WO2021029319A1 - Terminal device and method - Google Patents

Terminal device and method Download PDF

Info

Publication number
WO2021029319A1
WO2021029319A1 PCT/JP2020/030176 JP2020030176W WO2021029319A1 WO 2021029319 A1 WO2021029319 A1 WO 2021029319A1 JP 2020030176 W JP2020030176 W JP 2020030176W WO 2021029319 A1 WO2021029319 A1 WO 2021029319A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
pucch resource
resource set
value
terminal device
Prior art date
Application number
PCT/JP2020/030176
Other languages
French (fr)
Japanese (ja)
Inventor
渉 大内
李 泰雨
智造 野上
中嶋 大一郎
翔一 鈴木
友樹 吉村
会発 林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2021029319A1 publication Critical patent/WO2021029319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to terminal devices and methods.
  • the present application claims priority with respect to Japanese Patent Application No. 2019-147896 filed in Japan on August 9, 2019, the contents of which are incorporated herein by reference.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP Third Generation Partnership Project
  • the base station device may be referred to as an eNodeB (evolved NodeB), and the terminal device may be referred to as a UE (User Equipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape.
  • One base station device may manage one or more serving cells.
  • NR New Radio
  • IMT International Mobile Telecommunication
  • ITU International Telecommunication Union
  • Non-Patent Document 1 NR is required to meet the requirements assuming three scenarios of eMBB (enhanced Mobile BroadBand), mMTC (massive Machine Type Communication), and URLLC (Ultra Reliable and Low Latency Communication) within the framework of a single technology. There is.
  • NR-U (NR-Unlicensed) is a wireless communication system and / or wireless communication system that applies NR wireless access technology (NR-RAT: NR Radio Access Technology) to unlicensed bands (Unlicensed spectrum).
  • NR-RAT NR Radio Access Technology
  • One aspect of the present invention provides a terminal device for efficient communication and a method used for the terminal device.
  • the first aspect of the present invention is a terminal device, which is based on a receiving unit that receives RRC information related to a first PUCCH resource set and a second PUCCH resource set, and the RRC information. If the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is the same value, the transmission unit includes a transmission unit for transmitting the PUCCH. The unit determines whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the DCI format.
  • a second aspect of the present invention is a method used for a terminal device, which includes a step of receiving RRC information related to a first PUCCH resource set and a second PUCCH resource set, and the RRC information. Based on this, if the step of transmitting the PUCCH and the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set are the same value, the DCI format is used. A step of determining whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information included is included.
  • the terminal device can efficiently communicate.
  • the base station device can efficiently communicate.
  • This is an example showing the relationship between the N slot symb , the SCS setting ⁇ , and the CP setting according to one aspect of the present embodiment.
  • It is the schematic which shows an example of the resource grid in the subframe which concerns on one aspect of this Embodiment.
  • It is a figure which shows an example of the relationship between the PUCCH format and the length N PUCCH symb of the PUCCH format which concerns on one aspect of this embodiment.
  • It is a figure which shows an example of the parameter included in PUCCH-Config and PUCCH-FormatConfig which concerns on one aspect of this Embodiment.
  • CAP channel access procedure
  • CAC channel access priority class
  • CWAP CW adjustment procedure
  • PUCCH starting position field PSP field
  • PUCCH transmission start position time domain start position, start position in a slot
  • FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment.
  • the wireless communication system includes terminal devices 1A to 1C and a base station device 3.
  • the terminal devices 1A to 1C may also be referred to as the terminal device 1.
  • the base station device 3 may include a communication device, a node, an NB (NodeB), an eNB, a gNB, a network device (core network, a gateway), and a part or all of an access point.
  • the terminal device 1 may be referred to as a UE (User equipment).
  • the eNB is a node that provides EUTRA user plane and control plane protocol termination for one or more terminal devices 1, and is particularly connected to a fifth generation core network (5GC) via an NG (Next Generation) interface.
  • the eNB to be generated is referred to as ng-eNB.
  • the gNB is a node that provides NR user plane and control plane protocol termination toward one or more terminal devices 1, and is connected to 5GC via an NG interface.
  • the base station device 3 may constitute one or both of the MCG (Master Cell Group) and the SCG (Secondary Cell Group).
  • An MCG is a group of serving cells composed of at least a PCell (PrimaryCell).
  • the SCG is a group of serving cells including at least PSCell (Primary Secondary Cell).
  • the PCell may be a serving cell given based on the initial connection.
  • the MCG may be configured to include one or more SCells (Secondary Cells).
  • the SCG may be configured to include one or more SCells.
  • PCell and PSCell may be referred to as SpCell (Special Cell). It may be referred to as carrier aggregation to construct one CG by using one SpCell and one or a plurality of SCells and perform communication.
  • the MCG may consist of one or more serving cells on the EUTRA.
  • the SCG may be composed of one or more serving cells on the NR.
  • the MCG may be composed of one or more serving cells on the NR.
  • the SCG may be composed of one or more serving cells on the EUTRA.
  • the MCG and SCG may be composed of one or more serving cells of either EUTRA or NR.
  • EUTRA may mean that EUTRA RAT (Radio Access Technology) has been applied.
  • NR may mean that NR RAT has been applied.
  • the MCG may consist of one or more serving cells on the EUTRA. Further, the SCG may be composed of one or more serving cells on the NR-U. Further, the MCG may be composed of one or more serving cells on the NR. Further, the SCG may be composed of one or more serving cells on the NR-U. Further, the MCG may be composed of one or more serving cells of either EUTRA or NR or NR-U. Further, the SCG may be composed of one or more serving cells of either EUTRA or NR or NR-U. The purpose of the NR-U is to perform NR communication / access / service in a frequency band (operating band) that does not require a frequency license.
  • a frequency band operating band
  • wireless LAN Wireless Local Area Network, Radio LAN
  • WAS Wireless Access Systems
  • IEEE802.11 Wireless Access
  • WiFi Wireless Access
  • FWA Wireless
  • NR aims to provide NR-type communication / access / service in a frequency band that requires a frequency license.
  • LTE is intended to provide LTE communication / access / service in a frequency band that requires a frequency license.
  • LAA aims to perform LTE communication / access / service in a frequency band that does not require a frequency license.
  • the wireless carrier may provide commercial services in the frequency band assigned by the frequency license.
  • the operating bands (carrier frequency and frequency bandwidth) applied to each of EUTRA, NR, and NR-U may be individually defined (specified).
  • the MCG may be configured by the first base station device.
  • the SCG may be configured by a second base station device. That is, the PCell may be configured by the first base station apparatus.
  • the PSCell may be configured by a second base station device.
  • the first base station apparatus and the second base station apparatus may be the same as the base station apparatus 3, respectively.
  • At least OFDM Orthogonal Frequency Division Multiplex
  • the OFDM symbol is a unit of the OFDM time domain.
  • the OFDM symbol comprises at least one or more subcarriers.
  • the OFDM symbol is converted into a time-continuous signal in the baseband signal generation.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplex
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplex
  • DFT-s-OFDM may be given by applying Transform precoding to CP-OFDM.
  • the SCS setting ⁇ may be set to any of 0, 1, 2, 3, 4, and / or 5.
  • the SCS setting ⁇ may be given by the parameters of the upper layer. That is, a value of ⁇ may be set for each BWP (for each downlink BWP, for each uplink BWP) regardless of the downlink and / or the uplink.
  • the time unit T c is used to represent the length of the time domain.
  • ⁇ f max may be the maximum value of SCS supported in the wireless communication system according to one embodiment of the present embodiment.
  • ⁇ f ref may be 15 kHz.
  • N f and ref may be 2048.
  • the constant ⁇ may be a value indicating the relationship between the reference SCS and T c .
  • the constant ⁇ may be used for the length of the subframe.
  • the number of slots contained in the subframe may be given, at least based on the constant ⁇ .
  • ⁇ f ref is a reference SCS, and N f and ref are values corresponding to the reference SCS.
  • the transmission of the signal on the downlink and / or the transmission of the signal on the uplink is composed of a frame of 10 ms.
  • the frame is composed of 10 subframes.
  • the length of the subframe is 1 ms.
  • the frame length may be given regardless of SCS ⁇ f. That is, the frame setting may be given regardless of the value of ⁇ .
  • the length of the subframe may be given regardless of SCS ⁇ f. That is, the subframe setting may be given regardless of ⁇ .
  • the number and index of slots contained in one subframe may be given.
  • the slot number n mu s is from 0 to N subframe in a subframe may be given in ascending order in the range of mu slot -1.
  • the number and index of slots contained in one frame may be given to the SCS setting ⁇ .
  • the slot numbers n ⁇ s and f may be given in ascending order in the range of 0 to N frame and ⁇ slot -1 in the frame .
  • One slot may contain consecutive N slot symbs of OFDM symbols.
  • the N slot symb may be given at least based on some or all of the CP (Cyclic Prefix) settings.
  • the CP setting may be given at least based on the parameters of the upper layer.
  • CP settings may be given at least based on dedicated RRC signaling.
  • the slot number may also be referred to as a slot index.
  • FIG. 2 is an example showing the relationship between the N slot symb , the SCS setting ⁇ , and the CP setting according to one aspect of the present embodiment.
  • NCP normal CP
  • ECP extended CP
  • An antenna port is defined by the fact that the channel through which a symbol is transmitted in one antenna port can be estimated from the channel in which another symbol is transmitted in the same antenna port. If the large scale property of the channel on which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port, the two antenna ports are QCL (Quasi Co-Located). ) May be referred to as.
  • Large scale characteristics may include at least the long interval characteristics of the channel. Large-scale characteristics are delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average gain (average gain), average delay (average delay), and beam parameters (spatial Rx parameters). It may include at least some or all.
  • the fact that the first antenna port and the second antenna port are QCL with respect to the beam parameters means that the receiving beam assumed by the receiving side with respect to the first antenna port and the receiving beam assumed by the receiving side with respect to the second antenna port. May be the same.
  • the fact that the first antenna port and the second antenna port are QCL in terms of beam parameters means that the transmitting beam assumed by the receiving side with respect to the first antenna port and the transmitting beam assumed by the receiving side with respect to the second antenna port. May be the same.
  • the terminal device 1 assumes that the two antenna ports are QCLs when the large-scale characteristics of the channel through which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port. May be done.
  • the fact that the two antenna ports are QCLs may mean that the two antenna ports are QCLs.
  • N size, ⁇ grid, x N RB sc subcarriers and N subframe
  • a resource grid defined by mu symb OFDM symbols is given.
  • N size, ⁇ grid, x may indicate the number of resource blocks given for the SCS setting ⁇ for carrier x.
  • N size, ⁇ grid, x may indicate the bandwidth of the carrier.
  • N size, ⁇ grid, and x may correspond to the value of the parameter CarrierBandwith of the upper layer.
  • the carrier x may indicate either a downlink carrier or an uplink carrier. That is, x may be either "DL" or "UL".
  • NRB sc may indicate the number of subcarriers contained in one resource block. NRB sc may be 12.
  • At least one resource grid may be provided for each antenna port p and / or for each SCS setting ⁇ and / or for each transmission direction setting.
  • the transmission direction includes at least a downlink (DL: DownLink) and an uplink (UL: UpLink).
  • DL: DownLink downlink
  • UL: UpLink uplink
  • a set of parameters including at least a part or all of the antenna port p, the SCS setting ⁇ , and the setting of the transmission direction may also be referred to as a first radio parameter set. That is, one resource grid may be given for each first set of radio parameters.
  • the radio parameter set may be one or more sets including one or more radio parameters (physical layer parameters or upper layer parameters).
  • the carrier included in the serving cell is referred to as a downlink carrier (or downlink component carrier).
  • the carrier included in the serving cell is referred to as an uplink carrier (uplink component carrier).
  • the downlink component carrier and the uplink component carrier may be collectively referred to as a component carrier (or carrier).
  • the type of serving cell may be any of PCell, PSCell, and SCell.
  • the PCell may be a serving cell that is identified at least based on the cell ID (physical layer cell ID, physical cell ID) acquired from the SSB (Synchronization signal / Physical broadcast channel block) in the initial connection.
  • SCell may be a serving cell used in carrier aggregation.
  • the SCell may be a serving cell given at least based on dedicated RRC signaling.
  • Each element in the resource grid given for each first radio parameter set may be referred to as a resource element (RE).
  • the resource element is specified by the frequency domain index k sc and the time domain index l sym .
  • resource elements are identified by a frequency domain index k sc and a time domain index l sym .
  • the resource element specified by the frequency domain index k sc and the time domain index l sym may also be referred to as a resource element (k sc , l sym ).
  • the frequency domain index k sc indicates any value from 0 to N ⁇ RB N RB sc -1.
  • N ⁇ RB may be the number of resource blocks given for the SCS setting ⁇ .
  • N ⁇ RB may be N size, ⁇ grid, x .
  • the frequency domain index k sc may correspond to the subcarrier index k sc .
  • the time domain index l sym may correspond to the OFDM symbol index l sym .
  • One or more resource elements may correspond to physical resources and complex values (complex value modulation symbols). Even if one or more information bits (control information, transport blocks, information bits for upper layer parameters) are mapped to each of one or more resource elements corresponding to physical resources and / or complex values. Good.
  • FIG. 3 is a schematic view showing an example of a resource grid in the subframe according to one aspect of the present embodiment.
  • the horizontal axis is the time domain index l sym
  • the vertical axis is the frequency domain index k sc .
  • the frequency domain of the resource grid contains N ⁇ RB N RB sc subcarriers.
  • the time domain of the resource grid may contain 14.2 ⁇ OFDM symbols.
  • One resource block is configured to include N RB sc subcarriers.
  • the time domain of the resource block may correspond to a 1 OFDM symbol.
  • the time domain of the resource block may correspond to 14 OFDM symbols.
  • the time domain of the resource block may correspond to one or more slots.
  • the time domain of the resource block may correspond to one subframe.
  • the terminal device 1 may be instructed to perform transmission / reception using only a subset of the resource grid.
  • a subset of the resource grid also referred to as BWP, may be given based on at least some or all of the upper layer parameters and / or DCI.
  • BWP may also be referred to as CBP (Carrier Bandwidth Part).
  • CBP Carrier Bandwidth Part
  • the terminal device 1 may not be instructed to perform transmission / reception using the entire set of resource grids.
  • the terminal device 1 may be instructed to perform transmission / reception using some frequency resources in the resource grid.
  • One BWP may be composed of a plurality of resource blocks in the frequency domain.
  • One BWP may be composed of a plurality of continuous resource blocks in the frequency domain.
  • the BWP set for the downlink carrier may also be referred to as a downlink BWP.
  • the BWP set for the uplink carrier may also be referred to as an uplink BWP.
  • the BWP may be a subset of the carrier's band (a subset of the frequency domain in the carrier).
  • One or more downlink BWPs may be set for each of the serving cells.
  • One or more uplink BWPs may be set for each of the serving cells.
  • one downlink BWP may be set as the active downlink BWP.
  • the downlink BWP switch may be used to deactivate one active downlink BWP and activate an inactive downlink BWP other than the one active downlink BWP.
  • the switching of the downlink BWP may be controlled by the BWP field included in the downlink control information.
  • the switching of the downlink BWP may be controlled based on the parameters of the upper layer.
  • DL-SCH may be received in the active downlink BWP.
  • PDCCH may be monitored in the active downlink BWP.
  • PDSCH may be received in the active downlink BWP.
  • DL-SCH may not be received in the inactive downlink BWP.
  • the PDCCH does not have to be monitored in the inactive downlink BWP.
  • the CSI for inactive downlink BWP does not have to be reported.
  • two or more downlink BWPs need not be set as the active downlink BWP.
  • one uplink BWP may be set as the active uplink BWP.
  • the uplink BWP switch is used to deactivate one active uplink BWP and activate an inactive uplink BWP other than the one active uplink BWP.
  • the switching of the uplink BWP may be controlled by the BWP field included in the downlink control information. Uplink BWP switching may be controlled based on upper layer parameters.
  • UL-SCH may be transmitted in the active uplink BWP.
  • PUCCH may be transmitted in the active uplink BWP.
  • PRACH may be transmitted in the active uplink BWP.
  • SRS may be transmitted in the active uplink BWP.
  • UL-SCH does not have to be transmitted in the inactive uplink BWP.
  • PUCCH may not be transmitted.
  • PRACH may not be transmitted.
  • SRS does not have to be transmitted.
  • uplink BWPs set for one serving cell two or more uplink BWPs need not be set as active uplink BWPs. That is, for the serving cell containing the uplink BWP, only one active uplink BWP is required.
  • the parameters of the upper layer are the parameters included in the signal of the upper layer.
  • the upper layer signal may be RRC (Radio Resource Control) signaling or MAC CE (Medium Access Control Control Element).
  • the signal of the upper layer may be a signal of the RRC layer or a signal of the MAC layer.
  • the signal of the upper layer may be a signal of a layer higher than the physical layer.
  • the upper layer parameter given by the signal of the RRC layer may be notified from the base station device 3 to the terminal device 1 and set.
  • the upper layer parameters given by the signals of the RRC layer may be referred to as RRC parameters or RRC information elements (IE).
  • the signal of the upper layer may be common RRC signaling.
  • the common RRC signaling may include at least some or all of the following features C1 to C3. C1) BCCH logical channel, or C2) mapped to CCCH logical channel C3) Mapped to PBCH containing at least the ReconfigurationWithSync information element
  • the ReconfigurationWithSync information element may include information indicating settings commonly used in the serving cell.
  • the settings commonly used in the serving cell may include at least the PRACH setting.
  • the PRACH setting may indicate at least one or more random access preamble indexes.
  • the PRACH setting may indicate at least the PRACH time / frequency resources.
  • the common RRC signaling may include at least the common RRC parameters.
  • the common RRC parameter may be a Cell-specific parameter commonly used within the serving cell.
  • the signal of the upper layer may be dedicated RRC signaling.
  • Dedicated RRC signaling may include at least some or all of the following features D1 to D2.
  • MIB Master Information Block
  • SIB System Information Block
  • upper layer messages that are mapped to DCCH logical channels and that include at least the ReconnectionWithSync information element may be included in the common RRC signaling. Further, the upper layer message that is mapped to the DCCH logical channel and does not include the ReconnectionWithSync information element may be included in the dedicated RRC signaling.
  • the MIB and SIB may be collectively referred to as system information.
  • the upper layer parameter including one or more upper layer parameters may be referred to as an information element (IE).
  • IE information element
  • one or more upper layer parameters and / or upper layer parameters including one or more IEs and / or IEs include messages (upper layer messages, RRC messages), information blocks (IB), and system information. May be referred to.
  • the SIB may at least indicate the time index of the SSB.
  • the SIB may include at least information related to the PRACH resource.
  • the SIB may contain at least information related to the initial connection settings.
  • the ReconfigurationWithSync information element may include at least information related to the PRACH resource.
  • the ReconnectionWithSync information element may include at least information related to the initial connection settings.
  • Dedicated RRC signaling may include at least dedicated RRC parameters.
  • the dedicated RRC parameter may be a (UE-specific) parameter dedicated to the terminal device 1.
  • Dedicated RRC signaling may include at least common RRC parameters.
  • the common RRC parameter and the dedicated RRC parameter may also be referred to as upper layer parameters.
  • the uplink physical channel may correspond to a set of resource elements that carry information that occurs in the upper layers.
  • the uplink physical channel is a physical channel used in the uplink carrier. In the wireless communication system according to one aspect of the present embodiment, at least some or all of the following uplink physical channels are used.
  • ⁇ PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the PUCCH may be used to transmit uplink control information (UCI).
  • the uplink control information includes a part or all of HARQ-ACK (Hybrid Automatic Repeat request ACK knowledgement) information corresponding to the channel state information (CSI), scheduling request (SR), and transport block (TB).
  • CSI channel state information
  • SR scheduling request
  • TB transport block
  • the TB may be referred to as MAC PDU (Medium Access Control Protocol Data Unit), DL-SCH (Downlink-Shared Channel), or PDSCH (Physical Downlink Shared Channel).
  • MAC PDU Medium Access Control Protocol Data Unit
  • DL-SCH Downlink-Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • One or more types of uplink control information may be multiplexed on the PUCCH.
  • the multiplexed PUCCH may be transmitted. That is, a plurality of HARQ-ACKs may be multiplexed, a plurality of CSIs may be multiplexed, a plurality of SRs may be multiplexed, and HARQ-ACK and CSI may be multiplexed in the PUCCH.
  • HARQ-ACK and SR may be multiplexed, or may be multiplexed with other UCI types.
  • the HARQ-ACK information may include at least the HARQ-ACK bit corresponding to TB.
  • the HARQ-ACK bit may indicate ACK (acknowledgement) or NACK (negative-acknowledgement) corresponding to TB.
  • ACK may be a value indicating that the decoding of the TB has been successfully completed.
  • NACK may be a value indicating that the decoding of the TB has not been completed successfully.
  • the HARQ-ACK information may include at least one HARQ-ACK codebook containing one or more HARQ-ACK bits. The fact that the HARQ-ACK bit corresponds to one or more TBs may mean that the HARQ-ACK bit corresponds to a PDSCH containing the one or more TBs.
  • the HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in TB.
  • HARQ-ACK may also be referred to as HARQ feedback, HARQ information, and HARQ control information.
  • SR may at least be used to request PUSCH resources for initial transmission. SR may also be used to request UL-SCH resources for new transmissions.
  • the SR bit may be used to indicate either a positive SR (positive SR) or a negative SR (negative SR). The fact that the SR bit indicates a positive SR may also be referred to as "a positive SR is transmitted".
  • a positive SR may indicate that the terminal device 1 requires a PUSCH resource for initial transmission.
  • a positive SR may indicate that the SR is triggered by an upper layer.
  • a positive SR may be transmitted when the upper layer instructs it to transmit the SR.
  • the fact that the SR bit indicates a negative SR may also be referred to as "a negative SR is transmitted”.
  • a negative SR may indicate that the terminal device 1 does not require PUSCH resources for initial transmission.
  • a negative SR may indicate that the SR is not triggered by the upper layer. Negative SRs may be transmitted if the upper layer does not instruct them to transmit SRs.
  • the SR bit may be used to indicate either a positive SR or a negative SR for any one or more SR configurations.
  • Each of the one or more SR settings may correspond to one or more logical channels.
  • a positive SR for an SR setting may be a positive SR for any or all of the one or more logical channels corresponding to that SR setting.
  • Negative SR does not have to correspond to a particular SR setting. Showing a negative SR may mean showing a negative SR for all SR settings.
  • the SR setting may be SR-ID (Scheduling Request ID).
  • the SR-ID may be given by an upper layer parameter.
  • the CSI may include at least some or all of the channel quality index (CQI), precoder matrix index (PMI), and rank index (RI).
  • CQI is an index related to channel quality (for example, propagation intensity)
  • PMI is an index indicating a precoder.
  • RI is an index that indicates the transmission rank (or the number of transmission layers).
  • the CSI may be given at least on the basis of receiving at least a physical signal (eg, CSI-RS) used for channel measurement.
  • the CSI may include a value selected by the terminal device 1.
  • the CSI may be selected by terminal device 1 at least based on receiving the physical signal used for channel measurement.
  • the channel measurement may include an interference measurement.
  • the CSI-RS may be set based on the CSI-RS setting or may be set based on the SSB setting.
  • the CSI report is a CSI report.
  • the CSI report may include CSI Part 1 and / or CSI Part 2.
  • CSI Part 1 may be configured to include at least some or all of the Broadband Channel Quality Information (wideband CQI), Wideband Precoder Matrix Index (wideband PMI), and RI.
  • the number of bits of CSI part 1 multiplexed on the PUCCH may be a predetermined value regardless of the RI value of the CSI report.
  • the number of bits in CSI Part 2 to be multiplexed on the PUCCH may be given based on the RI value in the CSI report.
  • the rank index of the CSI report may be the value of the rank index used for calculating the CSI report.
  • the RI of the CSI information may be the value indicated by the RI field included in the CSI report.
  • the set of RIs allowed in the CSI report may be part or all of 1-8. Also, the set of RIs allowed in CSI reporting may be given at least based on the upper layer parameter RankReaction. If the set of RIs allowed in a CSI report contains only one value, the RI in the CSI report may be that one value.
  • the CSI report priority is the setting for the behavior (processing) of the CSI report time domain, the type of content of the CSI report, the index of the CSI report, and / or the serving cell in which the measurement of the CSI report is set. It may be given at least on the basis of part or all of the index.
  • the time domain behavior (processing) of the CSI report can be set so that the CSI report is aperiodic, the CSI report is semi-persistent, or quasi-static. It may be a setting indicating either of the above.
  • the type of content of the CSI report may indicate whether the CSI report includes Layer 1 RSRP (Reference Signals Received Power).
  • the layer 1 is a physical layer, and may be a layer that performs processing such as a physical layer processing unit, a wireless transmitting unit, a transmitting unit, and / or a wireless receiving unit and a receiving unit.
  • the layer higher than the layer 1 includes a MAC layer, an RRC layer, an upper layer processing unit, and the like.
  • layer 2 may be a MAC layer, an RLC layer or a PDCP layer, a MAC layer processing unit, an RLC layer processing unit or a PDCP layer processing unit.
  • the layer 3 may be an RRC layer or an RRC layer processing unit.
  • the index of the CSI report may be given by the parameters of the upper layer.
  • PUCCH supports one or more PUCCH formats (PUCCH format 0 to PUCCH format 4).
  • the PUCCH format may be transmitted in PUCCH.
  • the transmission of the PUCCH format may mean that the PUCCH is transmitted.
  • the terminal device 1 transmits UCI (Uplink Control Information) without transmitting the PUSCH, the terminal device 1 transmits the UCI in the PUCCH using the PUCCH format satisfying a predetermined condition.
  • UCI Uplink Control Information
  • PUCCH format 0 is used when transmission with 1 or 2 symbols and the number of HARQ-ACK information bits (HARQ-ACK / SR bit (s)) with positive or negative SR is 1 or 2 bits. ..
  • PUCCH format 1 is used when transmitting with 4 or more symbols and when the number of HARQ-ACK / SR bits is 1 or 2 bits.
  • PUCCH format 2 is used when transmission with 1 or 2 symbols and the number of UCI information bits is more than 2 bits.
  • PUCCH format 3 is used when transmission with 4 or more symbols and the number of UCI information bits is more than 2 bits.
  • PUCCH format 4 is used when transmission with 4 or more symbols, the number of UCI information bits is more than 2 bits, and the PUCCH resource includes OCC (Orthogonal Cover Code).
  • the frequency resource allocation of PUCCH formats 0, 1 and 4 may be 1 PRB regardless of the number of UCI information bits transmitted by PUCCH.
  • the frequency resource allocation of PUCCH formats 2 and 3 is based on the upper layer parameters (nrofPRBs: number of Physical Resource Blocks) related to the maximum number of PRBs and the optimum number of PRBs according to the number of UCI information bits transmitted by PUCCH. May be good.
  • the nrofPRBs may be set in PUCCH formats 2 and 3, respectively. For PUCCH resources of PUCCH format 2 and / or 3, the number of PRBs may be adjusted so that the terminal device 1 does not exceed the number of UCI information bits and nrofPRBs desired to be transmitted.
  • PUCCH format 3 if the number of PRBs appropriately required for the number of UCI information bits to be transmitted does not satisfy 2 ⁇ ⁇ 2 * 3 ⁇ ⁇ 3 * 5 ⁇ ⁇ 5 , do not exceed nrofPRBs.
  • the number of PRBs may be increased until the number of PRBs required for the PUCCH format 3 satisfies 2 ⁇ ⁇ 2 * 3 ⁇ ⁇ 3 * 5 ⁇ ⁇ 5 .
  • ⁇ 2 , ⁇ 3 , and ⁇ 5 may be 0 or an integer larger than 0, respectively.
  • FIG. 4 is a diagram showing an example of the relationship between the PUCCH format and the length N PUCCH symb of the PUCCH format according to one aspect of the present embodiment.
  • the length N PUCCH symb of PUCCH format 0 is a 1 or 2 OFDM symbol.
  • the length N PUCCH symb of PUCCH format 1 is one of 4 to 14 OFDM symbols.
  • the length N PUCCH symb of PUCCH format 2 is a 1 or 2 OFDM symbol.
  • the length N PUCCH symb of PUCCH format 3 is one of 4 to 14 OFDM symbols.
  • the length N PUCCH symb of PUCCH format 4 is one of 4 to 14 OFDM symbols.
  • FIG. 5 is a diagram showing an example of parameters included in PUCCH-Config and PUCCH-FormatConfig according to one aspect of the present embodiment.
  • the time frequency resource may be determined based on PUCCH-Config and transmitted.
  • the parameters contained in PUCCH-Config and PUCCH-Config may be RRC information elements.
  • PUCCH-Config may be used to set one or more PUCCH parameters specific to the terminal device 1 for each BWP.
  • the resourceSetToAddModList and resourceSetToReleaseList are lists used to add and / or release PUCCH resource sets, and the size of the lists may be based on the maximum number of PUCCH resource sets.
  • the resourceToAddModList and resourceToReleaseList are lists used to add and / or release one or more PUCCH resources that apply to uplink BWPs and serving cells with PUCCH settings defined, and their size is that of the PUCCH resources. It may be based on the maximum number.
  • the spatialRelationInfoToAddModList may be used to indicate the spatial relation settings between reference RS and PUCCH.
  • the reference RS may be SSB / CSI-RS / SRS. If the list has more than one element, MAC-CE selects one element.
  • PUCCH-FormatConfig may be set for each of PUCCH formats 1 to 4.
  • the PUCCH-FormatConfig corresponding to each PUCCH format may be shared among all PUCCH resources corresponding to each PUCCH format.
  • the dl-DataToUL-ACK may be used to indicate a list of timings for the PDSCH and the HARQ-ACK corresponding to the PDSCH.
  • PUCCH-FormatConfig may include one or all of interslotFrequencyHopping, additionalDMRS, maxCodeRate, nrofSlots, pi2BPSK, and simultaneousHARQ-ACK-CSI.
  • Interslot Frequency Hopping is used to show that the terminal device 1 can perform inter-slot frequency hopping when PUCCH formats 1, 3 or 4 are repeated between a plurality of slots. For long PUCCH (PUCCH formats 1, 3, 4), the terminal device 1 cannot perform intra-slot frequency hopping and inter-slot frequency hopping at the same time.
  • Additional DMRS may also be used to indicate that for PUCCH format 3 or 4 it is possible to include two DMRS symbols per hop and, without frequency hopping, to include four DMRS symbols. Good. This field does not apply to PUCCH format 1 or 2.
  • MaxCodeRate may indicate the maximum coding rate for determining how to feed back UCI in PUCCH formats 2, 3 or 4. This field does not have to apply to PUCCH format 1.
  • NrofSlots indicates the number of slots with the same PUCCH format for each of PUCCH formats 1, 3 or 4. If this field is not in PUCCH-FormatConfig, terminal device 1 may apply n1. This field does not have to apply to PUCCH format 2.
  • Pi2BPSK may indicate to PUCCH that the terminal device 1 can use pi / 2BPSK as the UCI symbol instead of QPSK. This field does not have to apply to PUCCH formats 1 and 2.
  • SimultaneousHARQ-ACK-CSI may be used to indicate whether HARQ-ACK feedback with or without SR and simultaneous transmission of CSI can be used in PUCCH formats 2, 3 or 4.
  • terminal device 1 may apply off. This field does not have to apply to PUCCH format 1.
  • FIG. 6 is a diagram showing an example of parameters included in the PUCCH-ResourceSet and the PUCCH-Resource according to one aspect of the present embodiment.
  • PUCCH-ResourceSet may include pucch-ResourceSetId, resourceList, maxPayloadMinus1.
  • the resourceList is a list of one or more PUCCH resources included in the PUCCH resource set.
  • One or more PUCCH resources in PUCCH formats 0 and 1 may be allowed to be included only in the first PUCCH resource set.
  • the first PUCCH resource set may include up to 32 PUCCH resources.
  • One or more PUCCH resources in PUCCH formats 2, 3 and 4 may be allowed to be included only in the PUCCH resource set with pucch-ResourceSetId> 0.
  • These PUCCH resource sets may include up to 8 PUCCH resources.
  • the PUCCH resource set may be set up to 4 sets.
  • MaxPayloadMinus1 may be used to indicate the maximum number of payload bits-1 that the terminal device 1 can transmit using the PUCCH resource set. That is, maxPayloadMinus1 may indicate the maximum number of UCI bits (maximum value of the number of UCI bits) that can be transmitted by the PUCCH resource set.
  • the terminal device 1 may select a PUCCH-ResourceSet that supports the number of bits that the terminal device 1 wants to transmit. In the first PUCCH resource set, this field does not have to be included in the PUCCH-ResourceSet. Further, in the PUCCH resource set other than the first PUCCH resource set, this field may not be included in the PUCCH-ResourceSet as long as it has the maximum payload size.
  • PUCCH-Resource may include pucch-ResourceId, startingPRB, intraSlotFrequencyHopping, secondHopPRB, format.
  • Starting PRB indicates the PRB index of PUCCH.
  • the value in this field indicates the first PRB index if the PUCCH is composed of multiple PRBs.
  • IntraSlotFrequencyHopping may be used to indicate whether or not to perform intra-slot frequency hopping.
  • In-slot frequency hopping may be applied to all types of PUCCH formats.
  • In-slot frequency hopping and inter-slot frequency hopping are not performed simultaneously for long PUCCH (PUCCH formats 1, 3, and 4) in a plurality of slots.
  • the secondHopPRB may be used to indicate the index of the first PRB after frequency hopping. This value may be applied for in-slot frequency hopping.
  • PUCCH Format may be used to select the type of PUCCH format (PUCCH formats 0-4) and format-specific parameters.
  • PUCCH formats 0 and 1 may only be allowed for PUCCH resources included in the first PUCCH resource set.
  • PUCCH formats 2, 3 and 4 may be allowed only for PUCCH resources contained in PUCCH resource sets other than the first PUCCH resource set.
  • FIG. 7 is a diagram showing an example of parameters that can be set uniquely to the PUCCH format according to one aspect of the present embodiment.
  • the PUCCH resource of PUCCH format 0 may be set based on PUCCH-Format0 including initialCyclicShift, nrofSymbols, and startingSymbolIndex.
  • the PUCCH resource of PUCCH format 1 may be set based on PUCCH-Format1 including initialCyclicShift, nrofSymbols, startingSymbolIndex, and timeDomainOCC.
  • the PUCCH resource of PUCCH format 2 may be set based on PUCCH-Format2 including nrofPRBs, nrofSymbols, and startingSymbolIndex.
  • the PUCCH resource of PUCCH format 3 may be set based on PUCCH-Format3 including nrofPRBs, nrofSymbols, and startingSymbolIndex.
  • the PUCCH resource of PUCCH format 4 may be set based on PUCCH-Format 4 including nrofSymbols, occ-Length, occ-Index, and startingSymbolIndex.
  • the PUCCH format set for the PUCCH resource is PUCCH format 0.
  • the PUCCH resource may be determined based on the values of various parameters contained in PUCCH-format 0.
  • the PUCCH format set for the PUCCH resource is PUCCH format 1.
  • the PUCCH resource may be determined based on the values of various parameters contained in PUCCH-format1.
  • the PUCCH format set for the PUCCH resource is PUCCH format2.
  • the PUCCH resource may be determined based on the values of various parameters contained in PUCCH-format2.
  • the PUCCH format set for the PUCCH resource is PUCCH format 3.
  • PUCCH resources may be determined based on the values of various parameters contained in PUCCH-format3.
  • the PUCCH format set for the PUCCH resource is PUCCH format 4.
  • PUCCH resources may be determined based on the values of various parameters contained in PUCCH-format 4.
  • the terminal device 1 may determine the PUCCH resource used for transmitting HARQ-ACK corresponding to PDSCH based on the value of PRI included in the DCI format used for scheduling PDSCH.
  • the terminal device 1 is based on the value of the PRI (PUCCH resource indicator) field included in the DCI format and the CCE index that detected the DCI format. , Which PUCCH resource in the PUCCH resource set may be used. Further, if the PUCCH resource set contains more PUCCH resources than a predetermined number, the size (number of bits, bit size) of the PRI field included in the DCI format may be expanded. Assuming that the PUCCH resource set contains a predetermined number or a number less than a predetermined number of PUCCH resources, the terminal device 1 may determine the PUCCH resources based on the value of PRI included in the DCI format.
  • the PUCCH resource set uses the first PUCCH resource set to which the first frequency resource allocation type is applied or the second frequency resource allocation type is applied based on the first information contained in the DCI format. It may also be decided whether to use a second PUCCH resource set.
  • the first information may be information indicating whether the PUCCH is transmitted inside the COT or outside the COT, may be information indicating the frequency resource allocation type of the PUCCH, or may be the information indicating the frequency resource allocation type of the PUCCH. It may be information indicating the type of CAP before transmission of.
  • the terminal device 1 has a PUCCH resource (PUCCH resource ID) for transmitting UCI information bits. May be determined based on the value of the PRI and the value of the CCE index. Further, when the bit size of the PRI field is expanded, the UCI information bit may be transmitted using the PUCCH resource corresponding to the PRI value.
  • PUCCH resource ID PUCCH resource ID
  • the PUCCH resource set may include a set of PUCCH resource indexes provided by a resourceList that provides a set of pucch-ResourceIds used for the PUCCH resource set.
  • the PUCCH resource set may also include the maximum number of UCI information bits that can be transmitted using the PUCCH resource in the PUCCH resource set provided by maxPayloadMinus1.
  • the maximum number of UCI information bits for the first PUCCH resource set may be 2 bits.
  • the maximum number of PUCCH resource indexes per PUCCH resource set may be provided by maxNrofPUCCH-ResourcesPerSet. For NR-U, the maximum number of PUCCH resources contained in all PUCCH resource sets may be 32.
  • the terminal device 1 If the terminal device 1 is provided with the ability information that it supports maxNrofPUCCH-ResourceSets-r16 having a value larger than maxNrofPUCCH-ResourceSets, the four sets supported by maxNrofPUCCH-ResourceSets are provided for the terminal device 1. More PUCCH resource sets may be set. At that time, the PUCCH resource set may be associated with the PUCCH resource set index provided by PUCCH-ResourceSet-r16 and provided by pucch-ResourceSetId-r16. That is, the value that pucch-ResourceSetId-r16 can take may be any of 0 to maxNrofPUCCH-ResourceSets-r16-1.
  • Terminal device 1 supports maxNrofPUCCH-ResourceSets-r16, and if a PUCCH resource set is set in which pucch-ResourceSetId-r16 is greater than a predetermined value, a different frequency resource allocation type will be applied. PUCCH resource set may be set. Further, maxPayloadMinus1 set to the same value may be applied to PUCCH resource sets of different pucch-ResourceSetId-r16.
  • the base station apparatus 3 provides as capability information that the terminal apparatus 1 supports maxNrofPUCCH-ResourceSets-r16 having a value larger than a predetermined value, or the terminal apparatus 1 has a different frequency resource allocation type. If the ability information is provided that the terminal device 1 supports PUCCH-ResourceSet-r16 and / or PUCCH-Resource-r16, the ability information is provided. PUCCH-ResourceSet-r16 or PUCCH-Resource-r16 may be set to include parameters related to the frequency resource allocation type (for example, freqResourceAllocType-r16) for the terminal device 1. Even when maxNrofPUCCH-Resources-r16 having a value larger than a predetermined value is provided instead of maxNrofPUCCH-ResourceSets-r16, the base station apparatus 3 may perform the same processing.
  • the base station apparatus 3 may be set including freqResourceAllocType for each PUCCH-ResourceSet.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 0 may be the first PUCCH resource set containing up to 32 PUCCH resources of PUCCH format 0 or 1.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 1, may be a PUCCH resource set including PUCCH resources of PUCCH formats 2, 3, and / or 4.
  • the value of N 2 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 2 may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4.
  • the value of N 3 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 3, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 4, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4.
  • the value of N 2 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 5, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4.
  • the value of N 3 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
  • the PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 6, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4.
  • the plurality of PUCCH resource sets Physical resource mapping or frequency resource allocation type may be different.
  • PUCCH resource set IDs are set in multiple PUCCH resource sets to which the same or the same range of UCI information bits (that is, maxPayloadMinus1 of the same value) is applied, physical resources are set between PUCCH resource sets.
  • the mapping or frequency resource allocation type may be different.
  • N 2 and N 3 may be regarded as 1706.
  • the terminal device 1 has the ability to set more PUCCH resource sets than a predetermined number, and when the terminal device 1 is set with more PUCCH resource sets than the predetermined number, or ,
  • a PUCCH resource set ID (pucch-ResourceSetId-r16) having a value larger than a predetermined value (pucch-ResourceSetId)
  • the PUCCH resource set corresponding to the frequency resource allocation of the PUCCH is set for the terminal device 1. May be set.
  • a PUCCH resource set to which is applied may be set.
  • a PUCCH resource set containing at least one PUCCH resource of the first frequency resource allocation type and a PUCCH resource set containing at least one PUCCH resource of the second frequency resource allocation type may be set.
  • the first frequency resource allocation type may be an interlaced allocation
  • the second frequency resource allocation type may be a continuous allocation
  • the first frequency resource allocation type and the second frequency resource allocation type may be. Each frequency resource allocation type may be vice versa.
  • PUCCH-ResourceSet-r16 or PUCCH-Resource-r16 may include a parameter indicating the frequency resource allocation type of the PUCCH resource (for example, freqResourceAllocType-r16).
  • the frequencies of the PUCCH resources for different PUCCH resource sets or PUCCH resources contained in different PUCCH resource sets may be included, and different frequency resource allocation types may be set for each.
  • the terminal device 1 Based on the first information contained in the DCI format used for PDSCH scheduling for the terminal device 1 to which the first PUCCH resource set and the second PUCCH resource set to which the same maximum number of UCI bits are applied are set. Then, it may be determined whether the PUCCH resource included in the first PUCCH resource set transmits HARQ-ACK for PDSCH or the PUCCH resource included in the second PUCCH resource set transmits HARQ-ACK for PDSCH. .. At this time, at least the PUCCH resource set ID and the frequency resource allocation type may be different between the first PUCCH resource set and the second PUCCH resource set.
  • the frequency resource allocation type (first resource allocation type, second frequency resource allocation type) may refer to interlaced arrangement or continuous arrangement, or other frequency resources. You may point to the placement.
  • FIG. 8 is a diagram showing an example of a PUCCH resource set and parameters included in the PUCCH resource according to one aspect of the present embodiment.
  • PUCCH-ResourceSet-r16 may include pucch-ResourceSetId-r16, freqResourceAllocType-r16, resourceList or resourceList-r16, maxPayloadMinus1 or maxPayloadMinus1-r16.
  • Pucch-ResourceSetId-r16 indicates the ID of PUCCH-ResourceSet-r16, and a value larger than pucch-ResourceSetId may be set. That is, maxNrofPUCCH-ResourceSets-r16 may be larger than maxNrofPUCCH-ResourceSets (ie, 4 sets).
  • FreqResourceAllocType-r16 may indicate the frequency resource allocation type applied to all PUCCH resources indicated by the resourceList included in the PUCCH resource set. Although two types are shown in FIG. 8, the number of types that can be set may vary depending on the number of frequency resource allocation types that are supported.
  • the frequency resource allocation type may be information indicating interlaced allocation and continuous allocation. Further, the frequency resource allocation type may be information indicating whether or not interlaced allocation is possible.
  • the resourceList is a list of PUCCH resources included in the PUCCH resource set.
  • the resourceList may show up to 32 PUCCH resources for one PUCCH resource set. When set as resourceList-r16, up to 32 PUCCH resources may be shown regardless of the value of pucch-ResourceSetId.
  • maxPayloadMinus1 is information indicating the maximum number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set, and corresponds to N 2 and N 3 described above.
  • maxPayloadMinus1-r16 may differ in the maximum number of UCI information bits supported compared to maxPayloadMinus1. That is.
  • the range of UCI information bits supported by maxPayloadMinus1-r16 may be wider or narrower than maxPayloadMinus1.
  • the maximum number of UCI information bits supported by maxPayloadMinus1-r16 may be larger or smaller than maxPayloadMinus1.
  • PUCCH-Resource-r16 may be a resourceList or a PUCCH resource listed by resourceList-r16.
  • PUCCH-Resource-r16 may include pucch-ResourceId-r16, startingPRB, intraSlotFrequencyHopping, secondHopPRB, format.
  • Pucch-ResourceId-r16 may be used to indicate the PUCCH resource ID.
  • a value larger than pucch-ResourceId may be set for pucch-ResourceId-r16. That is, maxNrofPUCCH-Resources-r16 indicating the maximum number of PUCCH resources may be set to a value larger than maxNrofPUCCH-Resources.
  • the information shown in the startingPRB may change based on the frequency resource allocation type indicated by freqResourceAllocType-r16. For example, if freqResourceAllocType-r16 corresponding to the PUCCH resource indicates the frequency resource allocation type corresponding to the continuous allocation, the starting PRB may be information indicating the first PRB index of the PUCCH resource. If the freqResourceAllocType-r16 corresponding to the PUCCH resource indicates the interlaced arrangement, the startingPRB may indicate the index of the interlaced. It may also be used to calculate the interlaced index. For example, the index of interlace may be obtained from startingPRB mod M. M indicates the total number of interlaces. X mod Y is used to calculate the remainder when X is divided by Y.
  • IntraSlotFrequencyHopping and secondHopPRB may be set only when the frequency resource allocation type indicated by freqResourceAllocType-r16 is the frequency resource allocation type corresponding to continuous allocation.
  • intraSlotFrequencyHopping may be information indicating whether or not frequency hopping in the slot is supported, and secondHopPRB may be information indicating the first PRB index after frequency hopping.
  • Format is information indicating the type of PUCCH format applied to PUCCH-Resource-r16.
  • the parameters applied may differ depending on the PUCCH format.
  • the parameters specifically applied may be the same as in FIG. 7 or may be different. Since format4 is not applied in NR-U, it may be set as an optional parameter. That is, format4 may be included when applied to other than NR-U.
  • FIG. 9 is a diagram showing another example of the PUCCH resource set and the parameters included in the PUCCH resource according to one aspect of the present embodiment. Compared with FIG. 8, freqResourceAllocType-r16 is included in PUCCH-Resource-r16.
  • the frequency resource allocation type may be set for each PUCCH resource.
  • FIG. 10 is a diagram showing an example of DCI format 1_0 according to one aspect of the present embodiment.
  • FIG. 10A is an example of DCI format 1_0 for NR.
  • FIG. 10B is an example of DCI format 1_0 for NR-U.
  • Fields related to PUCCH channel access procedures may be added to DCI format 1_0 for NR-U.
  • the size of the PRI may vary depending on the number of PUCCH resources.
  • the DCI format 1_0 for NR-U may include information indicating the frequency resource allocation type for the PUCCH resource. In that case, the parameters shown in FIGS. 8 and 9 do not have to be set as RRC parameters.
  • the details of PUCCH starting position, Channel access type, and Channel access priority class will be described later. Further, the PUCCH starting position, Channel access type, and Channel access priority class do not have to be included in the DCI format when they are determined based on the specifications and upper layer parameters.
  • PUSCH is at least used to transmit TB (MAC PDU, UL-SCH).
  • PUSCH may be used to transmit at least some or all of TB, HARQ-ACK information, CSI, and SR.
  • the PUSCH is at least used to send a random access message 3 (message 3 (Msg3)) corresponding to the RAR (Msg2) and / or RAR grant in the random access procedure.
  • TB may correspond to each of the uplink and the downlink. That is, the PUSCH may be used to transmit the TB to the uplink.
  • the PDSCH may be used to transmit a TB to the downlink.
  • PRACH is at least used to transmit a random access preamble (random access message 1, message 1 (Msg1)).
  • the PRACH is an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, an initial access procedure, synchronization (timing adjustment) for PUSCH transmission, and resource request for PUSCH. It may be used at least to indicate part or all.
  • the random access preamble may be used to notify the base station device 3 of an index (random access preamble index) given by the upper layer of the terminal device 1.
  • the random access preamble may be given by cyclically shifting the Zadoff-Chu sequence corresponding to the physical route sequence index u.
  • the Zadoff-Chu sequence may be generated based on the physical route sequence index u.
  • a plurality of random access preambles may be defined in one serving cell.
  • the random access preamble may be specified at least based on the index of the random access preamble.
  • Different random access preambles corresponding to different indexes of the random access preambles may correspond to different combinations of physical route sequence index u and cyclic shift.
  • the physical route sequence index u and cyclic shift may be given at least based on the information contained in the system information.
  • the physical route sequence index u may be an index that identifies a series included in the random access preamble.
  • the random access preamble may be specified at least based on the physical route sequence index u.
  • the following uplink physical signals are used in uplink wireless communication.
  • the uplink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
  • ⁇ UL DMRS UpLink Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • UL PTRS UpLink Phase Tracking Reference Signal
  • UL DMRS is associated with PUSCH and / or PUCCH transmission.
  • UL DMRS is multiplexed with PUSCH or PUCCH.
  • the base station apparatus 3 may use UL DMRS to correct the propagation path of PUSCH or PUCCH.
  • transmitting both PUSCH and UL DMRS related to the PUSCH is referred to simply as transmitting the PUSCH.
  • transmitting PUCCH and UL DMRS related to the PUCCH together is referred to simply as transmitting PUCCH.
  • UL DMRS related to PUSCH is also referred to as UL DMRS for PUSCH.
  • UL DMRS related to PUCCH is also referred to as UL DMRS for PUCCH.
  • the base station apparatus 3 may use SRS for measuring the channel state.
  • the SRS may be transmitted at the end of the subframe in the uplink slot, or at a predetermined number of OFDM symbols from the end.
  • the UL PTRS may be at least a reference signal used for phase tracking.
  • the UL PTRS may be associated with a UL DMRS group that includes at least the antenna ports used for one or more UL DMRS.
  • the association between the UL PTRS and the UL DMRS group may be that the antenna port of the UL PTRS and a part or all of the antenna ports included in the UL DMRS group are at least QCL.
  • the UL DMRS group may be identified at least based on the antenna port with the smallest index in the UL DMRS included in the UL DMRS group.
  • UL PTRS may be mapped to the antenna port with the smallest index in one or more antenna ports to which one codeword is mapped.
  • UL PTRS may be mapped to the first layer if one codeword is at least mapped to the first layer and the second layer. UL PTRS does not have to be mapped to the second layer.
  • the index of the antenna port to which the UL PTRS is mapped may be given at least based on the downlink control information.
  • the following downlink physical channels are used in the downlink wireless communication from the base station device 3 to the terminal device 1.
  • the downlink physical channel is used by the physical layer to transmit the information output from the upper layer.
  • ⁇ PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is at least used to transmit MIBs and / or PBCH payloads.
  • the PBCH payload may include at least information indicating an index regarding the transmission timing (SSB occupation) of the SSB.
  • the PBCH payload may include information related to the SSB identifier (index).
  • the PBCH may be transmitted based on a predetermined transmission interval. PBCH may be transmitted at intervals of 80 milliseconds (ms). PBCH may be transmitted at intervals of 160 ms.
  • the content of the information contained in the PBCH may be updated every 80 ms. Part or all of the information contained in the PBCH may be updated every 160 ms.
  • the PBCH may be composed of 288 subcarriers.
  • the PBCH may be configured to include 2, 3, or 4 OFDM symbols.
  • the MIB may include information related to the SSB identifier (index).
  • the MIB may include information indicating at least a portion of the slot number, subframe number, and / or radio frame number through which the PBCH is transmitted.
  • PDCCH is at least used for transmitting downlink control information (DCI).
  • the PDCCH may be transmitted with at least DCI.
  • PDCCH may be transmitted including DCI.
  • DCI may also be referred to as DCI format.
  • the DCI may at least indicate either a downlink grant or an uplink grant.
  • the DCI format used for PDSCH scheduling may also be referred to as the downlink DCI format and / or the downlink grant.
  • the DCI format used for PUSCH scheduling may also be referred to as the uplink DCI format and / or the uplink grant.
  • Downlink grants may also be referred to as downlink assignments or downlink assignments.
  • the uplink DCI format includes at least one or both of DCI format 0_0 and DCI format 0_1.
  • the DCI format 0_0 may be configured to include at least a part or all of 1A to 1I.
  • 1A may be at least used to indicate whether the DCI format containing the 1A corresponds to any of the DCI formats of one or more DCI formats.
  • the one or more DCI formats may be given at least on the basis of DCI format 1_1, DCI format 1-11, DCI format 0_0, and / or part or all of DCI format 0_1. That is, the number of bits in 1A may be determined based on the number of corresponding DCI formats.
  • the 1B may at least be used to indicate the allocation of frequency resources for PUSCH scheduled by the DCI format containing the 1B.
  • the number of bits of the 1B may be determined based on the maximum number of PRBs used to allocate the frequency resources of the PUSCH, or may be determined based on the upper layer parameters.
  • 1C may at least be used to indicate the allocation of time resources for PUSCH scheduled by the DCI format containing the 1C.
