WO2021020569A1 - Method for performing forest mensuration, forest mensuration system, method for determining flight path of unmanned aerial vehicle, image capturing method, dispersion method, and computer program - Google Patents

Method for performing forest mensuration, forest mensuration system, method for determining flight path of unmanned aerial vehicle, image capturing method, dispersion method, and computer program Download PDF

Info

Publication number
WO2021020569A1
WO2021020569A1 PCT/JP2020/029506 JP2020029506W WO2021020569A1 WO 2021020569 A1 WO2021020569 A1 WO 2021020569A1 JP 2020029506 W JP2020029506 W JP 2020029506W WO 2021020569 A1 WO2021020569 A1 WO 2021020569A1
Authority
WO
WIPO (PCT)
Prior art keywords
forest
aerial vehicle
unmanned aerial
contour line
sensor
Prior art date
Application number
PCT/JP2020/029506
Other languages
French (fr)
Japanese (ja)
Inventor
準 矢嶋
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2021535465A priority Critical patent/JP7141538B2/en
Publication of WO2021020569A1 publication Critical patent/WO2021020569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • G01C7/04Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters

Definitions

  • the present invention relates to a technique for performing forest measurement using an unmanned aerial vehicle, a technique for determining a flight path of an unmanned aerial vehicle, and the like.
  • Patent Document 1 discloses a method of photographing a forest with a camera from the sky and extracting a canopy circle from the obtained image by image processing.
  • Patent Document 2 transmits radar waves having different wavelengths from the sky to the forest, and calculates the height of the tree from the difference in height calculated from the reflected wave from the top of the tree and the reflected wave from the ground.
  • Patent Document 3 discloses a method in which a laser ranging device is mounted on an aircraft and the laser ranging device is used to acquire three-dimensional data on the ground including trees and the like.
  • JP-A-2007-66050 Japanese Unexamined Patent Publication No. 9-184880 Japanese Unexamined Patent Publication No. 2016-070708
  • point cloud data which is data on the upper surface of the forest (upper surface of the canopy)
  • trunk data because the laser beam is blocked by the leaves of trees and the like. Therefore, it was necessary to estimate the number of main trunks, which are the thickest trunks, from the measurement results.
  • Patent Document 3 a human brings a device such as a laser ranging device into a forest, further acquires three-dimensional point cloud data, and obtains point cloud data obtained by measurement from the sky and measurement on the ground. It is mentioned to fuse with the point cloud data. However, it takes a lot of time and effort to acquire two types of point cloud data.
  • a method according to an embodiment of the present invention is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement for a forest on a slope, and the rotation axis or swing of the rider sensor.
  • the axis is mounted on the unmanned aerial vehicle so as to face the direction of travel of the aircraft, and (i) the rider sensor scans the forest while flying the unmanned aerial vehicle at a predetermined absolute altitude along the first contour line. , And (ii) the rider sensor rescans the forest while flying the unmanned aerial vehicle along a second contour line different from the first contour line at the predetermined absolute altitude.
  • LiDAR lidar
  • the method may further include pre-designating the first contour lines, the second contour lines and the predetermined absolute altitude prior to the steps (i) and (ii).
  • the method further comprises causing the rider sensor to scan the edge of the forest while flying the unmanned aerial vehicle over a position a predetermined distance away from the edge. It may be included.
  • the rider sensor may scan the canopy and trunk of each tree in the forest.
  • the steps (i) and (ii) may include causing the rider sensor to scan the forest with a laser pulse emitted in the horizontal direction.
  • steps (i) and (ii) may include causing the rider sensor to scan the forest using laser pulses emitted in an oblique direction.
  • the unmanned aerial vehicle may be an unmanned helicopter or an unmanned multicopter.
  • a method is a method of determining a flight path of an unmanned aerial vehicle equipped with an observer, in which the observation target area by the observer is specified, and when the observation target area includes a slope.
