WO2021029312A1 - Control device for once-through boiler, power generation plant, and control method for once-through boiler - Google Patents

Control device for once-through boiler, power generation plant, and control method for once-through boiler Download PDF

Info

Publication number
WO2021029312A1
WO2021029312A1 PCT/JP2020/030137 JP2020030137W WO2021029312A1 WO 2021029312 A1 WO2021029312 A1 WO 2021029312A1 JP 2020030137 W JP2020030137 W JP 2020030137W WO 2021029312 A1 WO2021029312 A1 WO 2021029312A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
spray
once
temperature
target
Prior art date
Application number
PCT/JP2020/030137
Other languages
French (fr)
Japanese (ja)
Inventor
寿宏 馬場
和宏 堂本
尚 三田
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to KR1020227003043A priority Critical patent/KR20220029703A/en
Publication of WO2021029312A1 publication Critical patent/WO2021029312A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/104Control systems by injecting water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/14Control systems for steam boilers for steam boilers of forced-flow type during the starting-up periods, i.e. during the periods between the lighting of the furnaces and the attainment of the normal operating temperature of the steam boilers

Definitions

  • the present disclosure relates to a once-through boiler control device, a power plant, and a once-through boiler control method.
  • Boiler devices that can generate steam are used in various applications, including power plants such as thermal power plants that generate electricity using steam energy.
  • a once-through boiler is known as a method of this type of boiler device.
  • Patent Document 1 as an example of a once-through boiler, a plurality of superheaters provided in series with respect to a flow path through which steam generated in a fireplace flows, and a plurality of sprays that can be sprayed on the outlet side of each superheater.
  • a once-through boiler is disclosed.
  • steam is controlled by controlling the water-fuel ratio so that the steam temperature on the outlet side of the furnace and the outlet side of the superheater on the most downstream side becomes a predetermined set value (target steam temperature). It is configured so that the temperature can be adjusted.
  • Patent Document 2 discloses a once-through boiler in which a final superheater (spray) is arranged between an upstream superheater group arranged in series on the downstream side of a steam generator and a final superheater.
  • the amount of water play by the final superheater is controlled so that the steam temperature on the outlet side of the final superheater becomes a predetermined set value (final target steam temperature), and the final superheater is used. It is configured to control the amount of fuel burned so that the temperature on the upstream side of the superheat reducer becomes a predetermined set value.
  • the heat balance of the once-through boiler may change due to various factors, and the steam temperature profile may deviate from the design temperature profile. For example, if the heat transfer surface of the steam flow path becomes dirty with age, the detected value of the steam temperature in the steam flow path may decrease, or the superheat performance by the superheater may decrease. Further, by changing the type of fuel input to the furnace water cooling wall, heat transfer by the furnace water cooling wall or the superheater may increase. If the steam temperature profile deviates from the design profile in this way, the reliability and quality of the once-through boiler may be affected, such as affecting the pre-life of each member constituting the once-through boiler.
  • Some aspects of the present disclosure have been made in view of the above circumstances, and a once-through flow capable of suppressing deviation of the steam temperature profile balance from the design temperature profile as the heat balance conditions of the once-through boiler change. It is an object of the present invention to provide a boiler control device, a power plant, and a method for controlling a once-through boiler.
  • the once-through boiler control device is used to solve the above problems.
  • the furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters. It is a control device for a once-through boiler that can adjust the temperature of steam generated by the superheater.
  • a spray control unit configured to be able to control the amount of heat reduction of the steam by at least a part of the plurality of sprays to be a target amount of heat reduction Among the steam flow paths provided with the plurality of superheaters, a steam temperature detection unit configured to be able to detect the steam temperature on the upstream side of the spray position of the spray controlled by the spray control unit.
  • the target temperature reduction amount is configured to be set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount. Will be done.
  • the power plant according to some aspects of the present disclosure is to solve the above problems.
  • the method for controlling a once-through boiler is to solve the above problems.
  • the furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters.
  • the target temperature reduction amount is set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount.
  • a once-through boiler controller, power plant capable of suppressing deviation of the steam temperature profile balance from the design temperature profile as the heat balance conditions of the once-through boiler change. Also, a method for controlling a once-through boiler can be provided.
  • FIG. 1 is a schematic view showing an overall configuration of a power plant 100 according to one aspect of the present disclosure.
  • the power plant 100 includes a once-through boiler 1 capable of generating steam, a turbine 110 configured to be driveable using steam from the once-through boiler 1, and a generator 120 configured to be driveable by the turbine 110. ..
  • the once-through boiler 1 is an example of a steam generator configured to be able to generate steam by burning fuel.
  • the steam generated in the once-through boiler 1 is supplied to the turbine 110 via the steam supply path 112.
  • the turbine 110 is driven by steam supplied through the steam supply path 112.
  • a generator 120 is connected to the output shaft of the turbine 110, and the rotational energy of the turbine 110 is converted into electrical energy.
  • the electric energy generated by the generator 120 is supplied to the electric power system (not shown) via a predetermined path.
  • a steam valve 114 (main steam valve) for adjusting the flow rate of steam supplied from the once-through boiler 1 to the turbine 110 is installed in the steam supply path 112.
  • the opening degree of the steam valve 114 is controlled so that, for example, the steam flow rate supplied from the once-through boiler 1 to the turbine 110 becomes a predetermined target flow rate value set based on the load command value Ld for the power plant 100. ..
  • the power plant 100 has a control device 2 for controlling each component of the power plant 100.
  • the control device 2 has a hardware configuration including an electronic arithmetic unit such as a computer, and by installing a program for implementing the control method according to some aspects of the present disclosure, the number of the present disclosure is increased. It is configured to be functional as a control device according to the above aspect.
  • the control device 2 is a control unit capable of comprehensively controlling the power plant 100.
  • the control related to the once-through boiler 1 will be specifically described, and the other controls are publicly known regarding the power plant 100 unless otherwise specified. Can be controlled as appropriate.
  • the steam temperature control by the control device 2 is performed so that the steam temperature supplied to the turbine 110 (the third steam temperature T3SO described later) becomes a preset target steam temperature (the third target steam temperature T3SO target described later). ..
  • This target steam temperature (third target steam temperature T3SOtaget described later) may be set manually by the operator, or may be automatically set based on a predetermined signal received by the control device 2. In the latter case, the target steam temperature (the third target steam temperature T3SOtaget described later) is, for example, according to the load command value Ld acquired by the power plant 100 according to the supply and demand state of the power system to which the power is supplied to the power plant 100. Set.
  • FIG. 2 is a schematic configuration diagram showing the configuration of the once-through boiler 1 of FIG. 1 together with a steam temperature profile.
  • the once-through boiler 1 has a furnace water cooling wall 4 (Water Wall) capable of generating steam.
  • the furnace water cooling wall 4 has a heat transfer tube into which cooling water can be introduced, and heats the cooling water flowing through the heat transfer tube by burning fuel (for example, pulverized coal produced by crushing coal). Is configured to be able to generate steam.
  • Fuel and fuel are supplied to the furnace water cooling wall 4 by, for example, a water supply pump unit or a fuel supply unit (not shown).
  • the fuel flow rate to the reactor water cooling wall 4 is basically determined according to, for example, the load command value Ld for the power plant 100, but the fuel flow rate is determined according to the deviation between the actually generated steam temperature and the target steam temperature.
  • the water-fuel ratio which is a correction signal for correction, is controlled as one of the control parameters of the control device 2, as will be described later.
  • a plurality of superheaters 6 for superheating the steam generated by the furnace water cooling wall 4 are provided on the downstream side of the furnace water cooling wall 4.
  • the plurality of superheaters 6 are provided in series with each other with respect to the steam flow path 8 through which steam flows from the furnace water cooling wall 4.
  • the plurality of superheaters 6 include a first superheater 6a, a second superheater 6b, and a third superheater 6c.
  • the steam superheated by the first superheater 6a can be further superheated.
  • the third superheater 6c on the downstream side of the second superheater 6b, the steam superheated by the second superheater 6b can be further superheated.
  • FIG. 2 illustrates a case where the once-through boiler 1 includes three superheaters 6, but the number of superheaters 6 provided by the once-through boiler 1 is not limited to this.
  • the steam flow path 8 is provided with a plurality of sprays 10 configured so that cooling water can be sprayed on the steam flowing through the steam flow path 8.
  • the plurality of sprays 10 are provided on the outlet side of the first superheater 6a (between the first superheater 6a and the second superheater 6b) in the steam flow path 8 of the first superheater 6a.
  • a second spray 10b provided on the outlet side of the second superheater 6b (between the second superheater 6b and the third superheater 6c).
  • the first spray 10a adjusts the steam temperature by spraying cooling water on the steam from the first superheater 6a to reduce the temperature of the steam heated by the first superheater 6a.
  • the second spray 10b adjusts the steam temperature by spraying cooling water on the steam from the second superheater 6b to reduce the temperature of the steam raised by the second superheater 6b.
  • the plurality of sprays 10 are configured so that a part of the water supply to the furnace water cooling wall 4 can be sprayed to the steam flow path 8.
  • the main water supply channel 12 for water supply to the fireplace water cooling wall 4 is provided with a sub water supply channel 14 that branches to the spray 10 side.
  • the sub water supply channel 14 is configured to be able to supply water in parallel to each of the plurality of sprays 10. In this way, in the plurality of sprays 10, a part of the water supply supplied to the furnace water cooling wall 4 is sprayed. Therefore, when the spray amount in the spray 10 increases, the water supply amount to the furnace water cooling wall 4 decreases, and conversely, the spray. When the amount of spray at 10 decreases, the amount of water supplied to the furnace water cooling wall 4 increases.
  • the first spray 10a and the second spray 10b each have a first spray valve 16a and a second spray valve 16b that can be opened and closed to variably adjust the spray amount.
  • the opening degree of the first spray valve 16a and the second spray valve 16b can be controlled independently of each other based on the control signal from the control device 2.
  • FIG. 2 illustrates a case where the once-through boiler 1 includes two sprays 10, but the number of sprays 10 provided by the once-through boiler 1 is not limited to this.
  • the number of sprays 10 may be set so as to be arranged on the outlet side of each of the superheaters 6 other than the superheater 6 on the most downstream side, for example.
  • the temperature of the steam generated in the furnace water cooling wall 4 is adjusted by the plurality of superheaters 6 and the plurality of sprays 10 so that the steam temperature supplied from the once-through boiler 1 to the turbine 110 becomes the target steam temperature. Be controlled.
  • the steam from the furnace water cooling wall 4 first passes through the first superheater 6a and is heated to the first steam temperature T1SO.
  • the steam that has passed through the first superheater 6a is cooled by the first spray 10a on the outlet side of the first superheater 6a for the first heat reduction amount of 1 DSDT.
  • the steam cooled by the first spray 10a is heated to the second steam temperature T2SO by passing through the second superheater 6b.
  • the steam that has passed through the second superheater 6b is cooled by the second spray 10b on the outlet side of the second superheater 6b for a second heat reduction amount of 2DSDT. Then, the steam cooled by the second spray 10b passes through the third superheater 6c and is heated to the third steam temperature T3SO, which is the final outlet temperature of the once-through boiler 1.
  • Such a steam temperature profile shown in FIG. 2 basically controls each component of the once-through boiler 1 (a furnace water cooling wall 4, a plurality of superheaters 6, and a plurality of sprays 10) by a control device 2. Is controlled so as to have an ideal design temperature profile Pr (in FIG. 2, the state in which the steam temperature profile matches the design temperature profile Pr is shown). Specifically, the control device 2 controls each component of the once-through boiler 1 so that the detection value of the temperature sensor provided at a predetermined measurement point of the once-through boiler 1 approaches the design temperature profile Pr, thereby steam. The temperature profile is managed to be the design temperature profile.
  • the heat balance balance in the once-through boiler 1 may change due to various factors, and the steam temperature profile may deviate from the design temperature profile Pr.
  • the detection value of the temperature sensor provided at a predetermined measurement point of the once-through boiler 1 may decrease, or the first superheater may be used.
  • the superheat performance by the 6a to 3rd superheater 6c may be deteriorated.
  • the control device 2 causes the steam temperature profile to approach the design temperature profile Pr, as described below.
  • the once-through boiler 1 is controlled.
  • the steam flow path 8 is configured so that the steam temperature at each position can be detected. Specifically, as shown in FIG. 2, the steam temperature T1SO on the outlet side of the first superheater 6a, the steam temperature 2T2SO on the outlet side of the second superheater 6b, and the steam temperature T3SO on the outlet side of the third superheater 6c. , The steam temperature T2SI after cooling by the first spray 10a and the steam temperature T3SI after cooling by the second spray 10b are each detectable. Each of these temperatures is detected by arranging a detection element such as a temperature sensor.
  • FIG. 3 is a block diagram showing an internal configuration of the control device 2 according to one aspect of the present disclosure
  • FIG. 4 is a flowchart showing a control method of the once-through boiler 1 implemented by the control device 2 of FIG. 3 for each process. ..
  • the control device 2 controls the water fuel ratio control unit 50 for controlling the water fuel ratio of the furnace water cooling wall 4 and the spray 10 (first spray 10a and second spray 10b).
  • a spray control unit 60 for calculating the bias value and a bias value calculation unit 70 for calculating a bias value with respect to the target temperature reduction amount of the spray 10 are provided.
  • the spray control unit 60 includes a first spray control unit 60a for controlling the first spray 10a and a second spray control unit 60b for controlling the second spray 10b.
  • the water-fuel ratio control unit 50 controls the water-fuel ratio as a fuel flow correction so that the third steam temperature T3SO, which is the final steam temperature of the once-through boiler 1, becomes the preset third target steam temperature T3SO target. Specifically, the water-fuel ratio control unit 50 uses an actually measured value (for example, a steam temperature detected value on the downstream side of the third superheater 6c in the steam flow path 8) detected at a corresponding location of the once-through boiler 1. A certain third steam temperature T3SO and a preset third target steam temperature T3SO target are input.
  • the water fuel ratio control unit 50 calculates the deviation ⁇ T3SO between the third steam temperature T3SO and the third target steam temperature T3SO target so that the deviation ⁇ T3SO becomes zero (that is, the third steam temperature T3SO is the third target steam temperature T3SO target). By outputting the water-fuel ratio control signal as fuel flow rate correction, the water-fuel ratio is feedback-controlled.
  • the third target steam temperature T3SOtaget may be set as the steam temperature value required for the once-through boiler 1 according to the load command value Ld.
  • the second spray control unit 60b controls the second spray 10b so that the third steam temperature T3SO becomes the third target steam temperature T3SO target and the second heat reduction amount 2DSDT becomes the second target heat reduction amount 2DSDT target.
  • the actually measured value detected at the corresponding portion of the once-through boiler 1 for example, the steam temperature detected value on the downstream side of the third superheater 6c in the steam flow path 8.
  • the third steam temperature T3SO, the preset third target steam temperature T3SO target, and the measured values (for example, the second superheater 6b and the third superheater 6c) detected by the sensor at the corresponding points of the once-through boiler 1.
  • the second heat reduction amount 2DSDT which is the difference between the steam temperature detection values detected on the upstream side and the downstream side of the spray position by the second spray 10b in the steam flow path 8 between them, and the preset second target.
  • the amount of heat reduction 2DSDTtaget is input.
  • the opening degree of the second spray valve 16b is such that the third steam temperature T3SO becomes the target steam temperature T3SO target and the temperature reduction amount 2DSDT by the second spray 10b becomes the target temperature reduction amount 2DSDT target.
  • the second temperature reduction target value 2DSDTtaget is set according to the load command value Ld.
  • the first spray control unit 60a outputs the opening command value (first spray valve opening signal) of the first spray valve 16a based on the temperature detection value T2S0 and the target temperature T2SOtaget, so that the first spray 10a Perform feedback control. That is, the first spray control unit 60a determines the opening signal of the first spray valve 16a so that the steam temperature on the outlet side of the second superheater 6b becomes a predetermined target value.
  • the bias value calculation unit 70 is a spray 10 whose temperature reduction amount is controlled by the spray control unit 60 among the steam flow paths 8 provided with the first superheater 6a to the third superheater 6c (in this embodiment, the second).
  • the second target reduction is based on the deviation ⁇ T0 between the steam temperature T0 on the upstream side of the spray position of the second spray 10b) whose temperature reduction amount 2DSDT is controlled by the spray control unit 60b and the preset target steam temperature T0 target.
  • the bias value ⁇ with respect to the temperature amount 2DSDT is calculated.
  • the bias value calculation unit 70 integrates and controls, for example, the deviation ⁇ T0, and calculates the output as the bias value ⁇ .
  • the steam temperature T0 is detected by the steam temperature detection unit 72 installed on the upstream side of the spray position of the second spray 10b whose temperature reduction amount 2DSDT is controlled by the second spray control unit 60b.
  • the steam temperature T0 between the furnace water cooling wall 4 and the first superheater 6a in the steam flow path 8 is detected. It is configured to be possible.
  • the target steam temperature T0 target is set as the steam temperature T0 at the position corresponding to the steam temperature detection unit 72 according to the load command value Ld.
  • the control device 2 having such a configuration performs the control shown in FIG. First, the control device 2 detects the steam temperature at, for example, the outlet of the furnace water cooling wall 4 in the steam flow path 8 (step S100), and determines whether or not the steam temperature profile deviates from the design temperature profile Pr (step). S101).
  • the bias value calculation unit 70 determines the steam flow provided with the first superheater 6a to the third superheater 6c.
  • the deviation ⁇ T0 between the steam temperature T0 on the upstream side of the spray position of the second spray 10b in the road 8 and the preset target steam temperature T0 target is calculated (step S102), and the bias value ⁇ is calculated based on the deviation T0. Calculate (step S103).
  • the sign of the bias value ⁇ is set based on the magnitude relationship between the steam temperature T0 and the target steam temperature T0 target. Specifically, when the steam temperature T0 is lower than the target steam temperature T0 target, the sign of the bias value is set to positive. On the contrary, when the steam temperature T0 is higher than the target steam temperature T0 target, the sign of the bias value is set to negative. Further, the absolute value of the bias value is set so as to increase with respect to the deviation ⁇ T0.
  • the spray control unit 60 adds the bias value ⁇ set in step S103 to the second target heat reduction amount 2DSDTtaget (step S104), and the second heat reduction amount 2DSDT by the second spray 10b has a bias value ⁇ .
  • the second spray 10b is controlled so as to have the added second target temperature reduction amount of 2DSDTtaget (step S105).
  • 5A to 5C are examples showing the transition of the steam temperature profile by the control device 2 of FIG.
  • the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the lower temperature side for some reason.
  • the heat transfer surface of the steam flow path 8 becomes dirty such as scale with aging, the detected value of the steam temperature in the steam flow path 8 decreases, or the first superheater 6a to The superheat performance of the third superheater 6c has deteriorated, and the type of fuel charged into the steam furnace water cooling wall 4 has been changed.
  • 6A to 6C are other examples showing the transition of the steam temperature profile by the control device 2 of FIG.
  • the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the higher temperature side due to some factor.
  • the type of fuel charged into the furnace water cooling wall 4 has been changed.
  • FIG. 7 is a block diagram showing an internal configuration of the control device 2 according to another aspect of the present disclosure.
  • the control device 2 includes a water fuel ratio control unit 50 for controlling the water fuel ratio, a spray control unit 60 for controlling the spray 10 (first spray 10a and second spray 10b), and a target temperature reduction.
  • a bias value calculation unit 70 for calculating a bias value with respect to the quantity is provided.
  • the spray control unit 60 includes a first spray control unit 60a for controlling the first spray 10a and a second spray control unit 60b for controlling the second spray 10b.
  • the water-fuel ratio control unit 50 controls the water-fuel ratio so that the second steam temperature T2SO becomes the preset second target steam temperature T2SO target. Specifically, the water-fuel ratio control unit 50 has an actually measured value detected at a corresponding location of the once-through boiler 1 (for example, between the second superheater 6b and the third superheater 6c in the steam flow path 8).
  • the second steam temperature T2SO which is the steam temperature detection value
  • the preset second target steam temperature T2SO target are input.
  • the water fuel ratio control unit 50 calculates the deviation ⁇ T2SO between the second steam temperature T2SO and the second target steam temperature T2SO target so that the deviation ⁇ T2SO becomes zero (that is, the second steam temperature T2SO is the second target steam temperature T2SO target). By outputting the water-fuel ratio control signal as fuel flow rate correction, the water-fuel ratio is feedback-controlled.
  • the second target steam temperature T2SOtaget is set according to the load command value Ld.
  • the first spray control unit 60a controls the first spray 10a so that the second steam temperature T2SO becomes the second target steam temperature T2SO target and the first heat reduction amount 1DSDT becomes the first target heat reduction amount 1DSDTtaget. Specifically, in the first spray control unit 60a, an actually measured value detected at a corresponding location of the once-through boiler 1 (for example, between the second superheater 6b and the third superheater 6c in the steam flow path 8).
  • the second steam temperature T2SO which is the steam temperature detection value
  • the preset second target steam temperature T2SO target and the measured values (for example, the first superheater 6a and the first superheater 6a) detected by the sensor at the corresponding points of the once-through boiler 1.
  • the set first target heat reduction amount 1DSDTtaget and is input.
  • the first spray control unit 60a has a first so that the second steam temperature T2SO becomes the second target steam temperature T2SO target and the first heat reduction amount 1DSDT by the first spray 10a becomes the first target heat reduction amount 1DSDT taget.
  • the first spray 10a is feedback-controlled by outputting the opening command value (first spray valve opening signal) of the spray valve 16a.
  • the first target temperature reduction amount of 1DSDTtaget is set according to the load command value Ld.
  • the second spray control unit 60b outputs an opening command value (second spray valve opening signal) of the second spray valve 16b so that the third steam temperature T3SO becomes the third target steam temperature T3SO target. 2 Feedback control of the spray 10b is performed.
  • the bias value calculation unit 70 is a spray 10 (in this embodiment, the first) in which the amount of heat reduction is controlled by the spray control unit 60 among the steam flow paths 8 provided with the first superheater 6a to the third superheater 6c.
  • the first is based on the deviation ⁇ T0 between the steam temperature T0 on the upstream side of the spray position of the first spray 10a) in which the first heat reduction amount 1DSDT is controlled by the spray control unit 60a and the preset target steam temperature T0 target.
  • the bias value ⁇ with respect to the target temperature reduction amount 1DSDT is calculated.
  • the steam temperature T0 is detected by the steam temperature detection unit 72 installed on the upstream side of the spray position of the first spray 10a in which the first temperature reduction amount 1DSDT is controlled by the first spray control unit 60a.
  • the steam temperature detection unit 72 steam between the furnace water cooling wall 4 and the first superheater 6a in the steam flow path 8
  • the temperature T0 is configured to be detectable.
  • FIG. 8 is a flowchart showing a control method of the once-through boiler 1 implemented by the control device 2 of FIG. 7 for each process.
  • the control device 2 detects the steam temperature at, for example, the outlet of the furnace water cooling wall 4 in the steam flow path 8 (step S200), and determines whether or not the steam temperature profile deviates from the design temperature profile Pr (step S200). Step S201).
  • the bias value calculation unit 70 determines the steam flow provided with the first superheater 6a to the third superheater 6c.
  • the deviation ⁇ T0 between the steam temperature T0 on the upstream side of the spray position of the first spray 10a in the road 8 and the preset target steam temperature T0 target is calculated (step S202), and the bias value ⁇ is calculated based on the deviation T0. Calculate (step S203).
  • the sign of the bias value ⁇ is set based on the magnitude relationship between the steam temperature T0 and the target steam temperature T0 target. Specifically, when the steam temperature T0 is lower than the target steam temperature T0 target, the sign of the bias value is set to positive. On the contrary, when the steam temperature T0 is higher than the target steam temperature T0 target, the sign of the bias value is set to negative. Further, the absolute value of the bias value is set so as to increase with respect to the deviation ⁇ T0.
  • the spray control unit 60 adds the bias value ⁇ set in step S203 to the first target heat reduction amount 1DSDTtaget (step S204), and the first heat reduction amount 1DSDT by the first spray 10a has a bias value ⁇ .
  • the first spray 10a is controlled so as to have the added first target temperature reduction amount of 1DSDTtaget (step S205).
  • 9A to 9C are examples showing the transition of the steam temperature profile by the control device 2 of FIG. 7.
  • the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the lower temperature side for some reason.
  • the heat transfer surface of the steam flow path 8 becomes dirty such as scale with aging, the detected value of the steam temperature in the steam flow path 8 decreases, or the first superheater 6a to The superheat performance of the third superheater 6c has deteriorated, and the type of fuel charged into the steam furnace water cooling wall 4 has been changed.
  • the bias value calculation unit 70 since the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the lower temperature side, the bias value calculation unit 70 has an absolute value based on the deviation ⁇ T0 and has an absolute value as shown in FIG. 9B. The bias value ⁇ having a positive sign is calculated. As a result, as shown in FIG. 9C, the steam temperature profile shifts to the higher temperature side as a whole and approaches the design temperature profile Pr.
  • FIGS. 10A to 10C are other examples showing the transition of the steam temperature profile by the control device 2 of FIG. 7.
  • the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the higher temperature side for some reason.
  • the type of fuel charged into the furnace water cooling wall 4 has been changed.
  • the bias value calculation unit 70 since the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the higher temperature side, the bias value calculation unit 70 has an absolute value based on the deviation ⁇ T0 and has an absolute value as shown in FIG. 10B. The bias value ⁇ having a negative sign is calculated. As a result, as shown in FIG. 10C, the steam temperature profile shifts to the low temperature side as a whole and approaches the design temperature profile Pr.
  • the steam temperature profile at each position of the steam flow path of the once-through boiler 1 is derived from the design temperature profile as the heat balance condition of the once-through boiler 1 changes. It is possible to provide a control device 2 for a once-through boiler 1 capable of suppressing dissociation, a power plant 100, and a control method for the once-through boiler 1.
  • the once-through boiler control device is A plurality of superheaters provided in series (for example, the first superheater 6a, the second superheater 6b, and the third superheater 6c of the above embodiment) and a furnace water cooling wall (for example, the furnace water cooling wall 4 of the above embodiment).
  • the furnace water cooling wall and the above are provided by a plurality of sprays (for example, the first spray 10a and the second spray 10b of the above embodiment) configured so that a part of the water supply to the superheater can be sprayed on the outlet side of the plurality of superheaters.
  • a control device for example, the control device 2 of the above embodiment of a once-through boiler (for example, the once-through boiler 1 of the above embodiment) capable of adjusting the temperature of steam generated by a plurality of superheaters.
  • the amount of temperature reduction of the steam by at least a part of the plurality of sprays is the target temperature reduction amount (for example, the first target reduction amount of the above embodiment).
  • a spray control unit (for example, the spray control unit 60 of the above embodiment) configured to be controllable so as to have a temperature amount of 1DSDTtarget or a second target temperature reduction amount of 2DSDTtarget).
  • a steam temperature detection unit (for example, the steam temperature detection unit 72 of the above embodiment) configured to be able to detect the steam temperature on the upstream side, and
  • the target temperature reduction amount is a bias value (for example, for example) set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature (for example, the deviation ⁇ T0 of the above embodiment) with respect to the basic target temperature reduction amount. It is configured to be set by adding the bias value ⁇ ) of the above embodiment.
  • the bias value is added to the target temperature reduction amount of the spray.
  • the bias value is set based on the deviation of the steam temperature from the target steam temperature on the upstream side of the spray position of the spray whose temperature reduction amount is controlled to be the target temperature reduction amount.
  • the sign of the bias value is set positively. This makes it possible to shift the steam temperature profile to the higher temperature side and bring it closer to the design temperature profile.
  • the sign of the bias value is set to negative. This makes it possible to shift the steam temperature profile to the lower temperature side and bring it closer to the design temperature profile.
  • the absolute value of the bias value is set to increase with respect to the deviation.
  • the bias value is set to increase as the amount of deviation between the steam temperature profile and the design temperature profile in the steam flow path increases.
  • the plurality of superheaters A first superheater (for example, the first superheater 6a of the above embodiment) configured to be able to superheat steam from the water cooling wall of the fireplace, and A second superheater configured to superheat the steam from the first superheater (for example, the second superheater 6b of the above embodiment) and A third superheater configured to superheat the steam from the second superheater (for example, the third superheater 6c of the above embodiment) and Including
  • the plurality of sprays A first spray provided on the outlet side of the first superheater (for example, the first spray 10a of the above embodiment) and A second spray provided at the outlet of the second superheater (for example, the second spray 10b of the above embodiment) and including.
  • the steam temperature profile from the furnace water cooling wall can be suitably brought close to the design temperature profile.
  • the spray control unit has a deviation between the temperature reduction amount due to the second spray (for example, the second temperature reduction amount 2DSDT of the above embodiment) and the target temperature reduction amount (for example, the second target temperature reduction amount 2DSDT target of the above embodiment). Based on the above, the second spray is configured to be controllable.
  • the steam temperature profile from the furnace water cooling wall is used as the design temperature profile. It can be brought closer to suitability.
  • the temperature reduction amount by the first spray (for example, the first heat reduction amount 1DSDT of the above embodiment) becomes the target temperature reduction amount (for example, the first target temperature reduction amount 1DSDT target of the above embodiment).
  • the first spray is configured to be controllable.
  • the steam temperature profile from the furnace water cooling wall is used as the design temperature profile. It can be brought closer to suitability.
  • the temperature reduction amount is calculated based on the temperature detection values on the upstream side and the downstream side of the spray, which is the control target of the spray control unit.
  • the amount of temperature decrease due to the spray is suitably calculated based on the temperature detection values on the upstream side and the downstream side of the spray.
  • the once-through boiler is a coal-fired boiler that uses coal or oil as fuel.
  • a coal-fired boiler or an oil-fired boiler which has a low response to a load command value by operation control due to a process of crushing coal with a pulverized coal mill, is used as a steam generator. Also in a power plant, the steam temperature profile from the boiler water cooling wall can be suitably close to the design temperature profile.
  • the power plant according to one aspect of the present disclosure is With the once-through boiler, The control device according to any one of (1) to (9) above, A turbine configured to be driveable using steam from the once-through boiler, A generator configured to be driveable by the turbine, To be equipped.
  • the steam temperature profile of the once-through boiler deviates from the design temperature profile, the steam temperature profile is brought closer to the design temperature profile to make the power plant more stable. It can be operated and good reliability can be obtained.
  • the method for controlling a once-through boiler is as follows.
  • the furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters.
  • the target temperature reduction amount is set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount.
  • the bias value is added to the target temperature reduction amount of the spray.
  • the bias value is set based on the deviation of the steam temperature from the target steam temperature on the upstream side of the spray position of the spray whose temperature reduction amount is controlled to be the target temperature reduction amount.

