WO2021024352A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2021024352A1
WO2021024352A1 PCT/JP2019/030721 JP2019030721W WO2021024352A1 WO 2021024352 A1 WO2021024352 A1 WO 2021024352A1 JP 2019030721 W JP2019030721 W JP 2019030721W WO 2021024352 A1 WO2021024352 A1 WO 2021024352A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
control
group
communication
unit
Prior art date
Application number
PCT/JP2019/030721
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 土本
裕平 塚原
允裕 山隅
尚祐 伊藤
今村 直樹
栗重 正彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/030721 priority Critical patent/WO2021024352A1/en
Priority to JP2021538567A priority patent/JP7046275B2/en
Publication of WO2021024352A1 publication Critical patent/WO2021024352A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Definitions

  • the technology disclosed in the present specification relates to a mobile body control device and a mobile body control method.
  • a method of controlling a plurality of such moving bodies there are a method of using a central management system capable of controlling all moving bodies at once, and a method of using an autonomous decentralized system in which each moving body performs a control operation individually. There is.
  • Patent Document 1 describes a control rule for recovering a group (mobile group) when the group (mobile group) is divided due to a failure or disconnection of communication. ..
  • Patent Document 1 has a problem that it is inferior in versatility because it does not change the control rule according to the purpose or the situation.
  • the technology disclosed in the present specification has been made in view of the problems described above, and an object thereof is to provide a control technology for a plurality of mobile objects having high versatility. is there.
  • the first aspect of the technique disclosed in the present specification is a control device provided in the first moving body, in which the state quantity of the first moving body is different from that of the first moving body.
  • the first moving body and the first moving body are used by using at least the state amount of the second moving body among the amount, the state amount of the second moving body, and the surrounding information of the first moving body. It is selected from a plurality of control rules based on a group recognition unit for determining whether or not to recognize the two moving bodies as a moving body group and outputting the determination result as a group state, and the group state.
  • control unit for controlling the movement of the first moving body, the group state, the state amount of the second moving body, and the surrounding information of the first moving body using the control law.
  • a control rule change determination unit for determining whether or not to change the control law used in the control unit and outputting the determination result as a control law change signal is provided based on at least one of the above. The control unit selects the control rule to be used when controlling the movement of the first moving body based on the control rule change signal.
  • a second aspect of the technique disclosed herein is a state quantity of a first mobile body, a state quantity of at least one second mobile body that is a mobile body different from the first mobile body, and. , At least of the state amount of the first moving body, the state amount of the second moving body, and the surrounding information of the first moving body by acquiring the surrounding information of the first moving body.
  • the state quantity of the second moving body it is determined whether or not the first moving body and the second moving body are recognized as a moving body group, and the determination result is output as a group state.
  • the movement of the first moving body is controlled by using a control rule selected from a plurality of control rules, and the group state, the state quantity of the second moving body, and the state amount of the second moving body are controlled.
  • the control rule used when controlling the movement of the first moving body is selected.
  • the first aspect of the technique disclosed in the present specification is a control device provided in the first moving body, in which the state quantity of the first moving body is different from that of the first moving body.
  • the first moving body and the first moving body are used by using at least the state amount of the second moving body among the amount, the state amount of the second moving body, and the surrounding information of the first moving body. It is selected from a plurality of control rules based on a group recognition unit for determining whether or not to recognize the two moving bodies as a moving body group and outputting the determination result as a group state, and the group state.
  • control unit for controlling the movement of the first moving body, the group state, the state amount of the second moving body, and the surrounding information of the first moving body using the control law.
  • a control rule change determination unit for determining whether or not to change the control law used in the control unit and outputting the determination result as a control law change signal is provided based on at least one of the above.
  • the control unit selects the control rule to be used when controlling the movement of the first moving body based on the control rule change signal.
  • the information acquired by the information acquisition unit is used to determine whether or not to recognize the first moving body and the second moving body as a moving body group, depending on the situation. It is possible to control the movement of the first moving body by determining whether the control is performed as a group of moving bodies or individually.
  • the control rule in the control unit determines whether or not to change the control rule in the control unit based on the group state, the state amount of the first moving body, the state amount of the second moving body, or the surrounding information of the first moving body. By determining, the movement of the first moving body can be controlled by an appropriate control rule according to the situation.
  • a second aspect of the technique disclosed herein is a state quantity of a first mobile body, a state quantity of at least one second mobile body that is a mobile body different from the first mobile body, and. , At least of the state amount of the first moving body, the state amount of the second moving body, and the surrounding information of the first moving body by acquiring the surrounding information of the first moving body.
  • the state quantity of the second moving body it is determined whether or not the first moving body and the second moving body are recognized as a moving body group, and the determination result is output as a group state.
  • the movement of the first moving body is controlled by using a control rule selected from a plurality of control rules, and the group state, the state quantity of the second moving body, and the state amount of the second moving body are controlled.
  • the control rule used when controlling the movement of the first moving body is selected.
  • the information acquired by the information acquisition unit is used to determine whether or not to recognize the first moving body and the second moving body as a moving body group, depending on the situation.
  • FIG. 1 is a diagram conceptually showing an autonomous distributed control device 3 of a mobile body group and a mobile body 1 to be controlled thereof according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a plurality of moving bodies.
  • the autonomous distributed control device 3 includes a group recognition unit 4, an information acquisition unit 5, an integrated control unit 6, and a control rule change determination unit 7. Further, the integrated control unit 6 includes a consensus control unit 61, a covering control unit 62, and a motion control unit 63.
  • the moving body 1 in the present embodiment whose example is shown in FIGS. 1 and 2 is, for example, a two-wheeled robot. Further, the moving body 2 adjacent to the moving body 1 as shown in FIG. 2 is also a two-wheeled robot, for example.
  • the moving body 1 and the moving body 2 are two-wheeled robots, but any moving body such as a four-wheeled automobile, an artificial satellite, or a drone, which is controlled to a predetermined position and orientation by actuator drive. It can be anything. Further, the moving body 1 and the moving body 2 are not limited to the same type of moving body.
  • adjacent means that the moving body 1 and the moving body 2 exist in a predetermined space.
  • FIG. 3 is a flowchart showing an example of a control rule switching operation according to the present embodiment.
  • the state quantity and surrounding information of the moving body (moving body 1) are acquired (step ST01 in FIG. 3).
  • the group state is determined based on these (step ST02 in FIG. 3).
  • step ST03 in FIG. 3 it is determined whether or not there is another moving body (moving body 2) regarded as a group (moving body group) (step ST03 in FIG. 3). Then, when another moving body (moving body 2) exists, that is, when it corresponds to "YES" branching from step ST03 whose example is shown in FIG. 3, the process proceeds to step ST04 whose example is shown in FIG. move on. On the other hand, when there is no other moving body (moving body 2), that is, when it corresponds to "NO" branching from step ST03 shown in FIG. 3, an example is shown in step ST05. Proceed to.
  • control group control
  • the motion control of the moving body is performed by selecting either consensus control or covering control, which are control rules having different control purposes, according to the purpose or the situation.
  • the consensus control means a control that converges the states of a plurality of controlled objects (moving bodies) to the same value.
  • the coating control refers to controlling a moving body so as to optimally cover a given region.
  • step ST05 the motion control of the moving body (moving body 1) is performed by independent control (specifically, path tracking control) that does not depend on the state quantity of the other moving body (moving body 2). I do. Details will be described below.
  • the group recognition unit 4 in FIG. 1 determines whether or not to control the moving body 1 and the moving body 2 as a group (moving body group) based on the information acquired by the information acquisition unit 5 described later. To do.
  • the group recognition unit 4 determines that the moving body 1 has acquired the state quantity of the moving body 2 based on the information acquired by the information acquisition unit 5, and regards these as a group (moving body group). It is one of the conditions.
  • the group recognition unit 4 may determine whether or not to consider these as a group (moving body group) according to the state amount of the moving body 1 or the state amount of the moving body 2. For example, when making a judgment based on the positional relationship or distance between the moving body 1 and the moving body 2, if the distance between the moving bodies is large, it is not regarded as a group (moving body group) and the distance between the moving bodies. If they are close to each other, they are regarded as a group (mobile group).
  • the condition for determining whether or not to consider a plurality of moving bodies as a group may be the relative speed of these moving bodies. For example, when the relative velocity between a plurality of moving bodies is smaller than 0, the distance between the moving body 1 and the moving body 2 decreases, so that it can be regarded as a group (moving body group). On the contrary, when the relative velocity between the plurality of moving bodies is larger than 0, the distance between the moving body 1 and the moving body 2 increases, so that the group (moving body group) is not regarded.
  • the relative speed is compared with 0 for the determination, but an arbitrary threshold value may be set and used for the determination.
  • the future state quantity may be estimated from the current state quantity of the moving body, and further, it may be determined whether or not a plurality of moving bodies are regarded as a group (moving body group) based on the future state quantity. By making a judgment based on the future state quantity, it is possible to realize group control that achieves the control purpose faster.
  • an evaluation function using a plurality of state quantities may be set, and when the value of the evaluation function is equal to or greater than the threshold value, a plurality of moving objects may be regarded as a group (moving object group).
  • the group recognition unit 4 may determine whether or not to consider a plurality of moving objects as a group (moving body group) based on the surrounding information (surrounding information) acquired by the information acquisition unit 5. For example, in a narrow passage, it is desirable that a plurality of moving bodies are lined up in a straight line. Therefore, the moving bodies 2 arranged before and after the moving body 1 may be regarded as a group (moving body group). Further, in a place where moving bodies are likely to be crowded, in order to avoid a collision, all other moving bodies existing within a certain range from the moving body 1 may be regarded as a group (moving body group).
  • the group recognition unit 4 When the "condition to be regarded as a group" shown in the above example is satisfied, the group recognition unit 4 outputs that the moving body 1 and the moving body 2 are a group (moving body group) as a group state.
  • FIG. 4 and 5 are diagrams for explaining the group state.
  • FIG. 4 when another moving body 2A, moving body 2B, moving body 2C and moving body 2D are arranged with respect to the moving body 1, the state of FIG. 4 to the state of FIG. 5 Consider arranging them in a straight line.
  • FIG. 6 shows an object (another moving body) that the moving body 1 considers as a group (moving body group) in the state shown in FIG.
  • the arrows point from the moving body 1 to the moving body 2A, from the moving body 1 to the moving body 2B, and from the moving body 1 to the moving body 2C, in which the moving body 1 is the moving body 2A and the moving body 2C.
  • 2B and mobile 2C are regarded as a group (mobile group).
  • the moving body 2A shall act independently based on a preset action command or a sequentially updated action command.
  • a moving body is called a leader machine.
  • FIG. 6 an arrow starting from the moving body 2A is not shown, which means that the moving body 2A is a leader machine that acts independently.
  • the moving body 2B, the moving body 2C, and the moving body 2D each have the same autonomous distributed control device 3 as the moving body 1.
  • the autonomous decentralized control device 3 of the moving body 1 determines whether or not the adjacent moving body 2A, moving body 2B, moving body 2C, and moving body 2D are regarded as a group (moving body group).
  • the autonomous decentralized control device 3 determines whether or not the moving body 1 can acquire the state amount of another moving body based on the information acquired by the information acquisition unit 5, and further, the determination result. Based on, it is determined whether or not the moving body 1 and another moving body are regarded as a group (moving body group), and the group state is determined.
  • the moving body 1 can acquire all the state quantities of the moving body 2A, the moving body 2B, the moving body 2C, and the moving body 2D.
  • the group recognition unit 4 determines one of these patterns as the group state.
  • the moving body 2A is regarded as another moving body located behind the moving body 1, and the moving body 1 regards the moving body 2A as a group (moving body group).
  • the moving body 2B and the moving body 2C are regarded as moving bodies located in front of the moving body 1, respectively, and the moving body 1 regards the moving body 2B and the moving body 2C as a group (moving body group).
  • the moving body 2D since the moving body 2D is located at a position farther from the moving body 1 than the moving body 2B and the moving body 2C, the moving body 1 does not consider the moving body 2D as a group (moving body group).
  • the mobile body 2B, the moving body 2C, and the moving body 2D having the same autonomous decentralized control device 3 as the moving body 1 also determine whether or not each of the other moving bodies is regarded as a group (moving body group). ..
  • FIG. 7 shows an object (another moving body) that the moving body 2B considers as a group (moving body group) in the state shown in FIG.
  • the arrows point from the moving body 2B to the moving body 1 and from the moving body 2B to the moving body 2C, respectively, in which the moving body 2B refers to the moving body 1 and the moving body 2C as a group (moving body group). It shows that it is regarded.
  • FIG. 8 shows an object (another moving body) that the moving body 2C considers as a group (moving body group) in the state shown in FIG.
  • the arrows point from the moving body 2C to the moving body 1 and from the moving body 2C to the moving body 2B, respectively, in which the moving body 2C refers to the moving body 1 and the moving body 2B as a group (moving body group). It shows that it is regarded.
  • FIG. 9 shows an object (another moving body) that the moving body 2D considers as a group (moving body group) in the state shown in FIG.
  • the arrow points from the moving body 2D to the moving body 2C, which indicates that the moving body 2D considers the moving body 2C as a group (moving body group).
  • FIG. 10 is a diagram showing an example of a control structure of the entire group by superimposing the arrows shown in FIGS. 6, 7, 8 and 9, respectively.
  • the moving body 2A does not recognize the moving body 1, the moving body 2B, the moving body 2C, and the moving body 2D as a group (moving body group), but the moving body 1 with respect to the moving body 2A acting independently. By acting in cooperation with each other, control as a mobile group can be realized.
  • the moving body 1 and the moving body 2D are not regarded as a group (moving body group), the moving body 2D regards the moving body 1 as a group (moving body group) and controls the movement of the moving body 2B.
  • the mobile 2C is regarded as a group (mobile group). Therefore, although the moving body 1 and the moving body 2D are not regarded as a group (moving body group), they can indirectly interact with each other to realize control as a moving body group.
  • the arrow points from the moving body 1 to the moving body 2A, but does not point from the moving body 2A to the moving body 1 (directed graph).
  • the moving body 1 and the moving body 2B have arrows facing each other (undirected graph).
  • the control performance as a group control can be improved by regarding each other as a group (mobile group) (that is, an undirected graph).
  • the group recognition unit 4 separates the objects to be regarded as a group (moving body group) and reduces the number of objects to avoid or calculate the communication delay. It is also possible to realize a reduction in the amount.
  • FIG. 11 is a diagram conceptually showing an example of the configuration of the information acquisition unit 5.
  • the information acquisition unit 5 includes a direct information acquisition unit 51, an indirect information acquisition unit 52, and a communication mode switching unit 53.
  • the information acquisition unit 5 acquires the state quantity of the moving body 1 and other moving bodies, or the surrounding information of the moving body 1 as information for controlling the moving body 1.
  • the direct information acquisition unit 51 acquires the state quantity of the moving body 1 or the surrounding information of the moving body 1. For example, as the state quantity of the moving body 1, the position information of the moving body 1 is acquired by the global positioning system (GPS).
  • GPS global positioning system
  • the direct information acquisition unit 51 acquires the relative distance between the moving body 1 and the other moving body, or the relative position of the other moving body as seen from the moving body 1 by a camera, millimeter wave, radar, or the like.
  • the relative distance between the moving body 1 and the other moving body is the state quantity of the moving body 1 and the other moving body. Since the relative distance, the relative position, and the relative speed are state quantities related to both the moving body 1 and the other moving body, they are also the state quantities of the moving body 1 (first moving body) and other moving bodies. It is also the state quantity of (second moving body).
  • the direct information acquisition unit 51 acquires the state quantity of the moving body 1 by using the state quantity estimation formula based on the information obtained from GPS or the above sensor.
  • the information acquisition unit 51 can directly acquire various state quantities such as velocity or acceleration by properly using the type of sensor to be used.
  • the direct information acquisition unit 51 acquires map information or obstacle information as surrounding information of the moving body 1.
  • the indirect information acquisition unit 52 acquires the state amount of the moving body 1, the state amount of the other moving body, or the surrounding information of the moving body 1 through communication with another moving body.
  • More information can be acquired by the mobile body 1 acquiring not only the information directly acquired by the information acquisition unit 51 but also the information from another mobile body via communication. Further, since control can be performed based on this information, the control performance is improved particularly when controlling as a group (moving body group).
  • the information regarding the relative distance or the relative position may be acquired by the direct information acquisition unit 51, or may be calculated based on the information acquired by the indirect information acquisition unit 52.
  • the information regarding the position of the moving body 1 is directly acquired by the information acquisition unit 51 by GPS. Further, the indirect information acquisition unit 52 acquires information on the position of the other mobile body by communication from the other mobile body. After that, the relative distance or relative position of the moving body 1 can be calculated using the position of the moving body 1 and the position of another moving body.
  • the integrated control unit 6 controls the movement of the moving body 1 based on the above-mentioned group state.
  • the integrated control unit 6 has two or more types of control rules, and the control rule change determination unit 7 determines whether or not to change the control law.
  • control rule change determination unit 7 changes the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of another moving body, or the surrounding information of the moving body 1. Is determined, and the determination result is output as a control rule change signal.
  • the integrated control unit 6 has three types of control rules, and the control rule change determination unit 7 outputs the corresponding three types of control rule change signals.
  • ⁇ Switching condition 1> In the switching condition 1, the consensus control and the covering control are switched based on the group state. Specifically, from the group state, when the number of other moving bodies regarded as a group (moving body group) is a certain number or more, the consensus control is applied, and the other moving bodies regarded as a group (moving body group) If it is less than a certain number, the coating is controlled.
  • ⁇ Switching condition 2> the consensus control and the covering control are switched based on the state quantities of the moving body 1 and other moving bodies. For example, when the relative distance is more than the threshold value, the relative distance can be adjusted to an arbitrary distance by using consensus control. Further, when the relative speed is equal to or higher than the threshold value, it is expected that the relative distance will increase in the future. Therefore, by using consensus control, it is possible to prevent the relative distance from increasing.
  • the relative distance is less than the threshold value
  • covering control is applied.
  • the coating control when the distance between the moving bodies is short, it is possible to maintain an appropriate distance so that the moving bodies do not come too close to each other. In this case, it is not necessary to set an appropriate relative distance as in the consensus control, and the distance between the moving bodies can be determined by the mutual positional relationship.
  • ⁇ Switching condition 3> the consensus control and the covering control are switched based on the surrounding information of the moving body 1. For example, when the sensor detects that the surrounding space is narrow, covering control is used. In the coating control, when the distances between the moving bodies are short, it is possible to maintain an appropriate distance so that the moving bodies do not come too close to each other. In this case, it is not necessary to set an appropriate relative distance as in the consensus control, and the distance between the moving bodies can be determined by the mutual positional relationship.
  • consensus control it is possible to control the distance between the moving bodies by setting an arbitrary value so that the plurality of moving bodies do not spread too much in a wide space.
  • the surrounding information may be received from the infrastructure equipment by communication, or preset map information may be used. Further, the control rule may be switched depending on the presence or absence of an obstacle, not limited to the size of the space.
  • the switching condition of the control rule may be a combination of the switching condition 1, the switching condition 2 and the switching condition 3 described above.
  • the density is calculated by referring to the number of other moving bodies recognized as a group (moving body group) and the distance between the other moving bodies, and the density is equal to or higher than the threshold value. If there is, switch to coating control.
  • control law of another moving body in the vicinity may be acquired via communication, and the control law of the moving body 1 may be switched according to the control law of the other moving body.
  • the control rule of the moving body 1 is also consensus control. In this way, the control performance can be improved by controlling the group (moving body group) according to the same control rule.
  • the motion control unit 63 in the integrated control unit 6 receives the control rule change signal which is the output of the control rule change determination unit 7 and changes the control rule.
  • the motion control unit 63 controls the motion of the moving body 1 so that the moving body 1 moves to a designated point without depending on the state quantity of the other moving body.
  • a proportional-integral-diffrential control controller (PID) controller is configured so that the designated point and the position of the moving body 1 match, and the operation amount of the moving body 1 is calculated.
  • the motion control unit 63 controls the motion of the moving body 1 based on the operation amount output from the consensus control unit 61 described later.
  • the consensus control unit 61 calculates the operation amount of the moving body 1 so as to match an arbitrary state amount of the moving body 1 with a desired state designation amount. The details of consensus control will be described later.
  • the motion control unit 63 controls the motion of the moving body 1 based on the operation amount output from the covering control unit 62 described later.
  • the covering control unit 62 calculates a target position within the boundary generated from the position of the moving body 1 and the position of another moving body, and operates the moving body 1 based on the position of the moving body 1 and the target position. Is calculated. The details of the coating control will be described later.
  • the operation amount of the moving body 1 is the target speed, but other operation amounts such as the target acceleration may be used instead of the target speed. Further, it may be a combination of a plurality of operation amounts.
  • the target speed which is the above-mentioned operation amount, is added to the current position of the moving body 1 to obtain a new position command. Further, the position of the moving body 1 is controlled by passing the deviation between the new position command and the position of the moving body 1 through the PID controller. In this way, the motion control unit 63 controls the motion of the moving body 1.
  • the moving body 1 and the moving body 2A, the moving body 2B, the moving body 2C and the 2D are numbered respectively.
  • each moving body can be expressed by the equations of state of the following equations (1-1) and (1-2).
  • x k (t) is the position vector of the moving object number k
  • u k (t) is the control input vector of the moving object in the k-th
  • a k and B k are the k-th It is a parameter matrix of the moving body
  • x k 0 is the initial position vector of the moving body No. k.
  • Z 1j corresponding to the relative position may be acquired by using a sensor or the like, or the difference between the position of the moving body 1 and the position of another moving body may be calculated.
  • the desired state specified value d 1j (d x1j, d yij) of the respective other mobile 2A, mobile 2B, set to the mobile 2C and mobile 2D.
  • the manipulated variable u for controlling the moving body 1 so that x ij and dig match can be calculated.
  • the formula (1-3) is the following formula (1-5) in the example shown in FIG.
  • a ij is set as 1 for a moving body that is regarded as a group (moving body group) from the group state, and 0 for a moving body that is not regarded as a group (moving body group).
  • the desired state designation value d 1j when the desired state designation value d 1j is a zero vector, control is performed so that the position of the moving body 1 and the position of the other moving body match. If the desired state designation value d 1j is not a zero vector, it is controlled so as to be arranged with a distance of
  • d x1j may be a non-zero constant and dy1j may be 0.
  • a plurality of moving bodies can be arranged in a row with reference to the position of the moving body 2A.
  • the equation (1-6) may be obtained by adding the repulsive force U 1j of the moving body 1 to the other moving body j to the equation (1-4).
  • the repulsive force U 1j is calculated by dividing the adjustment gain b by the relative distance
  • the matching state quantity is used as the position of the moving body, but the matching state quantity may be used as the speed of the moving body. Further, it may be a state quantity that matches both the position of the moving body and the speed of the moving body.
  • the covering control unit 62 controls the target to be the group (moving body group) recognized by the group recognition unit 4 based on the information obtained by the direct information acquisition unit 51 or the indirect information acquisition unit 52.
  • the covering control calculates the target position in the boundary generated from the position of the moving body 1 and the position of another moving body, and operates the moving body 1 based on the position of the moving body 1 and the target position. It is a control to calculate the quantity.
  • the covering control has an advantage that it is easy to avoid a collision between the moving bodies by considering the moving body 1 and the other moving bodies separately in a region separated by a boundary.
  • the application area of the covering control is set based on the information around the moving body 1 (surrounding information).
  • the application area of the covering control may be set in advance or may be acquired by communication from the outside.
  • FIG. 12 is a diagram showing an example of an application area and a boundary of coating control. It is assumed that the application area of the covering control is an area in which the moving body 1 and other moving bodies are included in the range.
  • the application area of the covering control once set is treated as unchanged, but based on the state quantity of the moving body 1 and other moving bodies or the surrounding information of the moving body 1. May be changed.
  • the application area of the coating control is set based on the surrounding information of the moving body 1.
  • map information is used as the surrounding information of the moving body 1.
  • the map information may be set in the moving body 1 in advance, or may be acquired by communication from the outside.
  • the length W of one side of the square is determined from the size of the room.
  • the application area of the coating control is not limited to a square, but may be a rectangle, a circle, or the like. Further, in the case of being outdoors, the application area of the covering control may be set based on the obstacles around the moving body 1. Further, in the case of a moving body traveling on a road, road information such as a road width or the number of lanes may be used as map information.
  • the boundary 100 is set from the position of the moving body 1 and the position of another moving body.
  • the boundary 100 divides the application region of the covering control into a region of the moving body 1 and a region of another moving body.
  • the method of dividing the application area of the covering control is not particularly limited, but for example, the application area of the covering control is set with the perpendicular bisector between the position of the moving body 1 and the position of the other moving body as the boundary 100. To split.
  • Voronoi division is used as a method of dividing the application area of the coating control.
  • the moving body 1 searches for an object connected by a Delaunay triangle from the group state, and performs Voronoi division.
  • the weighting function value is obtained from the weighting function ⁇ (q) of the following equation (2-1).
  • q represents the coordinates of a point in the application area of the covering control.
  • the weighting function is set by the following equation (2-2).
  • ⁇ (q) the value of the weighting function is set so as to decrease toward the coordinates p at an arbitrary point.
  • r is a variable for adjusting the value of the weight function.
  • a weighting function for realizing a desired arrangement can be set by setting the value of the weighting function at a specific location to be large or small.
  • the operation amount of the moving body 1 is calculated based on the position of the moving body 1 and the target position D 1 .
  • the mass (C 1 ) represented by the following equation (2-3) is the mass
  • the cent (C 1 ) is the region C 1 . Corresponds to the position of the center of gravity.
  • the operation amount of the coating control is calculated by the following equation (2-4).
  • k is the control gain of the covering control
  • the operation amount u 1 is calculated based on the deviation between the position x 1 of the moving body 1 and the center of gravity position D 1 which is the target position.
  • the application area of the covering control and the weight function value are set according to the desired formation, and the center of gravity position within the boundary calculated based on these is set as the target position to obtain the desired formation. Covering control can be realized.
  • the application area or weighting function of the covering control may be shared by communication in the surrounding moving body.
  • the cooperation as a group (mobile group) is strengthened, and the performance of the group control is improved.
  • the position of the moving body may be represented by an absolute coordinate system or a relative coordinate system based on an arbitrary point.
  • a reference point may be determined and the coordinate system may be set to that as the origin.
  • the origin of the relative coordinate system seen from the absolute coordinate system moves according to the speed of the reference moving body.
  • the indirect information acquisition unit 52 is a functional unit for the mobile body 1 to acquire information from the mobile body 2 by communication. Therefore, for example, even if the moving body 1 cannot directly obtain the information of the moving body 2A by the information acquisition unit 51, if the moving body 2B can acquire the information of the moving body 2A, for example, The mobile body 1 can indirectly acquire the information of the mobile body 2A from the mobile body 2B by communication.
  • indirect information acquisition unit 52 By providing the indirect information acquisition unit 52, it is possible to indirectly acquire information that cannot be acquired only by the direct information acquisition unit 51. Further, by communicating by a communication method suitable for the situation, for example, it is possible to acquire information on a long-distance moving object that is outside the detection range of the sensor.
  • control rule is determined after the group state is determined, but the mode of determination is not limited to this.
  • the control law may be determined after the group state is determined, and a new group state suitable for the control rule may be constructed from the group states. As a result, it is possible to obtain an additional effect that the optimum group control according to the control law can be performed.
  • 13 and 14 are diagrams schematically illustrating a hardware configuration when the autonomous distributed control device shown in FIG. 1 is actually operated.
  • FIGS. 13 and 14 may not be consistent with the configurations illustrated in FIG. 1, but the configuration exemplified in FIG. 1 is a conceptual unit. It is due to the fact that it is shown.
  • At least one configuration illustrated in FIG. 1 comprises a plurality of hardware configurations exemplified in FIGS. 13 and 14, and one configuration exemplified in FIG. 1 is composed of FIGS. 13 and 14. There are cases where a part of the hardware configurations illustrated in FIG. 1 is supported, and there are cases where a plurality of configurations exemplified in FIG. 1 are provided in one hardware configuration exemplified in FIGS. 13 and 14. Can be assumed.
  • FIG. 13 as a hardware configuration for realizing the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 in FIG. 1, a processing circuit 1102A for performing an operation and a storage capable of storing information can be stored.
  • the device 1103 is shown. These configurations are the same in other embodiments.
  • FIG. 14 shows a processing circuit 1102B that performs an operation as a hardware configuration for realizing the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 in FIG.
  • the configuration is the same in other embodiments.
  • the storage device 1103 includes, for example, a hard disk drive (Hard disk drive, that is, HDD), a random access memory (random access memory, that is, RAM), a read-only memory (read only memory, that is, ROM), a flash memory, and an erase program memory. (EPROM) and memory (storage medium) including volatile or non-volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD, etc. Alternatively, it may be any storage medium used in the future.
  • the processing circuit 1102A may execute a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like. That is, for example, it may be a central processing unit (CPU), a microprocessor, a microprocessor, or a digital signal processor (DSP).
  • CPU central processing unit
  • DSP digital signal processor
  • the control rule change determination unit 7 is realized by software, firmware, or a combination of software and firmware in which a program stored in the storage device 1103 is executed by the processing circuit 1102A.
  • the functions of the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 may be realized, for example, by coordinating a plurality of processing circuits.
  • the software and firmware may be described as a program and stored in the storage device 1103.
  • the processing circuit 1102A realizes the above function by reading and executing the program stored in the storage device 1103. That is, the storage device 1103 may store a program in which the above functions are eventually realized by being executed by the processing circuit 1102A.
  • processing circuit 1102B may be dedicated hardware. That is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an integrated circuit (application specific integrated circuit, that is, an ASIC), a field-programmable gate array (FPGA), or a circuit in which these are combined. It may be.
  • the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 are realized by operating the processing circuit 1102B.
  • the functions of the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 may be realized by separate circuits or may be realized by a single circuit.
  • the functions of the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 are partially realized in the processing circuit 1102A that executes the program stored in the storage device 1103, and some of them are dedicated. It may be realized in the processing circuit 1102B which is the hardware of the above.
  • the information acquisition unit 5 is composed of various sensors or communication receivers.
  • the autonomous decentralized control device 3 can use the state amount of the moving body 1, the state amount of another moving body, or the surroundings of the moving body 1 as information for controlling the moving body 1.
  • the group recognition unit 4 that determines whether or not to recognize the moving body 1 and other moving bodies as a group (moving body group) by using the information acquisition unit 5 for acquiring information and the information acquired by the information acquisition unit 5.
  • the integrated control unit 6 that controls the movement of the moving body 1 based on the group state that is the output of the group recognition unit 4, and the group state, the state amount of the moving body 1, the state amount of another moving body, or the movement. It is provided with a control rule change determination unit 7 for determining whether or not to change the control rule in the integrated control unit 6 based on the surrounding information of the body 1.
  • the information acquired by the information acquisition unit 5 is used to determine whether or not the moving body 1 and other moving bodies are recognized as a group (moving body group), depending on the situation. It is possible to control the movement of the moving body 1 by determining whether the control is performed as a group (moving body group) or individually.
  • the movement of the moving body 1 can be controlled by an appropriate control rule according to the situation.
  • the group recognition unit 4 recognizes a pattern of a mobile group that can be realized by the mobile group based on whether or not the mobile body 1 can acquire the state amount of another mobile body, and further, it is feasible.
  • the group recognition unit 4 recognizes a pattern of a mobile group that can be realized by the mobile group based on whether or not the mobile body 1 can acquire the state amount of another mobile body, and further, it is feasible.
  • they are based on a predetermined priority, a state amount of the moving body 1, a state amount of another moving body, or surrounding information of the moving body 1.
  • One of the patterns is determined as a group state.
  • the moving body 1 can control another moving body as a group (moving body group). Further, when there are a plurality of feasible patterns of the mobile group, the group is based on a predetermined priority, the state quantity of the mobile 1 and other mobiles, or the surrounding information of the mobile 1. By determining one state, the group state can be changed according to various purposes or situations, so that optimum group control can be executed.
  • the integrated control unit 6 is an agreement control that calculates an operation amount of the moving body 1 so as to match an arbitrary state amount of the moving body 1 with a desired state designation amount, or a position of the moving body 1 and other movements.
  • the control is performed based on the covering control, which calculates the target position in the boundary generated from the position of the body and calculates the operation amount of the moving body 1 based on the position of the moving body 1 and the target position.
  • control rules with different control purposes can be used properly, so that control can be performed according to various purposes or situations.
  • the information acquisition unit 5 receives the state amount of the moving body 1 or the state amount of the moving body 1 by communication from the direct information acquisition unit 51 that acquires the surrounding information of the moving body 1 from another moving body. It is provided with an indirect information acquisition unit 52 that acquires the state amount of the moving body or the surrounding information of the moving body 1.
  • the application area of the covering control is set based on the surrounding information of the moving body 1, and the weight function value (which defines the weight of a specific place) based on the applied area of the covering control is set.
  • the position of the center of gravity in the boundary is calculated based on the application area of the covering control, the weight function value, and the boundary, and the position of the center of gravity is set as the target position in the boundary.
  • FIG. 11 is a diagram conceptually showing an example of the configuration of the information acquisition unit 5.
  • the information acquisition unit 5 includes a direct information acquisition unit 51, an indirect information acquisition unit 52, and a communication mode switching unit 53.
  • the communication mode switching unit 53 uses the state quantity of the moving body 1 and other moving bodies, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal. Based on this, the communication mode of the indirect information acquisition unit 52 is switched.
  • the communication status between mobiles refers to, for example, signal-to-noise ratio, error rate, received power, and the like.
  • the signal-to-noise ratio is large, the error rate is small, or the received power is large, it can be said that the communication state is good.
  • the specific method of switching the communication mode will be described later.
  • the communication modes are, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), Zigbee (registered trademark), long term evolution (LTE) (registered trademark), 5G, Wi-SUN, dedicated short range communications.
  • DSRC wireless communication standard
  • 802.11p a wireless communication standard
  • the wireless communication standard not only the wireless communication standard but also a communication protocol other than the physical layer such as TCP, UDP, IP, HTTP or MQTT may be used.
  • the communication mode is not limited to these.
  • the communication mode switching unit 53 includes a first communication mode to an Nth communication mode (N is a natural number of 2 or more), and selects one of these communication modes to switch the communication mode.
  • each communication mode is associated with the state quantities of the moving body 1 and other moving bodies, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal in advance. Switch to the applicable communication mode.
  • the communication mode may be switched to a communication mode different from the current communication mode in order, and the communication mode may be switched to the communication mode having the best communication state.
  • the communication mode can be switched, for example, in the following form.
  • the communication mode before control switching To switch to communication (second communication mode) in a communication mode such as TCP / IP having an automatic retransmission request.
  • the determination of the importance of the communication frequency and the communication reliability may be determined in advance according to the control rule. For example, in the case of consensus control, even if communication with some mobiles temporarily fails, the graph can be configured and controlled using the information with the mobiles that have succeeded in communication. However, it may be judged that the communication frequency is important. Further, in the case of covering control, if communication fails and a graph in which a part is missing is constructed, the behavior may be different from the assumption. Therefore, it may be judged that communication reliability is more important than communication frequency.
  • the communication mode from the communication mode before the control switching is changed to the communication mode via the access point such as the Wi-Fi infrastructure mode. Switch to communication with. As a result, communication collisions can be efficiently avoided.
  • the judgment as to whether or not the control cycle is long may be made by judging that there are few communication partners when the control cycle is shorter than the preset threshold value.
  • the communication mode before switching the control is switched to the communication mode in which the communication directly communicates with each other without going through the access point, such as the ad hoc mode of Wi-Fi.
  • the communication delay can be shortened.
  • the communication is switched to the communication mode via the monitoring device as an access point. You may.
  • the monitoring device which is an access point, can collect information.
  • the communication mode after the control switching and the communication mode before the control switching are relatively important and the communication with the moving body having a long distance is relatively important after the control switching. If not, the communication mode before the control switching is switched to the communication mode in which the state quantities of each other are directly exchanged.
  • the communication power is relatively small, so the probability of success in communication is low, but in communication with a mobile body with a short distance, the communication power is relatively large, so communication is performed.
  • the importance can be judged by determining a threshold value in advance for the distance. For example, if the distance exceeds the threshold, it may be determined that it is not important.
  • control rule the correspondence between the control rule and the communication mode in switching is not limited to the above case.
  • the communication mode switching unit 53 uses the state amount of the moving body 1, the state amount of another moving body, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal. Switch the communication mode based on.
  • FIG. 15 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53A.
  • the communication mode switching unit 53A includes a communication performance requesting unit 531 and a communication mode selecting unit 532.
  • the communication performance requesting unit 531 communicates based on the state amount of the moving body 1, the state amount of another moving body, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal. Calculate the performance requirement.
  • Communication performance required values include, but are not limited to, communication frequency, communication distance, number of communication connections, error rate, or communication delay.
  • the communication performance of each communication mode shall be estimated in advance based on the measured value or the design value.
  • the communication mode selection unit 532 includes a first communication mode to an Nth communication mode (N is a natural number of 2 or more), and selects one of these communication modes based on the communication performance required value to select a communication mode. To switch.
  • the communication mode may be switched to a communication mode different from the current communication mode in order, and it may be determined whether or not the communication performance required value is satisfied.
  • the communication performance requirement unit 531 determines the communication performance requirement value (communication frequency) according to the control frequency of the control rule. From each communication mode, one of the communication modes satisfying the condition of "maximum control frequency ⁇ communication performance required value (communication frequency)" is selected.
  • the communication performance request unit 531 determines the value of the longest distance as the communication performance request value (communication distance) from the group state and the state quantities of the moving body 1 and other moving bodies (distance between the moving bodies).
  • the communication performance requesting unit 531 estimates the maximum communication distance in advance for each communication mode. From each communication mode, one of the communication modes satisfying the condition of "maximum communication distance ⁇ communication performance required value (communication distance)" is selected.
  • the communication performance request unit 531 determines the number of mobiles that need to communicate as the communication performance requirement value (number of communication connections) from the group state. Further, the communication performance requesting unit 531 estimates the maximum number of communication connections in advance for each communication mode. From each communication mode, select one of the communication modes that satisfy the condition of "maximum number of communication connections ⁇ communication performance required value (number of communication connections)".
  • the communication performance requirement unit 531 determines the communication performance requirement value (error rate) that can achieve stable control. In addition, the communication performance requesting unit 531 estimates in advance the maximum allowable error rate at which stable control can be achieved in each control rule. In addition, in each communication mode, the assumed error rate under the assumed conditions is estimated. From each communication mode, one of the communication modes satisfying the condition of "maximum allowable error rate ⁇ communication performance required value (error rate)" is selected.
  • the communication performance requirement unit 531 determines the communication performance requirement value (communication delay) that can achieve stable control.
  • the communication performance requesting unit 531 estimates in advance the maximum communication delay that can achieve stable control in each control rule. For example, the communication delay may be one in which the margin is subtracted from the control cycle. Further, the communication performance requesting unit 531 estimates the communication delay under the conditions assumed in advance in each communication mode. From each communication mode, one of the communication modes satisfying the condition of "maximum communication delay ⁇ communication performance required value (communication delay)" is selected.
  • the above communication performance requirement value may be calculated by multiplying by a coefficient according to the control law.
  • consensus control often has a longer communication distance between mobiles than cover control. Therefore, in order to give a margin to the communication distance as the communication performance required value, the value of the communication performance required value (communication distance) is doubled in the case of consensus control.
  • the communication performance requirement value that each control law emphasizes can be set, so that the optimum communication mode according to the control law can be determined.
  • the reliability of communication can be further improved by selecting the communication mode so as to satisfy the communication performance requirement according to the control rule or the state of the controlled object.
  • FIG. 16 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53B.
  • the communication mode switching unit 53B includes a communication performance requesting unit 531, a communication mode selecting unit 532, and a communication parameter search unit 533.
  • the communication parameter search unit 533 continuously changes a predetermined communication parameter to search for a communication parameter that satisfies the communication performance required value.
  • the communication parameters include transmission power, number of retransmissions, timeout time, Quality of Service (Quality of Service), and the like.
  • the communication parameters are not limited to these.
  • the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the communication parameters.
  • communication parameters that satisfy the communication performance requirements can be set, so communication reliability is improved. Further, by improving the reliability of communication, stable control performance can be ensured.
  • FIG. 17 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53C.
  • the communication mode switching unit 53C includes a communication performance requesting unit 531, a communication mode selection unit 532, a communication parameter search unit 533, and a communication performance comparison unit 534 in the communication mode selection unit 532. To be equipped.
  • the communication performance is compared by actually performing communication in multiple communication modes, and after confirming whether or not the requirements for communication are satisfied, communication is performed. It is desirable to switch modes and control rules.
  • the communication performance comparison unit 534 switches the communication mode by simultaneously operating a plurality of communication modes to communicate when determining a change in the control rule, and further comparing the communication performance in each communication mode. Judge whether or not to do.
  • the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the comparison result in the communication performance comparison unit 534.
  • the communication performance can be compared accurately by actually operating each communication mode and comparing the communication performance, and further, the optimum communication mode is selected. be able to. In addition, the reliability of communication is improved by this, and stable control performance can be ensured.
  • FIG. 18 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53D.
  • the communication mode switching unit 53D includes a communication performance requesting unit 531, a communication mode selection unit 532, a communication parameter search unit 533, and a communication performance comparison unit 534 in the communication mode selection unit 532.
  • a communication performance estimation unit 535 in the communication mode selection unit 532 is provided.
  • the communication performance estimation unit 535 estimates the communication performance of a communication mode different from the current communication mode, and determines whether or not to switch the communication mode.
  • the communication performance of the second communication mode the relationship between the communication performance and the request for communication based on the surrounding information, the state quantity of the moving body, or the control rule is acquired in advance by simulation or measurement, and further. , Corresponding relational expression or table, etc. can be prepared for estimation.
  • the communication performance comparison unit 534 compares the communication performance in each communication mode based on the estimation result in the communication performance estimation unit 535.
  • communication performance such as communication error rate can be estimated from the number of mobiles that communicate.
  • communication performance such as a communication error rate can be estimated from the distance to an adjacent mobile body.
  • the estimation method is not limited to these.
  • the optimum communication mode can be selected in a short time by estimating the communication performance according to the control law or the state of the controlled object.
  • the reliability of communication is improved by this, and stable control performance can be ensured.
  • FIG. 19 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53E.
  • the communication mode switching unit 53E includes a communication performance requesting unit 531, a communication mode selection unit 532, a communication parameter search unit 533, and a communication performance comparison unit 534 in the communication mode selection unit 532.
  • a communication performance estimation unit 535 in the communication mode selection unit 532 and a control parameter adjustment unit 536 to which an output from the communication performance comparison unit 534 is input are provided.
  • control parameter is, for example, a control cycle or a feedback gain.
  • control parameters are not limited to these.
  • control parameter adjusting unit 536 can improve the control performance by lengthening the control cycle in the integrated control unit 6 or reducing the feedback gain. Further, the control parameter adjusting unit 536 can improve the stability by reducing the feedback gain when the communication packet loss is large.
  • the replacement may be made across a plurality of embodiments. That is, it may be the case that the respective configurations shown in the examples in different embodiments are combined to produce the same effect.
  • the control device is a control device provided in the first mobile body, and is an information acquisition unit 5, a group recognition unit 4, a control unit, and a control rule change determination unit. 7 and.
  • the first moving body corresponds to, for example, the moving body 1.
  • the control unit corresponds to, for example, the integrated control unit 6.
  • the information acquisition unit 5 acquires the state amount of the moving body 1, the state amount of at least one second moving body which is a moving body different from the moving body 1, and the surrounding information of the moving body 1.
  • the second moving body corresponds to, for example, the moving body 2.
  • the group recognition unit 4 uses at least the state amount of the moving body 2 among the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1 acquired by the information acquisition unit 5. , It is determined whether or not the moving body 1 and the moving body 2 are recognized as a moving body group. Further, the group recognition unit 4 outputs the determination result as a group state.
  • the integrated control unit 6 controls the movement of the moving body 1 by using a control rule selected from a plurality of control rules based on the group state. Whether or not the control rule change determination unit 7 changes the control rule used in the integrated control unit 6 based on at least one of the group state, the state quantity of the moving body 2, and the surrounding information of the moving body 1. To judge. Further, the control rule change determination unit 7 outputs the determination result as a control rule change signal.
  • the integrated control unit 6 selects a control rule to be used when controlling the movement of the moving body 1 based on the control rule change signal.
  • control device includes a processing circuit 1102A for executing a program and a storage device 1103 for storing the program to be executed. Then, when the processing circuit 1102A executes the program, the following operations are realized.
  • the state amount of the moving body 1, the state amount of at least one moving body 2 which is a moving body different from the moving body 1, and the surrounding information of the moving body 1 are acquired. Then, the moving body 1 and the moving body 2 are moved by using at least the state amount of the moving body 2 among the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. Whether or not to recognize it as a group is determined, and the determination result is output as a group state. Then, based on the group state, the movement of the moving body 1 is controlled by using a control rule selected from a plurality of control rules.
  • control rule it is determined whether or not to change the control rule based on at least one of the group state, the state quantity of the moving body 2, and the surrounding information of the moving body 1, and the judgment result is the control rule. It is output as a change signal. Then, the control rule used when controlling the movement of the moving body 1 is selected based on the control rule change signal.
  • control device includes a processing circuit 1102B which is dedicated hardware. Then, the processing circuit 1102B, which is dedicated hardware, performs the following operations.
  • the state amount of the moving body 1, the state amount of at least one moving body 2 which is a moving body different from the moving body 1, and the surrounding information of the moving body 1 are acquired. Then, the moving body 1 and the moving body 2 are moved by using at least the state amount of the moving body 2 among the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. It is determined whether or not it is recognized as a group, and the determination result is output as a group state. Then, based on the group state, the movement of the moving body 1 is controlled by using a control rule selected from a plurality of control rules.
  • control rule it is determined whether or not to change the control rule based on at least one of the group state, the state quantity of the moving body 2, and the surrounding information of the moving body 1, and the judgment result is the control rule. Output as a change signal. Then, based on the control rule change signal, the control rule used when controlling the movement of the moving body 1 is selected.
  • the information acquired by the information acquisition unit 5 is used to determine whether or not the moving body 1 and other moving bodies are recognized as a group (moving body group), depending on the situation. It is possible to control the movement of the moving body 1 by determining whether the control is performed as a group (moving body group) or individually. Further, it is determined whether or not to change the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of the moving body 2, or the surrounding information of the moving body 1. Therefore, the movement of the moving body 1 can be controlled by an appropriate control rule according to the situation.
  • the group recognition unit 4 is a feasible mobile body based on whether or not the information acquisition unit 5 has acquired the state quantity of at least one mobile body 2.
  • the pattern of the group is recognized and there are a plurality of feasible patterns of the moving body group, among the predetermined priority, the state amount of the moving body 2, and the surrounding information of the moving body 1.
  • one of the feasible mobile group patterns is output as a group state. According to such a configuration, when there are a plurality of feasible mobile group patterns, the optimum group state can be set from among them. Therefore, the control performance as a group (mobile group) can be improved.
  • the integrated control unit 6 when the integrated control unit 6 is a determination result indicating that the group state recognizes the moving body 1 and the moving body 2 as the moving body group, the agreement control or The movement of the moving body 1 is controlled by using the coating control. According to such a configuration, it is possible to carry out control suitable for various purposes or situations by properly using two different types of control rules (agreement control and cover control) among the control rules suitable for group control. it can.
  • the consensus control is a virtual repulsive force between the moving body 1 and the moving body 2 according to the relative distance between the moving body 1 and the moving body 2. Is the control that causes. According to such a configuration, it is possible to avoid a collision between moving bodies by generating a repulsive force by consensus control.
  • the application area of the coating control is set based on the surrounding information of the moving body 1, and the weight of a specific place in the application area of the coating control is defined.
  • a boundary is set based on the weight function value to be applied, the weight function value, and the boundary that divides the area of the moving body 1 and the area of the moving body 2 within the application area of the covering control. It is a control that calculates the position of the center of gravity inside and sets the position of the center of gravity as the target position within the boundary. According to such a configuration, it is possible to realize a coating control that tries a desired formation based on a weighting function.
  • the information acquisition unit 5 communicates with the mobile body 2, the state amount of the moving body 1, the state amount of the moving body 2, and the moving body 1. Acquire at least one of the surrounding information.
  • the indirect information acquisition unit 52 can indirectly acquire information that cannot be acquired only by the direct information acquisition unit 51. Further, by communicating by a communication method suitable for the situation, for example, it is possible to acquire information on a long-distance moving object that is outside the detection range of the sensor.
  • the information acquisition unit 5 is added to at least one of the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1.
  • the communication mode between the mobile body 1 and the mobile body 2 is switched based on at least one of the communication state, the group state, and the control rule change signal between the mobile body 1 and the mobile body 2.
  • a communication mode switching unit 53 is provided. According to such a configuration, it is possible to switch the optimum communication mode in the group control. As a result, the reliability of communication is improved and the stability of control is improved.
  • the communication mode switching unit 53A includes a communication performance requesting unit 531 and a communication mode selecting unit 532.
  • the communication performance requesting unit 531 changes the state amount of the moving body 1, the state amount of the moving body 2, the surrounding information of the moving body 1, the communication state between the moving body 1 and the moving body 2, the group state, and the control rule.
  • the communication performance requirement value is calculated based on at least one of the signals.
  • the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value from the plurality of communication modes. According to such a configuration, when switching the control law, the communication mode can be selected so as to satisfy the communication performance requirement according to the control law and the state of the controlled object. As a result, the reliability of communication is improved and the stability of control is improved.
  • the communication mode switching unit 53B includes a communication parameter search unit 533.
  • the communication parameter search unit 533 searches for a communication parameter that satisfies the communication performance requirement value by continuously changing the communication parameter.
  • the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the communication parameters.
  • the communication mode switching unit 53C includes a communication performance comparison unit 534.
  • the communication performance comparison unit 534 operates a plurality of communication modes to communicate, and further compares the communication performance in each communication mode. Then, the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the comparison result in the communication performance comparison unit 534. According to such a configuration, when switching the control law, it is possible to make an accurate comparison by actually comparing the communication performance, and it is possible to select the optimum communication mode. As a result, the reliability of communication is improved and the stability of control is improved.
  • the communication mode switching unit 53D includes a communication performance estimation unit 535.
  • the communication performance estimation unit 535 estimates the communication performance of the communication mode.
  • the communication performance comparison unit 534 compares the communication performance in each communication mode based on the estimation result in the communication performance estimation unit 535. According to such a configuration, the optimum communication mode can be selected in a short time by estimating the communication performance according to the control law or the state of the controlled object. As a result, the reliability of communication is improved and the stability of control is improved.
  • the communication mode switching unit 53D includes a control parameter adjusting unit 536.
  • the control parameter adjusting unit 536 adjusts the control parameters in the integrated control unit 6. According to such a configuration, the stability of control is improved by changing the control parameters according to the communication performance.
  • the state amount of the moving body 1, the state amount of at least one moving body 2 which is a moving body different from the moving body 1, and the surroundings of the moving body 1. Get at least one of the information. Then, whether the moving body 1 and the moving body 2 are recognized as a moving body group by using at least one of the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. It is determined whether or not it is present, and the determination result is output as a group state. Then, based on the group state, the movement of the moving body 1 is controlled by using a control rule selected from a plurality of control rules.
  • control rule change signal it is determined whether or not to change the control rule based on at least one of the group state, the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. Moreover, the judgment result is output as a control rule change signal. Then, based on the control rule change signal, the control rule used when controlling the movement of the moving body 1 is selected.
  • the information acquired by the information acquisition unit 5 is used to determine whether or not the moving body 1 and other moving bodies are recognized as a group (moving body group), depending on the situation. It is possible to control the movement of the moving body 1 by determining whether the control is performed as a group (moving body group) or individually. Further, it is determined whether or not to change the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of the moving body 2, or the surrounding information of the moving body 1. Therefore, the movement of the moving body 1 can be controlled by an appropriate control rule according to the situation.
  • each component in the above-described embodiment is a conceptual unit, and within the scope of the technique disclosed in the present specification, one component is composed of a plurality of structures. And the case where one component corresponds to a part of a structure, and further, the case where a plurality of components are provided in one structure.
  • each component in the above-described embodiment shall include a structure having another structure or shape as long as it exhibits the same function.
  • each component described in the above-described embodiment is assumed to be software or firmware and corresponding hardware, and in both concepts, each component is a "part”. Alternatively, it is referred to as a "processing circuit” or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Provided is a highly versatile technology for controlling a plurality of moving bodies. This control device is provided with: an information acquisition unit; a group recognition unit which uses information acquired by the information acquisition unit to output a group status indicating whether or not a first moving body and a second moving body are to be recognized as constituting a moving body group; a control unit which, on the basis of the group status, controls the movement of the first moving body using a control rule selected from among a plurality of control rules; and a control rule change determination unit which outputs a control rule change signal indicating whether or not the control rule is to be changed. On the basis of the control rule change signal, the control unit selects the control rule to be used when controlling the movement of the first moving body.