  • determining the plurality of route segments may include setting a plurality of transit points on one or more selected contour lines and specifying the absolute altitude. ..
  • the observation area may include forests on the slope.
  • the observer may be a lidar (LiDAR) sensor.
  • LiDAR lidar
  • determining the flight path may include determining the flight path at the edge of the forest that passes over a position a predetermined distance away from the edge.
  • the observer may be an infrared camera.
  • a method according to an embodiment of the present invention is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement for a forest on a slope, and the rotation axis or swing of the rider sensor.
  • the axis is mounted on the unmanned aerial vehicle so as to face the direction of travel of the aircraft, and (i) the rider sensor scans the forest while flying the unmanned aerial vehicle at a predetermined absolute altitude and a predetermined first true altitude. And (ii) scan the forest again with the rider sensor while flying the unmanned aerial vehicle at the predetermined absolute altitude and a predetermined second true altitude different from the predetermined first true altitude. Do what you want.
  • the forest measurement system is a forest measurement system having an unmanned aircraft and a computer device, and for flying the unmanned aircraft to perform forest measurement targeting a forest on a slope.
  • the unmanned aircraft has a lidar (LiDAR) sensor, a first signal processing circuit, a first storage device, and a first communication circuit, and the rotation axis or swing axis of the rider sensor determines the traveling direction of the aircraft. It is mounted on the unmanned aircraft so as to face the unmanned aircraft, and the computer device includes a display device, an input device, a second signal processing circuit, a second storage device that stores information about contour lines, and a second communication circuit.
  • LiDAR lidar
  • the computer device includes a display device, an input device, a second signal processing circuit, a second storage device that stores information about contour lines, and a second communication circuit.
  • the second signal processing circuit acquires information about the contour line from the second storage device, receives designation of the first contour line, the second contour line, and the absolute altitude via the input device, and receives the designation of the designated first contour line.
  • the first contour line, the second contour line, and the absolute altitude data are transmitted to the unmanned aircraft via the second communication circuit, and the first signal processing circuit is the first through the first communication circuit.
  • the data of the contour line, the second contour line and the absolute altitude are received, the received data of the first contour line, the second contour line and the absolute altitude are stored in the first storage device, and the unmanned aircraft is stored in the first storage device.
  • the rider sensor scans the forest while flying along the contour line at the absolute altitude, and the rider sensor scans the forest again while flying the unmanned aircraft at the absolute altitude along the second contour line. Let me.
  • the imaging method is a method of photographing an observation target by using an unmanned aerial vehicle equipped with an imaging device, and the observation target area is specified, and when the observation target area includes a slope, the above-mentioned With reference to the contour data in the observation target area, determine a plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines, and determine a flight route including the plurality of route segments. That is, taking a picture with the image pickup device while flying the unmanned aerial vehicle along the determined flight path.
  • the spraying method is a method of spraying a drug using an unmanned aerial vehicle equipped with a drug spraying device, specifying an area to be sprayed by the spraying device, and the spraying target area is a slope.
  • the plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines are determined by referring to the contour data in the spraying target area. Determining the flight path and spraying the drug while flying the unmanned aerial vehicle along the determined flight path.
  • a computer program is a computer program for causing a computer to control forest measurement for a forest on a slope by flying an unmanned aircraft equipped with a lidar (LiDAR) sensor.
  • the axis of rotation or swing of the rider sensor is mounted on the unmanned aircraft so that it faces the direction of travel of the aircraft, and the computer program (i) flies the unmanned aircraft along a first contour line at a predetermined absolute altitude. While allowing the rider sensor to scan the forest, and (ii) flying the unmanned aircraft along a second contour line different from the first contour line at the predetermined absolute altitude, the rider sensor said. Let the computer perform control of rescanning the forest.
  • a method according to an embodiment of the present invention is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement for a forest, wherein the rotation axis or the swing axis of the lidar sensor is , It is mounted on the unmanned aerial vehicle so as to face the traveling direction of the aircraft, and the lidar sensor is used to emit the laser pulse while changing the emission direction at a predetermined angular pitch to measure the surrounding space.