Abstract

The present disclosure relates to a control device for a once-through boiler, which can adjust the steam temperature from a furnace water cooling wall by a plurality of superheaters and a plurality of sprays. The control device performs control such that the temperature reduction amount of the steam by at least some of the plurality of sprays becomes a target temperature reduction amount. A bias value, which is set on the basis of the deviation between a detection value of the steam temperature and a target steam temperature on the upstream side of a spray position of the spray of which the temperature reduction amount in a steam flow path is controlled with respect to a basic target temperature reduction amount, is added to the target temperature reduction amount.

Description

貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法Control device for once-through boiler, power plant, and control method for once-through boiler
 本開示は、貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法に関する。 The present disclosure relates to a once-through boiler control device, a power plant, and a once-through boiler control method.
 蒸気を生成可能なボイラ装置は、蒸気エネルギを利用して発電を行う火力発電所のような発電プラントをはじめとして、様々な用途で用いられている。この種のボイラ装置の一方式として、貫流ボイラが知られている。 Boiler devices that can generate steam are used in various applications, including power plants such as thermal power plants that generate electricity using steam energy. A once-through boiler is known as a method of this type of boiler device.
 特許文献1には貫流ボイラの一例として、火炉で生成された蒸気が流れる流路に対して、直列に設けられた複数の過熱器と、各過熱器の出口側にスプレイ可能な複数のスプレイとを備える貫流ボイラが開示されている。この特許文献1に開示された貫流ボイラでは、火炉出口側及び最下流側の過熱器出口側における蒸気温度が所定の設定値(目標蒸気温度)になるように水燃比を制御することで、蒸気温度の調整が可能に構成されている。 In Patent Document 1, as an example of a once-through boiler, a plurality of superheaters provided in series with respect to a flow path through which steam generated in a fireplace flows, and a plurality of sprays that can be sprayed on the outlet side of each superheater. A once-through boiler is disclosed. In the once-through boiler disclosed in Patent Document 1, steam is controlled by controlling the water-fuel ratio so that the steam temperature on the outlet side of the furnace and the outlet side of the superheater on the most downstream side becomes a predetermined set value (target steam temperature). It is configured so that the temperature can be adjusted.
 また特許文献2では、蒸気発生器の下流側に直列配置された上流過熱器群と最終過熱器との間に最終過熱低減器(スプレイ)が配置された貫流ボイラが開示されている。この特許文献2に開示された貫流ボイラでは、最終過熱器の出口側における蒸気温度が所定の設定値(最終目標蒸気温度)になるように最終過熱低減器による水プレイ量を制御するとともに、最終過熱低減器の上流側温度が所定の設定値になるように燃料の燃焼量を制御するように構成されている。 Further, Patent Document 2 discloses a once-through boiler in which a final superheater (spray) is arranged between an upstream superheater group arranged in series on the downstream side of a steam generator and a final superheater. In the once-through boiler disclosed in Patent Document 2, the amount of water play by the final superheater is controlled so that the steam temperature on the outlet side of the final superheater becomes a predetermined set value (final target steam temperature), and the final superheater is used. It is configured to control the amount of fuel burned so that the temperature on the upstream side of the superheat reducer becomes a predetermined set value.
特許第5840032号公報Japanese Patent No. 5840032 特許第4453858号公報Japanese Patent No. 4453858
 上記特許文献1及び2のような貫流ボイラでは、火炉水冷壁からの蒸気に対する各過熱器による昇温量、及び、各スプレイによる減温量、及び、燃料供給量を調整することで、最終的な蒸気温度が目標蒸気温度になるとともに、蒸気流路の各点における温度分布である蒸気温度プロファイルが理想的な設計温度プロファイルになるように各種の制御や調整をする事が望まれる。 In the once-through boiler as in Patent Documents 1 and 2, the final amount of temperature rise by each superheater, the amount of temperature decrease by each spray, and the amount of fuel supply for steam from the steam from the water cooling wall of the furnace are adjusted. It is desirable to perform various controls and adjustments so that the steam temperature profile becomes the target steam temperature and the steam temperature profile, which is the temperature distribution at each point of the steam flow path, becomes the ideal design temperature profile.
 ところで貫流ボイラの運用時には、様々な要因によって貫流ボイラの熱収支バランスが変化し、蒸気温度プロファイルが設計温度プロファイルから乖離してしまうことがある。例えば、経年に伴って蒸気流路の伝熱面にスケール等の汚れが生じると、蒸気流路における蒸気温度の検出値が低下したり、過熱器による過熱性能が低下する場合がある。また火炉水冷壁に投入される燃料の種類が変更されることで、火炉水冷壁や過熱器による伝熱が増加する場合がある。このように蒸気温度プロファイルが設計プロファイルから乖離すると、貫流ボイラを構成する各部材の予寿命に影響を及ぼすなど、貫流ボイラの信頼性や品質に影響を与えるおそれがある。 By the way, when operating a once-through boiler, the heat balance of the once-through boiler may change due to various factors, and the steam temperature profile may deviate from the design temperature profile. For example, if the heat transfer surface of the steam flow path becomes dirty with age, the detected value of the steam temperature in the steam flow path may decrease, or the superheat performance by the superheater may decrease. Further, by changing the type of fuel input to the furnace water cooling wall, heat transfer by the furnace water cooling wall or the superheater may increase. If the steam temperature profile deviates from the design profile in this way, the reliability and quality of the once-through boiler may be affected, such as affecting the pre-life of each member constituting the once-through boiler.
 本開示の幾つかの態様は上述の事情に鑑みなされたものであり、貫流ボイラの熱収支条件が変化することに伴って、蒸気温度プロファイルバランスが設計温度プロファイルから乖離することを抑制可能な貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法を提供することを目的とする。 Some aspects of the present disclosure have been made in view of the above circumstances, and a once-through flow capable of suppressing deviation of the steam temperature profile balance from the design temperature profile as the heat balance conditions of the once-through boiler change. It is an object of the present invention to provide a boiler control device, a power plant, and a method for controlling a once-through boiler.
 本開示の幾つかの態様に係る貫流ボイラの制御装置は、上記課題を解決するために、
 直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御装置であって、
 前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御可能に構成されたスプレイ制御部と、
 前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側における蒸気温度を検出可能に構成された蒸気温度検出部と、
を備え、
 前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定されるように構成される。
The once-through boiler control device according to some aspects of the present disclosure is used to solve the above problems.
The furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters. It is a control device for a once-through boiler that can adjust the temperature of steam generated by the superheater.
A spray control unit configured to be able to control the amount of heat reduction of the steam by at least a part of the plurality of sprays to be a target amount of heat reduction
Among the steam flow paths provided with the plurality of superheaters, a steam temperature detection unit configured to be able to detect the steam temperature on the upstream side of the spray position of the spray controlled by the spray control unit.
With
The target temperature reduction amount is configured to be set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount. Will be done.
 本開示の幾つかの態様に係る発電プラントは、上記課題を解決するために、
 前記貫流ボイラと、
 本開示の幾つかの態様に係る制御装置と、
 前記貫流ボイラからの蒸気を用いて駆動可能に構成されたタービンと、
 前記タービンによって駆動可能に構成された発電機と、
を備える。
The power plant according to some aspects of the present disclosure is to solve the above problems.
With the once-through boiler,
Control devices according to some aspects of the present disclosure and
A turbine configured to be driveable using steam from the once-through boiler,
A generator configured to be driveable by the turbine,
To be equipped.
 本開示の幾つかの態様に係る貫流ボイラの制御方法は、上記課題を解決するために、
 直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御方法であって、
 前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御するスプレイ制御工程と、
 前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側における蒸気温度を検出する蒸気温度検出工程と、
を備え、
 前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定される。
The method for controlling a once-through boiler according to some aspects of the present disclosure is to solve the above problems.
The furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters. It is a control method of a once-through boiler that can adjust the temperature of steam generated by the superheater.
A spray control step of controlling the amount of heat reduction of the steam by at least a part of the plurality of sprays so as to be a target amount of heat reduction.
A steam temperature detection step of detecting the steam temperature on the upstream side of the spray position of the spray controlled by the spray control unit among the steam flow paths provided with the plurality of superheaters.
With
The target temperature reduction amount is set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount.
 本開示の幾つかの態様によれば、貫流ボイラの熱収支条件が変化することに伴って、蒸気温度プロファイルバランスが設計温度プロファイルから乖離することを抑制可能な貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法を提供できる。 According to some aspects of the present disclosure, a once-through boiler controller, power plant, capable of suppressing deviation of the steam temperature profile balance from the design temperature profile as the heat balance conditions of the once-through boiler change. Also, a method for controlling a once-through boiler can be provided.
本開示の一態様に係る発電プラントの全体構成を示す概略図である。It is the schematic which shows the whole structure of the power plant which concerns on one aspect of this disclosure. 図1の貫流ボイラの構成を蒸気温度プロファイルとともに示す概略構成図である。It is a schematic block diagram which shows the structure of the once-through boiler of FIG. 1 together with a steam temperature profile. 本開示の一態様に係る制御装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control device which concerns on one aspect of this disclosure. 図3の制御装置によって実施される貫流ボイラの制御方法を工程毎に示すフローチャートである。It is a flowchart which shows the control method of the once-through boiler carried out by the control device of FIG. 3 for each process. 図3の制御装置による蒸気温度プロファイルの推移を示す一例である。This is an example showing the transition of the steam temperature profile by the control device of FIG. 図3の制御装置による蒸気温度プロファイルの推移を示す一例である。This is an example showing the transition of the steam temperature profile by the control device of FIG. 図3の制御装置による蒸気温度プロファイルの推移を示す一例である。This is an example showing the transition of the steam temperature profile by the control device of FIG. 図3の制御装置による蒸気温度プロファイルの推移を示す他の例である。It is another example which shows the transition of the steam temperature profile by the control device of FIG. 図3の制御装置による蒸気温度プロファイルの推移を示す他の例である。It is another example which shows the transition of the steam temperature profile by the control device of FIG. 図3の制御装置による蒸気温度プロファイルの推移を示す他の例である。It is another example which shows the transition of the steam temperature profile by the control device of FIG. 本開示の他の態様に係る制御装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control device which concerns on other aspects of this disclosure. 図7の制御装置によって実施される貫流ボイラの制御方法を工程毎に示すフローチャートである。It is a flowchart which shows the control method of the once-through boiler carried out by the control device of FIG. 7 for each process. 図7の制御装置による蒸気温度プロファイルの推移を示す一例である。This is an example showing the transition of the steam temperature profile by the control device of FIG. 7. 図7の制御装置による蒸気温度プロファイルの推移を示す一例である。This is an example showing the transition of the steam temperature profile by the control device of FIG. 7. 図7の制御装置による蒸気温度プロファイルの推移を示す一例である。This is an example showing the transition of the steam temperature profile by the control device of FIG. 7. 図7の制御装置による蒸気温度プロファイルの推移を示す他の例である。It is another example which shows the transition of the steam temperature profile by the control device of FIG. 図7の制御装置による蒸気温度プロファイルの推移を示す他の例である。It is another example which shows the transition of the steam temperature profile by the control device of FIG. 図7の制御装置による蒸気温度プロファイルの推移を示す他の例である。It is another example which shows the transition of the steam temperature profile by the control device of FIG.
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the following embodiments are not intended to limit the scope of the present invention to that alone, but are merely explanatory examples.
<発電プラント>
 図1は本開示の一態様に係る発電プラント100の全体構成を示す概略図である。発電プラント100は、蒸気を生成可能な貫流ボイラ1と、貫流ボイラ1からの蒸気を用いて駆動可能に構成されたタービン110と、タービン110によって駆動可能に構成された発電機120と、を備える。
<Power plant>
FIG. 1 is a schematic view showing an overall configuration of a power plant 100 according to one aspect of the present disclosure. The power plant 100 includes a once-through boiler 1 capable of generating steam, a turbine 110 configured to be driveable using steam from the once-through boiler 1, and a generator 120 configured to be driveable by the turbine 110. ..
 貫流ボイラ1は、燃料を燃焼させることで蒸気を生成可能に構成された蒸気発生器の一例である。貫流ボイラ1で生成された蒸気は、蒸気供給路112を介してタービン110に供給される。タービン110は、蒸気供給路112を介して供給された蒸気によって駆動される。タービン110の出力軸には発電機120が連結されており、タービン110の回転エネルギが電気エネルギに変換される。発電機120で発生された電気エネルギは、所定の経路を介して電力系統(不図示)に供給される。 The once-through boiler 1 is an example of a steam generator configured to be able to generate steam by burning fuel. The steam generated in the once-through boiler 1 is supplied to the turbine 110 via the steam supply path 112. The turbine 110 is driven by steam supplied through the steam supply path 112. A generator 120 is connected to the output shaft of the turbine 110, and the rotational energy of the turbine 110 is converted into electrical energy. The electric energy generated by the generator 120 is supplied to the electric power system (not shown) via a predetermined path.
 蒸気供給路112には、貫流ボイラ1からタービン110に供給される蒸気の流量を調整するための蒸気弁114(主蒸気弁)が設置される。蒸気弁114の開度は、例えば、貫流ボイラ1からタービン110に供給される蒸気流量が、発電プラント100に対する負荷指令値Ldに基づいて設定される所定の目標流量値になるように制御される。 A steam valve 114 (main steam valve) for adjusting the flow rate of steam supplied from the once-through boiler 1 to the turbine 110 is installed in the steam supply path 112. The opening degree of the steam valve 114 is controlled so that, for example, the steam flow rate supplied from the once-through boiler 1 to the turbine 110 becomes a predetermined target flow rate value set based on the load command value Ld for the power plant 100. ..