Description

制御装置、および、制御方法Control device and control method
 本願明細書に開示される技術は、移動体の制御装置、および、移動体の制御方法に関するものである。 The technology disclosed in the present specification relates to a mobile body control device and a mobile body control method.
 ドローンを用いる領域探索、工場でのロボットを用いる自動搬送、または、自動車の隊列走行などを行う技術分野において、複数の移動体を群(移動体群)として連携させることで、所定の目的を効率よく達成する方法が提案されている。 In the technical field of area search using drones, automatic transportation using robots in factories, or platooning of automobiles, by linking multiple moving objects as a group (moving object group), a predetermined purpose can be achieved efficiently. A well-achieved method has been proposed.
 このような複数の移動体を制御する方法としては、すべての移動体を一括で制御可能な中央管理システムを用いる方法と、個々の移動体が個々に制御演算を行う自律分散システムを用いる方法とがある。 As a method of controlling a plurality of such moving bodies, there are a method of using a central management system capable of controlling all moving bodies at once, and a method of using an autonomous decentralized system in which each moving body performs a control operation individually. There is.
 このうち、一括管理が不要な自律分散システムには、周囲の環境に対する集中管理または情報処理などをせずとも、個々の移動体が適応的なふるまいをすることで群(移動体群)としての制御ができるという汎用性の高さがある(たとえば、特許文献1を参照)。 Of these, for autonomous decentralized systems that do not require centralized management, individual mobiles can behave adaptively as a group (mobile group) without centralized management or information processing of the surrounding environment. It has a high degree of versatility that it can be controlled (see, for example, Patent Document 1).
特開2017-62768号公報Japanese Unexamined Patent Publication No. 2017-62768
 群(移動体群)としての制御方法に関して、たとえば、特許文献1では、故障または通信の切断によって群(移動体群)が分断された場合にそれを復旧させるための制御則についての記載がある。 Regarding the control method as a group (mobile group), for example, Patent Document 1 describes a control rule for recovering a group (mobile group) when the group (mobile group) is divided due to a failure or disconnection of communication. ..
 しかしながら、特許文献1に示された方法は、目的または状況に合わせて制御則を変更するものでないため、汎用性に劣るという問題があった。 However, the method shown in Patent Document 1 has a problem that it is inferior in versatility because it does not change the control rule according to the purpose or the situation.
 本願明細書に開示される技術は、以上に記載されたような問題を鑑みてなされたものであり、高い汎用性を有する、複数の移動体の制御技術を提供することを目的とするものである。 The technology disclosed in the present specification has been made in view of the problems described above, and an object thereof is to provide a control technology for a plurality of mobile objects having high versatility. is there.
 本願明細書に開示される技術の第1の態様は、第1の移動体に設けられる制御装置であり、前記第1の移動体の状態量、前記第1の移動体とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、前記第1の移動体の周囲情報を取得するための情報取得部と、前記情報取得部において取得された前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの、少なくとも前記第2の移動体の状態量を用いて、前記第1の移動体と前記第2の移動体とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力するための群認識部と、前記群状態に基づいて、複数の制御則から選択される制御則を用いて前記第1の移動体の運動を制御するための制御部と、前記群状態、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、前記制御部において用いられる前記制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力するための制御則変更判断部とを備え、前記制御部は、前記制御則変更信号に基づいて、前記第1の移動体の運動を制御する際に用いる前記制御則を選択する。 The first aspect of the technique disclosed in the present specification is a control device provided in the first moving body, in which the state quantity of the first moving body is different from that of the first moving body. A state quantity of at least one second moving body, an information acquisition unit for acquiring information on the surroundings of the first moving body, and a state of the first moving body acquired by the information acquisition unit. The first moving body and the first moving body are used by using at least the state amount of the second moving body among the amount, the state amount of the second moving body, and the surrounding information of the first moving body. It is selected from a plurality of control rules based on a group recognition unit for determining whether or not to recognize the two moving bodies as a moving body group and outputting the determination result as a group state, and the group state. Of the control unit for controlling the movement of the first moving body, the group state, the state amount of the second moving body, and the surrounding information of the first moving body using the control law. A control rule change determination unit for determining whether or not to change the control law used in the control unit and outputting the determination result as a control law change signal is provided based on at least one of the above. The control unit selects the control rule to be used when controlling the movement of the first moving body based on the control rule change signal.
 本願明細書に開示される技術の第2の態様は、第1の移動体の状態量、前記第1の移動体とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、前記第1の移動体の周囲情報を取得し、前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの、少なくとも前記第2の移動体の状態量を用いて、前記第1の移動体と前記第2の移動体とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力し、前記群状態に基づいて、複数の制御則から選択される制御則を用いて前記第1の移動体の運動を制御し、前記群状態、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、前記制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力し、前記制御則変更信号に基づいて、前記第1の移動体の運動を制御する際に用いる前記制御則を選択する。 A second aspect of the technique disclosed herein is a state quantity of a first mobile body, a state quantity of at least one second mobile body that is a mobile body different from the first mobile body, and. , At least of the state amount of the first moving body, the state amount of the second moving body, and the surrounding information of the first moving body by acquiring the surrounding information of the first moving body. Using the state quantity of the second moving body, it is determined whether or not the first moving body and the second moving body are recognized as a moving body group, and the determination result is output as a group state. Then, based on the group state, the movement of the first moving body is controlled by using a control rule selected from a plurality of control rules, and the group state, the state quantity of the second moving body, and the state amount of the second moving body are controlled. Based on at least one of the surrounding information of the first moving body, it is determined whether or not to change the control law, and the determination result is output as a control law change signal, and the control law change signal is output. Based on the above, the control rule used when controlling the movement of the first moving body is selected.
 本願明細書に開示される技術の第1の態様は、第1の移動体に設けられる制御装置であり、前記第1の移動体の状態量、前記第1の移動体とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、前記第1の移動体の周囲情報を取得するための情報取得部と、前記情報取得部において取得された前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの、少なくとも前記第2の移動体の状態量を用いて、前記第1の移動体と前記第2の移動体とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力するための群認識部と、前記群状態に基づいて、複数の制御則から選択される制御則を用いて前記第1の移動体の運動を制御するための制御部と、前記群状態、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、前記制御部において用いられる前記制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力するための制御則変更判断部とを備え、前記制御部は、前記制御則変更信号に基づいて、前記第1の移動体の運動を制御する際に用いる前記制御則を選択する。このような構成によれば、情報取得部が取得した情報を用いて、第1の移動体および第2の移動体を移動体群と認識するか否かを判定することで、状況に応じて移動体群としての制御とするか、個別での制御とするかを判断して第1の移動体の運動を制御することができる。さらに、群状態、または、第1の移動体の状態量、第2の移動体の状態量、または、第1の移動体の周囲情報に基づいて、制御部における制御則を変更するか否かを判断することで、状況に応じた適切な制御則によって第1の移動体の運動を制御することができる。 The first aspect of the technique disclosed in the present specification is a control device provided in the first moving body, in which the state quantity of the first moving body is different from that of the first moving body. A state quantity of at least one second moving body, an information acquisition unit for acquiring information on the surroundings of the first moving body, and a state of the first moving body acquired by the information acquisition unit. The first moving body and the first moving body are used by using at least the state amount of the second moving body among the amount, the state amount of the second moving body, and the surrounding information of the first moving body. It is selected from a plurality of control rules based on a group recognition unit for determining whether or not to recognize the two moving bodies as a moving body group and outputting the determination result as a group state, and the group state. Of the control unit for controlling the movement of the first moving body, the group state, the state amount of the second moving body, and the surrounding information of the first moving body using the control law. A control rule change determination unit for determining whether or not to change the control law used in the control unit and outputting the determination result as a control law change signal is provided based on at least one of the above. The control unit selects the control rule to be used when controlling the movement of the first moving body based on the control rule change signal. According to such a configuration, the information acquired by the information acquisition unit is used to determine whether or not to recognize the first moving body and the second moving body as a moving body group, depending on the situation. It is possible to control the movement of the first moving body by determining whether the control is performed as a group of moving bodies or individually. Further, whether or not to change the control rule in the control unit based on the group state, the state amount of the first moving body, the state amount of the second moving body, or the surrounding information of the first moving body. By determining, the movement of the first moving body can be controlled by an appropriate control rule according to the situation.
 本願明細書に開示される技術の第2の態様は、第1の移動体の状態量、前記第1の移動体とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、前記第1の移動体の周囲情報を取得し、前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの、少なくとも前記第2の移動体の状態量を用いて、前記第1の移動体と前記第2の移動体とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力し、前記群状態に基づいて、複数の制御則から選択される制御則を用いて前記第1の移動体の運動を制御し、前記群状態、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、前記制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力し、前記制御則変更信号に基づいて、前記第1の移動体の運動を制御する際に用いる前記制御則を選択する。このような構成によれば、情報取得部が取得した情報を用いて、第1の移動体および第2の移動体を移動体群と認識するか否かを判定することで、状況に応じて移動体群としての制御とするか、個別での制御とするかを判断して第1の移動体の運動を制御することができる。さらに、群状態、または、第1の移動体の状態量、第2の移動体の状態量、または、第1の移動体の周囲情報に基づいて、制御部における制御則を変更するか否かを判断することで、状況に応じた適切な制御則によって第1の移動体の運動を制御することができる。 A second aspect of the technique disclosed herein is a state quantity of a first mobile body, a state quantity of at least one second mobile body that is a mobile body different from the first mobile body, and. , At least of the state amount of the first moving body, the state amount of the second moving body, and the surrounding information of the first moving body by acquiring the surrounding information of the first moving body. Using the state quantity of the second moving body, it is determined whether or not the first moving body and the second moving body are recognized as a moving body group, and the determination result is output as a group state. Then, based on the group state, the movement of the first moving body is controlled by using a control rule selected from a plurality of control rules, and the group state, the state quantity of the second moving body, and the state amount of the second moving body are controlled. Based on at least one of the surrounding information of the first moving body, it is determined whether or not to change the control law, and the determination result is output as a control law change signal, and the control law change signal is output. Based on the above, the control rule used when controlling the movement of the first moving body is selected. According to such a configuration, the information acquired by the information acquisition unit is used to determine whether or not to recognize the first moving body and the second moving body as a moving body group, depending on the situation. It is possible to control the movement of the first moving body by determining whether the control is performed as a group of moving bodies or individually. Further, whether or not to change the control rule in the control unit based on the group state, the state amount of the first moving body, the state amount of the second moving body, or the surrounding information of the first moving body. By determining, the movement of the first moving body can be controlled by an appropriate control rule according to the situation.
 また、本願明細書に開示される技術に関連する目的と、特徴と、局面と、利点とは、以下に示される詳細な説明と添付図面とによって、さらに明白となる。 Further, the objectives, features, aspects, and advantages related to the technology disclosed in the present specification will be further clarified by the detailed description and the accompanying drawings shown below.
実施の形態に関する、移動体群の自律分散制御装置、および、その制御対象である移動体を概念的に示す図である。It is a figure which conceptually shows the autonomous decentralized control device of a mobile body group, and the mobile body which is the control target with respect to embodiment. 複数の移動体の例を示す図である。It is a figure which shows the example of a plurality of moving bodies. 実施の形態に関する、制御則の切り替え動作の例を示すフローチャートである。It is a flowchart which shows the example of the switching operation of the control rule which concerns on embodiment. 群状態を説明するための図である。It is a figure for demonstrating the group state. 群状態を説明するための図である。It is a figure for demonstrating the group state. 実施の形態に関する、群状態の例を示す図である。It is a figure which shows the example of the group state which concerns on embodiment. 実施の形態に関する、群状態の例を示す図である。It is a figure which shows the example of the group state which concerns on embodiment. 実施の形態に関する、群状態の例を示す図である。It is a figure which shows the example of the group state which concerns on embodiment. 実施の形態に関する、群状態の例を示す図である。It is a figure which shows the example of the group state which concerns on embodiment. 実施の形態に関する、群状態の例を示す図である。It is a figure which shows the example of the group state which concerns on embodiment. 情報取得部の構成の例を概念的に示す図である。It is a figure which shows the example of the structure of the information acquisition part conceptually. 被覆制御の適用領域および境界の例を示す図である。It is a figure which shows the example of the application area and the boundary of the coating control. 図1に例が示される自律分散制御装置を実際に運用する場合のハードウェア構成を概略的に例示する図である。It is a figure which schematically exemplifies the hardware configuration in the case of actually operating the autonomous distributed control system shown in FIG. 図1に例が示される自律分散制御装置を実際に運用する場合のハードウェア構成を概略的に例示する図である。It is a figure which schematically exemplifies the hardware configuration in the case of actually operating the autonomous distributed control system shown in FIG. 実施の形態に関する、通信モード切り替え部の構成の例を概念的に示す図である。It is a figure which conceptually shows the example of the structure of the communication mode switching part which concerns on embodiment. 実施の形態に関する、通信モード切り替え部の構成の例を概念的に示す図である。It is a figure which conceptually shows the example of the structure of the communication mode switching part which concerns on embodiment. 実施の形態に関する、通信モード切り替え部の構成の例を概念的に示す図である。It is a figure which conceptually shows the example of the structure of the communication mode switching part which concerns on embodiment. 実施の形態に関する、通信モード切り替え部の構成の例を概念的に示す図である。It is a figure which conceptually shows the example of the structure of the communication mode switching part which concerns on embodiment. 実施の形態に関する、通信モード切り替え部の構成の例を概念的に示す図である。It is a figure which conceptually shows the example of the structure of the communication mode switching part which concerns on embodiment.
 以下、添付される図面を参照しながら実施の形態について説明する。以下の実施の形態では、技術の説明のために詳細な特徴なども示されるが、それらは例示であり、実施の形態が実施可能となるためにそれらすべてが必ずしも必須の特徴ではない。 Hereinafter, embodiments will be described with reference to the attached drawings. In the following embodiments, detailed features and the like are also shown for the purpose of explaining the technique, but they are examples, and not all of them are necessarily essential features in order for the embodiments to be feasible.
 なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、または、構成の簡略化が図面においてなされるものである。また、異なる図面にそれぞれ示される構成などの大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。また、断面図ではない平面図などの図面においても、実施の形態の内容を理解することを容易にするために、ハッチングが付される場合がある。 It should be noted that the drawings are shown schematically, and for convenience of explanation, the configuration is omitted or the configuration is simplified as appropriate in the drawings. Further, the interrelationship between the sizes and positions of the configurations and the like shown in the different drawings is not always accurately described and can be changed as appropriate. Further, even in a drawing such as a plan view which is not a cross-sectional view, hatching may be added in order to facilitate understanding of the contents of the embodiment.
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。 Further, in the explanation shown below, similar components are illustrated with the same reference numerals, and their names and functions are also the same. Therefore, detailed description of them may be omitted to avoid duplication.
 また、以下に記載される説明において、ある構成要素を「備える」、「含む」または「有する」などと記載される場合、特に断らない限りは、他の構成要素の存在を除外する排他的な表現ではない。 In addition, in the description described below, when it is described that a certain component is "equipped", "included", or "has", the existence of another component is excluded unless otherwise specified. Not an expression.
 また、以下に記載される説明において、「第1の」または「第2の」などの序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序などに限定されるものではない。 Also, even if ordinal numbers such as "first" or "second" are used in the description described below, these terms make it easy to understand the content of the embodiment. It is used for convenience, and is not limited to the order that can be generated by these ordinal numbers.
 <第1の実施の形態>
 以下、本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。
<First Embodiment>
Hereinafter, the autonomous distributed control device and the autonomous distributed control method according to the present embodiment will be described.
 <自律分散制御装置の構成について>
 図1は、本実施の形態に関する移動体群の自律分散制御装置3、および、その制御対象である移動体1を概念的に示す図である。また、図2は、複数の移動体の例を示す図である。
<About the configuration of the autonomous distributed control device>
FIG. 1 is a diagram conceptually showing an autonomous distributed control device 3 of a mobile body group and a mobile body 1 to be controlled thereof according to the present embodiment. Further, FIG. 2 is a diagram showing an example of a plurality of moving bodies.
 図1に例が示されるように、自律分散制御装置3は、群認識部4と、情報取得部5と、統合制御部6と、制御則変更判断部7とを備える。さらに、統合制御部6は、合意制御部61と、被覆制御部62と、運動制御部63とを備える。 As an example is shown in FIG. 1, the autonomous distributed control device 3 includes a group recognition unit 4, an information acquisition unit 5, an integrated control unit 6, and a control rule change determination unit 7. Further, the integrated control unit 6 includes a consensus control unit 61, a covering control unit 62, and a motion control unit 63.
 図1および図2に例が示された本実施の形態における移動体1は、たとえば、二輪ロボットとする。また、図2に例が示される、移動体1に隣接する移動体2も、たとえば、二輪ロボットとする。 The moving body 1 in the present embodiment whose example is shown in FIGS. 1 and 2 is, for example, a two-wheeled robot. Further, the moving body 2 adjacent to the moving body 1 as shown in FIG. 2 is also a two-wheeled robot, for example.
 ただし、本実施の形態では移動体1および移動体2を二輪ロボットとしたが、たとえば、四輪の自動車、人工衛星またはドローンなど、アクチュエータ駆動によって所定の位置および姿勢に制御される移動体であればどのようなものであってもよい。また、移動体1と移動体2とは、同じ種類の移動体に限られるものではない。 However, in the present embodiment, the moving body 1 and the moving body 2 are two-wheeled robots, but any moving body such as a four-wheeled automobile, an artificial satellite, or a drone, which is controlled to a predetermined position and orientation by actuator drive. It can be anything. Further, the moving body 1 and the moving body 2 are not limited to the same type of moving body.
 また、上記の「隣接する」とは、移動体1と移動体2とが所定の空間内に存在することを意味する。 Further, the above-mentioned "adjacent" means that the moving body 1 and the moving body 2 exist in a predetermined space.
 図3は、本実施の形態に関する制御則の切り替え動作の例を示すフローチャートである。図3に例が示されるように、本実施の形態に関する制御則の切り替え動作では、まず、移動体(移動体1)の状態量および周囲情報を取得する(図3におけるステップST01)。そして、これらに基づいて群状態を判定する(図3におけるステップST02)。 FIG. 3 is a flowchart showing an example of a control rule switching operation according to the present embodiment. As an example is shown in FIG. 3, in the control rule switching operation according to the present embodiment, first, the state quantity and surrounding information of the moving body (moving body 1) are acquired (step ST01 in FIG. 3). Then, the group state is determined based on these (step ST02 in FIG. 3).
 次に、群(移動体群)とみなす他の移動体(移動体2)が存在するか否かを判定する(図3におけるステップST03)。そして、他の移動体(移動体2)が存在する場合、すなわち、図3に例が示されるステップST03から分岐する「YES」に対応する場合には、図3に例が示されるステップST04へ進む。一方で、他の移動体(移動体2)が存在しない場合、すなわち、図3に例が示されるステップST03から分岐する「NO」に対応する場合には、図3に例が示されるステップST05に進む。 Next, it is determined whether or not there is another moving body (moving body 2) regarded as a group (moving body group) (step ST03 in FIG. 3). Then, when another moving body (moving body 2) exists, that is, when it corresponds to "YES" branching from step ST03 whose example is shown in FIG. 3, the process proceeds to step ST04 whose example is shown in FIG. move on. On the other hand, when there is no other moving body (moving body 2), that is, when it corresponds to "NO" branching from step ST03 shown in FIG. 3, an example is shown in step ST05. Proceed to.
 そして、ステップST04に進んだ場合、これらの移動体を群(移動体群)とみなす制御(群制御)を行う。この場合、異なる制御目的を有する制御則である、合意制御または被覆制御のいずれかを、目的または状況に応じて選択して移動体(移動体1)の運動制御を行う。ここで、合意制御とは、複数の制御対象(移動体)の状態を同じ値に収束させる制御をいう。また、被覆制御とは、与えられた領域を最適に被覆するように移動体を制御するものをいう。 Then, when the process proceeds to step ST04, control (group control) is performed to regard these moving bodies as a group (moving body group). In this case, the motion control of the moving body (moving body 1) is performed by selecting either consensus control or covering control, which are control rules having different control purposes, according to the purpose or the situation. Here, the consensus control means a control that converges the states of a plurality of controlled objects (moving bodies) to the same value. Further, the coating control refers to controlling a moving body so as to optimally cover a given region.
 一方で、ステップST05に進んだ場合、他の移動体(移動体2)の状態量には依存しない単独制御(具体的には、経路追従制御)によって、移動体(移動体1)の運動制御を行う。詳細を以下で説明する。 On the other hand, when the process proceeds to step ST05, the motion control of the moving body (moving body 1) is performed by independent control (specifically, path tracking control) that does not depend on the state quantity of the other moving body (moving body 2). I do. Details will be described below.
 図1における群認識部4は、後述する情報取得部5において取得された情報に基づいて、移動体1と移動体2とを、群(移動体群)とみなして制御するか否かを判定する。 The group recognition unit 4 in FIG. 1 determines whether or not to control the moving body 1 and the moving body 2 as a group (moving body group) based on the information acquired by the information acquisition unit 5 described later. To do.
 群認識部4は、まず、情報取得部5において取得された情報に基づいて、移動体1が移動体2の状態量を取得していることを、これらを群(移動体群)とみなす判定条件の1つとする。 First, the group recognition unit 4 determines that the moving body 1 has acquired the state quantity of the moving body 2 based on the information acquired by the information acquisition unit 5, and regards these as a group (moving body group). It is one of the conditions.
 当該条件には、移動体2の状態量に基づいて、移動体2が異常な挙動をしていないことを加えてもよい。 It may be added to the condition that the moving body 2 does not behave abnormally based on the state quantity of the moving body 2.
 さらに、群認識部4は、移動体1の状態量または移動体2の状態量に応じて、これらを群(移動体群)とみなすか否かを判定してもよい。たとえば、移動体1と移動体2との間の位置関係または距離に基づいて判定する場合、移動体間の距離が大きく離れていれば群(移動体群)とみなさず、移動体間の距離が近ければ群(移動体群)とみなす。 Further, the group recognition unit 4 may determine whether or not to consider these as a group (moving body group) according to the state amount of the moving body 1 or the state amount of the moving body 2. For example, when making a judgment based on the positional relationship or distance between the moving body 1 and the moving body 2, if the distance between the moving bodies is large, it is not regarded as a group (moving body group) and the distance between the moving bodies. If they are close to each other, they are regarded as a group (mobile group).
 また、複数の移動体を群(移動体群)とみなすか否かの判定条件は、これらの移動体の相対速度であってもよい。たとえば、複数の移動体間の相対速度が0よりも小さい場合、移動体1と移動体2との間の距離は縮んでいくため、群(移動体群)とみなすことができる。反対に、複数の移動体間の相対速度が0よりも大きい場合、移動体1と移動体2との間の距離は離れていくため、群(移動体群)とみなさない。上記では、相対速度を0と比較して判定されたが、任意の閾値を設定して判定に用いてもよい。 Further, the condition for determining whether or not to consider a plurality of moving bodies as a group (moving body group) may be the relative speed of these moving bodies. For example, when the relative velocity between a plurality of moving bodies is smaller than 0, the distance between the moving body 1 and the moving body 2 decreases, so that it can be regarded as a group (moving body group). On the contrary, when the relative velocity between the plurality of moving bodies is larger than 0, the distance between the moving body 1 and the moving body 2 increases, so that the group (moving body group) is not regarded. In the above, the relative speed is compared with 0 for the determination, but an arbitrary threshold value may be set and used for the determination.
 また、移動体の現在の状態量から未来の状態量を推定し、さらに、未来の状態量に基づいて複数の移動体を群(移動体群)とみなすか否かを判定してもよい。未来の状態量に基づいて判定を行うことで、より早く制御目的を達成するような群制御を実現することができる。 Further, the future state quantity may be estimated from the current state quantity of the moving body, and further, it may be determined whether or not a plurality of moving bodies are regarded as a group (moving body group) based on the future state quantity. By making a judgment based on the future state quantity, it is possible to realize group control that achieves the control purpose faster.
 また、複数の状態量を用いる評価関数を設定し、評価関数の値がしきい値以上だった場合に、複数の移動体を群(移動体群)とみなしてもよい。 Further, an evaluation function using a plurality of state quantities may be set, and when the value of the evaluation function is equal to or greater than the threshold value, a plurality of moving objects may be regarded as a group (moving object group).
 さらに、群認識部4は、情報取得部5において取得された周囲の情報(周囲情報)に基づいて、複数の移動体を群(移動体群)とみなすか否かを判定してもよい。たとえば、狭い通路では、複数の移動体が一直線上に並ぶことが望ましいため、移動体1の前後に配置される移動体2を群(移動体群)とみなせばよい。また、移動体が密集しやすい場所では、衝突を回避するために、移動体1から一定の範囲内に存在する他の移動体をすべて群(移動体群)とみなしてもよい。 Further, the group recognition unit 4 may determine whether or not to consider a plurality of moving objects as a group (moving body group) based on the surrounding information (surrounding information) acquired by the information acquisition unit 5. For example, in a narrow passage, it is desirable that a plurality of moving bodies are lined up in a straight line. Therefore, the moving bodies 2 arranged before and after the moving body 1 may be regarded as a group (moving body group). Further, in a place where moving bodies are likely to be crowded, in order to avoid a collision, all other moving bodies existing within a certain range from the moving body 1 may be regarded as a group (moving body group).
 以上に例が示された「群とみなす条件」が成立した場合に、群認識部4は、移動体1と移動体2とが群(移動体群)であることを群状態として出力する。 When the "condition to be regarded as a group" shown in the above example is satisfied, the group recognition unit 4 outputs that the moving body 1 and the moving body 2 are a group (moving body group) as a group state.
 図4および図5は、群状態を説明するための図である。図4に例が示されるように、移動体1に対して、他の移動体2A、移動体2B、移動体2Cおよび移動体2Dが配置されている場合、図4の状態から図5の状態へと、一直線上に並ぶ配置とすることを考える。 4 and 5 are diagrams for explaining the group state. As an example is shown in FIG. 4, when another moving body 2A, moving body 2B, moving body 2C and moving body 2D are arranged with respect to the moving body 1, the state of FIG. 4 to the state of FIG. 5 Consider arranging them in a straight line.
 図6、図7、図8、図9および図10は、本実施の形態に関する群状態の例を示す図である。図6は、図4に示された状態で、移動体1が群(移動体群)とみなす対象(他の移動体)を示している。図6において、矢印が移動体1から移動体2Aに、移動体1から移動体2Bに、移動体1から移動体2Cにそれぞれ向かっており、これらは、移動体1が移動体2A、移動体2Bおよび移動体2Cを群(移動体群)とみなしていることを示している。 6, FIG. 7, FIG. 8, FIG. 9 and FIG. 10 are diagrams showing examples of group states according to the present embodiment. FIG. 6 shows an object (another moving body) that the moving body 1 considers as a group (moving body group) in the state shown in FIG. In FIG. 6, the arrows point from the moving body 1 to the moving body 2A, from the moving body 1 to the moving body 2B, and from the moving body 1 to the moving body 2C, in which the moving body 1 is the moving body 2A and the moving body 2C. It shows that 2B and mobile 2C are regarded as a group (mobile group).
