 is also connected to the bus 904.
  • the following components are connected to the I/O interface 905: an input section 906 including a keyboard, a mouse, etc.; an output section 907 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and speakers, etc.; a storage section 908 including a hard disk, etc. ; And a communication section 909 including a network interface card such as a LAN card, a modem, etc. The communication section 909 performs communication processing via a network such as the Internet.
  • the drive 910 is also connected to the I/O interface 905 as needed.
  • a removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 910 as required, so that the computer program read therefrom is installed into the storage portion 908 as required.
  • the process described below with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication part 909, and/or installed from the removable medium 911.
  • CPU central processing unit
  • the various components of the above-mentioned movable object 900 are provided in the body 912.
  • the movable object 900 also includes a power system 913, and the control device can control the power system 913 through the I/O interface 905.
  • the present disclosure also provides a computer-readable medium.
  • the computer-readable medium may be included in the movable object described in the above-mentioned embodiments; it may also exist alone without being assembled into the movable object. Moving objects.
  • the foregoing computer-readable medium carries one or more programs, and when the foregoing one or more programs are executed by a processor, the method as described in the foregoing embodiment is implemented. For example, the processor may implement various steps as shown in FIG. 8 and so on.
  • the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium can send, propagate or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code, and the above-mentioned module, program segment, or part of code contains one or more for realizing the specified logical function Executable instructions.
  • the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram or flowchart, and the combination of blocks in the block diagram or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations, or can be It is realized by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure can be implemented in software or hardware, and the described units can also be provided in a processor. Among them, the names of these units do not constitute a limitation on the unit itself under certain circumstances.
  • the exemplary embodiments described herein can be implemented by software, or can be implemented by combining software with necessary hardware. Therefore, the technical solution according to the embodiments of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , Including several instructions to make a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) execute the method according to the exemplary embodiment of the present disclosure.
  • a computing device which may be a personal computer, a server, a terminal device, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A positioning system and method for a movable object, the movable object, and a storage medium. The positioning system comprises: a movable object (211); a positioning device (212) used for acquiring a positioning parameter of a preset reference position; a measurement device (213) provided on a preset benchmark position and used for measuring a relative position parameter between the movable object (211) and the benchmark position, and a relative position parameter between the reference position and the benchmark position; and a control device (214) used for establishing a unified coordinate system according to the relative position parameter between the movable object (211) and the benchmark position and the relative position parameter between the reference position and the benchmark position, and calculating the relative position parameter and a positioning parameter of the reference position on the basis of the unified coordinate system, so as to determine a positioning parameter of the movable object. The movable object can be accurately positioned in an environment where a barrier exists.