  • the number of bits in the 1C may be determined based on the maximum number of symbols used to allocate the PUSCH time resource.
  • 1D may at least be used to indicate whether frequency hopping is applied to the PUSCH scheduled by the DCI format containing the 1D.
  • the 1E may be at least used to indicate a modulation scheme for PUSCH scheduled by the DCI format containing the 1E and / or part or all of the target code rate.
  • the target code rate may be the target code rate for the TB of the PUSCH.
  • the size of the TB (TBS) may be given at least based on the target code rate.
  • the 1F determines whether the PUSCH transmission corresponding to the HPID value indicated by the 1H, scheduled by the DCI format, is a new transmission or a retransmission, based on whether the value of the 1F is toggled. Used to indicate. If the value of the 1F is toggled, the PUSCH corresponding to the 1H is a new transmission, otherwise the PUSCH corresponding to the 1H is a retransmission.
  • the 1F may be a DCI indicating whether the base station apparatus 3 requests the retransmission of the PUSCH corresponding to the 1H.
  • 1G is used to indicate the start position of the PUSCH bit sequence scheduled by the DCI format.
  • 1H is used by the PUSCH scheduled by the DCI format to indicate the corresponding HARQ process number (HPID).
  • 1I is used to adjust the PUSCH transmission power scheduled by the DCI format.
  • DCI format 0-1 is configured to include at least part or all of 2A to 2K.
  • the size of the 2nd floor may be a predetermined value.
  • the size of the 2nd floor may be 0, 1, may be 2, or may be 3.
  • the size of the 2nd floor may be determined according to the number of CSI settings set in the terminal device 1.
  • 2G may be used to indicate the uplink BWP to which the PUSCH scheduled in DCI format 0-1 is mapped.
  • the second CSI request field is at least used to direct CSI reporting.
  • the size of the second CSI request field may be given at least based on the upper layer parameter ReportTriggerSize.
  • the downlink DCI format includes at least one or both of DCI format 1_0 and DCI format 1_1.
  • the DCI format 1_0 may be configured to include at least a part or all of 3A to 3K.
  • 3B to 3E may be used for PDSCH scheduled by the DCI format.
  • the 3rd floor may be a field indicating timing K1.
  • the index of the PUCCH containing at least the HARQ-ACK corresponding to the TB contained in the PDSCH or the slot containing the PUSCH may be n + K1.
  • the index of the slot containing the last OFDM symbol of the PDSCH is slot n
  • the first OFDM symbol of the PUCCH containing at least the HARQ-ACK corresponding to the TB contained in the PDSCH or the first OFDM symbol of the PUSCH is included.
  • the index of the slot may be n + K1.
  • 3G may be a field indicating the index of one or more PUCCH resources included in the PUCCH resource set, or may be a value used to determine the PUCCH resource.
  • the 3H determines whether the PDSCH transmission corresponding to the HPID value indicated by the 3J, scheduled by the DCI format, is a new transmission or a retransmission, based on whether the value of the 3H is toggled. Used to indicate. If the value of the 3J is toggled, the PDSCH corresponding to the 3J is a new transmission, otherwise the PDSCH corresponding to the 3J is a retransmission.
  • 3I may be used to indicate the start position of the PDSCH bit sequence scheduled by the DCI format.
  • 3J may be used to indicate the number of the HARQ process to which the PDSCH scheduled by the DCI format corresponds.
  • 3K may be used to adjust the transmission power of the PUCCH corresponding to the PDSCH scheduled by the DCI format.
  • the DCI format 1_1 may be configured to include at least a part or all of 4A to 4L.
  • 3A, 4A, like 1A and 2A, are used to identify the DCI format.
  • 1A, 2A, 3A, and 4A are used to indicate whether DCI format 0_0 or DCI format 1_0, or DCI format 0_1 or DCI format 1-11 when composed of 1 bit, respectively, in 2 bits. When configured, it may be used to indicate any one of the four DCI formats 0_1 to DCI format 1-1.1.
  • 4B-4E may be used for PDSCH scheduled by the DCI format.
  • 4J may be used to indicate the downlink BWP to which the PDSCH scheduled in DCI format 1-11 is mapped.
  • Each DCI format may include padding bits to fit a predetermined bit size (payload size). That is, it may be adjusted using one or more padding bits so that the size of each DCI format indicated by the DCI format specific field is the same.
  • DCI format 2 may include parameters used for controlling the transmission power of PUSCH or PUCCH.
  • the number of resource blocks indicates the number of resource blocks in the frequency domain.
  • the index of the resource block is assigned in ascending order from the resource block mapped to the low frequency domain to the resource block mapped to the high frequency domain.
  • the resource block is a general term for a common resource block and a physical resource block.
  • One physical channel may be mapped to one serving cell.
  • One physical channel may be mapped to one CBP set for one carrier contained in one serving cell.
  • the terminal device 1 is given one or more control resource sets (CORESET).
  • the terminal device 1 monitors the PDCCH in one or more CORESETs.
  • CORESET may indicate a time frequency domain in which one or more PDCCHs can be mapped.
  • CORESET may be an area in which the terminal device 1 monitors PDCCH.
  • CORESET may be composed of continuous resources (Localized resources).
  • CORESET may be composed of non-continuous resources (distributed resources).
  • the unit of CORESET mapping may be a resource block (RB).
  • the unit of CORESET mapping may be 6 resource blocks. That is, the mapping of the frequency domain of CORESET may be performed by 6RB ⁇ n (n is 1, 2, ).
  • the unit of CORESET mapping may be an OFDM symbol.
  • the unit of CORESET mapping may be one OFDM symbol.
  • the frequency domain of CORESET may be given at least based on the signal of the upper layer and / or DCI.
  • the time domain of CORESET may be given at least based on the signal of the upper layer and / or DCI.
  • a certain CORESET may be a common CORESET (Common CORESET).
  • the common CORESET may be a CORESET that is commonly set for a plurality of terminal devices 1.
  • the common CORESET may be given at least based on the MIB, SIB, common RRC signaling, and part or all of the cell ID. For example, a CORESET time resource and / or frequency resource that is set to monitor the PDCCH used for SIB scheduling may be given at least based on the MIB.
  • a certain CORESET may be a dedicated CORESET (Dedicated CORESET).
  • the dedicated CORESET may be a CORESET that is set to be used exclusively for the terminal device 1.
  • Dedicated CORESET may be given at least on the basis of dedicated RRC signaling.
  • the set of PDCCH candidates monitored by the terminal device 1 may be defined from the viewpoint of the search area. That is, the set of PDCCH candidates monitored by the terminal device 1 may be given by the search area.
  • the search area may be configured to include one or more PDCCH candidates of one or more aggregation levels (AL).
  • the aggregation level of PDCCH candidates may indicate the number of CCEs constituting the PDCCH.
  • the terminal device 1 may monitor at least one or a plurality of search areas in a slot in which DRX (Discontinuous reception) is not set. DRX may be given at least based on the parameters of the upper layer. The terminal device 1 may monitor at least one or a plurality of search area sets (Search space sets) in slots in which DRX is not set.
  • DRX discontinuous reception
  • the terminal device 1 may monitor at least one or a plurality of search area sets (Search space sets) in slots in which DRX is not set.
  • the search area set may be configured to include at least one or a plurality of search areas.
  • the types of the search area set are type 0PDCCH common search area (common search space), type 0a PDCCH common search area, type 1 PDCCH common search area, type 2 PDCCH common search area, type 3 PDCCH common search area, and / or UE individual PDCCH search. It may be any of the regions.
  • the type 0PDCCH common search area, the type 0aPDCCH common search area, the type 1PDCCH common search area, the type 2PDCCH common search area, and the type 3PDCCH common search area may also be referred to as CSS (Common Search Space).
  • the UE individual PDCCH search area may also be referred to as USS (UE specific Search Space).
  • Each of the search area sets may be associated with one control resource set.
  • Each of the search area sets may be included in at least one control resource set.
  • an index of the control resource set associated with the search area set may be given.
  • the Type 0 PDCCH common search area may be at least used for DCI formats with CRC (Cyclic Redundancy Check) sequences scrambled by SI-RNTI (System Information-Radio Network Temporary Identifier).
  • the setting of the type 0 PDCCH common search area may be given at least based on 4 bits of the LSB (Least Significant Bits) of the upper layer parameter PDCCH-ConfigSIB1.
  • the upper layer parameter PDCCH-ConfigSIB1 may be included in the MIB.
  • the setting of the type 0PDCCH common search area may be given at least based on the parameter SearchSpaceZero of the upper layer.
  • the interpretation of the bits of the upper layer parameter SearchSpaceZero may be the same as the interpretation of the LSB of the upper layer parameter PDCCH-ConfigSIB1.
  • the setting of the type 0PDCCH common search area may be given at least based on the parameter SearchSpaceSIB1 of the upper layer.
  • the upper layer parameter SearchSpaceSIB1 may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the PDCCH detected in the type 0 PDCCH common search area may be at least used for scheduling the PDSCH transmitted including the SIB1.
  • SIB1 is a kind of SIB.
  • SIB1 may include scheduling information of SIB other than SIB1.
  • the terminal device 1 may receive the parameter PDCCH-ConfigCommon of the upper layer in EUTRA.
  • the terminal device 1 may receive the parameter PDCCH-ConfigCommon of the upper layer in the MCG.
  • the type 0aPDCCH common search area may at least be used for DCI formats with CRC (Cyclic Redundancy Check) sequences scrambled by SI-RNTI (System Information-Radio Network Temporary Identifier).
  • the setting of the type 0aPDCCH common search region may be given at least based on the upper layer parameter SearchSpaceOtherSystemInformation.
  • the upper layer parameter SearchSpaceOtherSystemInformation may be included in SIB1.
  • the upper layer parameter SearchSpaceOtherSystemInformation may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the PDCCH detected in the type 0 PDCCH common search area may be at least used for scheduling PDSCHs transmitted including SIBs other than SIB1.
  • the Type 1 PDCCH common search region is accompanied by a CRC sequence scrambled by RA-RNTI (Random Access-Radio Network Temporary Identifier) and / or a CRC sequence scrambled by TC-RNTI (Temporary Common-Radio Network Temporary Identifier). It may be at least used for the DCI format.
  • RA-RNTI may be given at least based on the time / frequency resources of the random access preamble transmitted by terminal device 1.
  • TC-RNTI is provided by PDSCH (also referred to as Random Access Message 2, Message 2 (Msg2), or Random Access Response (RAR)) scheduled in DCI format with a CRC sequence scrambled by RA-RNTI. May be done.
  • the type 1 PDCCH common search area may be given at least based on the upper layer parameter ra-SearchSpace.
  • the upper layer parameter ra-SearchSpace may be included in SIB1.
  • the upper layer parameter ra-SearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the Type 2 PDCCH common search area may be used for DCI formats with CRC sequences scrambled by P-RNTI (Paging-Radio Network Temporary Identifier). P-RNTI may at least be used for transmission of DCI format containing information notifying SIB changes.
  • the type 2 PDCCH common search area may be given at least based on the upper layer parameter PagingSearchSpace.
  • the upper layer parameter PagingSearchSpace may be included in SIB1.
  • the upper layer parameter PagingSearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
  • the Type 3 PDCCH common search area may be used for DCI formats with CRC sequences scrambled by C-RNTI (Cell-Radio Network Temporary Identifier).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • C-RNTI is on a PDSCH (also referred to as Random Access Message 4, Message 4 (Msg4), or Contention Resolution) scheduled by the DCI format with a CRC sequence scrambled by TC-RNTI. It may be given at least on the basis.
  • the type 3 PDCCH common search area may be a search area set given when the parameter SearchSpaceType of the upper layer is set to common.
  • the UE-individual PDCCH search region may be at least used for DCI formats with CRC sequences scrambled by C-RNTI.
  • the type 0PDCCH common search area, the type 0aPDCCH common search area, the type 1PDCCH common search area, and / or the type 2PDCCH common search area are CRC scrambled by C-RNTI. It may be used at least for DCI formats with sequences.
  • the search region set given at least based on any of the parameters PagingSearchSpace may be used at least for DCI formats with CRC sequences scrambled with C-RNTI.
  • the common CORESET may include at least one or both of CSS and USS.
  • the dedicated CORESET may include at least one or both of CSS and USS.
  • the physical resources in the search area are composed of control channel configuration units (CCE: Control Channel Element).
  • CCE is composed of 6 resource element groups (REG: ResourceElementGroup).
  • the REG may be composed of one OFDM symbol of one PRB (Physical Resource Block). That is, the REG may be configured to include 12 resource elements (RE: ResourceElement).
  • the PRB may also be simply referred to as a resource block (RB).
  • the PDSCH is at least used to transmit TB.
  • the PDSCH may also be at least used to transmit a random access message 2 (RAR, Msg2).
  • RAR, Msg2 random access message 2
  • the PDSCH may also be at least used to transmit system information, including parameters used for initial access.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
  • -Synchronization signal ⁇ DL DMRS (DownLink DeModulation Reference Signal)
  • CSI-RS Channel State Information-Reference Signal
  • DL PTRS DownLink Phase Tracking Reference Signal
  • TRS Track Reference Signal
  • the synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and / or the time domain.
  • the synchronization signal includes PSS (PrimarySynchronizationSignal) and SSS (SecondarySynchronizationSignal).
  • SSB (SS / PBCH block) is composed of PSS, SSS, and at least a part or all of PBCH.
  • the antenna ports of PSS, SSS, and a part or all of PBCH included in the SS block may be the same.
  • Some or all of the PSS, SSS, and PBCH contained in the SSB may be mapped to consecutive OFDM symbols.
  • the CP settings of PSS, SSS, and part or all of PBCH contained in SSB may be the same. The same value may be applied to the SCS setting ⁇ for each of PSS, SSS, and a part or all of PBCH contained in SSB.
  • DL DMRS is associated with the transmission of PBCH, PDCCH, and / or PDSCH.
  • DL DMRS is multiplexed on PBCH, PDCCH, and / or PDSCH.
  • the terminal device 1 may use the PBCH, the PDCCH, or the DL DMRS corresponding to the PDSCH in order to correct the propagation path of the PBCH, PDCCH, or PDSCH.
  • the transmission of PBCH and DL DMRS related to the PBCH together may be referred to as transmission of PBCH.
  • the transmission of PDCCH and DL DMRS related to the PDCCH together may be referred to simply as transmission of PDCCH.
  • DL DMRS related to PBCH may also be referred to as DL DMRS for PBCH.
  • DL DMRS related to PDSCH may also be referred to as DL DMRS for PDSCH.
  • DL DMRS associated with PDCCH may also be referred to as DL DMRS associated with PDCCH.
  • the DL DMRS may be a reference signal individually set in the terminal device 1.
  • the DL DMRS sequence may be given at least based on parameters individually set in the terminal device 1.
  • the DL DMRS sequence may be given at least based on a UE-specific value (eg, C-RNTI, etc.).
  • DL DMRS may be transmitted individually for PDCCH and / or PDSCH.
  • CSI-RS may be at least a signal used to calculate CSI. Further, CSI-RS may be used for measuring RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality). The pattern of CSI-RS assumed by the terminal device 1 may be given by at least the parameters of the upper layer.
  • the PTRS may be at least a signal used to compensate for phase noise.
  • the pattern of PTRS assumed by the terminal device 1 may be given at least based on the upper layer parameters and / or DCI.
  • the DL PTRS may be associated with a DL DMRS group that includes at least the antenna ports used for one or more DL DMRSs.
  • the association between the DL PTRS and the DL DMRS group may be that the antenna port of the DL PTRS and a part or all of the antenna ports included in the DL DMRS group are at least QCL.
  • the DL DMRS group may be identified based on at least the antenna port having the smallest index in the DL DMRS included in the DL DMRS group.
  • the TRS may be at least a signal used for time and / or frequency synchronization.
  • the pattern of TRS assumed by the terminal device may be given at least based on the upper layer parameters and / or DCI.
  • the downlink physical channel and the downlink physical signal may also be referred to as a downlink physical signal.
  • the uplink physical channel and the uplink physical signal may also be referred to as an uplink signal.
  • the downlink signal and the uplink signal may be collectively referred to as a physical signal or a signal.
  • the downlink physical channel and the uplink physical channel may be collectively referred to as a physical channel.
  • the physical signal may include a part or all of SSB, PDCCH (CORESET), PDSCH, DL DMRS, CSI-RS, DL PTRS, and TRS.
  • the physical signal may include a part or all of PRACH, PUCCH, PUSCH, UL DMRS, UL PTRS, and SRS.
  • the physical signal may be a signal other than the above-mentioned signal. That is, the physical signal may include one or more types of physical channels and / or physical signals, or may include one or more physical channels and / or physical signals.
  • BCH Broadcast CHannel
  • UL-SCH Uplink-Shared CHannel
  • DL-SCH Downlink-Shared CHannel
  • HARQ is controlled for each TB in the MAC layer.
  • TB is a unit of data delivered by the MAC layer to the physical layer. In the physical layer, TB is mapped to codewords, and modulation processing is performed for each codeword.
  • the base station device 3 and the terminal device 1 exchange (transmit / receive) signals of the upper layer in the upper layer.
  • the base station device 3 and the terminal device 1 may transmit and receive RRC signaling (RRC message, RRC information, RRC parameter, RRC information element) in the radio resource control (RRC) layer.
  • RRC signaling RRC message, RRC information, RRC parameter, RRC information element
  • RRC CE Control Element
  • RRC signaling and / or MAC CE is also referred to as higher layer signaling.
  • the PUSCH and PDSCH may at least be used to transmit RRC signaling and / or MAC CE.
  • the RRC signaling transmitted from the base station device 3 by PDSCH may be a signal common to a plurality of terminal devices 1 in the serving cell. Signaling common to a plurality of terminal devices 1 in the serving cell may also be referred to as common RRC signaling.
  • the RRC signaling transmitted from the base station device 3 via PDSCH may be dedicated signaling (also referred to as dedicated signaling or UE specific signaling) to a certain terminal device 1.
  • the signaling dedicated to the terminal device 1 may also be referred to as dedicated RRC signaling.
  • the parameters of the upper layer unique to the serving cell may be transmitted by using common signaling to a plurality of terminal devices 1 in the serving cell or by using dedicated signaling to a certain terminal device 1.
  • UE-specific upper layer parameters may be transmitted to a terminal device 1 using dedicated signaling.
  • BCCH Broadcast Control CHannel
  • CCCH Common Control Channel
  • DCCH Dedicated Control Channel
  • BCCH is an upper layer channel used to transmit MIBs.
  • CCCH Common Control CHannel
  • DCCH is an upper layer channel used for transmitting common information in a plurality of terminal devices 1.
  • CCCH may be used, for example, for a terminal device 1 that is not RRC-connected.
  • the DCCH (Dedicated Control Channel) is an upper layer channel that is at least used for transmitting dedicated control information to the terminal device 1.
  • the DCCH may be used, for example, for the terminal device 1 connected by RRC.
  • BCCH in a logical channel may be mapped to BCH, DL-SCH, or UL-SCH in a transport channel.
  • CCCH in a logical channel may be mapped to DL-SCH or UL-SCH in a transport channel.
  • DCCH in a logical channel may be mapped to DL-SCH or UL-SCH in a transport channel.
  • UL-SCH in the transport channel may be mapped to PUSCH in the physical channel.
  • the DL-SCH in the transport channel may be mapped to the PDSCH in the physical channel.
  • BCH in the transport channel may be mapped to PBCH in the physical channel.
  • FIG. 11 is a schematic block diagram showing the configuration of the terminal device 1 according to one aspect of the present embodiment.
  • the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14.
  • the radio transmission / reception unit 10 includes at least a part or all of an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 includes at least a part or all of the medium access control layer processing unit 15 and the radio resource control layer processing unit 16.
  • the wireless transmission / reception unit 10 may also be referred to as a transmission unit, a reception unit, a physical layer processing unit, and / or a lower layer processing unit.
  • the upper layer processing unit 14 outputs the uplink data (TB, UL-SCH) generated by the user's operation or the like to the wireless transmission / reception unit 10.
  • the upper layer processing unit 14 processes the MAC layer, the packet data integration protocol (PDCP) layer, the wireless link control (RLC) layer, and the RRC layer.
  • PDCP packet data integration protocol
  • RLC wireless link control
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 processes the MAC layer.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 processes the RRC layer.
  • the wireless resource control layer processing unit 16 manages various setting information / parameters of its own device.
  • the radio resource control layer processing unit 16 sets various setting information / parameters based on the signal of the upper layer received from the base station apparatus 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on the information indicating various setting information / parameters received from the base station apparatus 3.
  • the parameter may be an upper layer parameter and / or an information element.
  • the wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, coding, and decoding.
  • the wireless transmission / reception unit 10 separates, demodulates, and decodes the received physical signal, and outputs the decoded information to the upper layer processing unit 14. These processes may be referred to as reception processes.
  • the wireless transmission / reception unit 10 generates a physical signal (uplink signal) by modulating, encoding, and generating a baseband signal (converting to a time continuous signal), and transmits the physical signal (uplink signal) to the base station device 3. These processes may be referred to as transmission processes.
  • the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down-conversion), and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to the CP from the converted digital signal, performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • FFT fast Fourier transform
  • the baseband unit 13 performs inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds CP to the generated OFDM symbol, generates a baseband digital signal, and generates a baseband digital signal. Convert to analog signal.
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT inverse fast Fourier transform
  • the RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the analog signal via the antenna unit 11. Further, the RF unit 12 amplifies the electric power. Further, the RF unit 12 may have a function of controlling the transmission power.
  • the RF unit 12 is also referred to as a transmission power control unit.
  • FIG. 12 is a schematic block diagram showing the configuration of the base station device 3 according to one aspect of the present embodiment.
  • the base station apparatus 3 includes a wireless transmission / reception unit 30 and an upper layer processing unit 34.
  • the radio transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
  • the upper layer processing unit 34 processes the MAC layer, PDCP layer, RLC layer, and RRC layer.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 processes the MAC layer.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 processes the RRC layer.
  • the wireless resource control layer processing unit 36 generates downlink data (TB, DL-SCH), system information, RRC message, MAC CE, etc., which are arranged in the PDSCH, or acquires them from a higher-level node and sends them to the wireless transmission / reception unit 30. Output. Further, the wireless resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1.
  • the wireless resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via a signal of the upper layer. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
  • the physical signal generated by the wireless transmission / reception unit 30 is transmitted to the terminal device 1 (that is, transmission processing is performed). Further, the wireless transmission / reception unit 30 performs reception processing of the received physical signal.
  • the medium access control layer processing unit 15 and / or 35 may be referred to as a MAC entity.
  • Each part of the terminal device 1 with reference numerals 10 to 16 may be configured as a circuit.
  • Each portion of the base station apparatus 3 with reference numerals 30 to 36 may be configured as a circuit.
  • a part or all of the parts of reference numerals 10 to 16 included in the terminal device 1 may be configured as a memory and a processor connected to the memory.
  • a part or all of the portions of reference numerals 30 to 36 included in the base station apparatus 3 may be configured as a memory and a processor connected to the memory.
  • Various aspects (operations, processes) according to the present embodiment may be realized (performed) in the memory included in the terminal device 1 and / or the base station device 3 and the processor connected to the memory.
  • FIG. 13 is a diagram showing an example of a channel access procedure (CAP) according to one aspect of the present embodiment.
  • the terminal device 1 or the base station device 3 performs energy detection before transmitting a predetermined physical signal, and carries out NR-U cell transmission (that is, NR-U carrier) or BWP (that is, NR-U BWP). ) Or channel (that is, NR-U channel), idle (clear, free, no communication, no specific physical signal transmitted, power (energy) of a specific physical signal for a predetermined period of time. If it is determined that the undetected, detected (measured) power (energy) or the sum of the powers does not exceed a predetermined threshold), the physical signal may be transmitted in the carrier or BWP or channel.
  • NR-U cell transmission that is, NR-U carrier
  • BWP that is, NR-U BWP
  • CCA Carrier Channel Assessment
  • channel measurement for confirming that the NR-U cell is idle for a predetermined period of time.
  • the predetermined period may be determined from the delay period T d , the counter N, and the CCA slot period T sl . It should be noted that when CCA is performed, not being an idol may be referred to as busy.
  • the CCA may be performed by the wireless transmission / reception unit 10 of the terminal device 1 and / or the wireless transmission / reception unit 30 of the base station device 3.
  • the channel access procedure may include performing CCA for a predetermined period of time before the terminal device 1 or the base station device 3 transmits a physical signal on a certain channel. Before sending such a physical signal, a procedure that performs energy detection to determine if the channel is idle, or a procedure that determines if the channel is idle and sends the physical signal if it is idle.
  • the procedure to be transmitted may be referred to as a channel access procedure and / or a CCA procedure and / or an LBT (Listen Before Talk) procedure.
  • the NR-U cell may be an NR-U carrier and / or an NR-U BWP and / or an NR-U channel, including at least a frequency band available for transmitting the physical signal of the NR-U.
  • NR-U cells and NR-U carriers and NR-U BWP and NR-U channels may be synonymous.
  • the NR-U cell may be paraphrased as an NR-U carrier, an NR-U BWP, and / or an NR-U channel.
  • the NR-U cell may be configured to include at least one of an NR-U carrier, an NR-U BWP, and an NR-U channel.
  • the NR cell may be configured to include at least one of an NR carrier, an NR BWP, and an NR channel.
  • the base station apparatus 3 and / or the terminal apparatus 1 can (capacity) perform a multicarrier access procedure (CAP for each of the multicarriers) in one NR-U operating band, 1
  • CAP multicarrier access procedure
  • a plurality of carriers (NR-U carriers) and / or a plurality of BWPs (NR-U BWPs) may be set for one NR-U cell.
  • the predetermined period is a period during which the counter N becomes 0 in the channel that first senses that it is idle in the delay period after detecting a signal other than the own device.
  • the terminal device 1 or the base station device 3 can transmit a signal after the value of the counter N becomes 0. If it is determined that the player is busy during the CCA slot period, the decrement of the counter N may be postponed.
  • the initial value N int of the counter N may be determined based on the value of the channel access priority class and the corresponding CW p (Contention Window) value (CWS: CW size). For example, the value of N int may be determined based on a randomly distributed random function between 0 and CW p values. Possible values of N int by the value of CW p is updated (value range) it may be enlarged.
  • the terminal device 1 or the base station device 3 sets the value of the counter N to N int when transmitting one or more physical signals in the NR-U cell.
  • the terminal device 1 or the base station device 3 sets the value of N to N-1 if it determines that the value is clear in one CCA slot period. That is, if the terminal device 1 or the base station device 3 is determined to be clear in one CCA slot period, only one value of the counter N may be decremented.
  • the terminal device 1 or the base station device 3 may stop the CCA during the CCA slot period. If this is not the case, that is, if the value of N is greater than 0, the terminal device 1 or base station device 3 continues to perform CCA for the CCA slot period until the value of N becomes 0. You may.
  • the terminal device 1 or the base station device 3 can perform CCA in the added CCA slot period, determine that it is idle, and transmit a physical signal if the value of N is 0. ..
  • the terminal device 1 or the base station device 3 may perform CCA until it is determined to be busy in the added delay period or idle in all the slots of the added delay period. .. If it is determined to be idle and the value of N is 0 in the added delay period, the terminal device 1 or the base station device 3 can transmit a physical signal. The terminal device 1 or the base station device 3 may continue the CCA if it determines that it is busy in the added delay period.
  • a channel access procedure in which the values of CAPC p and CW p are variable based on the set information and conditions is called a type 1 channel access procedure (type 1 CAP), and the value of CW p is always 0 or is always 0.
  • a channel access procedure that does not use the counter N corresponding to the value of CW p or that performs CCA only once before transmission may be referred to as a type 2 channel access procedure (type 2 CAP). That is, the type 1 channel access procedure is a channel access procedure in which the CCA period changes depending on the set CAPC value p or the CW p value updated based on the condition.
  • the type 2 channel access procedure is a channel access procedure that can perform CCA only once before transmitting a physical signal and can perform transmission if it is determined that the channel (frequency band) for transmitting the physical signal is idle. That is.
  • the term "before transmission” may include immediately before transmission. If the channel access procedure is not completed before the transmission of the physical signal, the terminal device 1 and / or the base station device 3 does not transmit the physical signal at the transmission timing, or even if the physical signal is postponed. Good.
  • a channel access procedure that does not perform CCA before transmission may be referred to as a type 3 channel access procedure (type 3 CAP). Whether it is type 2 CAP or type 3 CAP may be determined based on upper layer parameters.
  • FIG. 14 is a diagram showing an example of a channel access priority class (CAPC) and a CW adjustment procedure according to one aspect of the present embodiment.
  • CAC channel access priority class
  • the value p of CAPC is to indicate the number m p of CCA slot period T sl included in the delay time T d, the minimum and maximum values of CW, the maximum channel occupation time, acceptable values of CW p a (CWS) Used for.
  • the value p of the CAPC may be set according to the priority of the physical signal.
  • the value p of the CAPC may be included in the DCI format and shown.
  • Terminal device 1 before setting the N init to the value of the counter N, may adjust the value of CW for determining the value of N init.
  • the terminal device 1 may maintain the updated CW value for the random access procedure when the random access procedure is successfully completed.
  • the terminal device 1 may set the updated CW value to CW min for the random access procedure when the random access procedure is completed successfully.
  • CW min may be, for example, CW # 0 shown in FIG. 14, that is, an initial value of CW p corresponding to the value p of CAPC.
  • the value of the updated CW to set the CW min may be to update the value of CW is updated if it meets one or more predetermined conditions in CW min.
  • the value of the updated CW to set the CW min may be that re-sets the value of CW to CW min.
  • Terminal device 1 before setting the N init to the value of the counter N which corresponds to the CCA performed before sending Msg1, may adjust the value of CW for determining the value of N init.
  • the terminal device 1 may maintain the updated CW value when it considers that the reception of Msg2 is successful and / or when it considers that the reception of Msg4 is successful. Further, the terminal device 1 may set the updated CW value to CW min when it considers that the reception of Msg2 is successful and / or when it considers that the reception of Msg4 is successful. ..
  • adjusting the value of CW may mean increasing the value of CW p one step at a time from CW min to reaching CW max when a predetermined condition is satisfied. When it reaches CW max, it increases step by step from CW min . That is, adjusting the value of CW may mean updating the value of CW p . And updates the value of CW p is the value of CW p may be to one step larger value. For example, it may be changed from CW # 3 to CW # 4, or it may be changed from CW # n-1 to CW # n.
  • the terminal device 1 and / or the base station device 3 each time the terminal device 1 and / or the base station device 3 adjusts the CW value, the terminal device 1 and / or the base station device 3 sets the init value based on a random function uniformly distributed from 0 to the updated CW p value. You may decide.
  • the channel access priority class (CAPC) value p applied to the transmission of Msg1 may be determined based on system information, may be determined based on upper layer parameters, or may be associated with SSB. Good. For example, if the value p of CAPC corresponding to Msg1 is P, the value of N init is determined based on a random function uniformly distributed between 0 and CW # 0.
  • CAPC channel access priority class
  • the value p of CAPC may be set individually for each of PUSCH, PUCCH, and PRACH. Further, the CAPC value p may be set to a common value as a cell-specific upper layer parameter for PUSCH, PUCCH, and PRACH. Further, the value p of CAPC may be set as an individual upper layer parameter for each of PUSCH, PUCCH, and PRACH. Also, the CAPC value p for PUSCH may be included and shown in the DCI format used for PUSCH scheduling. Also, the CAPC value p for PUCCH may be included and shown in the DCI format including the PUCCH resource indicator field. Also, the CAPC value p for PRACH may be included and shown in the DCI format for PDCCH order.
  • the value p of CAPC with respect to PRACH may be determined according to the type of random access procedure.
  • the value p of CAPC for CBRA may be determined based on system information and / or upper layer parameters.
  • the value p of CAPC with respect to CFRA may be determined based on the upper layer parameter, or may be included in the DCI format corresponding to the PDCCH order and set.
  • whether the CAPC value p is based on upper layer parameters or DCI format fields may be determined based on system information and / or settings of upper layer parameters.
  • the type of channel access procedure for the PUCCH and / or the value p of the CAPC may be one or more dedicated to the DCI format used to schedule the PDSCH. Fields may be included and set.
  • the DCI format may include a PUCCH resource indicator field. That is, for the PUCCH resource indicated by the PUCCH resource indicator field, the type and / or CAPC value of the channel access procedure for the PUCCH may be used.
  • the type of the channel access procedure for PUCCH and / or the value p of CAPC is based on one or more upper layer parameters included in the PUCCH setting or SR setting. May be set.
  • the value p of CAPC may be determined for PUSCH and PUCCH in association with the information to be transmitted. For example, when UCI is included in PUSCH or PUCCH for transmission, the CAPC value p may be set individually according to the type (HARQ-ACK, SR, CSI, etc.) and combination of information contained in UCI.
  • the type HARQ-ACK, SR, CSI, etc.
  • CAPC value p is described, but the channel access procedure (CAP) type (type 1 CAP, type 2 CAP, that is, CAT (Channel Access Type)), CW value, and / or T.
  • CAP channel access procedure
  • type 1 CAP type 1 CAP
  • type 2 CAP that is, CAT (Channel Access Type)
  • CW value CW value
  • / or T T
  • the value of mcot may be set in the same manner.
  • CAT CAT1 may indicate a type 1 CAP
  • CAT 2 may indicate a type 2 CAP.
  • the following 8A to the following 8E are used to perform a channel access procedure. Part or all of may be included as fields respectively.
  • CAPC Channel access priority class
  • p8C Maximum channel occupied time TMcot 8D
  • CW value Maximum number of CCA slot periods m
  • some or all of 8A to 8E may be predetermined values, or may be determined based on the upper layer parameters for each.
  • the DCI format (1_0, 1_1) used for PDSCH scheduling includes a PUCCH resource indicator field in addition to some or all of the 8A to 8E, the channel access before transmission of the PUCCH to the PDSCH HARQ-ACK.
  • the procedure may be based on at least one of 8A to 8E included in the DCI format.
  • the received DCI format indicates a random access preamble resource allocation, that is, if the PDCCH order is received and the PDCCH order contains some or all of the 8A to 8E, then the random access preamble is used.
  • the channel access procedure before transmission may be performed based on a part or all of the above 8A to the above 8E included in the PDCCH order.
  • a part or all of the above 8A to 8E may be included in the PUCCH setting or SR setting. That is, when the channel access procedure is performed on the PUCCH including the SR, the parameters for the channel access procedure may be set based on the upper layer parameters. Further, when the channel access procedure is performed on the PUCCH including the SR, the parameters for the channel access procedure are transmitted from the base station device 3 to the terminal device 1 and set via the signal of the RRC layer. May be good.
  • the MAC entity of the terminal device 1 may include at least one HARQ entity for each serving cell. At least one HARQ entity can maintain many parallel HARQ processes. Each HARQ process may be associated with one HPID. The HARQ entity directs the HARQ information and the associated TB received in the DL-SCH to the corresponding HARQ process.
  • the number (maximum number) of DL HARQ processes that can be parallelized for each HARQ entity may be set based on the upper layer parameter (for example, RRC parameter), or the default value if the upper layer parameter is not received. It may be.
  • a dedicated broadcast HARQ process may be used for BCCH.
  • the broadcast HARQ process may be referred to as a broadcast process.
  • the HARQ process supports one TB when the physical layer is not configured for downlink spatial multiplexing.
  • the HARQ process also supports one or two TBs when the physical layer is configured for downlink spatial multiplexing.
  • the MAC entity of the terminal device 1 may provide the number of TB transmissions in the bundle of dynamic downlink assignments when the upper layer parameter pdsch-AggressionFactor with a value greater than 1 is set. ..
  • the bundling operation (HARQ-ACK bundling operation) relies on a HARQ entity to call (launch) the same HARQ process for each transmission that is part of the same bundle. After the initial transmission, the retransmission of HARQ that is one less than the value set by the pdsch-AggressionFactor (ie, pdsch-AggressionFactor-1) may continue within the bundle.
  • the MAC entity of terminal device 1 may assign one or more TBs received from the physical layer and associated HARQ information to the HARQ process indicated by the associated HARQ information, given that the downlink assignment is indicated. Good. Further, the MAC entity of the terminal device 1 may assign the received TB to the broadcast HARQ process if the downlink assignment is indicated to the broadcast HARQ process.
  • HARQ information associated with one or two TBs may be received from the HARQ entity.
  • the HARQ process (the HARQ process associated with an HPID), when provided with an NDI, is the value of the previously received transmission that the NDI corresponds to this TB. If toggled in comparison to (value of NDI associated with HPID contained in PDCCH), or the HARQ process corresponds to a broadcast process and this corresponds to the system information schedule indicated by the RRC. If it is the first received transmission to the TB, or if this is really the first received transmission to this TB (ie, there is no previous NDI for this TB (does not exist). ), New transmission), this transmission is regarded as a new transmission. If not, the HARQ process considers this transmission to be a retransmission.
  • the previously received transmission may be a transmission received in the past.
  • the transmission may be a TB transmitted from the base station apparatus 3.
  • the MAC entity attempts to decode the received data (data for the received TB).
  • the MAC entity also combines the physical layer with the data that received the latest data in the soft buffer for this TB, if this is a retransmission and the data for this TB has not yet been successfully decoded. Instruct to do and decode the combined data.
  • the MAC entity is HARQ if the data that the MAC entity tried to decode was successfully decoded for this TB, or if the data for this TB was previously successfully decoded. If the process is the same as the broadcast process, the decoded MAC PDU is transferred to the upper layer (RLC layer, PDCP layer, and / or RRC layer).
  • the MAC entity transfers the decoded MAC PDU to the disassembly and demultiplexing entity. If not, the MAC entity instructs the physical layer to replace the data that the MAC entity tried to decode with the data in the soft buffer for this TB.
  • the MAC entity if the HARQ process is associated with the transmission shown with TC-RNTI and the contention resolution is not yet successful, or if the HARQ process corresponds to the broadcast process, or When the timeIdententTime related to the TAG containing the serving cell to which HARQ feedback is transmitted stops or expires, it instructs the physical layer to generate an acknowledgedgement (s) of data in this TB.
  • the acknowledged element may be ACK or NACK.
  • the MAC entity of terminal device 1 and / or terminal device 1 is instructed to generate an acknowledgment (s) of data in this TB when this transmission is considered to be a retransmission in this HARQ process.
  • the physical layer of the terminal device 1 may update the value of CW used for N init if the type 1 channel access procedure is performed before the transmission of PUCCH or PUSCH including HARQ-ACK.
  • the MAC entity of terminal device 1 and / or terminal device 1 acknowledges the data acknowledgedgement (s) in this TB when this transmission is considered to be a new transmission in this HARQ process.
  • the value of CW used for init is the initial value of CW p . It may be set to a value or the CW value may not be updated (that is, the CW value may be maintained).
  • the physical layer of the terminal device 1 performs a type 2 channel access procedure before the transmission of PUCCH or PUSCH including HARQ-ACK, regardless of whether this transmission is a new transmission or a retransmission, HARQ If the CCA is performed only once before the transmission of the PUCCH or PUSCH containing -ACK and it is determined that the NR-U channel is idle, the PUCCH or PUSCH containing HARQ-ACK may be transmitted.
  • updating the CW value means that, for example, there are three types of CW allowable values that can be set: CW # 0, CW # 1, and CW # 2 (CW # 0 ⁇ CW # 1 ⁇ CW # 2). Then, when the value of CW is CW # 0, the value of CW is updated to CW # 1, which is one value higher. Further, updating the value of CW means updating the value of CW to CW # 2, which is one higher value when the value of CW is CW # 1. In addition, updating the CW value means that when the CW value is CW # 2 (CW max ) and there is no value one level higher than the CW value, it is set to CW # 0 (CW min ). It may include re-doing.
  • the physical layer may include at least one of a transmission unit, a reception unit, a wireless transmission / reception unit, and / or a measurement unit, and may be a physical layer processing unit.
  • the MAC entity may be a MAC layer or a MAC layer processing unit.
  • the MAC entity determines that the NDI in the PDCCH for its C-RNTI is toggled compared to the value in the previous transmission, it determines the NDI received in all downlink assignments in the PDCCH for its TC-RNTI. ignore.
  • the DCI format contains the HARQ process ID (HPID) and the NDI. For example, it is possible to determine whether the PDSCH transmission is a new transmission or a retransmission based on whether the NDI is toggled for the HPID. Further, if the DCI format includes a field indicating a PUCCH resource, it may be determined whether to adjust the CW value based on whether the NDI is toggled.
  • HPID HARQ process ID
  • the DCI format includes a field indicating a PUCCH resource, it may be determined whether to adjust the CW value based on whether the NDI is toggled.
  • the terminal device 1 sets the value of CW p corresponding to the value p of each CAPC to CW min , if the value of NDI for the HARQ process associated with the first HPID is toggled, otherwise. If (that is, if the value of the NDI is not toggled), the terminal device 1 may increase the value of CW p to the next higher tolerance (the value of CW) (ie, the terminal). The device 1 may update the value of CW p (value of CW)).
  • the terminal device 1 When the terminal device 1 generates a HARQ-ACK codebook for a HARQ process related to one or more HPIDs, the HARQ-ACK codebook if the value of NDI is not toggled for at least one HPID.
  • the value of CW for a type 1 channel access procedure performed prior to transmission of the PUCCH or PUSCH containing the above may be updated.
  • the base station apparatus 3 When transmitting the PDCCH including the DCI format used for scheduling the PDSCH in the NR-U cell and the PDSCH, the base station apparatus 3 performs a type 1 channel access procedure before transmitting the PDCCH and the PDSCH. If it is determined that the NR-U channel is idle for all CCA slot periods, then the PDCCH and the PDSCH are transmitted, and if it is determined that the NR-U channel is not idle, then the NR-U channel is all CCA. Transmission of the PDCCH and the PDSCH may be postponed until it can be determined to be idle during the slot period.
  • the base station apparatus 3 cannot successfully receive the PUCCH or PUSCH containing HARQ-ACK for the PDCCH even after a predetermined period of time has elapsed after transmitting the PDCCH and the PDSCH, the PDCCH and the PDCCH and the PDCCH are not received.
  • the PDSCH may be retransmitted.
  • the base station apparatus 3 retransmits the PDCCH and the PDSCH, the value of NDI for the HPID is transmitted without toggle. That is, the base station apparatus 3 may indicate that the PDSCH is retransmission by not toggle the value of NDI for the HPID.
  • the value of CW may be updated.
  • the base station apparatus 3 After transmitting the PDCCH and the PDSCH, the base station apparatus 3 successfully receives the PUCCH or PUSCH containing the HARQ-ACK for the PDSCH corresponding to the HARQ process related to the HPID within a predetermined period of time. If possible, the value of CW corresponding to the HARQ process for the HPID may be reset to CW min . That is, in order to toggle the value of NDI for the HARQ process associated with the HPID, if the base station apparatus 3 performs a channel access procedure before transmission of the PDCCH and the PDSCH, the value of the CW is set to CW min . You may set it.
  • the base station apparatus 3 can manage the HARQ process related to a plurality of HPIDs, the base station apparatus 3 may perform a channel access procedure and / or a CW adjustment procedure for each HPID.
  • the base station apparatus 3 When the base station apparatus 3 transmits the PDCCH and the PDSCH scheduled by the PDCCH, the HARQ-ACK corresponding to the PDSCH (that is, the PDSCH) within a predetermined period (for example, until a predetermined timer expires) If the PUCCH or PUSCH containing HARQ-ACK) for the HPID corresponding to is not successfully received, the base station apparatus 3 may update the PDCCH and the CW value for the PDSCH. If, instead of PUCCH, a PUSCH containing HARQ-ACK for the HPID corresponding to the PDSCH is successfully received, the base station apparatus 3 does not have to update the values of the PDCCH and the CW for the PDSCH. ..
  • the value of CW updated in connection with the operation may be set to CW min. ..
  • the terminal device 1 If the terminal device 1 has transmitted the HARQ-ACK for the received PDSCH via the PUCCH or the PUSCH and then receives the PDSCH having the same HPID and indicating retransmission, or the HARQ for the PDSCH. if the request for retransmission of -ACK, if performing type 1 channel access procedure before the transmission of the PUCCH including the HARQ-ACK for the PDSCH, also update the value of CW used in the N init Good. That is, each time a retransmit is indicated for a PDSCH with the same HPID, the terminal device 1 performs a type 1 channel access procedure prior to transmission of the PUCCH containing HARQ-ACK to the PDSCH, the corresponding N init. The value of CW used for may be updated.
  • NR-U DRS Discovery Reference Signal
  • the NR-U DRS may be detected so that the terminal device 1 can confirm whether the NR-U cell is activated or deactivated.
  • FIG. 15 is a diagram showing an example of frequency mapping (resource allocation, mapping to physical resources, frequency resource allocation type) according to the present embodiment.
  • FIG. 15A is an example (contiguous mapping, localized mapping) in which a plurality of PRBs are continuously arranged with respect to one terminal device 1 and / or a base station device 3.
  • the frequency mapping (frequency resource allocation type) of FIG. 15A may be used to realize low PAPR (Peak to Average Power Ratio) characteristics due to a single carrier such as a DFT-s-OFDM signal.
  • FIG. 15B is an example (interlaced mapping, distributed mapping) in which a plurality of PRBs are arranged at equal intervals or non-equal intervals with respect to one terminal device 1 and / or base station device 3.
  • the frequency mapping (frequency resource allocation type) in FIG. 15B shows that 80% or more of the transmission bandwidth (maximum transmission bandwidth, channel bandwidth, carrier bandwidth, BWP bandwidth) is used in the frequency domain with a small number of PRBs. It may be used to achieve this. That is, the frequency mapping of FIG. 15B may be performed in order to satisfy the OCB (Occupied Channel Bandwidth) requirement. Also, the number of interlaces may be determined according to the SCS. For example, if the SCS is 15 kHz, the number of interlaces may be 10 or 11. Further, when the SCS is 30 kHz, the number of interlaces may be 5 or 6. The number of interlaces may be the maximum number of multiplex terminals 1 in the frequency domain.
  • the number of interlaces may be the same regardless of the magnitude of the frequency bandwidth. For example, if the frequency bandwidth is 20 MHz or 40 MHz and the SCS is 15 kHz, the number of interlaces may be 10 or 11.
  • the base station device 3 and / or the terminal device 1 can transmit a physical channel and / or a physical signal by using one or a plurality of interlaces.
  • FIG. 16 shows a field (PUCCH starting position field, PSP field) indicating a PUCCH transmission start position (start position in the time domain, start position in the slot) in the time domain according to the present embodiment, and a PUCCH corresponding to each SCS. It is a figure which shows an example of a start position. 16 (a) and 16 (b) show an example of a field (2-bit field, 1-bit field) indicating a transmission start position of PUCCH.
  • the field is a field used to provide a gap (period) for the terminal device 1 to perform LBT by adjusting the transmission timing in the time symbol area.
  • the terminal device 1 can perform the LBT for 25 ⁇ s only once and then perform the transmission.
  • the value "10" When the value "10" is set in the field, it indicates that transmission is possible from (25 + TA (Timing Advance)) ⁇ s (us) in the time symbol area at the beginning of PUCCH.
  • the value "11" When the value "11" is set in the field, it indicates that the physical channel / physical signal can be transmitted from the next time symbol area. Further, depending on the value of SCS, the length of one time symbol region corresponding to SCS may be shorter than 25 ⁇ sec and / or (25 + TA) ⁇ sec. In such a case, if the value "11" is set in the field, the first time symbol region after 25 ⁇ sec or (25 + TA) ⁇ sec from the first time symbol region may be indicated.
  • FIG. 16C shows an example of the PUCCH start position of each value when the SCS is 15 kHz.
  • FIG. 16D shows an example of the PUCCH start position of each value when the SCS is 30 kHz.
  • the aspect of the present invention has taken the following measures. That is, the first aspect of the present invention is a terminal device, which is a receiving unit that receives RRC information related to a first PUCCH resource set and a second PUCCH resource set, and a PUCCH based on the RRC information. If the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is the same value, the transmission unit is provided with the transmission unit. Determines whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the DCI format.
  • the second aspect of the present invention is the terminal device of the first aspect, and the first information is information indicating a frequency resource allocation type with respect to the PUCCH resource.
  • the third aspect of the present invention is the terminal device of the first aspect, and the first information is information indicating the type of CAP performed before transmission of the PUCCH.
  • the fourth aspect of the present invention is the terminal device of the first aspect, and the first PUCCH resource set and the PUCCH resource set are related to the frequency resource allocation type of the PUCCH, respectively. Contains information to do.
  • a fifth aspect of the present invention is the terminal device of the first aspect, and the maximum UCI applied to each of the first PUCCH resource set and the second PUCCH resource set. If the number of information bits is different, the PUCCH resource of the first PUCCH resource set is used or the PUCCH resource of the second PUCCH resource set is used based on the number of UCI information bits transmitted by the PUCCH. Decide if.
  • a sixth aspect of the present invention is a method used for a terminal device, which comprises a step of receiving RRC information related to a first PUCCH resource set and a second PUCCH resource set, and the RRC. If the step of transmitting the PUCCH based on the information and the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set are the same value, DCI It includes a step of determining whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the format.
  • the seventh aspect of the present invention is the method of the sixth aspect, and the maximum UCI information applied to each of the first PUCCH resource set and the second PUCCH resource set. If the number of bits is different, whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the number of UCI information bits transmitted by the PUCCH. Includes steps to determine.
  • the base station device 3 and the program operating on the terminal device 1 control a CPU (Central Processing Unit) and the like so as to realize the functions of the above embodiment related to one aspect of the present invention. It may be a program (a program that makes a computer function). Then, the information handled by these devices is temporarily stored in RAM (Random Access Memory) at the time of processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). The CPU reads, corrects, and writes as necessary.
  • RAM Random Access Memory
  • ROMs Read Only Memory
  • HDD Hard Disk Drive
  • the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer.
  • the program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the "computer system” referred to here is a computer system built in the terminal device 1 or the base station device 3, and includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be one for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
  • the base station device 3 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station device 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network) and / or NG-RAN (NextGen RAN, NR RAN). Further, the base station apparatus 3 in the above-described embodiment may have a part or all of the functions of the upper node with respect to the eNodeB and / or the gNB.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • NG-RAN NextGen RAN, NR RAN
  • the base station apparatus 3 in the above-described embodiment may have a part or all of the functions of the upper node with respect to the eNodeB and / or the gNB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI which is typically an integrated circuit, or may be realized as a chipset.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
  • the terminal device is described as an example of the communication device, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors.
  • terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • One aspect of the present invention is used, for example, in a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.
  • Terminal equipment 3
  • Base station equipment 10 30
  • Wireless transmission / reception unit 11 31
  • Antenna unit 12 32
  • RF unit 13 33
  • Baseband unit 14 34
  • Upper layer Processing unit 15 35
  • Medium access control layer Processing unit 16 36