  • LiDAR lidar
  • the distance is L
  • the flight speed of the unmanned aerial vehicle is V
  • the number of laser pulses emitted simultaneously in the same angular direction is N
  • the frequency of the laser pulses emitted in the same angular direction is f
  • the predetermined angular pitch is
  • the predetermined angle pitch ⁇ may be a fixed value.
  • the predetermined angle pitch ⁇ may be fixed to a settable minimum value.
  • the lidar sensor is of a mechanical rotation type, and when the number of times the laser pulse is emitted per unit time at one outlet that emits the laser pulse is M and the number of rotations per unit time is R,
  • the number of times of emission M per unit time and the number of rotations R per unit time may be variable values.
  • the number of emission times M per unit time and the number of rotations R per unit time may be fixed values.
  • the rider sensor is of a mechanical rotation type
  • the predetermined angle pitch ⁇ is smaller than the divergence angle ⁇ 1 of the laser pulse in the direction perpendicular to the rotation axis
  • the method is such that the rider sensor The flight speed of the unmanned aircraft so that the flight distance J that the unmanned aircraft flies during one rotation is shorter than the length K in the direction parallel to the traveling direction of the aircraft at the laser spot formed in the forest. It may include adjusting V, the number of revolutions R of the rider sensor per unit time, and at least one of the altitude H of the unmanned aircraft.
  • the method changes the divergence angle ⁇ by changing at least one of the number of times M and the number of revolutions R of the pulse emitted per unit time at one outlet for emitting the laser pulse. It may include adjusting the predetermined angle pitch ⁇ so as to be smaller than 1 .
  • the unmanned aerial vehicle may be an unmanned helicopter or an unmanned multicopter.
  • the forest may be a sloped forest.
  • the forest measurement system is a forest measurement system having an unmanned aircraft and a computer device for flying the unmanned aircraft to perform forest measurement targeting the forest, and is the unmanned forest measurement system.
  • the aircraft has a lidar (LiDAR) sensor, a first signal processing circuit, a storage device, and a first communication circuit, and the rotation axis or swing axis of the lidar (LiDAR) sensor faces the traveling direction of the aircraft.
  • the computer device includes a display device, an input device, a second signal processing circuit, and a second communication circuit, and the second signal processing circuit is the input device.
  • the number N of laser pulses emitted simultaneously in the same angular direction, the frequency f of the laser pulses emitted in the same angular direction, and the predetermined number N of the predetermined angle pitch ⁇ are specified.
  • the data of the frequency f and the predetermined angle pitch ⁇ are transmitted to the unmanned aircraft via the second communication circuit, and the first signal processing circuit is the number N, the said, via the first communication circuit.
  • the data of the frequency f and the predetermined angle pitch ⁇ are received, the received data of the number N, the frequency f and the predetermined angle pitch ⁇ are stored in the storage device, the distance to the forest is L, and the unmanned aircraft.
  • the unmanned aircraft is flown so that the relative value of ⁇ ⁇ L with respect to V / (f ⁇ N) falls within a predetermined range, and the forest is cleared by using the rider sensor. Perform target forest measurement.
  • a computer program is a computer program for causing a computer to control forest measurement for a forest by flying an unmanned aircraft equipped with a lidar (LiDAR) sensor.
  • the rotation axis or swing axis of the aircraft is mounted on the unmanned aircraft so as to face the traveling direction of the aircraft, and the computer program uses the lidar sensor to emit while changing the emission direction of the laser pulse at a predetermined angular pitch.
  • the surrounding space is measured, the distance to the forest is L, the flight speed of the unmanned aircraft is V, the number of laser pulses emitted simultaneously in the same angular direction is N, and the laser pulses are emitted in the same angular direction.