Description

可移动物体的定位系统与定位方法、可移动物体、存储介质Movable object positioning system and positioning method, movable object, storage medium 技术领域Technical field
本公开涉及导航定位技术领域,尤其涉及一种可移动物体的定位系统、可移动物体的定位方法、可移动物体和计算机可读存储介质。The present disclosure relates to the technical field of navigation and positioning, and in particular to a positioning system for a movable object, a positioning method for a movable object, a movable object and a computer-readable storage medium.
背景技术Background technique
对于无人飞行器、无人车等可移动物体而言,在其作业过程中,需要实时定位,以便于实现精确地控制和检测。在高空无遮挡作业环境中,由于GNSS(Global Navigation Satellite System,全球导航卫星系统)等定位信号良好,作业能够顺利进行。然而大多数工程上的作业场景为有遮挡的环境,如图1所示的隧道内、矿井内、桥梁下方,或者幕墙检测贴近幕墙的部分,管道巡检的地下部分等,都是对定位信号有严重遮挡、甚至完全无法接收到定位信号的作业环境,而在这些环境中的作业又需要较高的精度,通常需要达到厘米级或者更高的绝对精度。现有技术中的GNSS定位、超宽带定位、视觉信号定位或WIFI(Wireless Fidelity,无线保真)定位等都难以胜任。For movable objects such as unmanned aerial vehicles and unmanned vehicles, real-time positioning is required during their operations in order to achieve precise control and detection. In the high-altitude unobstructed operating environment, due to the good positioning signals such as GNSS (Global Navigation Satellite System), the operation can proceed smoothly. However, most of the operation scenes in the project are sheltered environments. As shown in Figure 1, inside the tunnel, in the mine, under the bridge, or the part of the curtain wall close to the curtain wall, the underground part of the pipeline inspection, etc., are all positioning signals There are operating environments that are severely obstructed or even unable to receive positioning signals at all, and operations in these environments require high accuracy, usually with an absolute accuracy of centimeter level or higher. In the prior art, GNSS positioning, ultra-wideband positioning, visual signal positioning, or WIFI (Wireless Fidelity, wireless fidelity) positioning, etc. are difficult to perform.
因此,如何在有遮挡的环境中对可移动物体进行准确定位,是现有技术亟待解决的问题。Therefore, how to accurately locate a movable object in an obstructed environment is a problem to be solved in the prior art.
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。It should be noted that the information disclosed in the above background section is only used to strengthen the understanding of the background of the present disclosure, and therefore may include information that does not constitute the prior art known to those of ordinary skill in the art.
发明内容Summary of the invention
本公开提供了一种可移动物体的定位系统、可移动物体的定位方法、可移动物体和计算机可读存储介质,进而至少在一定程度上改善现有技术无法在有遮挡的环境中对可移动物体准确定位的问题。The present disclosure provides a positioning system for a movable object, a positioning method for a movable object, a movable object, and a computer-readable storage medium, thereby improving at least to a certain extent the existing technology that cannot be moved in a sheltered environment The problem of accurate positioning of objects.
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。Other characteristics and advantages of the present disclosure will become apparent through the following detailed description, or partly learned through the practice of the present disclosure.
根据本公开的第一方面,提供一种可移动物体的定位系统,包括:可移动物体;定位装置,用于获取预设的参考位置的定位参数;测量装置,设于预设的基准位置,用于测量所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数;以及控制装置,用于根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系,并且基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。According to a first aspect of the present disclosure, there is provided a positioning system for a movable object, including: the movable object; a positioning device for obtaining positioning parameters of a preset reference position; a measuring device set at the preset reference position, For measuring the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position; and a control device for measuring the relative position parameter between the movable object and the reference position; The relative position parameters between the reference positions and the relative position parameters between the reference positions and the reference positions establish a unified coordinate system, and based on the unified coordinate system, the movable object and the The relative position parameter between the reference positions, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position are calculated to determine the positioning parameter of the movable object .
根据本公开的第二方面,提供一种可移动物体的定位方法,应用于可移动物体的 定位系统,所述方法包括:获取预设的参考位置的定位参数;测量可移动物体和预设的基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数;根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系;基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。According to a second aspect of the present disclosure, a method for positioning a movable object is provided, which is applied to a positioning system for a movable object. The method includes: acquiring a positioning parameter of a preset reference position; measuring the movable object and the preset The relative position parameter between the reference positions, and the relative position parameter between the reference position and the reference position; according to the relative position parameter between the movable object and the reference position, and the reference position and The relative position parameters between the reference positions establish a unified coordinate system; based on the unified coordinate system, the relative position parameters between the movable object and the reference position, the reference position and the reference position The relative position parameters between the reference positions and the positioning parameters of the reference positions are calculated to determine the positioning parameters of the movable object.
根据本公开的第三方面,提供一种可移动物体的定位方法,应用于可移动物体,所述方法包括:获取预设的参考位置的定位参数;获取所述可移动物体和预设的基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数;根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系;基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。According to a third aspect of the present disclosure, there is provided a method for positioning a movable object, which is applied to a movable object, and the method includes: obtaining a positioning parameter of a preset reference position; obtaining the movable object and a preset reference The relative position parameter between the positions, and the relative position parameter between the reference position and the reference position; according to the relative position parameter between the movable object and the reference position, and the reference position and the reference position The relative position parameters between the reference positions establish a unified coordinate system; based on the unified coordinate system, the relative position parameters between the movable object and the reference position, the reference position and the reference position The relative position parameter between the positions and the positioning parameter of the reference position are calculated to determine the positioning parameter of the movable object.
根据本公开的第四方面,提供一种可移动物体,包括:机身;动力系统;以及控制装置,设于所述机身;所述控制装置通过执行上述可移动物体的定位方法,以对所述可移动物体进行定位。According to a fourth aspect of the present disclosure, there is provided a movable object, including: a fuselage; a power system; and a control device provided in the fuselage; the control device executes the above-mentioned positioning method of the movable object to The movable object is positioned.
根据本公开的第五方面,提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述可移动物体的定位方法。According to a fifth aspect of the present disclosure, there is provided a computer-readable storage medium on which a computer program is stored, wherein the computer program is characterized in that the above-mentioned method for positioning a movable object is implemented when the computer program is executed by a processor.
本公开的技术方案具有以下有益效果:The technical solution of the present disclosure has the following beneficial effects:
在上述可移动物体的定位系统中,利用定位装置测量参考位置的定位参数,利用设于基准位置的测量装置测量可移动物体、参考位置和基准位置之间的相对位置参数,再通过控制装置,在统一坐标系中对上述参数进行计算,以确定可移动物体的定位参数。一方面,提供了一种在有遮挡环境下的可移动物体定位系统,能够克服可移动物体接收不到定位信号的问题,实现准确定位,以便于在有遮挡环境下进行可移动物体的控制与工程作业。另一方面,该定位系统的组成较为简单,各组件装置都是工程作业中较为常见的装置,实现成本较低,具有较高的实用性。In the above-mentioned positioning system for movable objects, the positioning device is used to measure the positioning parameters of the reference position, and the measurement device at the reference position is used to measure the relative position parameters of the movable object, the reference position and the reference position, and then the control device The above parameters are calculated in the unified coordinate system to determine the positioning parameters of the movable object. On the one hand, it provides a positioning system for movable objects in a sheltered environment, which can overcome the problem that the movable object cannot receive positioning signals and achieve accurate positioning, so as to facilitate the control and control of movable objects in a sheltered environment. Engineering operations. On the other hand, the composition of the positioning system is relatively simple, each component device is a relatively common device in engineering operations, the implementation cost is low, and the practicability is high.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。It should be understood that the above general description and the following detailed description are only exemplary and explanatory, and cannot limit the present disclosure.
附图说明Description of the drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施方式,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳 动的前提下,还可以根据这些附图获得其他的附图。The drawings herein are incorporated into the specification and constitute a part of the specification, show embodiments consistent with the disclosure, and together with the specification are used to explain the principle of the disclosure. Obviously, the drawings in the following description are only some embodiments of the present disclosure. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without creative efforts.
图1示出有遮挡的作业环境;Figure 1 shows a sheltered working environment;
图2示出本示例性实施方式中一种可移动物体的定位系统的示意图;Fig. 2 shows a schematic diagram of a positioning system for a movable object in this exemplary embodiment;
图3示出本示例性实施方式中测量相对位置参数的示意图;FIG. 3 shows a schematic diagram of measuring relative position parameters in this exemplary embodiment;
图4示出本示例性实施方式中一种装设于可移动物体的反射棱镜的示意图;4 shows a schematic diagram of a reflective prism installed on a movable object in this exemplary embodiment;
图5示出本示例性实施方式中多个测量装置测量可移动物体的示意图;FIG. 5 shows a schematic diagram of multiple measuring devices measuring a movable object in this exemplary embodiment;
图6示出本示例性实施方式中一种可移动物体的定位方法的流程图;Fig. 6 shows a flowchart of a method for positioning a movable object in this exemplary embodiment;
图7示出本示例性实施方式中另一种可移动物体的定位方法的流程图;Fig. 7 shows a flowchart of another method for positioning a movable object in this exemplary embodiment;
图8示出本示例性实施方式中再一种可移动物体的定位方法的流程图;FIG. 8 shows a flowchart of still another method for positioning a movable object in this exemplary embodiment;
图9示出本示例性实施方式中一种可移动物体的结构框图。Fig. 9 shows a block diagram of a movable object in this exemplary embodiment.
具体实施方式detailed description
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。Example embodiments will now be described more fully with reference to the accompanying drawings. However, the example embodiments can be implemented in various forms, and should not be construed as being limited to the examples set forth herein; on the contrary, the provision of these embodiments makes the present disclosure more comprehensive and complete, and fully conveys the concept of the example embodiments To those skilled in the art. The described features, structures or characteristics may be combined in one or more embodiments in any suitable way.
本公开的示例性实施方式首先提供了一种可移动物体的定位系统,如图2所示,该定位系统210可以包括:可移动物体211、定位装置212、测量装置213和控制装置214。其中,可移动物体211可以是无人飞行器、无人车或者机器人等无人驾驶的可移动机电设备。在一种实施方式中,可移动物体211处于遮挡的环境中,如图1所示可移动物体211处于隧道中,无法接收到卫星220发射的定位信号,因此无法直接进行定位。定位装置212可以是GPS(Global Positioning System,全球定位系统)传感器或北斗导航接收机等。测量装置213可以是全站仪、激光测距仪等测量相对位置的仪器,其位于预设的基准位置,主要用于跟踪测量可移动物体211,基准位置可以是事先选取的任意位置,通常是便于跟踪可移动物体211的位置,例如隧道的洞口、隧道内部的岔路口等,在此不作限定。控制装置214可以是用于控制可移动物体211的遥控器、手机、平板电脑、或计算机,或者控制装置214是设置在可移动物体211内部用于控制可移动物体211行进的控制装置,在其他实施方式中,控制装置214还可以是具有云计算功能的控制装置等,在此不作限定。The exemplary embodiment of the present disclosure first provides a positioning system for a movable object. As shown in FIG. 2, the positioning system 210 may include: a movable object 211, a positioning device 212, a measuring device 213 and a control device 214. Among them, the movable object 211 may be an unmanned movable electromechanical device such as an unmanned aerial vehicle, an unmanned vehicle, or a robot. In one embodiment, the movable object 211 is in a blocked environment. As shown in FIG. 1, the movable object 211 is in a tunnel, and cannot receive the positioning signal transmitted by the satellite 220, and therefore cannot directly perform positioning. The positioning device 212 may be a GPS (Global Positioning System, Global Positioning System) sensor or a Beidou navigation receiver. The measuring device 213 can be a total station, a laser rangefinder and other instruments for measuring relative positions. It is located at a preset reference position and is mainly used to track and measure the movable object 211. The reference position can be any position selected in advance, usually It is convenient to track the position of the movable object 211, such as the opening of the tunnel, the fork in the tunnel, etc., which is not limited herein. The control device 214 can be a remote control, a mobile phone, a tablet, or a computer for controlling the movable object 211, or the control device 214 is a control device that is set inside the movable object 211 and used to control the movement of the movable object 211. In the embodiment, the control device 214 may also be a control device with cloud computing function, etc., which is not limited herein.