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention comprises a reception unit that receives RRC information pertaining to a first PUCCH resource set and a second PUCCH resource set and a transmission unit that transmits a PUCCH on the basis of the RRC information, wherein, if the maximum UCI information bit count applied to each of the first PUCCH resource set and the second PUCCH resource set have the same value, the transmission unit determines whether to use the PUCCH resources of the first PUCCH resource set or whether to use the PUCCH resources of the second PUCCH resource set on the basis of first information included in a DCI format.

Description

端末装置、および、方法Terminal device and method
 本発明は、端末装置、および、方法に関する。
 本願は、2019年8月9日に日本に出願された特願2019-147896号について優先権を主張し、その内容をここに援用する。
The present invention relates to terminal devices and methods.
The present application claims priority with respect to Japanese Patent Application No. 2019-147896 filed in Japan on August 9, 2019, the contents of which are incorporated herein by reference.
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「LTE(Long Term Evolution)」、または、「EUTRA(Evolved Universal Terrestrial Radio Access)」と称する。)が、第三世代パートナーシッププロジェクト(3GPP:3rd Generation Partnership Project)において検討されている。LTEにおいて、基地局装置はeNodeB(evolved NodeB)、端末装置はUE(User Equipment)とも称されてもよい。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。1つの基地局装置は1または複数のサービングセルを管理してもよい。 Cellular mobile communication radio access scheme and a radio network (. Hereinafter "LTE (Long Term Evolution)" or the "EUTRA (Evolved Universal Terrestrial Radio Access)" hereinafter) is, Third Generation Partnership Project (3GPP: 3 rd It is being considered in the Generation Partnership Project). In LTE, the base station device may be referred to as an eNodeB (evolved NodeB), and the terminal device may be referred to as a UE (User Equipment). LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape. One base station device may manage one or more serving cells.
 3GPPでは、国際電気通信連合(ITU)が策定する次世代移動通信システムの規格であるIMT(International Mobile Telecommunication)―2020に提案するため、次世代無線通信規格(NR: New Radio)の検討が行なわれている(非特許文献1)。NRは、単一の技術の枠組みにおいて、eMBB(enhanced Mobile BroadBand)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communication)の3つのシナリオを想定した要求を満たすことが求められている。 At 3GPP, the next-generation wireless communication standard (NR: New Radio) will be examined in order to propose to IMT (International Mobile Telecommunication) -2020, which is the standard for next-generation mobile communication systems established by the International Telecommunication Union (ITU). (Non-Patent Document 1). NR is required to meet the requirements assuming three scenarios of eMBB (enhanced Mobile BroadBand), mMTC (massive Machine Type Communication), and URLLC (Ultra Reliable and Low Latency Communication) within the framework of a single technology. There is.
 さらに、無免許周波数帯(Unlicensed band, unlicensed spectrum)にNR無線アクセス技術(NR-RAT: NR Radio Access Technology)を適用する無線通信方式および/または無線通信システムであるNR-U(NR-Unlicensed)の検討が行なわれている(非特許文献2)。 Furthermore, NR-U (NR-Unlicensed) is a wireless communication system and / or wireless communication system that applies NR wireless access technology (NR-RAT: NR Radio Access Technology) to unlicensed bands (Unlicensed spectrum). (Non-Patent Document 2).
 本発明の一態様は、効率的に通信を行う端末装置、該端末装置に用いられる方法を提供する。 One aspect of the present invention provides a terminal device for efficient communication and a method used for the terminal device.
 (1)本発明の第1の態様は、端末装置であって、第1のPUCCHリソースセットおよび第2のPUCCHリソースセットに関連するRRC情報を受信する受信部と、前記RRC情報に基づいて、PUCCHを送信する送信部と、を備え、前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が同じ値であるとすれば、前記送信部は、DCIフォーマットに含まれる第1の情報に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定する。 (1) The first aspect of the present invention is a terminal device, which is based on a receiving unit that receives RRC information related to a first PUCCH resource set and a second PUCCH resource set, and the RRC information. If the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is the same value, the transmission unit includes a transmission unit for transmitting the PUCCH. The unit determines whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the DCI format.
 (2)本発明の第2の態様は、端末装置に用いられる方法であって、第1のPUCCHリソースセットおよび第2のPUCCHリソースセットに関連するRRC情報を受信するステップと、前記RRC情報に基づいて、PUCCHを送信するステップと、前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が同じ値であるとすれば、DCIフォーマットに含まれる第1の情報に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定するステップと、を含む。 (2) A second aspect of the present invention is a method used for a terminal device, which includes a step of receiving RRC information related to a first PUCCH resource set and a second PUCCH resource set, and the RRC information. Based on this, if the step of transmitting the PUCCH and the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set are the same value, the DCI format is used. A step of determining whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information included is included.
 この発明の一態様によれば、端末装置は効率的に通信を行なうことができる。また、基地局装置は効率的に通信を行なうことができる。 According to one aspect of the present invention, the terminal device can efficiently communicate. In addition, the base station device can efficiently communicate.
本実施形態の一態様に係る無線通信システムの概念図である。It is a conceptual diagram of the wireless communication system which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るNslot symb、SCS設定μ、および、CP設定の関係を示す一例である。This is an example showing the relationship between the N slot symb , the SCS setting μ, and the CP setting according to one aspect of the present embodiment. 本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。It is the schematic which shows an example of the resource grid in the subframe which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るPUCCHフォーマットとPUCCHフォーマットの長さNPUCCH symbの関係の一例を示す図である。It is a figure which shows an example of the relationship between the PUCCH format and the length N PUCCH symb of the PUCCH format which concerns on one aspect of this embodiment. 本実施形態の一態様に係るPUCCH-ConfigおよびPUCCH-FormatConfigに含まれるパラメータの一例を示す図である。It is a figure which shows an example of the parameter included in PUCCH-Config and PUCCH-FormatConfig which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るPUCCH-ResourceSetおよびPUCCH-Resourceに含まれるパラメータの一例を示す図である。It is a figure which shows an example of the parameter included in PUCCH-ResourceSet and PUCCH-Resource which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るPUCCHフォーマット固有に設定可能なパラメータの一例を示す図である。It is a figure which shows an example of the parameter which can be set peculiarly to PUCCH format which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るPUCCHリソースセットおよびPUCCHリソースに含まれるパラメータの一例を示す図である。It is a figure which shows an example of the PUCCH resource set which concerns on one aspect of this Embodiment, and the parameter included in a PUCCH resource. 本実施形態の一態様に係るPUCCHリソースセットおよびPUCCHリソースに含まれるパラメータの別の一例を示す図である。It is a figure which shows another example of the PUCCH resource set and the parameter included in the PUCCH resource which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るDCIフォーマット1_0の一例を示す図である。It is a figure which shows an example of DCI format 1_0 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal apparatus 1 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 3 which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るチャネルアクセスプロシージャ(CAP)の一例を示す図である。It is a figure which shows an example of the channel access procedure (CAP) which concerns on one aspect of this Embodiment. 本実施形態の一態様に係るチャネルアクセス優先クラス(CAPC)およびCW調整プロシージャ(CWAP)の一例を示す図である。It is a figure which shows an example of the channel access priority class (CAPC) and CW adjustment procedure (CWAP) which concerns on one aspect of this Embodiment. 本実施形態に係る周波数マッピング(リソース割り当て、物理リソースへのマッピング、周波数リソース配置タイプ)の一例を示す図である。It is a figure which shows an example of the frequency mapping (resource allocation, mapping to a physical resource, frequency resource allocation type) which concerns on this embodiment. 本実施形態に係る時間領域におけるPUCCHの送信開始位置(時間領域の開始位置、スロット内の開始位置)を示すフィールド(PUCCH starting position field, PSP field)および各SCSに対応するPUCCHの開始位置の一例を示す図である。An example of a field (PUCCH starting position field, PSP field) indicating a PUCCH transmission start position (time domain start position, start position in a slot) in the time domain according to the present embodiment and a PUCCH start position corresponding to each SCS. It is a figure which shows.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、本実施形態の一態様に係る無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1とも称されてもよい。なお、基地局装置3は、通信装置、ノード、NB(NodeB)、eNB、gNB、ネットワーク装置(コアネットワーク、ゲートウェイ)、アクセスポイントの一部または全部を含んでもよい。また、端末装置1は、UE(User equipment)と称されてもよい。なお、eNBは、1または複数の端末装置1に向けてEUTRAユーザプレーンおよび制御プレーンプロトコルターミネーションを提供するノードであり、特にNG(Next Generation)インタフェースを介して第5世代コアネットワーク(5GC)に接続されるeNBをng-eNBと称する。また、gNBは、1または複数の端末装置1に向けてNRユーザプレーンおよび制御プレーンプロトコルターミネーションを提供するノードであり、NGインタフェースを介して5GCに接続される。 FIG. 1 is a conceptual diagram of a wireless communication system according to one aspect of the present embodiment. In FIG. 1, the wireless communication system includes terminal devices 1A to 1C and a base station device 3. Hereinafter, the terminal devices 1A to 1C may also be referred to as the terminal device 1. The base station device 3 may include a communication device, a node, an NB (NodeB), an eNB, a gNB, a network device (core network, a gateway), and a part or all of an access point. Further, the terminal device 1 may be referred to as a UE (User equipment). The eNB is a node that provides EUTRA user plane and control plane protocol termination for one or more terminal devices 1, and is particularly connected to a fifth generation core network (5GC) via an NG (Next Generation) interface. The eNB to be generated is referred to as ng-eNB. Further, the gNB is a node that provides NR user plane and control plane protocol termination toward one or more terminal devices 1, and is connected to 5GC via an NG interface.
 基地局装置3は、MCG(Master Cell Group)、および、SCG(Secondary Cell Group)の一方または両方を構成してもよい。MCGは、少なくともPCell(Primary Cell)を含んで構成されるサービングセルのグループである。また、SCGは、少なくともPSCell(Primary Secondary Cell)を含んで構成されるサービングセルのグループである。PCellは、初期接続に基づき与えられるサービングセルであってもよい。MCGは、1または複数のSCell(Secondary Cell)を含んで構成されてもよい。SCGは、1または複数のSCellを含んで構成されてもよい。PCellおよびPSCellは、SpCell(Special Cell)と称されてもよい。1つのSpCell、および、1または複数のSCellを用いて1つのCGを構成し、通信を行なうことをキャリアアグリゲーションと称してもよい。 The base station device 3 may constitute one or both of the MCG (Master Cell Group) and the SCG (Secondary Cell Group). An MCG is a group of serving cells composed of at least a PCell (PrimaryCell). Further, the SCG is a group of serving cells including at least PSCell (Primary Secondary Cell). The PCell may be a serving cell given based on the initial connection. The MCG may be configured to include one or more SCells (Secondary Cells). The SCG may be configured to include one or more SCells. PCell and PSCell may be referred to as SpCell (Special Cell). It may be referred to as carrier aggregation to construct one CG by using one SpCell and one or a plurality of SCells and perform communication.
 MCGは、EUTRA上の1または複数のサービングセルで構成されてもよい。また、SCGは、NR上の1または複数のサービングセルで構成されてもよい。また、MCGは、NR上の1または複数のサービングセルで構成されてもよい。また、SCGは、EUTRA上の1または複数のサービングセルで構成されてもよい。また、MCGおよびSCGは、EUTRAまたはNRのいずれか一方の1または複数のサービングセルで構成されてもよい。ここで、EUTRA上とは、EUTRA RAT(Radio Access Technology)が適用された、という意味を含んでもよい。また、NR上とはNR RATが適用された、という意味を含んでもよい。 The MCG may consist of one or more serving cells on the EUTRA. Further, the SCG may be composed of one or more serving cells on the NR. Further, the MCG may be composed of one or more serving cells on the NR. Further, the SCG may be composed of one or more serving cells on the EUTRA. Further, the MCG and SCG may be composed of one or more serving cells of either EUTRA or NR. Here, on EUTRA may mean that EUTRA RAT (Radio Access Technology) has been applied. In addition, NR may mean that NR RAT has been applied.
 MCGは、EUTRA上の1または複数のサービングセルで構成されてもよい。また、SCGは、NR-U上の1または複数のサービングセルで構成されてもよい。また、MCGは、NR上の1または複数のサービングセルで構成されてもよい。また、SCGは、NR-U上の1または複数のサービングセルで構成されてもよい。また、MCGは、EUTRAまたはNRまたはNR-Uのいずれか一方の1または複数のサービングセルで構成されてもよい。また、SCGは、EUTRAまたはNRまたはNR-Uのいずれか一方の1または複数のサービングセルで構成されてもよい。NR-Uは、周波数免許不要の周波数帯(オペレーティングバンド)でNR方式の通信/アクセス/サービスを行なうことを目的としている。NR-U通信が行なわれる周波数帯では、無線LAN(Wireless Local Area Network, Radio LAN)サービス(通信および/または方式)、WAS(Wireless Access Systems)サービス、IEEE802.11サービス、WiFiサービス、FWA(Fixed Wireless Access)サービス、ITS(Intelligent Transport Systems)サービス、LAA(Licensed Assisted Access)サービスを行なう端末装置および/またはアクセスポイントおよび/または基地局装置の通信が行なわれてもよい。一方で、NRは、周波数免許が必要な周波数帯でNR方式の通信/アクセス/サービスを行なうことを目的としている。また、LTEは、周波数免許が必要な周波数帯でLTE方式の通信/アクセス/サービスを行なうことを目的としている。また、LAAは、周波数免許が不要な周波数帯でLTE方式の通信/アクセス/サービスを行なうことを目的としている。無線通信事業者は、周波数免許によって割り当てられた周波数帯において、商用サービスを行なってもよい。 The MCG may consist of one or more serving cells on the EUTRA. Further, the SCG may be composed of one or more serving cells on the NR-U. Further, the MCG may be composed of one or more serving cells on the NR. Further, the SCG may be composed of one or more serving cells on the NR-U. Further, the MCG may be composed of one or more serving cells of either EUTRA or NR or NR-U. Further, the SCG may be composed of one or more serving cells of either EUTRA or NR or NR-U. The purpose of the NR-U is to perform NR communication / access / service in a frequency band (operating band) that does not require a frequency license. In the frequency band where NR-U communication is performed, wireless LAN (Wireless Local Area Network, Radio LAN) service (communication and / or method), WAS (Wireless Access Systems) service, IEEE802.11 service, WiFi service, FWA (Fixed) Communication may be performed between a terminal device and / or an access point and / or a base station device that performs a Wireless Access) service, an ITS (Intelligent Transport Systems) service, and a LAA (Licensed Assisted Access) service. On the other hand, NR aims to provide NR-type communication / access / service in a frequency band that requires a frequency license. In addition, LTE is intended to provide LTE communication / access / service in a frequency band that requires a frequency license. Further, LAA aims to perform LTE communication / access / service in a frequency band that does not require a frequency license. The wireless carrier may provide commercial services in the frequency band assigned by the frequency license.
 EUTRA、NR、NR-Uのそれぞれに対して適用されるオペレーティングバンド(キャリア周波数および周波数帯域幅)は個別に定義(規定)されてもよい。 The operating bands (carrier frequency and frequency bandwidth) applied to each of EUTRA, NR, and NR-U may be individually defined (specified).
 また、MCGは、第1の基地局装置によって構成されてもよい。また、SCGは、第2の基地局装置によって構成されてもよい。つまり、PCellは、第1の基地局装置によって構成されてもよい。PSCellは、第2の基地局装置によって構成されてもよい。第1の基地局装置および第2の基地局装置はそれぞれ、基地局装置3と同じであってもよい。 Further, the MCG may be configured by the first base station device. Further, the SCG may be configured by a second base station device. That is, the PCell may be configured by the first base station apparatus. The PSCell may be configured by a second base station device. The first base station apparatus and the second base station apparatus may be the same as the base station apparatus 3, respectively.
 以下、フレーム構成について説明する。 The frame configuration will be described below.
 本実施形態の一態様に係る無線通信システムにおいて、OFDM(Orthogonal Frequency Division Multiplex)が少なくとも用いられる。OFDMシンボルは、OFDMの時間領域の単位である。OFDMシンボルは、少なくとも1または複数のサブキャリア(subcarrier)を含む。OFDMシンボルは、ベースバンド信号生成において時間連続信号(time - continuous signal)に変換される。下りリンクにおいて、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplex)が少なくとも用いられる。上りリンクにおいて、CP-OFDM、または、DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplex)のいずれかが用いられる。DFT-s-OFDMは、CP-OFDMに対して変形プレコーディング(Transform precoding)が適用されることで与えられてもよい。 At least OFDM (Orthogonal Frequency Division Multiplex) is used in the wireless communication system according to one aspect of the present embodiment. The OFDM symbol is a unit of the OFDM time domain. The OFDM symbol comprises at least one or more subcarriers. The OFDM symbol is converted into a time-continuous signal in the baseband signal generation. In the downlink, CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplex) is at least used. In the uplink, either CP-OFDM or DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplex) is used. DFT-s-OFDM may be given by applying Transform precoding to CP-OFDM.
 サブキャリア間隔(SCS)は、サブキャリア間隔Δf=2μ・15kHzによって与えられてもよい。例えば、SCS設定μは0、1、2、3、4、および/または、5のいずれかに設定されてもよい。あるBWP(BandWidth Part)のために、SCS設定μが上位層のパラメータにより与えられてもよい。つまり、下りリンクおよび/または上りリンクに係らず、BWP毎(下りリンクBWP毎、上りリンクBWP毎)にμの値が設定されてもよい。 The subcarrier spacing (SCS) may be given by the subcarrier spacing Δf = 2 μ · 15 kHz. For example, the SCS setting μ may be set to any of 0, 1, 2, 3, 4, and / or 5. For a certain BWP (BandWidth Part), the SCS setting μ may be given by the parameters of the upper layer. That is, a value of μ may be set for each BWP (for each downlink BWP, for each uplink BWP) regardless of the downlink and / or the uplink.
 本実施形態の一態様に係る無線通信システムにおいて、時間領域の長さの表現のために時間単位Tが用いられる。時間単位Tは、T=1/(Δfmax・N)で与えられてもよい。Δfmaxは、本実施形態の一態様に係る無線通信システムにおいてサポートされるSCSの最大値であってもよい。Δfmaxは、Δfmax=480kHzであってもよい。Nは、N=4096であってもよい。定数κは、κ=Δfmax・N/(Δfreff,ref)=64である。Δfrefは、15kHzであってもよい。Nf,refは、2048であってもよい。 In the wireless communication system according to one aspect of the present embodiment, the time unit T c is used to represent the length of the time domain. The time unit T c may be given by T c = 1 / (Δf max · N f ). Δf max may be the maximum value of SCS supported in the wireless communication system according to one embodiment of the present embodiment. Δf max may be Δf max = 480 kHz. N f may be N f = 4096. The constant κ is κ = Δf max · N f / (Δf ref N f, ref ) = 64. Δf ref may be 15 kHz. N f and ref may be 2048.
 定数κは、参照SCSとTの関係を示す値であってもよい。定数κはサブフレームの長さのために用いられてもよい。定数κに少なくとも基づき、サブフレームに含まれるスロットの数が与えられてもよい。Δfrefは、参照SCSであり、Nf,refは、参照SCSに対応する値である。 The constant κ may be a value indicating the relationship between the reference SCS and T c . The constant κ may be used for the length of the subframe. The number of slots contained in the subframe may be given, at least based on the constant κ. Δf ref is a reference SCS, and N f and ref are values corresponding to the reference SCS.
 下りリンクにおける信号の送信、および/または、上りリンクにおける信号の送信は、10msのフレームにより構成される。フレームは、10個のサブフレームを含んで構成される。サブフレームの長さは1msである。フレームの長さは、SCSΔfに関わらず与えられてもよい。つまり、フレームの設定はμの値に係らず与えられてもよい。サブフレームの長さは、SCSΔfに関わらず与えられてもよい。つまり、サブフレームの設定はμに係らず与えられてもよい。 The transmission of the signal on the downlink and / or the transmission of the signal on the uplink is composed of a frame of 10 ms. The frame is composed of 10 subframes. The length of the subframe is 1 ms. The frame length may be given regardless of SCSΔf. That is, the frame setting may be given regardless of the value of μ. The length of the subframe may be given regardless of SCSΔf. That is, the subframe setting may be given regardless of μ.
 あるSCS設定μに対して、1つのサブフレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、スロット番号nμ は、サブフレームにおいて0からNsubframe,μ slot-1の範囲で昇順に与えられてもよい。SCS設定μに対して、1つのフレームに含まれるスロットの数とインデックスが与えられてもよい。また、スロット番号nμ s,fは、フレームにおいて0からNframe,μ slot-1の範囲で昇順に与えられてもよい。連続するNslot symb個のOFDMシンボルが1つのスロットに含まれてもよい。Nslot symbは、および/または、CP(Cyclic Prefix)設定の一部または全部に少なくとも基づき与えられてもよい。CP設定は、上位層のパラメータに少なくとも基づき与えられてもよい。CP設定は、専用RRCシグナリングに少なくとも基づき与えられてもよい。スロット番号は、スロットインデックスとも称されてもよい。 For a given SCS setting μ, the number and index of slots contained in one subframe may be given. For example, the slot number n mu s is from 0 to N subframe in a subframe may be given in ascending order in the range of mu slot -1. The number and index of slots contained in one frame may be given to the SCS setting μ. Further, the slot numbers n μ s and f may be given in ascending order in the range of 0 to N frame and μ slot -1 in the frame . One slot may contain consecutive N slot symbs of OFDM symbols. The N slot symb may be given at least based on some or all of the CP (Cyclic Prefix) settings. The CP setting may be given at least based on the parameters of the upper layer. CP settings may be given at least based on dedicated RRC signaling. The slot number may also be referred to as a slot index.
 図2は、本実施形態の一態様に係るNslot symb、SCS設定μ、および、CP設定の関係を示す一例である。図2Aにおいて、例えば、SCS設定μが2であり、CP設定がノーマルCP(NCP)である場合、Nslot symb=14、Nframe,μ slot=40、Nsubframe,μ slot=4である。また、図2Bにおいて、例えば、SCS設定μが2であり、CP設定が拡張CP(ECP)である場合、Nslot symb=12、Nframe,μ slot=40、Nsubframe,μ slot=4である。 FIG. 2 is an example showing the relationship between the N slot symb , the SCS setting μ, and the CP setting according to one aspect of the present embodiment. In FIG. 2A, for example, when the SCS setting μ is 2 and the CP setting is normal CP (NCP), N slot symb = 14, N frame, μ slot = 40, N subframe, μ slot = 4. Further, in FIG. 2B, for example, when the SCS setting μ is 2 and the CP setting is extended CP (ECP), N slot symb = 12, N frame, μ slot = 40, N subframe, μ slot = 4. is there.
 以下、本実施形態に係る物理リソースについて説明を行なう。 Hereinafter, the physical resources related to this embodiment will be described.
 アンテナポートは、1つのアンテナポートにおいてシンボルが伝達されるチャネルが、同一のアンテナポートにおいてその他のシンボルが伝達されるチャネルから推定できることによって定義される。1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性(large scale property)が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCL(Quasi Co-Located)であると称されてもよい。大規模特性は、チャネルの長区間特性を少なくとも含んでもよい。大規模特性は、遅延拡がり(delay spread)、ドップラー拡がり(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(average gain)、平均遅延(average delay)、および、ビームパラメータ(spatial Rx parameters)の一部または全部を少なくとも含んでもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する受信ビームと第2のアンテナポートに対して受信側が想定する受信ビームとが同一であることであってもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する送信ビームと第2のアンテナポートに対して受信側が想定する送信ビームとが同一であることであってもよい。端末装置1は、1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCLであることが想定されてもよい。2つのアンテナポートがQCLであることは、2つのアンテナポートがQCLであることが想定されることであってもよい。 An antenna port is defined by the fact that the channel through which a symbol is transmitted in one antenna port can be estimated from the channel in which another symbol is transmitted in the same antenna port. If the large scale property of the channel on which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port, the two antenna ports are QCL (Quasi Co-Located). ) May be referred to as. Large scale characteristics may include at least the long interval characteristics of the channel. Large-scale characteristics are delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average gain (average gain), average delay (average delay), and beam parameters (spatial Rx parameters). It may include at least some or all. The fact that the first antenna port and the second antenna port are QCL with respect to the beam parameters means that the receiving beam assumed by the receiving side with respect to the first antenna port and the receiving beam assumed by the receiving side with respect to the second antenna port. May be the same. The fact that the first antenna port and the second antenna port are QCL in terms of beam parameters means that the transmitting beam assumed by the receiving side with respect to the first antenna port and the transmitting beam assumed by the receiving side with respect to the second antenna port. May be the same. The terminal device 1 assumes that the two antenna ports are QCLs when the large-scale characteristics of the channel through which the symbol is transmitted in one antenna port can be estimated from the channel in which the symbol is transmitted in the other antenna port. May be done. The fact that the two antenna ports are QCLs may mean that the two antenna ports are QCLs.
 SCS設定μとキャリアのセットのために、Nsize,μ grid,xRB sc個のサブキャリアとNsubframe,μ symb個のOFDMシンボルで定義されるリソースグリッドが与えられる。Nsize,μ grid,xは、キャリアxのためのSCS設定μのために与えられるリソースブロック数を示してもよい。Nsize,μ grid,xは、キャリアの帯域幅を示してもよい。Nsize,μ grid,xは、上位層のパラメータCarrierBandwidthの値に対応してもよい。キャリアxは下りリンクキャリアまたは上りリンクキャリアのいずれかを示してもよい。つまり、xは“DL”、または、“UL”のいずれかであってもよい。NRB scは、1つのリソースブロックに含まれるサブキャリア数を示してもよい。NRB scは12であってもよい。アンテナポートpごとに、および/または、SCS設定μごとに、および/または、送信方向(Transmission direction)の設定ごとに少なくとも1つのリソースグリッドが与えられてもよい。送信方向は、少なくとも下りリンク(DL: DownLink)および上りリンク(UL: UpLink)を含む。以下、アンテナポートp、SCS設定μ、および、送信方向の設定の一部または全部を少なくとも含むパラメータのセットは、第1の無線パラメータセットとも称されてもよい。つまり、リソースグリッドは、第1の無線パラメータセット毎に1つ与えられてもよい。なお、無線パラメータセットは、1または複数の無線パラメータ(物理層パラメータまたは上位層パラメータ)を含む1または複数のセットであってもよい。 For SCS set mu and sets of carriers, N size, μ grid, x N RB sc subcarriers and N subframe, a resource grid defined by mu symb OFDM symbols is given. N size, μ grid, x may indicate the number of resource blocks given for the SCS setting μ for carrier x. N size, μ grid, x may indicate the bandwidth of the carrier. N size, μ grid, and x may correspond to the value of the parameter CarrierBandwith of the upper layer. The carrier x may indicate either a downlink carrier or an uplink carrier. That is, x may be either "DL" or "UL". NRB sc may indicate the number of subcarriers contained in one resource block. NRB sc may be 12. At least one resource grid may be provided for each antenna port p and / or for each SCS setting μ and / or for each transmission direction setting. The transmission direction includes at least a downlink (DL: DownLink) and an uplink (UL: UpLink). Hereinafter, a set of parameters including at least a part or all of the antenna port p, the SCS setting μ, and the setting of the transmission direction may also be referred to as a first radio parameter set. That is, one resource grid may be given for each first set of radio parameters. The radio parameter set may be one or more sets including one or more radio parameters (physical layer parameters or upper layer parameters).
 下りリンクにおいて、サービングセルに含まれるキャリアを下りリンクキャリア(または、下りリンクコンポーネントキャリア)と称する。上りリンクにおいて、サービングセルに含まれるキャリアを上りリンクキャリア(上りリンクコンポーネントキャリア)と称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリア(または、キャリア)と称してもよい。 In the downlink, the carrier included in the serving cell is referred to as a downlink carrier (or downlink component carrier). In the uplink, the carrier included in the serving cell is referred to as an uplink carrier (uplink component carrier). The downlink component carrier and the uplink component carrier may be collectively referred to as a component carrier (or carrier).
 サービングセルのタイプは、PCell、PSCell、および、SCellのいずれかであってもよい。PCellは、初期接続においてSSB(Synchronization signal/Physical broadcast channel block)から取得されるセルID(物理層セルID、物理セルID)に少なくとも基づき識別されるサービングセルであってもよい。SCellは、キャリアアグリゲーションにおいて用いられるサービングセルであってもよい。SCellは、専用RRCシグナリングに少なくとも基づき与えられるサービングセルであってもよい。 The type of serving cell may be any of PCell, PSCell, and SCell. The PCell may be a serving cell that is identified at least based on the cell ID (physical layer cell ID, physical cell ID) acquired from the SSB (Synchronization signal / Physical broadcast channel block) in the initial connection. SCell may be a serving cell used in carrier aggregation. The SCell may be a serving cell given at least based on dedicated RRC signaling.
 第1の無線パラメータセット毎に与えられるリソースグリッドの中の各要素は、リソースエレメント(RE)と称されてもよい。リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。ある第1の無線パラメータセットのために、リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。周波数領域のインデックスkscと時間領域のインデックスlsymにより特定されるリソースエレメントは、リソースエレメント(ksc、lsym)とも称されてもよい。周波数領域のインデックスkscは、0からNμ RBRB sc-1のいずれかの値を示す。Nμ RBはSCS設定μのために与えられるリソースブロック数であってもよい。Nμ RBは、Nsize,μ grid,xであってもよい。NRB scは、リソースブロックに含まれるサブキャリア数であり、NRB sc=12である。周波数領域のインデックスkscは、サブキャリアインデックスkscに対応してもよい。時間領域のインデックスlsymは、OFDMシンボルインデックスlsymに対応してもよい。1または複数のリソースエレメントは、物理リソースおよび複素値(複素値変調シンボル)に対応してもよい。物理リソースおよび/または複素値に対応する1または複数のリソースエレメントのそれぞれに対して、1または複数の情報ビット(制御情報やトランスポートブロック、上位層パラメータのための情報ビット)がマップされてもよい。 Each element in the resource grid given for each first radio parameter set may be referred to as a resource element (RE). The resource element is specified by the frequency domain index k sc and the time domain index l sym . For a first set of radio parameters, resource elements are identified by a frequency domain index k sc and a time domain index l sym . The resource element specified by the frequency domain index k sc and the time domain index l sym may also be referred to as a resource element (k sc , l sym ). The frequency domain index k sc indicates any value from 0 to N μ RB N RB sc -1. N μ RB may be the number of resource blocks given for the SCS setting μ. N μ RB may be N size, μ grid, x . N RB sc is the number of subcarriers included in the resource block, and N RB sc = 12. The frequency domain index k sc may correspond to the subcarrier index k sc . The time domain index l sym may correspond to the OFDM symbol index l sym . One or more resource elements may correspond to physical resources and complex values (complex value modulation symbols). Even if one or more information bits (control information, transport blocks, information bits for upper layer parameters) are mapped to each of one or more resource elements corresponding to physical resources and / or complex values. Good.
 図3は、本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。図3のリソースグリッドにおいて、横軸は時間領域のインデックスlsymであり、縦軸は周波数領域のインデックスkscである。1つのサブフレームにおいて、リソースグリッドの周波数領域はNμ RBRB sc個のサブキャリアを含む。1つのサブフレームにおいて、リソースグリッドの時間領域は14・2μ個のOFDMシンボルを含んでもよい。1つのリソースブロックは、NRB sc個のサブキャリアを含んで構成される。リソースブロックの時間領域は、1OFDMシンボルに対応してもよい。リソースブロックの時間領域は、14OFDMシンボルに対応してもよい。リソースブロックの時間領域は、1または複数のスロットに対応してもよい。リソースブロックの時間領域は、1つのサブフレームに対応してもよい。 FIG. 3 is a schematic view showing an example of a resource grid in the subframe according to one aspect of the present embodiment. In the resource grid of FIG. 3, the horizontal axis is the time domain index l sym , and the vertical axis is the frequency domain index k sc . In one subframe, the frequency domain of the resource grid contains N μ RB N RB sc subcarriers. In one subframe, the time domain of the resource grid may contain 14.2 μ OFDM symbols. One resource block is configured to include N RB sc subcarriers. The time domain of the resource block may correspond to a 1 OFDM symbol. The time domain of the resource block may correspond to 14 OFDM symbols. The time domain of the resource block may correspond to one or more slots. The time domain of the resource block may correspond to one subframe.
 端末装置1は、リソースグリッドのサブセットのみを用いて送受信を行うことが指示されてもよい。リソースグリッドのサブセットは、BWPとも呼称され、BWPは上位層のパラメータ、および/または、DCIの一部または全部に少なくとも基づき与えられてもよい。BWPをCBP(Carrier Bandwidth Part)とも称してもよい。端末装置1は、リソースグリッドのすべてのセットを用いて送受信を行なうことが指示されなくてもよい。端末装置1は、リソースグリッド内の一部の周波数リソースを用いて送受信を行なうことが指示されてもよい。1つのBWPは、周波数領域における複数のリソースブロックから構成されてもよい。1つのBWPは、周波数領域において連続する複数のリソースブロックから構成されてもよい。下りリンクキャリアに対して設定されるBWPは、下りリンクBWPとも称されてもよい。上りリンクキャリアに対して設定されるBWPは、上りリンクBWPとも称されてもよい。BWPは、キャリアの帯域のサブセット(キャリアにおける周波数領域のサブセット)であってもよい。 The terminal device 1 may be instructed to perform transmission / reception using only a subset of the resource grid. A subset of the resource grid, also referred to as BWP, may be given based on at least some or all of the upper layer parameters and / or DCI. BWP may also be referred to as CBP (Carrier Bandwidth Part). The terminal device 1 may not be instructed to perform transmission / reception using the entire set of resource grids. The terminal device 1 may be instructed to perform transmission / reception using some frequency resources in the resource grid. One BWP may be composed of a plurality of resource blocks in the frequency domain. One BWP may be composed of a plurality of continuous resource blocks in the frequency domain. The BWP set for the downlink carrier may also be referred to as a downlink BWP. The BWP set for the uplink carrier may also be referred to as an uplink BWP. The BWP may be a subset of the carrier's band (a subset of the frequency domain in the carrier).
 サービングセルのそれぞれに対して1または複数の下りリンクBWPが設定されてもよい。サービングセルのそれぞれに対して1または複数の上りリンクBWPが設定されてもよい。 One or more downlink BWPs may be set for each of the serving cells. One or more uplink BWPs may be set for each of the serving cells.
 サービングセルに対して設定される1または複数の下りリンクBWPのうち、1つの下りリンクBWPがアクティブ下りリンクBWPに設定されてもよい。下りリンクのBWPスイッチは、1つのアクティブ下りリンクBWPをディアクティベート(deactivate)し、該1つのアクティブ下りリンクBWP以外のインアクティブ下りリンクBWPをアクティベート(activate)するために用いられてもよい。下りリンクBWPのスイッチングは、下りリンク制御情報に含まれるBWPフィールドにより制御されてもよい。下りリンクBWPのスイッチングは、上位層のパラメータに基づき制御されてもよい。 Of one or more downlink BWPs set for the serving cell, one downlink BWP may be set as the active downlink BWP. The downlink BWP switch may be used to deactivate one active downlink BWP and activate an inactive downlink BWP other than the one active downlink BWP. The switching of the downlink BWP may be controlled by the BWP field included in the downlink control information. The switching of the downlink BWP may be controlled based on the parameters of the upper layer.
 アクティブ下りリンクBWPにおいて、DL-SCHが受信されてもよい。アクティブ下りリンクBWPにおいて、PDCCHがモニタされてもよい。アクティブ下りリンクBWPにおいて、PDSCHが受信されてもよい。 DL-SCH may be received in the active downlink BWP. PDCCH may be monitored in the active downlink BWP. PDSCH may be received in the active downlink BWP.
 インアクティブ下りリンクBWPにおいて、DL-SCHが受信されなくてもよい。インアクティブ下りリンクBWPにおいて、PDCCHがモニタされなくてもよい。インアクティブ下りリンクBWPのためのCSIは報告されなくてもよい。 DL-SCH may not be received in the inactive downlink BWP. The PDCCH does not have to be monitored in the inactive downlink BWP. The CSI for inactive downlink BWP does not have to be reported.
 サービングセルに対して設定される1または複数の下りリンクBWPのうち、2つ、または、それよりも多い下りリンクBWPがアクティブ下りリンクBWPに設定されなくてもよい。 Of the one or more downlink BWPs set for the serving cell, two or more downlink BWPs need not be set as the active downlink BWP.
 サービングセルに対して設定される1または複数の上りリンクBWPのうち、1つの上りリンクBWPがアクティブ上りリンクBWPに設定されてもよい。上りリンクのBWPスイッチは、1つのアクティブ上りリンクBWPをディアクティベート(deactivate)し、該1つのアクティブ上りリンクBWP以外のインアクティブ上りリンクBWPをアクティベート(activate)するために用いられる。上りリンクBWPのスイッチングは、下りリンク制御情報に含まれるBWPフィールドにより制御されてもよい。上りリンクBWPのスイッチングは、上位層のパラメータに基づき制御されてもよい。 Of one or more uplink BWPs set for the serving cell, one uplink BWP may be set as the active uplink BWP. The uplink BWP switch is used to deactivate one active uplink BWP and activate an inactive uplink BWP other than the one active uplink BWP. The switching of the uplink BWP may be controlled by the BWP field included in the downlink control information. Uplink BWP switching may be controlled based on upper layer parameters.
 アクティブ上りリンクBWPにおいて、UL-SCHが送信されてもよい。アクティブ上りリンクBWPにおいて、PUCCHが送信されてもよい。アクティブ上りリンクBWPにおいて、PRACHが送信されてもよい。アクティブ上りリンクBWPにおいて、SRSが送信されてもよい。 UL-SCH may be transmitted in the active uplink BWP. PUCCH may be transmitted in the active uplink BWP. PRACH may be transmitted in the active uplink BWP. SRS may be transmitted in the active uplink BWP.
 インアクティブ上りリンクBWPにおいて、UL-SCHが送信されなくてもよい。インアクティブ上りリンクBWPにおいて、PUCCHが送信されなくてもよい。インアクティブ上りリンクBWPにおいて、PRACHが送信されなくてもよい。インアクティブ上りリンクBWPにおいて、SRSが送信されなくてもよい。 UL-SCH does not have to be transmitted in the inactive uplink BWP. In the inactive uplink BWP, PUCCH may not be transmitted. In the inactive uplink BWP, PRACH may not be transmitted. In the inactive uplink BWP, SRS does not have to be transmitted.
 1つのサービングセルに対して設定される1または複数の上りリンクBWPのうち、2つまたはそれよりも多い上りリンクBWPがアクティブ上りリンクBWPに設定されなくてもよい。つまり、上りリンクBWPを含む該サービングセルに対して、アクティブ上りリンクBWPは少なくとも1つだけあればよい。 Of one or more uplink BWPs set for one serving cell, two or more uplink BWPs need not be set as active uplink BWPs. That is, for the serving cell containing the uplink BWP, only one active uplink BWP is required.
 上位層のパラメータは、上位層の信号に含まれるパラメータである。上位層の信号は、RRC(Radio Resource Control)シグナリングであってもよいし、MAC CE(Medium Access Control Control Element)であってもよい。ここで、上位層の信号は、RRC層の信号であってもよいし、MAC層の信号であってもよい。上位層の信号は、物理層よりも上位の層の信号であってもよい。なお、RRC層の信号によって与えられる上位層パラメータは、基地局装置3から端末装置1に通知され、設定されてもよい。RRC層の信号によって与えられる上位層パラメータは、RRCパラメータやRRC情報要素(IE)と称されてもよい。 The parameters of the upper layer are the parameters included in the signal of the upper layer. The upper layer signal may be RRC (Radio Resource Control) signaling or MAC CE (Medium Access Control Control Element). Here, the signal of the upper layer may be a signal of the RRC layer or a signal of the MAC layer. The signal of the upper layer may be a signal of a layer higher than the physical layer. The upper layer parameter given by the signal of the RRC layer may be notified from the base station device 3 to the terminal device 1 and set. The upper layer parameters given by the signals of the RRC layer may be referred to as RRC parameters or RRC information elements (IE).
 上位層の信号は、共通RRCシグナリング(common RRC signaling)であってもよい。共通RRCシグナリングは、以下のC1からC3の特徴のうち、一部または全部を少なくとも備えてもよい。C1)BCCHロジカルチャネル、または、CCCHロジカルチャネルにマップされるC2)ReconfigurationWithSync情報要素を少なくとも含むC3)PBCHにマップされる The signal of the upper layer may be common RRC signaling. The common RRC signaling may include at least some or all of the following features C1 to C3. C1) BCCH logical channel, or C2) mapped to CCCH logical channel C3) Mapped to PBCH containing at least the ReconfigurationWithSync information element
 ReconfigurationWithSync情報要素は、サービングセルにおいて共通に用いられる設定を示す情報を含んでもよい。サービングセルにおいて共通に用いられる設定は、PRACHの設定を少なくとも含んでもよい。該PRACHの設定は、1または複数のランダムアクセスプリアンブルインデックスを少なくとも示してもよい。該PRACHの設定は、PRACHの時間/周波数リソースを少なくとも示してもよい。 The ReconfigurationWithSync information element may include information indicating settings commonly used in the serving cell. The settings commonly used in the serving cell may include at least the PRACH setting. The PRACH setting may indicate at least one or more random access preamble indexes. The PRACH setting may indicate at least the PRACH time / frequency resources.
 共通RRCシグナリングは、共通RRCパラメータを少なくとも含んでもよい。共通RRCパラメータは、サービングセル内において共通に用いられる(Cell-specific)パラメータであってもよい。 The common RRC signaling may include at least the common RRC parameters. The common RRC parameter may be a Cell-specific parameter commonly used within the serving cell.
 上位層の信号は、専用RRCシグナリング(dedicated RRC signaling)であってもよい。専用RRCシグナリングは、以下のD1からD2の特徴のうち、一部または全部を少なくとも備えてもよい。
D1)DCCHロジカルチャネルにマップされる
D2)ReconfigurationWithSync情報要素を含まない
The signal of the upper layer may be dedicated RRC signaling. Dedicated RRC signaling may include at least some or all of the following features D1 to D2.
D1) DCCH Mapped to a logical channel D2) Does not include ReconfigurationWithSync information elements
 例えば、MIB(Master Information Block)、および、SIB(System Information Block)は共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、かつ、ReconfigurationWithSync情報要素を少なくとも含む上位層のメッセージは、共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、かつ、ReconfigurationWithSync情報要素を含まない上位層のメッセージは、専用RRCシグナリングに含まれてもよい。なお、MIBおよびSIBをまとめてシステム情報と称してもよい。 For example, MIB (Master Information Block) and SIB (System Information Block) may be included in the common RRC signaling. In addition, upper layer messages that are mapped to DCCH logical channels and that include at least the ReconnectionWithSync information element may be included in the common RRC signaling. Further, the upper layer message that is mapped to the DCCH logical channel and does not include the ReconnectionWithSync information element may be included in the dedicated RRC signaling. The MIB and SIB may be collectively referred to as system information.
 なお、1または複数の上位層パラメータを含む上位層パラメータは、情報要素(IE)と称されてもよい。また、1または複数の上位層パラメータ、および/または、1または複数のIEを含む上位層パラメータおよび/またはIEは、メッセージ(上位層のメッセージ、RRCメッセージ)や情報ブロック(IB)、システム情報と称されてもよい。 Note that the upper layer parameter including one or more upper layer parameters may be referred to as an information element (IE). In addition, one or more upper layer parameters and / or upper layer parameters including one or more IEs and / or IEs include messages (upper layer messages, RRC messages), information blocks (IB), and system information. May be referred to.
 SIBは、SSBの時間インデックスを少なくとも示してもよい。SIBは、PRACHリソースに関連する情報を少なくとも含んでもよい。SIBは、初期接続の設定に関連する情報を少なくとも含んでもよい。 The SIB may at least indicate the time index of the SSB. The SIB may include at least information related to the PRACH resource. The SIB may contain at least information related to the initial connection settings.
 ReconfigurationWithSync情報要素は、PRACHリソースに関連する情報を少なくとも含んでもよい。ReconfigurationWithSync情報要素は、初期接続の設定に関連する情報を少なくとも含んでもよい。 The ReconfigurationWithSync information element may include at least information related to the PRACH resource. The ReconnectionWithSync information element may include at least information related to the initial connection settings.
 専用RRCシグナリングは、専用RRCパラメータを少なくとも含んでもよい。専用RRCパラメータは、端末装置1に専用に用いられる(UE-specific)パラメータであってもよい。専用RRCシグナリングは、共通RRCパラメータを少なくとも含んでもよい。 Dedicated RRC signaling may include at least dedicated RRC parameters. The dedicated RRC parameter may be a (UE-specific) parameter dedicated to the terminal device 1. Dedicated RRC signaling may include at least common RRC parameters.
 共通RRCパラメータおよび専用RRCパラメータは、上位層のパラメータとも称されてもよい。 The common RRC parameter and the dedicated RRC parameter may also be referred to as upper layer parameters.
 以下、本実施形態の種々の態様に係る物理チャネルおよび物理シグナルを説明する。 Hereinafter, physical channels and physical signals according to various aspects of the present embodiment will be described.
 上りリンク物理チャネルは、上位層において発生する情報を運ぶリソースエレメントのセットに対応してもよい。上りリンク物理チャネルは、上りリンクキャリアにおいて用いられる物理チャネルである。本実施形態の一態様に係る無線通信システムにおいて、少なくとも下記の一部または全部の上りリンク物理チャネルが用いられる。
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
The uplink physical channel may correspond to a set of resource elements that carry information that occurs in the upper layers. The uplink physical channel is a physical channel used in the uplink carrier. In the wireless communication system according to one aspect of the present embodiment, at least some or all of the following uplink physical channels are used.
・ PUCCH (Physical Uplink Control CHannel)
・ PUSCH (Physical Uplink Shared CHannel)
・ PRACH (Physical Random Access CHannel)