 発電プラント100は、発電プラント100の各構成要素を制御するための制御装置2を有する。制御装置2は、例えばコンピュータのような電子演算装置からなるハードウェア構成を有し、本開示の幾つかの態様に係る制御方法を実施するためのプログラムがインストールされることで、本開示の幾つかの態様に係る制御装置として機能可能に構成される。 The power plant 100 has a control device 2 for controlling each component of the power plant 100. The control device 2 has a hardware configuration including an electronic arithmetic unit such as a computer, and by installing a program for implementing the control method according to some aspects of the present disclosure, the number of the present disclosure is increased. It is configured to be functional as a control device according to the above aspect.
 制御装置2は、発電プラント100を総合的に制御可能な制御ユニットである。本明細書では、制御装置2が実施可能な様々な制御のうち貫流ボイラ1に関する制御について具体的に説明することとし、その他の制御については、特段の記載がない限りにおいて、発電プラント100に関する公知の制御を適宜実施可能である。 The control device 2 is a control unit capable of comprehensively controlling the power plant 100. In the present specification, among various controls that can be performed by the control device 2, the control related to the once-through boiler 1 will be specifically described, and the other controls are publicly known regarding the power plant 100 unless otherwise specified. Can be controlled as appropriate.
 制御装置2による蒸気温度制御は、タービン110に供給される蒸気温度(後述の第3蒸気温度T3SO)が予め設定される目標蒸気温度(後述の第3目標蒸気温度T3SOtarget)になるように行われる。この目標蒸気温度(後述の第3目標蒸気温度T3SOtarget)は、オペレータによってマニュアル的に設定されてもよいし、制御装置2が受信する所定の信号に基づいて自動的に設定されてもよい。後者の場合、目標蒸気温度(後述の第3目標蒸気温度T3SOtarget)は、例えば発電プラント100の電力供給先である電力系統の需給状態に応じて発電プラント100が取得する負荷指令値Ldに応じて設定される。 The steam temperature control by the control device 2 is performed so that the steam temperature supplied to the turbine 110 (the third steam temperature T3SO described later) becomes a preset target steam temperature (the third target steam temperature T3SO target described later). .. This target steam temperature (third target steam temperature T3SOtaget described later) may be set manually by the operator, or may be automatically set based on a predetermined signal received by the control device 2. In the latter case, the target steam temperature (the third target steam temperature T3SOtaget described later) is, for example, according to the load command value Ld acquired by the power plant 100 according to the supply and demand state of the power system to which the power is supplied to the power plant 100. Set.
<貫流ボイラの構成>
 続いて上記構成を有する発電プラント100が有する貫流ボイラ1の具体的構成について図2を参照して説明する。図2は図1の貫流ボイラ1の構成を蒸気温度プロファイルとともに示す概略構成図である。
<Composition of once-through boiler>
Subsequently, a specific configuration of the once-through boiler 1 included in the power plant 100 having the above configuration will be described with reference to FIG. FIG. 2 is a schematic configuration diagram showing the configuration of the once-through boiler 1 of FIG. 1 together with a steam temperature profile.
 貫流ボイラ1は、蒸気を生成可能な火炉水冷壁4(Water Wall)を有する。火炉水冷壁4は、その内部に冷却水が導入可能な伝熱管を有し、燃料(例えば石炭を粉砕して生成された微粉炭)を燃焼させることで伝熱管を流れる冷却水を加熱することで蒸気を生成可能に構成される。火炉水冷壁4への水及び燃料の供給は、例えば、不図示の給水ポンプユニットや燃料供給ユニットによって行われる。火炉水冷壁4への燃料流量は例えば発電プラント100に対する負荷指令値Ldに応じて基本的に決定されるが、実際に生成される蒸気温度と目標蒸気温度との偏差に応じて、燃料流量を補正するための補正信号である水燃比は、後述するように、制御装置2の制御パラメータの一つとして制御される。 The once-through boiler 1 has a furnace water cooling wall 4 (Water Wall) capable of generating steam. The furnace water cooling wall 4 has a heat transfer tube into which cooling water can be introduced, and heats the cooling water flowing through the heat transfer tube by burning fuel (for example, pulverized coal produced by crushing coal). Is configured to be able to generate steam. Water and fuel are supplied to the furnace water cooling wall 4 by, for example, a water supply pump unit or a fuel supply unit (not shown). The fuel flow rate to the reactor water cooling wall 4 is basically determined according to, for example, the load command value Ld for the power plant 100, but the fuel flow rate is determined according to the deviation between the actually generated steam temperature and the target steam temperature. The water-fuel ratio, which is a correction signal for correction, is controlled as one of the control parameters of the control device 2, as will be described later.
 火炉水冷壁4の下流側には、火炉水冷壁4で生成された蒸気を過熱するための複数の過熱器6が設けられる。複数の過熱器6は、火炉水冷壁4からの蒸気が流れる蒸気流路8に対して互いに直列に設けられる。図2に示す態様では、複数の過熱器6は、第1過熱器6aと、第2過熱器6bと、第3過熱器6cと、を含む。第1過熱器6aは、火炉水冷壁4の下流側に配置されることで、火炉水冷壁4で生成された蒸気を過熱可能に構成される。第2過熱器6bは、第1過熱器6aの下流側に配置されることで、第1過熱器6aで過熱された蒸気を更に過熱可能に構成される。第3過熱器6cは、第2過熱器6bの下流側に配置されることで、第2過熱器6bで過熱された蒸気を更に過熱可能に構成される。 On the downstream side of the furnace water cooling wall 4, a plurality of superheaters 6 for superheating the steam generated by the furnace water cooling wall 4 are provided. The plurality of superheaters 6 are provided in series with each other with respect to the steam flow path 8 through which steam flows from the furnace water cooling wall 4. In the embodiment shown in FIG. 2, the plurality of superheaters 6 include a first superheater 6a, a second superheater 6b, and a third superheater 6c. By arranging the first superheater 6a on the downstream side of the furnace water cooling wall 4, the steam generated by the furnace water cooling wall 4 can be superheated. By arranging the second superheater 6b on the downstream side of the first superheater 6a, the steam superheated by the first superheater 6a can be further superheated. By arranging the third superheater 6c on the downstream side of the second superheater 6b, the steam superheated by the second superheater 6b can be further superheated.
 尚、図2では、貫流ボイラ1が3つの過熱器6を備える場合を例示しているが、貫流ボイラ1が備える過熱器6の数はこれに限定されない。 Note that FIG. 2 illustrates a case where the once-through boiler 1 includes three superheaters 6, but the number of superheaters 6 provided by the once-through boiler 1 is not limited to this.
 蒸気流路8には、蒸気流路8を流れる蒸気に対して冷却水をスプレイ可能に構成された複数のスプレイ10が設けられる。図2の態様では、複数のスプレイ10は、蒸気流路8のうち第1過熱器6aの出口側(第1過熱器6aと第2過熱器6bとの間)に設けられた第1スプレイ10aと、第2過熱器6bの出口側(第2過熱器6bと第3過熱器6cとの間)に設けられた第2スプレイ10bと、を含む。第1スプレイ10aは、第1過熱器6aからの蒸気に対して冷却水をスプレイすることにより、第1過熱器6aによって昇温された蒸気を減温して蒸気温度の調整を行う。第2スプレイ10bは、第2過熱器6bからの蒸気に対して冷却水をスプレイすることにより、第2過熱器6bによって昇温された蒸気を減温して蒸気温度の調整を行う。 The steam flow path 8 is provided with a plurality of sprays 10 configured so that cooling water can be sprayed on the steam flowing through the steam flow path 8. In the aspect of FIG. 2, the plurality of sprays 10 are provided on the outlet side of the first superheater 6a (between the first superheater 6a and the second superheater 6b) in the steam flow path 8 of the first superheater 6a. And a second spray 10b provided on the outlet side of the second superheater 6b (between the second superheater 6b and the third superheater 6c). The first spray 10a adjusts the steam temperature by spraying cooling water on the steam from the first superheater 6a to reduce the temperature of the steam heated by the first superheater 6a. The second spray 10b adjusts the steam temperature by spraying cooling water on the steam from the second superheater 6b to reduce the temperature of the steam raised by the second superheater 6b.
 複数のスプレイ10は、火炉水冷壁4に対する給水の一部を、蒸気流路8に対してスプレイ可能に構成される。具体的には、火炉水冷壁4に対する給水のメイン給水路12には、スプレイ10側に分岐するサブ給水路14が設けられる。サブ給水路14は、複数のスプレイ10の各々に対して給水を並列に供給可能に構成される。このように複数のスプレイ10では、火炉水冷壁4に供給される給水の一部をスプレイするため、スプレイ10でのスプレイ量が増加すると火炉水冷壁4に対する給水量が減少し、逆に、スプレイ10でのスプレイ量が減少すると火炉水冷壁4に対する給水量が増加する。 The plurality of sprays 10 are configured so that a part of the water supply to the furnace water cooling wall 4 can be sprayed to the steam flow path 8. Specifically, the main water supply channel 12 for water supply to the fireplace water cooling wall 4 is provided with a sub water supply channel 14 that branches to the spray 10 side. The sub water supply channel 14 is configured to be able to supply water in parallel to each of the plurality of sprays 10. In this way, in the plurality of sprays 10, a part of the water supply supplied to the furnace water cooling wall 4 is sprayed. Therefore, when the spray amount in the spray 10 increases, the water supply amount to the furnace water cooling wall 4 decreases, and conversely, the spray. When the amount of spray at 10 decreases, the amount of water supplied to the furnace water cooling wall 4 increases.
 第1スプレイ10a及び第2スプレイ10bは、それぞれスプレイ量を可変に調整するために開閉可能な第1スプレイ弁16a、第2スプレイ弁16bを有する。第1スプレイ弁16a、第2スプレイ弁16bの開度は、制御装置2からの制御信号に基づいて、互いに独立に制御可能に構成される。 The first spray 10a and the second spray 10b each have a first spray valve 16a and a second spray valve 16b that can be opened and closed to variably adjust the spray amount. The opening degree of the first spray valve 16a and the second spray valve 16b can be controlled independently of each other based on the control signal from the control device 2.
 尚、図2では、貫流ボイラ1が2つのスプレイ10を備える場合を例示しているが、貫流ボイラ1が備えるスプレイ10の数はこれに限定されない。スプレイ10の数は、例えば、最下流側の過熱器6を除く他の過熱器6の出口側にそれぞれ配置されるように設定されるとよい。 Note that FIG. 2 illustrates a case where the once-through boiler 1 includes two sprays 10, but the number of sprays 10 provided by the once-through boiler 1 is not limited to this. The number of sprays 10 may be set so as to be arranged on the outlet side of each of the superheaters 6 other than the superheater 6 on the most downstream side, for example.
 火炉水冷壁4で生成された蒸気は、複数の過熱器6及び複数のスプレイ10によって温度が調整されることで、貫流ボイラ1からタービン110に供給される蒸気温度が目標蒸気温度になるように制御される。図2に示すように、火炉水冷壁4からの蒸気は、まず第1過熱器6aを通過することで第1蒸気温度T1SOまで昇温される。第1過熱器6aを通過した蒸気は、第1過熱器6aの出口側において第1スプレイ10aによって第1減温量1DSDT分が冷却される。そして第1スプレイ10aによって冷却された蒸気は、第2過熱器6bを通過することで第2蒸気温度T2SOまで昇温される。第2過熱器6bを通過した蒸気は、第2過熱器6bの出口側において第2スプレイ10bによって第2減温量2DSDT分が冷却される。そして第2スプレイ10bによって冷却された蒸気は、第3過熱器6cを通過することで、貫流ボイラ1の最終的な出口温度である第3蒸気温度T3SOまで昇温される。 The temperature of the steam generated in the furnace water cooling wall 4 is adjusted by the plurality of superheaters 6 and the plurality of sprays 10 so that the steam temperature supplied from the once-through boiler 1 to the turbine 110 becomes the target steam temperature. Be controlled. As shown in FIG. 2, the steam from the furnace water cooling wall 4 first passes through the first superheater 6a and is heated to the first steam temperature T1SO. The steam that has passed through the first superheater 6a is cooled by the first spray 10a on the outlet side of the first superheater 6a for the first heat reduction amount of 1 DSDT. Then, the steam cooled by the first spray 10a is heated to the second steam temperature T2SO by passing through the second superheater 6b. The steam that has passed through the second superheater 6b is cooled by the second spray 10b on the outlet side of the second superheater 6b for a second heat reduction amount of 2DSDT. Then, the steam cooled by the second spray 10b passes through the third superheater 6c and is heated to the third steam temperature T3SO, which is the final outlet temperature of the once-through boiler 1.
 このような図2に示される蒸気温度プロファイルは、基本的には、制御装置2によって貫流ボイラ1の各構成要素(火炉水冷壁4、複数の過熱器6及び複数のスプレイ10)を制御することにより、理想的な設計温度プロファイルPrになるように制御される(図2では、蒸気温度プロファイルが設計温度プロファイルPrに一致している状態を示している)。具体的には、制御装置2は貫流ボイラ1の所定の測定点に設けられた温度センサの検出値が、設計温度プロファイルPrに近づくように貫流ボイラ1の各構成要素を制御することで、蒸気温度プロファイルが設計温度プロファイルになるように管理される。 Such a steam temperature profile shown in FIG. 2 basically controls each component of the once-through boiler 1 (a furnace water cooling wall 4, a plurality of superheaters 6, and a plurality of sprays 10) by a control device 2. Is controlled so as to have an ideal design temperature profile Pr (in FIG. 2, the state in which the steam temperature profile matches the design temperature profile Pr is shown). Specifically, the control device 2 controls each component of the once-through boiler 1 so that the detection value of the temperature sensor provided at a predetermined measurement point of the once-through boiler 1 approaches the design temperature profile Pr, thereby steam. The temperature profile is managed to be the design temperature profile.
 しかしながら実際の貫流ボイラ1では、様々な要因によって貫流ボイラ1における熱収支バランスが変化し、蒸気温度プロファイルが設計温度プロファイルPrから乖離してしまうことがある。例えば、経年に伴って貫流ボイラ1内の各伝熱面にスケール等の汚れが生じると、貫流ボイラ1の所定の測定点に設けられた温度センサの検出値が低下したり、第1過熱器6a~第3過熱器6cによる過熱性能が低下することがある。また火炉水冷壁4に投入される燃料の種類が変更されることで、火炉水冷壁4や第1過熱器6a~第3過熱器6cによる伝熱量が増減することがある。本開示の幾つかの実施形態では、このように蒸気温度プロファイルが設計温度プロファイルPrから乖離した場合に、以下に説明するように、制御装置2によって蒸気温度プロファイルが設計温度プロファイルPrに近づくように貫流ボイラ1が制御される。 However, in the actual once-through boiler 1, the heat balance balance in the once-through boiler 1 may change due to various factors, and the steam temperature profile may deviate from the design temperature profile Pr. For example, if each heat transfer surface in the once-through boiler 1 becomes dirty such as scale with aging, the detection value of the temperature sensor provided at a predetermined measurement point of the once-through boiler 1 may decrease, or the first superheater may be used. The superheat performance by the 6a to 3rd superheater 6c may be deteriorated. Further, by changing the type of fuel charged into the furnace water cooling wall 4, the amount of heat transferred by the furnace water cooling wall 4 and the first superheater 6a to the third superheater 6c may increase or decrease. In some embodiments of the present disclosure, when the steam temperature profile deviates from the design temperature profile Pr in this way, the control device 2 causes the steam temperature profile to approach the design temperature profile Pr, as described below. The once-through boiler 1 is controlled.
 尚、蒸気流路8は各位置における蒸気温度が検出可能に構成されている。具体的には図2に示すように、第1過熱器6aの出口側における蒸気温度T1SO、第2過熱器6bの出口側における蒸気温度第2T2SO、第3過熱器6cの出口側における蒸気温度T3SO、第1スプレイ10aによる冷却後の蒸気温度T2SI、第2スプレイ10bによる冷却後の蒸気温度T3SIがそれぞれ検出可能に構成されている。これらの各温度は、例えば温度センサなどの検出用素子が配置されることで検出される。 The steam flow path 8 is configured so that the steam temperature at each position can be detected. Specifically, as shown in FIG. 2, the steam temperature T1SO on the outlet side of the first superheater 6a, the steam temperature 2T2SO on the outlet side of the second superheater 6b, and the steam temperature T3SO on the outlet side of the third superheater 6c. , The steam temperature T2SI after cooling by the first spray 10a and the steam temperature T3SI after cooling by the second spray 10b are each detectable. Each of these temperatures is detected by arranging a detection element such as a temperature sensor.
 図3は本開示の一態様に係る制御装置2の内部構成を示すブロック図であり、図4は図3の制御装置2によって実施される貫流ボイラ1の制御方法を工程毎に示すフローチャートである。 FIG. 3 is a block diagram showing an internal configuration of the control device 2 according to one aspect of the present disclosure, and FIG. 4 is a flowchart showing a control method of the once-through boiler 1 implemented by the control device 2 of FIG. 3 for each process. ..