 ここで、移動体2Aは、あらかじめ設定された行動指令、または、逐次更新される行動指令に基づいて、独立して行動するものとする。このような移動体をリーダー機と呼ぶ。図6には、移動体2Aを始点とする矢印は示されておらず、これはすなわち、移動体2Aが独立して行動するリーダー機であることを示している。 Here, the moving body 2A shall act independently based on a preset action command or a sequentially updated action command. Such a moving body is called a leader machine. In FIG. 6, an arrow starting from the moving body 2A is not shown, which means that the moving body 2A is a leader machine that acts independently.
 移動体2B、移動体2Cおよび移動体2Dは、それぞれ移動体1と同一の自律分散制御装置3を有するものとする。移動体1の自律分散制御装置3は、隣接する移動体2A、移動体2B、移動体2Cおよび移動体2Dに対して、群(移動体群)とみなすか否かの判定を行う。 It is assumed that the moving body 2B, the moving body 2C, and the moving body 2D each have the same autonomous distributed control device 3 as the moving body 1. The autonomous decentralized control device 3 of the moving body 1 determines whether or not the adjacent moving body 2A, moving body 2B, moving body 2C, and moving body 2D are regarded as a group (moving body group).
 まず、自律分散制御装置3は、情報取得部5において取得された情報に基づいて移動体1が他の移動体の状態量を取得することができるか否かを判定し、さらに、当該判定結果に基づいて、移動体1と他の移動体とを群(移動体群)とみなすか否かを判定して、群状態を決定する。 First, the autonomous decentralized control device 3 determines whether or not the moving body 1 can acquire the state amount of another moving body based on the information acquired by the information acquisition unit 5, and further, the determination result. Based on, it is determined whether or not the moving body 1 and another moving body are regarded as a group (moving body group), and the group state is determined.
 ここでは、移動体1が、移動体2A、移動体2B、移動体2Cおよび移動体2Dのすべての状態量を取得することができるものとする。 Here, it is assumed that the moving body 1 can acquire all the state quantities of the moving body 2A, the moving body 2B, the moving body 2C, and the moving body 2D.
 群(移動体群)とみなす対象によって実現可能な移動体群のパターンが複数存在するため、群認識部4は、それらのパターンのうちから1つを群状態として決定する。 Since there are a plurality of patterns of the mobile group that can be realized by the target regarded as the group (mobile group), the group recognition unit 4 determines one of these patterns as the group state.
 たとえば、移動体2Aを、移動体1の後ろに位置する他の移動体とし、移動体1は移動体2Aを群(移動体群)とみなす。また、移動体2Bおよび移動体2Cを、それぞれ移動体1の前に位置する移動体として、移動体1は移動体2Bおよび移動体2Cを群(移動体群)とみなす。一方で、移動体2Dは、移動体2Bおよび移動体2Cと比べて移動体1から離れた位置にあるため、移動体1は移動体2Dを群(移動体群)とみなさない。 For example, the moving body 2A is regarded as another moving body located behind the moving body 1, and the moving body 1 regards the moving body 2A as a group (moving body group). Further, the moving body 2B and the moving body 2C are regarded as moving bodies located in front of the moving body 1, respectively, and the moving body 1 regards the moving body 2B and the moving body 2C as a group (moving body group). On the other hand, since the moving body 2D is located at a position farther from the moving body 1 than the moving body 2B and the moving body 2C, the moving body 1 does not consider the moving body 2D as a group (moving body group).
 同様に、移動体1と同じ自律分散制御装置3を有する移動体2B、移動体2Cおよび移動体2Dも、それぞれが他の移動体を群(移動体群)とみなすか否かの判定を行う。 Similarly, the mobile body 2B, the moving body 2C, and the moving body 2D having the same autonomous decentralized control device 3 as the moving body 1 also determine whether or not each of the other moving bodies is regarded as a group (moving body group). ..
 図7は、図4に示された状態で、移動体2Bが群(移動体群)とみなす対象(他の移動体)を示している。図7において、矢印が移動体2Bから移動体1に、移動体2Bから移動体2Cにそれぞれ向かっており、これらは、移動体2Bが移動体1および移動体2Cを群(移動体群)とみなしていることを示している。 FIG. 7 shows an object (another moving body) that the moving body 2B considers as a group (moving body group) in the state shown in FIG. In FIG. 7, the arrows point from the moving body 2B to the moving body 1 and from the moving body 2B to the moving body 2C, respectively, in which the moving body 2B refers to the moving body 1 and the moving body 2C as a group (moving body group). It shows that it is regarded.
 図8は、図4に示された状態で、移動体2Cが群(移動体群)とみなす対象(他の移動体)を示している。図8において、矢印が移動体2Cから移動体1に、移動体2Cから移動体2Bにそれぞれ向かっており、これらは、移動体2Cが移動体1および移動体2Bを群(移動体群)とみなしていることを示している。 FIG. 8 shows an object (another moving body) that the moving body 2C considers as a group (moving body group) in the state shown in FIG. In FIG. 8, the arrows point from the moving body 2C to the moving body 1 and from the moving body 2C to the moving body 2B, respectively, in which the moving body 2C refers to the moving body 1 and the moving body 2B as a group (moving body group). It shows that it is regarded.
 図9は、図4に示された状態で、移動体2Dが群(移動体群)とみなす対象(他の移動体)を示している。図9において、矢印が移動体2Dから移動体2Cに向かっており、これは、移動体2Dが移動体2Cを群(移動体群)とみなしていることを示している。 FIG. 9 shows an object (another moving body) that the moving body 2D considers as a group (moving body group) in the state shown in FIG. In FIG. 9, the arrow points from the moving body 2D to the moving body 2C, which indicates that the moving body 2D considers the moving body 2C as a group (moving body group).
 図10は、図6、図7、図8および図9にそれぞれ示された矢印を重ね合わせて、群全体の制御構造の例を示す図である。 FIG. 10 is a diagram showing an example of a control structure of the entire group by superimposing the arrows shown in FIGS. 6, 7, 8 and 9, respectively.
 ここで、移動体2Aは、移動体1、移動体2B、移動体2Cおよび移動体2Dを群(移動体群)として認識していないが、独立に行動する移動体2Aに対して移動体1が協調して行動をすることで、移動体群としての制御を実現することができる。 Here, the moving body 2A does not recognize the moving body 1, the moving body 2B, the moving body 2C, and the moving body 2D as a group (moving body group), but the moving body 1 with respect to the moving body 2A acting independently. By acting in cooperation with each other, control as a mobile group can be realized.
 また、移動体1と移動体2Dとは互いに群(移動体群)とみなしていないが、移動体2Dは、移動体1を群(移動体群)とみなして運動制御している移動体2Bおよび移動体2Cを群(移動体群)とみなしている。したがって、移動体1と移動体2Dとは互いに群(移動体群)とみなしていないが、間接的に作用し合い、移動体群としての制御を実現することができる。 Further, although the moving body 1 and the moving body 2D are not regarded as a group (moving body group), the moving body 2D regards the moving body 1 as a group (moving body group) and controls the movement of the moving body 2B. And the mobile 2C is regarded as a group (mobile group). Therefore, although the moving body 1 and the moving body 2D are not regarded as a group (moving body group), they can indirectly interact with each other to realize control as a moving body group.
 ここで、図10において、矢印が移動体1から移動体2Aに向かっているが、移動体2Aから移動体1には向かっていない(有向グラフ)。これに対し、移動体1と移動体2Bとは、相互に矢印が向き合っている(無向グラフ)。相互に群(移動体群)とみなし合っている(すなわち、無向グラフである)ことで、群制御としての制御性能を向上させることができる。 Here, in FIG. 10, the arrow points from the moving body 1 to the moving body 2A, but does not point from the moving body 2A to the moving body 1 (directed graph). On the other hand, the moving body 1 and the moving body 2B have arrows facing each other (undirected graph). The control performance as a group control can be improved by regarding each other as a group (mobile group) (that is, an undirected graph).
 一方、群(移動体群)と認識する対象が多いほど群(移動体群)が大きくなるが、それに伴って移動体同士がやり取りする情報量が多くなるため、通信での情報の送受信に遅延が発生する場合がある。さらに、それぞれの移動体の運動制御に関する演算量も増大するため、群認識部4によって群(移動体群)とみなす対象を分別し対象の数を少なくすることで、通信の遅延の回避または演算量の低減を実現することもできる。 On the other hand, the larger the number of objects recognized as a group (mobile group), the larger the group (mobile group), but the amount of information exchanged between the mobiles increases accordingly, so the transmission and reception of information in communication is delayed. May occur. Further, since the amount of calculation related to the motion control of each moving body also increases, the group recognition unit 4 separates the objects to be regarded as a group (moving body group) and reduces the number of objects to avoid or calculate the communication delay. It is also possible to realize a reduction in the amount.
 図11は、情報取得部5の構成の例を概念的に示す図である。図11に例が示されるように、情報取得部5は、直接情報取得部51と、間接情報取得部52と、通信モード切り替え部53とを備える。 FIG. 11 is a diagram conceptually showing an example of the configuration of the information acquisition unit 5. As an example is shown in FIG. 11, the information acquisition unit 5 includes a direct information acquisition unit 51, an indirect information acquisition unit 52, and a communication mode switching unit 53.
 情報取得部5は、移動体1を制御するための情報として、移動体1および他の移動体の状態量、または、移動体1の周囲情報を取得する。 The information acquisition unit 5 acquires the state quantity of the moving body 1 and other moving bodies, or the surrounding information of the moving body 1 as information for controlling the moving body 1.
 直接情報取得部51は、移動体1の状態量、または、移動体1の周囲情報を取得する。たとえば、移動体1の状態量として、移動体1の位置情報をglobal positioning system(GPS)によって取得する。 The direct information acquisition unit 51 acquires the state quantity of the moving body 1 or the surrounding information of the moving body 1. For example, as the state quantity of the moving body 1, the position information of the moving body 1 is acquired by the global positioning system (GPS).
 また、直接情報取得部51は、移動体1と他の移動体との間の相対距離、または、移動体1から見た他の移動体の相対位置を、カメラ、ミリ波またはレーダなどによって取得する。ここで、移動体1と他の移動体との間の相対距離は、移動体1および他の移動体の状態量である。なお、相対距離、相対位置および相対速度は、移動体1および他の移動体の双方に関連する状態量であるため、移動体1(第1の移動体)の状態量でもあり他の移動体(第2の移動体)の状態量でもある。 Further, the direct information acquisition unit 51 acquires the relative distance between the moving body 1 and the other moving body, or the relative position of the other moving body as seen from the moving body 1 by a camera, millimeter wave, radar, or the like. To do. Here, the relative distance between the moving body 1 and the other moving body is the state quantity of the moving body 1 and the other moving body. Since the relative distance, the relative position, and the relative speed are state quantities related to both the moving body 1 and the other moving body, they are also the state quantities of the moving body 1 (first moving body) and other moving bodies. It is also the state quantity of (second moving body).
 また、直接情報取得部51は、GPSまたは上記のセンサーなどから得られた情報に基づいて、状態量の推定式を用いて移動体1の状態量を取得する。 Further, the direct information acquisition unit 51 acquires the state quantity of the moving body 1 by using the state quantity estimation formula based on the information obtained from GPS or the above sensor.
 なお、上記では位置の情報を例としたが、使用するセンサーの種類を使い分けることによって、直接情報取得部51は、速度または加速度などの様々な状態量を取得することができる。 Although the position information is taken as an example in the above, the information acquisition unit 51 can directly acquire various state quantities such as velocity or acceleration by properly using the type of sensor to be used.
 また、直接情報取得部51は、移動体1の周囲情報として、地図情報または障害物の情報を取得する。 Further, the direct information acquisition unit 51 acquires map information or obstacle information as surrounding information of the moving body 1.
 間接情報取得部52は、他の移動体との通信を介して、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報を取得する。 The indirect information acquisition unit 52 acquires the state amount of the moving body 1, the state amount of the other moving body, or the surrounding information of the moving body 1 through communication with another moving body.
 移動体1が直接情報取得部51において取得された情報だけでなく、他の移動体から通信を介して情報を取得することで、さらに多くの情報を取得できる。また、これらの情報に基づいて制御を行うことができるので、特に群(移動体群)として制御する場合に制御性能が向上する。 More information can be acquired by the mobile body 1 acquiring not only the information directly acquired by the information acquisition unit 51 but also the information from another mobile body via communication. Further, since control can be performed based on this information, the control performance is improved particularly when controlling as a group (moving body group).
 なお、相対距離または相対位置に関する情報は、直接情報取得部51で取得されてもよいし、間接情報取得部52で取得された情報に基づいて演算されてもよい。 The information regarding the relative distance or the relative position may be acquired by the direct information acquisition unit 51, or may be calculated based on the information acquired by the indirect information acquisition unit 52.
 たとえば、移動体1の位置に関する情報は、直接情報取得部51でGPSによって取得する。また、他の移動体の位置に関する情報は、間接情報取得部52で他の移動体からの通信によって取得する。その後、移動体1の位置と他の移動体の位置とを用いて、それらの相対距離または相対位置を計算することができる。 For example, the information regarding the position of the moving body 1 is directly acquired by the information acquisition unit 51 by GPS. Further, the indirect information acquisition unit 52 acquires information on the position of the other mobile body by communication from the other mobile body. After that, the relative distance or relative position of the moving body 1 can be calculated using the position of the moving body 1 and the position of another moving body.
 統合制御部6は、前述の群状態に基づいて、移動体1の運動制御を行う。統合制御部6では、2種類以上の制御則を有し、制御則を変更するか否かの判断は、制御則変更判断部7で行う。 The integrated control unit 6 controls the movement of the moving body 1 based on the above-mentioned group state. The integrated control unit 6 has two or more types of control rules, and the control rule change determination unit 7 determines whether or not to change the control law.
 制御則変更判断部7は、群状態、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報に基づいて統合制御部6における制御則を変更するか否かを判断し、さらに、判断結果を制御則変更信号として出力する。 Whether or not the control rule change determination unit 7 changes the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of another moving body, or the surrounding information of the moving body 1. Is determined, and the determination result is output as a control rule change signal.
 本実施の形態では、統合制御部6は3種類の制御則を有し、制御則変更判断部7は、対応する3種類の制御則変更信号を出力する。 In the present embodiment, the integrated control unit 6 has three types of control rules, and the control rule change determination unit 7 outputs the corresponding three types of control rule change signals.
 制御則変更判断部7は、群状態が、他の移動体を群(移動体群)と認識していない状態である場合は、制御則変更信号=1を出力し、群状態が、他の移動体を群(移動体群)と認識している状態である場合は、制御則変更信号=2または制御則変更信号=3を出力する。 When the group state is a state in which another moving body is not recognized as a group (moving body group), the control rule change determination unit 7 outputs a control rule change signal = 1, and the group state is another. When the moving body is recognized as a group (moving body group), the control rule change signal = 2 or the control rule change signal = 3 is output.
 そして、制御則変更信号=2である場合には後述する合意制御を行い、制御則変更信号=3である場合には後述する被覆制御を行うように、制御則変更信号を運動制御部63に出力する。 Then, when the control rule change signal = 2, the consensus control described later is performed, and when the control rule change signal = 3, the covering control described later is performed, and the control rule change signal is sent to the motion control unit 63. Output.
 ここで、群(移動体群)としての制御則(合意制御および被覆制御)の切り替えについて説明する。 Here, switching of control rules (consensus control and cover control) as a group (mobile group) will be described.
 <切り替え条件1>
 切り替え条件1では、群状態に基づいて、合意制御と被覆制御とを切り替える。具体的には、群状態から、群(移動体群)とみなしている他の移動体が一定数以上である場合に合意制御とし、群(移動体群)とみなしている他の移動体が一定数未満である場合に被覆制御とする。
<Switching condition 1>
In the switching condition 1, the consensus control and the covering control are switched based on the group state. Specifically, from the group state, when the number of other moving bodies regarded as a group (moving body group) is a certain number or more, the consensus control is applied, and the other moving bodies regarded as a group (moving body group) If it is less than a certain number, the coating is controlled.
 合意制御では、より多くの対象(移動体)を群(移動体群)とみなして制御することで、制御の収束性が向上する利点がある。一方、被覆制御では、近隣に位置する少数の移動体に対して境界を設定して制御すればよいので、少数であっても十分に群(移動体群)としての制御を行うことができる。 In consensus control, there is an advantage that the convergence of control is improved by controlling more objects (moving bodies) as a group (moving body group). On the other hand, in the covering control, it is sufficient to set a boundary for a small number of moving bodies located in the vicinity and control the covering, so that even a small number of moving bodies can be sufficiently controlled as a group (moving body group).
 <切り替え条件2>
 切り替え条件2では、移動体1および他の移動体の状態量に基づいて、合意制御と被覆制御とを切り替える。たとえば、相対距離がしきい値以上に離れている場合には、合意制御とすることで、相対距離を任意の距離に調整することができる。また、相対速度がしきい値以上である場合には、今後相対距離が大きくなることが予想されるため、合意制御とすることで、相対距離が大きくなることを防ぐことができる。
<Switching condition 2>
In the switching condition 2, the consensus control and the covering control are switched based on the state quantities of the moving body 1 and other moving bodies. For example, when the relative distance is more than the threshold value, the relative distance can be adjusted to an arbitrary distance by using consensus control. Further, when the relative speed is equal to or higher than the threshold value, it is expected that the relative distance will increase in the future. Therefore, by using consensus control, it is possible to prevent the relative distance from increasing.
 一方、相対距離がしきい値未満である場合には、被覆制御とする。被覆制御では、移動体間の距離が短い場合に、移動体同士が近づきすぎないように適度な距離を保つことができる。この場合、合意制御のように適度な相対距離を設定する必要はなく、互いの位置関係によって移動体間の距離を決定することができる。 On the other hand, if the relative distance is less than the threshold value, covering control is applied. In the coating control, when the distance between the moving bodies is short, it is possible to maintain an appropriate distance so that the moving bodies do not come too close to each other. In this case, it is not necessary to set an appropriate relative distance as in the consensus control, and the distance between the moving bodies can be determined by the mutual positional relationship.
 <切り替え条件3>
 切り替え条件3では、移動体1の周囲情報に基づいて、合意制御と被覆制御とを切り替える。たとえば、周囲の空間が狭くなっていることをセンサーによって検知した場合、被覆制御を用いる。被覆制御では、移動体間の距離が近い場合に、移動体同士が近づきすぎないよう適度な距離を保つことができる。この場合、合意制御のように適度な相対距離を設定する必要はなく、互いの位置関係によって移動体間の距離を決定することができる。
<Switching condition 3>
In the switching condition 3, the consensus control and the covering control are switched based on the surrounding information of the moving body 1. For example, when the sensor detects that the surrounding space is narrow, covering control is used. In the coating control, when the distances between the moving bodies are short, it is possible to maintain an appropriate distance so that the moving bodies do not come too close to each other. In this case, it is not necessary to set an appropriate relative distance as in the consensus control, and the distance between the moving bodies can be determined by the mutual positional relationship.
 一方、周囲が広い場合には、合意制御を用いる。合意制御では、広い空間に複数の移動体が広がりすぎないよう、任意の値を設定して移動体間の距離を制御することができる。 On the other hand, if the surrounding area is wide, consensus control is used. In the consensus control, it is possible to control the distance between the moving bodies by setting an arbitrary value so that the plurality of moving bodies do not spread too much in a wide space.
 なお、周囲情報は、インフラ設備から通信によって受け取ってもよいし、あらかじめ設定された地図情報を利用してもよい。また、空間の広さに限らず、障害物の有無によって制御則を切り替えてもよい。 The surrounding information may be received from the infrastructure equipment by communication, or preset map information may be used. Further, the control rule may be switched depending on the presence or absence of an obstacle, not limited to the size of the space.
 また、制御則の切り替え条件は、上記で説明された切り替え条件1、切り替え条件2および切り替え条件3の組み合わせであってもよい。たとえば、群状態から、群(移動体群)と認識する他の移動体の数と、他の移動体との間の距離とを参照して密度を算出し、当該密度がしきい値以上である場合には被覆制御に切り替える。 Further, the switching condition of the control rule may be a combination of the switching condition 1, the switching condition 2 and the switching condition 3 described above. For example, from the group state, the density is calculated by referring to the number of other moving bodies recognized as a group (moving body group) and the distance between the other moving bodies, and the density is equal to or higher than the threshold value. If there is, switch to coating control.
 また、近隣の他の移動体の制御則を通信を介して取得し、他の移動体の制御則に応じて移動体1の制御則を切り替えてもよい。たとえば、近隣の他の移動体が合意制御で運動制御されているならば、移動体1の制御則も合意制御とする。こうして、同じ制御則で群(移動体群)としての制御を行うことで、制御性能を向上させることができる。 Further, the control law of another moving body in the vicinity may be acquired via communication, and the control law of the moving body 1 may be switched according to the control law of the other moving body. For example, if other moving bodies in the vicinity are controlled by consensus control, the control rule of the moving body 1 is also consensus control. In this way, the control performance can be improved by controlling the group (moving body group) according to the same control rule.
 統合制御部6における運動制御部63は、制御則変更判断部7の出力である制御則変更信号を受け取って、制御則を変更する。 The motion control unit 63 in the integrated control unit 6 receives the control rule change signal which is the output of the control rule change determination unit 7 and changes the control rule.
 制御則変更信号=1の場合、運動制御部63は、移動体1が他の移動体の状態量に依存せず、指定した地点に移動体1が移動するように移動体1の運動制御を行う。たとえば、指定した地点と移動体1の位置が一致するようにproportional-integral-differential controller(PID)制御器を構成し、移動体1の操作量を演算する。 When the control rule change signal = 1, the motion control unit 63 controls the motion of the moving body 1 so that the moving body 1 moves to a designated point without depending on the state quantity of the other moving body. Do. For example, a proportional-integral-diffrential control controller (PID) controller is configured so that the designated point and the position of the moving body 1 match, and the operation amount of the moving body 1 is calculated.
 制御則変更信号=2の場合、運動制御部63は、後述する合意制御部61から出力される操作量に基づいて、移動体1の運動制御を行う。合意制御部61では、移動体1の任意の状態量を所望の状態指定量に一致させるように、移動体1の操作量を演算する。合意制御の詳細については後述する。 When the control rule change signal = 2, the motion control unit 63 controls the motion of the moving body 1 based on the operation amount output from the consensus control unit 61 described later. The consensus control unit 61 calculates the operation amount of the moving body 1 so as to match an arbitrary state amount of the moving body 1 with a desired state designation amount. The details of consensus control will be described later.
 制御則変更信号=3の場合、運動制御部63は、後述する被覆制御部62から出力される操作量に基づいて、移動体1の運動制御を行う。被覆制御部62では、移動体1の位置と他の移動体の位置とから生成される境界内の目標位置を演算し、移動体1の位置と目標位置とに基づいて移動体1の操作量を演算する。被覆制御の詳細については後述する。 When the control rule change signal = 3, the motion control unit 63 controls the motion of the moving body 1 based on the operation amount output from the covering control unit 62 described later. The covering control unit 62 calculates a target position within the boundary generated from the position of the moving body 1 and the position of another moving body, and operates the moving body 1 based on the position of the moving body 1 and the target position. Is calculated. The details of the coating control will be described later.
 なお、上記では、移動体1の操作量は目標速度とするが、目標速度の代わりに目標加速度などの他の操作量であってもよい。また、複数の操作量の組み合わせであってもよい。 In the above, the operation amount of the moving body 1 is the target speed, but other operation amounts such as the target acceleration may be used instead of the target speed. Further, it may be a combination of a plurality of operation amounts.
 統合制御部6における運動制御部63では、前述の操作量である目標速度を移動体1の現在の位置に加算し、新たな位置指令とする。さらに、新たな位置指令と移動体1の位置との偏差をPID制御器に通すことで、移動体1の位置を制御する。このようにして、運動制御部63は、移動体1の運動制御を行う。 In the motion control unit 63 in the integrated control unit 6, the target speed, which is the above-mentioned operation amount, is added to the current position of the moving body 1 to obtain a new position command. Further, the position of the moving body 1 is controlled by passing the deviation between the new position command and the position of the moving body 1 through the PID controller. In this way, the motion control unit 63 controls the motion of the moving body 1.
 <合意制御について>
 合意制御は、群認識部4で群(移動体群)と認識された対象に対し、移動体1の状態量と他の移動体の状態量との差分を、所望の状態量指定値に一致させる制御である。本実施の形態では、移動体1および他の移動体の状態量を、移動体の位置とする。移動体1の状態量と他の移動体の状態量との差分は、相対位置に相当する。以下では、図6を参照しつつ説明する。
<About consensus control>
In the agreement control, the difference between the state amount of the moving body 1 and the state amount of another moving body is matched with the desired state amount specified value for the target recognized as the group (moving body group) by the group recognition unit 4. It is a control to make. In the present embodiment, the state quantities of the moving body 1 and other moving bodies are defined as the positions of the moving bodies. The difference between the state quantity of the moving body 1 and the state quantity of the other moving body corresponds to the relative position. Hereinafter, description will be made with reference to FIG.
 移動体1と、移動体2A、移動体2B、移動体2Cおよび2Dとに、それぞれ番号づけをする。そして、移動体1はk=1、移動体2Aはk=2、移動体2Bはk=3、移動体2Cはk=4、移動体2Dはk=5とする。 The moving body 1 and the moving body 2A, the moving body 2B, the moving body 2C and the 2D are numbered respectively. The moving body 1 is k = 1, the moving body 2A is k = 2, the moving body 2B is k = 3, the moving body 2C is k = 4, and the moving body 2D is k = 5.
 それぞれの移動体のダイナミクスは、以下の式(1-1)および式(1-2)の状態方程式で表すことができる。ここで、x(t)は、k番の移動体の位置ベクトルであり、u(t)は、k番の移動体の制御入力ベクトルであり、AおよびBは、k番の移動体のパラメータ行列であり、x0は、k番の移動体の初期位置ベクトルである。また、位置ベクトルは、2次元平面の場合は、x(t)=(pxk,pyk)である。 The dynamics of each moving body can be expressed by the equations of state of the following equations (1-1) and (1-2). Here, x k (t) is the position vector of the moving object number k, u k (t) is the control input vector of the moving object in the k-th, A k and B k are the k-th It is a parameter matrix of the moving body, and x k 0 is the initial position vector of the moving body No. k. The position vector, in the case of two-dimensional plane, an x k (t) = (p xk, p yk).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、移動体1について考える。移動体1の状態量と他の移動体の状態量との差分は、以下の式(1-3)で表すことができる。 Here, consider the moving body 1. The difference between the state quantity of the moving body 1 and the state quantity of the other moving body can be expressed by the following equation (1-3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 相対位置に相当するZ1jは、センサーなどを用いて取得されてもよいし、移動体1の位置と他の移動体の位置との差分を演算してもよい。 Z 1j corresponding to the relative position may be acquired by using a sensor or the like, or the difference between the position of the moving body 1 and the position of another moving body may be calculated.
 この場合、所望の状態指定値d1j=(dx1j、dyij)を、それぞれの他の移動体2A、移動体2B、移動体2Cおよび移動体2Dに対して設定する。 In this case, the desired state specified value d 1j = (d x1j, d yij) of the respective other mobile 2A, mobile 2B, set to the mobile 2C and mobile 2D.
 さらに、操作量uを下記の式(1-4)を用いて演算することによって、xijとdijとが一致するように移動体1を制御するための操作量uを演算することができる。なお、式(1-3)は、図6に示された例では、下記の式(1-5)となる。 Further, by calculating the manipulated variable u using the following equation (1-4), the manipulated variable u for controlling the moving body 1 so that x ij and dig match can be calculated. .. The formula (1-3) is the following formula (1-5) in the example shown in FIG.
 ここで、aijは、群状態から群(移動体群)とみなす移動体は1、群(移動体群)とみなさない移動体は0として設定する。図6に示された例では、移動体2A、移動体2B、移動体2Cおよび移動体2Dを群(移動体群)とみなすので、a12、a13、a14=1であり、a15=0である。すなわち、群(移動体群)とみなさない移動体2Dの状態量に移動体1は依存しない。 Here, a ij is set as 1 for a moving body that is regarded as a group (moving body group) from the group state, and 0 for a moving body that is not regarded as a group (moving body group). In the example shown in FIG. 6, since the moving body 2A, the moving body 2B, the moving body 2C and the moving body 2D are regarded as a group (moving body group), a 12 , a 13 , a 14 = 1 and a 15 = 0. That is, the moving body 1 does not depend on the state quantity of the moving body 2D which is not regarded as a group (moving body group).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、所望の状態指定値d1jがゼロベクトルである場合は、移動体1の位置と他の移動体の位置とが一致するように制御する。また、所望の状態指定値d1jがゼロベクトルでない場合は、X軸方向に|dx1j|、Y軸方向に|dy1j|だけ距離を空けて配置するように制御する。 Here, when the desired state designation value d 1j is a zero vector, control is performed so that the position of the moving body 1 and the position of the other moving body match. If the desired state designation value d 1j is not a zero vector, it is controlled so as to be arranged with a distance of | d x1j | in the X-axis direction and | d y1j | in the Y-axis direction.
 たとえば、図5に示されるように複数の移動体を一列に配置するためには、dx1jを0でない定数とし、dy1jを0とすればよい。このような構成で、移動体2Aの位置を基準として、複数の移動体を一列に配置することができる。 For example, in order to arrange a plurality of moving bodies in a row as shown in FIG. 5, d x1j may be a non-zero constant and dy1j may be 0. With such a configuration, a plurality of moving bodies can be arranged in a row with reference to the position of the moving body 2A.