 PUCCHは、上りリンク制御情報(UCI)を送信するために用いられてもよい。上りリンク制御情報は、チャネル状態情報(CSI)、スケジューリングリクエスト(SR)、トランスポートブロック(TB)に対応するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)情報の一部または全部を含む。なお、TBは、MAC PDU(Medium Access Control Protocol Data Unit)、DL-SCH(Downlink-Shared Channel)やPDSCH(Physical Downlink Shared Channel)と称されてもよい。 PUCCH may be used to transmit uplink control information (UCI). The uplink control information includes a part or all of HARQ-ACK (Hybrid Automatic Repeat request ACK knowledgement) information corresponding to the channel state information (CSI), scheduling request (SR), and transport block (TB). The TB may be referred to as MAC PDU (Medium Access Control Protocol Data Unit), DL-SCH (Downlink-Shared Channel), or PDSCH (Physical Downlink Shared Channel).
 PUCCHには1または複数の種類の上りリンク制御情報が多重されてもよい。該多重されたPUCCHは送信されてもよい。つまり、PUCCHには、複数のHARQ-ACKが多重されてもよいし、複数のCSIが多重されてもよいし、複数のSRが多重されてもよいし、HARQ-ACKとCSIが多重されてもよいし、HARQ-ACKとSRが多重されてもよいし、他のUCIの種類と多重されてもよい。 One or more types of uplink control information may be multiplexed on the PUCCH. The multiplexed PUCCH may be transmitted. That is, a plurality of HARQ-ACKs may be multiplexed, a plurality of CSIs may be multiplexed, a plurality of SRs may be multiplexed, and HARQ-ACK and CSI may be multiplexed in the PUCCH. HARQ-ACK and SR may be multiplexed, or may be multiplexed with other UCI types.
 HARQ-ACK情報は、TBに対応するHARQ-ACKビットを少なくとも含んでもよい。HARQ-ACKビットは、TBに対応するACK(acknowledgement)またはNACK(negative-acknowledgement)を示してもよい。ACKは、該TBの復号が成功裏に完了していることを示す値であってもよい。NACKは、該TBの復号が成功裏に完了していないことを示す値であってもよい。HARQ-ACK情報は、1または複数のHARQ-ACKビットを含むHARQ-ACKコードブックを少なくとも1つ含んでもよい。HARQ-ACKビットが1または複数のTBに対応することは、HARQ-ACKビットが該1または複数のTBを含むPDSCHに対応することであってもよい。 The HARQ-ACK information may include at least the HARQ-ACK bit corresponding to TB. The HARQ-ACK bit may indicate ACK (acknowledgement) or NACK (negative-acknowledgement) corresponding to TB. ACK may be a value indicating that the decoding of the TB has been successfully completed. NACK may be a value indicating that the decoding of the TB has not been completed successfully. The HARQ-ACK information may include at least one HARQ-ACK codebook containing one or more HARQ-ACK bits. The fact that the HARQ-ACK bit corresponds to one or more TBs may mean that the HARQ-ACK bit corresponds to a PDSCH containing the one or more TBs.
 HARQ-ACKビットは、TBに含まれる1つのCBG(Code Block Group)に対応するACKまたはNACKを示してもよい。HARQ-ACKは、HARQフィードバック、HARQ情報、HARQ制御情報とも称されてもよい。 The HARQ-ACK bit may indicate ACK or NACK corresponding to one CBG (Code Block Group) included in TB. HARQ-ACK may also be referred to as HARQ feedback, HARQ information, and HARQ control information.
 SRは、初期送信のためのPUSCHのリソースを要求するために少なくとも用いられてもよい。また、SRは、新規の送信のためのUL-SCHリソースを要求するために用いられてもよい。SRビットは、正のSR(positive SR)、または、負のSR(negative SR)のいずれかを示すために用いられてもよい。SRビットが正のSRを示すことは、“正のSRが送信される”とも称されてもよい。正のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されることを示してもよい。正のSRは、上位層によりSRがトリガされることを示してもよい。正のSRは、上位層によりSRを送信することが指示された場合に、送信されてもよい。SRビットが負のSRを示すことは、“負のSRが送信される”とも称されてもよい。負のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されないことを示してもよい。負のSRは、上位層によりSRがトリガされないことを示してもよい。負のSRは、上位層によりSRを送信することが指示されない場合に、送信されてもよい。 SR may at least be used to request PUSCH resources for initial transmission. SR may also be used to request UL-SCH resources for new transmissions. The SR bit may be used to indicate either a positive SR (positive SR) or a negative SR (negative SR). The fact that the SR bit indicates a positive SR may also be referred to as "a positive SR is transmitted". A positive SR may indicate that the terminal device 1 requires a PUSCH resource for initial transmission. A positive SR may indicate that the SR is triggered by an upper layer. A positive SR may be transmitted when the upper layer instructs it to transmit the SR. The fact that the SR bit indicates a negative SR may also be referred to as "a negative SR is transmitted". A negative SR may indicate that the terminal device 1 does not require PUSCH resources for initial transmission. A negative SR may indicate that the SR is not triggered by the upper layer. Negative SRs may be transmitted if the upper layer does not instruct them to transmit SRs.
 SRビットは、1または複数のSR設定(SR configuration)のいずれかに対する正のSR、または、負のSRのいずれかを示すために用いられてもよい。該1または複数のSR設定のそれぞれは、1または複数のロジカルチャネルに対応してもよい。あるSR設定に対する正のSRは、該あるSR設定に対応する1または複数のロジカルチャネルのいずれかまたは全部に対する正のSRであってもよい。負のSRは、特定のSR設定に対応しなくてもよい。負のSRが示されることは、すべてのSR設定に対して負のSRが示されることであってもよい。 The SR bit may be used to indicate either a positive SR or a negative SR for any one or more SR configurations. Each of the one or more SR settings may correspond to one or more logical channels. A positive SR for an SR setting may be a positive SR for any or all of the one or more logical channels corresponding to that SR setting. Negative SR does not have to correspond to a particular SR setting. Showing a negative SR may mean showing a negative SR for all SR settings.
 SR設定は、SR-ID(Scheduling Request ID)であってもよい。SR-IDは、上位層のパラメータにより与えられてもよい。 The SR setting may be SR-ID (Scheduling Request ID). The SR-ID may be given by an upper layer parameter.
 CSIは、チャネル品質指標(CQI)、プレコーダ行列指標(PMI)、および、ランク指標(RI)の一部または全部を少なくとも含んでもよい。CQIは、チャネルの品質(例えば、伝搬強度)に関連する指標であり、PMIは、プレコーダを指示する指標である。RIは、送信ランク(または、送信レイヤ数)を指示する指標である。 The CSI may include at least some or all of the channel quality index (CQI), precoder matrix index (PMI), and rank index (RI). CQI is an index related to channel quality (for example, propagation intensity), and PMI is an index indicating a precoder. RI is an index that indicates the transmission rank (or the number of transmission layers).
 CSIは、チャネル測定のために少なくとも用いられる物理信号(例えば、CSI-RS)を受信することに少なくとも基づき与えられてもよい。CSIは、端末装置1によって選択される値が含まれてもよい。CSIは、チャネル測定のために少なくとも用いられる物理信号を受信することに少なくとも基づき、端末装置1によって選択されてもよい。チャネル測定は、干渉測定を含んでもよい。なお、CSI-RSは、CSI-RS設定に基づいてセットされてもよいし、SSB設定に基づいてセットされてもよい。 CSI may be given at least on the basis of receiving at least a physical signal (eg, CSI-RS) used for channel measurement. The CSI may include a value selected by the terminal device 1. The CSI may be selected by terminal device 1 at least based on receiving the physical signal used for channel measurement. The channel measurement may include an interference measurement. The CSI-RS may be set based on the CSI-RS setting or may be set based on the SSB setting.
 CSI報告は、CSIの報告である。CSI報告は、CSIパート1、および/または、CSIパート2を含んでもよい。CSIパート1は、広帯域チャネル品質情報(wideband CQI)、広帯域プレコーダ行列指標(wideband PMI)、RIの一部または全部を少なくとも含んで構成されてもよい。PUCCHに多重されるCSIパート1のビット数は、CSI報告のRIの値に係らず所定の値であってもよい。PUCCHに多重されるCSIパート2のビット数は、CSI報告のRIの値に基づき与えられてもよい。CSI報告のランク指標は、該CSI報告の算出のために用いられるランク指標の値であってもよい。CSI情報のRIは、該CSI報告に含まれるRIフィールドにより示される値であってもよい。 The CSI report is a CSI report. The CSI report may include CSI Part 1 and / or CSI Part 2. CSI Part 1 may be configured to include at least some or all of the Broadband Channel Quality Information (wideband CQI), Wideband Precoder Matrix Index (wideband PMI), and RI. The number of bits of CSI part 1 multiplexed on the PUCCH may be a predetermined value regardless of the RI value of the CSI report. The number of bits in CSI Part 2 to be multiplexed on the PUCCH may be given based on the RI value in the CSI report. The rank index of the CSI report may be the value of the rank index used for calculating the CSI report. The RI of the CSI information may be the value indicated by the RI field included in the CSI report.
 CSI報告において許可されるRIのセットは、1から8の一部または全部であってもよい。また、CSI報告において許可されるRIのセットは、上位層のパラメータRankRestrictionに少なくとも基づき与えられてもよい。CSI報告において許可されるRIのセットが1つの値のみを含む場合、該CSI報告のRIは該1つの値であってもよい。 The set of RIs allowed in the CSI report may be part or all of 1-8. Also, the set of RIs allowed in CSI reporting may be given at least based on the upper layer parameter RankReaction. If the set of RIs allowed in a CSI report contains only one value, the RI in the CSI report may be that one value.
 CSI報告に対して、優先度が設定されてもよい。CSI報告の優先度は、該CSI報告の時間領域のふるまい(処理)に関する設定、該CSI報告のコンテンツのタイプ、該CSI報告のインデックス、および/または、該CSI報告の測定が設定されるサービングセルのインデックスの一部または全部に少なくとも基づき与えられてもよい。 Priority may be set for CSI reports. The CSI report priority is the setting for the behavior (processing) of the CSI report time domain, the type of content of the CSI report, the index of the CSI report, and / or the serving cell in which the measurement of the CSI report is set. It may be given at least on the basis of part or all of the index.
 CSI報告の時間領域のふるまい(処理)に関する設定は、該CSI報告が非周期的に(aperiodic)行なわれるか、該CSI報告が半永続的に(semi-persistent)行なわれるか、または、準静的に行なわれるか、のいずれかを示す設定であってもよい。 The time domain behavior (processing) of the CSI report can be set so that the CSI report is aperiodic, the CSI report is semi-persistent, or quasi-static. It may be a setting indicating either of the above.
 CSI報告のコンテンツのタイプは、該CSI報告がレイヤ1のRSRP(Reference Signals Received Power)を含むか否かを示してもよい。 The type of content of the CSI report may indicate whether the CSI report includes Layer 1 RSRP (Reference Signals Received Power).
 レイヤ1とは、物理層のことであり、物理層処理部、無線送信部、送信部、および/または、無線受信部、受信部などの処理を行なう層であってもよい。レイヤ1よりも上位の層には、MAC層やRRC層、上位層処理部などが含まれる。例えば、レイヤ2は、MAC層、RLC層やPDCP層、MAC層処理部、RLC層処理部やPDCP層処理部のことであってもよい。レイヤ3は、RRC層、RRC層処理部であってもよい。 The layer 1 is a physical layer, and may be a layer that performs processing such as a physical layer processing unit, a wireless transmitting unit, a transmitting unit, and / or a wireless receiving unit and a receiving unit. The layer higher than the layer 1 includes a MAC layer, an RRC layer, an upper layer processing unit, and the like. For example, layer 2 may be a MAC layer, an RLC layer or a PDCP layer, a MAC layer processing unit, an RLC layer processing unit or a PDCP layer processing unit. The layer 3 may be an RRC layer or an RRC layer processing unit.
 CSI報告のインデックスは、上位層のパラメータにより与えられてもよい。 The index of the CSI report may be given by the parameters of the upper layer.
 次に、本実施形態のPUCCHに係る説明を行なう。 Next, the PUCCH of the present embodiment will be described.
 PUCCHは、1または複数のPUCCHフォーマット(PUCCHフォーマット0からPUCCHフォーマット4)をサポートする。PUCCHフォーマットは、PUCCHで送信されてもよい。PUCCHフォーマットが送信されることは、PUCCHが送信されることであってもよい。 PUCCH supports one or more PUCCH formats (PUCCH format 0 to PUCCH format 4). The PUCCH format may be transmitted in PUCCH. The transmission of the PUCCH format may mean that the PUCCH is transmitted.
 端末装置1が、PUSCHを送信することなく、UCI(Uplink Control Information)を送信するとすれば、端末装置1は、所定の条件を満たしたPUCCHフォーマットを用いるPUCCHでUCIを送信する。 If the terminal device 1 transmits UCI (Uplink Control Information) without transmitting the PUSCH, the terminal device 1 transmits the UCI in the PUCCH using the PUCCH format satisfying a predetermined condition.
 PUCCHフォーマット0は、1または2シンボルでの送信、且つ、ポジティブまたはネガティブSRを伴うHARQ-ACK情報ビット(HARQ-ACK/SR bit(s))の数が1または2ビットの場合に、用いられる。 PUCCH format 0 is used when transmission with 1 or 2 symbols and the number of HARQ-ACK information bits (HARQ-ACK / SR bit (s)) with positive or negative SR is 1 or 2 bits. ..
 PUCCHフォーマット1は、4または4より多くのシンボルでの送信、且つ、HARQ-ACK/SRビットの数が1または2ビットの場合に、用いられる。 PUCCH format 1 is used when transmitting with 4 or more symbols and when the number of HARQ-ACK / SR bits is 1 or 2 bits.
 PUCCHフォーマット2は、1または2シンボルでの送信、且つ、UCI情報ビットの数が2ビットよりも多い場合に、用いられる。 PUCCH format 2 is used when transmission with 1 or 2 symbols and the number of UCI information bits is more than 2 bits.
 PUCCHフォーマット3は、4または4より多くのシンボルでの送信、且つ、UCI情報ビットの数が2ビットよりも多い場合に、用いられる。 PUCCH format 3 is used when transmission with 4 or more symbols and the number of UCI information bits is more than 2 bits.
 PUCCHフォーマット4は、4または4より多くのシンボルでの送信、且つ、UCI情報ビットの数が2ビットよりも多く、PUCCHリソースがOCC(Orthogonal Cover Code)を含む場合に、用いられる。 PUCCH format 4 is used when transmission with 4 or more symbols, the number of UCI information bits is more than 2 bits, and the PUCCH resource includes OCC (Orthogonal Cover Code).
 PUCCHフォーマット0、1、4の周波数リソース配置は、PUCCHで送信するUCI情報ビット数に係らず、1PRBであってもよい。PUCCHフォーマット2、3の周波数リソース配置は、最大PRB数に関連する上位層パラメータ(nrofPRBs: number of Physical Resource Blocks)、および、PUCCHで送信するUCI情報ビット数に応じて最適なPRB数に基づいてもよい。なお、nrofPRBsは、PUCCHフォーマット2と3のそれぞれに設定されてもよい。PUCCHフォーマット2および/または3のPUCCHリソースに対して、端末装置1が送信したいUCI情報ビット数およびnrofPRBsを超えないように、PRB数が調整されてもよい。 The frequency resource allocation of PUCCH formats 0, 1 and 4 may be 1 PRB regardless of the number of UCI information bits transmitted by PUCCH. The frequency resource allocation of PUCCH formats 2 and 3 is based on the upper layer parameters (nrofPRBs: number of Physical Resource Blocks) related to the maximum number of PRBs and the optimum number of PRBs according to the number of UCI information bits transmitted by PUCCH. May be good. The nrofPRBs may be set in PUCCH formats 2 and 3, respectively. For PUCCH resources of PUCCH format 2 and / or 3, the number of PRBs may be adjusted so that the terminal device 1 does not exceed the number of UCI information bits and nrofPRBs desired to be transmitted.
 PUCCHフォーマット3において、送信するUCI情報ビット数に対して適切に必要なPRB数が、2^α*3^α*5^αを満たさないとすれば、nrofPRBsを超えないように、PUCCHフォーマット3に必要なPRB数が、2^α*3^α*5^αを満たすまでPRB数を増加させてもよい。ここで、α、α、αはそれぞれ、0または0より大きい整数であってもよい。 In PUCCH format 3, if the number of PRBs appropriately required for the number of UCI information bits to be transmitted does not satisfy 2 ^ α 2 * 3 ^ α 3 * 5 ^ α 5 , do not exceed nrofPRBs. The number of PRBs may be increased until the number of PRBs required for the PUCCH format 3 satisfies 2 ^ α 2 * 3 ^ α 3 * 5 ^ α 5 . Here, α 2 , α 3 , and α 5 may be 0 or an integer larger than 0, respectively.
 図4は、本実施形態の一態様に係るPUCCHフォーマットとPUCCHフォーマットの長さNPUCCH symbの関係の一例を示す図である。PUCCHフォーマット0の長さNPUCCH symbは、1または2OFDMシンボルである。PUCCHフォーマット1の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。PUCCHフォーマット2の長さNPUCCH symbは、1または2OFDMシンボルである。PUCCHフォーマット3の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。PUCCHフォーマット4の長さNPUCCH symbは、4から14OFDMシンボルのいずれかである。 FIG. 4 is a diagram showing an example of the relationship between the PUCCH format and the length N PUCCH symb of the PUCCH format according to one aspect of the present embodiment. The length N PUCCH symb of PUCCH format 0 is a 1 or 2 OFDM symbol. The length N PUCCH symb of PUCCH format 1 is one of 4 to 14 OFDM symbols. The length N PUCCH symb of PUCCH format 2 is a 1 or 2 OFDM symbol. The length N PUCCH symb of PUCCH format 3 is one of 4 to 14 OFDM symbols. The length N PUCCH symb of PUCCH format 4 is one of 4 to 14 OFDM symbols.
 図5は、本実施形態の一態様に係るPUCCH-ConfigおよびPUCCH-FormatConfigに含まれるパラメータの一例を示す図である。PUCCHは、PUCCH-Configに基づいて時間周波数リソースが決定され、送信されてもよい。PUCCH-ConfigおよびPUCCH-Configに含まれるパラメータはRRC情報要素であってもよい。PUCCH-Configは、BWP毎の端末装置1固有の1または複数のPUCCHパラメータを設定するために用いられてもよい。resourceSetToAddModListおよびresourceSetToReleaseListは、PUCCHリソースセットを追加および/またはリリースするために用いられるリストであり、そのリストのサイズは、PUCCHリソースセットの最大数に基づいてもよい。resourceToAddModListおよびresourceToReleaseListは、PUCCH設定が定義された上りリンクBWPおよびサービングセルに対して適用される1または複数のPUCCHリソースを追加および/またはリリースするために用いられるリストであり、そのサイズは、PUCCHリソースの最大数に基づいてもよい。spatialRelationInfoToAddModListは、reference RSとPUCCH間のspatial relationの設定を示すために用いられてもよい。reference RSは、SSB/CSI-RS/SRSであってもよい。そのリストが1つよりも多いエレメントを有するとすれば、MAC-CEは、1つのエレメントを選択する。PUCCHフォーマット1から4に対してそれぞれ、PUCCH-FormatConfigが設定されてもよい。各PUCCHフォーマットに対応するPUCCH-FormatConfigは、各PUCCHフォーマットに対応する全てのPUCCHリソース間で共有されてもよい。dl-DataToUL-ACKは、PDSCHと該PDSCHに対応するHARQ-ACKに対するタイミングのリストを示すために用いられてもよい。 FIG. 5 is a diagram showing an example of parameters included in PUCCH-Config and PUCCH-FormatConfig according to one aspect of the present embodiment. For PUCCH, the time frequency resource may be determined based on PUCCH-Config and transmitted. The parameters contained in PUCCH-Config and PUCCH-Config may be RRC information elements. PUCCH-Config may be used to set one or more PUCCH parameters specific to the terminal device 1 for each BWP. The resourceSetToAddModList and resourceSetToReleaseList are lists used to add and / or release PUCCH resource sets, and the size of the lists may be based on the maximum number of PUCCH resource sets. The resourceToAddModList and resourceToReleaseList are lists used to add and / or release one or more PUCCH resources that apply to uplink BWPs and serving cells with PUCCH settings defined, and their size is that of the PUCCH resources. It may be based on the maximum number. The spatialRelationInfoToAddModList may be used to indicate the spatial relation settings between reference RS and PUCCH. The reference RS may be SSB / CSI-RS / SRS. If the list has more than one element, MAC-CE selects one element. PUCCH-FormatConfig may be set for each of PUCCH formats 1 to 4. The PUCCH-FormatConfig corresponding to each PUCCH format may be shared among all PUCCH resources corresponding to each PUCCH format. The dl-DataToUL-ACK may be used to indicate a list of timings for the PDSCH and the HARQ-ACK corresponding to the PDSCH.
 PUCCH-FormatConfigは、interslotFrequencyHopping、additionalDMRS、maxCodeRate、nrofSlots、pi2BPSK、simultaneousHARQ-ACK-CSIのうち、1つまたは全部が含まれてもよい。 PUCCH-FormatConfig may include one or all of interslotFrequencyHopping, additionalDMRS, maxCodeRate, nrofSlots, pi2BPSK, and simultaneousHARQ-ACK-CSI.
 interslotFrequencyHoppingは、PUCCHフォーマット1、3または4が複数のスロット間で繰り返される時、端末装置1がスロット間周波数ホッピングを行なうことができることを示すために用いられる。ロングPUCCH(PUCCHフォーマット1、3、4)に対して、端末装置1は、スロット内周波数ホッピングおよびスロット間周波数ホッピングを同時に行なうことはできない。 Interslot Frequency Hopping is used to show that the terminal device 1 can perform inter-slot frequency hopping when PUCCH formats 1, 3 or 4 are repeated between a plurality of slots. For long PUCCH (PUCCH formats 1, 3, 4), the terminal device 1 cannot perform intra-slot frequency hopping and inter-slot frequency hopping at the same time.
 additionalDMRSは、PUCCHフォーマット3または4に対して、ホップ毎に2つのDMRSシンボルを含むこと、および、周波数ホッピングをしなければ、4つのDMRSシンボルを含むこと、ができることを示すために用いられてもよい。このフィールドは、PUCCHフォーマット1または2に対して適用されない。 Additional DMRS may also be used to indicate that for PUCCH format 3 or 4 it is possible to include two DMRS symbols per hop and, without frequency hopping, to include four DMRS symbols. Good. This field does not apply to PUCCH format 1 or 2.
 maxCodeRateは、PUCCHフォーマット2、3または4におけるUCIをフィードバックする方法を決定するための最大コーディングレートを示してもよい。このフィールドは、PUCCHフォーマット1に対して適用されなくてもよい。 MaxCodeRate may indicate the maximum coding rate for determining how to feed back UCI in PUCCH formats 2, 3 or 4. This field does not have to apply to PUCCH format 1.
 nrofSlotsは、PUCCHフォーマット1、3または4のそれぞれに対して、同じPUCCHフォーマットを伴うスロットの数を示す。このフィールドがPUCCH-FormatConfigに無いときは、端末装置1は、n1を適用してもよい。このフィールドは、PUCCHフォーマット2に対して適用されなくてもよい。 NrofSlots indicates the number of slots with the same PUCCH format for each of PUCCH formats 1, 3 or 4. If this field is not in PUCCH-FormatConfig, terminal device 1 may apply n1. This field does not have to apply to PUCCH format 2.
 pi2BPSKは、端末装置1が、PUCCHに対して、QPSKの代わりに、pi/2 BPSKをUCIシンボルに用いることができることを示してもよい。このフィールドは、PUCCHフォーマット1および2に対して適用されなくてもよい。 Pi2BPSK may indicate to PUCCH that the terminal device 1 can use pi / 2BPSK as the UCI symbol instead of QPSK. This field does not have to apply to PUCCH formats 1 and 2.
 simultaneousHARQ-ACK-CSIは、PUCCHフォーマット2、3または4において、SRを伴うまたは伴わないHARQ-ACKフィードバックおよびCSIの同時送信を用いることができるかを示すために用いられてもよい。このフィールドが、PUCCH-FormatConfigに無い時は、端末装置1は、offを適用してもよい。このフィールドは、PUCCHフォーマット1に対して適用されなくてもよい。 SimultaneousHARQ-ACK-CSI may be used to indicate whether HARQ-ACK feedback with or without SR and simultaneous transmission of CSI can be used in PUCCH formats 2, 3 or 4. When this field is not in PUCCH-FormatConfig, terminal device 1 may apply off. This field does not have to apply to PUCCH format 1.
 図6は、本実施形態の一態様に係るPUCCH-ResourceSetおよびPUCCH-Resourceに含まれるパラメータの一例を示す図である。PUCCH-ResourceSetは、pucch-ResourceSetId、resourceList、maxPayloadMinus1を含んでもよい。 FIG. 6 is a diagram showing an example of parameters included in the PUCCH-ResourceSet and the PUCCH-Resource according to one aspect of the present embodiment. PUCCH-ResourceSet may include pucch-ResourceSetId, resourceList, maxPayloadMinus1.
 resourceListは、該PUCCHリソースセットに含まれる1または複数のPUCCHリソースのリストである。PUCCHフォーマット0および1の1または複数のPUCCHリソースは、第1のPUCCHリソースセットにだけ含まれることが許可されてもよい。第1のPUCCHリソースセットとは、pucch-ResourceSetId = 0を伴うPUCCHリソースセットのことであってもよい。第1のPUCCHリソースセットには、最大32までPUCCHリソースが含まれてもよい。PUCCHフォーマット2、3および4の1または複数のPUCCHリソースは、pucch-ResourceSetId > 0を伴うPUCCHリソースセットにだけ含まれることが許可されてもよい。これらのPUCCHリソースセットには、最大8までのPUCCHリソースが含まれてもよい。PUCCHリソースセットは、最大4セットまで設定されてもよい。 The resourceList is a list of one or more PUCCH resources included in the PUCCH resource set. One or more PUCCH resources in PUCCH formats 0 and 1 may be allowed to be included only in the first PUCCH resource set. The first PUCCH resource set may be a PUCCH resource set with pucch-ResourceSetId = 0. The first PUCCH resource set may include up to 32 PUCCH resources. One or more PUCCH resources in PUCCH formats 2, 3 and 4 may be allowed to be included only in the PUCCH resource set with pucch-ResourceSetId> 0. These PUCCH resource sets may include up to 8 PUCCH resources. The PUCCH resource set may be set up to 4 sets.
 maxPayloadMinus1は、端末装置1がPUCCHリソースセットを用いて送信可能なペイロードビットの最大数-1を示すために用いられてもよい。つまり、maxPayloadMinus1は、PUCCHリソースセットで送信可能な最大UCIビット数(UCIビット数の最大値)を示してもよい。PUCCH発生時において、端末装置1は、端末装置1が送信したいビット数をサポートしているPUCCH-ResourceSetを選択してもよい。第1のPUCCHリソースセットにおいて、このフィールドは、PUCCH-ResourceSetに含まれなくてもよい。また、第1のPUCCHリソースセット以外のPUCCHリソースセットにおいては、最大ペイロードサイズであれば、このフィールドはPUCCH-ResourceSetに含まれなくてもよい。 MaxPayloadMinus1 may be used to indicate the maximum number of payload bits-1 that the terminal device 1 can transmit using the PUCCH resource set. That is, maxPayloadMinus1 may indicate the maximum number of UCI bits (maximum value of the number of UCI bits) that can be transmitted by the PUCCH resource set. When PUCCH occurs, the terminal device 1 may select a PUCCH-ResourceSet that supports the number of bits that the terminal device 1 wants to transmit. In the first PUCCH resource set, this field does not have to be included in the PUCCH-ResourceSet. Further, in the PUCCH resource set other than the first PUCCH resource set, this field may not be included in the PUCCH-ResourceSet as long as it has the maximum payload size.
 PUCCH-Resourceには、pucch-ResourceId、startingPRB、intraSlotFrequencyHopping、secondHopPRB、formatが含まれてもよい。 PUCCH-Resource may include pucch-ResourceId, startingPRB, intraSlotFrequencyHopping, secondHopPRB, format.
 startingPRBは、PUCCHのPRBインデックスを示す。このフィールドの値は、PUCCHが複数のPRBで構成される場合には、最初のPRBインデックスを示す。 Starting PRB indicates the PRB index of PUCCH. The value in this field indicates the first PRB index if the PUCCH is composed of multiple PRBs.
 intraSlotFrequencyHoppingは、スロット内周波数ホッピングを行なうかどうかを示すために用いられてもよい。スロット内周波数ホッピングは、すべてのタイプのPUCCHフォーマットに適用されてもよい。複数のスロットにおいてロングPUCCH(PUCCHフォーマット1、3、4)に対して、同時に、スロット内周波数ホッピングとスロット間周波数ホッピングは行なわれない。 IntraSlotFrequencyHopping may be used to indicate whether or not to perform intra-slot frequency hopping. In-slot frequency hopping may be applied to all types of PUCCH formats. In-slot frequency hopping and inter-slot frequency hopping are not performed simultaneously for long PUCCH (PUCCH formats 1, 3, and 4) in a plurality of slots.
 secondHopPRBは、周波数ホッピング後の最初のPRBのインデックスを示すために用いられてもよい。この値は、スロット内周波数ホッピングに対して適用されてもよい。 The secondHopPRB may be used to indicate the index of the first PRB after frequency hopping. This value may be applied for in-slot frequency hopping.
 formatは、PUCCHフォーマットのタイプ(PUCCHフォーマット0から4)とフォーマット固有のパラメータを選択するために用いられてもよい。PUCCHフォーマット0および1は、第1のPUCCHリソースセットに含まれるPUCCHリソースに対してだけ許可されてもよい。PUCCHフォーマット2、3、4は、第1のPUCCHリソースセット以外のPUCCHリソースセットに含まれるPUCCHリソースに対してだけ許可されてもよい。 Format may be used to select the type of PUCCH format (PUCCH formats 0-4) and format-specific parameters. PUCCH formats 0 and 1 may only be allowed for PUCCH resources included in the first PUCCH resource set. PUCCH formats 2, 3 and 4 may be allowed only for PUCCH resources contained in PUCCH resource sets other than the first PUCCH resource set.
 図7は、本実施形態の一態様に係るPUCCHフォーマット固有に設定可能なパラメータの一例を示す図である。 FIG. 7 is a diagram showing an example of parameters that can be set uniquely to the PUCCH format according to one aspect of the present embodiment.
 PUCCHフォーマット0のPUCCHリソースは、initialCyclicShift、nrofSymbols、startingSymbolIndexを含むPUCCH-Format0に基づいて設定されてもよい。 The PUCCH resource of PUCCH format 0 may be set based on PUCCH-Format0 including initialCyclicShift, nrofSymbols, and startingSymbolIndex.
 PUCCHフォーマット1のPUCCHリソースは、initialCyclicShift、nrofSymbols、startingSymbolIndex、timeDomainOCCを含むPUCCH-Format1に基づいて設定されてもよい。 The PUCCH resource of PUCCH format 1 may be set based on PUCCH-Format1 including initialCyclicShift, nrofSymbols, startingSymbolIndex, and timeDomainOCC.
 PUCCHフォーマット2のPUCCHリソースは、nrofPRBs、nrofSymbols、startingSymbolIndexを含むPUCCH-Format2に基づいて設定されてもよい。 The PUCCH resource of PUCCH format 2 may be set based on PUCCH-Format2 including nrofPRBs, nrofSymbols, and startingSymbolIndex.
 PUCCHフォーマット3のPUCCHリソースは、nrofPRBs、nrofSymbols、startingSymbolIndexを含むPUCCH-Format3に基づいて設定されてもよい。 The PUCCH resource of PUCCH format 3 may be set based on PUCCH-Format3 including nrofPRBs, nrofSymbols, and startingSymbolIndex.
 PUCCHフォーマット4のPUCCHリソースは、nrofSymbols、occ-Length、occ-Index、startingSymbolIndexを含むPUCCH-Format4に基づいて設定されてもよい。 The PUCCH resource of PUCCH format 4 may be set based on PUCCH-Format 4 including nrofSymbols, occ-Length, occ-Index, and startingSymbolIndex.
 formatがPUCCH-format0を示すとすれば、PUCCHリソースに対して設定されたPUCCHフォーマットは、PUCCHフォーマット0である。PUCCHリソースは、PUCCH-format0に含まれる種々のパラメータの値に基づいて決定されてもよい。 If the format indicates PUCCH-format0, the PUCCH format set for the PUCCH resource is PUCCH format 0. The PUCCH resource may be determined based on the values of various parameters contained in PUCCH-format 0.
 formatがPUCCH-format1を示すとすれば、PUCCHリソースに対して設定されたPUCCHフォーマットは、PUCCHフォーマット1である。PUCCHリソースは、PUCCH-format1に含まれる種々のパラメータの値に基づいて決定されてもよい。 If the format indicates PUCCH-format1, the PUCCH format set for the PUCCH resource is PUCCH format 1. The PUCCH resource may be determined based on the values of various parameters contained in PUCCH-format1.
 formatがPUCCH-format2を示すとすれば、PUCCHリソースに対して設定されたPUCCHフォーマットは、PUCCHフォーマット2である。PUCCHリソースは、PUCCH-format2に含まれる種々のパラメータの値に基づいて決定されてもよい。 If the format indicates PUCCH-format2, the PUCCH format set for the PUCCH resource is PUCCH format2. The PUCCH resource may be determined based on the values of various parameters contained in PUCCH-format2.
 formatがPUCCH-format3を示すとすれば、PUCCHリソースに対して設定されたPUCCHフォーマットは、PUCCHフォーマット3である。PUCCHリソースは、PUCCH-format3に含まれる種々のパラメータの値に基づいて決定されてもよい。 If the format indicates PUCCH-format3, the PUCCH format set for the PUCCH resource is PUCCH format 3. PUCCH resources may be determined based on the values of various parameters contained in PUCCH-format3.
 formatがPUCCH-format4を示すとすれば、PUCCHリソースに対して設定されたPUCCHフォーマットは、PUCCHフォーマット4である。PUCCHリソースは、PUCCH-format4に含まれる種々のパラメータの値に基づいて決定されてもよい。 If the format indicates PUCCH-format 4, the PUCCH format set for the PUCCH resource is PUCCH format 4. PUCCH resources may be determined based on the values of various parameters contained in PUCCH-format 4.
 次に、本実施形態に係るPUCCHリソースおよびPUCCHリソースセットについて説明する。 Next, the PUCCH resource and the PUCCH resource set according to this embodiment will be described.
 端末装置1は、PDSCHのスケジューリングに用いられるDCIフォーマットに含まれるPRIの値に基づいて、PDSCHに対応するHARQ-ACKの送信に用いられるPUCCHリソースを決定してもよい。 The terminal device 1 may determine the PUCCH resource used for transmitting HARQ-ACK corresponding to PDSCH based on the value of PRI included in the DCI format used for scheduling PDSCH.
 PUCCHリソースセットに所定の数よりも多くのPUCCHリソースが含まれるとすれば、端末装置1は、DCIフォーマットに含まれるPRI(PUCCH resource indicator)フィールドの値およびDCIフォーマットを検出したCCEインデックスに基づいて、PUCCHリソースセット内のどのPUCCHリソースを用いるかを決定してもよい。また、PUCCHリソースセットに所定の数よりも多くPUCCHリソースが含まれるとすれば、DCIフォーマットに含まれるPRIフィールドのサイズ(ビット数、ビットサイズ)は拡張されてもよい。PUCCHリソースセットに所定の数または所定の数よりも少ない数のPUCCHリソースが含まれるとすれば、端末装置1はDCIフォーマットに含まれるPRIの値に基づいて、PUCCHリソースを決定してもよい。また、PUCCHリソースセットは、DCIフォーマットに含まれる第1の情報に基づいて、第1の周波数リソース配置タイプを適用された第1のPUCCHリソースセットを用いるか第2の周波数リソース配置タイプを適用された第2のPUCCHリソースセットを用いるかが決定されてもよい。第1の情報は、PUCCHがCOT内で送信されるかCOT外で送信されるかが示される情報であってもよいし、PUCCHの周波数リソース配置タイプを示す情報であってもよいし、PUCCHの送信前のCAPのタイプを示す情報であってもよい。 If the PUCCH resource set contains more PUCCH resources than a predetermined number, the terminal device 1 is based on the value of the PRI (PUCCH resource indicator) field included in the DCI format and the CCE index that detected the DCI format. , Which PUCCH resource in the PUCCH resource set may be used. Further, if the PUCCH resource set contains more PUCCH resources than a predetermined number, the size (number of bits, bit size) of the PRI field included in the DCI format may be expanded. Assuming that the PUCCH resource set contains a predetermined number or a number less than a predetermined number of PUCCH resources, the terminal device 1 may determine the PUCCH resources based on the value of PRI included in the DCI format. Further, the PUCCH resource set uses the first PUCCH resource set to which the first frequency resource allocation type is applied or the second frequency resource allocation type is applied based on the first information contained in the DCI format. It may also be decided whether to use a second PUCCH resource set. The first information may be information indicating whether the PUCCH is transmitted inside the COT or outside the COT, may be information indicating the frequency resource allocation type of the PUCCH, or may be the information indicating the frequency resource allocation type of the PUCCH. It may be information indicating the type of CAP before transmission of.
 例えば、第1のPUCCHリソースセット以外のPUCCHリソースセットに対して、8よりも多いPUCCHリソースが設定される場合に、端末装置1は、UCI情報ビットを送信するためのPUCCHリソース(PUCCHリソースID)を、PRIの値およびCCEインデックスの値に基づいて、決定してもよい。また、PRIフィールドのビットサイズが拡張される場合には、PRIの値に対応するPUCCHリソースを用いてUCI情報ビットを送信してもよい。 For example, when more than 8 PUCCH resources are set for a PUCCH resource set other than the first PUCCH resource set, the terminal device 1 has a PUCCH resource (PUCCH resource ID) for transmitting UCI information bits. May be determined based on the value of the PRI and the value of the CCE index. Further, when the bit size of the PRI field is expanded, the UCI information bit may be transmitted using the PUCCH resource corresponding to the PRI value.
 PUCCHリソースセットは、PUCCHリソースセットに用いられたpucch-ResourceIdのセットを提供するresourceListによって提供されたPUCCHリソースインデックスのセットを伴ってもよい。また、PUCCHリソースセットは、maxPayloadMinus1によって提供されたPUCCHリソースセットにおけるPUCCHリソースを用いて送信できるUCI情報ビットの最大数を伴ってもよい。第1のPUCCHリソースセットに対してUCI情報ビットの最大数は2ビットであってもよい。1つのPUCCHリソースセットに対するPUCCHリソースインデックスの最大数はmaxNrofPUCCH-ResourcesPerSetによって提供されてもよい。NR-Uに対して、すべてのPUCCHリソースセットに含まれるPUCCHリソースの最大数は、32であってもよい。 The PUCCH resource set may include a set of PUCCH resource indexes provided by a resourceList that provides a set of pucch-ResourceIds used for the PUCCH resource set. The PUCCH resource set may also include the maximum number of UCI information bits that can be transmitted using the PUCCH resource in the PUCCH resource set provided by maxPayloadMinus1. The maximum number of UCI information bits for the first PUCCH resource set may be 2 bits. The maximum number of PUCCH resource indexes per PUCCH resource set may be provided by maxNrofPUCCH-ResourcesPerSet. For NR-U, the maximum number of PUCCH resources contained in all PUCCH resource sets may be 32.
 端末装置1が、maxNrofPUCCH-ResourceSetsよりも大きな値のmaxNrofPUCCH-ResourceSets-r16をサポートしていることを能力情報として、提供すれば、端末装置1に対して、maxNrofPUCCH-ResourceSetsでサポートしている4セットよりも多くのPUCCHリソースセットが設定されてもよい。その際、PUCCHリソースセットは、PUCCH-ResourceSet-r16によって提供され、pucch-ResourceSetId-r16によって提供されたPUCCHリソースセットインデックスと関連してもよい。つまり、pucch-ResourceSetId-r16が取り得る値は、0からmaxNrofPUCCH-ResourceSets-r16-1までのいずれかであってもよい。 If the terminal device 1 is provided with the ability information that it supports maxNrofPUCCH-ResourceSets-r16 having a value larger than maxNrofPUCCH-ResourceSets, the four sets supported by maxNrofPUCCH-ResourceSets are provided for the terminal device 1. More PUCCH resource sets may be set. At that time, the PUCCH resource set may be associated with the PUCCH resource set index provided by PUCCH-ResourceSet-r16 and provided by pucch-ResourceSetId-r16. That is, the value that pucch-ResourceSetId-r16 can take may be any of 0 to maxNrofPUCCH-ResourceSets-r16-1.
 端末装置1は、maxNrofPUCCH-ResourceSets-r16をサポートしており、pucch-ResourceSetId-r16が所定の値よりも大きな値であるPUCCHリソースセットが設定されるとすれば、異なる周波数リソース配置タイプが適用されるPUCCHリソースセットが設定されてもよい。さらに、異なるpucch-ResourceSetId-r16のPUCCHリソースセットにおいて、同じ値にセットされたmaxPayloadMinus1が適用されてもよい。 Terminal device 1 supports maxNrofPUCCH-ResourceSets-r16, and if a PUCCH resource set is set in which pucch-ResourceSetId-r16 is greater than a predetermined value, a different frequency resource allocation type will be applied. PUCCH resource set may be set. Further, maxPayloadMinus1 set to the same value may be applied to PUCCH resource sets of different pucch-ResourceSetId-r16.
 基地局装置3は、端末装置1が、所定の値よりも大きい値のmaxNrofPUCCH-ResourceSets-r16をサポートしていることを能力情報として提供した場合、または、端末装置1が、異なる周波数リソース配置タイプが可能なことを能力情報として提供した場合、または、端末装置1が、PUCCH-ResourceSet-r16および/またはPUCCH-Resource-r16をサポートしていることを能力情報として提供した場合、能力情報を提供した端末装置1に対して、PUCCH-ResourceSet-r16またはPUCCH-Resource-r16に周波数リソース配置タイプに関連するパラメータ(例えば、freqResourceAllocType-r16)を含んで設定してもよい。なお、maxNrofPUCCH-ResourceSets-r16ではなく、所定の値よりも大きな値のmaxNrofPUCCH-Resources-r16が提供された場合であっても、基地局装置3は、同様の処理を行なってもよい。 The base station apparatus 3 provides as capability information that the terminal apparatus 1 supports maxNrofPUCCH-ResourceSets-r16 having a value larger than a predetermined value, or the terminal apparatus 1 has a different frequency resource allocation type. If the ability information is provided that the terminal device 1 supports PUCCH-ResourceSet-r16 and / or PUCCH-Resource-r16, the ability information is provided. PUCCH-ResourceSet-r16 or PUCCH-Resource-r16 may be set to include parameters related to the frequency resource allocation type (for example, freqResourceAllocType-r16) for the terminal device 1. Even when maxNrofPUCCH-Resources-r16 having a value larger than a predetermined value is provided instead of maxNrofPUCCH-ResourceSets-r16, the base station apparatus 3 may perform the same processing.
 基地局装置3は、所定の値よりも大きな値のpucch-ResourceSetIdをセットしたPUCCH-ResourceSetを設定するとすれば、各PUCCH-ResourceSetに対してfreqResourceAllocTypeを含んで設定してもよい。 If the base station device 3 sets a PUCCH-ResourceSet in which a pucch-ResourceSetId having a value larger than a predetermined value is set, the base station apparatus 3 may be set including freqResourceAllocType for each PUCCH-ResourceSet.
 pucch-ResourceSetId-r16の値が0であるPUCCHリソースセットは、PUCCHフォーマット0または1のPUCCHリソースを最大32まで含む第1のPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=0のPUCCHリソースセットに対するUCI情報ビットは、2ビットまでしかサポートされなくてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 0 may be the first PUCCH resource set containing up to 32 PUCCH resources of PUCCH format 0 or 1. The UCI information bits for the PUCCH resource set with pucch-ResourceSetId-r16 = 0 may only be supported up to 2 bits.
 pucch-ResourceSetId-r16の値が1であるPUCCHリソースセットは、PUCCHフォーマット2、3、および/または、4のPUCCHリソースを含むPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=1のPUCCHリソースセットのPUCCHリソースによって送信可能なUCI情報ビット数は、3からNまでであってもよい。Nの値は、該PUCCHリソースセットに含まれるmaxPayloadMinus1によって与えられてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 1, may be a PUCCH resource set including PUCCH resources of PUCCH formats 2, 3, and / or 4. The number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set of pucch-ResourceSetId-r16 = 1 may be from 3 to N 2 . The value of N 2 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
 pucch-ResourceSetId-r16の値が2であるPUCCHリソースセットは、PUCCHフォーマット2、3、および/または、4のPUCCHリソースを含むPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=2のPUCCHリソースセットのPUCCHリソースによって送信可能なUCI情報ビット数は、N+1からNまでであってもよい。Nの値は、該PUCCHリソースセットに含まれるmaxPayloadMinus1によって与えられてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 2, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4. The number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set of pucch-ResourceSetId-r16 = 2 may be from N 2 + 1 to N 3 . The value of N 3 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
 pucch-ResourceSetId-r16の値が3であるPUCCHリソースセットは、PUCCHフォーマット2、3、および/または、4のPUCCHリソースを含むPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=3のPUCCHリソースセットのPUCCHリソースによって送信可能なUCI情報ビット数は、N+1から1706までであってもよい。この時、該PUCCHリソースセットには、maxPayloadMinus1が含まれなくてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 3, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4. The number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set with pucch-ResourceSetId-r16 = 3 may be from N 3 + 1 to 1706. At this time, maxPayloadMinus1 may not be included in the PUCCH resource set.
 pucch-ResourceSetId-r16の値が4であるPUCCHリソースセットは、PUCCHフォーマット2、3、および/または、4のPUCCHリソースを含むPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=4のPUCCHリソースセットのPUCCHリソースによって送信可能なUCI情報ビット数は、3からNまでであってもよい。Nの値は、該PUCCHリソースセットに含まれるmaxPayloadMinus1によって与えられてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 4, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4. The number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set of pucch-ResourceSetId-r16 = 4 may be from 3 to N 2 . The value of N 2 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
 pucch-ResourceSetId-r16の値が5であるPUCCHリソースセットは、PUCCHフォーマット2、3、および/または、4のPUCCHリソースを含むPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=5のPUCCHリソースセットのPUCCHリソースによって送信可能なUCI情報ビット数は、N+1からN3までであってもよい。Nの値は、該PUCCHリソースセットに含まれるmaxPayloadMinus1によって与えられてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 5, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4. The number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set of pucch-ResourceSetId-r16 = 5 may be from N 2 + 1 to N 3 . The value of N 3 may be given by maxPayloadMinus1 contained in the PUCCH resource set.
 pucch-ResourceSetId-r16の値が6であるPUCCHリソースセットは、PUCCHフォーマット2、3、および/または、4のPUCCHリソースを含むPUCCHリソースセットであってもよい。pucch-ResourceSetId-r16=6のPUCCHリソースセットのPUCCHリソースによって送信可能なUCI情報ビット数は、N+1から1706までであってもよい。この時、該PUCCHリソースセットには、maxPayloadMinus1が含まれなくてもよい。 The PUCCH resource set in which the value of pucch-ResourceSetId-r16 is 6, may be a PUCCH resource set containing PUCCH resources of PUCCH formats 2, 3, and / or 4. The number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set with pucch-ResourceSetId-r16 = 6 may be from N 3 + 1 to 1706. At this time, maxPayloadMinus1 may not be included in the PUCCH resource set.
 同じまたは同じ範囲内のUCI情報ビット数(つまり、同じ値のmaxPayloadMinus1)が適用される複数のPUCCHリソースセットにおいて、異なるPUCCHリソースセットIDがセットされるとすれば、該複数のPUCCHリソースセット間で、物理リソースマッピングまたは周波数リソース配置タイプが異なってもよい。例えば、pucch-ResourceSetId-r16=1とpucch-ResourceSetId-r16=4のPUCCHリソースセットのPUCCHリソースは、異なる周波数リソース配置タイプがセットされてもよく、pucch-ResourceSetId-r16=1のPUCCHリソースセットのPUCCHリソースセットの周波数リソース配置タイプは、連続配置であり、pucch-ResourceSetId-r16=4のPUCCHリソースセットのPUCCHリソースセットの周波数リソース配置タイプは、インタレース配置であってもよい。他のID(pucch-ResourceSetId-r16=2と5やpucch-ResourceSetId-r16=3と6)についても同様に設定されてもよい。 If different PUCCH resource set IDs are set in a plurality of PUCCH resource sets to which the same or the same number of UCI information bits (that is, maxPayloadMinus1 of the same value) is applied, the plurality of PUCCH resource sets , Physical resource mapping or frequency resource allocation type may be different. For example, the PUCCH resources of the PUCCH resource set of pucch-ResourceSetId-r16 = 1 and pucch-ResourceSetId-r16 = 4 may have different frequency resource allocation types set, and of the PUCCH resource set of pucch-ResourceSetId-r16 = 1. The frequency resource allocation type of the PUCCH resource set may be continuous allocation, and the frequency resource allocation type of the PUCCH resource set of the PUCCH resource set of pucch-ResourceSetId-r16 = 4 may be interlaced allocation. Other IDs (pucch-ResourceSetId-r16 = 2 and 5 and pucch-ResourceSetId-r16 = 3 and 6) may be set in the same manner.
 同じまたは同じ範囲内のUCI情報ビット数(つまり、同じ値のmaxPayloadMinus1)が適用される複数のPUCCHリソースセットにおいて、異なるPUCCHリソースセットIDがセットされるとすれば、PUCCHリソースセット間で、物理リソースマッピングまたは周波数リソース配置タイプが異なってもよい。例えば、pucch-ResourceSetId-r16=1とpucch-ResourceSetId-r16=4のPUCCHリソースセットのPUCCHリソースは、異なる周波数リソース配置タイプがセットされてもよく、pucch-ResourceSetId-r16=1のPUCCHリソースセットのPUCCHリソースセットの周波数リソース配置タイプは、インタレース配置であり、pucch-ResourceSetId-r16=4のPUCCHリソースセットのPUCCHリソースセットの周波数リソース配置タイプは、連続配置であってもよい。他のIDについても同様に設定されてもよい。 If different PUCCH resource set IDs are set in multiple PUCCH resource sets to which the same or the same range of UCI information bits (that is, maxPayloadMinus1 of the same value) is applied, physical resources are set between PUCCH resource sets. The mapping or frequency resource allocation type may be different. For example, the PUCCH resources of the PUCCH resource set of pucch-ResourceSetId-r16 = 1 and pucch-ResourceSetId-r16 = 4 may have different frequency resource allocation types set, and of the PUCCH resource set of pucch-ResourceSetId-r16 = 1. The frequency resource allocation type of the PUCCH resource set may be interlaced allocation, and the frequency resource allocation type of the PUCCH resource set of the PUCCH resource set of pucch-ResourceSetId-r16 = 4 may be continuous allocation. Other IDs may be set in the same manner.
 各PUCCHリソースセットにおいて、NやNに対応するmaxPayloadMinus1が設定されないとすれば、NやNは1706とみなしてもよい。 In each PUCCH resource set, if maxPayloadMinus1 corresponding to N 2 and N 3 is not set, N 2 and N 3 may be regarded as 1706.