  • the unmanned aircraft When the frequency of the laser pulse is f and the predetermined angular pitch is ⁇ , the unmanned aircraft is being flown so that the relative values of ⁇ and L with respect to V / (f ⁇ N) are within a predetermined range.
  • the computer is made to control the forest measurement for the forest by using the lidar sensor.
  • the bias of the spatial density of the acquired point cloud data is suppressed, and the point cloud data It makes it possible to accurately determine or estimate the position and shape of the canopy and trunk from.
  • FIG. 1 shows the unmanned helicopter 1 which performs the forest measurement. It is an external side view of the unmanned helicopter 1 equipped with the LiDAR sensor 20. It is a front view of the unmanned helicopter 1. It is a figure which shows the hardware configuration example of the flight control box 15. It is a figure which shows the unmanned helicopter 1 which performs the forest measurement for the forest 54 of the slope 52 using the LiDAR sensor 20. It is a figure which shows the modification about the mounting position of the LiDAR sensor 20. It is a perspective view which shows a part of the flight path 60 in an exemplary embodiment. It is a top view which shows a part of the flight path 60. FIG.
  • FIG 5 is a cross-sectional view of a slope 52 showing an unmanned helicopter 1 flying along the first contour line 60a and an unmanned helicopter 1 flying along the second contour line 60b. It is a figure which shows the distribution of the laser pulse incident on the slope 52 when the absolute altitude AGL is made constant. It is a figure which shows the distribution of the laser pulse incident on the slope 52 when the true altitude MSL is maintained constant. It is a figure which shows the result of the forest measurement performed by the method which concerns on an exemplary embodiment. It is a figure which shows an example of the forest measurement system 100 including an unmanned helicopter 1 and a tablet computer 70. It is a figure which shows an example of the forest measurement system 100 including an unmanned helicopter 1 and a base station control device 80.
  • FIG. It is a flowchart which shows the specific example of the process shown in FIG. It is a figure which shows typically the plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is seen from the front. It is a figure which shows typically the plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is viewed from the side. It is a figure which shows the laser spot formed on the measurement object 51 by the laser pulse 22. It is a flowchart which shows the procedure of the forest measurement which performs while irradiating the forest 54 which is an example of a measurement object 51 evenly with a laser pulse 22.
  • This "forest measurement” may include surveying the structure of the forest, estimating the volume of the forest, and grasping the amount of change in the forest over a certain period of time. It takes a lot of manpower and time to measure each forest tree and perform various aggregation and analysis from the obtained data as in the conventional forest measurement. Therefore, a laser ranging device (LiDAR sensor) is mounted on an unmanned aerial vehicle, and forest measurement is being carried out from the air using the LiDAR sensor.
  • LiDAR sensor laser ranging device
  • the former has the advantage that the density of measurement points by the LiDAR sensor can be made uniform when the measurement target is directly below, but the distance from the slope can fluctuate greatly. There is a new problem that the measurement point density of the pulse of the laser beam incident on the slope is not uniform and is biased. There is room for improvement as a forest measurement for slope forests.
  • the flight altitude (elevation above sea level) is generally determined based on the altitude point of the highest mountain in the target area of observation (measurement, surveying, search). Since it flies at a relatively high position, the density of measurement points by the LiDAR sensor decreases even directly below. The density of measurement points for pulses incident on the slope is lower. There is a lot of room for improvement as a measurement method.
  • forest measurement includes scanning a forest from the sky using a LiDAR sensor and acquiring scan data itself.
  • the scan data can typically be represented by the position coordinates of each point that constitutes a point cloud acquired for each scan.
  • the position coordinates of the points obtained for each scan are defined by the local coordinate system that travels with the unmanned aerial vehicle.
  • Such a local coordinate system may be referred to as a mobile coordinate system or a sensor coordinate system.
  • “forest measurement” involves converting the position of each reflection point represented in the local coordinate system into a geographic coordinate system.
  • “Forest measurement” further analyzes the structure of the forest after conversion to the geographic coordinate system, visually displays the shape of the forest and / or trees, and determines the abundance ratio of each type of tree in the forest. It may include finding the volume density of the forest.