 さらに、式(1-4)に、他の移動体jに対する移動体1の斥力U1jを加えた式(1-6)としてもよい。斥力U1jは、たとえば、式(1-7)のように、調整ゲインbを相対距離|Z1j|で除して演算する。 Further, the equation (1-6) may be obtained by adding the repulsive force U 1j of the moving body 1 to the other moving body j to the equation (1-4). The repulsive force U 1j is calculated by dividing the adjustment gain b by the relative distance | Z 1j |, as in the equation (1-7), for example.
 これによって、相対距離が小さくなるほど、つまり、移動体iと移動体jとが接近するほど斥力U1jが大きくなるので、衝突を回避することができる。 As a result, the smaller the relative distance, that is, the closer the moving body i and the moving body j are, the larger the repulsive force U 1j is, so that collision can be avoided.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、上記の例では、一致させる状態量を移動体の位置としたが、一致させる状態量を移動体の速度としてもよい。また、移動体の位置と移動体の速度との両方を一致させる状態量としてもよい。 In the above example, the matching state quantity is used as the position of the moving body, but the matching state quantity may be used as the speed of the moving body. Further, it may be a state quantity that matches both the position of the moving body and the speed of the moving body.
 <被覆制御について>
 以下では、被覆制御部62の説明をする。被覆制御部62では、群認識部4で認識された群(移動体群)となる対象に対し、直接情報取得部51または間接情報取得部52において得られた情報に基づいて制御を行う。
<About coating control>
Hereinafter, the covering control unit 62 will be described. The covering control unit 62 controls the target to be the group (moving body group) recognized by the group recognition unit 4 based on the information obtained by the direct information acquisition unit 51 or the indirect information acquisition unit 52.
 ここで、被覆制御とは、移動体1の位置と他の移動体の位置とから生成する境界内の目標位置を演算し、移動体1の位置と目標位置とに基づいて移動体1の操作量を演算する制御である。被覆制御は、移動体1と他の移動体とを境界で区切られた領域で分けて考えることで、移動体間での衝突を回避しやすいなどの利点がある。 Here, the covering control calculates the target position in the boundary generated from the position of the moving body 1 and the position of another moving body, and operates the moving body 1 based on the position of the moving body 1 and the target position. It is a control to calculate the quantity. The covering control has an advantage that it is easy to avoid a collision between the moving bodies by considering the moving body 1 and the other moving bodies separately in a region separated by a boundary.
 被覆制御では、まず、移動体1の周囲の情報(周囲情報)に基づいて、被覆制御の適用領域を設定する。被覆制御の適用領域は、あらかじめ設定されていてもよいし、外部からの通信によって取得されるものであってもよい。 In the covering control, first, the application area of the covering control is set based on the information around the moving body 1 (surrounding information). The application area of the covering control may be set in advance or may be acquired by communication from the outside.
 図12は、被覆制御の適用領域および境界の例を示す図である。被覆制御の適用領域は、移動体1と他の移動体とが範囲内に含まれる領域であることを前提とする。 FIG. 12 is a diagram showing an example of an application area and a boundary of coating control. It is assumed that the application area of the covering control is an area in which the moving body 1 and other moving bodies are included in the range.
 たとえば、図12に例が示されるように、ある時刻tにおける移動体1の位置を中心とする、1辺がW[m]である正方形の領域を被覆制御の適用領域として設定する。そして、1辺の長さWは、他の移動体が範囲内に含まれるように設定する。 For example, as an example in FIG. 12 is shown, centered on the position of the moving body 1 at a certain time t 1, 1 side sets the square area is W [m] as an application region of the coating control. Then, the length W of one side is set so that the other moving body is included in the range.
 ここでは、説明の簡単化のため、一度設定された被覆制御の適用領域は変更されないものとして扱うが、移動体1および他の移動体の状態量、または、移動体1の周囲情報に基づいて変更されてもよい。 Here, for the sake of simplification of the explanation, the application area of the covering control once set is treated as unchanged, but based on the state quantity of the moving body 1 and other moving bodies or the surrounding information of the moving body 1. May be changed.
 被覆制御の適用領域は、移動体1の周囲情報に基づいて設定される。移動体1の周囲情報としては、たとえば、地図情報を用いる。なお、地図情報は、あらかじめ移動体1に設定されていてもよいし、外部からの通信によって取得されてもよい。 The application area of the coating control is set based on the surrounding information of the moving body 1. For example, map information is used as the surrounding information of the moving body 1. The map information may be set in the moving body 1 in advance, or may be acquired by communication from the outside.
 地図情報に基づいて、たとえば、室内である場合には部屋の大きさから正方形の1辺の長さWを決定する。なお、被覆制御の適用領域は正方形に限られるものではなく、長方形または円などであってもよい。また、屋外である場合には、移動体1の周囲にある障害物に基づいて被覆制御の適用領域が設定されてもよい。また、道路上を走行する移動体である場合には、地図情報として道幅または車線数などの道路情報を利用してもよい。 Based on the map information, for example, in the case of a room, the length W of one side of the square is determined from the size of the room. The application area of the coating control is not limited to a square, but may be a rectangle, a circle, or the like. Further, in the case of being outdoors, the application area of the covering control may be set based on the obstacles around the moving body 1. Further, in the case of a moving body traveling on a road, road information such as a road width or the number of lanes may be used as map information.
 次に、移動体1の位置と他の移動体の位置とから境界100を設定する。境界100は、被覆制御の適用領域内を、移動体1の領域と他の移動体の領域とに分割するものである。被覆制御の適用領域の分割の仕方は特に限定されるものではないが、たとえば、移動体1の位置と他の移動体の位置との垂直二等分線を境界100として、被覆制御の適用領域を分割する。 Next, the boundary 100 is set from the position of the moving body 1 and the position of another moving body. The boundary 100 divides the application region of the covering control into a region of the moving body 1 and a region of another moving body. The method of dividing the application area of the covering control is not particularly limited, but for example, the application area of the covering control is set with the perpendicular bisector between the position of the moving body 1 and the position of the other moving body as the boundary 100. To split.
 他の移動体が複数存在する場合、たとえば、3体の他の移動体が存在する場合には、図12に例が示されるように、移動体2A、移動体2Bおよび移動体2Cそれぞれに対して、移動体1の領域と移動体2Aの領域との間、移動体1の領域と移動体2Bの領域との間、移動体1の領域と移動体2Cの領域との間で分割し、被覆制御の適用領域を全部で4つに分割する。 When there are a plurality of other moving bodies, for example, when there are three other moving bodies, as shown in FIG. 12, for each of the moving body 2A, the moving body 2B, and the moving body 2C, as shown in FIG. Then, it is divided between the area of the moving body 1 and the area of the moving body 2A, the area of the moving body 1 and the area of the moving body 2B, and the area of the moving body 1 and the area of the moving body 2C. The application area of the coating control is divided into four in total.
 被覆制御の適用領域の分割の仕方は、たとえば、ボロノイ分割を用いる。このとき、移動体1は、群状態の中からドロネー三角形でつながる対象を探し、ボロノイ分割を行う。 For example, Voronoi division is used as a method of dividing the application area of the coating control. At this time, the moving body 1 searches for an object connected by a Delaunay triangle from the group state, and performs Voronoi division.
 そして、被覆制御の適用領域に基づく重み関数値を設定することで、移動体群の所望のフォーメーションを実現する。 Then, by setting the weight function value based on the application area of the covering control, the desired formation of the moving body group is realized.
 たとえば、被覆制御の適用領域内で、複数の移動体が均等に広がるようにしたい場合には、以下の式(2-1)の重み関数φ(q)から重み関数値を求める。ここで、qは被覆制御の適用領域内の点の座標を表す。 For example, when it is desired to spread a plurality of moving objects evenly within the application area of the covering control, the weighting function value is obtained from the weighting function φ (q) of the following equation (2-1). Here, q represents the coordinates of a point in the application area of the covering control.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、被覆制御の適用領域内で、複数の移動体が特定の場所に集まるような動きをさせたい場合には、たとえば、重み関数を以下の式(2-2)で設定する。この重み関数φ(q)では、任意の地点の座標pに向かって重み関数の値が小さくなるように設定されている。rは重み関数の値を調整するための変数である。この重み関数に限らず、特定の場所の重み関数の値が大きく、または、小さくなるように設定することで、所望の配置を実現するための重み関数を設定することができる。 In addition, when it is desired to make a plurality of moving objects gather at a specific place within the application area of the covering control, for example, the weighting function is set by the following equation (2-2). In this weighting function φ (q), the value of the weighting function is set so as to decrease toward the coordinates p at an arbitrary point. r is a variable for adjusting the value of the weight function. Not limited to this weighting function, a weighting function for realizing a desired arrangement can be set by setting the value of the weighting function at a specific location to be large or small.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 そして、被覆制御の適用領域と重み関数値と境界とに基づいて境界内の重心位置を演算し、この重心位置を境界内の目標位置Dとする。さらに、移動体1の位置と目標位置Dとに基づいて移動体1の操作量を演算する。 Then, it calculates the center of gravity of the boundary on the basis of the application area and the weighting function values and the boundary of the coating control, the center of gravity position and the target position D 1 of the within the boundary. Further, the operation amount of the moving body 1 is calculated based on the position of the moving body 1 and the target position D 1 .
 被覆制御の適用領域を境界で区切った場合、移動体1が存在する境界内を領域Cとする。領域Cを剛体とし、重み関数φ(q)を密度分布として考えると、以下の式(2-3)で表されるmass(C)は質量、cent(C)は領域Cの重心位置に相当する。 If separated application area of the coating controlled at the boundary to the inside of the boundary moving body 1 is present a region C 1. Considering the region C 1 as a rigid body and the weight function φ (q) as the density distribution, the mass (C 1 ) represented by the following equation (2-3) is the mass, and the cent (C 1 ) is the region C 1 . Corresponds to the position of the center of gravity.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 被覆制御の操作量は、以下の式(2-4)で演算する。ここで、kは被覆制御の制御ゲインであり、移動体1の位置xと目標位置である重心位置Dとの偏差に基づいて操作量uを演算する。 The operation amount of the coating control is calculated by the following equation (2-4). Here, k is the control gain of the covering control, and the operation amount u 1 is calculated based on the deviation between the position x 1 of the moving body 1 and the center of gravity position D 1 which is the target position.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 以上の構成によって、被覆制御の適用領域と重み関数値とを所望のフォーメーションに合わせて設定し、これらに基づいて算出された境界内の重心位置を目標位置とすることで、所望のフォーメーションをためす被覆制御を実現することができる。 With the above configuration, the application area of the covering control and the weight function value are set according to the desired formation, and the center of gravity position within the boundary calculated based on these is set as the target position to obtain the desired formation. Covering control can be realized.
 なお、被覆制御の適用領域または重み関数は、周辺の移動体内で通信によって共有されてもよい。被覆制御の適用領域または重み関数を共有することによって群(移動体群)としての連携が強まり、群制御の性能が向上する。 Note that the application area or weighting function of the covering control may be shared by communication in the surrounding moving body. By sharing the application area or weighting function of the covering control, the cooperation as a group (mobile group) is strengthened, and the performance of the group control is improved.
 また、移動体の位置は、絶対座標系で表されてもよいし、ある任意の点を基準とする相対座標系で表されてもよい。移動体の位置を相対座標系で表す場合、基準となる点を決めて、そこを原点とする座標系とすればよい。たとえば、基準となる物体が移動体である場合、絶対座標系から見た相対座標系の原点が基準となる移動体の速度に合わせて移動することになる。 Further, the position of the moving body may be represented by an absolute coordinate system or a relative coordinate system based on an arbitrary point. When the position of a moving body is represented by a relative coordinate system, a reference point may be determined and the coordinate system may be set to that as the origin. For example, when the reference object is a moving body, the origin of the relative coordinate system seen from the absolute coordinate system moves according to the speed of the reference moving body.
 間接情報取得部52は、移動体1が移動体2から通信によって情報を取得するための機能部である。そのため、たとえば、移動体1が移動体2Aの情報を直接情報取得部51によって得ることができなかったとしても、移動体2Bが移動体2Aの情報を取得することができている場合には、移動体1は、移動体2Aの情報を移動体2Bから通信によって間接的に取得することができる。 The indirect information acquisition unit 52 is a functional unit for the mobile body 1 to acquire information from the mobile body 2 by communication. Therefore, for example, even if the moving body 1 cannot directly obtain the information of the moving body 2A by the information acquisition unit 51, if the moving body 2B can acquire the information of the moving body 2A, for example, The mobile body 1 can indirectly acquire the information of the mobile body 2A from the mobile body 2B by communication.
 間接情報取得部52を備えることによって、直接情報取得部51だけでは取得することができない情報も、間接的に取得することができる。さらに、状況に適した通信方式によって通信を行うことで、たとえば、センサーの検知範囲外となる遠距離の移動体の情報も取得することができる。 By providing the indirect information acquisition unit 52, it is possible to indirectly acquire information that cannot be acquired only by the direct information acquisition unit 51. Further, by communicating by a communication method suitable for the situation, for example, it is possible to acquire information on a long-distance moving object that is outside the detection range of the sensor.
 また、上記では、群状態が決定された後に制御則が決定されたが、決定の態様はこれに限られるものではない。たとえば、群状態が決定された後に制御則を決定し、群状態の中から制御則に適する新たな群状態を構成してもよい。これによって、制御則に応じた最適な群制御を実施することができるという追加効果を得ることができる。 Further, in the above, the control rule is determined after the group state is determined, but the mode of determination is not limited to this. For example, the control law may be determined after the group state is determined, and a new group state suitable for the control rule may be constructed from the group states. As a result, it is possible to obtain an additional effect that the optimum group control according to the control law can be performed.
 <自律分散制御装置のハードウェア構成について>
 図13および図14は、図1に例が示される自律分散制御装置を実際に運用する場合のハードウェア構成を概略的に例示する図である。
<Hardware configuration of autonomous distributed control device>
13 and 14 are diagrams schematically illustrating a hardware configuration when the autonomous distributed control device shown in FIG. 1 is actually operated.
 なお、図13および図14に例示されるハードウェア構成は、図1に例示される構成とは数などが整合しない場合があるが、これは図1に例示される構成が概念的な単位を示すものであることに起因する。 The hardware configurations illustrated in FIGS. 13 and 14 may not be consistent with the configurations illustrated in FIG. 1, but the configuration exemplified in FIG. 1 is a conceptual unit. It is due to the fact that it is shown.
 よって、少なくとも、図1に例示される1つの構成が、図13および図14に例示される複数のハードウェア構成から成る場合と、図1に例示される1つの構成が、図13および図14に例示されるハードウェア構成の一部に対応する場合と、さらには、図1に例示される複数の構成が、図13および図14に例示される1つのハードウェア構成に備えられる場合とが想定され得る。 Therefore, at least one configuration illustrated in FIG. 1 comprises a plurality of hardware configurations exemplified in FIGS. 13 and 14, and one configuration exemplified in FIG. 1 is composed of FIGS. 13 and 14. There are cases where a part of the hardware configurations illustrated in FIG. 1 is supported, and there are cases where a plurality of configurations exemplified in FIG. 1 are provided in one hardware configuration exemplified in FIGS. 13 and 14. Can be assumed.
 図13では、図1中の群認識部4、統合制御部6および制御則変更判断部7を実現するためのハードウェア構成として、演算を行う処理回路1102Aと、情報を記憶することができる記憶装置1103とが示される。これらの構成は、他の実施の形態においても同様である。 In FIG. 13, as a hardware configuration for realizing the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 in FIG. 1, a processing circuit 1102A for performing an operation and a storage capable of storing information can be stored. The device 1103 is shown. These configurations are the same in other embodiments.
 図14では、図1中の群認識部4、統合制御部6および制御則変更判断部7を実現するためのハードウェア構成として、演算を行う処理回路1102Bが示される。当該構成は、他の実施の形態においても同様である。 FIG. 14 shows a processing circuit 1102B that performs an operation as a hardware configuration for realizing the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 in FIG. The configuration is the same in other embodiments.
 記憶装置1103は、たとえば、ハードディスクドライブ(Hard disk drive、すなわちHDD)、ランダムアクセスメモリー(random access memory、すなわちRAM)、リードオンリーメモリー(read only memory、すなわちROM)、フラッシュメモリー、erasable programmable read only memory(EPROM)およびelectrically erasable programmable read-only memory(EEPROM)などの、揮発性または不揮発性の半導体メモリー、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVDなどを含むメモリー(記憶媒体)、または、今後使用されるあらゆる記憶媒体であってもよい。 The storage device 1103 includes, for example, a hard disk drive (Hard disk drive, that is, HDD), a random access memory (random access memory, that is, RAM), a read-only memory (read only memory, that is, ROM), a flash memory, and an erase program memory. (EPROM) and memory (storage medium) including volatile or non-volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk or DVD, etc. Alternatively, it may be any storage medium used in the future.
 処理回路1102Aは、記憶装置1103、外部のCD-ROM、外部のDVD-ROM、または、外部のフラッシュメモリーなどに格納されたプログラムを実行するものであってもよい。すなわち、たとえば、中央演算処理装置(central processing unit、すなわちCPU)、マイクロプロセッサ、マイクロコンピュータ、デジタルシグナルプロセッサ(digital signal processor、すなわちDSP)であってもよい。 The processing circuit 1102A may execute a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like. That is, for example, it may be a central processing unit (CPU), a microprocessor, a microprocessor, or a digital signal processor (DSP).
 処理回路1102Aが記憶装置1103、外部のCD-ROM、外部のDVD-ROM、または、外部のフラッシュメモリーなどに格納されたプログラムを実行するものである場合、群認識部4、統合制御部6および制御則変更判断部7は、記憶装置1103に格納されたプログラムが処理回路1102Aによって実行されるソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせにより実現される。なお、群認識部4、統合制御部6および制御則変更判断部7の機能は、たとえば、複数の処理回路が連携することによって実現されてもよい。 When the processing circuit 1102A executes a program stored in a storage device 1103, an external CD-ROM, an external DVD-ROM, an external flash memory, or the like, the group recognition unit 4, the integrated control unit 6, and the integrated control unit 6 The control rule change determination unit 7 is realized by software, firmware, or a combination of software and firmware in which a program stored in the storage device 1103 is executed by the processing circuit 1102A. The functions of the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 may be realized, for example, by coordinating a plurality of processing circuits.
 ソフトウェアおよびファームウェアはプログラムとして記述され、記憶装置1103に記憶されるものであってもよい。その場合、処理回路1102Aは、記憶装置1103に格納されたプログラムを読み出して実行することによって、上記の機能を実現する。すなわち、記憶装置1103は、処理回路1102Aに実行されることによって、上記の機能が結果的に実現されるプログラムを記憶するものであってもよい。 The software and firmware may be described as a program and stored in the storage device 1103. In that case, the processing circuit 1102A realizes the above function by reading and executing the program stored in the storage device 1103. That is, the storage device 1103 may store a program in which the above functions are eventually realized by being executed by the processing circuit 1102A.
 また、処理回路1102Bは、専用のハードウェアであってもよい。すなわち、たとえば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、集積回路(application specific integrated circuit、すなわちASIC)、field-programmable gate array(FPGA)またはこれらを組み合わせた回路であってもよい。 Further, the processing circuit 1102B may be dedicated hardware. That is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an integrated circuit (application specific integrated circuit, that is, an ASIC), a field-programmable gate array (FPGA), or a circuit in which these are combined. It may be.
 処理回路1102Bが専用のハードウェアである場合、群認識部4、統合制御部6および制御則変更判断部7は、処理回路1102Bが動作することにより実現される。なお、群認識部4、統合制御部6および制御則変更判断部7の機能は、別々の回路で実現されてもよいし、単一の回路で実現されてもよい。 When the processing circuit 1102B is dedicated hardware, the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 are realized by operating the processing circuit 1102B. The functions of the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 may be realized by separate circuits or may be realized by a single circuit.
 なお、群認識部4、統合制御部6および制御則変更判断部7の機能は、一部が記憶装置1103に格納されたプログラムを実行するものである処理回路1102Aにおいて実現され、一部が専用のハードウェアである処理回路1102Bにおいて実現されてもよい。 The functions of the group recognition unit 4, the integrated control unit 6, and the control rule change determination unit 7 are partially realized in the processing circuit 1102A that executes the program stored in the storage device 1103, and some of them are dedicated. It may be realized in the processing circuit 1102B which is the hardware of the above.
 情報取得部5は、各種センサーまたは通信受信機によって構成される。 The information acquisition unit 5 is composed of various sensors or communication receivers.
 以上のように、本実施の形態に関する自律分散制御装置3は、移動体1を制御するための情報として、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報を取得する情報取得部5と、情報取得部5が取得した情報を用いて、移動体1および他の移動体を群(移動体群)と認識するか否かを判定する群認識部4と、群認識部4の出力である群状態に基づいて移動体1の運動制御を行う統合制御部6と、群状態、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報に基づいて、統合制御部6内の制御則を変更するか否かを判断する制御則変更判断部7とを備える。 As described above, the autonomous decentralized control device 3 according to the present embodiment can use the state amount of the moving body 1, the state amount of another moving body, or the surroundings of the moving body 1 as information for controlling the moving body 1. The group recognition unit 4 that determines whether or not to recognize the moving body 1 and other moving bodies as a group (moving body group) by using the information acquisition unit 5 for acquiring information and the information acquired by the information acquisition unit 5. And the integrated control unit 6 that controls the movement of the moving body 1 based on the group state that is the output of the group recognition unit 4, and the group state, the state amount of the moving body 1, the state amount of another moving body, or the movement. It is provided with a control rule change determination unit 7 for determining whether or not to change the control rule in the integrated control unit 6 based on the surrounding information of the body 1.
 このような構成によれば、情報取得部5が取得した情報を用いて、移動体1および他の移動体を群(移動体群)と認識するか否かを判定することで、状況に応じて群(移動体群)としての制御とするか、個別での制御とするかを判断して移動体1を運動制御することができる。 According to such a configuration, the information acquired by the information acquisition unit 5 is used to determine whether or not the moving body 1 and other moving bodies are recognized as a group (moving body group), depending on the situation. It is possible to control the movement of the moving body 1 by determining whether the control is performed as a group (moving body group) or individually.
 さらに、群状態、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報に基づいて、統合制御部6内の制御則を変更するか否かを判断することで、状況に応じた適切な制御則によって移動体1を運動制御することができる。 Further, it is determined whether or not to change the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of another moving body, or the surrounding information of the moving body 1. Therefore, the movement of the moving body 1 can be controlled by an appropriate control rule according to the situation.
 また、群認識部4は、移動体1が他の移動体の状態量を取得できているか否かに基づいて、移動体群が実現可能な移動体群のパターンを認識し、さらに、実現可能な移動体群のパターンが複数存在する場合には、あらかじめ指定された優先度、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報に基づいて、それらのパターンのうちから1つを群状態として決定する。 Further, the group recognition unit 4 recognizes a pattern of a mobile group that can be realized by the mobile group based on whether or not the mobile body 1 can acquire the state amount of another mobile body, and further, it is feasible. When there are a plurality of patterns of a mobile group, they are based on a predetermined priority, a state amount of the moving body 1, a state amount of another moving body, or surrounding information of the moving body 1. One of the patterns is determined as a group state.
 このような構成によれば、移動体1が他の移動体を群(移動体群)とみなして制御することができるか否かを判定することができる。さらに、実現可能な移動体群のパターンが複数存在する場合には、あらかじめ指定された優先度、移動体1および他の移動体の状態量、または、移動体1の周囲情報に基づいて、群状態を1つに決定することで、様々な目的または状況に応じて群状態を変更することができるため、最適な群制御を実行することができる。 According to such a configuration, it is possible to determine whether or not the moving body 1 can control another moving body as a group (moving body group). Further, when there are a plurality of feasible patterns of the mobile group, the group is based on a predetermined priority, the state quantity of the mobile 1 and other mobiles, or the surrounding information of the mobile 1. By determining one state, the group state can be changed according to various purposes or situations, so that optimum group control can be executed.
 また、統合制御部6は、移動体1の任意の状態量を所望の状態指定量に一致させるように移動体1の操作量を演算する合意制御、または、移動体1の位置と他の移動体の位置とから生成する境界内の目標位置を演算し、移動体1の位置と目標位置とに基づいて移動体1の操作量を演算する被覆制御、に基づいて制御を行う。 Further, the integrated control unit 6 is an agreement control that calculates an operation amount of the moving body 1 so as to match an arbitrary state amount of the moving body 1 with a desired state designation amount, or a position of the moving body 1 and other movements. The control is performed based on the covering control, which calculates the target position in the boundary generated from the position of the body and calculates the operation amount of the moving body 1 based on the position of the moving body 1 and the target position.
 このような構成によれば、制御目的が異なる制御則を使い分けることができるので、様々な目的または状況に応じた制御を行うことができる。 According to such a configuration, control rules with different control purposes can be used properly, so that control can be performed according to various purposes or situations.
 また、情報取得部5は、移動体1の状態量、または、移動体1の周囲情報を取得する直接情報取得部51と、他の移動体からの通信によって、移動体1の状態量、他の移動体の状態量、または、移動体1の周囲情報を取得する間接情報取得部52とを備える。 Further, the information acquisition unit 5 receives the state amount of the moving body 1 or the state amount of the moving body 1 by communication from the direct information acquisition unit 51 that acquires the surrounding information of the moving body 1 from another moving body. It is provided with an indirect information acquisition unit 52 that acquires the state amount of the moving body or the surrounding information of the moving body 1.
 このような構成によれば、移動体1が取得する情報だけでなく、他の移動体が有する情報も利用することができるので、多くの情報に基づいて制御を行うことができる。よって、さらに群(移動体群)としての制御性能を向上させることができる。 According to such a configuration, not only the information acquired by the moving body 1 but also the information possessed by the other moving body can be used, so that control can be performed based on a lot of information. Therefore, the control performance as a group (mobile group) can be further improved.
 また、被覆制御では、移動体1の周囲情報に基づいて被覆制御の適用領域を設定するとともに、当該被覆制御の適用領域に基づく(特定の場所の重みを規定する)重み関数値を設定し、被覆制御の適用領域と重み関数値と境界とに基づいて境界内の重心位置を演算し、当該重心位置を境界内の目標位置とする。 Further, in the covering control, the application area of the covering control is set based on the surrounding information of the moving body 1, and the weight function value (which defines the weight of a specific place) based on the applied area of the covering control is set. The position of the center of gravity in the boundary is calculated based on the application area of the covering control, the weight function value, and the boundary, and the position of the center of gravity is set as the target position in the boundary.
 このような構成によれば、重み関数に基づく所望のフォーメーションをためす被覆制御を実現することができる。 According to such a configuration, it is possible to realize a coating control that tries a desired formation based on a weighting function.
 また、合意制御では、移動体1と他の移動体との間の相対距離に応じて、移動体1と他の移動体との間に、仮想的に斥力を発生させる。 In the consensus control, a repulsive force is virtually generated between the moving body 1 and the other moving body according to the relative distance between the moving body 1 and the other moving body.
 このような構成によれば、移動体同士の衝突を回避することができる。 According to such a configuration, it is possible to avoid collisions between moving objects.
 <第2の実施の形態>
 本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Second Embodiment>
An autonomous distributed control device and an autonomous distributed control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiment will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <自律分散制御装置の構成について>
 図11は、情報取得部5の構成の例を概念的に示す図である。図11に例が示されるように、情報取得部5は、直接情報取得部51と、間接情報取得部52と、通信モード切り替え部53とを備える。
<About the configuration of the autonomous distributed control device>
FIG. 11 is a diagram conceptually showing an example of the configuration of the information acquisition unit 5. As an example is shown in FIG. 11, the information acquisition unit 5 includes a direct information acquisition unit 51, an indirect information acquisition unit 52, and a communication mode switching unit 53.
 通信を介して取得された情報に基づいて群(移動体群)の制御を行う場合、安定した制御性能を確保するためには、良好な通信状態を保つことが不可欠である。 When controlling a group (mobile group) based on information acquired via communication, it is essential to maintain a good communication state in order to ensure stable control performance.
 しかしながら、制御則または移動体の状態量(たとえば、相対距離または速度)、群状態(たとえば、通信を行う移動体の数)、周囲の状態(たとえば、遮蔽物の有無)が変わると、通信の性能に対する要求も変わってくる。そのため、通信の性能に対する要求を満たす適切な通信モードを使用することが望ましい。 However, when the control law or the state quantity of the moving body (eg, relative distance or velocity), the group state (eg, the number of moving bodies communicating), and the surrounding state (eg, the presence or absence of a shield) change, the communication Performance requirements also change. Therefore, it is desirable to use an appropriate communication mode that meets the requirements for communication performance.