 端末装置1が所定の数よりも多くのPUCCHリソースセットが設定できる能力を有する場合、且つ、該端末装置1に対して、該所定の数よりも多くのPUCCHリソースセットを設定された場合、または、所定の値(pucch-ResourceSetId)よりも大きな値のPUCCHリソースセットID(pucch-ResourceSetId-r16)が設定される場合、該端末装置1に対して、PUCCHの周波数リソース配置に対応するPUCCHリソースセットが設定されてもよい。このような場合には、該端末装置1に対して、同じまたは同程度のUCI情報ビット数に対して、第1の周波数リソース配置タイプが適用されたPUCCHリソースセットと第2の周波数リソース配置タイプが適用されたPUCCHリソースセットが設定されてもよい。また、第1の周波数リソース配置タイプのPUCCHリソースを少なくとも1つは含むPUCCHリソースセットおよび第2の周波数リソース配置タイプのPUCCHリソースを少なくとも1つは含むPUCCHリソースセットが設定されてもよい。例えば、第1の周波数リソース配置タイプは、インタレース配置であってもよいし、第2の周波数リソース配置タイプは、連続配置であってもよいし、第1の周波数リソース配置タイプと第2の周波数リソース配置タイプはそれぞれ、その逆であってもよい。 When the terminal device 1 has the ability to set more PUCCH resource sets than a predetermined number, and when the terminal device 1 is set with more PUCCH resource sets than the predetermined number, or , When a PUCCH resource set ID (pucch-ResourceSetId-r16) having a value larger than a predetermined value (pucch-ResourceSetId) is set, the PUCCH resource set corresponding to the frequency resource allocation of the PUCCH is set for the terminal device 1. May be set. In such a case, the PUCCH resource set and the second frequency resource allocation type to which the first frequency resource allocation type is applied to the terminal device 1 for the same or the same number of UCI information bits. A PUCCH resource set to which is applied may be set. Further, a PUCCH resource set containing at least one PUCCH resource of the first frequency resource allocation type and a PUCCH resource set containing at least one PUCCH resource of the second frequency resource allocation type may be set. For example, the first frequency resource allocation type may be an interlaced allocation, the second frequency resource allocation type may be a continuous allocation, and the first frequency resource allocation type and the second frequency resource allocation type may be. Each frequency resource allocation type may be vice versa.
 所定の数よりも大きい数、または、maxNrofPUCCH-ResourceSetsよりも大きい値のmaxNrofPUCCH-ResourceSets-r16が適用されたresourceSetToAddModList-r16が設定される場合、または、所定の値よりも大きな値のpucch-ResourceSetId-r16を含むPUCCHリソースセットが設定される場合、PUCCH-ResourceSet-r16またはPUCCH-Resource-r16に、PUCCHリソースの周波数リソース配置タイプを示すパラメータ(例えば、freqResourceAllocType-r16)が含まれてもよい。 When resourceSetToAddModList-r16 is set with a value greater than the specified number or with a value greater than maxNrofPUCCH-ResourceSets-r16 applied, or with a value greater than the specified value pucch-ResourceSetId- When a PUCCH resource set including r16 is set, PUCCH-ResourceSet-r16 or PUCCH-Resource-r16 may include a parameter indicating the frequency resource allocation type of the PUCCH resource (for example, freqResourceAllocType-r16).
 pucch-ResourceSetIdの異なる、少なくとも2つのPUCCHリソースセットの最大UCI情報ビット数が同じであるとすれば、異なるPUCCHリソースセット、または、異なるPUCCHリソースセットに含まれるPUCCHリソースに対して、PUCCHリソースの周波数リソース配置タイプを示すパラメータ(例えば、freqResourceAllocType-r16)が含まれてもよく、それぞれ異なる周波数リソース配置タイプが設定されてもよい。 Given that the maximum UCI information bits of at least two PUCCH resource sets with different pucch-ResourceSetIds are the same, the frequencies of the PUCCH resources for different PUCCH resource sets or PUCCH resources contained in different PUCCH resource sets. A parameter indicating the resource allocation type (for example, freqResourceAllocType-r16) may be included, and different frequency resource allocation types may be set for each.
 同じ最大UCIビット数が適用された第1のPUCCHリソースセットおよび第2のPUCCHリソースセットが設定された端末装置1に対して、PDSCHのスケジューリングに用いられるDCIフォーマットに含まれる第1の情報に基づいて、第1のPUCCHリソースセットに含まれるPUCCHリソースでPDSCHに対するHARQ-ACKを送信するか第2のPUCCHリソースセットに含まれるPUCCHリソースでPDSCHに対するHARQ-ACKを送信するかを決定してもよい。この時、第1のPUCCHリソースセットと第2のPUCCHリソースセット間で、少なくともPUCCHリソースセットIDと周波数リソース配置タイプが異なってもよい。 Based on the first information contained in the DCI format used for PDSCH scheduling for the terminal device 1 to which the first PUCCH resource set and the second PUCCH resource set to which the same maximum number of UCI bits are applied are set. Then, it may be determined whether the PUCCH resource included in the first PUCCH resource set transmits HARQ-ACK for PDSCH or the PUCCH resource included in the second PUCCH resource set transmits HARQ-ACK for PDSCH. .. At this time, at least the PUCCH resource set ID and the frequency resource allocation type may be different between the first PUCCH resource set and the second PUCCH resource set.
 ここで、本実施形態において、周波数リソース配置タイプ(第1のリソース配置タイプ、第2の周波数リソース配置タイプ)は、インタレース配置や連続配置のことを指してもよいし、それ以外の周波数リソース配置を指してもよい。 Here, in the present embodiment, the frequency resource allocation type (first resource allocation type, second frequency resource allocation type) may refer to interlaced arrangement or continuous arrangement, or other frequency resources. You may point to the placement.
 図8は、本実施形態の一態様に係るPUCCHリソースセットおよびPUCCHリソースに含まれるパラメータの一例を示す図である。PUCCH-ResourceSet-r16には、pucch-ResourceSetId-r16、freqResourceAllocType-r16、resourceListまたはresourceList-r16、maxPayloadMinus1またはmaxPayloadMinus1-r16が含まれてもよい。 FIG. 8 is a diagram showing an example of a PUCCH resource set and parameters included in the PUCCH resource according to one aspect of the present embodiment. PUCCH-ResourceSet-r16 may include pucch-ResourceSetId-r16, freqResourceAllocType-r16, resourceList or resourceList-r16, maxPayloadMinus1 or maxPayloadMinus1-r16.
 pucch-ResourceSetId-r16は、PUCCH-ResourceSet-r16のIDを示し、pucch-ResourceSetIdよりも大きな値が設定できるようになってもよい。つまり、maxNrofPUCCH-ResourceSets-r16は、maxNrofPUCCH-ResourceSets(つまり、4セット)よりも大きな値であってもよい。 Pucch-ResourceSetId-r16 indicates the ID of PUCCH-ResourceSet-r16, and a value larger than pucch-ResourceSetId may be set. That is, maxNrofPUCCH-ResourceSets-r16 may be larger than maxNrofPUCCH-ResourceSets (ie, 4 sets).
 freqResourceAllocType-r16は、該PUCCHリソースセットに含まれるresourceListによって示されるすべてのPUCCHリソースに対して適用される周波数リソース配置タイプを示してもよい。図8では2つのタイプについて示しているが、サポートしている周波数リソース配置タイプの数に応じて、設定可能なタイプの数は変化してもよい。周波数リソース配置タイプは、インタレース配置と連続配置を示す情報であってもよい。また、周波数リソース配置タイプは、インタレース配置ができるかどうかを示す情報であってもよい。 FreqResourceAllocType-r16 may indicate the frequency resource allocation type applied to all PUCCH resources indicated by the resourceList included in the PUCCH resource set. Although two types are shown in FIG. 8, the number of types that can be set may vary depending on the number of frequency resource allocation types that are supported. The frequency resource allocation type may be information indicating interlaced allocation and continuous allocation. Further, the frequency resource allocation type may be information indicating whether or not interlaced allocation is possible.
 resourceListは、PUCCHリソースセットに含まれるPUCCHリソースのリストである。resourceListは、1つのPUCCHリソースセットに対して、最大32のPUCCHリソースが示されてもよい。resourceList-r16として設定される場合、pucch-ResourceSetIdの値に因らず、最大32のPUCCHリソースが示されてもよい。 The resourceList is a list of PUCCH resources included in the PUCCH resource set. The resourceList may show up to 32 PUCCH resources for one PUCCH resource set. When set as resourceList-r16, up to 32 PUCCH resources may be shown regardless of the value of pucch-ResourceSetId.
 maxPayloadMinus1は、PUCCHリソースセットのPUCCHリソースで送信可能な最大UCI情報ビット数を示す情報であり、上述したNやNに相当する。maxPayloadMinus1-r16は、maxPayloadMinus1と比較してサポートしている最大UCI情報ビット数が異なってもよい。つまり、。maxPayloadMinus1-r16がサポートしているUCI情報ビット数の範囲は、maxPayloadMinus1よりも広くてもよいし、狭くてもよい。maxPayloadMinus1-r16がサポートしているUCI情報ビット数の最大値は、maxPayloadMinus1よりも大きくてもよいし、小さくてもよい。 maxPayloadMinus1 is information indicating the maximum number of UCI information bits that can be transmitted by the PUCCH resource of the PUCCH resource set, and corresponds to N 2 and N 3 described above. maxPayloadMinus1-r16 may differ in the maximum number of UCI information bits supported compared to maxPayloadMinus1. That is. The range of UCI information bits supported by maxPayloadMinus1-r16 may be wider or narrower than maxPayloadMinus1. The maximum number of UCI information bits supported by maxPayloadMinus1-r16 may be larger or smaller than maxPayloadMinus1.
 PUCCH-Resource-r16は、resourceListまたはresourceList-r16によってリスト化されたPUCCHリソースのことであってもよい。PUCCH-Resource-r16は、pucch-ResourceId-r16、startingPRB、intraSlotFrequencyHopping、secondHopPRB、formatを含んでもよい。 PUCCH-Resource-r16 may be a resourceList or a PUCCH resource listed by resourceList-r16. PUCCH-Resource-r16 may include pucch-ResourceId-r16, startingPRB, intraSlotFrequencyHopping, secondHopPRB, format.
 pucch-ResourceId-r16は、PUCCHリソースIDを示すために用いられてもよい。pucch-ResourceId-r16は、pucch-ResourceIdよりも大きな値が設定できてもよい。つまり、PUCCHリソースの最大数を示すmaxNrofPUCCH-Resources-r16は、maxNrofPUCCH-Resourcesよりも大きな値が設定されてもよい。 Pucch-ResourceId-r16 may be used to indicate the PUCCH resource ID. A value larger than pucch-ResourceId may be set for pucch-ResourceId-r16. That is, maxNrofPUCCH-Resources-r16 indicating the maximum number of PUCCH resources may be set to a value larger than maxNrofPUCCH-Resources.
 startingPRBは、freqResourceAllocType-r16によって示される周波数リソース配置タイプに基づいて、示す情報が変わってもよい。例えば、PUCCHリソースに対応するfreqResourceAllocType-r16が連続配置に相当する周波数リソース配置タイプを示すとすれば、startingPRBは、PUCCHリソースの最初のPRBインデックスを示す情報であってもよい。PUCCHリソースに対応するfreqResourceAllocType-r16がインタレース配置を示すとすれば、startingPRBは、インタレースのインデックスを示してもよい。また、インタレースのインデックスを算出するために用いられてもよい。例えば、startingPRB mod Mからインタレースのインデックスが求められてもよい。Mは、インタレースの総数を示す。X mod Yは、XをYで割った時の余りを算出するために用いられる。 The information shown in the startingPRB may change based on the frequency resource allocation type indicated by freqResourceAllocType-r16. For example, if freqResourceAllocType-r16 corresponding to the PUCCH resource indicates the frequency resource allocation type corresponding to the continuous allocation, the starting PRB may be information indicating the first PRB index of the PUCCH resource. If the freqResourceAllocType-r16 corresponding to the PUCCH resource indicates the interlaced arrangement, the startingPRB may indicate the index of the interlaced. It may also be used to calculate the interlaced index. For example, the index of interlace may be obtained from startingPRB mod M. M indicates the total number of interlaces. X mod Y is used to calculate the remainder when X is divided by Y.
 intraSlotFrequencyHopping、secondHopPRBは、freqResourceAllocType-r16によって示される周波数リソース配置タイプが連続配置に相当する周波数リソース配置タイプの時にのみ設定されてもよい。intraSlotFrequencyHoppingは、スロット内の周波数ホッピングをサポートしているかどうかを示す情報であり、secondHopPRBは、周波数ホッピング後の最初のPRBインデックスを示す情報であってもよい。 IntraSlotFrequencyHopping and secondHopPRB may be set only when the frequency resource allocation type indicated by freqResourceAllocType-r16 is the frequency resource allocation type corresponding to continuous allocation. intraSlotFrequencyHopping may be information indicating whether or not frequency hopping in the slot is supported, and secondHopPRB may be information indicating the first PRB index after frequency hopping.
 formatはPUCCH-Resource-r16に適用されるPUCCHフォーマットのタイプを示す情報である。PUCCHフォーマットに応じて、適用されるパラメータが異なってもよい。具体的に適用されるパラメータは、図7と同じであってもよいし、異なってもよい。format4については、NR-Uで適用されないため、オプショナルなパラメータとして設定されてもよい。つまり、format4は、NR-U以外に適用される場合には、含まれてもよい。 Format is information indicating the type of PUCCH format applied to PUCCH-Resource-r16. The parameters applied may differ depending on the PUCCH format. The parameters specifically applied may be the same as in FIG. 7 or may be different. Since format4 is not applied in NR-U, it may be set as an optional parameter. That is, format4 may be included when applied to other than NR-U.
 図9は、本実施形態の一態様に係るPUCCHリソースセットおよびPUCCHリソースに含まれるパラメータの別の一例を示す図である。図8と比較すると、freqResourceAllocType-r16は、PUCCH-Resource-r16に含まれている。周波数リソース配置タイプは、PUCCHリソース毎に設定されてもよい。 FIG. 9 is a diagram showing another example of the PUCCH resource set and the parameters included in the PUCCH resource according to one aspect of the present embodiment. Compared with FIG. 8, freqResourceAllocType-r16 is included in PUCCH-Resource-r16. The frequency resource allocation type may be set for each PUCCH resource.
 図10は、本実施形態の一態様に係るDCIフォーマット1_0の一例を示す図である。図10(a)は、NRに対するDCIフォーマット1_0の一例である。図10(b)は、NR-Uに対するDCIフォーマット1_0の一例である。NR-Uに対するDCIフォーマット1_0には、PUCCHのチャネルアクセスプロシージャに関連するフィールドが追加されてもよい。PRIのサイズは、PUCCHリソースの数に応じて変わってもよい。また、NR-Uに対するDCIフォーマット1_0には、PUCCHリソースに対する周波数リソース配置タイプを示す情報が含まれてもよい。その場合、図8や図9で示したようなパラメータはRRCパラメータとして設定されなくてもよい。なお、PUCCH starting position、Channel access type、Channel access priority classの詳細については後述する。また、PUCCH starting position、Channel access type、Channel access priority classはそれぞれ、仕様書や上位層パラメータに基づいて決定される場合には、DCIフォーマットに含まれなくてもよい。 FIG. 10 is a diagram showing an example of DCI format 1_0 according to one aspect of the present embodiment. FIG. 10A is an example of DCI format 1_0 for NR. FIG. 10B is an example of DCI format 1_0 for NR-U. Fields related to PUCCH channel access procedures may be added to DCI format 1_0 for NR-U. The size of the PRI may vary depending on the number of PUCCH resources. Further, the DCI format 1_0 for NR-U may include information indicating the frequency resource allocation type for the PUCCH resource. In that case, the parameters shown in FIGS. 8 and 9 do not have to be set as RRC parameters. The details of PUCCH starting position, Channel access type, and Channel access priority class will be described later. Further, the PUCCH starting position, Channel access type, and Channel access priority class do not have to be included in the DCI format when they are determined based on the specifications and upper layer parameters.
 PUSCHは、TB(MAC PDU, UL-SCH)を送信するために少なくとも用いられる。PUSCHは、TB、HARQ-ACK情報、CSI、および、SRの一部または全部を少なくとも送信するために用いられてもよい。PUSCHは、ランダムアクセスプロシージャにおけるRAR(Msg2)および/またはRARグラントに対応するランダムアクセスメッセージ3(メッセージ3(Msg3))を送信するために少なくとも用いられる。なお、TBは、上りリンクおよび下りリンクのそれぞれに対応してもよい。つまり、PUSCHは、上りリンクに対するTBを送信するために用いられてもよい。PDSCHは、下りリンクに対するTBを送信するために用いられてもよい。 PUSCH is at least used to transmit TB (MAC PDU, UL-SCH). PUSCH may be used to transmit at least some or all of TB, HARQ-ACK information, CSI, and SR. The PUSCH is at least used to send a random access message 3 (message 3 (Msg3)) corresponding to the RAR (Msg2) and / or RAR grant in the random access procedure. In addition, TB may correspond to each of the uplink and the downlink. That is, the PUSCH may be used to transmit the TB to the uplink. The PDSCH may be used to transmit a TB to the downlink.
 PRACHは、ランダムアクセスプリアンブル(ランダムアクセスメッセージ1、メッセージ1(Msg1))を送信するために少なくとも用いられる。PRACHは、初期接続確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、接続再確立(connection re-establishment)プロシージャ、初期アクセスプロシージャ、PUSCHの送信に対する同期(タイミング調整)、およびPUSCHのためのリソースの要求の一部または全部を示すために少なくとも用いられてもよい。ランダムアクセスプリアンブルは、端末装置1の上位層より与えられるインデックス(ランダムアクセスプリアンブルインデックス)を基地局装置3に通知するために用いられてもよい。 PRACH is at least used to transmit a random access preamble (random access message 1, message 1 (Msg1)). The PRACH is an initial connection establishment procedure, a handover procedure, a connection re-establishment procedure, an initial access procedure, synchronization (timing adjustment) for PUSCH transmission, and resource request for PUSCH. It may be used at least to indicate part or all. The random access preamble may be used to notify the base station device 3 of an index (random access preamble index) given by the upper layer of the terminal device 1.
 ランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuに対応するZadoff-Chu系列をサイクリックシフトすることによって与えられてもよい。Zadoff-Chu系列は、物理ルートシーケンスインデックスuに基づいて生成されてもよい。1つのサービングセルにおいて、複数のランダムアクセスプリアンブルが定義されてもよい。ランダムアクセスプリアンブルは、ランダムアクセスプリアンブルのインデックスに少なくとも基づき特定されてもよい。ランダムアクセスプリアンブルの異なるインデックスに対応する異なるランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuとサイクリックシフトの異なる組み合わせに対応してもよい。物理ルートシーケンスインデックスu、および、サイクリックシフトは、システム情報に含まれる情報に少なくとも基づいて与えられてもよい。物理ルートシーケンスインデックスuは、ランダムアクセスプリアンブルに含まれる系列を識別するインデックスであってもよい。ランダムアクセスプリアンブルは、物理ルートシーケンスインデックスuに少なくとも基づき特定されてもよい。 The random access preamble may be given by cyclically shifting the Zadoff-Chu sequence corresponding to the physical route sequence index u. The Zadoff-Chu sequence may be generated based on the physical route sequence index u. A plurality of random access preambles may be defined in one serving cell. The random access preamble may be specified at least based on the index of the random access preamble. Different random access preambles corresponding to different indexes of the random access preambles may correspond to different combinations of physical route sequence index u and cyclic shift. The physical route sequence index u and cyclic shift may be given at least based on the information contained in the system information. The physical route sequence index u may be an index that identifies a series included in the random access preamble. The random access preamble may be specified at least based on the physical route sequence index u.
 図1において、上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられる。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・UL DMRS(UpLink Demodulation Reference Signal)
・SRS(Sounding Reference Signal)
・UL PTRS(UpLink Phase Tracking Reference Signal)
In FIG. 1, the following uplink physical signals are used in uplink wireless communication. The uplink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
・ UL DMRS (UpLink Demodulation Reference Signal)
・ SRS (Sounding Reference Signal)
・ UL PTRS (UpLink Phase Tracking Reference Signal)
 UL DMRSは、PUSCH、および/または、PUCCHの送信に関連する。UL DMRSは、PUSCHまたはPUCCHと多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにUL DMRSを使用してよい。以下、PUSCHと、該PUSCHに関連するUL DMRSを共に送信することを、単に、PUSCHを送信する、と称する。以下、PUCCHと該PUCCHに関連するUL DMRSを共に送信することを、単に、PUCCHを送信する、と称する。PUSCHに関連するUL DMRSは、PUSCH用UL DMRSとも称される。PUCCHに関連するUL DMRSは、PUCCH用UL DMRSとも称される。 UL DMRS is associated with PUSCH and / or PUCCH transmission. UL DMRS is multiplexed with PUSCH or PUCCH. The base station apparatus 3 may use UL DMRS to correct the propagation path of PUSCH or PUCCH. Hereinafter, transmitting both PUSCH and UL DMRS related to the PUSCH is referred to simply as transmitting the PUSCH. Hereinafter, transmitting PUCCH and UL DMRS related to the PUCCH together is referred to simply as transmitting PUCCH. UL DMRS related to PUSCH is also referred to as UL DMRS for PUSCH. UL DMRS related to PUCCH is also referred to as UL DMRS for PUCCH.
 SRSは、PUSCHまたはPUCCHの送信に関連しなくてもよい。基地局装置3は、チャネル状態の測定のためにSRSを用いてもよい。SRSは、上りリンクスロットにおけるサブフレームの最後、または、最後から所定数のOFDMシンボルにおいて送信されてもよい。 SRS does not have to be related to PUSCH or PUCCH transmission. The base station apparatus 3 may use SRS for measuring the channel state. The SRS may be transmitted at the end of the subframe in the uplink slot, or at a predetermined number of OFDM symbols from the end.
 UL PTRSは、位相トラッキングのために少なくとも用いられる参照信号であってもよい。UL PTRSは、1または複数のUL DMRSに用いられるアンテナポートを少なくとも含むUL DMRSグループに関連してもよい。UL PTRSとUL DMRSグループが関連することは、UL PTRSのアンテナポートとUL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。UL DMRSグループは、UL DMRSグループに含まれるUL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。UL PTRSは、1つのコードワードがマップされる1または複数のアンテナポートにおいて、最もインデックスの小さいアンテナポートにマップされてもよい。UL PTRSは、1つのコードワードが第1のレイヤ及び第2のレイヤに少なくともマップされる場合に、該第1のレイヤにマップされてもよい。UL PTRSは、該第2のレイヤにマップされなくてもよい。UL PTRSがマップされるアンテナポートのインデックスは、下りリンク制御情報に少なくとも基づき与えられてもよい。 UL PTRS may be at least a reference signal used for phase tracking. The UL PTRS may be associated with a UL DMRS group that includes at least the antenna ports used for one or more UL DMRS. The association between the UL PTRS and the UL DMRS group may be that the antenna port of the UL PTRS and a part or all of the antenna ports included in the UL DMRS group are at least QCL. The UL DMRS group may be identified at least based on the antenna port with the smallest index in the UL DMRS included in the UL DMRS group. UL PTRS may be mapped to the antenna port with the smallest index in one or more antenna ports to which one codeword is mapped. UL PTRS may be mapped to the first layer if one codeword is at least mapped to the first layer and the second layer. UL PTRS does not have to be mapped to the second layer. The index of the antenna port to which the UL PTRS is mapped may be given at least based on the downlink control information.
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために、物理層によって使用される。
・PBCH(Physical Broadcast Channel)
・PDCCH(Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
In FIG. 1, the following downlink physical channels are used in the downlink wireless communication from the base station device 3 to the terminal device 1. The downlink physical channel is used by the physical layer to transmit the information output from the upper layer.
・ PBCH (Physical Broadcast Channel)
・ PDCCH (Physical Downlink Control Channel)
・ PDSCH (Physical Downlink Shared Channel)
 PBCHは、MIB、および/または、PBCHペイロードを送信するために少なくとも用いられる。PBCHペイロードは、SSBの送信タイミング(SSB occasion)に関するインデックスを示す情報を少なくとも含んでもよい。PBCHペイロードは、SSBの識別子(インデックス)に関連する情報を含んでもよい。PBCHは、所定の送信間隔に基づき送信されてもよい。PBCHは、80ミリ秒(ms)の間隔で送信されてもよい。PBCHは、160msの間隔で送信されてもよい。PBCHに含まれる情報の中身は、80ms毎に更新されてもよい。PBCHに含まれる情報の一部または全部は、160ms毎に更新されてもよい。PBCHは、288サブキャリアにより構成されてもよい。PBCHは、2、3、または、4つのOFDMシンボルを含んで構成されてもよい。MIBは、SSBの識別子(インデックス)に関連する情報を含んでもよい。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および/または、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。 PBCH is at least used to transmit MIBs and / or PBCH payloads. The PBCH payload may include at least information indicating an index regarding the transmission timing (SSB occupation) of the SSB. The PBCH payload may include information related to the SSB identifier (index). The PBCH may be transmitted based on a predetermined transmission interval. PBCH may be transmitted at intervals of 80 milliseconds (ms). PBCH may be transmitted at intervals of 160 ms. The content of the information contained in the PBCH may be updated every 80 ms. Part or all of the information contained in the PBCH may be updated every 160 ms. The PBCH may be composed of 288 subcarriers. The PBCH may be configured to include 2, 3, or 4 OFDM symbols. The MIB may include information related to the SSB identifier (index). The MIB may include information indicating at least a portion of the slot number, subframe number, and / or radio frame number through which the PBCH is transmitted.
 PDCCHは、下りリンク制御情報(DCI)の送信のために少なくとも用いられる。PDCCHは、DCIを少なくとも含んで送信されてもよい。PDCCHはDCIを含んで送信されてもよい。DCIは、DCIフォーマットとも称されてもよい。DCIは、下りリンクグラントまたは上りリンクグラントのいずれかを少なくとも示してもよい。PDSCHのスケジューリングのために用いられるDCIフォーマットは、下りリンクDCIフォーマットおよび/または下りリンクグラントとも称されてもよい。PUSCHのスケジューリングのために用いられるDCIフォーマットは、上りリンクDCIフォーマットおよび/または上りリンクグラントとも称されてもよい。下りリンクグラントは、下りリンクアサインメントまたは下りリンク割り当てとも称されてもよい。上りリンクDCIフォーマットは、DCIフォーマット0_0およびDCIフォーマット0_1の一方または両方を少なくとも含む。 PDCCH is at least used for transmitting downlink control information (DCI). The PDCCH may be transmitted with at least DCI. PDCCH may be transmitted including DCI. DCI may also be referred to as DCI format. The DCI may at least indicate either a downlink grant or an uplink grant. The DCI format used for PDSCH scheduling may also be referred to as the downlink DCI format and / or the downlink grant. The DCI format used for PUSCH scheduling may also be referred to as the uplink DCI format and / or the uplink grant. Downlink grants may also be referred to as downlink assignments or downlink assignments. The uplink DCI format includes at least one or both of DCI format 0_0 and DCI format 0_1.
 DCIフォーマット0_0は、1Aから1Iの一部または全部を少なくとも含んで構成されてもよい。
1A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
1B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
1C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
1D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
1E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
1F)NDIフィールド(New Data Indicator field)
1G)RVフィールド(Redundancy Version field)
1H)HPIDフィールド(HARQ process ID field, HARQ process number field)
1I)PUSCHに対するTPC(Transmission Power Control)コマンドフィールド(TPC command for scheduled PUSCH field)
The DCI format 0_0 may be configured to include at least a part or all of 1A to 1I.
1A) Identifier for DCI formats field
1B) Frequency domain resource allocation field
1C) Time domain resource allocation field
1D) Frequency hopping flag field
1E) MCS field (MCS field: Modulation and Coding Scheme field)
1F) NDI field (New Data Indicator field)
1G) RV field (Redundancy Version field)
1H) HPID field (HARQ process ID field, HARQ process number field)
1I) TPC command for scheduled PUSCH field (TPC command for scheduled PUSCH field)
 1Aは、該1Aを含むDCIフォーマットが、1または複数のDCIフォーマットのうち、いずれかのDCIフォーマットに対応するかを示すために少なくとも用いられてもよい。該1または複数のDCIフォーマットは、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット0_0、および/または、DCIフォーマット0_1の一部または全部に少なくとも基づき与えられてもよい。つまり、該1Aのビット数は、対応するDCIフォーマットの数に基づいて決定されてもよい。 1A may be at least used to indicate whether the DCI format containing the 1A corresponds to any of the DCI formats of one or more DCI formats. The one or more DCI formats may be given at least on the basis of DCI format 1_1, DCI format 1-11, DCI format 0_0, and / or part or all of DCI format 0_1. That is, the number of bits in 1A may be determined based on the number of corresponding DCI formats.
 1Bは、該1Bを含むDCIフォーマットによりスケジューリングされるPUSCHのための周波数リソースの割り当てを示すために少なくとも用いられてもよい。該1Bのビット数は、PUSCHの周波数リソースの割り当てに用いられる最大PRB数に基づいて決定されてもよいし、上位層パラメータに基づいて決定されてもよい。 1B may at least be used to indicate the allocation of frequency resources for PUSCH scheduled by the DCI format containing the 1B. The number of bits of the 1B may be determined based on the maximum number of PRBs used to allocate the frequency resources of the PUSCH, or may be determined based on the upper layer parameters.
 1Cは、該1Cを含むDCIフォーマットによりスケジューリングされるPUSCHのための時間リソースの割り当てを示すために少なくとも用いられてもよい。該1Cのビット数は、PUSCHの時間リソースの割り当てに用いられる最大シンボル数に基づいて決定されてもよい。 1C may at least be used to indicate the allocation of time resources for PUSCH scheduled by the DCI format containing the 1C. The number of bits in the 1C may be determined based on the maximum number of symbols used to allocate the PUSCH time resource.
 1Dは、該1Dを含むDCIフォーマットによりスケジューリングされるPUSCHに対して周波数ホッピングが適用されるか否かを示すために少なくとも用いられてもよい。 1D may at least be used to indicate whether frequency hopping is applied to the PUSCH scheduled by the DCI format containing the 1D.
 1Eは、該1Eを含むDCIフォーマットによりスケジューリングされるPUSCHのための変調方式、および/または、ターゲット符号化率の一部または全部を示すために少なくとも用いられてもよい。該ターゲット符号化率は、該PUSCHのTBのためのターゲット符号化率であってもよい。該TBのサイズ(TBS)は、該ターゲット符号化率に少なくとも基づき与えられてもよい。 1E may be at least used to indicate a modulation scheme for PUSCH scheduled by the DCI format containing the 1E and / or part or all of the target code rate. The target code rate may be the target code rate for the TB of the PUSCH. The size of the TB (TBS) may be given at least based on the target code rate.
 1Fは、該1Fの値がトグルされているかどうかに基づいて、該DCIフォーマットによってスケジュールされた、該1Hによって示されるHPIDの値に対応するPUSCHの送信が新規の送信であるか再送信かを示すために用いられる。該1Fの値がトグルされている場合、該1Hに対応する該PUSCHは、新規の送信であり、そうでないとすれば、該1Hに対応する該PUSCHは、再送信である。該1Fは、基地局装置3が、該1Hに対応するPUSCHの再送信を要求しているかを示すDCIであってもよい。 The 1F determines whether the PUSCH transmission corresponding to the HPID value indicated by the 1H, scheduled by the DCI format, is a new transmission or a retransmission, based on whether the value of the 1F is toggled. Used to indicate. If the value of the 1F is toggled, the PUSCH corresponding to the 1H is a new transmission, otherwise the PUSCH corresponding to the 1H is a retransmission. The 1F may be a DCI indicating whether the base station apparatus 3 requests the retransmission of the PUSCH corresponding to the 1H.
 1Gは、該DCIフォーマットによってスケジュールされるPUSCHのビット系列のスタートポジションを示すために用いられる。 1G is used to indicate the start position of the PUSCH bit sequence scheduled by the DCI format.
 1Hは、該DCIフォーマットによってスケジュールされるPUSCHが対応するHARQプロセスの番号(HPID)を示すために用いられる。 1H is used by the PUSCH scheduled by the DCI format to indicate the corresponding HARQ process number (HPID).
 1Iは、該DCIフォーマットによってスケジュールされるPUSCHの送信電力を調整するために用いられる。 1I is used to adjust the PUSCH transmission power scheduled by the DCI format.
 DCIフォーマット0_1は、2Aから2Kの一部または全部を少なくとも含んで構成される。
2A)DCIフォーマット特定フィールド
2B)周波数領域リソース割り当てフィールド
2C)時間領域リソース割り当てフィールド
2D)周波数ホッピングフラグフィールド
2E)MCSフィールド
2F)CSIリクエストフィールド
2G)BWPフィールド
2H)NDIフィールド
2I)RVフィールド
2J)HPIDフィールド
2K)PUSCHに対するTPCコマンドフィールド
DCI format 0-1 is configured to include at least part or all of 2A to 2K.
2A) DCI format specific field 2B) Frequency domain resource allocation field 2C) Time domain resource allocation field 2D) Frequency hopping flag field 2E) MCS field 2F) CSI request field 2G) BWP field 2H) NDI field 2I) RV field 2J) HPID Field 2K) TPC command field for PUSCH
 2Fは、CSIの報告を指示するために少なくとも用いられる。2Fのサイズは、所定の値であってもよい。2Fのサイズは、0であってもよいし、1であってもよいし、2であってもよいし、3であってもよい。2Fのサイズは、端末装置1に設定されるCSI設定の数に応じて決定されてもよい。 2F is at least used to direct CSI reporting. The size of the 2nd floor may be a predetermined value. The size of the 2nd floor may be 0, 1, may be 2, or may be 3. The size of the 2nd floor may be determined according to the number of CSI settings set in the terminal device 1.
 2Gは、DCIフォーマット0_1によりスケジューリングされるPUSCHがマップされる上りリンクBWPを指示するために用いられてもよい。 2G may be used to indicate the uplink BWP to which the PUSCH scheduled in DCI format 0-1 is mapped.
 第2のCSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。第2のCSIリクエストフィールドのサイズは、上位層のパラメータReportTriggerSizeに少なくとも基づき与えられてもよい。 The second CSI request field is at least used to direct CSI reporting. The size of the second CSI request field may be given at least based on the upper layer parameter ReportTriggerSize.
 2Aから2Kのうち、上述した1Aから1Iと同じ名称のフィールドについては、同じ内容を含むため、説明を省略する。 Of 2A to 2K, the fields with the same names as 1A to 1I described above include the same contents, so the description thereof will be omitted.
 下りリンクDCIフォーマットは、DCIフォーマット1_0、および、DCIフォーマット1_1の一方または両方を少なくとも含む。 The downlink DCI format includes at least one or both of DCI format 1_0 and DCI format 1_1.
 DCIフォーマット1_0は、3Aから3Kのうち、一部または全部を少なくとも含んで構成されてもよい。
3A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
3B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
3C)時間領域リソース割り当てフィールド(Time domain resource assignment field)
3D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
3E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
3F)PDSCHからHARQフィードバックへのタイミング指示フィールド(PDSCH to HARQ feedback timing indicator field)
3G)PUCCHリソース指示フィールド(PRI: PUCCH resource indicator field)
3H)NDIフィールド
3I)RVフィールド
3J)HPIDフィールド
3K)PUCCHに対するTPCコマンドフィールド(TPC command for scheduled PUCCH field)
The DCI format 1_0 may be configured to include at least a part or all of 3A to 3K.
3A) Identifier for DCI formats field
3B) Frequency domain resource allocation field
3C) Time domain resource allocation field
3D) Frequency hopping flag field
3E) MCS field (MCS field: Modulation and Coding Scheme field)
3F) PDSCH to HARQ feedback timing indicator field
3G) PUCCH resource indicator field (PRI: PUCCH resource indicator field)
3H) NDI field 3I) RV field 3J) HPID field 3K) TPC command for scheduled PUCCH field
 3Bから3Eは、該DCIフォーマットによってスケジュールされるPDSCHのために用いられてもよい。 3B to 3E may be used for PDSCH scheduled by the DCI format.
 3Fは、タイミングK1を示すフィールドであってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるTBに対応するHARQ-ACKを少なくとも含むPUCCHまたはPUSCHが含まれるスロットのインデックスはn+K1であってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるTBに対応するHARQ-ACKを少なくとも含むPUCCHの先頭のOFDMシンボルまたはPUSCHの先頭のOFDMシンボルが含まれるスロットのインデックスはn+K1であってもよい。 The 3rd floor may be a field indicating timing K1. When the index of the slot containing the last OFDM symbol of the PDSCH is slot n, the index of the PUCCH containing at least the HARQ-ACK corresponding to the TB contained in the PDSCH or the slot containing the PUSCH may be n + K1. .. When the index of the slot containing the last OFDM symbol of the PDSCH is slot n, the first OFDM symbol of the PUCCH containing at least the HARQ-ACK corresponding to the TB contained in the PDSCH or the first OFDM symbol of the PUSCH is included. The index of the slot may be n + K1.
 3Gは、PUCCHリソースセットに含まれる1または複数のPUCCHリソースのインデックスを示すフィールドであってもよいし、PUCCHリソースを決定するために用いられる値であってもよい。 3G may be a field indicating the index of one or more PUCCH resources included in the PUCCH resource set, or may be a value used to determine the PUCCH resource.
 3Hは、該3Hの値がトグルされているかどうかに基づいて、該DCIフォーマットによってスケジュールされた、該3Jによって示されるHPIDの値に対応するPDSCHの送信が新規の送信であるか再送信かを示すために用いられる。該3Jの値がトグルされている場合、該3Jに対応する該PDSCHは、新規の送信であり、そうでないとすれば、該3Jに対応する該PDSCHは、再送信である。 The 3H determines whether the PDSCH transmission corresponding to the HPID value indicated by the 3J, scheduled by the DCI format, is a new transmission or a retransmission, based on whether the value of the 3H is toggled. Used to indicate. If the value of the 3J is toggled, the PDSCH corresponding to the 3J is a new transmission, otherwise the PDSCH corresponding to the 3J is a retransmission.
 3Iは、該DCIフォーマットによってスケジュールされるPDSCHのビット系列のスタートポジションを示すために用いられてもよい。 3I may be used to indicate the start position of the PDSCH bit sequence scheduled by the DCI format.
 3Jは、該DCIフォーマットによってスケジュールされるPDSCHが対応するHARQプロセスの番号を示すために用いられてもよい。 3J may be used to indicate the number of the HARQ process to which the PDSCH scheduled by the DCI format corresponds.
 3Kは、該DCIフォーマットによってスケジュールされるPDSCHに対応するPUCCHの送信電力を調整するために用いられてもよい。 3K may be used to adjust the transmission power of the PUCCH corresponding to the PDSCH scheduled by the DCI format.
 DCIフォーマット1_1は、4Aから4Lのうち、一部または全部を少なくとも含んで構成されてもよい。
4A)DCIフォーマット特定フィールド
4B)周波数領域リソース割り当てフィールド
4C)時間領域リソース割り当てフィールド
4D)周波数ホッピングフラグフィールド
4E)MCSフィールド
4F)PDSCHからHARQフィードバックへのタイミング指示フィールド
4G)PUCCHリソース指示フィールド
4H)BWPフィールド
4I)NDIフィールド
4J)RVフィールド
4K)HPIDフィールド
4L)PUCCHに対するTPCコマンドフィールド
The DCI format 1_1 may be configured to include at least a part or all of 4A to 4L.
4A) DCI format specific field 4B) Frequency domain resource allocation field 4C) Time domain resource allocation field 4D) Frequency hopping flag field 4E) MCS field 4F) Timing instruction field from PDSCH to HARQ feedback 4G) PUCCH resource allocation field 4H) BWP Field 4I) NDI field 4J) RV field 4K) HPID field 4L) TPC command field for PUCCH
 3A、4Aは、1Aおよび2Aと同様に、該DCIフォーマットを識別するために用いられる。 3A, 4A, like 1A and 2A, are used to identify the DCI format.
 1A、2A、3A、4Aはそれぞれ、1ビットで構成される場合には、DCIフォーマット0_0かDCIフォーマット1_0かを、または、DCIフォーマット0_1かDCIフォーマット1_1かを示すために用いられ、2ビットで構成される場合には、DCIフォーマット0_0からDCIフォーマット1_1の4つのうち、いずれか1つを示すために用いられてもよい。 1A, 2A, 3A, and 4A are used to indicate whether DCI format 0_0 or DCI format 1_0, or DCI format 0_1 or DCI format 1-11 when composed of 1 bit, respectively, in 2 bits. When configured, it may be used to indicate any one of the four DCI formats 0_1 to DCI format 1-1.1.
 4Bから4Eは、該DCIフォーマットによってスケジュールされるPDSCHのために用いられてもよい。 4B-4E may be used for PDSCH scheduled by the DCI format.
 4Jは、DCIフォーマット1_1によりスケジューリングされるPDSCHがマップされる下りリンクBWPを指示するために用いられてもよい。 4J may be used to indicate the downlink BWP to which the PDSCH scheduled in DCI format 1-11 is mapped.
 4Aから4Lのうち、上述した3Aから3Kと同じ名称のフィールドについては、同じ内容を含むため、説明を省略する。 Of the 4A to 4L, the fields with the same names as the above-mentioned 3A to 3K include the same contents, so the description thereof will be omitted.
 各DCIフォーマットは、所定のビットサイズ(ペイロードサイズ)に合わせるためにパディングビットを含んでもよい。つまり、DCIフォーマット特定フィールドによって示される各DCIフォーマットのサイズが同じになるように1または複数のパディングビットを用いて調整されてもよい。 Each DCI format may include padding bits to fit a predetermined bit size (payload size). That is, it may be adjusted using one or more padding bits so that the size of each DCI format indicated by the DCI format specific field is the same.
 DCIフォーマット2は、PUSCH、または、PUCCHの送信電力制御のために用いられるパラメータを含んでもよい。 DCI format 2 may include parameters used for controlling the transmission power of PUSCH or PUCCH.
 本実施形態の種々の態様において、特別な記載のない限り、リソースブロック(RB)の数は周波数領域におけるリソースブロックの数を示す。また、リソースブロックのインデックスは、低い周波数領域にマップされるリソースブロックから高い周波数領域にマップされるリソースブロックに昇順で付される。また、リソースブロックは、共通リソースブロック、および、物理リソースブロックの総称である。 In various aspects of the present embodiment, unless otherwise specified, the number of resource blocks (RBs) indicates the number of resource blocks in the frequency domain. In addition, the index of the resource block is assigned in ascending order from the resource block mapped to the low frequency domain to the resource block mapped to the high frequency domain. The resource block is a general term for a common resource block and a physical resource block.
 1つの物理チャネルは、1つのサービングセルにマップされてもよい。1つの物理チャネルは、1つのサービングセルに含まれる1つのキャリアに設定される1つのCBPにマップされてもよい。 One physical channel may be mapped to one serving cell. One physical channel may be mapped to one CBP set for one carrier contained in one serving cell.
 端末装置1は、1または複数の制御リソースセット(CORESET)が与えられる。端末装置1は、1または複数のCORESETにおいてPDCCHを監視する。 The terminal device 1 is given one or more control resource sets (CORESET). The terminal device 1 monitors the PDCCH in one or more CORESETs.
 CORESETは、1または複数のPDCCHがマップされうる時間周波数領域を示してもよい。CORESETは、端末装置1がPDCCHを監視する領域であってもよい。CORESETは、連続的なリソース(Localized resource)により構成されてもよい。CORESETは、非連続的なリソース(distributed resource)により構成されてもよい。 CORESET may indicate a time frequency domain in which one or more PDCCHs can be mapped. CORESET may be an area in which the terminal device 1 monitors PDCCH. CORESET may be composed of continuous resources (Localized resources). CORESET may be composed of non-continuous resources (distributed resources).
 周波数領域において、CORESETのマッピングの単位はリソースブロック(RB)であってもよい。例えば、周波数領域において、CORESETのマッピングの単位は6リソースブロックであってもよい。つまり、CORESETの周波数領域のマッピングは、6RB×n(nは1、2、・・・)で行なわれてもよい。時間領域において、CORESETのマッピングの単位はOFDMシンボルであってもよい。例えば、時間領域において、CORESETのマッピングの単位は1つのOFDMシンボルであってもよい。 In the frequency domain, the unit of CORESET mapping may be a resource block (RB). For example, in the frequency domain, the unit of CORESET mapping may be 6 resource blocks. That is, the mapping of the frequency domain of CORESET may be performed by 6RB × n (n is 1, 2, ...). In the time domain, the unit of CORESET mapping may be an OFDM symbol. For example, in the time domain, the unit of CORESET mapping may be one OFDM symbol.
 CORESETの周波数領域は、上位層の信号、および/または、DCIに少なくとも基づき与えられてもよい。 The frequency domain of CORESET may be given at least based on the signal of the upper layer and / or DCI.
 CORESETの時間領域は、上位層の信号、および/または、DCIに少なくとも基づき与えられてもよい。 The time domain of CORESET may be given at least based on the signal of the upper layer and / or DCI.
 あるCORESETは、共通CORESET(Common CORESET)であってもよい。共通CORESETは、複数の端末装置1に対して共通に設定されるCORESETであってもよい。共通CORESETは、MIB、SIB、共通RRCシグナリング、および、セルIDの一部または全部に少なくとも基づき与えられてもよい。例えば、SIBのスケジューリングのために用いられるPDCCHをモニタすることが設定されるCORESETの時間リソース、および/または、周波数リソースは、MIBに少なくとも基づき与えられてもよい。 A certain CORESET may be a common CORESET (Common CORESET). The common CORESET may be a CORESET that is commonly set for a plurality of terminal devices 1. The common CORESET may be given at least based on the MIB, SIB, common RRC signaling, and part or all of the cell ID. For example, a CORESET time resource and / or frequency resource that is set to monitor the PDCCH used for SIB scheduling may be given at least based on the MIB.
 あるCORESETは、専用CORESET(Dedicated CORESET)であってもよい。専用CORESETは、端末装置1のために専用に用いられるように設定されるCORESETであってもよい。専用CORESETは、専用RRCシグナリングに少なくとも基づき与えられてもよい。 A certain CORESET may be a dedicated CORESET (Dedicated CORESET). The dedicated CORESET may be a CORESET that is set to be used exclusively for the terminal device 1. Dedicated CORESET may be given at least on the basis of dedicated RRC signaling.
 端末装置1によって監視されるPDCCHの候補のセットは、探索領域の観点から定義されてもよい。つまり、端末装置1によって監視されるPDCCH候補のセットは、探索領域によって与えられてもよい。 The set of PDCCH candidates monitored by the terminal device 1 may be defined from the viewpoint of the search area. That is, the set of PDCCH candidates monitored by the terminal device 1 may be given by the search area.
 探索領域は、1または複数の集約レベル(AL)のPDCCH候補を1または複数含んで構成されてもよい。PDCCH候補の集約レベルは、該PDCCHを構成するCCEの個数を示してもよい。 The search area may be configured to include one or more PDCCH candidates of one or more aggregation levels (AL). The aggregation level of PDCCH candidates may indicate the number of CCEs constituting the PDCCH.
 端末装置1は、DRX(Discontinuous reception)が設定されないスロットにおいて少なくとも1または複数の探索領域を監視してもよい。DRXは、上位層のパラメータに少なくとも基づき与えられてもよい。端末装置1は、DRXが設定されないスロットにおいて少なくとも1または複数の探索領域セット(Search space set)を監視してもよい。 The terminal device 1 may monitor at least one or a plurality of search areas in a slot in which DRX (Discontinuous reception) is not set. DRX may be given at least based on the parameters of the upper layer. The terminal device 1 may monitor at least one or a plurality of search area sets (Search space sets) in slots in which DRX is not set.
 探索領域セットは、1または複数の探索領域を少なくとも含んで構成されてもよい。探索領域セットのタイプは、タイプ0PDCCH共通探索領域(common search space)、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、タイプ3PDCCH共通探索領域、および/または、UE個別PDCCH探索領域のいずれかであってもよい。 The search area set may be configured to include at least one or a plurality of search areas. The types of the search area set are type 0PDCCH common search area (common search space), type 0a PDCCH common search area, type 1 PDCCH common search area, type 2 PDCCH common search area, type 3 PDCCH common search area, and / or UE individual PDCCH search. It may be any of the regions.
 タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、タイプ2PDCCH共通探索領域、および、タイプ3PDCCH共通探索領域は、CSS(Common Search Space)とも称されてもよい。UE個別PDCCH探索領域は、USS(UE specific Search Space)とも称されてもよい。 The type 0PDCCH common search area, the type 0aPDCCH common search area, the type 1PDCCH common search area, the type 2PDCCH common search area, and the type 3PDCCH common search area may also be referred to as CSS (Common Search Space). The UE individual PDCCH search area may also be referred to as USS (UE specific Search Space).
 探索領域セットのそれぞれは、1つの制御リソースセットに関連してもよい。探索領域セットのそれぞれは、1つの制御リソースセットに少なくとも含まれてもよい。探索領域セットのそれぞれに対して、該探索領域セットに関連する制御リソースセットのインデックスが与えられてもよい。 Each of the search area sets may be associated with one control resource set. Each of the search area sets may be included in at least one control resource set. For each of the search area sets, an index of the control resource set associated with the search area set may be given.
 タイプ0PDCCH共通探索領域は、SI-RNTI(System Information-Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)系列を伴うDCIフォーマットのために少なくとも用いられてもよい。タイプ0PDCCH共通探索領域の設定は、上位層パラメータPDCCH-ConfigSIB1のLSB(Least Significant Bits)の4ビットに少なくとも基づき与えられてもよい。上位層パラメータPDCCH-ConfigSIB1は、MIBに含まれてもよい。タイプ0PDCCH共通探索領域の設定は、上位層のパラメータSearchSpaceZeroに少なくとも基づき与えられてもよい。上位層のパラメータSearchSpaceZeroのビットの解釈は、上位層パラメータPDCCH-ConfigSIB1のLSBの4ビットの解釈と同様であってもよい。タイプ0PDCCH共通探索領域の設定は、上位層のパラメータSearchSpaceSIB1に少なくとも基づき与えられてもよい。上位層のパラメータSearchSpaceSIB1は、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。タイプ0PDCCH共通探索領域で検出されるPDCCHは、SIB1を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられてもよい。SIB1は、SIBの一種である。SIB1は、SIB1以外のSIBのスケジューリング情報を含んでもよい。端末装置1は、EUTRAにおいて上位層のパラメータPDCCH-ConfigCommonを受信してもよい。端末装置1は、MCGにおいて上位層のパラメータPDCCH-ConfigCommonを受信してもよい。 The Type 0 PDCCH common search area may be at least used for DCI formats with CRC (Cyclic Redundancy Check) sequences scrambled by SI-RNTI (System Information-Radio Network Temporary Identifier). The setting of the type 0 PDCCH common search area may be given at least based on 4 bits of the LSB (Least Significant Bits) of the upper layer parameter PDCCH-ConfigSIB1. The upper layer parameter PDCCH-ConfigSIB1 may be included in the MIB. The setting of the type 0PDCCH common search area may be given at least based on the parameter SearchSpaceZero of the upper layer. The interpretation of the bits of the upper layer parameter SearchSpaceZero may be the same as the interpretation of the LSB of the upper layer parameter PDCCH-ConfigSIB1. The setting of the type 0PDCCH common search area may be given at least based on the parameter SearchSpaceSIB1 of the upper layer. The upper layer parameter SearchSpaceSIB1 may be included in the upper layer parameter PDCCH-ConfigCommon. The PDCCH detected in the type 0 PDCCH common search area may be at least used for scheduling the PDSCH transmitted including the SIB1. SIB1 is a kind of SIB. SIB1 may include scheduling information of SIB other than SIB1. The terminal device 1 may receive the parameter PDCCH-ConfigCommon of the upper layer in EUTRA. The terminal device 1 may receive the parameter PDCCH-ConfigCommon of the upper layer in the MCG.