本示例性实施方式中,可以在无遮挡区域事先确定一参考位置,例如在隧道作业中,可以在隧道外的开阔区域选取参考位置,然后利用定位装置212测量该参考位置的定位参数,通常可以将定位装置212设置在该参考位置上,通过接收卫星220的定位信号,得到该参考位置的定位参数。定位参数是指绝对位置坐标,可以采用GNSS坐标,如基于大地坐标系WGS1984、BD-09或GCJ-02等的坐标,具体采用哪种坐标参数视定位装置212的类型、以及实际需求而定;在一种实施方式中,定位参数可以 是高斯坐标系下的定位参数。以定位装置212是GPS传感器为例,可以通过静态GNSS基线解算,获取参考位置的经纬度坐标,再根据高斯3度投影带进行投影,得到参考位置的高斯坐标PAr,其中包含参考位置在正东方向和正北方向的高斯投影坐标,以及高度坐标(例如可以是海拔),即东-北-天坐标。In this exemplary embodiment, a reference position may be determined in advance in an unobstructed area. For example, in tunnel operations, a reference position may be selected in an open area outside the tunnel, and then the positioning device 212 may be used to measure the positioning parameters of the reference position. The positioning device 212 is set at the reference position, and the positioning parameters of the reference position are obtained by receiving the positioning signal of the satellite 220. Positioning parameters refer to absolute position coordinates, GNSS coordinates can be used, such as coordinates based on the geodetic coordinate system WGS1984, BD-09 or GCJ-02, etc. The specific coordinate parameters used depend on the type of positioning device 212 and actual requirements; In an embodiment, the positioning parameter may be a positioning parameter in a Gaussian coordinate system. Taking the positioning device 212 as a GPS sensor as an example, the longitude and latitude coordinates of the reference position can be obtained through static GNSS baseline calculation, and then projected according to the Gaussian 3 degree projection zone to obtain the Gaussian coordinates PAr of the reference position, including the reference position in the true east Gaussian projection coordinates toward and true north, and altitude coordinates (for example, may be altitude), that is, east-north-sky coordinates.
本示例性实施方式中,测量装置213测量可移动物体211和基准位置之间的相对位置参数,并测量参考位置和基准位置之间的相对位置参数。举例说明,可以在基准位置架设测量装置213,通过发射激光、红外、声波等测量信号确定可移动物体211的位置,在发射信号后,信号到达可移动物体211后进行反射,测量装置213接收反射信号,通过解析反射信号可以计算可移动物体211的相对位置参数,其可以包括距离、角度和高程差中的至少一个。参考图3所示举例说明,测量装置213接收反射信号后,可以根据反射信号和发射信号的相位差计算可移动物体211和基准位置的距离;根据反射信号的方向,将其映射到水平面上,可以计算可移动物体211相对于基准位置的水平角度(水平角);还可以根据反射信号的信号与水平面的角度(竖直角),结合可移动物体211和基准位置的距离,计算可移动物体211相对于基准位置的高程差ΔH。需要说明的是,可以以可移动物体211的位置或基准位置为参照,表示两位置之间的相对位置参数,在此不作限定。测量参考位置和基准位置之间的相对位置参数与上述过程相似。In this exemplary embodiment, the measuring device 213 measures the relative position parameter between the movable object 211 and the reference position, and measures the relative position parameter between the reference position and the reference position. For example, the measurement device 213 can be set up at the reference position to determine the position of the movable object 211 by emitting measurement signals such as laser, infrared, and acoustic waves. After the signal is transmitted, the signal reaches the movable object 211 and then reflects, and the measurement device 213 receives the reflection. Signal, the relative position parameter of the movable object 211 can be calculated by analyzing the reflected signal, which can include at least one of distance, angle, and elevation difference. Referring to the example shown in FIG. 3, after the measuring device 213 receives the reflected signal, it can calculate the distance between the movable object 211 and the reference position according to the phase difference between the reflected signal and the transmitted signal; according to the direction of the reflected signal, it is mapped to the horizontal plane, It can calculate the horizontal angle (horizontal angle) of the movable object 211 relative to the reference position; it can also calculate the movable object based on the angle (vertical angle) between the reflected signal signal and the horizontal plane, combined with the distance between the movable object 211 and the reference position 211 The elevation difference ΔH relative to the reference position. It should be noted that the position or reference position of the movable object 211 can be used as a reference to indicate the relative position parameter between the two positions, which is not limited here. Measuring the relative position parameters between the reference position and the reference position is similar to the process described above.
在一种可选的实施方式中,测量装置213可以通过发射光信号进行测量,例如可以是全站仪;可移动物体211上可以装设反射组件,如图4所示,用于反射测量装置213发射的光信号,使得反射光信号较强,测量装置213能够更加准确地检测可移动物体211的位置。该反射组件可以采用反射棱镜,如360度反射棱镜、全反射棱镜等,可以反射来自各个方向的光信号。为了提高测量的可靠性,还可以在可移动物体211机身的多个面上分别装设反射棱镜,以防止反射棱镜位于测量装置213的反方向时,反射不到光信号的问题。在其他实施方式中,反射组件还可设置为可旋转,例如反射组件固定设置有旋转组件,或者与旋转组件可拆卸连接,在此不作限定。In an alternative embodiment, the measuring device 213 may perform measurement by emitting light signals, for example, it may be a total station; the movable object 211 may be equipped with a reflective component, as shown in FIG. 4, for the reflection measuring device The light signal emitted by the 213 makes the reflected light signal stronger, and the measuring device 213 can detect the position of the movable object 211 more accurately. The reflective component can adopt a reflective prism, such as a 360-degree reflective prism, a total reflection prism, etc., which can reflect light signals from various directions. In order to improve the reliability of the measurement, reflecting prisms can also be installed on multiple surfaces of the body of the movable object 211 to prevent the problem of not reflecting the light signal when the reflecting prisms are located in the opposite direction of the measuring device 213. In other embodiments, the reflective component can also be configured to be rotatable, for example, the reflective component is fixedly provided with a rotating component, or is detachably connected to the rotating component, which is not limited herein.
控制装置214可以通过有线或无线连接的方式与定位装置212、测量装置213连接,以便保持通讯,从定位装置212、测量装置213获取相关数据,包括上述可移动物体211和基准位置之间的相对位置参数,参考位置和基准位置之间的相对位置参数,以及参考位置的定位参数,然后对这三个参数进行分析计算,得到可移动物体211的定位参数。下面对计算过程进行具体说明:The control device 214 can be connected to the positioning device 212 and the measurement device 213 through a wired or wireless connection to maintain communication, and obtain relevant data from the positioning device 212 and the measurement device 213, including the relative relationship between the above-mentioned movable object 211 and the reference position. The position parameter, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position, and then the three parameters are analyzed and calculated to obtain the positioning parameter of the movable object 211. The calculation process is described in detail below:
根据可移动物体211和基准位置之间的相对位置参数,以及参考位置和基准位置之间的相对位置参数,建立统一坐标系,统一坐标系可以是任意类型的坐标系,例如以地球为参照的绝对坐标系,或者以基准位置为参照的相对坐标系等,从而将可移动物体211、基准位置、参考位置纳入到同一个坐标系中;According to the relative position parameters between the movable object 211 and the reference position, and the relative position parameters between the reference position and the reference position, a unified coordinate system is established. The unified coordinate system can be any type of coordinate system, for example, the earth is referenced An absolute coordinate system, or a relative coordinate system with a reference position as a reference, etc., so as to incorporate the movable object 211, the reference position, and the reference position into the same coordinate system;
基于统一坐标系,对可移动物体211和基准位置之间的相对位置参数,参考位置 和基准位置之间的相对位置参数,以及参考位置的定位参数进行计算,得到可移动物体211、基准位置、参考位置在统一坐标系中的坐标,从而确定相互之间的位置关系,再映射为定位参数中的尺度,以确定可移动物体211的定位参数。Based on the unified coordinate system, the relative position parameters between the movable object 211 and the reference position, the relative position parameters between the reference position and the reference position, and the positioning parameters of the reference position are calculated to obtain the movable object 211, the reference position, The coordinates of the reference position in the unified coordinate system are used to determine the positional relationship between each other, which is then mapped to the scale in the positioning parameter to determine the positioning parameter of the movable object 211.
由上可知,控制装置214负责数据通信和数据计算两方面任务,在一种可选的实施方式中,控制装置214可以包括:通信单元,负责上述数据通信的任务,接收测量装置213和定位装置212发送的数据;计算单元,负责上述数据计算的任务,计算可移动物体的定位参数。It can be seen from the above that the control device 214 is responsible for both data communication and data calculation tasks. In an alternative embodiment, the control device 214 may include: a communication unit responsible for the above-mentioned data communication tasks, a receiving and measuring device 213 and a positioning device 212 data sent; calculation unit, responsible for the task of calculating the above data, calculating the positioning parameters of movable objects.
在一种可选的实施方式中,可以通过以下方式建立统一坐标系:In an optional implementation manner, a unified coordinate system can be established in the following manner:
首先获取参考位置的定位参数对应的全局坐标系,全局坐标系即绝对坐标系,如定位参数采用高斯坐标时,全局坐标系可以是高斯坐标系,例如东-北-天坐标系;First, obtain the global coordinate system corresponding to the positioning parameter of the reference position. The global coordinate system is the absolute coordinate system. If the positioning parameter adopts Gaussian coordinates, the global coordinate system can be a Gaussian coordinate system, such as an east-north-sky coordinate system;
然后以基准位置为原点,建立一个局部坐标系,该局部坐标系表示测量装置213测量范围内的相对坐标系,例如可以以水平面的正东方向为+X轴,以水平面的正北方向为+Y轴;Then, with the reference position as the origin, a local coordinate system is established. The local coordinate system represents the relative coordinate system within the measuring range of the measuring device 213. For example, the true east direction of the horizontal plane may be the +X axis, and the true north direction of the horizontal plane may be + Y axis;
再基于局部坐标系和全局坐标系建立统一坐标系,通过确定局部坐标系和全局坐标系之间的映射关系,可以将参考位置纳入局部坐标系,或者将基准位置纳入全局坐标系,从而置于统一坐标系中。Then establish a unified coordinate system based on the local coordinate system and the global coordinate system. By determining the mapping relationship between the local coordinate system and the global coordinate system, the reference position can be included in the local coordinate system, or the reference position can be included in the global coordinate system, thereby placing In a unified coordinate system.
基于此,可以通过以下方式计算可移动物体211的定位参数:Based on this, the positioning parameters of the movable object 211 can be calculated in the following manner:
根据可移动物体211和基准位置之间的相对位置参数,计算可移动物体211的局部坐标PR1,其中局部坐标可以采用笛卡尔坐标,也可以采用极坐标;According to the relative position parameter between the movable object 211 and the reference position, calculate the local coordinate PR1 of the movable object 211, where the local coordinates can be Cartesian coordinates or polar coordinates;
建立局部坐标系和全局坐标系之间的关联,例如可以包括两坐标系的映射或转换关系,根据参考位置和基准位置之间的相对位置参数,计算参考位置的局部坐标PRr,或者基准位置的全局坐标PA0(即基准位置的定位参数);Establish the association between the local coordinate system and the global coordinate system. For example, it can include the mapping or conversion relationship between the two coordinate systems. According to the relative position parameter between the reference position and the reference position, the local coordinate PRr of the reference position is calculated, or the reference position Global coordinate PA0 (ie the positioning parameter of the reference position);
最后以参考位置的局部坐标PRr或者基准位置的全局坐标PA0为参照,将可移动物体211的局部坐标PR1映射到全局坐标系中,计算其全局坐标PA1(即可移动物体211的定位参数)。Finally, using the local coordinate PRr of the reference position or the global coordinate PA0 of the reference position as a reference, the local coordinate PR1 of the movable object 211 is mapped to the global coordinate system, and its global coordinate PA1 (that is, the positioning parameter of the movable object 211) is calculated.
需要说明的是,在上述计算中,建立局部坐标系和全局坐标系之间的关联后,可以将所有的位置(基准位置、参考位置、可移动物体211的位置)映射到其中任一个坐标系中,根据相互之间的位置关系进行解析计算,以确定每个位置的坐标。It should be noted that in the above calculation, after the association between the local coordinate system and the global coordinate system is established, all positions (reference position, reference position, position of movable object 211) can be mapped to any one of these coordinate systems. Analytical calculations are performed according to the mutual positional relationship to determine the coordinates of each position.
在一种可选的实施方式中,在计算可移动物体211的定位参数时,可以先根据参考位置的定位参数,将参考位置和基准位置之间的相对位置参数从局部坐标系映射到全局坐标系中,得到基准位置的定位参数,例如可以以参考位置和基准位置之间的相对位置参数计算全局坐标系中基准位置和参考位置的偏移量,将参考位置的定位参数加上该偏移量,得到基准位置的定位参数;然后再利用类似的方法,根据基准位置的定位参数,将可移动物体211和基准位置之间的相对位置参数从局部坐标系映射到全局坐标系中,得到可移动物体211的定位参数。In an optional implementation manner, when calculating the positioning parameters of the movable object 211, the relative position parameters between the reference position and the reference position may be mapped from the local coordinate system to the global coordinate according to the positioning parameters of the reference position. In the system, the positioning parameter of the reference position is obtained. For example, the relative position parameter between the reference position and the reference position can be used to calculate the offset between the reference position and the reference position in the global coordinate system, and the positioning parameter of the reference position can be added to the offset The relative position parameter between the movable object 211 and the reference position is mapped from the local coordinate system to the global coordinate system by using a similar method to obtain the positioning parameter of the reference position; Positioning parameters of the moving object 211.
上述过程数学表达如下:假设局部坐标系到全局坐标系的映射系数为ν,其可以是3*3的转换矩阵,基准位置的全局坐标为PA0=PAr-PRr×ν,可移动物体211的全局坐标为PA1=PA0+PR1×ν。The mathematical expression of the above process is as follows: assuming that the mapping coefficient from the local coordinate system to the global coordinate system is ν, which can be a 3*3 conversion matrix, the global coordinate of the reference position is PA0=PAr-PRr×ν, the global of the movable object 211 The coordinates are PA1=PA0+PR1×ν.