 上記のような理由から、通信モード切り替え部53は、移動体1および他の移動体の状態量、移動体1の周囲情報、移動体間の通信状態、群状態、または、制御則変更信号に基づいて、間接情報取得部52の通信モードを切り替える。 For the above reasons, the communication mode switching unit 53 uses the state quantity of the moving body 1 and other moving bodies, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal. Based on this, the communication mode of the indirect information acquisition unit 52 is switched.
 移動体間の通信状態は、たとえば、信号対雑音比、誤り率または受信電力などを指す。ここで、信号対雑音比が大きい場合、誤り率が小さい場合、または、受信電力が大きい場合は、通信状態がよいと言える。ただし、通信状態がよいと言える場合は、これに限られるものではない。具体的な通信モードの切り替え方法については後述する。 The communication status between mobiles refers to, for example, signal-to-noise ratio, error rate, received power, and the like. Here, when the signal-to-noise ratio is large, the error rate is small, or the received power is large, it can be said that the communication state is good. However, it is not limited to this when it can be said that the communication state is good. The specific method of switching the communication mode will be described later.
 ここで、通信モードは、たとえば、Wi-Fi(登録商標)、Bluetooth(登録商標)、Zigbee(登録商標)、long term evolution(LTE)(登録商標)、5G、Wi-SUN、dedicated short range communications(DSRC)、または、802.11pなどの無線通信規格を指す。また、無線通信規格だけでなく、TCP、UDP、IP、HTTPまたはMQTTなどの物理層以外の通信プロトコルであってもよい。ただし、通信モードは、これらに限られるものではない。 Here, the communication modes are, for example, Wi-Fi (registered trademark), Bluetooth (registered trademark), Zigbee (registered trademark), long term evolution (LTE) (registered trademark), 5G, Wi-SUN, dedicated short range communications. (DSRC) or refers to a wireless communication standard such as 802.11p. Further, not only the wireless communication standard but also a communication protocol other than the physical layer such as TCP, UDP, IP, HTTP or MQTT may be used. However, the communication mode is not limited to these.
 通信モード切り替え部53は、第1通信モードから第N通信モード(Nは2以上の自然数)を備え、これらの通信モードの中から1つを選択して通信モードを切り替える。 The communication mode switching unit 53 includes a first communication mode to an Nth communication mode (N is a natural number of 2 or more), and selects one of these communication modes to switch the communication mode.
 たとえば、それぞれの通信モードと、移動体1および他の移動体の状態量、移動体1の周囲情報、移動体間の通信状態、群状態、または、制御則変更信号とをあらかじめ関連付けておき、該当する通信モードに切り替える。または、移動体間の通信状態が悪い場合に、現在の通信モードとは別の通信モードに順に切り替え、最も通信状態のよい通信モードに切り替えてもよい。 For example, each communication mode is associated with the state quantities of the moving body 1 and other moving bodies, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal in advance. Switch to the applicable communication mode. Alternatively, when the communication state between the mobile bodies is poor, the communication mode may be switched to a communication mode different from the current communication mode in order, and the communication mode may be switched to the communication mode having the best communication state.
 通信モードの切り替えは、たとえば、以下の形態で実施することができる。 The communication mode can be switched, for example, in the following form.
 制御切り替え後の通信モードと制御切り替え前の通信モードとを比べて、制御切り替え後が通信頻度よりも通信信頼性の方が重要である場合は、制御切り替え前の通信モード(第1通信モード)から、自動再送要求を備えるTCP/IPなどの通信モードでの通信(第2通信モード)に切り替える。 Comparing the communication mode after control switching and the communication mode before control switching, if communication reliability is more important than communication frequency after control switching, the communication mode before control switching (first communication mode) To switch to communication (second communication mode) in a communication mode such as TCP / IP having an automatic retransmission request.
 これによって、通信信頼性を向上させることができる。ここで、通信頻度と通信信頼性との重要度の判断は、制御則に応じてあらかじめ決定すればよい。たとえば、合意制御の場合は、一時的に一部の移動体との通信が失敗しても通信成功した移動体との情報を用いてグラフを構成し制御することができるため、通信信頼性よりも通信頻度が重要と判断すればよい。また、被覆制御の場合は、通信が失敗し一部が欠けたグラフを構成した場合、想定と異なる動きをすることがあるため、通信頻度よりも通信信頼性が重要と判断すればよい。 This makes it possible to improve communication reliability. Here, the determination of the importance of the communication frequency and the communication reliability may be determined in advance according to the control rule. For example, in the case of consensus control, even if communication with some mobiles temporarily fails, the graph can be configured and controlled using the information with the mobiles that have succeeded in communication. However, it may be judged that the communication frequency is important. Further, in the case of covering control, if communication fails and a graph in which a part is missing is constructed, the behavior may be different from the assumption. Therefore, it may be judged that communication reliability is more important than communication frequency.
 一方、制御切り替え後の通信モードと制御切り替え前の通信モードとを比べて、制御切り替え後が通信信頼性よりも通信頻度が重要である場合は、制御切り替え前の通信モードから、自動再送要求を備えないUDP/IPなどの通信モードに切り替える。これによって、通信頻度を向上させることができる。 On the other hand, comparing the communication mode after control switching and the communication mode before control switching, if the communication frequency is more important than the communication reliability after control switching, an automatic retransmission request is made from the communication mode before control switching. Switch to a communication mode such as UDP / IP that is not provided. Thereby, the communication frequency can be improved.
 制御切り替え後が群(移動体群)とみなす対象が多い方が望ましい制御則である場合、通信相手を多くして状態量を取得することができる移動体を増やすことが望ましい。これは、群状態において群(移動体群)とみなす移動体の数が多い場合も同様である。そのため、ブロードキャストによって通信相手を限定しない通信モードでの通信に切り替えることで、一度に多くの相手に情報を伝達することができる。 If it is a desirable control rule that there are many targets to be regarded as a group (mobile group) after control switching, it is desirable to increase the number of communication partners and increase the number of mobiles that can acquire the state quantity. This is also the case when the number of moving bodies regarded as a group (moving body group) is large in the group state. Therefore, by switching to communication in a communication mode that does not limit the communication partner by broadcasting, information can be transmitted to many partners at once.
 一方、群(移動体群)とみなす対象が少なくても問題が生じない制御則である場合、または、群状態において群(移動体群)とみなす対象が少ない場合には、ユニキャストまたはマルチキャストによって通信相手を限定する通信モードでの通信に切り替える。これによって、空間的な通信利用率または受信側の情報処理効率を向上させることができる。 On the other hand, if it is a control rule that does not cause a problem even if there are few objects to be regarded as a group (mobile group), or if there are few objects to be regarded as a group (mobile group) in the group state, unicast or multicast is used. Switch to communication in a communication mode that limits the communication partner. As a result, the spatial communication utilization rate or the information processing efficiency on the receiving side can be improved.
 また、制御方式の切り替えに伴って制御周期が変更された場合に、制御周期が長い場合は、制御切り替え前の通信モードから、Wi-Fiのインフラストラクチャモードのようにアクセスポイントを経由する通信モードでの通信に切り替える。これによって、通信の衝突を効率よく回避することができる。 In addition, when the control cycle is changed due to the switching of the control method and the control cycle is long, the communication mode from the communication mode before the control switching is changed to the communication mode via the access point such as the Wi-Fi infrastructure mode. Switch to communication with. As a result, communication collisions can be efficiently avoided.
 ここで、制御周期が長いか否かの判断は、制御周期があらかじめ設定されたしきい値よりも短い場合、通信相手が少ないと判断すればよい。 Here, the judgment as to whether or not the control cycle is long may be made by judging that there are few communication partners when the control cycle is shorter than the preset threshold value.
 一方、制御周期が短い場合は、制御切り替え前の通信モードから、Wi-Fiのアドホックモードのようにアクセスポイントを経由せず互いに直接通信する通信モードでの通信に切り替える。これによって、通信遅延を短くすることができる。 On the other hand, if the control cycle is short, the communication mode before switching the control is switched to the communication mode in which the communication directly communicates with each other without going through the access point, such as the ad hoc mode of Wi-Fi. As a result, the communication delay can be shortened.
 加えて、近隣の移動体の状態量を監視する機能を有する移動体(監視機)が移動体1の周辺に存在する場合には、監視機をアクセスポイントとして経由する通信モードでの通信に切り替えてもよい。これによって、アクセスポイントである監視機が情報を集めることができる。 In addition, when a mobile body (monitoring device) having a function of monitoring the state quantity of a nearby moving body exists in the vicinity of the moving body 1, the communication is switched to the communication mode via the monitoring device as an access point. You may. As a result, the monitoring device, which is an access point, can collect information.
 また、制御切り替え後の通信モードと制御切り替え前の通信モードとを比べて、制御切り替え後が、距離の近い移動体との通信が比較的重要で距離が遠い移動体との通信が比較的重要でない場合は、制御切り替え前の通信モードから、お互いの状態量を直接交換する通信モードでの通信に切り替える。 Further, comparing the communication mode after the control switching and the communication mode before the control switching, the communication with the moving body having a short distance is relatively important and the communication with the moving body having a long distance is relatively important after the control switching. If not, the communication mode before the control switching is switched to the communication mode in which the state quantities of each other are directly exchanged.
 これによって、距離の遠い移動体との通信においては、通信電力が比較的小さくなるため通信の成功確率は下がるが、距離の近い移動体との通信においては、通信電力が比較的大きくなるため通信の成功確率は上がる。そのため、制御の優先度に対応した情報を交換することができる。 As a result, in communication with a mobile body with a long distance, the communication power is relatively small, so the probability of success in communication is low, but in communication with a mobile body with a short distance, the communication power is relatively large, so communication is performed. The success rate of Therefore, information corresponding to the priority of control can be exchanged.
 ここで、重要性の判断は、距離に対してあらかじめしきい値を決めて判断すればよい。たとえば、距離がしきい値を超えた場合、重要でないと判断すればよい。 Here, the importance can be judged by determining a threshold value in advance for the distance. For example, if the distance exceeds the threshold, it may be determined that it is not important.
 また、制御切り替え後の通信モードと制御切り替え前の通信モードとを比べて、制御切り替え後が距離の遠い移動体との通信も重要な場合は、制御切り替え前の通信モードから、リレー方式でデータを中継し相手に伝えるマルチホップ通信機能を含む通信モードでの通信に切り替える。これによって、距離の遠い移動体と信頼性の高い通信を行うことができる。 Also, comparing the communication mode after control switching and the communication mode before control switching, if communication with a moving object that is far away after control switching is also important, data is relayed from the communication mode before control switching. Switch to communication in a communication mode that includes a multi-hop communication function that relays and conveys to the other party. As a result, highly reliable communication can be performed with a moving object at a long distance.
 ここで、切り替えにおける、制御則と通信モードとの対応は、上記の場合に限られるものではない。 Here, the correspondence between the control rule and the communication mode in switching is not limited to the above case.
 上記のように、通信モード切り替え部53は、移動体1の状態量、他の移動体の状態量、移動体1の周囲情報、移動体間の通信状態、群状態、または、制御則変更信号に基づいて通信モードを切り替える。 As described above, the communication mode switching unit 53 uses the state amount of the moving body 1, the state amount of another moving body, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal. Switch the communication mode based on.
 このような構成によれば、群制御における最適な通信モードへと切り替えができるので、通信の信頼性を向上させて、制御の安定性を向上させることができる。 According to such a configuration, it is possible to switch to the optimum communication mode in group control, so that the reliability of communication can be improved and the stability of control can be improved.
 <第3の実施の形態>
 本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Third embodiment>
An autonomous distributed control device and an autonomous distributed control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiment will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <自律分散制御装置の構成について>
 図15は、通信モード切り替え部53Aの構成の例を概念的に示す図である。図15に例が示されるように、通信モード切り替え部53Aは、通信性能要求部531と、通信モード選択部532とを備える。
<About the configuration of the autonomous distributed control device>
FIG. 15 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53A. As an example is shown in FIG. 15, the communication mode switching unit 53A includes a communication performance requesting unit 531 and a communication mode selecting unit 532.
 通信性能要求部531は、移動体1の状態量、他の移動体の状態量、移動体1の周囲情報、移動体間の通信状態、群状態、または、制御則変更信号に基づいて、通信性能要求値を演算する。 The communication performance requesting unit 531 communicates based on the state amount of the moving body 1, the state amount of another moving body, the surrounding information of the moving body 1, the communication state between the moving bodies, the group state, or the control rule change signal. Calculate the performance requirement.
 通信性能要求値は、通信頻度、通信距離、通信接続数、誤り率または通信遅延などであるが、これらに限られるものではない。また、それぞれの通信モードの通信性能は、あらかじめ計測値または設計値に基づいて見積もっておくものとする。 Communication performance required values include, but are not limited to, communication frequency, communication distance, number of communication connections, error rate, or communication delay. In addition, the communication performance of each communication mode shall be estimated in advance based on the measured value or the design value.
 通信モード選択部532は、第1通信モードから第N通信モード(Nは2以上の自然数)を備え、通信性能要求値に基づいて、これらの通信モードの中から1つを選択して通信モードを切り替える。 The communication mode selection unit 532 includes a first communication mode to an Nth communication mode (N is a natural number of 2 or more), and selects one of these communication modes based on the communication performance required value to select a communication mode. To switch.
 たとえば、通信性能要求値を満たす通信モードの中から、通信性能の最も高い通信モードに切り替える。または、移動体間の通信状態が悪い場合に、現在の通信モードとは別の通信モードに順に切り替え、通信性能要求値を満たすか否かを判定してもよい。 For example, switch from the communication mode that meets the communication performance requirement value to the communication mode with the highest communication performance. Alternatively, when the communication state between the mobile bodies is poor, the communication mode may be switched to a communication mode different from the current communication mode in order, and it may be determined whether or not the communication performance required value is satisfied.
 通信性能要求部531は、制御則の制御頻度に応じた通信性能要求値(通信頻度)を決定する。それぞれの通信モードから、「最大制御頻度≦通信性能要求値(通信頻度)」の条件を満たす通信モードのうちの1つを選択する。 The communication performance requirement unit 531 determines the communication performance requirement value (communication frequency) according to the control frequency of the control rule. From each communication mode, one of the communication modes satisfying the condition of "maximum control frequency ≤ communication performance required value (communication frequency)" is selected.
 通信性能要求部531は、群状態と、移動体1および他の移動体の状態量(移動体間の距離)とから、最も長い距離の値を通信性能要求値(通信距離)として決定する。 The communication performance request unit 531 determines the value of the longest distance as the communication performance request value (communication distance) from the group state and the state quantities of the moving body 1 and other moving bodies (distance between the moving bodies).
 さらに、通信性能要求部531は、それぞれの通信モードについて、あらかじめ最大通信距離を見積もっておく。それぞれの通信モードから、「最大通信距離≧通信性能要求値(通信距離)」の条件を満たす通信モードのうちの1つを選択する。 Further, the communication performance requesting unit 531 estimates the maximum communication distance in advance for each communication mode. From each communication mode, one of the communication modes satisfying the condition of "maximum communication distance ≥ communication performance required value (communication distance)" is selected.
 通信性能要求部531は、群状態から、通信を行う必要がある移動体の数を通信性能要求値(通信接続数)として決定する。さらに、通信性能要求部531は、それぞれの通信モードについて、あらかじめ最大通信接続数を見積もっておく。それぞれの通信モードから、「最大通信接続数≧通信性能要求値(通信接続数)」の条件を満たす通信モードのうちの1つを選択する。 The communication performance request unit 531 determines the number of mobiles that need to communicate as the communication performance requirement value (number of communication connections) from the group state. Further, the communication performance requesting unit 531 estimates the maximum number of communication connections in advance for each communication mode. From each communication mode, select one of the communication modes that satisfy the condition of "maximum number of communication connections ≥ communication performance required value (number of communication connections)".
 通信性能要求部531は、安定した制御を達成することができる通信性能要求値(誤り率)を決定する。また、通信性能要求部531は、それぞれの制御則において、あらかじめ、安定した制御を達成することができる最大許容誤り率を見積もっておく。また、それぞれの通信モードにおいて、想定する条件の中での想定誤り率を見積もっておく。それぞれの通信モードから、「最大許容誤り率≧通信性能要求値(誤り率)」の条件を満たす通信モードのうちの1つを選択する。 The communication performance requirement unit 531 determines the communication performance requirement value (error rate) that can achieve stable control. In addition, the communication performance requesting unit 531 estimates in advance the maximum allowable error rate at which stable control can be achieved in each control rule. In addition, in each communication mode, the assumed error rate under the assumed conditions is estimated. From each communication mode, one of the communication modes satisfying the condition of "maximum allowable error rate ≥ communication performance required value (error rate)" is selected.
 通信性能要求部531は、安定した制御を達成することができる通信性能要求値(通信遅延)を決定する。通信性能要求部531は、それぞれの制御則において、あらかじめ、安定した制御を達成することができる最大通信遅延を見積もっておく。たとえば、制御周期からマージンを引いたものを許容することができる通信遅延とすればよい。また、通信性能要求部531は、それぞれの通信モードにおいて、あらかじめ想定する条件の中での通信遅延を見積もっておく。それぞれの通信モードから、「最大通信遅延≧通信性能要求値(通信遅延)」の条件を満たす通信モードのうちの1つを選択する。 The communication performance requirement unit 531 determines the communication performance requirement value (communication delay) that can achieve stable control. The communication performance requesting unit 531 estimates in advance the maximum communication delay that can achieve stable control in each control rule. For example, the communication delay may be one in which the margin is subtracted from the control cycle. Further, the communication performance requesting unit 531 estimates the communication delay under the conditions assumed in advance in each communication mode. From each communication mode, one of the communication modes satisfying the condition of "maximum communication delay ≥ communication performance required value (communication delay)" is selected.
 さらに、上記の通信性能要求値は、制御則に応じた係数を乗算して算出されてもよい。たとえば、合意制御の方が被覆制御に比べて、移動体間で通信する距離が長くなることが多い。そのため、通信性能要求値としての通信距離にマージンを与えるために、合意制御の場合は通信性能要求値(通信距離)の値を2倍とする。これによって、それぞれの制御則が重視する通信性能要求値を設定することができるので、制御則に応じた最適な通信モードを決定することができる。 Further, the above communication performance requirement value may be calculated by multiplying by a coefficient according to the control law. For example, consensus control often has a longer communication distance between mobiles than cover control. Therefore, in order to give a margin to the communication distance as the communication performance required value, the value of the communication performance required value (communication distance) is doubled in the case of consensus control. As a result, the communication performance requirement value that each control law emphasizes can be set, so that the optimum communication mode according to the control law can be determined.
 上記のように、制御則または制御対象の状態に応じた通信性能要求を満たすように通信モードを選択することで、通信の信頼性をさらに向上させることができる。 As described above, the reliability of communication can be further improved by selecting the communication mode so as to satisfy the communication performance requirement according to the control rule or the state of the controlled object.
 <第4の実施の形態>
 本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Fourth Embodiment>
An autonomous distributed control device and an autonomous distributed control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiment will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <自律分散制御装置の構成について>
 図16は、通信モード切り替え部53Bの構成の例を概念的に示す図である。図16に例が示されるように、通信モード切り替え部53Bは、通信性能要求部531と、通信モード選択部532と、通信パラメータ探索部533とを備える。
<About the configuration of the autonomous distributed control device>
FIG. 16 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53B. As an example is shown in FIG. 16, the communication mode switching unit 53B includes a communication performance requesting unit 531, a communication mode selecting unit 532, and a communication parameter search unit 533.
 通信パラメータ探索部533は、所定の通信パラメータを連続的に変化させて、通信性能要求値を満たす通信パラメータの探索を行う。ここで、通信パラメータは、送信電力、再送回数、タイムアウト時間またはQoS(Quality of Service)などである。ただし、通信パラメータは、これらに限られるものではない。 The communication parameter search unit 533 continuously changes a predetermined communication parameter to search for a communication parameter that satisfies the communication performance required value. Here, the communication parameters include transmission power, number of retransmissions, timeout time, Quality of Service (Quality of Service), and the like. However, the communication parameters are not limited to these.
 そして、通信モード選択部532は、通信パラメータに基づいて、通信性能要求値を満たす通信モードを選択する。 Then, the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the communication parameters.
 上記のように、通信性能要求値を満たす通信パラメータを設定することができるので、通信の信頼性が向上する。さらに、通信の信頼性が向上することで、安定した制御性能が確保することができる。 As described above, communication parameters that satisfy the communication performance requirements can be set, so communication reliability is improved. Further, by improving the reliability of communication, stable control performance can be ensured.
 <第5の実施の形態>
 本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Fifth Embodiment>
An autonomous distributed control device and an autonomous distributed control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiment will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <自律分散制御装置の構成について>
 図17は、通信モード切り替え部53Cの構成の例を概念的に示す図である。図17に例が示されるように、通信モード切り替え部53Cは、通信性能要求部531と、通信モード選択部532と、通信パラメータ探索部533と、通信モード選択部532における通信性能比較部534とを備える。
<About the configuration of the autonomous distributed control device>
FIG. 17 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53C. As an example is shown in FIG. 17, the communication mode switching unit 53C includes a communication performance requesting unit 531, a communication mode selection unit 532, a communication parameter search unit 533, and a communication performance comparison unit 534 in the communication mode selection unit 532. To be equipped.
 制御則を切り替える際、最適な通信モードを選択するためには、複数の通信モードで実際に通信を行うことで通信性能を比較し、通信への要求を満たすか否かを確認した後に、通信モードおよび制御則を切り替えることが望ましい。 When switching control rules, in order to select the optimum communication mode, the communication performance is compared by actually performing communication in multiple communication modes, and after confirming whether or not the requirements for communication are satisfied, communication is performed. It is desirable to switch modes and control rules.
 そのため、通信性能比較部534は、制御則の変更を判断する際に複数の通信モードを同時に動作させて通信し、さらに、それぞれの通信モードでの通信性能を比較することによって、通信モードの切り替えを行うか否かの判断を行う。 Therefore, the communication performance comparison unit 534 switches the communication mode by simultaneously operating a plurality of communication modes to communicate when determining a change in the control rule, and further comparing the communication performance in each communication mode. Judge whether or not to do.
 そして、通信モード選択部532は、通信性能比較部534における比較結果に基づいて、通信性能要求値を満たす通信モードを選択する。 Then, the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the comparison result in the communication performance comparison unit 534.
 上記のように、制御則を切り替える際に、実際にそれぞれの通信モードを動作させて通信性能を比較することで、通信性能を精度よく比較することができ、さらに、最適な通信モードを選択することができる。また、それによって通信の信頼性が向上し、安定した制御性能が確保することができる。 As described above, when switching the control law, the communication performance can be compared accurately by actually operating each communication mode and comparing the communication performance, and further, the optimum communication mode is selected. be able to. In addition, the reliability of communication is improved by this, and stable control performance can be ensured.
 <第6の実施の形態>
 本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<Sixth Embodiment>
An autonomous distributed control device and an autonomous distributed control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiment will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <自律分散制御装置の構成について>
 図18は、通信モード切り替え部53Dの構成の例を概念的に示す図である。図18に例が示されるように、通信モード切り替え部53Dは、通信性能要求部531と、通信モード選択部532と、通信パラメータ探索部533と、通信モード選択部532における通信性能比較部534と、通信モード選択部532における通信性能推定部535とを備える。
<About the configuration of the autonomous distributed control device>
FIG. 18 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53D. As an example is shown in FIG. 18, the communication mode switching unit 53D includes a communication performance requesting unit 531, a communication mode selection unit 532, a communication parameter search unit 533, and a communication performance comparison unit 534 in the communication mode selection unit 532. A communication performance estimation unit 535 in the communication mode selection unit 532 is provided.
 通信モードを切り替えるにあたって、それぞれの通信モードの性能を比較する。通信モードを比較する際、実際に通信した上で性能を取得する場合には、処理に時間がかかり制御および通信モードの切り替えに遅延が生じるおそれがある。 When switching communication modes, compare the performance of each communication mode. When comparing communication modes, if performance is acquired after actual communication, processing may take time and delays may occur in control and communication mode switching.
 そのため、制御および通信モードの切り替えを行う前にそれぞれの通信モードでの性能を推定し、最も良好な通信モードに切り替えることが望ましい。 Therefore, it is desirable to estimate the performance in each communication mode and switch to the best communication mode before switching the control and communication modes.
 通信性能推定部535は、制御則の変更を判断する際に、現在の通信モードとは別の通信モードの通信性能を推定し、通信モードを切り替えるか否かの判断を行う。ここで、第2通信モードの通信性能は、周囲情報、移動体の状態量または制御則に基づく通信への要求と、通信性能との関係を、あらかじめシミュレーションまたは計測などによって取得しておき、さらに、対応する関係式またはテーブルなどを用意しておくことで、推定すればよい。 When determining the change of the control rule, the communication performance estimation unit 535 estimates the communication performance of a communication mode different from the current communication mode, and determines whether or not to switch the communication mode. Here, for the communication performance of the second communication mode, the relationship between the communication performance and the request for communication based on the surrounding information, the state quantity of the moving body, or the control rule is acquired in advance by simulation or measurement, and further. , Corresponding relational expression or table, etc. can be prepared for estimation.
 そして、通信性能比較部534は、通信性能推定部535における推定結果に基づいて、それぞれの通信モードでの通信性能を比較する。 Then, the communication performance comparison unit 534 compares the communication performance in each communication mode based on the estimation result in the communication performance estimation unit 535.
 たとえば、通信する移動体の数によって、通信の誤り率などの通信性能を推定することができる。また、隣接する移動体との距離によって、通信の誤り率などの通信性能を推定することができる。なお、推定の方法は、これらに限られるものではない。 For example, communication performance such as communication error rate can be estimated from the number of mobiles that communicate. In addition, communication performance such as a communication error rate can be estimated from the distance to an adjacent mobile body. The estimation method is not limited to these.
 このように、制御則を切り替える際に、制御則または制御対象の状態に応じて通信性能を推定することで、最適な通信モードを短時間で選択することができる。また、それによって通信の信頼性が向上し、安定した制御性能を確保することができる。 In this way, when switching the control law, the optimum communication mode can be selected in a short time by estimating the communication performance according to the control law or the state of the controlled object. In addition, the reliability of communication is improved by this, and stable control performance can be ensured.
 <第7の実施の形態>
 本実施の形態に関する自律分散制御装置、および、自律分散制御方法について説明する。なお、以下の説明においては、以上に記載された実施の形態で説明された構成要素と同様の構成要素については同じ符号を付して図示し、その詳細な説明については適宜省略するものとする。
<7th Embodiment>
An autonomous distributed control device and an autonomous distributed control method according to the present embodiment will be described. In the following description, components similar to the components described in the above-described embodiment will be illustrated with the same reference numerals, and detailed description thereof will be omitted as appropriate. ..
 <自律分散制御装置の構成について>
 図19は、通信モード切り替え部53Eの構成の例を概念的に示す図である。図19に例が示されるように、通信モード切り替え部53Eは、通信性能要求部531と、通信モード選択部532と、通信パラメータ探索部533と、通信モード選択部532における通信性能比較部534と、通信モード選択部532における通信性能推定部535と、通信性能比較部534からの出力が入力される制御パラメータ調整部536とを備える。
<About the configuration of the autonomous distributed control device>