 図3に示すように、本態様に係る制御装置2は、火炉水冷壁4の水燃比を制御するための水燃比制御部50と、スプレイ10(第1スプレイ10a及び第2スプレイ10b)を制御するためのスプレイ制御部60と、スプレイ10の目標減温量に対するバイアス値を算出するためのバイアス値算出部70と、を備える。スプレイ制御部60は、第1スプレイ10aを制御するための第1スプレイ制御部60aと、第2スプレイ10bを制御するための第2スプレイ制御部60bと、を含む。 As shown in FIG. 3, the control device 2 according to this embodiment controls the water fuel ratio control unit 50 for controlling the water fuel ratio of the furnace water cooling wall 4 and the spray 10 (first spray 10a and second spray 10b). A spray control unit 60 for calculating the bias value and a bias value calculation unit 70 for calculating a bias value with respect to the target temperature reduction amount of the spray 10 are provided. The spray control unit 60 includes a first spray control unit 60a for controlling the first spray 10a and a second spray control unit 60b for controlling the second spray 10b.
 水燃比制御部50は、貫流ボイラ1の最終的な蒸気温度である第3蒸気温度T3SOが、予め設定された第3目標蒸気温度T3SOtargetになるように、燃料流量補正として水燃比を制御する。具体的には、水燃比制御部50には、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第3過熱器6cより下流側での蒸気温度検出値)である第3蒸気温度T3SOと、予め設定された第3目標蒸気温度T3SOtargetとが入力される。水燃比制御部50は、第3蒸気温度T3SOと第3目標蒸気温度T3SOtargetとの偏差ΔT3SOを算出し、当該偏差ΔT3SOがゼロになるように(すなわち第3蒸気温度T3SOが第3目標蒸気温度T3SOtargetになるように)水燃比制御信号を燃料流量補正として出力することにより、水燃比をフィードバック制御する。 The water-fuel ratio control unit 50 controls the water-fuel ratio as a fuel flow correction so that the third steam temperature T3SO, which is the final steam temperature of the once-through boiler 1, becomes the preset third target steam temperature T3SO target. Specifically, the water-fuel ratio control unit 50 uses an actually measured value (for example, a steam temperature detected value on the downstream side of the third superheater 6c in the steam flow path 8) detected at a corresponding location of the once-through boiler 1. A certain third steam temperature T3SO and a preset third target steam temperature T3SO target are input. The water fuel ratio control unit 50 calculates the deviation ΔT3SO between the third steam temperature T3SO and the third target steam temperature T3SO target so that the deviation ΔT3SO becomes zero (that is, the third steam temperature T3SO is the third target steam temperature T3SO target). By outputting the water-fuel ratio control signal as fuel flow rate correction, the water-fuel ratio is feedback-controlled.
 尚、第3目標蒸気温度T3SOtargetは、負荷指令値Ldに応じて貫流ボイラ1に対して要求される蒸気温度値として設定されてもよい。 The third target steam temperature T3SOtaget may be set as the steam temperature value required for the once-through boiler 1 according to the load command value Ld.
 第2スプレイ制御部60bは、第3蒸気温度T3SOが第3目標蒸気温度T3SOtargetになるとともに、第2減温量2DSDTが第2目標減温量2DSDTtargetになるように第2スプレイ10bを制御する。具体的には、第2スプレイ制御部60bには、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第3過熱器6cより下流側での蒸気温度検出値)である第3蒸気温度T3SOと、予め設定された第3目標蒸気温度T3SOtargetと、貫流ボイラ1の対応箇所でセンサ検出された実測値(例えば、第2過熱器6bと第3過熱器6cとの間の蒸気流路8のうち第2スプレイ10bによるスプレイ位置の上流側及び下流側でそれぞれ検出された蒸気温度検出値の差)である第2減温量2DSDTと、予め設定された第2目標減温量2DSDTtargetと、が入力される。第2スプレイ制御部60bは、第3蒸気温度T3SOが目標蒸気温度T3SOtargetになるとともに、第2スプレイ10bによる減温量2DSDTが目標減温量2DSDTtargetになるように、第2スプレイ弁16bの開度指令値(第2スプレイ弁開度信号)を出力することにより、第2スプレイ10bをフィードバック制御する。 The second spray control unit 60b controls the second spray 10b so that the third steam temperature T3SO becomes the third target steam temperature T3SO target and the second heat reduction amount 2DSDT becomes the second target heat reduction amount 2DSDT target. Specifically, in the second spray control unit 60b, the actually measured value detected at the corresponding portion of the once-through boiler 1 (for example, the steam temperature detected value on the downstream side of the third superheater 6c in the steam flow path 8). The third steam temperature T3SO, the preset third target steam temperature T3SO target, and the measured values (for example, the second superheater 6b and the third superheater 6c) detected by the sensor at the corresponding points of the once-through boiler 1. The second heat reduction amount 2DSDT, which is the difference between the steam temperature detection values detected on the upstream side and the downstream side of the spray position by the second spray 10b in the steam flow path 8 between them, and the preset second target. The amount of heat reduction 2DSDTtaget is input. In the second spray control unit 60b, the opening degree of the second spray valve 16b is such that the third steam temperature T3SO becomes the target steam temperature T3SO target and the temperature reduction amount 2DSDT by the second spray 10b becomes the target temperature reduction amount 2DSDT target. By outputting the command value (second spray valve opening signal), the second spray 10b is feedback-controlled.
 尚、第2減温量目標値2DSDTtargetは、負荷指令値Ldに応じて設定される。 The second temperature reduction target value 2DSDTtaget is set according to the load command value Ld.
 第1スプレイ制御部60aは、温度検出値T2S0及び目標温度T2SOtargetに基づいて、第1スプレイ弁16aの開度指令値(第1スプレイ弁開度信号)を出力することで、第1スプレイ10aのフィードバック制御を行う。つまり第1スプレイ制御部60aは、第2過熱器6bの出口側における蒸気温度が所定の目標値になるように第1スプレイ弁16aの開度信号を決定する。 The first spray control unit 60a outputs the opening command value (first spray valve opening signal) of the first spray valve 16a based on the temperature detection value T2S0 and the target temperature T2SOtaget, so that the first spray 10a Perform feedback control. That is, the first spray control unit 60a determines the opening signal of the first spray valve 16a so that the steam temperature on the outlet side of the second superheater 6b becomes a predetermined target value.
 バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち、スプレイ制御部60によって減温量が制御されるスプレイ10(本態様では、第2スプレイ制御部60bによって減温量2DSDTが制御される第2スプレイ10b)のスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0に基づいて、第2目標減温量2DSDTに対するバイアス値αを算出する。
 尚、バイアス値算出部70は、例えば偏差ΔT0を積分制御して、その出力をバイアス値αとして算出する。
The bias value calculation unit 70 is a spray 10 whose temperature reduction amount is controlled by the spray control unit 60 among the steam flow paths 8 provided with the first superheater 6a to the third superheater 6c (in this embodiment, the second). The second target reduction is based on the deviation ΔT0 between the steam temperature T0 on the upstream side of the spray position of the second spray 10b) whose temperature reduction amount 2DSDT is controlled by the spray control unit 60b and the preset target steam temperature T0 target. The bias value α with respect to the temperature amount 2DSDT is calculated.
The bias value calculation unit 70 integrates and controls, for example, the deviation ΔT0, and calculates the output as the bias value α.
 尚、蒸気温度T0は、第2スプレイ制御部60bによって減温量2DSDTが制御される第2スプレイ10bのスプレイ位置より上流側に設置された蒸気温度検出部72によって検出される。図5A~図5C、図6A~図6Cに示す態様では、蒸気温度検出部72の一例として、蒸気流路8のうち火炉水冷壁4と第1過熱器6aとの間における蒸気温度T0が検出可能に構成されている。 The steam temperature T0 is detected by the steam temperature detection unit 72 installed on the upstream side of the spray position of the second spray 10b whose temperature reduction amount 2DSDT is controlled by the second spray control unit 60b. In the embodiments shown in FIGS. 5A to 5C and 6A to 6C, as an example of the steam temperature detecting unit 72, the steam temperature T0 between the furnace water cooling wall 4 and the first superheater 6a in the steam flow path 8 is detected. It is configured to be possible.
 尚、目標蒸気温度T0targetは、負荷指令値Ldに応じて蒸気温度検出部72に対応する位置における蒸気温度T0として設定される。 The target steam temperature T0 target is set as the steam temperature T0 at the position corresponding to the steam temperature detection unit 72 according to the load command value Ld.
 このような構成を有する制御装置2は、図4に示す制御を実施する。まず制御装置2は、蒸気流路8のうち例えば火炉水冷壁4の出口における蒸気温度を検出し(ステップS100)、蒸気温度プロファイルが設計温度プロファイルPrから乖離しているか否かを判定する(ステップS101)。 The control device 2 having such a configuration performs the control shown in FIG. First, the control device 2 detects the steam temperature at, for example, the outlet of the furnace water cooling wall 4 in the steam flow path 8 (step S100), and determines whether or not the steam temperature profile deviates from the design temperature profile Pr (step). S101).
 そして蒸気温度プロファイルが設計温度プロファイルPrから乖離していると判定された場合(ステップS101:YES)、バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち第2スプレイ10bのスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0を算出し(ステップS102)、当該偏差T0に基づいてバイアス値αを算出する(ステップS103)。 When it is determined that the steam temperature profile deviates from the design temperature profile Pr (step S101: YES), the bias value calculation unit 70 determines the steam flow provided with the first superheater 6a to the third superheater 6c. The deviation ΔT0 between the steam temperature T0 on the upstream side of the spray position of the second spray 10b in the road 8 and the preset target steam temperature T0 target is calculated (step S102), and the bias value α is calculated based on the deviation T0. Calculate (step S103).
 ここでバイアス値αの符号は、蒸気温度T0と目標蒸気温度T0targetとの大小関係に基づいて設定される。具体的には、蒸気温度T0が目標蒸気温度T0targetより低い場合、バイアス値の符号は正に設定される。逆に蒸気温度T0が目標蒸気温度T0targetより高い場合、バイアス値の符号は負に設定される。またバイアス値の絶対値は、偏差ΔT0に対して増加するように設定される。 Here, the sign of the bias value α is set based on the magnitude relationship between the steam temperature T0 and the target steam temperature T0 target. Specifically, when the steam temperature T0 is lower than the target steam temperature T0 target, the sign of the bias value is set to positive. On the contrary, when the steam temperature T0 is higher than the target steam temperature T0 target, the sign of the bias value is set to negative. Further, the absolute value of the bias value is set so as to increase with respect to the deviation ΔT0.
 続いてスプレイ制御部60は、ステップS103で設定されたバイアス値αを第2目標減温量2DSDTtargetに加算し(ステップS104)、第2スプレイ10bによる第2減温量2DSDTが、バイアス値αが加算された第2目標減温量2DSDTtargetになるように第2スプレイ10bを制御する(ステップS105)。このように減温量が目標減温量になるように制御されるスプレイ弁の目標減温量に対してバイアス値αを加算することで、貫流ボイラ1の蒸気温度プロファイルを設計温度プロファイルPrに近づけることができる。 Subsequently, the spray control unit 60 adds the bias value α set in step S103 to the second target heat reduction amount 2DSDTtaget (step S104), and the second heat reduction amount 2DSDT by the second spray 10b has a bias value α. The second spray 10b is controlled so as to have the added second target temperature reduction amount of 2DSDTtaget (step S105). By adding the bias value α to the target temperature reduction amount of the spray valve controlled so that the temperature reduction amount becomes the target temperature reduction amount in this way, the steam temperature profile of the once-through boiler 1 becomes the design temperature profile Pr. You can get closer.
 ここで上記制御による蒸気温度プロファイルの推移について、より具体的に説明する。図5A~図5Cは図3の制御装置2による蒸気温度プロファイルの推移を示す一例である。この例では図5Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより低温側に乖離している。このような要因として、例えば、経年に伴って蒸気流路8の伝熱面にスケール等の汚れが生じて、蒸気流路8における蒸気温度の検出値が低下したり、第1過熱器6a~第3過熱器6cによる過熱性能が低下したり、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。 Here, the transition of the steam temperature profile by the above control will be described more specifically. 5A to 5C are examples showing the transition of the steam temperature profile by the control device 2 of FIG. In this example, as shown in FIG. 5A, the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the lower temperature side for some reason. As such a factor, for example, the heat transfer surface of the steam flow path 8 becomes dirty such as scale with aging, the detected value of the steam temperature in the steam flow path 8 decreases, or the first superheater 6a to The superheat performance of the third superheater 6c has deteriorated, and the type of fuel charged into the steam furnace water cooling wall 4 has been changed.
 この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより低温側に乖離しているため、図5Bに示すように、第2減温量目標値2DSDTtargetに対して正の符号を有するバイアス値αが加算される。これにより、スプレイ10側への給水量が増加するとともに、火炉水冷壁4への給水量が減少する。その結果、図5Cに示すように、蒸気温度プロファイルは全体的に高温側にシフトし、設計温度プロファイルPrに近づくように制御される。 In this case, since the steam temperature profile of the once-through boiler 1 deviates to the lower temperature side than the design temperature profile Pr, as shown in FIG. 5B, a bias value having a positive sign with respect to the second temperature reduction target value 2DSDTtaget. α is added. As a result, the amount of water supplied to the spray 10 side increases, and the amount of water supplied to the furnace water cooling wall 4 decreases. As a result, as shown in FIG. 5C, the steam temperature profile is generally shifted to the higher temperature side and controlled to approach the design temperature profile Pr.
 また図6A~図6Cは図3の制御装置2による蒸気温度プロファイルの推移を示す他の例である。この例では図6Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより高温側に乖離している。このような要因として、例えば、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。 6A to 6C are other examples showing the transition of the steam temperature profile by the control device 2 of FIG. In this example, as shown in FIG. 6A, the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the higher temperature side due to some factor. As such a factor, for example, the type of fuel charged into the furnace water cooling wall 4 has been changed.
 この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより高温側に乖離しているため、図6Bに示すように、第2減温量目標値2DSDTtargetに対して負の符号を有するバイアス値αが加算される。これにより、スプレイ10側への給水量が減少するとともに、火炉水冷壁4への給水量が増加する。その結果、図6Cに示すように、蒸気温度プロファイルは全体的に低温側にシフトし、設計温度プロファイルPrに近づけられる。 In this case, since the steam temperature profile of the once-through boiler 1 deviates to the higher temperature side than the design temperature profile Pr, as shown in FIG. 6B, a bias value having a negative sign with respect to the second temperature reduction target value 2DSDTtaget. α is added. As a result, the amount of water supplied to the spray 10 side decreases, and the amount of water supplied to the furnace water cooling wall 4 increases. As a result, as shown in FIG. 6C, the steam temperature profile shifts to the low temperature side as a whole and approaches the design temperature profile Pr.