进一步地,在一种实施方式中,测量装置213还可以包括跟踪模式。例如,以测量装置213为支持跟踪模式的全站仪为例进行说明。在跟踪模式下,全站仪以一定频率发射脉冲跟踪可移动物体,可以通过激光实时测量可移动物体211和基准位置之间的相对位置参数。本示例性实施方式中,建立全站仪和控制装置214的无线通信,使得全站仪在每历元的测量数据可以发送到控制装置214进行解析。测量数据以数据包的形式发送,可以包括每一时刻的UTC时间(Coordinated Universal Time,协调世界时)和可移动物体211和基准位置之间的相对位置参数(包括距离、方位角、竖直角和高程差等)。基于此,可以建立可移动物体211的状态方程,以实现精确定位和控制。在一种可选的实施方式中,可以采用任意合适的数学算法提高定位精度,例如可以采用滤波(如卡尔曼滤波、扩展卡尔曼滤波等)的方式提高定位精度。以卡尔曼滤波为例,计算单元可以根据可移动物体211和基准位置之间在前一时刻和当前时刻的相对位置参数进行卡尔曼滤波,由于相对位置参数是测量装置213测量得到的,存在测量误差,卡尔曼滤波可以通过优化减小误差的影响,从而估计可移动物体211和基准位置在当前时刻的最优相对位置参数,其更加接近于真实情况。在上述计算可移动物体211的定位参数时,使用可移动物体211和基准位置之间的最优相对位置参数替换所测量的相对位置参数进行计算,得到可移动物体211的定位参数,其精度更高。Further, in an embodiment, the measuring device 213 may also include a tracking mode. For example, it will be described by taking the measuring device 213 as a total station supporting the tracking mode as an example. In the tracking mode, the total station emits pulses to track the movable object at a certain frequency, and the relative position parameter between the movable object 211 and the reference position can be measured in real time by laser. In this exemplary embodiment, wireless communication between the total station and the control device 214 is established, so that the measurement data of the total station in each epoch can be sent to the control device 214 for analysis. The measurement data is sent in the form of data packets, which can include UTC time (Coordinated Universal Time) at each moment and the relative position parameters between the movable object 211 and the reference position (including distance, azimuth, vertical angle) And elevation difference etc.). Based on this, the state equation of the movable object 211 can be established to achieve precise positioning and control. In an optional implementation manner, any suitable mathematical algorithm may be used to improve the positioning accuracy, for example, filtering (such as Kalman filtering, extended Kalman filtering, etc.) may be used to improve the positioning accuracy. Taking Kalman filtering as an example, the calculation unit can perform Kalman filtering according to the relative position parameters between the movable object 211 and the reference position at the previous time and the current time. Since the relative position parameters are measured by the measuring device 213, there is a measurement Error, Kalman filter can reduce the influence of error through optimization, so as to estimate the optimal relative position parameter of the movable object 211 and the reference position at the current moment, which is closer to the real situation. In the above calculation of the positioning parameters of the movable object 211, the optimal relative position parameter between the movable object 211 and the reference position is used to replace the measured relative position parameter for calculation, and the positioning parameter of the movable object 211 is obtained, which is more accurate. high.
本示例性实施方式中,控制装置214在计算出可移动物体211的定位参数后,还可以根据可移动物体211的定位参数规划可移动物体211的行进路线,以实现精确的路线规划和自动导航。In this exemplary embodiment, after the control device 214 calculates the positioning parameters of the movable object 211, it can also plan the travel route of the movable object 211 according to the positioning parameters of the movable object 211, so as to realize accurate route planning and automatic navigation. .
应当理解,图2所示的定位系统210仅是示例性的。根据实际需要,可以设置任意数目的可移动物体211,对每个可移动物体211进行定位,或者设置任意数目的测量装置213,共同对可移动物体211进行跟踪测量;也可以将定位装置212设置于测量装置213上,如在全站仪上安装GPS传感器,则参考位置和基准位置可以是同一位置;控制装置214也可以是可移动物体211内部的控制装置,使得可移动物体211一边飞行一边接收测量装置213和定位装置212发送的数据,通过计算出自身的定位参数,实现行进控制、自动导航等功能。在一种实施方式中,也可以在定位系统210中增设其他传感器,如视觉定位传感器、超声波传感器、激光雷达等,将获取的数据与上述相对位置参数进行融合计算,最终得到可移动物体211的定位参数,结果更可靠。It should be understood that the positioning system 210 shown in FIG. 2 is only exemplary. According to actual needs, any number of movable objects 211 can be set to locate each movable object 211, or any number of measuring devices 213 can be set to track and measure the movable objects 211 together; or the positioning device 212 can be set On the measuring device 213, if a GPS sensor is installed on the total station, the reference position and the reference position can be the same position; the control device 214 can also be a control device inside the movable object 211, so that the movable object 211 is flying while flying The data sent by the measuring device 213 and the positioning device 212 are received, and functions such as travel control and automatic navigation are realized by calculating its own positioning parameters. In an embodiment, other sensors, such as visual positioning sensors, ultrasonic sensors, lidars, etc., can also be added to the positioning system 210, and the acquired data is fused with the above-mentioned relative position parameters to finally obtain the movable object 211 Positioning parameters, the result is more reliable.
在一种可选的实施方式中,定位系统可以包括N个测量装置,N为不小于2的正整数,即可以设置至少两个测量装置。N个测量装置分别位于N个预设的基准位置,其中,第一测量装置设于第一基准位置,用于测量可移动物体的第一相对位置参数,以及参考位置相对于第一基准位置的相对位置参数;第二至第N测量装置分别设于第 二至第N基准位置,分别用于测量可移动物体的第二相对位置参数至第N相对位置参数;其中,第i相对位置参数表示:由第i测量装置测量的可移动物体相对于第i基准位置的相对位置参数,i为[1,N]内的任意整数。In an optional implementation, the positioning system may include N measuring devices, and N is a positive integer not less than 2, that is, at least two measuring devices may be provided. The N measuring devices are respectively located at N preset reference positions, where the first measuring device is set at the first reference position and is used to measure the first relative position parameter of the movable object, and the reference position relative to the first reference position Relative position parameters; the second to Nth measuring devices are respectively set at the second to Nth reference positions, respectively used to measure the second relative position parameter to the Nth relative position parameter of the movable object; wherein, the i-th relative position parameter represents : The relative position parameter of the movable object measured by the i-th measuring device relative to the i-th reference position, i is any integer in [1,N].
相应的,控制装置可以基于上述统一坐标系,对参考位置相对于第一基准位置的相对位置参数,参考位置的定位参数,可移动物体的第一相对位置参数至第N相对位置参数中的至少一个相对位置参数,以及N个基准位置之间的位置关系进行计算,以确定可移动物体的定位参数。由于测量装置测量可移动物体的相对位置时具有误差,通过N个测量装置分别测量,再综合其测量结果进行可移动物体定位解算,可以减小误差的影响,进一步提高定位精度,并且保证任何时刻都有测量装置可以跟踪到可移动物体,进一步提高定位可靠性。Correspondingly, the control device may, based on the above-mentioned unified coordinate system, determine at least one of the relative position parameters of the reference position relative to the first reference position, the positioning parameter of the reference position, the first relative position parameter to the Nth relative position parameter of the movable object A relative position parameter and the position relationship between the N reference positions are calculated to determine the positioning parameter of the movable object. Because the measurement device has errors when measuring the relative position of the movable object, the measurement results are separately measured by N measuring devices, and the measurement results are combined to perform the positioning calculation of the movable object, which can reduce the influence of the error, further improve the positioning accuracy, and guarantee any There are measuring devices that can track movable objects at all times to further improve positioning reliability.
以隧道作业为例,参考图5所示,可以选取隧道口和隧道内3个通视较好的点为基准位置,分别架设全站仪501、502、503,全站仪501测量和全站仪502、503之间的相对位置,以得到3个基准位置之间的位置关系,并测量和参考位置的相对位置。当无人机504作业时,全站仪501、502、503均跟踪测量,每一时刻由于地形阻碍等原因,可能会有一些全站仪无法跟踪到无人机504,因此只能获取到第一至第三相对位置参数中的一部分。Take the tunnel operation as an example, refer to Figure 5, you can select the tunnel entrance and 3 points with good visibility in the tunnel as the reference position, set up the total station 501, 502, 503, the total station 501 measurement and the total station The relative positions between the meters 502 and 503 are used to obtain the positional relationship between the three reference positions, and to measure the relative position with the reference position. When the UAV 504 is operating, the total stations 501, 502, and 503 are all tracking and measuring. Due to terrain obstructions and other reasons, some total stations may not be able to track the UAV 504, so only the first One to a part of the third relative position parameter.
假设在时刻t,全站仪501、502、503均跟踪到无人机504,分别单独测量得到第一至第三相对位置参数PR1、PR2、PR3,例如可以是每个全站仪和无人机504的距离与高程差,然后对任意两个全站仪和无人机504形成的三角形进行求解,得到包括角度的PR1、PR2、PR3;接下来,可以通过以下两种方式处理:Assuming that at time t, the total stations 501, 502, and 503 all track the UAV 504, and separately measure the first to third relative position parameters PR1, PR2, and PR3. For example, it can be each total station and unmanned The distance and elevation difference between the aircraft 504 and the triangle formed by any two total stations and the UAV 504 are solved to obtain PR1, PR2, and PR3 including the angle. Next, it can be processed in the following two ways:
(1)根据3个基准位置之间的位置关系,将PR1、PR2、PR3分别转换为相对于同一个基准位置(如常用第一基准位置)的相对位置参数,取平均值,再结合该基准位置的定位参数,计算无人机504的定位参数。(1) According to the positional relationship between the three reference positions, convert PR1, PR2, and PR3 into relative position parameters relative to the same reference position (such as the first reference position), take the average value, and then combine the reference position The positioning parameters of the location, the positioning parameters of the UAV 504 are calculated.
(2)结合参考位置和第二、第三基准位置相对于第一基准位置的相对位置参数,以及参考位置的定位参数,可以分别计算出第一、第二、第三基准位置的定位参数,再根据每个基准位置的定位参数以及对应的相对位置参数求解无人机504的一组定位参数,例如结合第一基准位置的定位参数和PR1可以计算无人机504的第一定位参数PA1,同理可得第二定位参数PA2和第三定位参数PA3,对PA1、PA2、PA3取平均,得到无人机504的定位参数。(2) Combining the reference position and the relative position parameters of the second and third reference positions relative to the first reference position, and the positioning parameters of the reference position, the positioning parameters of the first, second, and third reference positions can be calculated respectively, Then solve a set of positioning parameters of the drone 504 according to the positioning parameters of each reference position and the corresponding relative position parameters. For example, combining the positioning parameters of the first reference position and PR1 can calculate the first positioning parameter PA1 of the drone 504, Similarly, the second positioning parameter PA2 and the third positioning parameter PA3 can be obtained, and PA1, PA2, and PA3 are averaged to obtain the positioning parameters of the UAV 504.
进一步的,控制装置可以实时接收N个测量装置所发送的相对位置参数,按照上述方法进行解析,并使用滤波算法对无人机的实时定位进行优化,获取其在全局坐标系下的实时位置。通过预设的航线与航点在全局坐标系下的位置,可以实现对无人机航线的规划与反馈;或者通过全局坐标系到局部坐标系的映射,将预设的航线与航点在局部坐标系中标识出来,从而在局部坐标系中对无人机进行航线规划,通过实时跟踪其局部坐标,实现精准的飞行控制。当然,上述方式也适用于无人车、机器人等其 他类型的可移动物体。本实施方式提供的可移动物体定位系统跟踪效果很好,能够达到亚厘米级的定位精度。Further, the control device can receive the relative position parameters sent by the N measuring devices in real time, analyze it according to the above method, and use the filtering algorithm to optimize the real-time positioning of the drone to obtain its real-time position in the global coordinate system. Through the location of the preset route and waypoint in the global coordinate system, you can realize the planning and feedback of the UAV route; or through the mapping from the global coordinate system to the local coordinate system, the preset route and waypoint can be localized. It is identified in the coordinate system, so that the UAV is planned in the local coordinate system, and the local coordinates are tracked in real time to achieve precise flight control. Of course, the above method is also applicable to other types of movable objects such as unmanned vehicles and robots. The movable object positioning system provided by this embodiment has a good tracking effect and can achieve sub-centimeter positioning accuracy.
综上所述,在本示例性实施方式的可移动物体定位系统中,利用定位装置测量参考位置的定位参数,利用设于基准位置的测量装置测量可移动物体、参考位置和基准位置之间的相对位置参数,再通过控制装置,在统一坐标系中对上述参数进行计算,以确定可移动物体的定位参数。一方面,提供了一种在有遮挡环境下的可移动物体定位系统,能够克服可移动物体接收不到定位信号的问题,实现准确定位,以便于在有遮挡环境下进行可移动物体的控制与工程作业。另一方面,该定位系统的组成较为简单,各组件装置都是工程作业中较为常见的装置,实现成本较低,具有较高的实用性。To sum up, in the movable object positioning system of this exemplary embodiment, the positioning device is used to measure the positioning parameters of the reference position, and the measuring device set at the reference position is used to measure the movable object, the reference position and the reference position. The relative position parameters are calculated by the control device in the unified coordinate system to determine the positioning parameters of the movable object. On the one hand, it provides a positioning system for movable objects in a sheltered environment, which can overcome the problem that the movable object cannot receive positioning signals and achieve accurate positioning, so as to facilitate the control and control of movable objects in a sheltered environment. Engineering operations. On the other hand, the composition of the positioning system is relatively simple, each component device is a relatively common device in engineering operations, the implementation cost is low, and the practicability is high.
当然,可以理解,本实施方式提供的定位系统也可以在无遮挡环境下使用。例如,在一种实施方式中,若可移动物体在无遮挡环境下作业,可以通过可移动物体上的定位传感器直接获取其定位参数,同时采用图2的定位系统210测量并计算可移动物体的定位参数,将两种途径得到的定位参数进行融合,相当于对可移动物体采取了双重定位的方式,可以降低任一种方式的测量误差,实现更高的精度和可靠性。Of course, it can be understood that the positioning system provided in this embodiment can also be used in an unobstructed environment. For example, in one embodiment, if the movable object is operated in an unobstructed environment, its positioning parameters can be directly obtained through the positioning sensor on the movable object, and the positioning system 210 of FIG. 2 is used to measure and calculate the position of the movable object. Positioning parameters, fusing the positioning parameters obtained by the two methods is equivalent to adopting a dual positioning method for movable objects, which can reduce the measurement error of either method and achieve higher accuracy and reliability.
本公开的示例性实施方式还提供了一种可移动物体的定位方法,可以应用于上述可移动物体的定位系统,如图2中的定位系统210。参考图6所示,该定位方法可以包括以下步骤S610~S640:Exemplary embodiments of the present disclosure also provide a method for positioning a movable object, which can be applied to the above-mentioned positioning system for movable objects, such as the positioning system 210 in FIG. 2. As shown in FIG. 6, the positioning method may include the following steps S610 to S640:
步骤S610,获取预设的参考位置的定位参数;Step S610, obtaining the positioning parameters of the preset reference position;
步骤S620,测量可移动物体和预设的基准位置之间的相对位置参数,以及参考位置和基准位置之间的相对位置参数;Step S620, measuring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position;
步骤S630,根据可移动物体和基准位置之间的相对位置参数,以及参考位置和基准位置之间的相对位置参数,建立统一坐标系;Step S630, establishing a unified coordinate system according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position;