 タイプ0aPDCCH共通探索領域は、SI-RNTI(System Information-Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)系列を伴うDCIフォーマットのために少なくとも用いられてもよい。タイプ0aPDCCH共通探索領域の設定は、上位層パラメータSearchSpaceOtherSystemInformationに少なくとも基づき与えられてもよい。上位層パラメータSearchSpaceOtherSystemInformationは、SIB1に含まれてもよい。上位層のパラメータSearchSpaceOtherSystemInformationは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。タイプ0PDCCH共通探索領域で検出されるPDCCHは、SIB1以外のSIBを含んで送信されるPDSCHのスケジューリングのために少なくとも用いられてもよい。 The type 0aPDCCH common search area may at least be used for DCI formats with CRC (Cyclic Redundancy Check) sequences scrambled by SI-RNTI (System Information-Radio Network Temporary Identifier). The setting of the type 0aPDCCH common search region may be given at least based on the upper layer parameter SearchSpaceOtherSystemInformation. The upper layer parameter SearchSpaceOtherSystemInformation may be included in SIB1. The upper layer parameter SearchSpaceOtherSystemInformation may be included in the upper layer parameter PDCCH-ConfigCommon. The PDCCH detected in the type 0 PDCCH common search area may be at least used for scheduling PDSCHs transmitted including SIBs other than SIB1.
 タイプ1PDCCH共通探索領域は、RA-RNTI(Random Access-Radio Network Temporary Identifier)によってスクランブルされたCRC系列、および/または、TC-RNTI(Temporary Common-Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。RA-RNTIは、端末装置1によって送信されるランダムアクセスプリアンブルの時間/周波数リソースに少なくとも基づき与えられてもよい。TC-RNTIは、RA-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットによりスケジューリングされるPDSCH(ランダムアクセスメッセージ2、メッセージ2(Msg2)、または、ランダムアクセスレスポンス(RAR)とも称される)により与えられてもよい。タイプ1PDCCH共通探索領域は、上位層のパラメータra-SearchSpaceに少なくとも基づき与えられてもよい。上位層のパラメータra-SearchSpaceは、SIB1に含まれてもよい。上位層のパラメータra-SearchSpaceは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。 The Type 1 PDCCH common search region is accompanied by a CRC sequence scrambled by RA-RNTI (Random Access-Radio Network Temporary Identifier) and / or a CRC sequence scrambled by TC-RNTI (Temporary Common-Radio Network Temporary Identifier). It may be at least used for the DCI format. RA-RNTI may be given at least based on the time / frequency resources of the random access preamble transmitted by terminal device 1. TC-RNTI is provided by PDSCH (also referred to as Random Access Message 2, Message 2 (Msg2), or Random Access Response (RAR)) scheduled in DCI format with a CRC sequence scrambled by RA-RNTI. May be done. The type 1 PDCCH common search area may be given at least based on the upper layer parameter ra-SearchSpace. The upper layer parameter ra-SearchSpace may be included in SIB1. The upper layer parameter ra-SearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
 タイプ2PDCCH共通探索領域は、P-RNTI(Paging- Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために用いられてもよい。P-RNTIは、SIBの変更を通知する情報を含むDCIフォーマットの送信のために少なくとも用いられてもよい。タイプ2PDCCH共通探索領域は、上位層のパラメータPagingSearchSpaceに少なくとも基づき与えられてもよい。上位層のパラメータPagingSearchSpaceは、SIB1に含まれてもよい。上位層のパラメータPagingSearchSpaceは、上位層のパラメータPDCCH-ConfigCommonに含まれてもよい。 The Type 2 PDCCH common search area may be used for DCI formats with CRC sequences scrambled by P-RNTI (Paging-Radio Network Temporary Identifier). P-RNTI may at least be used for transmission of DCI format containing information notifying SIB changes. The type 2 PDCCH common search area may be given at least based on the upper layer parameter PagingSearchSpace. The upper layer parameter PagingSearchSpace may be included in SIB1. The upper layer parameter PagingSearchSpace may be included in the upper layer parameter PDCCH-ConfigCommon.
 タイプ3PDCCH共通探索領域は、C-RNTI(Cell-Radio Network Temporary Identifier)によってスクランブルされたCRC系列を伴うDCIフォーマットのために用いられてもよい。C-RNTIは、TC-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットによりスケジューリングされるPDSCH(ランダムアクセスメッセージ4、メッセージ4(Msg4)、または、コンテンションレゾリューションとも称されてもよい)に少なくとも基づき与えられてもよい。タイプ3PDCCH共通探索領域は、上位層のパラメータSearchSpaceTypeがcommonにセットされている場合に与えられる探索領域セットであってもよい。 The Type 3 PDCCH common search area may be used for DCI formats with CRC sequences scrambled by C-RNTI (Cell-Radio Network Temporary Identifier). C-RNTI is on a PDSCH (also referred to as Random Access Message 4, Message 4 (Msg4), or Contention Resolution) scheduled by the DCI format with a CRC sequence scrambled by TC-RNTI. It may be given at least on the basis. The type 3 PDCCH common search area may be a search area set given when the parameter SearchSpaceType of the upper layer is set to common.
 UE個別PDCCH探索領域は、C-RNTIによってスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。 The UE-individual PDCCH search region may be at least used for DCI formats with CRC sequences scrambled by C-RNTI.
 端末装置1にC-RNTIが与えられた場合、タイプ0PDCCH共通探索領域、タイプ0aPDCCH共通探索領域、タイプ1PDCCH共通探索領域、および/または、タイプ2PDCCH共通探索領域は、C-RNTIでスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。 When C-RNTI is given to the terminal device 1, the type 0PDCCH common search area, the type 0aPDCCH common search area, the type 1PDCCH common search area, and / or the type 2PDCCH common search area are CRC scrambled by C-RNTI. It may be used at least for DCI formats with sequences.
 端末装置1にC-RNTIが与えられた場合、上位層パラメータPDCCH-ConfigSIB1、上位層のパラメータSearchSpaceZero、上位層のパラメータSearchSpaceSIB1、上位層のパラメータSearchSpaceOtherSystemInformation、上位層のパラメータra-SearchSpace、または、上位層パラメータPagingSearchSpaceのいずれかに少なくとも基づき与えられる探索領域セットは、C-RNTIでスクランブルされたCRC系列を伴うDCIフォーマットのために少なくとも用いられてもよい。 When C-RNTI is given to the terminal device 1, the upper layer parameter PDCCH-ConfigSIB1, the upper layer parameter SearchSpaceZero, the upper layer parameter SearchSpaceSIB1, the upper layer parameter SearchSpaceOtherSystemInformation, the upper layer parameter ra-Sar. The search region set given at least based on any of the parameters PagingSearchSpace may be used at least for DCI formats with CRC sequences scrambled with C-RNTI.
 共通CORESETは、CSSおよびUSSの一方または両方を少なくとも含んでもよい。専用CORESETは、CSSおよびUSSの一方または両方を少なくとも含んでもよい。 The common CORESET may include at least one or both of CSS and USS. The dedicated CORESET may include at least one or both of CSS and USS.
 探索領域の物理リソースは制御チャネルの構成単位(CCE: Control Channel Element)により構成される。CCEは6つのリソース要素グループ(REG: Resource Element Group)により構成される。REGは1つのPRB(Physical Resource Block)の1つのOFDMシンボルにより構成されてもよい。つまり、REGは12個のリソースエレメント(RE: Resource Element)を含んで構成されてもよい。PRBは、単にリソースブロック(RB)とも称されてもよい。 The physical resources in the search area are composed of control channel configuration units (CCE: Control Channel Element). CCE is composed of 6 resource element groups (REG: ResourceElementGroup). The REG may be composed of one OFDM symbol of one PRB (Physical Resource Block). That is, the REG may be configured to include 12 resource elements (RE: ResourceElement). The PRB may also be simply referred to as a resource block (RB).
 PDSCHは、TBを送信するために少なくとも用いられる。また、PDSCHは、ランダムアクセスメッセージ2(RAR、Msg2)を送信するために少なくとも用いられてもよい。また、PDSCHは、初期アクセスのために用いられるパラメータを含むシステム情報を送信するために少なくとも用いられてもよい。 PDSCH is at least used to transmit TB. The PDSCH may also be at least used to transmit a random access message 2 (RAR, Msg2). The PDSCH may also be at least used to transmit system information, including parameters used for initial access.
 図1において、下りリンクの無線通信では、以下の下りリンク物理シグナルが用いられる。下りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・同期信号(Synchronization signal)
・DL DMRS(DownLink DeModulation Reference Signal)
・CSI-RS(Channel State Information-Reference Signal)
・DL PTRS(DownLink Phase Tracking Reference Signal)
・TRS(Tracking Reference Signal)
In FIG. 1, the following downlink physical signals are used in downlink wireless communication. The downlink physical signal does not have to be used to transmit the information output from the upper layer, but it is used by the physical layer.
-Synchronization signal
・ DL DMRS (DownLink DeModulation Reference Signal)
・ CSI-RS (Channel State Information-Reference Signal)
・ DL PTRS (DownLink Phase Tracking Reference Signal)
・ TRS (Tracking Reference Signal)
 同期信号は、端末装置1が下りリンクの周波数領域、および/または、時間領域の同期をとるために用いられる。なお、同期信号は、PSS(Primary Synchronization Signal)、および、SSS(Secondary Synchronization Signal)を含む。 The synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and / or the time domain. The synchronization signal includes PSS (PrimarySynchronizationSignal) and SSS (SecondarySynchronizationSignal).
 SSB(SS/PBCHブロック)は、PSS、SSS、および、PBCHの一部または全部を少なくとも含んで構成される。SSブロックに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのアンテナポートは同一であってもよい。SSBに含まれるPSS、SSS、およびPBCHの一部または全部は、連続するOFDMシンボルにマップされてもよい。SSBに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれのCP設定は同一であってもよい。SSBに含まれるPSS、SSS、および、PBCHの一部または全部のそれぞれに対するSCS設定μは同じ値が適用されてもよい。 SSB (SS / PBCH block) is composed of PSS, SSS, and at least a part or all of PBCH. The antenna ports of PSS, SSS, and a part or all of PBCH included in the SS block may be the same. Some or all of the PSS, SSS, and PBCH contained in the SSB may be mapped to consecutive OFDM symbols. The CP settings of PSS, SSS, and part or all of PBCH contained in SSB may be the same. The same value may be applied to the SCS setting μ for each of PSS, SSS, and a part or all of PBCH contained in SSB.
 DL DMRSは、PBCH、PDCCH、および/または、PDSCHの送信に関連する。DL DMRSは、PBCH、PDCCH、および/または、PDSCHに多重される。端末装置1は、PBCH、PDCCH、または、PDSCHの伝搬路補正を行なうために該PBCH、該PDCCH、または、該PDSCHと対応するDL DMRSを使用してよい。以下、PBCHと、該PBCHと関連するDL DMRSが共に送信されることは、PBCHが送信されると称されてもよい。また、PDCCHと、該PDCCHと関連するDL DMRSが共に送信されることは、単にPDCCHが送信されると称されてもよい。また、PDSCHと、該PDSCHと関連するDL DMRSが共に送信されることは、単にPDSCHが送信されると称されてもよい。PBCHと関連するDL DMRSは、PBCH用DL DMRSとも称されてもよい。PDSCHと関連するDL DMRSは、PDSCH用DL DMRSとも称されてもよい。PDCCHと関連するDL DMRSは、PDCCHと関連するDL DMRSとも称されてもよい。 DL DMRS is associated with the transmission of PBCH, PDCCH, and / or PDSCH. DL DMRS is multiplexed on PBCH, PDCCH, and / or PDSCH. The terminal device 1 may use the PBCH, the PDCCH, or the DL DMRS corresponding to the PDSCH in order to correct the propagation path of the PBCH, PDCCH, or PDSCH. Hereinafter, the transmission of PBCH and DL DMRS related to the PBCH together may be referred to as transmission of PBCH. Further, the transmission of PDCCH and DL DMRS related to the PDCCH together may be referred to simply as transmission of PDCCH. Further, the transmission of the PDSCH and the DL DMRS related to the PDSCH together may be referred to simply as the PDSCH being transmitted. DL DMRS related to PBCH may also be referred to as DL DMRS for PBCH. DL DMRS related to PDSCH may also be referred to as DL DMRS for PDSCH. DL DMRS associated with PDCCH may also be referred to as DL DMRS associated with PDCCH.
 DL DMRSは、端末装置1に個別に設定される参照信号であってもよい。DL DMRSの系列は、端末装置1に個別に設定されるパラメータに少なくとも基づいて与えられてもよい。DL DMRSの系列は、UE固有の値(例えば、C-RNTI等)に少なくとも基づき与えられてもよい。DL DMRSは、PDCCH、および/または、PDSCHのために個別に送信されてもよい。 The DL DMRS may be a reference signal individually set in the terminal device 1. The DL DMRS sequence may be given at least based on parameters individually set in the terminal device 1. The DL DMRS sequence may be given at least based on a UE-specific value (eg, C-RNTI, etc.). DL DMRS may be transmitted individually for PDCCH and / or PDSCH.
 CSI-RSは、CSIを算出するために少なくとも用いられる信号であってもよい。また、CSI-RSは、RSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)を測定するために用いられてもよい。端末装置1によって想定されるCSI-RSのパターンは、少なくとも上位層のパラメータにより与えられてもよい。 CSI-RS may be at least a signal used to calculate CSI. Further, CSI-RS may be used for measuring RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality). The pattern of CSI-RS assumed by the terminal device 1 may be given by at least the parameters of the upper layer.
 PTRSは、位相雑音の補償のために少なくとも用いられる信号であってもよい。端末装置1によって想定されるPTRSのパターンは、上位層のパラメータ、および/または、DCIに少なくとも基づき与えられてもよい。 The PTRS may be at least a signal used to compensate for phase noise. The pattern of PTRS assumed by the terminal device 1 may be given at least based on the upper layer parameters and / or DCI.
 DL PTRSは、1または複数のDL DMRSに用いられるアンテナポートを少なくとも含むDL DMRSグループに関連してもよい。DL PTRSとDL DMRSグループが関連することは、DL PTRSのアンテナポートとDL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。DL DMRSグループは、DL DMRSグループに含まれるDL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。 The DL PTRS may be associated with a DL DMRS group that includes at least the antenna ports used for one or more DL DMRSs. The association between the DL PTRS and the DL DMRS group may be that the antenna port of the DL PTRS and a part or all of the antenna ports included in the DL DMRS group are at least QCL. The DL DMRS group may be identified based on at least the antenna port having the smallest index in the DL DMRS included in the DL DMRS group.
 TRSは、時間、および/または、周波数の同期のために少なくとも用いられる信号であってもよい。端末装置によって想定されるTRSのパターンは、上位層のパラメータ、および/または、DCIに少なくとも基づき与えられてもよい。 The TRS may be at least a signal used for time and / or frequency synchronization. The pattern of TRS assumed by the terminal device may be given at least based on the upper layer parameters and / or DCI.
 下りリンク物理チャネルおよび下りリンク物理信号は、下りリンク信号とも称されてもよい。上りリンク物理チャネルおよび上りリンク物理信号は、上りリンク信号とも称されてもよい。下りリンク信号および上りリンク信号を総称して、物理信号または信号とも称してもよい。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称してもよい。下りリンクにおいて、物理信号は、SSB、PDCCH(CORESET)、PDSCH、DL DMRS、CSI-RS、DL PTRS、TRSのうち、一部または全部を含んでもよい。また、上りリンクにおいて、物理信号は、PRACH、PUCCH、PUSCH、UL DMRS、UL PTRS、SRSのうち、一部または全部を含んでもよい。物理信号は、上記した信号以外の信号であってもよい。つまり、物理信号は、1または複数の種類の物理チャネルおよび/または物理信号を含んでもよいし、1または複数の物理チャネルおよび/または物理信号を含んでもよい。 The downlink physical channel and the downlink physical signal may also be referred to as a downlink physical signal. The uplink physical channel and the uplink physical signal may also be referred to as an uplink signal. The downlink signal and the uplink signal may be collectively referred to as a physical signal or a signal. The downlink physical channel and the uplink physical channel may be collectively referred to as a physical channel. On the downlink, the physical signal may include a part or all of SSB, PDCCH (CORESET), PDSCH, DL DMRS, CSI-RS, DL PTRS, and TRS. Further, in the uplink, the physical signal may include a part or all of PRACH, PUCCH, PUSCH, UL DMRS, UL PTRS, and SRS. The physical signal may be a signal other than the above-mentioned signal. That is, the physical signal may include one or more types of physical channels and / or physical signals, or may include one or more physical channels and / or physical signals.
 BCH(Broadcast CHannel)、UL-SCH(Uplink-Shared CHannel)およびDL-SCH(Downlink-Shared CHannel)は、トランスポートチャネルである。媒体アクセス制御(MAC)層で用いられるチャネルはトランスポートチャネルと称されてもよい。MAC層で用いられるトランスポートチャネルの単位は、TBまたはMAC PDUとも称されてもよい。MAC層においてTB毎にHARQの制御が行なわれる。TBは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、TBはコードワードにマップされ、コードワード毎に変調処理が行なわれる。 BCH (Broadcast CHannel), UL-SCH (Uplink-Shared CHannel) and DL-SCH (Downlink-Shared CHannel) are transport channels. The channels used in the medium access control (MAC) layer may be referred to as transport channels. The unit of the transport channel used in the MAC layer may also be referred to as TB or MAC PDU. HARQ is controlled for each TB in the MAC layer. TB is a unit of data delivered by the MAC layer to the physical layer. In the physical layer, TB is mapped to codewords, and modulation processing is performed for each codeword.
 基地局装置3と端末装置1は、上位層(higher layer)において上位層の信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC)層において、RRCシグナリング(RRCメッセージ、RRC情報、RRCパラメータ、RRC情報要素)を送受信してもよい。また、基地局装置3と端末装置1は、MAC層において、MAC CE(Control Element)を送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。 The base station device 3 and the terminal device 1 exchange (transmit / receive) signals of the upper layer in the upper layer. For example, the base station device 3 and the terminal device 1 may transmit and receive RRC signaling (RRC message, RRC information, RRC parameter, RRC information element) in the radio resource control (RRC) layer. Further, the base station device 3 and the terminal device 1 may transmit and receive MAC CE (Control Element) in the MAC layer. Here, RRC signaling and / or MAC CE is also referred to as higher layer signaling.
 PUSCHおよびPDSCHは、RRCシグナリング、および/または、MAC CEを送信するために少なくとも用いられてよい。ここで、基地局装置3よりPDSCHで送信されるRRCシグナリングは、サービングセル内における複数の端末装置1に対して共通のシグナリングであってもよい。サービングセル内における複数の端末装置1に対して共通のシグナリングは、共通RRCシグナリングとも称されてもよい。基地局装置3からPDSCHで送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingまたはUE specific signalingとも称されてもよい)であってもよい。端末装置1に対して専用のシグナリングは、専用RRCシグナリングとも称されてもよい。サービングセルにおいて固有な上位層のパラメータは、サービングセル内における複数の端末装置1に対して共通のシグナリング、または、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。UE固有な上位層のパラメータは、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。 PUSCH and PDSCH may at least be used to transmit RRC signaling and / or MAC CE. Here, the RRC signaling transmitted from the base station device 3 by PDSCH may be a signal common to a plurality of terminal devices 1 in the serving cell. Signaling common to a plurality of terminal devices 1 in the serving cell may also be referred to as common RRC signaling. The RRC signaling transmitted from the base station device 3 via PDSCH may be dedicated signaling (also referred to as dedicated signaling or UE specific signaling) to a certain terminal device 1. The signaling dedicated to the terminal device 1 may also be referred to as dedicated RRC signaling. The parameters of the upper layer unique to the serving cell may be transmitted by using common signaling to a plurality of terminal devices 1 in the serving cell or by using dedicated signaling to a certain terminal device 1. UE-specific upper layer parameters may be transmitted to a terminal device 1 using dedicated signaling.
 BCCH(Broadcast Control CHannel)、CCCH(Common Control CHannel)、および、DCCH(Dedicated Control CHannel)は、ロジカルチャネルである。例えば、BCCHは、MIBを送信するために用いられる上位層のチャネルである。また、CCCH(Common Control CHannel)は、複数の端末装置1において共通な情報を送信するために用いられる上位層のチャネルである。ここで、CCCHは、例えば、RRC接続されていない端末装置1のために用いられてもよい。また、DCCH(Dedicated Control CHannel)は、端末装置1に専用の制御情報(dedicated control information)を送信するために少なくとも用いられる上位層のチャネルである。ここで、DCCHは、例えば、RRC接続されている端末装置1のために用いられてもよい。 BCCH (Broadcast Control CHannel), CCCH (Common Control Channel), and DCCH (Dedicated Control Channel) are logical channels. For example, BCCH is an upper layer channel used to transmit MIBs. Further, CCCH (Common Control CHannel) is an upper layer channel used for transmitting common information in a plurality of terminal devices 1. Here, CCCH may be used, for example, for a terminal device 1 that is not RRC-connected. Further, the DCCH (Dedicated Control Channel) is an upper layer channel that is at least used for transmitting dedicated control information to the terminal device 1. Here, the DCCH may be used, for example, for the terminal device 1 connected by RRC.
 ロジカルチャネルにおけるBCCHは、トランスポートチャネルにおいてBCH、DL-SCH、または、UL-SCHにマップされてもよい。ロジカルチャネルにおけるCCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。ロジカルチャネルにおけるDCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。 BCCH in a logical channel may be mapped to BCH, DL-SCH, or UL-SCH in a transport channel. CCCH in a logical channel may be mapped to DL-SCH or UL-SCH in a transport channel. DCCH in a logical channel may be mapped to DL-SCH or UL-SCH in a transport channel.
 トランスポートチャネルにおけるUL-SCHは、物理チャネルにおいてPUSCHにマップされてもよい。トランスポートチャネルにおけるDL-SCHは、物理チャネルにおいてPDSCHにマップされてもよい。トランスポートチャネルにおけるBCHは、物理チャネルにおいてPBCHにマップされてもよい。 UL-SCH in the transport channel may be mapped to PUSCH in the physical channel. The DL-SCH in the transport channel may be mapped to the PDSCH in the physical channel. BCH in the transport channel may be mapped to PBCH in the physical channel.
 以下、本実施形態の一態様に係る端末装置1の構成例を説明する。 Hereinafter, a configuration example of the terminal device 1 according to one aspect of the present embodiment will be described.
 図11は、本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13の一部または全部を少なくとも含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16の一部または全部を少なくとも含んで構成される。無線送受信部10を送信部、受信部、物理層処理部、および/または、下位層処理部とも称してもよい。 FIG. 11 is a schematic block diagram showing the configuration of the terminal device 1 according to one aspect of the present embodiment. As shown in the figure, the terminal device 1 includes a wireless transmission / reception unit 10 and an upper layer processing unit 14. The radio transmission / reception unit 10 includes at least a part or all of an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13. The upper layer processing unit 14 includes at least a part or all of the medium access control layer processing unit 15 and the radio resource control layer processing unit 16. The wireless transmission / reception unit 10 may also be referred to as a transmission unit, a reception unit, a physical layer processing unit, and / or a lower layer processing unit.
 上位層処理部14は、ユーザーの操作等により生成された上りリンクデータ(TB、UL-SCH)を、無線送受信部10に出力する。上位層処理部14は、MAC層、パケットデータ統合プロトコル(PDCP)層、無線リンク制御(RLC)層、RRC層の処理を行なう。 The upper layer processing unit 14 outputs the uplink data (TB, UL-SCH) generated by the user's operation or the like to the wireless transmission / reception unit 10. The upper layer processing unit 14 processes the MAC layer, the packet data integration protocol (PDCP) layer, the wireless link control (RLC) layer, and the RRC layer.
 上位層処理部14が備える媒体アクセス制御層処理部15は、MAC層の処理を行なう。 The medium access control layer processing unit 15 included in the upper layer processing unit 14 processes the MAC layer.
 上位層処理部14が備える無線リソース制御層処理部16は、RRC層の処理を行なう。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。該パラメータは上位層のパラメータ、および/または、情報要素であってもよい。 The radio resource control layer processing unit 16 included in the upper layer processing unit 14 processes the RRC layer. The wireless resource control layer processing unit 16 manages various setting information / parameters of its own device. The radio resource control layer processing unit 16 sets various setting information / parameters based on the signal of the upper layer received from the base station apparatus 3. That is, the radio resource control layer processing unit 16 sets various setting information / parameters based on the information indicating various setting information / parameters received from the base station apparatus 3. The parameter may be an upper layer parameter and / or an information element.
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行なう。無線送受信部10は、受信した物理信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。これらの処理を受信処理と称してもよい。無線送受信部10は、データを変調、符号化、ベースバンド信号生成(時間連続信号への変換)することによって物理信号(上りリンク信号)を生成し、基地局装置3に送信する。これらの処理を送信処理と称してもよい。 The wireless transmission / reception unit 10 performs physical layer processing such as modulation, demodulation, coding, and decoding. The wireless transmission / reception unit 10 separates, demodulates, and decodes the received physical signal, and outputs the decoded information to the upper layer processing unit 14. These processes may be referred to as reception processes. The wireless transmission / reception unit 10 generates a physical signal (uplink signal) by modulating, encoding, and generating a baseband signal (converting to a time continuous signal), and transmits the physical signal (uplink signal) to the base station device 3. These processes may be referred to as transmission processes.
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。 The RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down-conversion), and removes unnecessary frequency components. The RF unit 12 outputs the processed analog signal to the baseband unit.
 ベースバンド部13は、RF部12から入力されたアナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(FFT)を行ない、周波数領域の信号を抽出する。 The baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal. The baseband unit 13 removes a portion corresponding to the CP from the converted digital signal, performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
 ベースバンド部13は、データを逆高速フーリエ変換(IFFT)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。 The baseband unit 13 performs inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds CP to the generated OFDM symbol, generates a baseband digital signal, and generates a baseband digital signal. Convert to analog signal. The baseband unit 13 outputs the converted analog signal to the RF unit 12.
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバートし、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。 The RF unit 12 removes an extra frequency component from the analog signal input from the baseband unit 13 using a low-pass filter, up-converts the analog signal to a carrier frequency, and transmits the analog signal via the antenna unit 11. Further, the RF unit 12 amplifies the electric power. Further, the RF unit 12 may have a function of controlling the transmission power. The RF unit 12 is also referred to as a transmission power control unit.
 以下、本実施形態の一態様に係る基地局装置3の構成例を説明する。 Hereinafter, a configuration example of the base station device 3 according to one aspect of the present embodiment will be described.
 図12は、本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。 FIG. 12 is a schematic block diagram showing the configuration of the base station device 3 according to one aspect of the present embodiment. As shown in the figure, the base station apparatus 3 includes a wireless transmission / reception unit 30 and an upper layer processing unit 34. The radio transmission / reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33. The upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36. The wireless transmission / reception unit 30 is also referred to as a transmission unit, a reception unit, or a physical layer processing unit.
 上位層処理部34は、MAC層、PDCP層、RLC層、RRC層の処理を行なう。 The upper layer processing unit 34 processes the MAC layer, PDCP layer, RLC layer, and RRC layer.
 上位層処理部34が備える媒体アクセス制御層処理部35は、MAC層の処理を行なう。 The medium access control layer processing unit 35 included in the upper layer processing unit 34 processes the MAC layer.
 上位層処理部34が備える無線リソース制御層処理部36は、RRC層の処理を行なう。無線リソース制御層処理部36は、PDSCHに配置される下りリンクデータ(TB、DL-SCH)、システム情報、RRCメッセージ、MAC CEなどを生成し、または上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。 The radio resource control layer processing unit 36 included in the upper layer processing unit 34 processes the RRC layer. The wireless resource control layer processing unit 36 generates downlink data (TB, DL-SCH), system information, RRC message, MAC CE, etc., which are arranged in the PDSCH, or acquires them from a higher-level node and sends them to the wireless transmission / reception unit 30. Output. Further, the wireless resource control layer processing unit 36 manages various setting information / parameters of each terminal device 1. The wireless resource control layer processing unit 36 may set various setting information / parameters for each terminal device 1 via a signal of the upper layer. That is, the radio resource control layer processing unit 36 transmits / notifies information indicating various setting information / parameters.
 無線送受信部30の基本的な機能は、無線送受信部10と同様であるため説明を省略する。無線送受信部30において生成された物理信号を端末装置1に送信する(つまり、送信処理を行なう)。また、無線送受信部30は、受信した物理信号の受信処理を行なう。 Since the basic functions of the wireless transmission / reception unit 30 are the same as those of the wireless transmission / reception unit 10, the description thereof will be omitted. The physical signal generated by the wireless transmission / reception unit 30 is transmitted to the terminal device 1 (that is, transmission processing is performed). Further, the wireless transmission / reception unit 30 performs reception processing of the received physical signal.
 媒体アクセス制御層処理部15および/または35は、MACエンティティと称されてもよい。 The medium access control layer processing unit 15 and / or 35 may be referred to as a MAC entity.
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。端末装置1が備える符号10から符号16が付された部の一部または全部は、メモリと該メモリに接続されるプロセッサとして構成されてもよい。基地局装置3が備える符号30から符号36が付された部の一部または全部は、メモリと該メモリに接続されるプロセッサとして構成されてもよい。本実施形態に係る種々の態様(動作、処理)は、端末装置1および/または基地局装置3に含まれるメモリおよび該メモリに接続されるプロセッサにおいて実現されて(行なわれて)もよい。 Each part of the terminal device 1 with reference numerals 10 to 16 may be configured as a circuit. Each portion of the base station apparatus 3 with reference numerals 30 to 36 may be configured as a circuit. A part or all of the parts of reference numerals 10 to 16 included in the terminal device 1 may be configured as a memory and a processor connected to the memory. A part or all of the portions of reference numerals 30 to 36 included in the base station apparatus 3 may be configured as a memory and a processor connected to the memory. Various aspects (operations, processes) according to the present embodiment may be realized (performed) in the memory included in the terminal device 1 and / or the base station device 3 and the processor connected to the memory.
 図13は本実施形態の一態様に係るチャネルアクセスプロシージャ(CAP)の一例を示す図である。端末装置1または基地局装置3は、所定の物理信号を送信する前にエネルギー検出を行ない、NR-Uセル送信が行なわれるキャリア(つまり、NR-Uキャリア)またはBWP(つまり、NR-U BWP)またはチャネル(つまり、NR-Uチャネル)において、所定の期間、アイドル(クリア、フリー、通信が行なわれていない、特定の物理信号が送信されていない、特定の物理信号の電力(エネルギー)が検出されない、検出(測定)した電力(エネルギー)または電力の合計が所定の閾値を超えていない)であると判定すれば、該キャリアまたはBWPまたはチャネルにおいて物理信号を送信してもよい。つまり、端末装置1または基地局装置3は、NR-Uセルにおいて通信を行なう場合、所定の期間、該NR-Uセルがアイドルであることを確認するためのCCA(Clear Channel Assessment)またはチャネル測定を行なう。所定の期間は、遅延期間TとカウンタNとCCAスロット期間Tslから決定されてもよい。なお、CCAを行なった際に、アイドルではないことをビジーと称してもよい。なお、CCAは、端末装置1の無線送受信部10および/または基地局装置3の無線送受信部30で行なわれてもよい。なお、チャネルアクセスプロシージャは、あるチャネルにおいて、端末装置1または基地局装置3が物理信号を送信する前に、所定の期間、CCAを行なうことを含んでもよい。このような物理信号を送信する前に、チャネルがアイドルであるかどうか判定するためにエネルギー検出を行なうプロシージャ、または、チャネルがアイドルであるかどうかを判定して、アイドルである場合に物理信号を送信するプロシージャを、チャネルアクセスプロシージャ、および/または、CCAプロシージャ、および/または、LBT(Listen Before Talk)プロシージャと称されてもよい。ここで、NR-Uセルは、NR-Uキャリアおよび/またはNR-U BWPおよび/またはNR-Uチャネルであってもよく、NR-Uの物理信号の送信に利用可能な周波数帯域を少なくとも含んでもよい。つまり、NR-UセルおよびNR-UキャリアおよびNR-U BWPおよびNR-Uチャネルは同義であってもよい。本実施形態において、NR-Uセルは、NR-Uキャリア、NR-U BWP、および/または、NR-Uチャネルと言い換えられてもよい。NR-Uセルは、NR-Uキャリア、NR-U BWP、NR-Uチャネルのうち、少なくとも1つを含んで構成されてもよい。NRセルは、NRキャリア、NR BWP、NRチャネルのうち、少なくとも1つを含んで構成されてもよい。 FIG. 13 is a diagram showing an example of a channel access procedure (CAP) according to one aspect of the present embodiment. The terminal device 1 or the base station device 3 performs energy detection before transmitting a predetermined physical signal, and carries out NR-U cell transmission (that is, NR-U carrier) or BWP (that is, NR-U BWP). ) Or channel (that is, NR-U channel), idle (clear, free, no communication, no specific physical signal transmitted, power (energy) of a specific physical signal for a predetermined period of time. If it is determined that the undetected, detected (measured) power (energy) or the sum of the powers does not exceed a predetermined threshold), the physical signal may be transmitted in the carrier or BWP or channel. That is, when the terminal device 1 or the base station device 3 communicates in the NR-U cell, CCA (Clear Channel Assessment) or channel measurement for confirming that the NR-U cell is idle for a predetermined period of time. To do. The predetermined period may be determined from the delay period T d , the counter N, and the CCA slot period T sl . It should be noted that when CCA is performed, not being an idol may be referred to as busy. The CCA may be performed by the wireless transmission / reception unit 10 of the terminal device 1 and / or the wireless transmission / reception unit 30 of the base station device 3. The channel access procedure may include performing CCA for a predetermined period of time before the terminal device 1 or the base station device 3 transmits a physical signal on a certain channel. Before sending such a physical signal, a procedure that performs energy detection to determine if the channel is idle, or a procedure that determines if the channel is idle and sends the physical signal if it is idle. The procedure to be transmitted may be referred to as a channel access procedure and / or a CCA procedure and / or an LBT (Listen Before Talk) procedure. Here, the NR-U cell may be an NR-U carrier and / or an NR-U BWP and / or an NR-U channel, including at least a frequency band available for transmitting the physical signal of the NR-U. It may be. That is, NR-U cells and NR-U carriers and NR-U BWP and NR-U channels may be synonymous. In this embodiment, the NR-U cell may be paraphrased as an NR-U carrier, an NR-U BWP, and / or an NR-U channel. The NR-U cell may be configured to include at least one of an NR-U carrier, an NR-U BWP, and an NR-U channel. The NR cell may be configured to include at least one of an NR carrier, an NR BWP, and an NR channel.
 ここで、1つのNR-Uオペレーティングバンドにおいて、基地局装置3および/または端末装置1がマルチキャリアアクセスプロシージャ(マルチキャリアそれぞれに対するCAP)を行なうことができる(行なう能力がある)とすれば、1つのNR-Uセルに対して複数のキャリア(NR-Uキャリア)および/または複数のBWP(NR-U BWP)が設定されてもよい。 Here, if the base station apparatus 3 and / or the terminal apparatus 1 can (capacity) perform a multicarrier access procedure (CAP for each of the multicarriers) in one NR-U operating band, 1 A plurality of carriers (NR-U carriers) and / or a plurality of BWPs (NR-U BWPs) may be set for one NR-U cell.
 所定の期間は、自装置以外の信号を検出した後の遅延期間においてアイドルであることを最初にセンシングしたチャネルにおいて、カウンタNが0になった期間である。端末装置1または基地局装置3は、カウンタNの値が0になった後に、信号を送信することができる。なお、CCAスロット期間において、ビジーであると判断した場合には、カウンタNのデクリメントを延期してもよい。カウンタNの初期値Nintはチャネルアクセス優先クラスの値および対応するCW(Contention Window)の値(CWS: CW size)に基づいて決定されてもよい。例えば、Nintの値は、0からCWの値の間の中から一様分布されたランダム関数に基づいて決定されてもよい。CWの値が更新されることによってNintの取り得る値(値の範囲)は、拡大されてもよい。 The predetermined period is a period during which the counter N becomes 0 in the channel that first senses that it is idle in the delay period after detecting a signal other than the own device. The terminal device 1 or the base station device 3 can transmit a signal after the value of the counter N becomes 0. If it is determined that the player is busy during the CCA slot period, the decrement of the counter N may be postponed. The initial value N int of the counter N may be determined based on the value of the channel access priority class and the corresponding CW p (Contention Window) value (CWS: CW size). For example, the value of N int may be determined based on a randomly distributed random function between 0 and CW p values. Possible values of N int by the value of CW p is updated (value range) it may be enlarged.
 端末装置1または基地局装置3は、NR-Uセルにおいて、1または複数の物理信号を送信する場合、カウンタNの値をNintにセットする。 The terminal device 1 or the base station device 3 sets the value of the counter N to N int when transmitting one or more physical signals in the NR-U cell.
 端末装置1または基地局装置3は、Nの値が0よりも大きい場合、1つのCCAスロット期間においてクリアであると判定すれば、Nの値をN-1にセットする。つまり、端末装置1または基地局装置3は、1つのCCAスロット期間においてクリアであると判定すれば、カウンタNの値を1つだけデクリメントしてもよい。 When the value of N is larger than 0, the terminal device 1 or the base station device 3 sets the value of N to N-1 if it determines that the value is clear in one CCA slot period. That is, if the terminal device 1 or the base station device 3 is determined to be clear in one CCA slot period, only one value of the counter N may be decremented.
 デクリメントしたNの値が0になった場合、端末装置1または基地局装置3は、CCAスロット期間におけるCCAを停止してもよい。もしそうでないとすれば、つまり、Nの値が0よりも大きい場合には、端末装置1または基地局装置3は、Nの値が0になるまで、CCAスロット期間のCCAを継続して行なってもよい。 When the decremented value of N becomes 0, the terminal device 1 or the base station device 3 may stop the CCA during the CCA slot period. If this is not the case, that is, if the value of N is greater than 0, the terminal device 1 or base station device 3 continues to perform CCA for the CCA slot period until the value of N becomes 0. You may.
 端末装置1または基地局装置3は、追加されたCCAスロット期間において、CCAを行ない、アイドルであると判定し、且つ、Nの値が0であるとすれば、物理信号を送信することができる。 The terminal device 1 or the base station device 3 can perform CCA in the added CCA slot period, determine that it is idle, and transmit a physical signal if the value of N is 0. ..
 端末装置1または基地局装置3は、追加された遅延期間において、ビジーであると判定するか、追加された遅延期間のすべてのスロットにおいて、アイドルであると判定するまで、CCAを行なってもよい。追加された遅延期間において、アイドルであると判定し、且つ、Nの値が0であるとすれば、端末装置1または基地局装置3は、物理信号を送信することができる。端末装置1または基地局装置3は、追加された遅延期間において、ビジーであると判定すれば、CCAを継続して行なってもよい。 The terminal device 1 or the base station device 3 may perform CCA until it is determined to be busy in the added delay period or idle in all the slots of the added delay period. .. If it is determined to be idle and the value of N is 0 in the added delay period, the terminal device 1 or the base station device 3 can transmit a physical signal. The terminal device 1 or the base station device 3 may continue the CCA if it determines that it is busy in the added delay period.
 CAPCの値pおよびCWの値が設定された情報や条件に基づいて可変であるチャネルアクセスプロシージャをタイプ1チャネルアクセスプロシージャ(タイプ1CAP)と称し、CWの値が常に0である、または、CWの値に対応するカウンタNを用いない、または、送信前に1回だけCCAを行なうチャネルアクセスプロシージャをタイプ2チャネルアクセスプロシージャ(タイプ2CAP)と称してもよい。つまり、タイプ1チャネルアクセスプロシージャは、設定されたCAPCの値pや条件に基づいて更新されたCWの値によってCCAの期間が変わるチャネルアクセスプロシージャのことである。また、タイプ2チャネルアクセスプロシージャは、物理信号の送信前に1回だけCCAを行ない、物理信号を送信するチャネル(周波数帯域)がアイドルであると判定すれば、送信を行なうことのできるチャネルアクセスプロシージャのことである。ここで、送信前とは、送信の直前を含んでもよい。端末装置1および/または基地局装置3は、物理信号の送信前に、チャネルアクセスプロシージャが完了しなかった場合には、その送信タイミングで該物理信号の送信を行なわない、または、延期してもよい。また、送信前に、CCAを行なわないチャネルアクセスプロシージャをタイプ3チャネルアクセスプロシージャ(タイプ3CAP)と称されてもよい。タイプ2CAPかタイプ3CAPかは上位層パラメータに基づいて決定されてもよい。 A channel access procedure in which the values of CAPC p and CW p are variable based on the set information and conditions is called a type 1 channel access procedure (type 1 CAP), and the value of CW p is always 0 or is always 0. A channel access procedure that does not use the counter N corresponding to the value of CW p or that performs CCA only once before transmission may be referred to as a type 2 channel access procedure (type 2 CAP). That is, the type 1 channel access procedure is a channel access procedure in which the CCA period changes depending on the set CAPC value p or the CW p value updated based on the condition. In addition, the type 2 channel access procedure is a channel access procedure that can perform CCA only once before transmitting a physical signal and can perform transmission if it is determined that the channel (frequency band) for transmitting the physical signal is idle. That is. Here, the term "before transmission" may include immediately before transmission. If the channel access procedure is not completed before the transmission of the physical signal, the terminal device 1 and / or the base station device 3 does not transmit the physical signal at the transmission timing, or even if the physical signal is postponed. Good. In addition, a channel access procedure that does not perform CCA before transmission may be referred to as a type 3 channel access procedure (type 3 CAP). Whether it is type 2 CAP or type 3 CAP may be determined based on upper layer parameters.
 図14は、本実施形態の一態様に係るチャネルアクセス優先クラス(CAPC)およびCW調整プロシージャの一例を示す図である。 FIG. 14 is a diagram showing an example of a channel access priority class (CAPC) and a CW adjustment procedure according to one aspect of the present embodiment.
 CAPCの値pは、遅延期間Tに含まれるCCAスロット期間Tslの数mと、CWの最小値と最大値、最大チャネル専有時間、許容されるCWの値(CWS)を示すために用いられる。CAPCの値pは、物理信号の優先度に応じて設定されてもよい。CAPCの値pは、DCIフォーマットに含まれて示されてもよい。 The value p of CAPC is to indicate the number m p of CCA slot period T sl included in the delay time T d, the minimum and maximum values of CW, the maximum channel occupation time, acceptable values of CW p a (CWS) Used for. The value p of the CAPC may be set according to the priority of the physical signal. The value p of the CAPC may be included in the DCI format and shown.
 端末装置1は、カウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、端末装置1は、ランダムアクセスプロシージャが成功裏に完了した場合には、ランダムアクセスプロシージャに対して、更新されたCWの値を維持してもよい。また、端末装置1は、ランダムアクセスプロシージャが成功裏に完了した場合には、ランダムアクセスプロシージャに対して、更新されたCWの値をCWminにセットしてもよい。ここで本実施形態において、CWminは、例えば、図14に示すCW#0、つまり、CAPCの値pに対応するCWの初期値であってもよい。ここで、更新されたCWの値をCWminにセットするとは、1または複数の所定の条件を満たした場合に更新されるCWの値をCWminに更新することであってもよい。また、更新されたCWの値をCWminにセットするとは、CWの値をCWminにセットし直すことであってもよい。 Terminal device 1, before setting the N init to the value of the counter N, may adjust the value of CW for determining the value of N init. Note that the terminal device 1 may maintain the updated CW value for the random access procedure when the random access procedure is successfully completed. In addition, the terminal device 1 may set the updated CW value to CW min for the random access procedure when the random access procedure is completed successfully. Here, in the present embodiment, CW min may be, for example, CW # 0 shown in FIG. 14, that is, an initial value of CW p corresponding to the value p of CAPC. Here, the value of the updated CW to set the CW min may be to update the value of CW is updated if it meets one or more predetermined conditions in CW min. Further, the value of the updated CW to set the CW min may be that re-sets the value of CW to CW min.