 図7は本開示の他の態様に係る制御装置2の内部構成を示すブロック図である。本態様に係る制御装置2は、水燃比を制御するための水燃比制御部50と、スプレイ10(第1スプレイ10a及び第2スプレイ10b)を制御するためのスプレイ制御部60と、目標減温量に対するバイアス値を算出するためのバイアス値算出部70と、を備える。スプレイ制御部60は、第1スプレイ10aを制御するための第1スプレイ制御部60aと、第2スプレイ10bを制御するための第2スプレイ制御部60bと、を含む。 FIG. 7 is a block diagram showing an internal configuration of the control device 2 according to another aspect of the present disclosure. The control device 2 according to this aspect includes a water fuel ratio control unit 50 for controlling the water fuel ratio, a spray control unit 60 for controlling the spray 10 (first spray 10a and second spray 10b), and a target temperature reduction. A bias value calculation unit 70 for calculating a bias value with respect to the quantity is provided. The spray control unit 60 includes a first spray control unit 60a for controlling the first spray 10a and a second spray control unit 60b for controlling the second spray 10b.
 水燃比制御部50は、第2蒸気温度T2SOが、予め設定された第2目標蒸気温度T2SOtargetになるように、水燃比を制御する。具体的には、水燃比制御部50には、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第2過熱器6bと第3過熱器6cとの間での蒸気温度検出値)である第2蒸気温度T2SOと、予め設定された第2目標蒸気温度T2SOtargetとが入力される。水燃比制御部50は、第2蒸気温度T2SOと第2目標蒸気温度T2SOtargetとの偏差ΔT2SOを算出し、当該偏差ΔT2SOがゼロになるように(すなわち第2蒸気温度T2SOが第2目標蒸気温度T2SOtargetになるように)水燃比制御信号を燃料流量補正として出力することにより、水燃比をフィードバック制御する。 The water-fuel ratio control unit 50 controls the water-fuel ratio so that the second steam temperature T2SO becomes the preset second target steam temperature T2SO target. Specifically, the water-fuel ratio control unit 50 has an actually measured value detected at a corresponding location of the once-through boiler 1 (for example, between the second superheater 6b and the third superheater 6c in the steam flow path 8). The second steam temperature T2SO, which is the steam temperature detection value), and the preset second target steam temperature T2SO target are input. The water fuel ratio control unit 50 calculates the deviation ΔT2SO between the second steam temperature T2SO and the second target steam temperature T2SO target so that the deviation ΔT2SO becomes zero (that is, the second steam temperature T2SO is the second target steam temperature T2SO target). By outputting the water-fuel ratio control signal as fuel flow rate correction, the water-fuel ratio is feedback-controlled.
 尚、第2目標蒸気温度T2SOtargetは、負荷指令値Ldに応じて設定される。 The second target steam temperature T2SOtaget is set according to the load command value Ld.
 第1スプレイ制御部60aは、第2蒸気温度T2SOが第2目標蒸気温度T2SOtargetになるとともに、第1減温量1DSDTが第1目標減温量1DSDTtargetになるように第1スプレイ10aを制御する。具体的には、第1スプレイ制御部60aには、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第2過熱器6bと第3過熱器6cとの間での蒸気温度検出値)である第2蒸気温度T2SOと、予め設定された第2目標蒸気温度T2SOtargetと、貫流ボイラ1の対応箇所でセンサ検出された実測値(例えば、第1過熱器6aと第2過熱器6bとの間の蒸気流路8のうち第1スプレイ10aによるスプレイ位置の上流側及び下流側でそれぞれ検出された蒸気温度検出値の差)である第1減温量1DSDTと、予め設定された第1目標減温量1DSDTtargetと、が入力される。第1スプレイ制御部60aは、第2蒸気温度T2SOが第2目標蒸気温度T2SOtargetになるとともに、第1スプレイ10aによる第1減温量1DSDTが第1目標減温量1DSDTtargetになるように、第1スプレイ弁16aの開度指令値(第1スプレイ弁開度信号)を出力することにより、第1スプレイ10aをフィードバック制御する。 The first spray control unit 60a controls the first spray 10a so that the second steam temperature T2SO becomes the second target steam temperature T2SO target and the first heat reduction amount 1DSDT becomes the first target heat reduction amount 1DSDTtaget. Specifically, in the first spray control unit 60a, an actually measured value detected at a corresponding location of the once-through boiler 1 (for example, between the second superheater 6b and the third superheater 6c in the steam flow path 8). The second steam temperature T2SO, which is the steam temperature detection value), the preset second target steam temperature T2SO target, and the measured values (for example, the first superheater 6a and the first superheater 6a) detected by the sensor at the corresponding points of the once-through boiler 1. 2 The difference between the steam temperature detection values detected on the upstream side and the downstream side of the spray position by the first spray 10a of the steam flow path 8 between the superheater 6b) and the first heat reduction amount 1DSDT in advance. The set first target heat reduction amount 1DSDTtaget and is input. The first spray control unit 60a has a first so that the second steam temperature T2SO becomes the second target steam temperature T2SO target and the first heat reduction amount 1DSDT by the first spray 10a becomes the first target heat reduction amount 1DSDT taget. The first spray 10a is feedback-controlled by outputting the opening command value (first spray valve opening signal) of the spray valve 16a.
 尚、第1目標減温量1DSDTtargetは、負荷指令値Ldに応じて設定される。 The first target temperature reduction amount of 1DSDTtaget is set according to the load command value Ld.
 第2スプレイ制御部60bは、第3蒸気温度T3SOが第3目標蒸気温度T3SOtargetになるように第2スプレイ弁16bの開度指令値(第2スプレイ弁開度信号)を出力することで、第2スプレイ10bのフィードバック制御を行う。 The second spray control unit 60b outputs an opening command value (second spray valve opening signal) of the second spray valve 16b so that the third steam temperature T3SO becomes the third target steam temperature T3SO target. 2 Feedback control of the spray 10b is performed.
 バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち、スプレイ制御部60によって減温量が制御されるスプレイ10(本態様では、第1スプレイ制御部60aによって第1減温量1DSDTが制御される第1スプレイ10a)のスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0に基づいて、第1目標減温量1DSDTに対するバイアス値αを算出する。 The bias value calculation unit 70 is a spray 10 (in this embodiment, the first) in which the amount of heat reduction is controlled by the spray control unit 60 among the steam flow paths 8 provided with the first superheater 6a to the third superheater 6c. The first is based on the deviation ΔT0 between the steam temperature T0 on the upstream side of the spray position of the first spray 10a) in which the first heat reduction amount 1DSDT is controlled by the spray control unit 60a and the preset target steam temperature T0 target. The bias value α with respect to the target temperature reduction amount 1DSDT is calculated.
 尚、蒸気温度T0は、第1スプレイ制御部60aによって第1減温量1DSDTが制御される第1スプレイ10aのスプレイ位置より上流側に設置された蒸気温度検出部72によって検出される。図9A~図9C、図10~図10Cを参照して後述する態様では、蒸気温度検出部72の一例として、蒸気流路8のうち火炉水冷壁4と第1過熱器6aとの間における蒸気温度T0が検出可能に構成されている。 The steam temperature T0 is detected by the steam temperature detection unit 72 installed on the upstream side of the spray position of the first spray 10a in which the first temperature reduction amount 1DSDT is controlled by the first spray control unit 60a. In the embodiment described later with reference to FIGS. 9A to 9C and FIGS. 10 to 10C, as an example of the steam temperature detection unit 72, steam between the furnace water cooling wall 4 and the first superheater 6a in the steam flow path 8 The temperature T0 is configured to be detectable.
 このような構成を有する制御装置2は、図8に示す制御を実施する。図8は図7の制御装置2によって実施される貫流ボイラ1の制御方法を工程毎に示すフローチャートである。 The control device 2 having such a configuration performs the control shown in FIG. FIG. 8 is a flowchart showing a control method of the once-through boiler 1 implemented by the control device 2 of FIG. 7 for each process.
 まず制御装置2は、蒸気流路8のうち例えば火炉水冷壁4の出口部における蒸気温度を検出し(ステップS200)、蒸気温度プロファイルが設計温度プロファイルPrから乖離しているか否かを判定する(ステップS201)。そして蒸気温度プロファイルが設計温度プロファイルPrから乖離していると判定された場合(ステップS201:YES)、バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち第1スプレイ10aのスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0を算出し(ステップS202)、当該偏差T0に基づいてバイアス値αを算出する(ステップS203)。 First, the control device 2 detects the steam temperature at, for example, the outlet of the furnace water cooling wall 4 in the steam flow path 8 (step S200), and determines whether or not the steam temperature profile deviates from the design temperature profile Pr (step S200). Step S201). When it is determined that the steam temperature profile deviates from the design temperature profile Pr (step S201: YES), the bias value calculation unit 70 determines the steam flow provided with the first superheater 6a to the third superheater 6c. The deviation ΔT0 between the steam temperature T0 on the upstream side of the spray position of the first spray 10a in the road 8 and the preset target steam temperature T0 target is calculated (step S202), and the bias value α is calculated based on the deviation T0. Calculate (step S203).
 ここでバイアス値αの符号は、蒸気温度T0と目標蒸気温度T0targetとの大小関係に基づいて設定される。具体的には、蒸気温度T0が目標蒸気温度T0targetより低い場合、バイアス値の符号は正に設定される。逆に蒸気温度T0が目標蒸気温度T0targetより高い場合、バイアス値の符号は負に設定される。またバイアス値の絶対値は、偏差ΔT0に対して増加するように設定される。 Here, the sign of the bias value α is set based on the magnitude relationship between the steam temperature T0 and the target steam temperature T0 target. Specifically, when the steam temperature T0 is lower than the target steam temperature T0 target, the sign of the bias value is set to positive. On the contrary, when the steam temperature T0 is higher than the target steam temperature T0 target, the sign of the bias value is set to negative. Further, the absolute value of the bias value is set so as to increase with respect to the deviation ΔT0.
 続いてスプレイ制御部60は、ステップS203で設定されたバイアス値αを第1目標減温量1DSDTtargetに加算し(ステップS204)、第1スプレイ10aによる第1減温量1DSDTが、バイアス値αが加算された第1目標減温量1DSDTtargetになるように第1スプレイ10aを制御する(ステップS205)。このように減温量が目標減温量になるように制御されるスプレイ弁の目標減温量に対してバイアス値αを加算することで、貫流ボイラ1の蒸気温度プロファイルを設計温度プロファイルPrに近づけることができる。 Subsequently, the spray control unit 60 adds the bias value α set in step S203 to the first target heat reduction amount 1DSDTtaget (step S204), and the first heat reduction amount 1DSDT by the first spray 10a has a bias value α. The first spray 10a is controlled so as to have the added first target temperature reduction amount of 1DSDTtaget (step S205). By adding the bias value α to the target temperature reduction amount of the spray valve controlled so that the temperature reduction amount becomes the target temperature reduction amount in this way, the steam temperature profile of the once-through boiler 1 becomes the design temperature profile Pr. You can get closer.
 ここで上記制御による蒸気温度プロファイルの推移について、より具体的に説明する。図9A~図9Cは図7の制御装置2による蒸気温度プロファイルの推移を示す一例である。この例では図9Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより低温側に乖離している。このような要因として、例えば、経年に伴って蒸気流路8の伝熱面にスケール等の汚れが生じて、蒸気流路8における蒸気温度の検出値が低下したり、第1過熱器6a~第3過熱器6cによる過熱性能が低下したり、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。 Here, the transition of the steam temperature profile by the above control will be described more specifically. 9A to 9C are examples showing the transition of the steam temperature profile by the control device 2 of FIG. 7. In this example, as shown in FIG. 9A, the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the lower temperature side for some reason. As such a factor, for example, the heat transfer surface of the steam flow path 8 becomes dirty such as scale with aging, the detected value of the steam temperature in the steam flow path 8 decreases, or the first superheater 6a to The superheat performance of the third superheater 6c has deteriorated, and the type of fuel charged into the steam furnace water cooling wall 4 has been changed.
 この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより低温側に乖離しているため、バイアス値算出部70は図9Bに示すように、偏差ΔT0に基づく絶対値を有し、且つ、正の符号を有するバイアス値αを算出する。その結果、図9Cに示すように、蒸気温度プロファイルは全体的に高温側にシフトし、設計温度プロファイルPrに近づけられる。 In this case, since the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the lower temperature side, the bias value calculation unit 70 has an absolute value based on the deviation ΔT0 and has an absolute value as shown in FIG. 9B. The bias value α having a positive sign is calculated. As a result, as shown in FIG. 9C, the steam temperature profile shifts to the higher temperature side as a whole and approaches the design temperature profile Pr.
 また図10A~図10Cは図7の制御装置2による蒸気温度プロファイルの推移を示す他の例である。この例では図10Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより高温側に乖離している。このような要因として、例えば、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。 Further, FIGS. 10A to 10C are other examples showing the transition of the steam temperature profile by the control device 2 of FIG. 7. In this example, as shown in FIG. 10A, the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the higher temperature side for some reason. As such a factor, for example, the type of fuel charged into the furnace water cooling wall 4 has been changed.
 この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより高温側に乖離しているため、バイアス値算出部70は図10Bに示すように、偏差ΔT0に基づく絶対値を有し、且つ、負の符号を有するバイアス値αを算出する。その結果、図10Cに示すように、蒸気温度プロファイルは全体的に低温側にシフトし、設計温度プロファイルPrに近づけられる。 In this case, since the steam temperature profile of the once-through boiler 1 deviates from the design temperature profile Pr to the higher temperature side, the bias value calculation unit 70 has an absolute value based on the deviation ΔT0 and has an absolute value as shown in FIG. 10B. The bias value α having a negative sign is calculated. As a result, as shown in FIG. 10C, the steam temperature profile shifts to the low temperature side as a whole and approaches the design temperature profile Pr.
 以上説明したように本開示の幾つかの態様によれば、貫流ボイラ1の熱収支条件が変化することに伴って、貫流ボイラ1の蒸気流路の各位置における蒸気温度プロファイルが設計温度プロファイルから乖離することを抑制可能な貫流ボイラ1の制御装置2、発電プラント100、及び、貫流ボイラ1の制御方法を提供できる。 As described above, according to some aspects of the present disclosure, the steam temperature profile at each position of the steam flow path of the once-through boiler 1 is derived from the design temperature profile as the heat balance condition of the once-through boiler 1 changes. It is possible to provide a control device 2 for a once-through boiler 1 capable of suppressing dissociation, a power plant 100, and a control method for the once-through boiler 1.
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the spirit of the present disclosure, and the above-described embodiments may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.
(1)本開示の一態様に係る貫流ボイラの制御装置は、
 直列に設けられた複数の過熱器(例えば上記実施形態の第1過熱器6a、第2過熱器6b、第3過熱器6c)、及び、火炉水冷壁(例えば上記実施形態の火炉水冷壁4)への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイ(例えば上記実施形態の第1スプレイ10a、第2スプレイ10b)によって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラ(例えば上記実施形態の貫流ボイラ1)の制御装置(例えば上記実施形態の制御装置2)であって、
 前記複数のスプレイの少なくとも一部による前記蒸気の減温量(例えば上記実施形態の第1減温量1DSDT又は第2減温量2DSDT)が目標減温量(例えば上記実施形態の第1目標減温量1DSDTtarget又は第2目標減温量2DSDTtarget)になるように制御可能に構成されたスプレイ制御部(例えば上記実施形態のスプレイ制御部60)と、
 前記複数の過熱器が設けられた蒸気流路(例えば上記実施形態の蒸気流路8)のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出可能に構成された蒸気温度検出部(例えば上記実施形態の蒸気温度検出部72)と、
を備え、
 前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差(例えば上記実施形態の偏差ΔT0)に基づいて設定されるバイアス値(例えば上記実施形態のバイアス値α)を加算することで設定されるように構成される。
(1) The once-through boiler control device according to one aspect of the present disclosure is