  • An "unmanned aerial vehicle” is an aircraft on which a person as a pilot does not board, and is sometimes called a drone.
  • Aircraft may include rotorcraft and fixed-wing aircraft.
  • An example of an unmanned aerial vehicle with rotors is an unmanned helicopter or unmanned multicopter.
  • the rotor blades may be rotated by an engine (internal combustion engine) or by an electric motor.
  • the flight of an unmanned aerial vehicle can be either autonomous flight by computer program, semi-autonomous flight by partially automating, or remote control flight by a person using radio.
  • the unmanned aerial vehicle can fly while measuring and correcting the current position three-dimensionally with the help of GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • unmanned means that no one needs to be on board to fly the aircraft, and does not exclude unmanned aerial vehicles carrying non-pilots.
  • Contour line is a curve that connects points at the same height from the standard sea level in order to accurately represent the undulations of the land on the map.
  • the height is measured with the average sea level of Tokyo Bay as the standard sea level (0 m).
  • the height above standard sea level is called “elevation”.
  • a main curve is drawn every 10 m above sea level, and a total curve is drawn every 50 m.
  • the "contour line” may be a curve connecting points at the same height from the standard sea level, and includes a curve not shown on the map.
  • a curve connecting points at an altitude of 563 m can also be contour lines.
  • the "contour line” includes a virtual curve connecting positions at the same height as the standard sea level on the actual terrain.
  • the "equal height above the standard sea level” here does not have to be exact.
  • a virtual curve connecting positions at heights within ⁇ 30 meters of "equal height to standard sea level” can also be contour lines.
  • an unmanned aerial vehicle is flying and measures the altitude (contour line) of a predetermined position using a LiDAR sensor, a virtual position with a height within ⁇ 50 meters is connected in consideration of measurement error. Curves may be included as contour lines.
  • Absolute altitude refers to the distance from the ground surface or water surface, and can also be expressed as “AGL” (Above Ground Level).
  • AGL Absolute Ground Level
  • the “absolute altitude” is generally a value measured using a radio altimeter, but the present specification includes adopting a value measured using a LiDAR (lidar) sensor described later as an absolute altitude.
  • “absolute altitude” includes, for example, a distance from a surface layer represented by a digital surface model or a DSM (Digital Surface Model). That is, when the absolute altitude is H meters, the distance measured from the ground surface may be H meters, or the distance measured from the surface layer of the canopy may be H meters.
  • True altitude means the height from the average sea level (MSL; Mean Sea Level).
  • MSL Mean Sea Level
  • “true altitude” and “elevation” are assumed to be equal. That is, the "average sea level” that defines “true altitude” is the average sea level of Tokyo Bay.
  • FIG. 1 shows an unmanned helicopter 1 that performs forest measurement.
  • forest measurement is performed on forest 54 on slope 52 of mountain 50.
  • the area selected as the target for forest measurement, including the mountain 50 or the slope 52, may be referred to as an “observation target area”.
  • the “observation target area” includes the ground surface of the forest 54 on the slope 52 and / or the mountain 50, and may further include the forest and the ground surface on a flat land.
  • the unmanned helicopter 1 is equipped with a lidar (LiDAR) sensor, which will be described later.
  • FIG. 2 is an external side view of the unmanned helicopter 1 equipped with the LiDAR sensor (rider sensor) 20.
  • FIG. 3 is a front view of the unmanned helicopter 1.
  • LiDAR lidar
  • the LiDAR sensor 20 emits laser beam pulses (hereinafter abbreviated as “laser pulses”) 22 one after another while changing the emission direction, and each is based on the time difference between the emission time and the time when the reflected pulse of each laser pulse is acquired. The distance to the position of the reflection point can be measured.
  • the "reflection point” can be the canopy and / or trunk of each tree constituting the forest 54, or the ground surface such as the slope 52 of the mountain 50 or flat land.