步骤S640,基于统一坐标系,对可移动物体和基准位置之间的相对位置参数,参考位置和基准位置之间的相对位置参数,以及参考位置的定位参数进行计算,以确定可移动物体的定位参数。Step S640, based on the unified coordinate system, calculate the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position to determine the position of the movable object parameter.
其中,定位系统包括可移动物体、测量装置、定位装置和控制装置,可移动物体包括无人飞行器、无人车、机器人中的至少一个。步骤S610由定位装置执行,步骤S620由测量装置执行,步骤S630和S640由控制装置执行。参考位置可以是无遮挡区域中的任意位置点,在参考位置能够较好的接收到定位信号,以测量参考位置的定位参数,定位参数可以采用任意类型的全局坐标(即绝对位置坐标),如高斯坐标等。测量装置可以通过发射光信号进行测量,例如可以是全站仪;可移动物体上可以装设反射组件,使得测量装置通过向该反射组件发射光信号,并接收由反射组件反射的光信号,来测量可移动物体的相对位置参数;该反射组件可以采用反射棱镜,如360度反射棱镜、全反射棱镜等,可以反射来自各个方向的光信号。测量装置测量的相对位置参数可以包括距离、角度(可以包括水平角和竖直角等)和高程差中的至少一个, 例如测量可移动物体的相对位置参数,得到可移动物体和基准位置之间的距离、角度和高程差。Wherein, the positioning system includes a movable object, a measuring device, a positioning device and a control device, and the movable object includes at least one of an unmanned aerial vehicle, an unmanned vehicle, and a robot. Step S610 is executed by the positioning device, step S620 is executed by the measuring device, and steps S630 and S640 are executed by the control device. The reference position can be any position point in the unobstructed area. The positioning signal can be better received at the reference position to measure the positioning parameters of the reference position. The positioning parameters can use any type of global coordinates (ie absolute position coordinates), such as Gaussian coordinates etc. The measuring device can perform measurement by emitting light signals, for example, it can be a total station; a reflective component can be installed on the movable object, so that the measuring device can transmit light signals to the reflective component and receive the light signals reflected by the reflective component. Measure relative position parameters of movable objects; the reflective component can use reflective prisms, such as 360-degree reflective prisms, total reflection prisms, etc., which can reflect light signals from all directions. The relative position parameter measured by the measuring device may include at least one of distance, angle (including horizontal angle and vertical angle, etc.) and elevation difference. For example, the relative position parameter of the movable object is measured to obtain the distance between the movable object and the reference position. The distance, angle and elevation difference of.
基于图6的方法流程,可以在可移动物体处于遮挡环境中,无法接收到定位信号时,基于可移动物体、基准位置、参考位置之间的相对位置关系,结合参考位置的定位参数,计算出可移动物体的定位参数,且定位精度较高,从而解决有遮挡环境下无法对可移动物体准确定位的问题。Based on the method flow in Figure 6, when the movable object is in an occluded environment and cannot receive the positioning signal, it can be calculated based on the relative position relationship between the movable object, the reference position, and the reference position, combined with the positioning parameters of the reference position The positioning parameters of the movable object, and the positioning accuracy is high, so as to solve the problem that the movable object cannot be accurately positioned under the obstructed environment.
在一种可选的实施方式中,步骤S630可以具体通过以下方式实现:获取参考位置的定位参数对应的全局坐标系;根据基准位置建立局部坐标系;基于局部坐标系和全局坐标系建立统一坐标系。在建立统一坐标系时,实际上实现了全局坐标系和局部坐标系之间的映射,可以将可移动物体、基准位置、参考位置纳入同一个坐标系中,便于后续计算。In an alternative embodiment, step S630 can be implemented in the following ways: obtaining the global coordinate system corresponding to the positioning parameter of the reference position; establishing a local coordinate system based on the reference position; establishing a unified coordinate based on the local coordinate system and the global coordinate system system. When a unified coordinate system is established, the mapping between the global coordinate system and the local coordinate system is actually realized. The movable object, the reference position, and the reference position can be included in the same coordinate system to facilitate subsequent calculations.
进一步的,在一种可选的实施方式中,步骤S640可以具体通过以下方式实现:根据参考位置的定位参数,将参考位置和基准位置之间的相对位置参数从局部坐标系映射到全局坐标系中,得到基准位置的定位参数;根据基准位置的定位参数,将可移动物体和基准位置之间的相对位置参数从局部坐标系映射到全局坐标系中,得到可移动物体的定位参数。该方式将可移动物体、基准位置、参考位置之间的相对位置关系分别两两计算,先简化为基准位置和参考位置之间的位置解析问题,在确定基准位置的定位参数后,将问题简化为可移动物体和基准位置之间的位置解析问题,从而简化了整个计算过程,提高了效率。Further, in an optional implementation manner, step S640 may be specifically implemented in the following manner: according to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system In, the positioning parameters of the reference position are obtained; according to the positioning parameters of the reference position, the relative position parameters between the movable object and the reference position are mapped from the local coordinate system to the global coordinate system to obtain the positioning parameters of the movable object. This method calculates the relative position relationship between the movable object, the reference position, and the reference position separately, and first reduces it to the position analysis problem between the reference position and the reference position. After determining the positioning parameters of the reference position, the problem is simplified It is the problem of position analysis between the movable object and the reference position, thus simplifying the whole calculation process and improving efficiency.
在一种可选的实施方式中,在步骤S620中,可以实时测量可移动物体和基准位置之间的相对位置参数;在计算可移动物体的定位参数时,还可以根据可移动物体和基准位置之间在前一时刻和当前时刻的相对位置参数,获取可移动物体和基准位置之间在当前时刻的最优相对位置参数。其中,获取可移动物体和基准位置之间在当前时刻的最优相对位置参数可以采用任意合适的数学算法,例如可以采用滤波(如卡尔曼滤波、扩展卡尔曼滤波等)的方式,其目的是为了提高位置精度:以卡尔曼滤波为例,由于相对位置参数是测量装置测量得到的,存在测量误差,卡尔曼滤波可以减小误差的影响,从而估计可移动物体和基准位置之间在当前时刻的最优相对位置参数,其更加接近于真实情况。在上述计算可移动物体的定位参数时,使用可移动物体和基准位置之间的最优相对位置参数替换所测量的相对位置参数进行计算,得到可移动物体的定位参数,其精度更高。In an optional implementation manner, in step S620, the relative position parameter between the movable object and the reference position can be measured in real time; when calculating the positioning parameter of the movable object, it can also be based on the movable object and the reference position. The relative position parameter between the previous moment and the current moment is obtained, and the optimal relative position parameter between the movable object and the reference position at the current moment is obtained. Wherein, to obtain the optimal relative position parameter between the movable object and the reference position at the current moment, any suitable mathematical algorithm may be used, for example, filtering (such as Kalman filtering, extended Kalman filtering, etc.) may be used, and the purpose is In order to improve the position accuracy: Take Kalman filter as an example. Since the relative position parameter is measured by the measuring device, there is a measurement error. Kalman filter can reduce the influence of the error, thereby estimating the current moment between the movable object and the reference position The optimal relative position parameter of, which is closer to the real situation. When calculating the positioning parameters of the movable object, the optimal relative position parameter between the movable object and the reference position is used to replace the measured relative position parameter for calculation, and the positioning parameter of the movable object is obtained with higher accuracy.
在一种可选的实施方式中,可移动物体的定位系统可以包括N个测量装置,分别设置于N个预设的基准位置,N为不小于2的正整数,基准位置通常为通视较好、测量覆盖范围较大的位置点。可移动物体的定位方法可以如图7所示,包括以下步骤S710~S750:In an alternative embodiment, the positioning system of the movable object may include N measuring devices, which are respectively set at N preset reference positions, where N is a positive integer not less than 2, and the reference position is usually a general view. Good, measure the location point with larger coverage. The positioning method of the movable object may be as shown in FIG. 7 and includes the following steps S710 to S750:
步骤S710,获取预设的参考位置的定位参数;Step S710: Acquire positioning parameters of a preset reference position;
步骤S720,分别利用N个测量装置测量可移动物体的第一至第N相对位置参数,可移动物体的第i相对位置参数为:由第i测量装置测量的可移动物体相对于第i基准位置的相对位置参数,i为[1,N]内的任意整数;Step S720, using N measuring devices to measure the first to Nth relative position parameters of the movable object, the i-th relative position parameter of the movable object is: the i-th reference position of the movable object measured by the i-th measuring device The relative position parameter of, i is any integer within [1,N];
步骤S730,利用N个测量装置中的第一测量装置测量参考位置相对于第一基准位置的相对位置参数;Step S730, using the first measuring device among the N measuring devices to measure the relative position parameter of the reference position relative to the first reference position;
步骤S740,根据参考位置相对于第一基准位置的相对位置参数,可移动物体的第一相对位置参数至第N相对位置参数中的至少一个相对位置参数,以及N个基准位置之间的位置关系,建立统一坐标系;Step S740, according to the relative position parameter of the reference position relative to the first reference position, at least one relative position parameter from the first relative position parameter to the Nth relative position parameter of the movable object, and the position relationship between the N reference positions , Establish a unified coordinate system;
步骤S750,基于统一坐标系,对参考位置相对于第一基准位置的相对位置参数,参考位置的定位参数,可移动物体的第一相对位置参数至第N相对位置参数中的至少一个相对位置参数,以及N个基准位置之间的位置关系进行计算,以确定可移动物体的定位参数。Step S750: Based on the unified coordinate system, at least one relative position parameter of the relative position parameter of the reference position relative to the first reference position, the positioning parameter of the reference position, the first relative position parameter to the Nth relative position parameter of the movable object , And the positional relationship between the N reference positions are calculated to determine the positioning parameters of the movable object.
其中,在每一时刻,由于地形阻碍等原因,测量装置可能无法跟踪到可移动物体,设置多个测量装置,可以提高定位的可靠性,并且,由于测量具有误差,综合多个测量装置的测量结果进行计算,可以进一步提高定位精度。Among them, at each moment, due to terrain obstructions and other reasons, the measurement device may not be able to track the movable object. Multiple measurement devices can improve the reliability of positioning. Moreover, because the measurement has errors, the measurement of multiple measurement devices is integrated. The result of calculation can further improve the positioning accuracy.
进一步的,在确定可移动物体的定位参数后,还可以根据可移动物体的定位参数规划可移动物体的行进路线,以实现精确的路线规划和自动导航。Further, after the positioning parameters of the movable object are determined, the travel route of the movable object may be planned according to the positioning parameters of the movable object, so as to realize accurate route planning and automatic navigation.
本公开的示例性实施方式还提供了另一种可移动物体的定位方法,可以应用于可移动物体,如图2中的可移动物体211,其包括无人飞行器、无人车和机器人中的至少一个。参考图8所示,该定位方法可以包括以下步骤S810~S840:The exemplary embodiment of the present disclosure also provides another method for positioning a movable object, which can be applied to a movable object, such as the movable object 211 in FIG. 2, which includes unmanned aerial vehicles, unmanned vehicles, and robots. at least one. Referring to FIG. 8, the positioning method may include the following steps S810 to S840:
步骤S810,获取预设的参考位置的定位参数;Step S810: Acquire positioning parameters of a preset reference position;
步骤S820,获取可移动物体和预设的基准位置之间的相对位置参数,以及参考位置和基准位置之间的相对位置参数;Step S820, acquiring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position;
步骤S830,根据可移动物体和基准位置之间的相对位置参数,以及参考位置和基准位置之间的相对位置参数,建立统一坐标系;Step S830, establishing a unified coordinate system according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position;
步骤S840,基于统一坐标系,对可移动物体和基准位置之间的相对位置参数,参考位置和基准位置之间的相对位置参数,以及参考位置的定位参数进行计算,以确定可移动物体的定位参数。Step S840, based on the unified coordinate system, calculate the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position to determine the position of the movable object parameter.
其中,参考位置的定位参数由定位装置测量并发送至可移动物体,可以是任意类型的绝对位置坐标,如高斯坐标等;可移动物体和基准位置之间的相对位置参数,以及参考位置和基准位置之间的相对位置参数是由设于基准位置的测量装置测量并发送至可移动物体;测量装置可以是全站仪;相对位置参数可以包括可移动物体或参考位置相对于基准位置的距离、角度(可以包括水平角和竖直角等)和高程差中的至少一个;可移动物体可以具有处理功能,例如通过内置的控制装置进行各种数据处理和计算,本示例性实施方式中,将图2中控制装置214集成到可移动物体211上,图8所 示的方法即控制装置214在定位过程中所执行的方法,从而使可移动物体211可以实现自身定位。基于此,可移动物体在执行作业任务的过程中,同步进行自身定位,可以根据定位信息规划行进路线,以实现作业的高度自动化。Among them, the positioning parameters of the reference position are measured by the positioning device and sent to the movable object, which can be any type of absolute position coordinates, such as Gaussian coordinates; the relative position parameters between the movable object and the reference position, and the reference position and reference The relative position parameter between the positions is measured by the measuring device set at the reference position and sent to the movable object; the measuring device can be a total station; the relative position parameter can include the distance of the movable object or the reference position from the reference position, At least one of an angle (which may include a horizontal angle and a vertical angle, etc.) and an elevation difference; the movable object may have processing functions, such as various data processing and calculations through a built-in control device. In this exemplary embodiment, The control device 214 in FIG. 2 is integrated on the movable object 211, and the method shown in FIG. 8 is the method executed by the control device 214 in the positioning process, so that the movable object 211 can realize its own positioning. Based on this, the movable object synchronizes its own positioning during the execution of the work task, and can plan the travel route according to the positioning information to achieve a high degree of automation of the work.
在一种可选的实施方式中,步骤S830可以具体通过以下方式实现:获取参考位置的定位参数对应的全局坐标系;根据基准位置建立局部坐标系;基于局部坐标系和全局坐标系建立统一坐标系。在建立统一坐标系时,实际上实现了全局坐标系和局部坐标系之间的映射,可以将可移动物体、基准位置、参考位置纳入同一个坐标系中,便于后续计算。In an optional implementation manner, step S830 can be implemented in the following ways: obtaining the global coordinate system corresponding to the positioning parameter of the reference position; establishing a local coordinate system based on the reference position; establishing a unified coordinate based on the local coordinate system and the global coordinate system system. When a unified coordinate system is established, the mapping between the global coordinate system and the local coordinate system is actually realized. The movable object, the reference position, and the reference position can be included in the same coordinate system to facilitate subsequent calculations.