A plurality of superheaters provided in series (for example, the first superheater 6a, the second superheater 6b, and the third superheater 6c of the above embodiment) and a furnace water cooling wall (for example, the furnace water cooling wall 4 of the above embodiment). The furnace water cooling wall and the above are provided by a plurality of sprays (for example, the first spray 10a and the second spray 10b of the above embodiment) configured so that a part of the water supply to the superheater can be sprayed on the outlet side of the plurality of superheaters. A control device (for example, the control device 2 of the above embodiment) of a once-through boiler (for example, the once-through boiler 1 of the above embodiment) capable of adjusting the temperature of steam generated by a plurality of superheaters.
The amount of temperature reduction of the steam by at least a part of the plurality of sprays (for example, the first temperature reduction amount 1DSDT or the second temperature reduction amount 2DSDT of the above embodiment) is the target temperature reduction amount (for example, the first target reduction amount of the above embodiment). A spray control unit (for example, the spray control unit 60 of the above embodiment) configured to be controllable so as to have a temperature amount of 1DSDTtarget or a second target temperature reduction amount of 2DSDTtarget).
From the superheater arranged upstream of the spray position of the spray controlled by the spray control unit among the steam flow paths provided with the plurality of superheaters (for example, the steam flow path 8 of the above embodiment). A steam temperature detection unit (for example, the steam temperature detection unit 72 of the above embodiment) configured to be able to detect the steam temperature on the upstream side, and
With
The target temperature reduction amount is a bias value (for example, for example) set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature (for example, the deviation ΔT0 of the above embodiment) with respect to the basic target temperature reduction amount. It is configured to be set by adding the bias value α) of the above embodiment.
 上記(1)の態様によれば、スプレイの目標減温量に対してバイアス値が加算される。バイアス値は、減温量が目標減温量になるように制御されるスプレイのスプレイ位置より上流側における蒸気温度の目標蒸気温度に対する偏差に基づいて設定される。これにより、何らかの要因によって、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルから乖離した場合においても、蒸気温度プロファイルが設計温度プロファイルに近づくように蒸気温度を制御することができる。 According to the aspect (1) above, the bias value is added to the target temperature reduction amount of the spray. The bias value is set based on the deviation of the steam temperature from the target steam temperature on the upstream side of the spray position of the spray whose temperature reduction amount is controlled to be the target temperature reduction amount. Thereby, even if the steam temperature profile in the steam flow path deviates from the ideal design temperature profile due to some factor, the steam temperature can be controlled so that the steam temperature profile approaches the design temperature profile.
(2)他の態様では上記(1)の態様において、
 前記蒸気温度検出部の検出値が前記目標蒸気温度より低い場合、前記バイアス値の符号は正に設定されるように構成される。
(2) In another aspect, in the above aspect (1),
When the detection value of the steam temperature detection unit is lower than the target steam temperature, the sign of the bias value is set to be positive.
 上記(2)の態様によれば、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルに対して低温側に乖離した場合、バイアス値の符号が正に設定される。これにより、蒸気温度プロファイルを高温側にシフトし、設計温度プロファイルに近づけることができる。 According to the aspect (2) above, when the steam temperature profile in the steam flow path deviates to the low temperature side with respect to the ideal design temperature profile, the sign of the bias value is set positively. This makes it possible to shift the steam temperature profile to the higher temperature side and bring it closer to the design temperature profile.
(3)他の態様では上記(1)又は(2)の態様において、
 前記蒸気温度検出部の検出値が前記目標蒸気温度より高い場合、前記バイアス値の符号は負に設定されるように構成される。
(3) In another aspect, in the above aspect (1) or (2),
When the detection value of the steam temperature detection unit is higher than the target steam temperature, the sign of the bias value is set to be negative.
 上記(3)の態様によれば、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルに対して高温側に乖離した場合、バイアス値の符号が負に設定される。これにより、蒸気温度プロファイルを低温側にシフトし、設計温度プロファイルに近づけることができる。 According to the aspect (3) above, when the steam temperature profile in the steam flow path deviates from the ideal design temperature profile to the high temperature side, the sign of the bias value is set to negative. This makes it possible to shift the steam temperature profile to the lower temperature side and bring it closer to the design temperature profile.
(4)他の態様では上記(1)から(3)のいずれか一態様において、
 前記バイアス値の絶対値は、前記偏差に対して増加するように設定される。
(4) In another aspect, in any one of the above (1) to (3),
The absolute value of the bias value is set to increase with respect to the deviation.
 上記(4)の態様によれば、蒸気流路における蒸気温度プロファイルと設計温度プロファイルとの乖離量が大きくなるに従ってバイアス値が増加するように設定される。これにより、蒸気温度プロファイルの設計温度プロファイルに対する乖離量が大きい場合には、大きなバイアス値を目標減温量に対して加算することで、蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。 According to the aspect (4) above, the bias value is set to increase as the amount of deviation between the steam temperature profile and the design temperature profile in the steam flow path increases. As a result, when the deviation amount of the steam temperature profile from the design temperature profile is large, the steam temperature profile can be suitably brought closer to the design temperature profile by adding a large bias value to the target temperature reduction amount.
(5)他の態様では上記(1)から(4)のいずれか一態様において、
 前記複数の過熱器は、
 前記火炉水冷壁からの蒸気を過熱可能に構成された第1の過熱器(例えば上記実施形態の第1過熱器6a)と、
 前記第1の過熱器からの蒸気を過熱可能に構成された第2の過熱器(例えば上記実施形態の第2過熱器6b)と、
 前記第2の過熱器からの蒸気を過熱可能に構成された第3の過熱器(例えば上記実施形態の第3過熱器6c)と、
を含み、
 前記複数のスプレイは、
 前記第1過熱器の出口側に設けられた第1スプレイ(例えば上記実施形態の第1スプレイ10a)と、
 前記第2過熱器の出口部に設けられた第2スプレイ(例えば上記実施形態の第2スプレイ10b)と、
を含む。
(5) In another aspect, in any one of the above (1) to (4),
The plurality of superheaters
A first superheater (for example, the first superheater 6a of the above embodiment) configured to be able to superheat steam from the water cooling wall of the fireplace, and
A second superheater configured to superheat the steam from the first superheater (for example, the second superheater 6b of the above embodiment) and
A third superheater configured to superheat the steam from the second superheater (for example, the third superheater 6c of the above embodiment) and
Including
The plurality of sprays
A first spray provided on the outlet side of the first superheater (for example, the first spray 10a of the above embodiment) and
A second spray provided at the outlet of the second superheater (for example, the second spray 10b of the above embodiment) and
including.
 上記(5)の態様によれば、複数の過熱器及び複数のスプレイを制御することによって、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。 According to the aspect (5) above, by controlling a plurality of superheaters and a plurality of sprays, the steam temperature profile from the furnace water cooling wall can be suitably brought close to the design temperature profile.
(6)他の態様では上記(5)の態様において、
 前記スプレイ制御部は、前記第2スプレイによる減温量(例えば上記実施形態の第2減温量2DSDT)と前記目標減温量(例えば上記実施形態の第2目標減温量2DSDTtarget)との偏差に基づいて、前記第2スプレイを制御可能に構成される。
(6) In another aspect, in the above aspect (5),
The spray control unit has a deviation between the temperature reduction amount due to the second spray (for example, the second temperature reduction amount 2DSDT of the above embodiment) and the target temperature reduction amount (for example, the second target temperature reduction amount 2DSDT target of the above embodiment). Based on the above, the second spray is configured to be controllable.
 上記(6)の態様によれば、第2スプレイによる減温量が目標減温量になるように第2スプレイが制御される貫流ボイラにおいて、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。 According to the aspect (6) above, in the once-through boiler in which the second spray is controlled so that the temperature reduction amount by the second spray becomes the target temperature reduction amount, the steam temperature profile from the furnace water cooling wall is used as the design temperature profile. It can be brought closer to suitability.
(7)他の態様では上記(5)の態様において、
 前記スプレイ制御部は、前記第1スプレイによる減温量(例えば上記実施形態の第1減温量1DSDT)が前記目標減温量(例えば上記実施形態の第1目標減温量1DSDTtarget)になるように、前記第1スプレイを制御可能に構成される。
(7) In another aspect, in the above aspect (5),
In the spray control unit, the temperature reduction amount by the first spray (for example, the first heat reduction amount 1DSDT of the above embodiment) becomes the target temperature reduction amount (for example, the first target temperature reduction amount 1DSDT target of the above embodiment). In addition, the first spray is configured to be controllable.
 上記(7)の態様によれば、第1スプレイによる減温量が目標減温量になるように第1スプレイが制御される貫流ボイラにおいて、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。 According to the aspect (7) above, in the once-through boiler in which the first spray is controlled so that the temperature reduction amount by the first spray becomes the target temperature reduction amount, the steam temperature profile from the furnace water cooling wall is used as the design temperature profile. It can be brought closer to suitability.
(8)他の態様では上記(1)から(7)のいずれか一態様において、
 前記減温量は前記スプレイ制御部の制御対象となる前記スプレイの上流側及び下流側における温度検出値に基づいて算出される。
(8) In another aspect, in any one of the above (1) to (7),
The temperature reduction amount is calculated based on the temperature detection values on the upstream side and the downstream side of the spray, which is the control target of the spray control unit.
 上記(8)の態様によれば、スプレイによる減温量は、スプレイの上流側及び下流側における温度検出値に基づいて好適に算出される。 According to the aspect (8) above, the amount of temperature decrease due to the spray is suitably calculated based on the temperature detection values on the upstream side and the downstream side of the spray.
(9)他の態様では上記(1)から(8)のいずれか一態様において、
 前記貫流ボイラは、石炭又は油を燃料とする石炭焚きボイラである。
(9) In another aspect, in any one of the above (1) to (8),
The once-through boiler is a coal-fired boiler that uses coal or oil as fuel.
 上記(9)の態様によれば、石炭を微粉炭機で粉砕するプロセスがあることにより、運転制御による負荷指令値への応答性が低い石炭焚きボイラや、油焚きボイラを蒸気発生器として用いる発電プラントにおいても、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。 According to the above aspect (9), a coal-fired boiler or an oil-fired boiler, which has a low response to a load command value by operation control due to a process of crushing coal with a pulverized coal mill, is used as a steam generator. Also in a power plant, the steam temperature profile from the boiler water cooling wall can be suitably close to the design temperature profile.
(10)本開示の一態様に係る発電プラントは、
 前記貫流ボイラと、
 上記(1)から(9)のいずれか一態様の制御装置と、
 前記貫流ボイラからの蒸気を用いて駆動可能に構成されたタービンと、
 前記タービンによって駆動可能に構成された発電機と、
を備える。
(10) The power plant according to one aspect of the present disclosure is
With the once-through boiler,
The control device according to any one of (1) to (9) above,
A turbine configured to be driveable using steam from the once-through boiler,
A generator configured to be driveable by the turbine,
To be equipped.
 上記(10)の態様によれば、貫流ボイラの蒸気温度プロファイルが設計温度プロファイルから乖離する要因が生じた際にも、蒸気温度プロファイルを設計温度プロファイルに近づけることで、発電プラントのより安定的な運用が可能となり、良好な信頼性が得られる。 According to the above aspect (10), even when the steam temperature profile of the once-through boiler deviates from the design temperature profile, the steam temperature profile is brought closer to the design temperature profile to make the power plant more stable. It can be operated and good reliability can be obtained.
(11)本開示の一態様に係る貫流ボイラの制御方法は、
 直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御方法であって、
 前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御するスプレイ制御工程と、
 前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出する蒸気温度検出工程と、
を備え、
 前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定される。
(11) The method for controlling a once-through boiler according to one aspect of the present disclosure is as follows.
The furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters. It is a control method of a once-through boiler that can adjust the temperature of steam generated by the superheater.
A spray control step of controlling the amount of heat reduction of the steam by at least a part of the plurality of sprays so as to be a target amount of heat reduction.
Steam temperature detection that detects the steam temperature on the upstream side of the superheater located upstream of the spray position of the spray controlled by the spray control unit among the steam flow paths provided with the plurality of superheaters. Process and
With
The target temperature reduction amount is set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount.
 上記(11)の態様によれば、スプレイの目標減温量に対してバイアス値が加算される。バイアス値は、減温量が目標減温量になるように制御されるスプレイのスプレイ位置より上流側における蒸気温度の目標蒸気温度に対する偏差に基づいて設定される。これにより、何らかの要因によって、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルから乖離した場合においても、蒸気温度プロファイルが設計温度プロファイルに近づくように蒸気温度を制御することができる。 According to the aspect (11) above, the bias value is added to the target temperature reduction amount of the spray. The bias value is set based on the deviation of the steam temperature from the target steam temperature on the upstream side of the spray position of the spray whose temperature reduction amount is controlled to be the target temperature reduction amount. Thereby, even if the steam temperature profile in the steam flow path deviates from the ideal design temperature profile due to some factor, the steam temperature can be controlled so that the steam temperature profile approaches the design temperature profile.
1 貫流ボイラ
2 制御装置
4 火炉水冷壁
6 過熱器
6a 第1過熱器
6b 第2過熱器
6c 第3過熱器
8 蒸気流路
10 スプレイ
10a 第1スプレイ
10b 第2スプレイ
12 メイン給水路
14 サブ給水路
16a 第1スプレイ弁
16b 第2スプレイ弁
50 水燃比制御部
60 スプレイ制御部
60a 第1スプレイ制御部
60b 第2スプレイ制御部
70 バイアス値算出部
72 蒸気温度検出部
100 発電プラント
110 タービン
112 蒸気供給路
114 蒸気弁
120 発電機
1 once-through boiler 2 controller 4 furnace water cooling wall 6 superheater 6a 1st superheater 6b 2nd superheater 6c 3rd superheater 8 steam flow path 10 spray 10a 1st spray 10b 2nd spray 12 main water supply channel 14 sub water supply channel 16a 1st spray valve 16b 2nd spray valve 50 Superheater ratio control unit 60 Spray control unit 60a 1st spray control unit 60b 2nd spray control unit 70 Boil value calculation unit 72 Steam temperature detection unit 100 Power plant 110 Turbine 112 Steam supply path 114 steam valve 120 generator