  • the LiDAR sensor 20 has a plurality of methods depending on the difference in the method of emitting a laser pulse.
  • the plurality of methods are, for example, a mechanical rotation method, a MEMS method, and a phased array method.
  • the mechanical rotation type LiDAR sensor has a tubular shape, and rotates a detector that detects a laser and reflected light of a laser pulse to scan a measurement object 360 degrees around the rotation axis in all directions.
  • the MEMS-type LiDAR sensor swings the emission direction of the laser pulse using a MEMS mirror, and scans a measurement object within a predetermined angle range centered on the swing axis.
  • the phased array type LiDAR sensor controls the phase of light to swing the light emission direction, and scans a measurement object within a predetermined angle range centered on the swing axis.
  • the rotation axis or the swing axis of the LiDAR sensor is mounted so as to face the traveling direction of the unmanned helicopter 1.
  • the forest measurement method according to the present embodiment is (i) to scan the forest 54 on the slope 52 with a LiDAR sensor while flying the unmanned helicopter 1 along the first contour line 60a at a predetermined absolute altitude, and (ii). This includes rescanning the forest 54 with a LiDAR sensor while flying the unmanned helicopter 1 along a second contour line 60b different from the first contour line 60a at the same absolute altitude.
  • the absolute altitude can be appropriately determined according to the height of each tree constituting the forest 54. An example of absolute altitude is 50m. Since the unmanned helicopter 1 keeps the absolute altitude constant, it is possible to secure a sufficient distance between the unmanned helicopter 1 and the trees even in a mountainous area where there is a steep height difference.
  • the LiDAR sensor is mounted on the unmanned helicopter 1 so that its rotation axis or rocking axis faces the airframe traveling direction of the unmanned helicopter 1, the rotation axis or rocking axis generally coincides with the direction in which the contour lines extend.
  • the laser pulse can be irradiated substantially perpendicular to the trunks of the trees constituting the forest 54, that is, from the lateral direction of the trees. This makes it easier for the laser pulse to pass between the leaves that grow horizontally, basically because of the sunlight, so it is possible to measure not only the canopy of the trees but also the trunk.
  • the significance of flying the unmanned helicopter 1 along the contour line is to keep the distance from the LiDAR sensor of the unmanned helicopter 1 to the slope 52 substantially constant.
  • the distance substantially constant By keeping the distance substantially constant, the number density per unit area of the laser pulses emitted in the direction of the slope 52, that is, the measurement point density can be kept substantially constant.
  • the spatial density of the obtained point cloud data becomes substantially constant, and the quality of forest measurement for the forest 54 on the slope 52 can be made uniform.
  • the above-mentioned flight method means that the altitude or true altitude represented by the first contour line 60a and the absolute altitude are kept constant at the same time for the first contour line 60a, and the second contour line 60b is for the second contour line 60b. It means flying while keeping the altitude or true altitude and the absolute altitude constant at the same time.
  • the above flight method can be paraphrased as follows. That is, the method of performing forest measurement is (i) to scan the forest on the slope with a LiDAR sensor while flying the unmanned aerial vehicle at a predetermined absolute altitude and a predetermined first true altitude, and (ii) to perform the unmanned aerial vehicle at a predetermined altitude.
  • the LiDAR sensor is used to scan the forest again while flying at an absolute altitude and a predetermined second true altitude different from the predetermined first true altitude.
  • the present inventor further studied a suitable forest measurement method for making the quality of forest measurement uniform. As a result, it was found that the unmanned helicopter 1 was flown as follows. The method of mounting the LiDAR sensor on the unmanned helicopter 1 is as described above.
  • forest measurement methods found by the present inventor are (i) using a LiDAR sensor to emit while changing the emission direction of a pulse at a predetermined angular pitch to measure the surrounding space, and (ii) up to a slope.