进一步的,在一种可选的实施方式中,步骤S840可以具体通过以下方式实现:根据参考位置的定位参数,将参考位置和基准位置之间的相对位置参数从局部坐标系映射到全局坐标系中,得到基准位置的定位参数;根据基准位置的定位参数,将可移动物体和基准位置之间的相对位置参数从局部坐标系映射到全局坐标系中,得到可移动物体的定位参数。该方式将可移动物体、基准位置、参考位置之间的相对位置关系分别两两计算,先简化为基准位置和参考位置之间的位置解析问题,在确定基准位置的定位参数后,将问题简化为可移动物体和基准位置之间的位置解析问题,从而简化了整个计算过程,提高了效率。Further, in an optional implementation manner, step S840 may be specifically implemented in the following manner: according to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system In, the positioning parameters of the reference position are obtained; according to the positioning parameters of the reference position, the relative position parameters between the movable object and the reference position are mapped from the local coordinate system to the global coordinate system to obtain the positioning parameters of the movable object. This method calculates the relative position relationship between the movable object, the reference position, and the reference position separately, and first reduces it to the position analysis problem between the reference position and the reference position. After determining the positioning parameters of the reference position, the problem is simplified It is the problem of position analysis between the movable object and the reference position, thus simplifying the whole calculation process and improving efficiency.
在一种可选的实施方式中,在步骤S820中,可以实时获取可移动物体和基准位置之间的相对位置参数;在计算可移动物体的定位参数时,还可以根据可移动物体和基准位置之间在前一时刻和当前时刻的相对位置参数,获取可移动物体和基准位置之间在当前时刻的最优相对位置参数。其中,获取可移动物体和基准位置之间在当前时刻的最优相对位置参数可以采用任意合适的数学算法,例如可以采用滤波(如卡尔曼滤波、扩展卡尔曼滤波等)的方式,其目的是为了提高位置精度:以卡尔曼滤波为例,由于相对位置参数是测量装置测量得到的,存在测量误差,卡尔曼滤波可以减小误差的影响,从而估计可移动物体和基准位置之间在当前时刻的最优相对位置参数,其更加接近于真实情况。在上述计算可移动物体的定位参数时,使用可移动物体和基准位置之间的最优相对位置参数替换所直接获取的相对位置参数进行计算,得到可移动物体的定位参数,其精度更高。In an optional implementation manner, in step S820, the relative position parameter between the movable object and the reference position can be acquired in real time; when calculating the positioning parameter of the movable object, it can also be based on the movable object and the reference position. The relative position parameter between the previous moment and the current moment is obtained, and the optimal relative position parameter between the movable object and the reference position at the current moment is obtained. Wherein, to obtain the optimal relative position parameter between the movable object and the reference position at the current moment, any suitable mathematical algorithm may be used, for example, filtering (such as Kalman filtering, extended Kalman filtering, etc.) may be used, and the purpose is In order to improve the position accuracy: Take Kalman filter as an example. Since the relative position parameter is measured by the measuring device, there is a measurement error. Kalman filter can reduce the influence of the error, thereby estimating the current moment between the movable object and the reference position The optimal relative position parameter of, which is closer to the real situation. When calculating the positioning parameter of the movable object, the optimal relative position parameter between the movable object and the reference position is used to replace the directly obtained relative position parameter for calculation to obtain the positioning parameter of the movable object with higher accuracy.
在一种可选的实施方式中,上述基准位置可以包括N个预设的基准位置,N为不小于2的正整数;基于此,步骤S820可以包括:In an optional implementation manner, the aforementioned reference positions may include N preset reference positions, where N is a positive integer not less than 2; based on this, step S820 may include:
获取可移动物体的第一至第N相对位置参数,可移动物体的第i相对位置参数为:可移动物体相对于第i基准位置的相对位置参数,i为[1,N]内的任意整数;Get the first to Nth relative position parameters of the movable object, the i-th relative position parameter of the movable object is: the relative position parameter of the movable object relative to the i-th reference position, i is any integer in [1,N] ;
获取参考位置相对于第一基准位置的相对位置参数;Acquiring a relative position parameter of the reference position relative to the first reference position;
相应的,步骤S840可以包括:Correspondingly, step S840 may include:
基于统一坐标系,对参考位置相对于第一基准位置的相对位置参数,参考位置的定位参数,可移动物体的第一至第N相对位置参数中的至少一个相对位置参数,以及 N个基准位置之间的位置关系进行计算,以确定可移动物体的定位参数。Based on the unified coordinate system, the relative position parameter of the reference position relative to the first reference position, the positioning parameter of the reference position, at least one relative position parameter of the first to Nth relative position parameters of the movable object, and N reference positions The positional relationship between is calculated to determine the positioning parameters of the movable object.
其中,N个基准位置通常为通视较好、测量覆盖范围较大的位置点;在每一时刻,由于地形阻碍等原因,测量装置可能无法跟踪到可移动物体,设置多个测量装置,可以提高定位的可靠性,并且,由于测量具有误差,综合多个测量装置的测量结果进行计算,可以进一步提高定位精度。Among them, the N reference positions are usually the position points with good visibility and large measurement coverage; at each moment, due to terrain obstructions and other reasons, the measurement device may not be able to track the movable object. Multiple measurement devices can be set up. Improve the reliability of the positioning, and because the measurement has errors, the measurement results of multiple measuring devices are combined for calculation, which can further improve the positioning accuracy.
进一步的,在确定可移动物体的定位参数后,还可以根据可移动物体的定位参数规划可移动物体的行进路线,以实现精确的路线规划和自动导航。Further, after the positioning parameters of the movable object are determined, the travel route of the movable object may be planned according to the positioning parameters of the movable object, so as to realize accurate route planning and automatic navigation.
本公开的示例性实施方式还提供了一种可移动物体,可以包括机身,动力系统,以及设于该机身内的控制装置,该控制装置可以执行上述可移动物体的定位方法,如图8所示的方法等,以对该可移动物体进行定位。Exemplary embodiments of the present disclosure also provide a movable object, which may include a fuselage, a power system, and a control device provided in the fuselage. The control device can execute the above-mentioned positioning method of the movable object, as shown in FIG. 8 shows the method and so on to locate the movable object.
图9以通用电子设备的形式示出了该可移动物体900,应当理解,可移动物体900仅是一个示例,不应对本公开实施方式的功能和使用范围带来任何限制。FIG. 9 shows the movable object 900 in the form of a general electronic device. It should be understood that the movable object 900 is only an example, and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
如图9所示,可移动物体900的控制装置可以包括中央处理单元(CPU)901,其可以根据存储在只读存储器(ROM)902中的程序或者从存储部分908加载到随机访问存储器(RAM)903中的程序而执行各种适当的动作和处理。在RAM 903中,还存储有系统操作所需的各种程序和数据。CPU 901、ROM 902以及RAM 903通过总线904彼此相连。输入/输出(I/O)接口905也连接至总线904。As shown in FIG. 9, the control device of the movable object 900 may include a central processing unit (CPU) 901, which may be loaded to a random access memory (RAM) according to a program stored in a read-only memory (ROM) 902 or from a storage portion 908 ) The program in 903 executes various appropriate actions and processing. In RAM 903, various programs and data required for system operation are also stored. The CPU 901, the ROM 902, and the RAM 903 are connected to each other through a bus 904. An input/output (I/O) interface 905 is also connected to the bus 904.
以下部件连接至I/O接口905:包括键盘、鼠标等的输入部分906;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分907;包括硬盘等的存储部分908;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分909。通信部分909经由诸如因特网的网络执行通信处理。驱动器910也根据需要连接至I/O接口905。可拆卸介质911,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器910上,以便于从其上读出的计算机程序根据需要被安装入存储部分908。The following components are connected to the I/O interface 905: an input section 906 including a keyboard, a mouse, etc.; an output section 907 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and speakers, etc.; a storage section 908 including a hard disk, etc. ; And a communication section 909 including a network interface card such as a LAN card, a modem, etc. The communication section 909 performs communication processing via a network such as the Internet. The drive 910 is also connected to the I/O interface 905 as needed. A removable medium 911, such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 910 as required, so that the computer program read therefrom is installed into the storage portion 908 as required.
特别地,根据本公开的实施方式,下文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施方式包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施方式中,该计算机程序可以通过通信部分909从网络上被下载和安装,和/或从可拆卸介质911被安装。在该计算机程序被中央处理单元(CPU)901执行时,执行本申请的方法和装置中限定的各种功能。In particular, according to the embodiments of the present disclosure, the process described below with reference to the flowchart can be implemented as a computer software program. For example, the embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart. In such an embodiment, the computer program may be downloaded and installed from the network through the communication part 909, and/or installed from the removable medium 911. When the computer program is executed by the central processing unit (CPU) 901, various functions defined in the method and device of the present application are executed.
上述可移动物体900的各种部件设于机身912内,该可移动物体900还包括动力系统913,控制装置可以通过I/O接口905控制动力系统913。The various components of the above-mentioned movable object 900 are provided in the body 912. The movable object 900 also includes a power system 913, and the control device can control the power system 913 through the I/O interface 905.
作为另一方面,本公开还提供了一种计算机可读介质,该计算机可读介质可以是上述实施方式中描述的可移动物体中所包含的;也可以是单独存在,而未装配入该可移动物体中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被处理器执行时,实现如上述实施方式中所述的方法。例如,处理器可以实现如图8 所示的各个步骤等。As another aspect, the present disclosure also provides a computer-readable medium. The computer-readable medium may be included in the movable object described in the above-mentioned embodiments; it may also exist alone without being assembled into the movable object. Moving objects. The foregoing computer-readable medium carries one or more programs, and when the foregoing one or more programs are executed by a processor, the method as described in the foregoing embodiment is implemented. For example, the processor may implement various steps as shown in FIG. 8 and so on.
需要说明的是,本公开所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two. The computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In the present disclosure, a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device. In the present disclosure, a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. The computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium. The computer-readable medium can send, propagate or transmit the program for use by or in combination with the instruction execution system, apparatus, or device . The program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
附图中的流程图和框图,图示了按照本公开各种实施方式的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowcharts and block diagrams in the accompanying drawings illustrate the possible implementation architecture, functions, and operations of the system, method, and computer program product according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagram may represent a module, program segment, or part of code, and the above-mentioned module, program segment, or part of code contains one or more for realizing the specified logical function Executable instructions. It should also be noted that, in some alternative implementations, the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved. It should also be noted that each block in the block diagram or flowchart, and the combination of blocks in the block diagram or flowchart, can be implemented by a dedicated hardware-based system that performs the specified functions or operations, or can be It is realized by a combination of dedicated hardware and computer instructions.
描述于本公开实施方式中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现,所描述的单元也可以设置在处理器中。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。The units involved in the embodiments described in the present disclosure can be implemented in software or hardware, and the described units can also be provided in a processor. Among them, the names of these units do not constitute a limitation on the unit itself under certain circumstances.
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开示例性实施方式的方法。Through the description of the foregoing embodiments, those skilled in the art can easily understand that the exemplary embodiments described herein can be implemented by software, or can be implemented by combining software with necessary hardware. Therefore, the technical solution according to the embodiments of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , Including several instructions to make a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) execute the method according to the exemplary embodiment of the present disclosure.
此外,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。In addition, the above-mentioned drawings are merely schematic illustrations of the processing included in the method according to the exemplary embodiment of the present disclosure, and are not intended for limitation. It is easy to understand that the processing shown in the above drawings does not indicate or limit the time sequence of these processings. In addition, it is easy to understand that these processes can be executed synchronously or asynchronously in multiple modules, for example.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施方式。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施方式仅被视为示例性的,本公开的真正范围和精神由权利要求指出。Those skilled in the art will easily think of other embodiments of the present disclosure after considering the description and practicing the invention disclosed herein. This application is intended to cover any variations, uses, or adaptive changes of the present disclosure, which follow the general principles of the present disclosure and include common knowledge or conventional technical means in the technical field not disclosed in the present disclosure . The description and the embodiments are only regarded as exemplary, and the true scope and spirit of the present disclosure are pointed out by the claims.
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。It should be understood that the present disclosure is not limited to the precise structure that has been described above and shown in the drawings, and various modifications and changes can be made without departing from its scope. The scope of the present disclosure is only limited by the appended claims.