Claims (11)

  1.  直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御装置であって、
     前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御可能に構成されたスプレイ制御部と、
     前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出可能に構成された蒸気温度検出部と、
    を備え、
     前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定されるように構成された、貫流ボイラの制御装置。
    The furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters. It is a control device for a once-through boiler that can adjust the temperature of steam generated by the superheater.
    A spray control unit configured to be controllable so that the amount of heat reduction of the steam by at least a part of the plurality of sprays becomes the target amount of heat reduction.
    Of the steam flow paths provided with the plurality of superheaters, the steam temperature on the upstream side of the superheater arranged upstream of the spray position of the spray controlled by the spray control unit can be detected. Steam temperature detector and
    With
    The target temperature reduction amount is configured to be set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount. Control device for once-through boiler.
  2.  前記蒸気温度検出部の検出値が前記目標蒸気温度より低い場合、前記バイアス値の符号は正に設定されるように構成された、請求項1に記載の貫流ボイラの制御装置。 The control device for a once-through boiler according to claim 1, wherein when the detection value of the steam temperature detection unit is lower than the target steam temperature, the sign of the bias value is set to be positive.
  3.  前記蒸気温度検出部の検出値が前記目標蒸気温度より高い場合、前記バイアス値の符号は負に設定されるように構成された、請求項1又は2に記載の貫流ボイラの制御装置。 The control device for a once-through boiler according to claim 1 or 2, wherein when the detection value of the steam temperature detection unit is higher than the target steam temperature, the sign of the bias value is set to negative.
  4.  前記バイアス値の絶対値は、前記偏差に対して増加するように設定される、請求項1から3のいずれか一項に記載の貫流ボイラの制御装置。 The control device for a once-through boiler according to any one of claims 1 to 3, wherein the absolute value of the bias value is set to increase with respect to the deviation.
  5.  前記複数の過熱器は、
     前記火炉水冷壁からの蒸気を過熱可能に構成された第1の過熱器と、
     前記第1の過熱器からの蒸気を過熱可能に構成された第2の過熱器と、
     前記第2の過熱器からの蒸気を過熱可能に構成された第3の過熱器と、
    を含み、
     前記複数のスプレイは、
     前記第1過熱器の出口側に設けられた第1スプレイと、
     前記第2過熱器の出口部に設けられた第2スプレイと、
    を含む、請求項1から4のいずれか一項に記載の貫流ボイラの制御装置。
    The plurality of superheaters
    A first superheater configured to superheat steam from the fireplace water cooling wall, and
    A second superheater configured to superheat the steam from the first superheater, and
    A third superheater configured to superheat the steam from the second superheater, and
    Including
    The plurality of sprays
    The first spray provided on the outlet side of the first superheater and
    A second spray provided at the outlet of the second superheater and
    The control device for a once-through boiler according to any one of claims 1 to 4, which comprises.
  6.  前記スプレイ制御部は、前記第2スプレイによる減温量と前記目標減温量との偏差に基づいて、前記第2スプレイを制御可能に構成された、請求項5に記載の貫流ボイラの制御装置。 The control device for a once-through boiler according to claim 5, wherein the spray control unit is configured to be able to control the second spray based on a deviation between the temperature reduction amount due to the second spray and the target temperature reduction amount. ..
  7.  前記スプレイ制御部は、前記第1スプレイによる減温量が前記目標減温量になるように、前記第1スプレイを制御可能に構成された、請求項5に記載の貫流ボイラの制御装置。 The control device for a once-through boiler according to claim 5, wherein the spray control unit is configured to be able to control the first spray so that the amount of heat reduction by the first spray becomes the target amount of heat reduction.
  8.  前記減温量は前記スプレイ制御部の制御対象となる前記スプレイの上流側及び下流側における温度検出値に基づいて算出される、請求項1から7のいずれか一項に記載の貫流ボイラの制御装置。 The control of the once-through boiler according to any one of claims 1 to 7, wherein the temperature reduction amount is calculated based on temperature detection values on the upstream side and the downstream side of the spray to be controlled by the spray control unit. apparatus.
  9.  前記貫流ボイラは、石炭又は油を燃料とする石炭焚きボイラである、請求項1から8のいずれか一項に記載の貫流ボイラの制御装置。 The control device for a once-through boiler according to any one of claims 1 to 8, wherein the once-through boiler is a coal-fired boiler that uses coal or oil as fuel.
  10.  前記貫流ボイラと、
     請求項1から9のいずれか一項に記載の制御装置と、
     前記貫流ボイラからの蒸気を用いて駆動可能に構成されたタービンと、
     前記タービンによって駆動可能に構成された発電機と、
    を備える、発電プラント。
    With the once-through boiler,
    The control device according to any one of claims 1 to 9.
    A turbine configured to be driveable using steam from the once-through boiler,
    A generator configured to be driveable by the turbine,
    A power plant equipped with.
  11.  直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御方法であって、
     前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御するスプレイ制御工程と、
     前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出する蒸気温度検出工程と、
    を備え、
     前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定される、貫流ボイラの制御方法。
    The furnace water cooling wall and the plurality of superheaters are provided by a plurality of superheaters provided in series and a plurality of sprays configured so that a part of water supplied to the furnace water cooling wall can be sprayed on the outlet side of the plurality of superheaters. It is a control method of a once-through boiler that can adjust the temperature of steam generated by the superheater.
    A spray control step of controlling the amount of heat reduction of the steam by at least a part of the plurality of sprays so as to be a target amount of heat reduction.
    Steam temperature detection that detects the steam temperature on the upstream side of the superheater located upstream of the spray position of the spray controlled by the spray control unit among the steam flow paths provided with the plurality of superheaters. Process and
    With
    The target temperature reduction amount is set by adding a bias value set based on the deviation between the detection value of the steam temperature detection unit and the target steam temperature to the basic target temperature reduction amount. Control method.
PCT/JP2020/030137 2019-08-14 2020-08-06 Control device for once-through boiler, power generation plant, and control method for once-through boiler WO2021029312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227003043A KR20220029703A (en) 2019-08-14 2020-08-06 Control devices for once-through boilers, power plants and control methods for once-through boilers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-148835 2019-08-14
JP2019148835A JP7465641B2 (en) 2019-08-14 2019-08-14 Once-through boiler control device, power plant, and once-through boiler control method