  • the distance is L
  • the flight speed of the unmanned helicopter 1 is V
  • the number of laser pulses emitted simultaneously in the same angular direction is N
  • the frequency of the laser pulses emitted in the same angular direction is f
  • the predetermined angular pitch is ⁇ .
  • ⁇ ⁇ L is the distance between the two arrival positions when the two laser pulses emitted at intervals of a predetermined angle pitch ⁇ reach the ground surface separated by a distance L.
  • V / f of "V / (f ⁇ N)" is the next one laser from the same emission port one cycle after one laser pulse is emitted from the emission port of the LiDAR sensor. This is the distance that the unmanned helicopter 1 flies during the minute time until the pulse is emitted. This distance means the distance between the two arrival positions when these two laser pulses reach the ground surface.
  • N laser pulses are emitted at the same time, N laser pulses reach between two positions separated by a distance of V / f. That is, it can be said that "V / (f ⁇ N)" is the average distance between two adjacent arrival positions among the N arrival positions.
  • the meaning of "the relative value of ⁇ / L with respect to V / (f / N) is within a predetermined range” is relative to the interval (A) of the laser pulses incident on the ground surface with respect to the flight direction of the unmanned helicopter 1. It means that the relative value of the interval (B) of the laser pulses incident on the ground surface with respect to the direction perpendicular to the traveling direction is within a predetermined range.
  • An example of a "predetermined range” is when the "relative value” is represented by a ratio B / A or a ratio A / B, the ratio is in the range 0.9 to 1.1, which is wider 0.8.
  • the range may be from 1.3 to 1.3, and may be a wider range of about 0.5-2.0.
  • the analysis accuracy will decrease with respect to the amount of data during analysis, and it is expected that the calculation efficiency will deteriorate.
  • a range having a value less than 0.5 and / or a value greater than 2.0 as a boundary value may be adopted.
  • a person skilled in the art can set an appropriate ratio range in consideration of analysis accuracy, calculation efficiency, and the like.
  • the “relative value” can also be defined by using the difference between the interval (A) and the interval (B) described above.
  • the magnitude of the "difference” can vary greatly depending on the conditions under which the LiDAR sensor 20 is operating and / or the flight speed and the like. Therefore, the example of "within a predetermined range” regarding the difference is omitted.
  • the ratio is 1 or the difference is 0, it means that the above-mentioned interval (A) and interval (B) are equal.
  • the measurement point group is distributed in a square mesh shape or a grid shape, and a substantially uniform measurement point density can be ensured.
  • the specific values of V / (f ⁇ N) and ⁇ ⁇ L can be determined from the required measurement point densities.
  • the "L” of " ⁇ ⁇ L” is shorter as it is closer to the bottom of the unmanned helicopter 1, and becomes larger as it is farther from the unmanned helicopter 1. Therefore, the distance to the ground surface at the position or direction in which the desired measurement point density is desired may be set as “L”.
  • An example of the "direction” referred to here is a direction 45 degrees from the vertical downward direction on the plane assuming a plane perpendicular to the flight direction of the unmanned helicopter 1 in flight.
  • the unmanned helicopter 1 When the unmanned helicopter 1 is stationary on flat ground, it takes X, Y and Z axes as shown. It is assumed that the positive direction of the X-axis is the direction from the front to the back of the paper.
  • the + Y direction is the traveling direction of the aircraft 4 during flight, the + Z direction is vertically upward, and the ⁇ Z direction is vertically downward.
  • the unmanned helicopter 1 is equipped with an airframe 4 having a main body 2 and a tail body 3.
  • a LiDAR sensor 20 is attached to the front of the machine 4 (in the + Y direction) and below the body 4 (in the ⁇ Z direction).
  • a main rotor 5 is provided above the main body 2 (in the + Z direction), and a tail rotor 6 is provided at the rear of the tail body 3.
  • a radiator 7 is provided at the front portion of the main body 2.
  • An engine, an intake system, a main rotor shaft, and a fuel tank (not shown) are housed in the main body 2.