FIG. 19 is a diagram conceptually showing an example of the configuration of the communication mode switching unit 53E. As an example is shown in FIG. 19, the communication mode switching unit 53E includes a communication performance requesting unit 531, a communication mode selection unit 532, a communication parameter search unit 533, and a communication performance comparison unit 534 in the communication mode selection unit 532. A communication performance estimation unit 535 in the communication mode selection unit 532 and a control parameter adjustment unit 536 to which an output from the communication performance comparison unit 534 is input are provided.
 制御則および通信モードを切り替える際、制御則からの要求に対し、どの通信モードにおいても十分な通信性能を達成できない場合がある。そして、十分な通信性能を達成できないと、制御に必要な状態量を適切に得られないので、制御性能が低下する懸念がある。 When switching between the control rule and the communication mode, it may not be possible to achieve sufficient communication performance in any communication mode in response to the request from the control rule. If sufficient communication performance cannot be achieved, the amount of state required for control cannot be appropriately obtained, and there is a concern that the control performance may deteriorate.
 そのため、通信性能が十分でない場合には、制御パラメータを変更することで制御性能の向上を図ることが望ましい。 Therefore, if the communication performance is not sufficient, it is desirable to improve the control performance by changing the control parameters.
 ここで、制御パラメータは、たとえば、制御周期またはフィードバックゲインである。ただし、制御パラメータは、これらに限られるものではない。 Here, the control parameter is, for example, a control cycle or a feedback gain. However, the control parameters are not limited to these.
 制御パラメータ調整部536は、切り替え後の通信モードにおいて通信遅延が大きい場合、統合制御部6における制御周期を長くする、または、フィードバックゲインを小さくすることで、制御性能を向上させることができる。また、制御パラメータ調整部536は、通信のパケットロスが大きい場合、フィードバックゲインを小さくすることで、安定性を向上させることができる。 When the communication delay is large in the communication mode after switching, the control parameter adjusting unit 536 can improve the control performance by lengthening the control cycle in the integrated control unit 6 or reducing the feedback gain. Further, the control parameter adjusting unit 536 can improve the stability by reducing the feedback gain when the communication packet loss is large.
 このように、制御則を切り替える際に、通信性能に応じて制御パラメータを変えることで、安定した制御性能を確保することができる。 In this way, when switching control rules, stable control performance can be ensured by changing the control parameters according to the communication performance.
 <以上に記載された実施の形態によって生じる効果について>
 次に、以上に記載された実施の形態によって生じる効果の例を示す。なお、以下の説明においては、以上に記載された実施の形態に例が示された具体的な構成に基づいて当該効果が記載されるが、同様の効果が生じる範囲で、本願明細書に例が示される他の具体的な構成と置き換えられてもよい。
<About the effect caused by the above-described embodiment>
Next, an example of the effect produced by the above-described embodiment will be shown. In the following description, the effect is described based on the specific configuration shown in the embodiment described above, but to the extent that the same effect occurs, the examples in the present specification. May be replaced with other specific configurations indicated by.
 また、当該置き換えは、複数の実施の形態に跨ってなされてもよい。すなわち、異なる実施の形態において例が示されたそれぞれの構成が組み合わされて、同様の効果が生じる場合であってもよい。 Further, the replacement may be made across a plurality of embodiments. That is, it may be the case that the respective configurations shown in the examples in different embodiments are combined to produce the same effect.
 以上に記載された実施の形態によれば、制御装置は、第1の移動体に設けられる制御装置であり、情報取得部5と、群認識部4と、制御部と、制御則変更判断部7とを備える。ここで、第1の移動体は、たとえば、移動体1に対応するものである。また、制御部は、たとえば、統合制御部6に対応するものである。情報取得部5は、移動体1の状態量、移動体1とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、移動体1の周囲情報を取得する。ここで、第2の移動体は、たとえば、移動体2に対応するものである。群認識部4は、情報取得部5において取得された移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの、少なくとも移動体2の状態量を用いて、移動体1と移動体2とを移動体群と認識するか否かを判定する。また、群認識部4は、判定結果を群状態として出力する。統合制御部6は、群状態に基づいて、複数の制御則から選択される制御則を用いて移動体1の運動を制御する。制御則変更判断部7は、群状態、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つに基づいて、統合制御部6において用いられる制御則を変更するか否かを判断する。また、制御則変更判断部7は、判断結果を制御則変更信号として出力する。統合制御部6は、制御則変更信号に基づいて、移動体1の運動を制御する際に用いる制御則を選択する。 According to the embodiment described above, the control device is a control device provided in the first mobile body, and is an information acquisition unit 5, a group recognition unit 4, a control unit, and a control rule change determination unit. 7 and. Here, the first moving body corresponds to, for example, the moving body 1. Further, the control unit corresponds to, for example, the integrated control unit 6. The information acquisition unit 5 acquires the state amount of the moving body 1, the state amount of at least one second moving body which is a moving body different from the moving body 1, and the surrounding information of the moving body 1. Here, the second moving body corresponds to, for example, the moving body 2. The group recognition unit 4 uses at least the state amount of the moving body 2 among the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1 acquired by the information acquisition unit 5. , It is determined whether or not the moving body 1 and the moving body 2 are recognized as a moving body group. Further, the group recognition unit 4 outputs the determination result as a group state. The integrated control unit 6 controls the movement of the moving body 1 by using a control rule selected from a plurality of control rules based on the group state. Whether or not the control rule change determination unit 7 changes the control rule used in the integrated control unit 6 based on at least one of the group state, the state quantity of the moving body 2, and the surrounding information of the moving body 1. To judge. Further, the control rule change determination unit 7 outputs the determination result as a control rule change signal. The integrated control unit 6 selects a control rule to be used when controlling the movement of the moving body 1 based on the control rule change signal.
 また、以上に記載された実施の形態によれば、制御装置は、プログラムを実行する処理回路1102Aと、実行されるプログラムを記憶する記憶装置1103とを備える。そして、処理回路1102Aがプログラムを実行することによって、以下の動作が実現される。 Further, according to the embodiment described above, the control device includes a processing circuit 1102A for executing a program and a storage device 1103 for storing the program to be executed. Then, when the processing circuit 1102A executes the program, the following operations are realized.
 すなわち、移動体1の状態量、移動体1とは異なる移動体である少なくとも1つの移動体2の状態量、および、移動体1の周囲情報が取得される。そして、移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの、少なくとも移動体2の状態量を用いて、移動体1と移動体2とを移動体群と認識するか否かが判定され、かつ、判定結果が群状態として出力される。そして、群状態に基づいて、複数の制御則から選択される制御則を用いて移動体1の運動が制御される。ここで、群状態、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つに基づいて、制御則を変更するか否かが判断され、かつ、判断結果が制御則変更信号として出力される。そして、制御則変更信号に基づいて、移動体1の運動を制御する際に用いる制御則が選択される。 That is, the state amount of the moving body 1, the state amount of at least one moving body 2 which is a moving body different from the moving body 1, and the surrounding information of the moving body 1 are acquired. Then, the moving body 1 and the moving body 2 are moved by using at least the state amount of the moving body 2 among the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. Whether or not to recognize it as a group is determined, and the determination result is output as a group state. Then, based on the group state, the movement of the moving body 1 is controlled by using a control rule selected from a plurality of control rules. Here, it is determined whether or not to change the control rule based on at least one of the group state, the state quantity of the moving body 2, and the surrounding information of the moving body 1, and the judgment result is the control rule. It is output as a change signal. Then, the control rule used when controlling the movement of the moving body 1 is selected based on the control rule change signal.
 また、以上に記載された実施の形態によれば、制御装置は、専用のハードウェアである処理回路1102Bを備える。そして、専用のハードウェアである処理回路1102Bは、以下の動作を行う。 Further, according to the embodiment described above, the control device includes a processing circuit 1102B which is dedicated hardware. Then, the processing circuit 1102B, which is dedicated hardware, performs the following operations.
 すなわち、移動体1の状態量、移動体1とは異なる移動体である少なくとも1つの移動体2の状態量、および、移動体1の周囲情報を取得する。そして、移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの、少なくとも移動体2の状態量を用いて、移動体1と移動体2とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力する。そして、群状態に基づいて、複数の制御則から選択される制御則を用いて移動体1の運動を制御する。ここで、群状態、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つに基づいて、制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力する。そして、制御則変更信号に基づいて、移動体1の運動を制御する際に用いる制御則を選択する。 That is, the state amount of the moving body 1, the state amount of at least one moving body 2 which is a moving body different from the moving body 1, and the surrounding information of the moving body 1 are acquired. Then, the moving body 1 and the moving body 2 are moved by using at least the state amount of the moving body 2 among the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. It is determined whether or not it is recognized as a group, and the determination result is output as a group state. Then, based on the group state, the movement of the moving body 1 is controlled by using a control rule selected from a plurality of control rules. Here, it is determined whether or not to change the control rule based on at least one of the group state, the state quantity of the moving body 2, and the surrounding information of the moving body 1, and the judgment result is the control rule. Output as a change signal. Then, based on the control rule change signal, the control rule used when controlling the movement of the moving body 1 is selected.
 このような構成によれば、情報取得部5が取得した情報を用いて、移動体1および他の移動体を群(移動体群)と認識するか否かを判定することで、状況に応じて群(移動体群)としての制御とするか、個別での制御とするかを判断して移動体1の運動を制御することができる。さらに、群状態、または、移動体1の状態量、移動体2の状態量、または、移動体1の周囲情報に基づいて、統合制御部6における制御則を変更するか否かを判断することで、状況に応じた適切な制御則によって移動体1の運動を制御することができる。 According to such a configuration, the information acquired by the information acquisition unit 5 is used to determine whether or not the moving body 1 and other moving bodies are recognized as a group (moving body group), depending on the situation. It is possible to control the movement of the moving body 1 by determining whether the control is performed as a group (moving body group) or individually. Further, it is determined whether or not to change the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of the moving body 2, or the surrounding information of the moving body 1. Therefore, the movement of the moving body 1 can be controlled by an appropriate control rule according to the situation.
 なお、上記の構成に本願明細書に例が示された他の構成を適宜追加した場合、すなわち、上記の構成としては言及されなかった本願明細書中の他の構成が適宜追加された場合であっても、同様の効果を生じさせることができる。 In addition, when other configurations shown in the present specification are appropriately added to the above configurations, that is, when other configurations in the present specification which are not mentioned as the above configurations are appropriately added. Even if there is, the same effect can be produced.
 また、以上に記載された実施の形態によれば、群認識部4は、情報取得部5が少なくとも1つの移動体2の状態量を取得しているか否かに基づいて、実現可能な移動体群のパターンを認識し、かつ、実現可能な移動体群のパターンが複数存在する場合には、あらかじめ定められた優先度、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つに基づいて、実現可能な移動体群のパターンのうちの1つを群状態として出力する。このような構成によれば、実現可能な移動体群のパターンが複数存在する場合に、それらのうちから最適な群状態を設定することができる。そのため、群(移動体群)としての制御性能を向上させることができる。 Further, according to the embodiment described above, the group recognition unit 4 is a feasible mobile body based on whether or not the information acquisition unit 5 has acquired the state quantity of at least one mobile body 2. When the pattern of the group is recognized and there are a plurality of feasible patterns of the moving body group, among the predetermined priority, the state amount of the moving body 2, and the surrounding information of the moving body 1. Based on at least one, one of the feasible mobile group patterns is output as a group state. According to such a configuration, when there are a plurality of feasible mobile group patterns, the optimum group state can be set from among them. Therefore, the control performance as a group (mobile group) can be improved.
 また、以上に記載された実施の形態によれば、統合制御部6は、群状態が移動体1と移動体2とを移動体群と認識することを示す判定結果である場合、合意制御または被覆制御を用いて移動体1の運動を制御する。このような構成によれば、群制御に適した制御則の中でも、異なる2種類の制御則(合意制御と被覆制御)を使い分けることで、さまざまな目的または状況にあった制御を実施することができる。 Further, according to the embodiment described above, when the integrated control unit 6 is a determination result indicating that the group state recognizes the moving body 1 and the moving body 2 as the moving body group, the agreement control or The movement of the moving body 1 is controlled by using the coating control. According to such a configuration, it is possible to carry out control suitable for various purposes or situations by properly using two different types of control rules (agreement control and cover control) among the control rules suitable for group control. it can.
 また、以上に記載された実施の形態によれば、合意制御は、移動体1と移動体2との間の相対距離に応じて、移動体1と移動体2との間に仮想的な斥力を生じさせる制御である。このような構成によれば、合意制御によって斥力を発生させることで、移動体同士の衝突を回避することができる。 Further, according to the embodiment described above, the consensus control is a virtual repulsive force between the moving body 1 and the moving body 2 according to the relative distance between the moving body 1 and the moving body 2. Is the control that causes. According to such a configuration, it is possible to avoid a collision between moving bodies by generating a repulsive force by consensus control.
 また、以上に記載された実施の形態によれば、被覆制御は、移動体1の周囲情報に基づいて被覆制御の適用領域を設定するとともに、被覆制御の適用領域における特定の場所の重みを規定する重み関数値を設定し、さらに、被覆制御の適用領域と、重み関数値と、被覆制御の適用領域内において移動体1の領域と移動体2の領域とを分割する境界に基づいて、境界内の重心位置を演算し、かつ、重心位置を境界内の目標位置とする制御である。このような構成によれば、重み関数に基づく所望のフォーメーションをためす被覆制御を実現することができる。 Further, according to the embodiment described above, in the coating control, the application area of the coating control is set based on the surrounding information of the moving body 1, and the weight of a specific place in the application area of the coating control is defined. A boundary is set based on the weight function value to be applied, the weight function value, and the boundary that divides the area of the moving body 1 and the area of the moving body 2 within the application area of the covering control. It is a control that calculates the position of the center of gravity inside and sets the position of the center of gravity as the target position within the boundary. According to such a configuration, it is possible to realize a coating control that tries a desired formation based on a weighting function.
 また、以上に記載された実施の形態によれば、情報取得部5は、移動体2との通信を介して、移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つを取得する。このような構成によれば、直接情報取得部51だけでは取得することができない情報も、間接情報取得部52によって間接的に取得することができる。さらに、状況に適した通信方式によって通信を行うことで、たとえば、センサーの検知範囲外となる遠距離の移動体の情報も取得することができる。 Further, according to the embodiment described above, the information acquisition unit 5 communicates with the mobile body 2, the state amount of the moving body 1, the state amount of the moving body 2, and the moving body 1. Acquire at least one of the surrounding information. According to such a configuration, the indirect information acquisition unit 52 can indirectly acquire information that cannot be acquired only by the direct information acquisition unit 51. Further, by communicating by a communication method suitable for the situation, for example, it is possible to acquire information on a long-distance moving object that is outside the detection range of the sensor.
 また、以上に記載された実施の形態によれば、情報取得部5は、移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つに加えて、移動体1と移動体2との間の通信状態、群状態および制御則変更信号のうちの少なくとも1つに基づいて、移動体1と移動体2との間の通信モードを切り替えるための通信モード切り替え部53を備える。このような構成によれば、群制御における最適な通信モードの切り替えを行うことができる。それによって通信の信頼性が向上し、また、制御の安定性が向上する。 Further, according to the embodiment described above, the information acquisition unit 5 is added to at least one of the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. The communication mode between the mobile body 1 and the mobile body 2 is switched based on at least one of the communication state, the group state, and the control rule change signal between the mobile body 1 and the mobile body 2. A communication mode switching unit 53 is provided. According to such a configuration, it is possible to switch the optimum communication mode in the group control. As a result, the reliability of communication is improved and the stability of control is improved.
 また、以上に記載された実施の形態によれば、通信モード切り替え部53Aは、通信性能要求部531と、通信モード選択部532とを備える。通信性能要求部531は、移動体1の状態量、移動体2の状態量、移動体1の周囲情報、移動体1と移動体2との間の通信状態、群状態、および、制御則変更信号のうちの少なくとも1つに基づいて、通信性能要求値を演算する。通信モード選択部532は、複数の通信モードのうちから通信性能要求値を満たす通信モードを選択する。このような構成によれば、制御則を切り替える際に、制御則および制御対象の状態に応じた通信性能要求を満たすように通信モードを選択することができる。それによって通信の信頼性が向上し、また、制御の安定性が向上する。 Further, according to the embodiment described above, the communication mode switching unit 53A includes a communication performance requesting unit 531 and a communication mode selecting unit 532. The communication performance requesting unit 531 changes the state amount of the moving body 1, the state amount of the moving body 2, the surrounding information of the moving body 1, the communication state between the moving body 1 and the moving body 2, the group state, and the control rule. The communication performance requirement value is calculated based on at least one of the signals. The communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value from the plurality of communication modes. According to such a configuration, when switching the control law, the communication mode can be selected so as to satisfy the communication performance requirement according to the control law and the state of the controlled object. As a result, the reliability of communication is improved and the stability of control is improved.
 また、以上に記載された実施の形態によれば、通信モード切り替え部53Bは、通信パラメータ探索部533を備える。通信パラメータ探索部533は、通信パラメータを連続的に変化させることによって通信性能要求値を満たす通信パラメータを探索する。そして、通信モード選択部532は、通信パラメータに基づいて、通信性能要求値を満たす通信モードを選択する。このような構成によれば、制御則を切り替える際に、制御則および制御対象の状態に応じた通信パラメータを設定することができる。それによって通信の信頼性が向上し、また、制御の安定性が向上する。 Further, according to the embodiment described above, the communication mode switching unit 53B includes a communication parameter search unit 533. The communication parameter search unit 533 searches for a communication parameter that satisfies the communication performance requirement value by continuously changing the communication parameter. Then, the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the communication parameters. According to such a configuration, when switching the control law, it is possible to set the communication parameter according to the control law and the state of the controlled object. As a result, the reliability of communication is improved and the stability of control is improved.
 また、以上に記載された実施の形態によれば、通信モード切り替え部53Cは、通信性能比較部534を備える。通信性能比較部534は、複数の通信モードを動作させて通信し、さらに、それぞれの通信モードでの通信性能を比較する。そして、通信モード選択部532は、通信性能比較部534における比較結果に基づいて、通信性能要求値を満たす通信モードを選択する。このような構成によれば、制御則を切り替える際に、実際に通信性能を比較することで精度よく比較でき、最適な通信モードを選択することができる。それによって通信の信頼性が向上し、また、制御の安定性が向上する。 Further, according to the embodiment described above, the communication mode switching unit 53C includes a communication performance comparison unit 534. The communication performance comparison unit 534 operates a plurality of communication modes to communicate, and further compares the communication performance in each communication mode. Then, the communication mode selection unit 532 selects a communication mode that satisfies the communication performance required value based on the comparison result in the communication performance comparison unit 534. According to such a configuration, when switching the control law, it is possible to make an accurate comparison by actually comparing the communication performance, and it is possible to select the optimum communication mode. As a result, the reliability of communication is improved and the stability of control is improved.
 また、以上に記載された実施の形態によれば、通信モード切り替え部53Dは、通信性能推定部535を備える。通信性能推定部535は、通信モードの通信性能を推定する。そして、通信性能比較部534は、通信性能推定部535における推定結果に基づいて、それぞれの通信モードでの通信性能を比較する。このような構成によれば、制御則または制御対象の状態に応じて通信性能を推定することで、最適な通信モードを短時間で選択することができる。それによって通信の信頼性が向上し、また、制御の安定性が向上する。 Further, according to the embodiment described above, the communication mode switching unit 53D includes a communication performance estimation unit 535. The communication performance estimation unit 535 estimates the communication performance of the communication mode. Then, the communication performance comparison unit 534 compares the communication performance in each communication mode based on the estimation result in the communication performance estimation unit 535. According to such a configuration, the optimum communication mode can be selected in a short time by estimating the communication performance according to the control law or the state of the controlled object. As a result, the reliability of communication is improved and the stability of control is improved.
 また、以上に記載された実施の形態によれば、通信モード切り替え部53Dは、制御パラメータ調整部536を備える。制御パラメータ調整部536は、統合制御部6における制御パラメータを調整する。このような構成によれば、通信性能に応じて制御パラメータを変えることで、制御の安定性が向上する。 Further, according to the embodiment described above, the communication mode switching unit 53D includes a control parameter adjusting unit 536. The control parameter adjusting unit 536 adjusts the control parameters in the integrated control unit 6. According to such a configuration, the stability of control is improved by changing the control parameters according to the communication performance.
 以上に記載された実施の形態によれば、制御方法において、移動体1の状態量、移動体1とは異なる移動体である少なくとも1つの移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つを取得する。そして、移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つを用いて、移動体1と移動体2とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力する。そして、群状態に基づいて、複数の制御則から選択される制御則を用いて移動体1の運動を制御する。ここで、群状態、移動体1の状態量、移動体2の状態量、および、移動体1の周囲情報のうちの少なくとも1つに基づいて、制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力する。そして、制御則変更信号に基づいて、移動体1の運動を制御する際に用いる制御則を選択する。 According to the embodiment described above, in the control method, the state amount of the moving body 1, the state amount of at least one moving body 2 which is a moving body different from the moving body 1, and the surroundings of the moving body 1. Get at least one of the information. Then, whether the moving body 1 and the moving body 2 are recognized as a moving body group by using at least one of the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. It is determined whether or not it is present, and the determination result is output as a group state. Then, based on the group state, the movement of the moving body 1 is controlled by using a control rule selected from a plurality of control rules. Here, it is determined whether or not to change the control rule based on at least one of the group state, the state amount of the moving body 1, the state amount of the moving body 2, and the surrounding information of the moving body 1. Moreover, the judgment result is output as a control rule change signal. Then, based on the control rule change signal, the control rule used when controlling the movement of the moving body 1 is selected.
 このような構成によれば、情報取得部5が取得した情報を用いて、移動体1および他の移動体を群(移動体群)と認識するか否かを判定することで、状況に応じて群(移動体群)としての制御とするか、個別での制御とするかを判断して移動体1の運動を制御することができる。さらに、群状態、または、移動体1の状態量、移動体2の状態量、または、移動体1の周囲情報に基づいて、統合制御部6における制御則を変更するか否かを判断することで、状況に応じた適切な制御則によって移動体1の運動を制御することができる。 According to such a configuration, the information acquired by the information acquisition unit 5 is used to determine whether or not the moving body 1 and other moving bodies are recognized as a group (moving body group), depending on the situation. It is possible to control the movement of the moving body 1 by determining whether the control is performed as a group (moving body group) or individually. Further, it is determined whether or not to change the control rule in the integrated control unit 6 based on the group state, the state amount of the moving body 1, the state amount of the moving body 2, or the surrounding information of the moving body 1. Therefore, the movement of the moving body 1 can be controlled by an appropriate control rule according to the situation.
 なお、特段の制限がない場合には、それぞれの処理が行われる順序は変更することができる。 If there are no special restrictions, the order in which each process is performed can be changed.
 なお、上記の構成に本願明細書に例が示された他の構成を適宜追加した場合、すなわち、上記の構成としては言及されなかった本願明細書中の他の構成が適宜追加された場合であっても、同様の効果を生じさせることができる。 In addition, when other configurations shown in the present specification are appropriately added to the above configurations, that is, when other configurations in the present specification which are not mentioned as the above configurations are appropriately added. Even if there is, the same effect can be produced.
 <以上に記載された実施の形態の変形例について>
 以上に記載された実施の形態では、それぞれの構成要素の材質、材料、寸法、形状、相対的配置関係または実施の条件などについても記載する場合があるが、これらはすべての局面においてひとつの例であって、本願明細書に記載されたものに限られることはないものとする。
<About the modified example of the embodiment described above>
In the embodiments described above, the materials, materials, dimensions, shapes, relative arrangement relationships, conditions of implementation, etc. of each component may also be described, but these are one example in all aspects. However, it is not limited to those described in the present specification.
 したがって、例が示されていない無数の変形例、および、均等物が、本願明細書に開示される技術の範囲内において想定される。たとえば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの実施の形態における少なくとも1つの構成要素を抽出し、他の実施の形態における構成要素と組み合わせる場合が含まれるものとする。 Therefore, innumerable variants and equivalents for which examples are not shown are envisioned within the scope of the technology disclosed herein. For example, when transforming, adding or omitting at least one component, or when extracting at least one component in at least one embodiment and combining it with a component in another embodiment. Shall be included.
 また、矛盾が生じない限り、以上に記載された実施の形態において「1つ」備えられるものとして記載された構成要素は、「1つ以上」備えられていてもよいものとする。 Further, as long as there is no contradiction, the components described as being provided with "one" in the above-described embodiment may be provided with "one or more".
 さらに、以上に記載された実施の形態におけるそれぞれの構成要素は概念的な単位であって、本願明細書に開示される技術の範囲内には、1つの構成要素が複数の構造物から成る場合と、1つの構成要素がある構造物の一部に対応する場合と、さらには、複数の構成要素が1つの構造物に備えられる場合とを含むものとする。 Further, each component in the above-described embodiment is a conceptual unit, and within the scope of the technique disclosed in the present specification, one component is composed of a plurality of structures. And the case where one component corresponds to a part of a structure, and further, the case where a plurality of components are provided in one structure.
 また、以上に記載された実施の形態におけるそれぞれの構成要素には、同一の機能を発揮する限り、他の構造または形状を有する構造物が含まれるものとする。 Further, each component in the above-described embodiment shall include a structure having another structure or shape as long as it exhibits the same function.
 また、本願明細書における説明は、本技術に関連するすべての目的のために参照され、いずれも、従来技術であると認めるものではない。 In addition, the description in the present specification is referred to for all purposes related to the present technology, and none of them is recognized as a prior art.
 また、以上に記載された実施の形態で記載されたそれぞれの構成要素は、ソフトウェアまたはファームウェアとしても、それと対応するハードウェアとしても想定され、その双方の概念において、それぞれの構成要素は「部」または「処理回路」(circuitry)などと称される。 In addition, each component described in the above-described embodiment is assumed to be software or firmware and corresponding hardware, and in both concepts, each component is a "part". Alternatively, it is referred to as a "processing circuit" or the like.
 1,2,2A,2B,2C,2D 移動体、3 自律分散制御装置、4 群認識部、5 情報取得部、6 統合制御部、7 制御則変更判断部、51 直接情報取得部、52 間接情報取得部、53,53A,53B,53C,53D,53E 通信モード切り替え部、61 合意制御部、62 被覆制御部、63 運動制御部、100 境界、531 通信性能要求部、532 通信モード選択部、533 通信パラメータ探索部、534 通信性能比較部、535 通信性能推定部、536 制御パラメータ調整部、1102A,1102B 処理回路、1103 記憶装置。 1,2,2A, 2B, 2C, 2D mobile body, 3 autonomous distributed control device, 4 group recognition unit, 5 information acquisition unit, 6 integrated control unit, 7 control rule change judgment unit, 51 direct information acquisition unit, 52 indirect Information acquisition unit, 53, 53A, 53B, 53C, 53D, 53E Communication mode switching unit, 61 Consensus control unit, 62 Covering control unit, 63 Motion control unit, 100 boundary, 513 Communication performance request unit, 532 Communication mode selection unit, 533 Communication parameter search unit, 534 Communication performance comparison unit, 535 Communication performance estimation unit, 536 Control parameter adjustment unit, 1102A, 1102B processing circuit, 1103 storage device.