Claims (40)

  1. 一种可移动物体的定位系统,其特征在于,包括:A positioning system for a movable object, characterized in that it comprises:
    可移动物体;Movable object
    定位装置,用于获取预设的参考位置的定位参数;Positioning device for obtaining positioning parameters of preset reference positions;
    测量装置,设于预设的基准位置,用于测量所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数;以及A measuring device, set at a preset reference position, for measuring the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position; and
    控制装置,用于根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系,并且基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。A control device for establishing a unified coordinate system based on the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position, and based on the unified Coordinate system for the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the positioning parameter of the reference position Calculation to determine the positioning parameters of the movable object.
  2. 根据权利要求1所述的系统,其特征在于,所述控制装置包括:The system according to claim 1, wherein the control device comprises:
    通信单元,用于接收所述定位装置发送的所述参考位置的定位参数,以及所述测量装置发送的所述可移动物体和所述基准位置之间的相对位置参数和所述参考位置和所述基准位置之间的相对位置参数;The communication unit is configured to receive the positioning parameter of the reference position sent by the positioning device, the relative position parameter between the movable object and the reference position sent by the measuring device, and the reference position and the reference position. The relative position parameters between the reference positions;
    计算单元,用于根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系,以确定所述可移动物体的定位参数。The calculation unit is configured to establish a unified coordinate system based on the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position, to determine the Positioning parameters of the moving object.
  3. 根据权利要求1或2所述的系统,其特征在于,所述根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系,以确定所述可移动物体的定位参数,包括:The system according to claim 1 or 2, characterized in that, according to the relative position parameter between the movable object and the reference position, and the relative position between the reference position and the reference position Parameters, establishing a unified coordinate system to determine the positioning parameters of the movable object, including:
    获取所述参考位置的定位参数对应的全局坐标系;Acquiring the global coordinate system corresponding to the positioning parameter of the reference position;
    根据所述基准位置建立局部坐标系;Establishing a local coordinate system according to the reference position;
    基于所述局部坐标系和所述全局坐标系建立统一坐标系,以确定所述可移动物体的定位参数。A unified coordinate system is established based on the local coordinate system and the global coordinate system to determine the positioning parameters of the movable object.
  4. 根据权利要求3所述的系统,其特征在于,所述基于所述局部坐标系和所述全局坐标系建立统一坐标系,以确定所述可移动物体的定位参数,包括:The system according to claim 3, wherein the establishing a unified coordinate system based on the local coordinate system and the global coordinate system to determine the positioning parameters of the movable object comprises:
    根据所述参考位置的定位参数,将所述参考位置和所述基准位置之间的所述相对位置参数从所述局部坐标系映射到所述全局坐标系中,得到所述基准位置的定位参数;According to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system to obtain the positioning parameter of the reference position ;
    根据所述基准位置的定位参数,将所述可移动物体和所述基准位置之间的所述相对位置参数从所述局部坐标系映射到所述全局坐标系中,得到所述可移动物体的定位参数。According to the positioning parameter of the reference position, the relative position parameter between the movable object and the reference position is mapped from the local coordinate system to the global coordinate system to obtain the position of the movable object Positioning parameters.
  5. 根据权利要求1所述的系统,其特征在于,所述测量装置,还用于实时测量所述可移动物体和所述基准位置之间的相对位置参数;The system according to claim 1, wherein the measuring device is further used for real-time measurement of relative position parameters between the movable object and the reference position;
    所述控制装置,还用于根据所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数,获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数,并基于所述最优相对位置参数计算所述可移动物体的定位参数。The control device is further configured to obtain the current position between the movable object and the reference position according to the relative position parameter between the movable object and the reference position at the previous time and the current time. The optimal relative position parameter at the moment, and the positioning parameter of the movable object is calculated based on the optimal relative position parameter.
  6. 根据权利要求5所述的系统,其特征在于,所述根据所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数,获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数,包括:The system according to claim 5, wherein the relative position parameters between the movable object and the reference position at the previous time and the current time are used to obtain the movable object and the current time. The optimal relative position parameters between the reference positions at the current moment include:
    对所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数进行滤波,以获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数。Filter the relative position parameters between the movable object and the reference position at the previous time and the current time to obtain the optimal relative position between the movable object and the reference position at the current time Positional parameters.
  7. 根据权利要求1所述的系统,其特征在于,所述系统包括N个测量装置,分别设置于N个预设的基准位置,其中,The system according to claim 1, wherein the system comprises N measuring devices, which are respectively arranged at N preset reference positions, wherein:
    第一测量装置设于第一基准位置,用于测量所述可移动物体的第一相对位置参数,以及所述参考位置相对于所述第一基准位置的相对位置参数;The first measuring device is set at a first reference position, and is used to measure the first relative position parameter of the movable object and the relative position parameter of the reference position with respect to the first reference position;
    第二至第N测量装置分别设于第二至第N基准位置,分别用于测量所述可移动物体的第二相对位置参数至第N相对位置参数;The second to Nth measuring devices are respectively set at the second to Nth reference positions, and are respectively used to measure the second relative position parameter to the Nth relative position parameter of the movable object;
    其中,N为不小于2的正整数,所述可移动物体的第i相对位置参数为:由第i测量装置测量的所述可移动物体相对于第i基准位置的相对位置参数,i为[1,N]内的任意整数;Wherein, N is a positive integer not less than 2, the i-th relative position parameter of the movable object is: the relative position parameter of the movable object relative to the i-th reference position measured by the i-th measuring device, i is [ 1,N] any integer;
    所述控制装置,用于根据所述参考位置相对于所述第一基准位置的所述相对位置参数,所述参考位置的定位参数,所述可移动物体的第一至第N相对位置参数中的至少一个相对位置参数,以及N个所述基准位置之间的位置关系进行计算,以确定所述可移动物体的定位参数。The control device is configured to use the relative position parameter of the reference position relative to the first reference position, the positioning parameter of the reference position, and the first to Nth relative position parameters of the movable object according to At least one relative position parameter of, and the position relationship between the N reference positions are calculated to determine the positioning parameter of the movable object.
  8. 根据权利要求1所述的系统,其特征在于,所述可移动物体设有反射组件,用于反射所述测量装置发射的光信号。The system according to claim 1, wherein the movable object is provided with a reflective component for reflecting the optical signal emitted by the measuring device.
  9. 根据权利要求8所述的系统,其特征在于,所述反射组件包括反射棱镜。The system of claim 8, wherein the reflective component includes a reflective prism.
  10. 根据权利要求1所述的系统,其特征在于,所述控制装置,还用于根据所述可移动物体的定位参数规划所述可移动物体的行进路线。The system according to claim 1, wherein the control device is further configured to plan the travel route of the movable object according to the positioning parameters of the movable object.
  11. 根据权利要求1至10任一项所述的系统,其特征在于,所述相对位置参数包括距离、角度和高程差中的至少一个。The system according to any one of claims 1 to 10, wherein the relative position parameter includes at least one of distance, angle, and elevation difference.
  12. 根据权利要求1至10任一项所述的系统,其特征在于,所述定位参数包括高斯坐标。The system according to any one of claims 1 to 10, wherein the positioning parameters include Gaussian coordinates.
  13. 根据权利要求1至10任一项所述的系统,其特征在于,所述测量装置包括全站仪。The system according to any one of claims 1 to 10, wherein the measuring device comprises a total station.
  14. 根据权利要求1至10任一项所述的系统,其特征在于,所述可移动物体包括无人飞行器、无人车和机器人中的至少一个。The system according to any one of claims 1 to 10, wherein the movable object includes at least one of an unmanned aerial vehicle, an unmanned vehicle, and a robot.
  15. 一种可移动物体的定位方法,应用于可移动物体的定位系统,其特征在于,所述方法包括:A positioning method of a movable object, which is applied to a positioning system of a movable object, characterized in that the method includes:
    获取预设的参考位置的定位参数;Obtain the positioning parameters of the preset reference position;
    测量可移动物体和预设的基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数;Measuring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position;
    根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系;Establish a unified coordinate system according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position;
    基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。Based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the reference position The positioning parameters are calculated to determine the positioning parameters of the movable object.
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系,包括:The method according to claim 15, characterized in that, according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position, Establish a unified coordinate system, including:
    获取所述参考位置的定位参数对应的全局坐标系;Acquiring the global coordinate system corresponding to the positioning parameter of the reference position;
    根据所述基准位置建立局部坐标系;Establishing a local coordinate system according to the reference position;
    基于所述局部坐标系和所述全局坐标系建立统一坐标系。A unified coordinate system is established based on the local coordinate system and the global coordinate system.
  17. 根据权利要求15或16所述的方法,其特征在于,所述基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数,包括:The method according to claim 15 or 16, characterized in that, based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the reference position and the The calculation of the relative position parameters between the reference positions and the positioning parameters of the reference positions to determine the positioning parameters of the movable object includes:
    根据所述参考位置的定位参数,将所述参考位置和所述基准位置之间的所述相对位置参数从所述局部坐标系映射到所述全局坐标系中,得到所述基准位置的定位参数;According to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system to obtain the positioning parameter of the reference position ;
    根据所述基准位置的定位参数,将所述可移动物体和所述基准位置之间的所述相对位置参数从所述局部坐标系映射到所述全局坐标系中,得到所述可移动物体的定位参数。According to the positioning parameter of the reference position, the relative position parameter between the movable object and the reference position is mapped from the local coordinate system to the global coordinate system to obtain the position of the movable object Positioning parameters.
  18. 根据权利要求15所述的方法,其特征在于,所述测量可移动物体和预设的基准位置之间的相对位置参数,包括:The method according to claim 15, wherein the measuring the relative position parameter between the movable object and the preset reference position comprises:
    实时测量所述可移动物体和所述基准位置之间的相对位置参数;Real-time measurement of the relative position parameter between the movable object and the reference position;
    所述方法还包括:The method also includes:
    根据所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数,获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数;Obtaining an optimal relative position parameter between the movable object and the reference position at the current time according to the relative position parameter between the movable object and the reference position at the previous time and the current time;
    所述基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数,包括:Said based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the Calculating the positioning parameters of the reference position to determine the positioning parameters of the movable object includes:
    基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述最优相对位 置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。Based on the unified coordinate system, the optimal relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the The positioning parameter of the reference position is calculated to determine the positioning parameter of the movable object.
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数,获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数,包括:The method according to claim 18, characterized in that, according to the relative position parameters between the movable object and the reference position at the previous time and the current time, the movable object and the reference position are obtained. The optimal relative position parameters between the reference positions at the current moment include:
    对所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数进行滤波,以获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数。Filter the relative position parameters between the movable object and the reference position at the previous time and the current time to obtain the optimal relative position between the movable object and the reference position at the current time Positional parameters.
  20. 根据权利要求15所述的方法,其特征在于,所述可移动物体的定位系统包括N个测量装置,分别设置于N个预设的基准位置,N为不小于2的正整数;The method according to claim 15, wherein the positioning system of the movable object comprises N measuring devices, which are respectively set at N preset reference positions, and N is a positive integer not less than 2;
    所述测量可移动物体和预设的基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,包括:The measuring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position includes:
    分别利用所述N个测量装置测量所述可移动物体的第一相对位置参数至第N相对位置参数,所述可移动物体的第i相对位置参数为:由第i测量装置测量的所述可移动物体相对于第i基准位置的相对位置参数,i为[1,N]内的任意整数;The N measuring devices are used to measure the first relative position parameter to the Nth relative position parameter of the movable object, and the i-th relative position parameter of the movable object is: the ith relative position parameter measured by the ith measuring device The relative position parameter of the moving object relative to the i-th reference position, i is any integer within [1,N];
    利用所述N个测量装置中的第一测量装置测量所述参考位置相对于第一基准位置的相对位置参数;Measuring the relative position parameter of the reference position relative to the first reference position by using a first measuring device among the N measuring devices;
    所述基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数,包括:Said based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the Calculating the positioning parameters of the reference position to determine the positioning parameters of the movable object includes:
    基于所述统一坐标系,对所述参考位置相对于所述第一基准位置的所述相对位置参数,以及所述参考位置的定位参数,所述可移动物体的第一至第N相对位置参数中的至少一个相对位置参数,以及N个所述基准位置之间的位置关系进行计算,以确定所述可移动物体的定位参数。Based on the unified coordinate system, the relative position parameters of the reference position relative to the first reference position, and the positioning parameters of the reference position, the first to Nth relative position parameters of the movable object At least one relative position parameter in and the position relationship between the N reference positions are calculated to determine the positioning parameter of the movable object.
  21. 根据权利要求20所述的方法,其特征在于,所述测量装置包括全站仪。The method of claim 20, wherein the measurement device comprises a total station.
  22. 根据权利要求21所述的方法,其特征在于,所述可移动物体设有反射组件;The method according to claim 21, wherein the movable object is provided with a reflective component;
    所述测量装置通过向所述反射组件发射光信号,并接收由所述反射组件反射的光信号,来测量所述可移动物体的相对位置参数。The measuring device measures the relative position parameter of the movable object by transmitting an optical signal to the reflecting component and receiving the optical signal reflected by the reflecting component.
  23. 根据权利要求22所述的方法,其特征在于,所述反射组件包括反射棱镜。The method of claim 22, wherein the reflective component comprises a reflective prism.
  24. 根据权利要求15所述的方法,其特征在于,在确定所述可移动物体的定位参数后,所述方法还包括:The method according to claim 15, wherein after determining the positioning parameters of the movable object, the method further comprises:
    根据所述可移动物体的定位参数规划所述可移动物体的行进路线。Planning the travel route of the movable object according to the positioning parameters of the movable object.
  25. 根据权利要求15至24任一项所述的方法,其特征在于,所述相对位置参数包括距离、角度和高程差中的至少一个。The method according to any one of claims 15 to 24, wherein the relative position parameter includes at least one of distance, angle, and elevation difference.
  26. 根据权利要求15至24任一项所述的方法,其特征在于,所述定位参数包括 高斯坐标。The method according to any one of claims 15 to 24, wherein the positioning parameters include Gaussian coordinates.
  27. 根据权利要求15至24任一项所述的方法,其特征在于,所述可移动物体包括无人飞行器、无人车和机器人中的至少一个。The method according to any one of claims 15 to 24, wherein the movable object includes at least one of an unmanned aerial vehicle, an unmanned vehicle, and a robot.
  28. 一种可移动物体的定位方法,应用于可移动物体,其特征在于,所述方法包括:A method for positioning a movable object, applied to a movable object, characterized in that the method includes:
    获取预设的参考位置的定位参数;Obtain the positioning parameters of the preset reference position;
    获取所述可移动物体和预设的基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数;Acquiring a relative position parameter between the movable object and a preset reference position, and a relative position parameter between the reference position and the reference position;
    根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系;Establish a unified coordinate system according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position;
    基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。Based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the reference position The positioning parameters are calculated to determine the positioning parameters of the movable object.
  29. 根据权利要求28所述的方法,其特征在于,所述根据所述可移动物体和所述基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,建立统一坐标系,包括:28. The method according to claim 28, wherein, according to the relative position parameter between the movable object and the reference position, and the relative position parameter between the reference position and the reference position, Establish a unified coordinate system, including:
    获取所述参考位置的定位参数对应的全局坐标系;Acquiring the global coordinate system corresponding to the positioning parameter of the reference position;
    根据所述基准位置建立局部坐标系;Establishing a local coordinate system according to the reference position;
    基于所述局部坐标系和所述全局坐标系建立统一坐标系。A unified coordinate system is established based on the local coordinate system and the global coordinate system.
  30. 根据权利要求28或29所述的方法,其特征在于,所述基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数,包括:The method according to claim 28 or 29, characterized in that, based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the reference position and the reference position The calculation of the relative position parameters between the reference positions and the positioning parameters of the reference positions to determine the positioning parameters of the movable object includes:
    根据所述参考位置的定位参数,将所述参考位置和所述基准位置之间的所述相对位置参数从所述局部坐标系映射到所述全局坐标系中,得到所述基准位置的定位参数;According to the positioning parameter of the reference position, the relative position parameter between the reference position and the reference position is mapped from the local coordinate system to the global coordinate system to obtain the positioning parameter of the reference position ;
    根据所述基准位置的定位参数,将所述可移动物体和所述基准位置之间的所述相对位置参数从所述局部坐标系映射到所述全局坐标系中,得到所述可移动物体的定位参数。According to the positioning parameter of the reference position, the relative position parameter between the movable object and the reference position is mapped from the local coordinate system to the global coordinate system to obtain the position of the movable object Positioning parameters.
  31. 根据权利要求28所述的方法,其特征在于,所述获取所述可移动物体和预设的基准位置之间的相对位置参数,包括:The method according to claim 28, wherein said acquiring a relative position parameter between the movable object and a preset reference position comprises:
    实时获取所述可移动物体和所述基准位置之间的相对位置参数;Acquiring the relative position parameter between the movable object and the reference position in real time;
    根据所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数,获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数;Obtaining an optimal relative position parameter between the movable object and the reference position at the current time according to the relative position parameter between the movable object and the reference position at the previous time and the current time;
    所述基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置 的定位参数进行计算,以确定所述可移动物体的定位参数,包括:Said based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the Calculating the positioning parameters of the reference position to determine the positioning parameters of the movable object includes:
    基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述最优相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数。Based on the unified coordinate system, the optimal relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the The positioning parameter of the reference position is calculated to determine the positioning parameter of the movable object.
  32. 根据权利要求31所述的方法,其特征在于,所述根据所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数,获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数,包括:The method according to claim 31, characterized in that, according to the relative position parameters between the movable object and the reference position at the previous time and the current time, the movable object and the reference position are obtained. The optimal relative position parameters between the reference positions at the current moment include:
    对所述可移动物体和所述基准位置之间在前一时刻和当前时刻的所述相对位置参数进行滤波,以获取所述可移动物体和所述基准位置之间在当前时刻的最优相对位置参数。Filter the relative position parameters between the movable object and the reference position at the previous time and the current time to obtain the optimal relative position between the movable object and the reference position at the current time Positional parameters.
  33. 根据权利要求28所述的方法,其特征在于,所述基准位置包括N个预设的基准位置,N为不小于2的正整数;The method according to claim 28, wherein the reference position comprises N preset reference positions, and N is a positive integer not less than 2;
    所述获取所述可移动物体和预设的基准位置之间的相对位置参数,以及所述参考位置和所述基准位置之间的相对位置参数,包括:The acquiring the relative position parameter between the movable object and the preset reference position, and the relative position parameter between the reference position and the reference position includes:
    获取所述可移动物体的第一相对位置参数至第N相对位置参数,所述可移动物体的第i相对位置参数为:所述可移动物体相对于第i基准位置的相对位置参数,i为[1,N]内的任意整数;Acquire the first relative position parameter to the Nth relative position parameter of the movable object, the i-th relative position parameter of the movable object is: the relative position parameter of the movable object with respect to the i-th reference position, i is Any integer within [1,N];
    获取所述参考位置相对于第一基准位置的相对位置参数;Acquiring a relative position parameter of the reference position relative to the first reference position;
    所述基于所述统一坐标系,对所述可移动物体和所述基准位置之间的所述相对位置参数,所述参考位置和所述基准位置之间的所述相对位置参数,以及所述参考位置的定位参数进行计算,以确定所述可移动物体的定位参数,包括:Said based on the unified coordinate system, the relative position parameter between the movable object and the reference position, the relative position parameter between the reference position and the reference position, and the Calculating the positioning parameters of the reference position to determine the positioning parameters of the movable object includes:
    基于所述统一坐标系,对所述参考位置相对于所述第一基准位置的所述相对位置参数,以及所述参考位置的定位参数,所述可移动物体的第一至第N相对位置参数中的至少一个相对位置参数,以及N个所述基准位置之间的位置关系进行计算,以确定所述可移动物体的定位参数。Based on the unified coordinate system, the relative position parameters of the reference position relative to the first reference position, and the positioning parameters of the reference position, the first to Nth relative position parameters of the movable object At least one relative position parameter in and the position relationship between the N reference positions are calculated to determine the positioning parameter of the movable object.
  34. 根据权利要求28所述的方法,其特征在于,在确定所述可移动物体的定位参数后,所述方法还包括:The method according to claim 28, wherein after determining the positioning parameters of the movable object, the method further comprises:
    根据所述可移动物体的定位参数规划所述可移动物体的行进路线。Planning the travel route of the movable object according to the positioning parameters of the movable object.
  35. 根据权利要求28至34任一项所述的方法,其特征在于,所述相对位置参数包括距离、角度和高程差中的至少一个。The method according to any one of claims 28 to 34, wherein the relative position parameter includes at least one of distance, angle, and elevation difference.
  36. 根据权利要求28至34任一项所述的方法,其特征在于,所述定位参数包括高斯坐标。The method according to any one of claims 28 to 34, wherein the positioning parameters include Gaussian coordinates.
  37. 根据权利要求28至34任一项所述的方法,其特征在于,所述可移动物体包括无人飞行器、无人车和机器人中的至少一个。The method according to any one of claims 28 to 34, wherein the movable object includes at least one of an unmanned aerial vehicle, an unmanned vehicle, and a robot.
  38. 一种可移动物体,其特征在于,包括:A movable object, characterized in that it comprises:
    机身;body;
    动力系统;以及Power system; and
    控制装置,设于所述机身;The control device is located in the body;
    所述控制装置通过执行如权利要求28至37任一项所述的可移动物体的定位方法,以对所述可移动物体进行定位。The control device executes the movable object positioning method according to any one of claims 28 to 37 to position the movable object.
  39. 根据权利要求38所述的可移动物体,其特征在于,所述可移动物体包括以下中的至少一种:无人飞行器、无人车或机器人。The movable object according to claim 38, wherein the movable object comprises at least one of the following: an unmanned aerial vehicle, an unmanned vehicle, or a robot.
  40. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求28至37任一项所述的可移动物体的定位方法。A computer-readable storage medium with a computer program stored thereon, wherein the computer program implements the method for positioning a movable object according to any one of claims 28 to 37 when the computer program is executed by a processor.
PCT/CN2019/101817 2019-08-21 2019-08-21 Positioning system and method for movable object, movable object, and storage medium WO2021031158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/101817 WO2021031158A1 (en) 2019-08-21 2019-08-21 Positioning system and method for movable object, movable object, and storage medium
CN201980039139.8A CN112334790A (en) 2019-08-21 2019-08-21 Positioning system and positioning method for movable object, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101817 WO2021031158A1 (en) 2019-08-21 2019-08-21 Positioning system and method for movable object, movable object, and storage medium