 端末装置1は、Msg1送信前に行なうCCAに対応するカウンタNの値にNinitをセットする前に、Ninitの値を決定するためのCWの値を調整してもよい。なお、端末装置1は、Msg2の受信に成功したとみなした場合、および/または、Msg4の受信に成功したとみなした場合には、更新されたCWの値を維持してもよい。また、端末装置1は、Msg2の受信に成功したとみなした場合、および/または、Msg4の受信に成功したとみなした場合には、更新されたCWの値をCWminにセットしてもよい。 Terminal device 1, before setting the N init to the value of the counter N which corresponds to the CCA performed before sending Msg1, may adjust the value of CW for determining the value of N init. The terminal device 1 may maintain the updated CW value when it considers that the reception of Msg2 is successful and / or when it considers that the reception of Msg4 is successful. Further, the terminal device 1 may set the updated CW value to CW min when it considers that the reception of Msg2 is successful and / or when it considers that the reception of Msg4 is successful. ..
 ここで、CWの値を調整するとは、CWの値が所定の条件を満たした場合に、CWminからCWmaxに達するまで1段階ずつ増えていくことであってもよい。CWmaxに達すると、また、CWminから1段階ずつ増えていく。つまり、CWの値を調整するとは、CWの値を更新することであってもよい。CWの値を更新するとは、CWの値を1段階大きい値にすることであってもよい。例えば、CW#3からCW#4にすることであってもよいし、CW#n-1からCW#nにすることであってもよい。また、端末装置1および/または基地局装置3は、CWの値を調整する度に、0から、更新されたCWの値の間で一様分布したランダム関数に基づいてNinitの値を決定してもよい。 Here, adjusting the value of CW may mean increasing the value of CW p one step at a time from CW min to reaching CW max when a predetermined condition is satisfied. When it reaches CW max, it increases step by step from CW min . That is, adjusting the value of CW may mean updating the value of CW p . And updates the value of CW p is the value of CW p may be to one step larger value. For example, it may be changed from CW # 3 to CW # 4, or it may be changed from CW # n-1 to CW # n. In addition, each time the terminal device 1 and / or the base station device 3 adjusts the CW value, the terminal device 1 and / or the base station device 3 sets the init value based on a random function uniformly distributed from 0 to the updated CW p value. You may decide.
 Msg1の送信に適用されるチャネルアクセス優先クラス(CAPC)の値pは、システム情報に基づいて決定されてもよいし、上位層パラメータに基づいて決定されてもよいし、SSBと関連付けられてもよい。例えば、Msg1に対応するCAPCの値pがPである場合、Ninitの値は、0からCW#0の間を一様分布したランダム関数に基づいて決定される。 The channel access priority class (CAPC) value p applied to the transmission of Msg1 may be determined based on system information, may be determined based on upper layer parameters, or may be associated with SSB. Good. For example, if the value p of CAPC corresponding to Msg1 is P, the value of N init is determined based on a random function uniformly distributed between 0 and CW # 0.
 CAPCの値pは、PUSCH、PUCCH、PRACHのそれぞれに対して個別に設定されてもよい。また、CAPCの値pは、PUSCH、PUCCH、PRACHに対してセル固有の上位層パラメータとして共通の値が設定されてもよい。また、CAPCの値pは、PUSCH、PUCCH、PRACHのそれぞれに対して個別の上位層パラメータとして設定されてもよい。また、PUSCHに対するCAPCの値pは、PUSCHのスケジューリングに対して用いられるDCIフォーマットに含まれて示されてもよい。また、PUCCHに対するCAPCの値pは、PUCCHリソース指示フィールドを含むDCIフォーマットに含まれて示されてもよい。また、PRACHに対するCAPCの値pは、PDCCHオーダのためのDCIフォーマットに含まれて示されてもよい。また、PRACHに対するCAPCの値pは、ランダムアクセスプロシージャの種類に応じて決定されてもよい。例えば、CBRAに対するCAPCの値pは、システム情報および/または上位層パラメータに基づいて決定されてもよい。また、CFRAに対するCAPCの値pは、上位層パラメータに基づいて決定されてもよいし、または、PDCCHオーダに対応するDCIフォーマットに含まれて設定されてもよい。CFRAにおいて、CAPCの値pを上位層パラメータに基づくか、DCIフォーマットのフィールドに基づくか、はシステム情報および/または上位層パラメータの設定に基づいて決定されてもよい。 The value p of CAPC may be set individually for each of PUSCH, PUCCH, and PRACH. Further, the CAPC value p may be set to a common value as a cell-specific upper layer parameter for PUSCH, PUCCH, and PRACH. Further, the value p of CAPC may be set as an individual upper layer parameter for each of PUSCH, PUCCH, and PRACH. Also, the CAPC value p for PUSCH may be included and shown in the DCI format used for PUSCH scheduling. Also, the CAPC value p for PUCCH may be included and shown in the DCI format including the PUCCH resource indicator field. Also, the CAPC value p for PRACH may be included and shown in the DCI format for PDCCH order. Further, the value p of CAPC with respect to PRACH may be determined according to the type of random access procedure. For example, the value p of CAPC for CBRA may be determined based on system information and / or upper layer parameters. Further, the value p of CAPC with respect to CFRA may be determined based on the upper layer parameter, or may be included in the DCI format corresponding to the PDCCH order and set. In CFRA, whether the CAPC value p is based on upper layer parameters or DCI format fields may be determined based on system information and / or settings of upper layer parameters.
 端末装置1がPUCCHリソースでPDSCHに対するHARQ-ACKを送信する場合には、PUCCHに対するチャネルアクセスプロシージャのタイプおよび/またはCAPCの値pは、PDSCHのスケジューリングに用いられるDCIフォーマットに専用の1または複数のフィールドが含まれて設定されてもよい。なお、該DCIフォーマットにはPUCCHリソース指示フィールドが含まれてもよい。つまり、該PUCCHリソース指示フィールドによって指示されるPUCCHリソースに対して、該PUCCHに対するチャネルアクセスプロシージャのタイプおよび/またはCAPCの値が用いられてもよい。また、端末装置1がPUCCHリソースでSRを送信する場合には、PUCCHに対するチャネルアクセスプロシージャのタイプおよび/またはCAPCの値pは、PUCCH設定またはSR設定に含まれる1または複数の上位層パラメータに基づいて設定されてもよい。 When terminal 1 sends a HARQ-ACK to the PDSCH with a PUCCH resource, the type of channel access procedure for the PUCCH and / or the value p of the CAPC may be one or more dedicated to the DCI format used to schedule the PDSCH. Fields may be included and set. The DCI format may include a PUCCH resource indicator field. That is, for the PUCCH resource indicated by the PUCCH resource indicator field, the type and / or CAPC value of the channel access procedure for the PUCCH may be used. Further, when the terminal device 1 transmits SR by the PUCCH resource, the type of the channel access procedure for PUCCH and / or the value p of CAPC is based on one or more upper layer parameters included in the PUCCH setting or SR setting. May be set.
 CAPCの値pは、PUSCH、PUCCHに対しては、送信する情報と関連付けて決定されてもよい。例えば、PUSCHまたはPUCCHにおいてUCIを含んで送信する場合、UCIに含まれる情報の種類(HARQ-ACK、SR、CSIなど)や組み合わせに応じて、個別にCAPCの値pは設定されてもよい。 The value p of CAPC may be determined for PUSCH and PUCCH in association with the information to be transmitted. For example, when UCI is included in PUSCH or PUCCH for transmission, the CAPC value p may be set individually according to the type (HARQ-ACK, SR, CSI, etc.) and combination of information contained in UCI.
 本実施形態では、CAPCの値pについて記載しているが、チャネルアクセスプロシージャ(CAP)のタイプ(タイプ1CAP、タイプ2CAP、つまり、CAT(Channel Access Type))、CWの値、および/または、Tmcotの値についても同様に設定されてもよい。また、CATについて、CAT1は、タイプ1CAPを示してもよいし、CAT2は、タイプ2CAPを示してもよい。 In this embodiment, the CAPC value p is described, but the channel access procedure (CAP) type (type 1 CAP, type 2 CAP, that is, CAT (Channel Access Type)), CW value, and / or T. The value of mcot may be set in the same manner. Further, regarding CAT, CAT1 may indicate a type 1 CAP, and CAT 2 may indicate a type 2 CAP.
 例えば、NR-Uセルにおける、PDSCHやPUSCHのスケジューリング、PRACHのリソース割り当てに用いられるDCIフォーマット(DCIフォーマット0_0、0_1、1_0、1_1)には、チャネルアクセスプロシージャを行なうために、下記8Aから下記8Eの一部または全部がフィールドとしてそれぞれ含まれてもよい。8A)チャネルアクセスプロシージャ(CAP)のタイプ(チャネルアクセスタイプ(CAT))8B)チャネルアクセス優先クラス(CAPC)の値p8C)最大チャネル専有時間Tmcot8D)CWの値8E)CCAスロット期間の最大数m For example, in the DCI format (DCI format 0_0, 0_1, 1_0, 1_1) used for PDSCH and PUSCH scheduling and PRACH resource allocation in the NR-U cell, the following 8A to the following 8E are used to perform a channel access procedure. Part or all of may be included as fields respectively. 8A) Channel access procedure (CAP) type (channel access type (CAT)) 8B) Channel access priority class (CAPC) value p8C) Maximum channel occupied time TMcot 8D) CW value 8E) Maximum number of CCA slot periods m
 PUCCHに対して、8Aから8Eの一部または全部はそれぞれ、所定の値であってもよいし、それぞれに対して上位層パラメータに基づいて決定されてもよい。 For PUCCH, some or all of 8A to 8E may be predetermined values, or may be determined based on the upper layer parameters for each.
 PDSCHのスケジューリングに用いられるDCIフォーマット(1_0、1_1)に、上記8Aから上記8Eの一部または全部に加え、PUCCHリソース指示フィールドが含まれる場合、PDSCHのHARQ-ACKに対するPUCCHの送信前のチャネルアクセスプロシージャは、DCIフォーマットに含まれる上記8Aから上記8Eの少なくとも1つに基づいて行なわれてもよい。 If the DCI format (1_0, 1_1) used for PDSCH scheduling includes a PUCCH resource indicator field in addition to some or all of the 8A to 8E, the channel access before transmission of the PUCCH to the PDSCH HARQ-ACK. The procedure may be based on at least one of 8A to 8E included in the DCI format.
 受信したDCIフォーマットがランダムアクセスプリアンブルのリソース割り当てを示す場合、つまり、PDCCHオーダを受信した場合、且つ、PDCCHオーダに上記8Aから上記8Eの一部または全部が含まれる場合には、ランダムアクセスプリアンブルを送信する前のチャネルアクセスプロシージャは、PDCCHオーダに含まれる上記8Aから上記8Eの一部または全部に基づいて行なわれてもよい。 If the received DCI format indicates a random access preamble resource allocation, that is, if the PDCCH order is received and the PDCCH order contains some or all of the 8A to 8E, then the random access preamble is used. The channel access procedure before transmission may be performed based on a part or all of the above 8A to the above 8E included in the PDCCH order.
 NR-Uキャリアにおいて、SRをPUCCHで送信する場合には、上記8Aから8Eのうち、一部または全部は、PUCCH設定またはSR設定に含まれてもよい。つまり、SRを含むPUCCHに対して、チャネルアクセスプロシージャが行なわれる場合、チャネルアクセスプロシージャのためのパラメータは、上位層パラメータに基づいて設定されてもよい。また、SRを含むPUCCHに対して、チャネルアクセスプロシージャが行なわれる場合、チャネルアクセスプロシージャのためのパラメータは、RRC層の信号を介して、基地局装置3から端末装置1へ送信され、設定されてもよい。 When SR is transmitted by PUCCH in the NR-U carrier, a part or all of the above 8A to 8E may be included in the PUCCH setting or SR setting. That is, when the channel access procedure is performed on the PUCCH including the SR, the parameters for the channel access procedure may be set based on the upper layer parameters. Further, when the channel access procedure is performed on the PUCCH including the SR, the parameters for the channel access procedure are transmitted from the base station device 3 to the terminal device 1 and set via the signal of the RRC layer. May be good.
 次に、本実施形態に係るHARQオペレーションについて説明する。 Next, the HARQ operation according to this embodiment will be described.
 端末装置1のMACエンティティは、各サービングセルに対して少なくとも1つのHARQエンティティを含んでもよい。少なくとも1つのHARQエンティティは、多くの並列したHARQプロセスを維持することができる。各HARQプロセスは、1つのHPIDに関連付けられてもよい。HARQエンティティは、HARQ情報およびDL-SCHにおいて受信した関連するTBを対応する1または複数のHARQプロセスに誘導する。 The MAC entity of the terminal device 1 may include at least one HARQ entity for each serving cell. At least one HARQ entity can maintain many parallel HARQ processes. Each HARQ process may be associated with one HPID. The HARQ entity directs the HARQ information and the associated TB received in the DL-SCH to the corresponding HARQ process.
 HARQエンティティ毎の並列可能なDL HARQプロセスの数(最大数)は、上位層パラメータ(例えば、RRCパラメータ)に基づいて設定されてもよいし、該上位層パラメータを受信していなければ、デフォルト値であってもよい。専用ブロードキャストHARQプロセスは、BCCHに対して用いられてもよい。なお、ブロードキャストHARQプロセスは、ブロードキャストプロセスと称されてもよい。 The number (maximum number) of DL HARQ processes that can be parallelized for each HARQ entity may be set based on the upper layer parameter (for example, RRC parameter), or the default value if the upper layer parameter is not received. It may be. A dedicated broadcast HARQ process may be used for BCCH. The broadcast HARQ process may be referred to as a broadcast process.
 HARQプロセスは、物理層が下りリンク空間多重が設定されていない時、1つのTBをサポートする。また、HARQプロセスは、物理層が下りリンク空間多重が設定されている時、1つまたは2つのTBをサポートする。 The HARQ process supports one TB when the physical layer is not configured for downlink spatial multiplexing. The HARQ process also supports one or two TBs when the physical layer is configured for downlink spatial multiplexing.
 端末装置1のMACエンティティは、1より大きな値の上位層パラメータpdsch-AggregationFactorが設定された時、pdsch-AggregationFactorは、ダイナミック下りリンクアサインメントのバンドル内のTBの送信の数を提供してもよい。バンドリングオペレーション(HARQ-ACKバンドリングオペレーション)は、同じバンドルの一部である各送信に対して同じHARQプロセスを呼び出す(起動する)ためのHARQエンティティに依存する。初期送信の後、pdsch-AggregationFactorによって設定された値より1つ少ない(つまり、pdsch-AggregationFactor-1)HARQの再送信はバンドル内で続いてもよい。 The MAC entity of the terminal device 1 may provide the number of TB transmissions in the bundle of dynamic downlink assignments when the upper layer parameter pdsch-AggressionFactor with a value greater than 1 is set. .. The bundling operation (HARQ-ACK bundling operation) relies on a HARQ entity to call (launch) the same HARQ process for each transmission that is part of the same bundle. After the initial transmission, the retransmission of HARQ that is one less than the value set by the pdsch-AggressionFactor (ie, pdsch-AggressionFactor-1) may continue within the bundle.
 端末装置1のMACエンティティは、下りリンクアサインメントが示されるとすれば、該関連したHARQ情報によって示されたHARQプロセスに物理層から受信した1または複数のTBおよび関連したHARQ情報を割り当ててもよい。また、端末装置1のMACエンティティは、下りリンクアサインメントがブロードキャストHARQプロセスに対して示されるとすれば、ブロードキャストHARQプロセスに受信したTBを割り当ててもよい。 The MAC entity of terminal device 1 may assign one or more TBs received from the physical layer and associated HARQ information to the HARQ process indicated by the associated HARQ information, given that the downlink assignment is indicated. Good. Further, the MAC entity of the terminal device 1 may assign the received TB to the broadcast HARQ process if the downlink assignment is indicated to the broadcast HARQ process.
 HARQプロセスのために送信が行なわれる時、1つ、または、(下りリンク空間多重の場合)2つのTBと関連したHARQ情報は、HARQエンティティから受信されてもよい。 When a transmission is made for the HARQ process, HARQ information associated with one or two TBs (in the case of downlink space multiplexing) may be received from the HARQ entity.
 各受信したTBおよび関連したHARQ情報に対して、HARQプロセス(あるHPIDに関連するHARQプロセス)は、NDIが提供される時は、該NDIがこのTBに対応する、前に受信した送信の値(PDCCHに含まれるHPIDに関連するNDIの値)と比較してトグルされているとすれば、または、HARQプロセスがブロードキャストプロセスに相当し、そして、これがRRCによって示されたシステム情報スケジュールに応じたTBに対する最初の受信した送信であるとすれば、または、これが、このTBに対して本当に最初の受信した送信であるとすれば(つまり、このTBに対して、前のNDIがない(存在しない)、新規の送信である)、この送信を、新規の送信であるとみなす。そうでないとすれば、HARQプロセスは、この送信を再送信であるとみなす。なお、前に受信した送信とは、過去に受信した送信であってもよい。ここで、送信とは、基地局装置3から送信されたTBのことであってもよい。 For each received TB and associated HARQ information, the HARQ process (the HARQ process associated with an HPID), when provided with an NDI, is the value of the previously received transmission that the NDI corresponds to this TB. If toggled in comparison to (value of NDI associated with HPID contained in PDCCH), or the HARQ process corresponds to a broadcast process and this corresponds to the system information schedule indicated by the RRC. If it is the first received transmission to the TB, or if this is really the first received transmission to this TB (ie, there is no previous NDI for this TB (does not exist). ), New transmission), this transmission is regarded as a new transmission. If not, the HARQ process considers this transmission to be a retransmission. The previously received transmission may be a transmission received in the past. Here, the transmission may be a TB transmitted from the base station apparatus 3.
 MACエンティティは、これ(受信したTB)が新規の送信であれば、受信データ(受信したTBに対するデータ)をデコードすることを試みる。また、MACエンティティは、これが再送信であれば、このTBに対するデータがまだ成功裏にデコードされていないとすれば、物理層に、このTBに対するソフトバッファ内で最新のデータを受信したデータを結合することおよび結合したデータをデコードすることを指示する。また、MACエンティティは、MACエンティティがデコードを試みたデータがこのTBに対して成功裏にデコードされるとすれば、または、このTBに対するデータが以前成功裏にデコードされているとすれば、HARQプロセスがブロードキャストプロセスと同じであるとすれば、デコードされたMAC PDUを上位層(RLC層、PDCP層、および/または、RRC層)に転送する。また、これが、このTBに対するデータの最初の成功裏のデコーディングであるとすれば、MACエンティティは、ディアセンブリアンドデマルチプレキシングエンティティにデコードしたMAC PDUを転送する。そうでないとすれば、MACエンティティは、物理層に、MACエンティティがデコードを試みたデータとこのTBに対するソフトバッファ内のデータを取り替えることを指示する。MACエンティティは、HARQプロセスがTC-RNTIを伴って示された送信に関連し、コンテンションレゾリューションがまだ成功していないとすれば、または、HARQプロセスがブロードキャストプロセスに相当すれば、または、HARQフィードバックが送信されるサービングセルを含むTAGに関連した、timeAlignmentTimerがストップまたは満了すれば、このTBにおけるデータのacknowledgement(s)を生成することを物理層に指示する。なお、acknowledgementは、ACKまたはNACKであってもよい。 If this (received TB) is a new transmission, the MAC entity attempts to decode the received data (data for the received TB). The MAC entity also combines the physical layer with the data that received the latest data in the soft buffer for this TB, if this is a retransmission and the data for this TB has not yet been successfully decoded. Instruct to do and decode the combined data. Also, the MAC entity is HARQ if the data that the MAC entity tried to decode was successfully decoded for this TB, or if the data for this TB was previously successfully decoded. If the process is the same as the broadcast process, the decoded MAC PDU is transferred to the upper layer (RLC layer, PDCP layer, and / or RRC layer). Also, if this is the first successful decoding of the data for this TB, the MAC entity transfers the decoded MAC PDU to the disassembly and demultiplexing entity. If not, the MAC entity instructs the physical layer to replace the data that the MAC entity tried to decode with the data in the soft buffer for this TB. The MAC entity if the HARQ process is associated with the transmission shown with TC-RNTI and the contention resolution is not yet successful, or if the HARQ process corresponds to the broadcast process, or When the timeIdententTime related to the TAG containing the serving cell to which HARQ feedback is transmitted stops or expires, it instructs the physical layer to generate an acknowledgedgement (s) of data in this TB. The acknowledged element may be ACK or NACK.
 NR-Uセルにおいて、端末装置1および/または端末装置1のMACエンティティは、このHARQプロセスにおいて、この送信が再送信であるとみなされると、このTBにおけるデータのacknowledgement(s)を生成する指示された端末装置1の物理層は、HARQ-ACKを含むPUCCHまたはPUSCHの送信の前にタイプ1チャネルアクセスプロシージャを行なうとすれば、Ninitに用いられるCWの値を更新してもよい。また、NR-Uセルにおいて、端末装置1および/または端末装置1のMACエンティティは、このHARQプロセスにおいて、この送信が新規の送信であるとみなされると、このTBにおけるデータのacknowledgement(s)を生成する指示された端末装置1の物理層は、HARQ-ACKを含むPUCCHまたはPUSCHの送信の前にタイプ1チャネルアクセスプロシージャを行なうとすれば、Ninitに用いられるCWの値をCWの初期値にセットしてもよいし、CWの値を更新しなくてもよい(つまり、CWの値を維持してもよい)。なお、端末装置1の物理層は、HARQ-ACKを含むPUCCHまたはPUSCHの送信の前にタイプ2チャネルアクセスプロシージャを行なうとすれば、この送信が新規の送信か再送信かに因らず、HARQ-ACKを含むPUCCHまたはPUSCHの送信前に1回だけCCAを行ない、NR-Uチャネルがアイドルであると判定すると、HARQ-ACKを含むPUCCHまたはPUSCHを送信してもよい。 In the NR-U cell, the MAC entity of terminal device 1 and / or terminal device 1 is instructed to generate an acknowledgment (s) of data in this TB when this transmission is considered to be a retransmission in this HARQ process. The physical layer of the terminal device 1 may update the value of CW used for N init if the type 1 channel access procedure is performed before the transmission of PUCCH or PUSCH including HARQ-ACK. Also, in the NR-U cell, the MAC entity of terminal device 1 and / or terminal device 1 acknowledges the data acknowledgedgement (s) in this TB when this transmission is considered to be a new transmission in this HARQ process. If the physical layer of the instructed terminal device 1 to generate performs a type 1 channel access procedure prior to transmission of PUCCH or PUSCH containing HARQ-ACK, the value of CW used for init is the initial value of CW p . It may be set to a value or the CW value may not be updated (that is, the CW value may be maintained). If the physical layer of the terminal device 1 performs a type 2 channel access procedure before the transmission of PUCCH or PUSCH including HARQ-ACK, regardless of whether this transmission is a new transmission or a retransmission, HARQ If the CCA is performed only once before the transmission of the PUCCH or PUSCH containing -ACK and it is determined that the NR-U channel is idle, the PUCCH or PUSCH containing HARQ-ACK may be transmitted.
 ここで、CWの値を更新するとは、例えば、設定可能なCWの許容値が、CW#0、CW#1、CW#2(CW#0<CW#1<CW#2)の3種類あるとすれば、CWの値がCW#0である場合、CWの値を1つ上の値であるCW#1に更新することである。また、CWの値を更新するとは、CWの値がCW#1である場合、CWの値を1つ上の値であるCW#2に更新することである。また、CWの値を更新するとは、CWの値がCW#2(CWmax)である場合、CWの値を1つ上の値が存在しないとすれば、CW#0(CWmin)にセットし直すことを含んでもよい。 Here, updating the CW value means that, for example, there are three types of CW allowable values that can be set: CW # 0, CW # 1, and CW # 2 (CW # 0 <CW # 1 <CW # 2). Then, when the value of CW is CW # 0, the value of CW is updated to CW # 1, which is one value higher. Further, updating the value of CW means updating the value of CW to CW # 2, which is one higher value when the value of CW is CW # 1. In addition, updating the CW value means that when the CW value is CW # 2 (CW max ) and there is no value one level higher than the CW value, it is set to CW # 0 (CW min ). It may include re-doing.
 ここで、物理層は、送信部、受信部、無線送受信部および/または測定部のうち、少なくとも1つを含んでもよく、物理層処理部であってもよい。MACエンティティは、MAC層であってもよく、MAC層処理部であってもよい。 Here, the physical layer may include at least one of a transmission unit, a reception unit, a wireless transmission / reception unit, and / or a measurement unit, and may be a physical layer processing unit. The MAC entity may be a MAC layer or a MAC layer processing unit.
 MACエンティティは、そのC-RNTIに対するPDCCHにおけるNDIが前の送信における値と比較してトグルされていると判定する時、そのTC-RNTIに対するPDCCHにおけるすべての下りリンクアサインメントで受信されたNDIを無視する。 When the MAC entity determines that the NDI in the PDCCH for its C-RNTI is toggled compared to the value in the previous transmission, it determines the NDI received in all downlink assignments in the PDCCH for its TC-RNTI. ignore.
 端末装置1は、PDCCHに、NR-UセルにおけるPDSCHのスケジューリングのために用いられるDCIフォーマットを検出した場合、該DCIフォーマットに、HARQプロセスID(HPID)、および、NDIが含まれているとすれば、該HPIDに対してNDIがトグルされているかどうかに基づいて、該PDSCHの送信が、新規の送信か再送信かを判定することができる。さらに、該DCIフォーマットに、PUCCHリソースを指示するフィールドが含まれているとすれば、該NDIがトグルされているかどうかに基づいて、CWの値を調整するか否かを判定してもよい。例えば、端末装置1は、第1のHPIDに関連したHARQプロセスに対するNDIの値がトグルされているとすれば、各CAPCの値pに対応するCWの値をCWminにセットし、そうでないとすれば(つまり、該NDIの値がトグルされていないとすれば)、端末装置1は、CWの値を1つ上の許容値(CWの値)に増やしてもよい(つまり、端末装置1は、CWの値(CWの値)を更新してもよい)。 When the terminal device 1 detects in the PDCCH the DCI format used for scheduling the PDSCH in the NR-U cell, it is said that the DCI format contains the HARQ process ID (HPID) and the NDI. For example, it is possible to determine whether the PDSCH transmission is a new transmission or a retransmission based on whether the NDI is toggled for the HPID. Further, if the DCI format includes a field indicating a PUCCH resource, it may be determined whether to adjust the CW value based on whether the NDI is toggled. For example, the terminal device 1 sets the value of CW p corresponding to the value p of each CAPC to CW min , if the value of NDI for the HARQ process associated with the first HPID is toggled, otherwise. If (that is, if the value of the NDI is not toggled), the terminal device 1 may increase the value of CW p to the next higher tolerance (the value of CW) (ie, the terminal). The device 1 may update the value of CW p (value of CW)).
 端末装置1は、1または複数のHPIDに関連するHARQプロセスに対するHARQ-ACKコードブックを生成する場合、少なくとも1つのHPIDについて、NDIの値がトグルされていないとすれば、該HARQ-ACKコードブックを含むPUCCHまたはPUSCHの送信前に行なうタイプ1チャネルアクセスプロシージャに対するCWの値を更新してもよい。 When the terminal device 1 generates a HARQ-ACK codebook for a HARQ process related to one or more HPIDs, the HARQ-ACK codebook if the value of NDI is not toggled for at least one HPID. The value of CW for a type 1 channel access procedure performed prior to transmission of the PUCCH or PUSCH containing the above may be updated.
 基地局装置3は、NR-UセルにおけるPDSCHのスケジューリングのために用いられるDCIフォーマットを含むPDCCHおよび該PDSCHを送信する場合、該PDCCHおよび該PDSCHの送信前に、タイプ1チャネルアクセスプロシージャを行ない、NR-UチャネルがすべてのCCAスロット期間においてアイドルであると判定すれば、該PDCCHおよび該PDSCHを送信し、該NR-Uチャネルがアイドルでないと判定すれば、該NR-UチャネルがすべてのCCAスロット期間においてアイドルであると判定できるまで、該PDCCHおよび該PDSCHの送信を延期してもよい。 When transmitting the PDCCH including the DCI format used for scheduling the PDSCH in the NR-U cell and the PDSCH, the base station apparatus 3 performs a type 1 channel access procedure before transmitting the PDCCH and the PDSCH. If it is determined that the NR-U channel is idle for all CCA slot periods, then the PDCCH and the PDSCH are transmitted, and if it is determined that the NR-U channel is not idle, then the NR-U channel is all CCA. Transmission of the PDCCH and the PDSCH may be postponed until it can be determined to be idle during the slot period.
 基地局装置3は、該PDCCHおよび該PDSCHを送信した後、所定の期間を経過しても、該PDSCHに対するHARQ-ACKを含むPUCCHまたはPUSCHを成功裏に受信できなかった場合、該PDCCHおよび該PDSCHを再送信してもよい。基地局装置3が、該PDCCHおよび該PDSCHを再送信する場合、該HPIDに対するNDIの値をトグルせずに送信する。つまり、基地局装置3は、該HPIDに対するNDIの値をトグルしないことによって、該PDSCHが再送信であることを示してもよい。その際、基地局装置3が、タイプ1チャネルアクセスプロシージャを行なう場合には、CWの値を更新してもよい。 If the base station apparatus 3 cannot successfully receive the PUCCH or PUSCH containing HARQ-ACK for the PDCCH even after a predetermined period of time has elapsed after transmitting the PDCCH and the PDSCH, the PDCCH and the PDCCH and the PDCCH are not received. The PDSCH may be retransmitted. When the base station apparatus 3 retransmits the PDCCH and the PDSCH, the value of NDI for the HPID is transmitted without toggle. That is, the base station apparatus 3 may indicate that the PDSCH is retransmission by not toggle the value of NDI for the HPID. At that time, when the base station apparatus 3 performs the type 1 channel access procedure, the value of CW may be updated.
 なお、基地局装置3は、該PDCCHおよび該PDSCHを送信した後、所定の期間内に、該HPIDに関連するHARQプロセスに対応する該PDSCHに対するHARQ-ACKを含むPUCCHまたはPUSCHを成功裏に受信できたとすれば、該HPIDに対するHARQプロセスに対応するCWの値をCWminにリセットしてもよい。つまり、該HPIDに関連するHARQプロセスに対するNDIの値をトグルするため、基地局装置3は、該PDCCHおよび該PDSCHの送信前にチャネルアクセスプロシージャを行なうとすれば、該CWの値をCWminにセットしてもよい。ここで、基地局装置3は、複数のHPIDに関連するHARQプロセスを管理できる場合、HPID毎にチャネルアクセスプロシージャおよび/またはCW調整プロシージャを行なってもよい。 After transmitting the PDCCH and the PDSCH, the base station apparatus 3 successfully receives the PUCCH or PUSCH containing the HARQ-ACK for the PDSCH corresponding to the HARQ process related to the HPID within a predetermined period of time. If possible, the value of CW corresponding to the HARQ process for the HPID may be reset to CW min . That is, in order to toggle the value of NDI for the HARQ process associated with the HPID, if the base station apparatus 3 performs a channel access procedure before transmission of the PDCCH and the PDSCH, the value of the CW is set to CW min . You may set it. Here, if the base station apparatus 3 can manage the HARQ process related to a plurality of HPIDs, the base station apparatus 3 may perform a channel access procedure and / or a CW adjustment procedure for each HPID.
 基地局装置3は、PDCCHおよび該PDCCHによってスケジュールされるPDSCHを送信した場合、所定の期間内(例えば、所定のタイマが満了するまで)に、該PDSCHに対応するHARQ-ACK(つまり、該PDSCHに対応するHPIDに対するHARQ-ACK)を含むPUCCHまたはPUSCHを成功裏に受信できなかった場合、基地局装置3は、該PDCCHおよび該PDSCHに対するCWの値を更新してもよい。なお、PUCCHの代わりに、該PDSCHに対応するHPIDに対するHARQ-ACKを含むPUSCHを成功裏に受信した場合、基地局装置3は、該PDCCHおよび該PDSCHに対するCWの値を更新しなくてもよい。 When the base station apparatus 3 transmits the PDCCH and the PDSCH scheduled by the PDCCH, the HARQ-ACK corresponding to the PDSCH (that is, the PDSCH) within a predetermined period (for example, until a predetermined timer expires) If the PUCCH or PUSCH containing HARQ-ACK) for the HPID corresponding to is not successfully received, the base station apparatus 3 may update the PDCCH and the CW value for the PDSCH. If, instead of PUCCH, a PUSCH containing HARQ-ACK for the HPID corresponding to the PDSCH is successfully received, the base station apparatus 3 does not have to update the values of the PDCCH and the CW for the PDSCH. ..
 基地局装置3および/または端末装置1は、あるHPIDのHARQプロセスのHARQオペレーションが成功したとみなした場合には、該オペレーションに関連して更新したCWの値をCWminにセットしてもよい。 If the base station apparatus 3 and / or the terminal apparatus 1 considers that the HARQ operation of the HARQ process of a certain HPID is successful, the value of CW updated in connection with the operation may be set to CW min. ..
 端末装置1は、受信したPDSCHに対するHARQ-ACKを、PUCCHまたはPUSCHを介して送信した後に、同じHPIDを有し、且つ、再送信を示すPDSCHを受信したとすれば、または、該PDSCHに対するHARQ-ACKの再送信を要求されるとすれば、該PDSCHに対するHARQ-ACKを含むPUCCHの送信前にタイプ1チャネルアクセスプロシージャを行なうとすれば、Ninitに用いられるCWの値を更新してもよい。つまり、同じHPIDのPDSCHに対して再送信が示される度に、端末装置1は、該PDSCHに対するHARQ-ACKを含むPUCCHの送信前にタイプ1チャネルアクセスプロシージャを行なうとすれば、対応するNinitに用いられるCWの値を更新してもよい。 If the terminal device 1 has transmitted the HARQ-ACK for the received PDSCH via the PUCCH or the PUSCH and then receives the PDSCH having the same HPID and indicating retransmission, or the HARQ for the PDSCH. if the request for retransmission of -ACK, if performing type 1 channel access procedure before the transmission of the PUCCH including the HARQ-ACK for the PDSCH, also update the value of CW used in the N init Good. That is, each time a retransmit is indicated for a PDSCH with the same HPID, the terminal device 1 performs a type 1 channel access procedure prior to transmission of the PUCCH containing HARQ-ACK to the PDSCH, the corresponding N init. The value of CW used for may be updated.
 NR-Uセルにおける、SSBおよび/またはCSI-RSを総称してNR-U DRS(Discovery Reference Signal)と称されてもよい。NR-U DRSは、NR-Uセルがアクティベーションかディアクティベーションかを、端末装置1が確認するために、検出されてもよい。 SSB and / or CSI-RS in the NR-U cell may be collectively referred to as NR-U DRS (Discovery Reference Signal). The NR-U DRS may be detected so that the terminal device 1 can confirm whether the NR-U cell is activated or deactivated.
 図15は、本実施形態に係る周波数マッピング(リソース割り当て、物理リソースへのマッピング、周波数リソース配置タイプ)の一例を示す図である。図15(a)は、1つの端末装置1および/または基地局装置3に対して、複数のPRBが連続的に配置される例(contiguous mapping, localized mapping)である。図15(a)の周波数マッピング(周波数リソース配置タイプ)は、例えば、DFT-s-OFDM信号などのシングルキャリアによる低いPAPR(Peak to Average Power Ratio)特性を実現するために用いられてもよい。図15(b)は、1つの端末装置1および/または基地局装置3に対して、複数のPRBが等間隔または非等間隔に配置される例(interlaced mapping, distributed mapping)である。図15(b)の周波数マッピング(周波数リソース配置タイプ)は、周波数領域において、少ないPRB数で送信帯域幅(最大送信帯域幅、チャネル帯域幅、キャリア帯域幅、BWP帯域幅)の80%以上を実現するために用いられてもよい。つまり、図15(b)の周波数マッピングは、OCB(Occupied Channel Bandwidth)要件を満たすために行なわれてもよい。また、インタレースの数は、SCSに応じて決定されてもよい。例えば、SCSが15kHzの場合、インタレースの数は、10または11であってもよい。また、SCSが30kHzの場合、インタレースの数は、5または6であってもよい。インタレースの数は、周波数領域における端末装置1の最大多重数であってもよい。インタレースの数は、周波数帯域幅の大きさに因らず、同じ数であってもよい。例えば、周波数帯域幅が20MHzであっても40MHzであっても、SCSが15kHzの場合、インタレースの数は、10または11であってもよい。なお、基地局装置3および/または端末装置1は、1または複数のインタレースを用いて物理チャネルおよび/または物理信号の送信を行なうことができる。 FIG. 15 is a diagram showing an example of frequency mapping (resource allocation, mapping to physical resources, frequency resource allocation type) according to the present embodiment. FIG. 15A is an example (contiguous mapping, localized mapping) in which a plurality of PRBs are continuously arranged with respect to one terminal device 1 and / or a base station device 3. The frequency mapping (frequency resource allocation type) of FIG. 15A may be used to realize low PAPR (Peak to Average Power Ratio) characteristics due to a single carrier such as a DFT-s-OFDM signal. FIG. 15B is an example (interlaced mapping, distributed mapping) in which a plurality of PRBs are arranged at equal intervals or non-equal intervals with respect to one terminal device 1 and / or base station device 3. The frequency mapping (frequency resource allocation type) in FIG. 15B shows that 80% or more of the transmission bandwidth (maximum transmission bandwidth, channel bandwidth, carrier bandwidth, BWP bandwidth) is used in the frequency domain with a small number of PRBs. It may be used to achieve this. That is, the frequency mapping of FIG. 15B may be performed in order to satisfy the OCB (Occupied Channel Bandwidth) requirement. Also, the number of interlaces may be determined according to the SCS. For example, if the SCS is 15 kHz, the number of interlaces may be 10 or 11. Further, when the SCS is 30 kHz, the number of interlaces may be 5 or 6. The number of interlaces may be the maximum number of multiplex terminals 1 in the frequency domain. The number of interlaces may be the same regardless of the magnitude of the frequency bandwidth. For example, if the frequency bandwidth is 20 MHz or 40 MHz and the SCS is 15 kHz, the number of interlaces may be 10 or 11. The base station device 3 and / or the terminal device 1 can transmit a physical channel and / or a physical signal by using one or a plurality of interlaces.
 図16は、本実施形態に係る時間領域におけるPUCCHの送信開始位置(時間領域の開始位置、スロット内の開始位置)を示すフィールド(PUCCH starting position field, PSP field)および各SCSに対応するPUCCHの開始位置の一例を示す図である。図16(a)および(b)は、PUCCHの送信開始位置を示すフィールド(2ビットフィールド、1ビットフィールド)の一例を示している。該フィールドは、時間シンボル領域における送信タイミングを調整することによって端末装置1がLBTを行なうためのギャップ(期間)を設けるために用いられるフィールドである。例えば、該フィールドに値“00”または“0”がセットされている場合には、先頭の時間シンボル領域の開始から物理チャネル/物理信号の送信を行なえることを示す。該フィールドに値“01”または“10”または“1”がセットされている場合には、先頭の時間シンボル領域の途中から物理チャネル/物理信号の送信を行なえることを示す。該フィールドに値“01”または“1”がセットされている場合には、PUCCHの先頭の時間シンボル領域内の25μ秒(us)から送信可能であることを示している。例えば、この25μ秒において、端末装置1は25μ秒のLBTを1回だけ行なってから送信を行なうことができる。該フィールドに値“10”がセットされている場合には、PUCCHの先頭の時間シンボル領域内の(25+TA(Timing Advance))μ秒(us)から送信可能であることを示している。該フィールドに値“11”がセットされている場合には、次の時間シンボル領域から物理チャネル/物理信号の送信を行なえることを示す。また、SCSの値によっては、SCSに対応する1つの時間シンボル領域の長さが25μ秒および/または(25+TA)μ秒よりも短い場合がある。このような場合、該フィールドに値“11”がセットされているとすれば、先頭の時間シンボル領域から25μ秒または(25+TA)μ秒以降の最初の時間シンボル領域を示してもよい。図16(c)は、SCSが15kHzの場合の各値のPUCCHの開始位置の一例を示している。図16(d)は、SCSが30kHzの場合の各値のPUCCHの開始位置の一例を示している。 FIG. 16 shows a field (PUCCH starting position field, PSP field) indicating a PUCCH transmission start position (start position in the time domain, start position in the slot) in the time domain according to the present embodiment, and a PUCCH corresponding to each SCS. It is a figure which shows an example of a start position. 16 (a) and 16 (b) show an example of a field (2-bit field, 1-bit field) indicating a transmission start position of PUCCH. The field is a field used to provide a gap (period) for the terminal device 1 to perform LBT by adjusting the transmission timing in the time symbol area. For example, when the value "00" or "0" is set in the field, it indicates that the physical channel / physical signal can be transmitted from the start of the head time symbol area. When the value "01", "10", or "1" is set in the field, it indicates that the physical channel / physical signal can be transmitted from the middle of the head time symbol area. When the value "01" or "1" is set in the field, it indicates that transmission is possible from 25 μsec (us) in the time symbol region at the beginning of PUCCH. For example, in this 25 μs, the terminal device 1 can perform the LBT for 25 μs only once and then perform the transmission. When the value "10" is set in the field, it indicates that transmission is possible from (25 + TA (Timing Advance)) μs (us) in the time symbol area at the beginning of PUCCH. When the value "11" is set in the field, it indicates that the physical channel / physical signal can be transmitted from the next time symbol area. Further, depending on the value of SCS, the length of one time symbol region corresponding to SCS may be shorter than 25 μsec and / or (25 + TA) μsec. In such a case, if the value "11" is set in the field, the first time symbol region after 25 μsec or (25 + TA) μ sec from the first time symbol region may be indicated. FIG. 16C shows an example of the PUCCH start position of each value when the SCS is 15 kHz. FIG. 16D shows an example of the PUCCH start position of each value when the SCS is 30 kHz.
 以下、本実施形態の一態様に係る種々の装置の態様を説明する。 Hereinafter, aspects of various devices according to one aspect of the present embodiment will be described.
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、端末装置であって、第1のPUCCHリソースセットおよび第2のPUCCHリソースセットに関連するRRC情報を受信する受信部と、前記RRC情報に基づいて、PUCCHを送信する送信部と、を備え、前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が同じ値であるとすれば、前記送信部は、DCIフォーマットに含まれる第1の情報に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定する。 (1) In order to achieve the above object, the aspect of the present invention has taken the following measures. That is, the first aspect of the present invention is a terminal device, which is a receiving unit that receives RRC information related to a first PUCCH resource set and a second PUCCH resource set, and a PUCCH based on the RRC information. If the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is the same value, the transmission unit is provided with the transmission unit. Determines whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the DCI format.
 (2)また、本発明の第2の態様は、第1の態様の端末装置であって、前記第1の情報は、前記PUCCHリソースに対する周波数リソース配置タイプを示す情報である。 (2) Further, the second aspect of the present invention is the terminal device of the first aspect, and the first information is information indicating a frequency resource allocation type with respect to the PUCCH resource.
 (3)また、本発明の第3の態様は、第1の態様の端末装置であって、前記第1の情報は、前記PUCCHの送信前に行なうCAPのタイプを示す情報である。 (3) Further, the third aspect of the present invention is the terminal device of the first aspect, and the first information is information indicating the type of CAP performed before transmission of the PUCCH.
 (4)また、本発明の第4の態様は、第1の態様の端末装置であって、前記第1のPUCCHリソースセットおよび前記PUCCHリソースセットにはそれぞれ、前記PUCCHの周波数リソース配置タイプに関連する情報が含まれる。 (4) Further, the fourth aspect of the present invention is the terminal device of the first aspect, and the first PUCCH resource set and the PUCCH resource set are related to the frequency resource allocation type of the PUCCH, respectively. Contains information to do.
 (5)また、本発明の第5の態様は、第1の態様の端末装置であって、前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が異なる値であるとすれば、前記PUCCHで送信するUCI情報ビット数に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定する。 (5) A fifth aspect of the present invention is the terminal device of the first aspect, and the maximum UCI applied to each of the first PUCCH resource set and the second PUCCH resource set. If the number of information bits is different, the PUCCH resource of the first PUCCH resource set is used or the PUCCH resource of the second PUCCH resource set is used based on the number of UCI information bits transmitted by the PUCCH. Decide if.
 (6)また、本発明の第6の態様は、端末装置に用いられる方法であって、第1のPUCCHリソースセットおよび第2のPUCCHリソースセットに関連するRRC情報を受信するステップと、前記RRC情報に基づいて、PUCCHを送信するステップと、前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が同じ値であるとすれば、DCIフォーマットに含まれる第1の情報に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定するステップと、を含む。 (6) A sixth aspect of the present invention is a method used for a terminal device, which comprises a step of receiving RRC information related to a first PUCCH resource set and a second PUCCH resource set, and the RRC. If the step of transmitting the PUCCH based on the information and the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set are the same value, DCI It includes a step of determining whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the format.
 (7)また、本発明の第7の態様は、第6の態様の方法であって、前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が異なる値であるとすれば、前記PUCCHで送信するUCI情報ビット数に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定するステップを含む。 (7) Further, the seventh aspect of the present invention is the method of the sixth aspect, and the maximum UCI information applied to each of the first PUCCH resource set and the second PUCCH resource set. If the number of bits is different, whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the number of UCI information bits transmitted by the PUCCH. Includes steps to determine.
 本発明の一態様に関わる基地局装置3、および、端末装置1で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The base station device 3 and the program operating on the terminal device 1 according to one aspect of the present invention control a CPU (Central Processing Unit) and the like so as to realize the functions of the above embodiment related to one aspect of the present invention. It may be a program (a program that makes a computer function). Then, the information handled by these devices is temporarily stored in RAM (Random Access Memory) at the time of processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). The CPU reads, corrects, and writes as necessary.
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。 Note that the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer. In that case, the program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 The "computer system" referred to here is a computer system built in the terminal device 1 or the base station device 3, and includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよい、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 Furthermore, a "computer-readable recording medium" is a medium that dynamically holds a program for a short period of time, such as a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In that case, a program may be held for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be one for realizing the above-mentioned functions in combination with a program already recorded in the computer system.
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。 Further, the base station device 3 in the above-described embodiment can also be realized as an aggregate (device group) composed of a plurality of devices. Each of the devices constituting the device group may include a part or all of each function or each function block of the base station device 3 according to the above-described embodiment. As the device group, it suffices to have each function or each function block of the base station device 3. Further, the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)および/またはNG-RAN(NextGen RAN,NR RAN)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBおよび/またはgNBに対する上位ノードの機能の一部または全部を有してもよい。 Further, the base station device 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network) and / or NG-RAN (NextGen RAN, NR RAN). Further, the base station apparatus 3 in the above-described embodiment may have a part or all of the functions of the upper node with respect to the eNodeB and / or the gNB.
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI which is typically an integrated circuit, or may be realized as a chipset. Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip. Further, the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, it is also possible to use an integrated circuit based on this technology.
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。 Further, in the above-described embodiment, the terminal device is described as an example of the communication device, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors. For example, it can be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、本発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like within a range that does not deviate from the gist of the present invention. In addition, one aspect of the present invention can be variously modified within the scope of the claims, and the technical aspects of the present invention are also obtained by appropriately combining the technical means disclosed in the different embodiments. Included in the range. In addition, the elements described in each of the above-described embodiments include a configuration in which elements having the same effect are replaced with each other.
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 One aspect of the present invention is used, for example, in a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
1(1A、1B、1C) 端末装置
3 基地局装置
10、30 無線送受信部
11、31 アンテナ部
12、32 RF部
13、33 ベースバンド部
14、34 上位層処理部
15、35 媒体アクセス制御層処理部
16、36 無線リソース制御層処理部
1 (1A, 1B, 1C) Terminal equipment 3 Base station equipment 10, 30 Wireless transmission / reception unit 11, 31 Antenna unit 12, 32 RF unit 13, 33 Baseband unit 14, 34 Upper layer Processing unit 15, 35 Medium access control layer Processing unit 16, 36 Radio resource control layer processing unit