Claims (13)

  1.  第1の移動体に設けられる制御装置であり、
     前記第1の移動体の状態量、前記第1の移動体とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、前記第1の移動体の周囲情報を取得するための情報取得部と、
     前記情報取得部において取得された前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの、少なくとも前記第2の移動体の状態量を用いて、前記第1の移動体と前記第2の移動体とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力するための群認識部と、
     前記群状態に基づいて、複数の制御則から選択される制御則を用いて前記第1の移動体の運動を制御するための制御部と、
     前記群状態、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、前記制御部において用いられる前記制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力するための制御則変更判断部とを備え、
     前記制御部は、前記制御則変更信号に基づいて、前記第1の移動体の運動を制御する際に用いる前記制御則を選択する、
     制御装置。
    It is a control device provided in the first moving body, and is
    To acquire the state amount of the first moving body, the state amount of at least one second moving body which is a moving body different from the first moving body, and the surrounding information of the first moving body. Information acquisition department and
    At least the second moving body of the state amount of the first moving body, the state amount of the second moving body, and the surrounding information of the first moving body acquired by the information acquisition unit. A group recognition unit for determining whether or not to recognize the first moving body and the second moving body as a moving body group and outputting the determination result as a group state using the state amount of When,
    A control unit for controlling the movement of the first moving body by using a control law selected from a plurality of control rules based on the group state.
    Whether or not to change the control rule used in the control unit based on at least one of the group state, the state quantity of the second moving body, and the surrounding information of the first moving body. It is equipped with a control rule change judgment unit for judging and outputting the judgment result as a control rule change signal.
    The control unit selects the control rule to be used when controlling the movement of the first moving body based on the control rule change signal.
    Control device.
  2.  請求項1に記載の制御装置であり、
     前記群認識部は、前記情報取得部が少なくとも1つの前記第2の移動体の状態量を取得しているか否かに基づいて、実現可能な前記移動体群のパターンを認識し、かつ、実現可能な前記移動体群のパターンが複数存在する場合には、あらかじめ定められた優先度、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、実現可能な前記移動体群のパターンのうちの1つを前記群状態として出力する、
     制御装置。
    The control device according to claim 1.
    The group recognition unit recognizes and realizes a feasible pattern of the mobile body group based on whether or not the information acquisition unit has acquired at least one state quantity of the second mobile body. When there are a plurality of possible patterns of the moving body group, at least one of a predetermined priority, a state quantity of the second moving body, and surrounding information of the first moving body. One of the feasible patterns of the mobile group is output as the group state based on the above.
    Control device.
  3.  請求項1または2に記載の制御装置であり、
     前記制御部は、前記群状態が前記第1の移動体と前記第2の移動体とを前記移動体群と認識することを示す前記判定結果である場合、合意制御または被覆制御を用いて前記第1の移動体の運動を制御する、
     制御装置。
    The control device according to claim 1 or 2.
    When the group state is the determination result indicating that the first moving body and the second moving body are recognized as the moving body group, the control unit uses the consensus control or the covering control. Control the movement of the first moving body,
    Control device.
  4.  請求項3に記載の制御装置であり、
     前記合意制御は、前記第1の移動体と前記第2の移動体との間の相対距離に応じて、前記第1の移動体と前記第2の移動体との間に仮想的な斥力を生じさせる制御である、
     制御装置。
    The control device according to claim 3.
    The consensus control creates a virtual repulsive force between the first moving body and the second moving body according to the relative distance between the first moving body and the second moving body. Control to generate,
    Control device.
  5.  請求項3または4に記載の制御装置であり、
     前記被覆制御は、前記第1の移動体の周囲情報に基づいて被覆制御の適用領域を設定するとともに、前記被覆制御の適用領域における特定の場所の重みを規定する重み関数値を設定し、さらに、前記被覆制御の適用領域と、前記重み関数値と、前記被覆制御の適用領域内において前記第1の移動体の領域と前記第2の移動体の領域とを分割する境界に基づいて、前記境界内の重心位置を演算し、かつ、前記重心位置を前記境界内の目標位置とする制御である、
     制御装置。
    The control device according to claim 3 or 4.
    The coating control sets an application area of the coating control based on the surrounding information of the first moving body, sets a weight function value that defines a weight of a specific place in the application area of the coating control, and further. Based on the application region of the covering control, the weighting function value, and the boundary that divides the region of the first moving body and the region of the second moving body within the application region of the covering control. It is a control that calculates the position of the center of gravity within the boundary and sets the position of the center of gravity as the target position within the boundary.
    Control device.
  6.  請求項1から5のうちのいずれか1つに記載の制御装置であり、
     前記情報取得部は、前記第2の移動体との通信を介して、前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つを取得する、
     制御装置。
    The control device according to any one of claims 1 to 5.
    The information acquisition unit communicates with the second mobile body to obtain information on the state amount of the first mobile body, the state amount of the second mobile body, and the surrounding information of the first mobile body. Get at least one of
    Control device.
  7.  請求項1から6のうちのいずれか1つに記載の制御装置であり、
     前記情報取得部は、前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに加えて、前記第1の移動体と前記第2の移動体との間の通信状態、前記群状態および前記制御則変更信号のうちの少なくとも1つに基づいて、前記第1の移動体と前記第2の移動体との間の通信モードを切り替えるための通信モード切り替え部を備える、
     制御装置。
    The control device according to any one of claims 1 to 6.
    In addition to at least one of the state amount of the first moving body, the state amount of the second moving body, and the surrounding information of the first moving body, the information acquisition unit is the first. Based on at least one of the communication state between the moving body and the second moving body, the group state, and the control rule change signal, the first moving body and the second moving body A communication mode switching unit for switching the communication mode between
    Control device.
  8.  請求項7に記載の制御装置であり、
     前記通信モード切り替え部は、
      前記第1の移動体の状態量、前記第2の移動体の状態量、前記第1の移動体の周囲情報、前記第1の移動体と前記第2の移動体との間の通信状態、前記群状態、および、前記制御則変更信号のうちの少なくとも1つに基づいて、通信性能要求値を演算するための通信性能要求部と、
      複数の前記通信モードのうちから前記通信性能要求値を満たす前記通信モードを選択するための通信モード選択部とを備える、
     制御装置。
    The control device according to claim 7.
    The communication mode switching unit is
    The state amount of the first moving body, the state amount of the second moving body, the surrounding information of the first moving body, the communication state between the first moving body and the second moving body, A communication performance requesting unit for calculating a communication performance required value based on the group state and at least one of the control rule change signals.
    A communication mode selection unit for selecting the communication mode that satisfies the communication performance required value from the plurality of communication modes is provided.
    Control device.
  9.  請求項8に記載の制御装置であり、
     前記通信モード切り替え部は、通信パラメータを連続的に変化させることによって前記通信性能要求値を満たす前記通信パラメータを探索するための通信パラメータ探索部をさらに備え、
     前記通信モード選択部は、前記通信パラメータに基づいて、前記通信性能要求値を満たす前記通信モードを選択する、
     制御装置。
    The control device according to claim 8.
    The communication mode switching unit further includes a communication parameter search unit for searching for the communication parameter that satisfies the communication performance requirement value by continuously changing the communication parameter.
    The communication mode selection unit selects the communication mode that satisfies the communication performance requirement value based on the communication parameter.
    Control device.
  10.  請求項8または9に記載の制御装置であり、
     前記通信モード切り替え部は、複数の前記通信モードを動作させて通信し、さらに、それぞれの前記通信モードでの通信性能を比較するための通信性能比較部をさらに備え、
     前記通信モード選択部は、前記通信性能比較部における比較結果に基づいて、前記通信性能要求値を満たす前記通信モードを選択する、
     制御装置。
    The control device according to claim 8 or 9.
    The communication mode switching unit further includes a communication performance comparison unit for operating a plurality of the communication modes to communicate and further comparing the communication performance in each of the communication modes.
    The communication mode selection unit selects the communication mode that satisfies the communication performance requirement value based on the comparison result in the communication performance comparison unit.
    Control device.
  11.  請求項10に記載の制御装置であり、
     前記通信モード切り替え部は、前記通信モードの通信性能を推定するための通信性能推定部をさらに備え、
     前記通信性能比較部は、前記通信性能推定部における推定結果に基づいて、それぞれの前記通信モードでの通信性能を比較する、
     制御装置。
    The control device according to claim 10.
    The communication mode switching unit further includes a communication performance estimation unit for estimating the communication performance of the communication mode.
    The communication performance comparison unit compares the communication performance in each of the communication modes based on the estimation result in the communication performance estimation unit.
    Control device.
  12.  請求項7から11のうちのいずれか1つに記載の制御装置であり、
     前記通信モード切り替え部は、前記制御部における制御パラメータを調整するための制御パラメータ調整部をさらに備える、
     制御装置。
    The control device according to any one of claims 7 to 11.
    The communication mode switching unit further includes a control parameter adjusting unit for adjusting the control parameters in the control unit.
    Control device.
  13.  第1の移動体の状態量、前記第1の移動体とは異なる移動体である少なくとも1つの第2の移動体の状態量、および、前記第1の移動体の周囲情報を取得し、
     前記第1の移動体の状態量、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの、少なくとも前記第2の移動体の状態量を用いて、前記第1の移動体と前記第2の移動体とを移動体群と認識するか否かを判定し、かつ、判定結果を群状態として出力し、
     前記群状態に基づいて、複数の制御則から選択される制御則を用いて前記第1の移動体の運動を制御し、
     前記群状態、前記第2の移動体の状態量、および、前記第1の移動体の周囲情報のうちの少なくとも1つに基づいて、前記制御則を変更するか否かを判断し、かつ、判断結果を制御則変更信号として出力し、
     前記制御則変更信号に基づいて、前記第1の移動体の運動を制御する際に用いる前記制御則を選択する、
     制御方法。
    The state amount of the first moving body, the state amount of at least one second moving body which is a moving body different from the first moving body, and the surrounding information of the first moving body are acquired.
    The state amount of the first moving body, the state amount of the second moving body, and the state amount of the second moving body among the surrounding information of the first moving body are used. It is determined whether or not the first moving body and the second moving body are recognized as a moving body group, and the determination result is output as a group state.
    Based on the group state, the movement of the first moving body is controlled by using a control law selected from a plurality of control rules.
    Based on at least one of the group state, the state quantity of the second moving body, and the surrounding information of the first moving body, it is determined whether or not to change the control law, and The judgment result is output as a control rule change signal,
    Based on the control law change signal, the control law to be used when controlling the movement of the first moving body is selected.
    Control method.
PCT/JP2019/030721 2019-08-05 2019-08-05 Control device and control method WO2021024352A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/030721 WO2021024352A1 (en) 2019-08-05 2019-08-05 Control device and control method
JP2021538567A JP7046275B2 (en) 2019-08-05 2019-08-05 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030721 WO2021024352A1 (en) 2019-08-05 2019-08-05 Control device and control method