Publications (1)

Publication Number Publication Date
WO2021031158A1 true WO2021031158A1 (en) 2021-02-25

Family

ID=74319821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101817 WO2021031158A1 (en) 2019-08-21 2019-08-21 Positioning system and method for movable object, movable object, and storage medium

Country Status (2)

Country Link
CN (1) CN112334790A (en)
WO (1) WO2021031158A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965042B (en) * 2021-03-01 2022-04-26 沃行科技(南京)有限公司 Unmanned mine truck driving positioning method based on overhead contact network
CN114061573B (en) * 2021-11-16 2024-03-22 中国人民解放军陆军工程大学 Ground unmanned vehicle formation positioning device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316904A (en) * 2014-08-19 2015-01-28 营口瑞华高新科技有限公司 High-precision positioning method for wireless mobile terminal at mine tunnel
CN205563277U (en) * 2016-02-03 2016-09-07 华南农业大学 Evaluation system based on compass positioning system is to flying to control hand flight quality
CN108012324A (en) * 2016-10-26 2018-05-08 华为技术有限公司 A kind of method for obtaining position relationship and method, equipment and the system looked for something
CN108873934A (en) * 2018-07-04 2018-11-23 溧阳汉和智能装备科技有限公司 A kind of flight course planning of unmanned plane and calibration method and flight course control system
CN109782225A (en) * 2019-01-18 2019-05-21 杭州微萤科技有限公司 A kind of localization method of base station coordinates
CN109883317A (en) * 2019-03-06 2019-06-14 株洲太昌电子信息技术股份有限公司 A kind of railroad curve mapping method based on satellite positioning
US20190219393A1 (en) * 2018-01-12 2019-07-18 Topcon Corporation Three-dimensional surveying device and three-dimensional surveying method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933852B2 (en) * 2006-07-07 2012-05-16 清水建設株式会社 Surveying system using GPS
RU2419808C1 (en) * 2007-05-24 2011-05-27 Теле Атлас Б.В. Positioning device, method and program with absolute and relative positioning modes
TWI357493B (en) * 2007-10-12 2012-02-01 Grt Tech Co Ltd Augmented navigation system and method of a moving
EP2511781A1 (en) * 2011-04-14 2012-10-17 Hexagon Technology Center GmbH Method and system for controlling an unmanned aircraft
CN106226803A (en) * 2016-07-18 2016-12-14 深圳市华信天线技术有限公司 Localization method, device and unmanned plane
JP6813427B2 (en) * 2016-08-31 2021-01-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Positioning systems, positioning methods, and mobile robots
CN108279003A (en) * 2018-02-01 2018-07-13 福州大学 It is a kind of based on the unmanned plane high accuracy positioning cruising inspection system used suitable for substation
CN109099901B (en) * 2018-06-26 2021-09-24 中科微易(苏州)智能科技有限公司 Full-automatic road roller positioning method based on multi-source data fusion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316904A (en) * 2014-08-19 2015-01-28 营口瑞华高新科技有限公司 High-precision positioning method for wireless mobile terminal at mine tunnel
CN205563277U (en) * 2016-02-03 2016-09-07 华南农业大学 Evaluation system based on compass positioning system is to flying to control hand flight quality
CN108012324A (en) * 2016-10-26 2018-05-08 华为技术有限公司 A kind of method for obtaining position relationship and method, equipment and the system looked for something
US20190219393A1 (en) * 2018-01-12 2019-07-18 Topcon Corporation Three-dimensional surveying device and three-dimensional surveying method
CN108873934A (en) * 2018-07-04 2018-11-23 溧阳汉和智能装备科技有限公司 A kind of flight course planning of unmanned plane and calibration method and flight course control system
CN109782225A (en) * 2019-01-18 2019-05-21 杭州微萤科技有限公司 A kind of localization method of base station coordinates
CN109883317A (en) * 2019-03-06 2019-06-14 株洲太昌电子信息技术股份有限公司 A kind of railroad curve mapping method based on satellite positioning

Also Published As

Publication number Publication date
CN112334790A (en) 2021-02-05

Similar Documents

Publication Publication Date Title
Wen et al. GNSS NLOS exclusion based on dynamic object detection using LiDAR point cloud
US11808863B2 (en) Methods and systems for location determination
JP7328282B2 (en) Method, device, device and storage medium for positioning vehicle
JP2004212400A (en) Position and direction predicting system for robot
RU2431803C1 (en) Method of automated detection of navigation topogeodetic parameters
WO2021031158A1 (en) Positioning system and method for movable object, movable object, and storage medium
WO2011146011A1 (en) Determining the geographic locaton of a portable electronic device
CN110823211A (en) Multi-sensor map construction method, device and chip based on visual SLAM
EP4109137A1 (en) Capturing environmental scans using automated transporter robot
CN110988949A (en) Positioning method, positioning device, computer readable storage medium and mobile device
CN115166791A (en) Method and device for calibrating course angle of double GNSS (global navigation satellite system) antennas of intelligent driving vehicle
US10462610B1 (en) Low latency client location estimation with dynamic integration of server output
Wang et al. Optimized bias estimation model for 3-D radar considering platform attitude errors
JP4794416B2 (en) Target location system
Zhang et al. 3D digital track map-based GNSS NLOS signal analytical identification method
US11500110B2 (en) Localization using bearing from environmental features
Sun et al. Underwater asynchronous navigation using single beacon based on the phase difference
US11391848B2 (en) Localization using doppler shifts of reflected signals
RU2617147C1 (en) Method for initial orienting gyroscopic navigation system for land mobiles
US20220341751A1 (en) Systems and methods for multi-sensor mapping using a single device that can operate in multiple modes
US20230168387A1 (en) Measurement apparatus, measurement method and program
Zhang et al. Large-area super-resolution 3D digital maps for indoor and outdoor wireless channel modeling
KR102036080B1 (en) Portable positioning device and method for operating portable positioning device
US20210263531A1 (en) Mapping and simultaneous localisation of an object in an interior environment
Guo et al. Relative localization for quadcopters using ultrawideband sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942281

Country of ref document: EP

Kind code of ref document: A1