Claims (7)

  1.  第1のPUCCHリソースセットおよび第2のPUCCHリソースセットに関連するRRC情報を受信する受信部と、
     前記RRC情報に基づいて、PUCCHを送信する送信部と、を備え、
     前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が同じ値であるとすれば、
     前記送信部は、
     DCIフォーマットに含まれる第1の情報に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定する
     端末装置。
    A receiver that receives RRC information related to the first PUCCH resource set and the second PUCCH resource set, and
    A transmission unit that transmits PUCCH based on the RRC information is provided.
    Assuming that the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is the same value,
    The transmitter
    A terminal device that determines whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set based on the first information contained in the DCI format.
  2.  前記第1の情報は、前記PUCCHリソースに対する周波数リソース配置タイプを示す情報である
     請求項1記載の端末装置。
    The terminal device according to claim 1, wherein the first information is information indicating a frequency resource allocation type with respect to the PUCCH resource.
  3.  前記第1の情報は、前記PUCCHの送信前に行なうCAPのタイプを示す情報である
     請求項1記載の端末装置。
    The terminal device according to claim 1, wherein the first information is information indicating a type of CAP performed before transmission of the PUCCH.
  4.  前記第1のPUCCHリソースセットおよび前記PUCCHリソースセットにはそれぞれ、前記PUCCHの周波数リソース配置タイプに関連する情報が含まれる
     請求項1記載の端末装置。
    The terminal device according to claim 1, wherein the first PUCCH resource set and the PUCCH resource set each include information related to the frequency resource allocation type of the PUCCH.
  5.  前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が異なる値であるとすれば、前記PUCCHで送信するUCI情報ビット数に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定する
     請求項1記載の端末装置。
    If the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is a different value, it is based on the number of UCI information bits transmitted by the PUCCH. The terminal device according to claim 1, wherein the terminal device according to claim 1 determines whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set.
  6.  第1のPUCCHリソースセットおよび第2のPUCCHリソースセットに関連するRRC情報を受信するステップと、
     前記RRC情報に基づいて、PUCCHを送信するステップと、
     前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が同じ値であるとすれば、DCIフォーマットに含まれる第1の情報に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定するステップと、を含む
     方法。
    The step of receiving the RRC information related to the first PUCCH resource set and the second PUCCH resource set, and
    Based on the RRC information, the step of transmitting PUCCH and
    Assuming that the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is the same, it is based on the first information contained in the DCI format. A method comprising the step of determining whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set.
  7.  前記第1のPUCCHリソースセットおよび前記第2のPUCCHリソースセットのそれぞれに対して適用される最大UCI情報ビット数が異なる値であるとすれば、前記PUCCHで送信するUCI情報ビット数に基づいて、前記第1のPUCCHリソースセットのPUCCHリソースを用いるか前記第2のPUCCHリソースセットのPUCCHリソースを用いるかを決定するステップを含む
     請求項6記載の方法。
    If the maximum number of UCI information bits applied to each of the first PUCCH resource set and the second PUCCH resource set is a different value, it is based on the number of UCI information bits transmitted by the PUCCH. 6. The method of claim 6, comprising the step of determining whether to use the PUCCH resource of the first PUCCH resource set or the PUCCH resource of the second PUCCH resource set.
PCT/JP2020/030176 2019-08-09 2020-08-06 Terminal device and method WO2021029319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147896A JP7427388B2 (en) 2019-08-09 2019-08-09 Terminal device and method
JP2019-147896 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029319A1 true WO2021029319A1 (en) 2021-02-18

Family

ID=74570239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030176 WO2021029319A1 (en) 2019-08-09 2020-08-06 Terminal device and method

Country Status (2)

Country Link
JP (1) JP7427388B2 (en)
WO (1) WO2021029319A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477479B2 (en) 2021-03-30 2024-05-01 Kddi株式会社 Terminal device, base station device, communication method, and program using extended acknowledgement response

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102599A1 (en) * 2017-11-24 2019-05-31 株式会社Nttドコモ User equipment and wireless communication method
JP2019122021A (en) * 2017-12-28 2019-07-22 シャープ株式会社 Terminal device, base station device, and communication method
WO2019146496A1 (en) * 2018-01-23 2019-08-01 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102599A1 (en) * 2017-11-24 2019-05-31 株式会社Nttドコモ User equipment and wireless communication method
JP2019122021A (en) * 2017-12-28 2019-07-22 シャープ株式会社 Terminal device, base station device, and communication method
WO2019146496A1 (en) * 2018-01-23 2019-08-01 株式会社Nttドコモ User terminal and wireless communication method

Also Published As

Publication number Publication date
JP2021029029A (en) 2021-02-25
JP7427388B2 (en) 2024-02-05

Similar Documents

Publication Publication Date Title
WO2020195571A1 (en) Base station device, terminal device, and method
CN113039828A (en) Terminal device and method
WO2020195645A1 (en) Terminal device, and method
WO2021107090A1 (en) Terminal device, base station device, and method
WO2021200644A1 (en) Terminal device and communication method
WO2022071171A1 (en) Terminal device, base station device, and communication method
WO2022030479A1 (en) Terminal device, base station device, and communication method
WO2020218408A1 (en) Terminal device, base station device, and method
JP7479889B2 (en) Terminal device, base station device, and communication method
WO2020031757A1 (en) Terminal device and method
WO2020031758A1 (en) Base station device and method
WO2021029319A1 (en) Terminal device and method
WO2021162038A1 (en) Terminal device and method
WO2022030594A1 (en) Terminal device and communication method
WO2021066135A1 (en) Terminal device and method
WO2020246167A1 (en) Terminal device, base station device, and communication method
JP2021158478A (en) Terminal device, base station device, and communication method
WO2020066758A1 (en) Terminal device and method
WO2021162027A1 (en) Terminal device and method
WO2021162045A1 (en) Terminal device, base station device, and communication method
WO2022030541A1 (en) Terminal device, base station device, and communication method
WO2023100751A1 (en) Terminal device, base station device, and communication method
WO2023054180A1 (en) Terminal device, base station device, and communication method
WO2023054172A1 (en) Terminal device, base station device, and communication method
WO2020145306A1 (en) Terminal device, base station device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852273

Country of ref document: EP

Kind code of ref document: A1