Publications (1)

Publication Number Publication Date
WO2021024352A1 true WO2021024352A1 (en) 2021-02-11

Family

ID=74502894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030721 WO2021024352A1 (en) 2019-08-05 2019-08-05 Control device and control method

Country Status (2)

Country Link
JP (1) JP7046275B2 (en)
WO (1) WO2021024352A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333429A (en) * 2021-12-21 2022-04-12 中国电子科技集团公司第五十四研究所 Rule extraction method for multi-unmanned aerial vehicle target coverage task
KR20220165164A (en) * 2021-06-07 2022-12-14 베어 로보틱스, 인크. Method, system, and non-transitory computer-readable recording medium for controlling a robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261195A (en) * 1997-03-21 1998-09-29 Fujitsu Ten Ltd Device and method for controlling vehicle group formation
JP2004505338A (en) * 2000-07-10 2004-02-19 エイチアールエル ラボラトリーズ,エルエルシー Method and apparatus for controlling movement of multiple agents
JP2017062768A (en) * 2015-09-24 2017-03-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Autonomous Mobile Robot and Movement Control Method
JP2017519279A (en) * 2014-05-05 2017-07-13 ジョージア テック リサーチ コーポレイション Control of group robot
WO2018105599A1 (en) * 2016-12-07 2018-06-14 日本電気株式会社 Control device, control method, and program recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261195A (en) * 1997-03-21 1998-09-29 Fujitsu Ten Ltd Device and method for controlling vehicle group formation
JP2004505338A (en) * 2000-07-10 2004-02-19 エイチアールエル ラボラトリーズ,エルエルシー Method and apparatus for controlling movement of multiple agents
JP2017519279A (en) * 2014-05-05 2017-07-13 ジョージア テック リサーチ コーポレイション Control of group robot
JP2017062768A (en) * 2015-09-24 2017-03-30 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Autonomous Mobile Robot and Movement Control Method
WO2018105599A1 (en) * 2016-12-07 2018-06-14 日本電気株式会社 Control device, control method, and program recording medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITA, MASAYUKI ET AL.: "Cooperative Control: Basic Results on Consensus and Coverage Control Problems", PROCEEDINGS OF THE 52ND ANNUAL CONFERENCE OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, vol. 52, 2008, pages 1 - 6 *
MIYAZAKIL TATSUYA, TAKABA KIYOTSUGU: "Formation Control of Mobile Robots with Obstacle Avoidance", 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, 201401001, pages 121 - 126, XP055651969 *
OTA, JUN ET AL.: "Multi-agent Robot Systems", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 20, no. 5, 2002, pages 25 - 28, ISSN: 0289-1824 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220165164A (en) * 2021-06-07 2022-12-14 베어 로보틱스, 인크. Method, system, and non-transitory computer-readable recording medium for controlling a robot
JP2022187446A (en) * 2021-06-07 2022-12-19 ベアー ロボティックス,インコーポレイテッド Method and system for controlling robot, and non-transient computer-readable recording media
US11914398B2 (en) 2021-06-07 2024-02-27 Bear Robotics, Inc. Method, system, and non-transitory computer-readable recording medium for controlling a robot
KR102663041B1 (en) * 2021-06-07 2024-05-07 베어 로보틱스, 인크. Method, system, and non-transitory computer-readable recording medium for controlling a robot
CN114333429A (en) * 2021-12-21 2022-04-12 中国电子科技集团公司第五十四研究所 Rule extraction method for multi-unmanned aerial vehicle target coverage task
CN114333429B (en) * 2021-12-21 2022-12-09 中国电子科技集团公司第五十四研究所 Rule extraction method for multi-unmanned aerial vehicle target coverage task

Also Published As

Publication number Publication date
JP7046275B2 (en) 2022-04-01
JPWO2021024352A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
CN111132258B (en) Unmanned aerial vehicle cluster collaborative opportunity routing method based on virtual potential field method
US9191304B1 (en) Reinforcement learning-based distributed network routing method utilizing integrated tracking and selective sweeping
Yassein et al. Flying ad-hoc networks: Routing protocols, mobility models, issues
JP7046275B2 (en) Control device and control method
CN112822745B (en) Self-adaptive routing method for unmanned aerial vehicle ad hoc network
Deshpande et al. SMURF: Reliable multipath routing in flying ad-hoc networks
Sawalmeh et al. An overview of collision avoidance approaches and network architecture of unmanned aerial vehicles (UAVs)
CN110958661A (en) Unmanned aerial vehicle network route selection method and device and unmanned aerial vehicle node
Hussain et al. Co-DLSA: Cooperative delay and link stability aware with relay strategy routing protocol for flying Ad-hoc network
CN114339936A (en) Aircraft self-organizing network optimization link state routing mechanism based on Q learning
Wu et al. Mobility control of unmanned aerial vehicle as communication relay in airborne multi-user systems
CN112672398B (en) 3D-GPSR routing method based on self-adaptive kalman prediction
Marini et al. Reinforcement learning-based trajectory planning for uav-aided vehicular communications
Stephan et al. Hybrid architecture for communication-aware multi-robot systems
Defoort et al. A motion planning framework with connectivity management for multiple cooperative robots
Say et al. Cooperative path selection framework for effective data gathering in UAV-aided wireless sensor networks
Chen et al. Modeling position uncertainty of networked autonomous underwater vehicles
KR101215395B1 (en) Path search method of distributed robot in dinamic environment
US20230351205A1 (en) Scheduling for federated learning
Chen et al. Distributed Collaborative Controlled autonomous vehicle systems over wireless networks
Besseghieur et al. Formation control of mobile robots under ROS
Halder et al. A Hybrid Localization Approach for UAV based on AODV and RSSI in FANETs
CN117715117B (en) Task unloading method for multi-UAV-RIS auxiliary mobile edge calculation
JP7276481B2 (en) Mobile terminal and communication quality prediction method
CN114756052B (en) Multi-target cooperative tracking method based on unmanned aerial vehicle cluster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940770

Country of ref document: EP

Kind code of ref document: A1