Publications (1)

Publication Number Publication Date
WO2021029312A1 true WO2021029312A1 (en) 2021-02-18

Family

ID=74569503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030137 WO2021029312A1 (en) 2019-08-14 2020-08-06 Control device for once-through boiler, power generation plant, and control method for once-through boiler

Country Status (3)

Country Link
JP (1) JP7465641B2 (en)
KR (1) KR20220029703A (en)
WO (1) WO2021029312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240126069A1 (en) 2021-03-02 2024-04-18 Pioneer Corporation Actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840032B2 (en) * 1976-02-27 1983-09-02 株式会社日立製作所 Vertical water-lubricated bearing device for hydraulic machinery
JP2006125760A (en) * 2004-10-29 2006-05-18 Babcock Hitachi Kk Exhaust heat recovery boiler and its control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453858B2 (en) 2001-04-25 2010-04-21 バブコック日立株式会社 Steam temperature control method and apparatus for once-through boiler
JP5840032B2 (en) 2012-02-29 2016-01-06 三菱日立パワーシステムズ株式会社 Power generation system and steam temperature control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840032B2 (en) * 1976-02-27 1983-09-02 株式会社日立製作所 Vertical water-lubricated bearing device for hydraulic machinery
JP2006125760A (en) * 2004-10-29 2006-05-18 Babcock Hitachi Kk Exhaust heat recovery boiler and its control system

Also Published As

Publication number Publication date
KR20220029703A (en) 2022-03-08
JP2021032420A (en) 2021-03-01
JP7465641B2 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
EP2067936B1 (en) Steam temperature control in a boiler system using reheater variables
US9447963B2 (en) Dynamic tuning of dynamic matrix control of steam temperature
US20170081981A1 (en) Method and apparatus for controlling moisture separator reheater
US9217565B2 (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
CA2747047C (en) Steam temperature control using dynamic matrix control
CA2868093C (en) Steam temperature control using model-based temperature balancing
CN103343961B (en) Dynamic compensation method of attemperation water impact leading steam temperature measuring point in boiler steam temperature control system
CN107664300B (en) Multi-target steam temperature control
GB2535833A (en) Model-based combined cycle power plant load control
WO2021029312A1 (en) Control device for once-through boiler, power generation plant, and control method for once-through boiler
KR102226983B1 (en) Control system, gas turbine, power plant and fuel temperature control method
JP5627566B2 (en) Control device and control method for coal-fired thermal power plant
JP2009085442A (en) Boiler dynamic characteristic fairing device of boiler control device, and boiler control method
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JP5781915B2 (en) Combined plant and its control method
CN116697344A (en) Boiler water supply control method and system for supercritical coal-fired generator set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227003043

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851970

Country of ref document: EP

Kind code of ref document: A1