  • a control panel 10 is provided on the upper rear side of the main body 2, and an indicator light 11 is provided on the lower rear side.
  • the control panel 10 displays a checkpoint before flight, a self-check result, and the like.
  • the display on the control panel 10 can also be confirmed by the ground station.
  • the indicator light 11 displays the state of GNSS control, an abnormality warning of the aircraft, and the like.
  • a skid 16 which is a leg that supports the aircraft 4 at the time of landing is provided on the lower side of the central portion of the main body 2.
  • the flight control box 15 is mounted on the main body 2.
  • FIG. 4 shows an example of the hardware configuration of the flight control box 15.
  • the flight control box 15 houses a GPS module 15a, an acceleration sensor 15b, a pressure sensor 15c, a geomagnetic sensor 15d, an ultrasonic sensor 15e, a communication circuit 15f, a signal processing circuit 15g, and a storage device 15j such as a ROM 15h and a RAM 15i.
  • the components may send and receive data to and from each other, for example via wiring or internal bus 15k.
  • the position where various sensors such as the GPS module 15a are provided does not always have to be in the flight control box 15.
  • the GPS module 15a may be provided on the upper part of the tail body 3.
  • the flight control box 15 includes a GPS module 15a as an example of a GNSS module.
  • the GPS module 15a acquires flight data such as the current position and flight speed using GPS (Global Positioning System).
  • the number of GPS modules 15a may be one or may be plural (for example, two).
  • the acceleration sensor 15b is a three-axis acceleration sensor that detects acceleration in each of the X-axis, Y-axis, and Z-axis directions. If the acceleration sensor 15b is a six-axis acceleration sensor, it can further detect the roll acceleration, pitch angular velocity, and yaw acceleration of the unmanned helicopter 1.
  • the barometric pressure sensor 15c detects the barometric pressure. The current altitude can be known from the detected atmospheric pressure.
  • the geomagnetic sensor 15d detects the current orientation of the unmanned helicopter 1. By using the data (airframe data) output from each of the acceleration sensor 15b and the geomagnetic sensor 15d, the current attitude of the unmanned helicopter 1 can be determined. Flight data and airframe data are provided to the signal processing circuit 15g.
  • the communication circuit 15f has a communication circuit that performs wireless communication conforming to the Bluetooth (registered trademark) and / or Wi-Fi (registered trademark) standard.
  • the communication circuit 15f may further perform wireless communication using a mobile phone line or a line via an artificial satellite.
  • the communication circuit 15f receives flight path data before flight, and wirelessly performs necessary communication with the ground during flight.
  • the flight path data includes contour line and absolute altitude data that the unmanned helicopter 1 should fly along.
  • the storage device 15j stores a computer program that controls the operation of the signal processing circuit 15g.
  • the storage device 15j may store a computer program for causing the signal processing circuit 15g to control the flight of the unmanned helicopter 1 and the forest measurement described later.
  • a computer program may be installed on the unmanned helicopter 1 from a recording medium (semiconductor memory, optical disk, etc.) on which it is recorded, or may be downloaded via a telecommunication line such as the Internet. You may also install such a computer program on the unmanned helicopter 1 via wireless communication.
  • Such computer programs may be sold as packaged software.
  • the signal processing circuit 15g executes the control program stored in the storage device 15j to fly the unmanned helicopter 1. More specifically, the signal processing circuit 15g monitors the above-mentioned flight data, aircraft data, operating state data such as engine speed and throttle opening, and performs the unmanned helicopter 1 along a flight path prepared in advance. Let it fly.
  • the flight control box 15 is connected to the LiDAR sensor 20.
  • the flight control box 15 may provide the LiDAR sensor 20 with position data indicating the flight position of the unmanned helicopter 1 acquired by the GPS module 15a, for example.
  • the LiDAR sensor 20 can use, for example, geographic coordinates by using the position data and the scan result (a set of time data, direction data, and distance data) at the time of scanning even if the LiDAR sensor 20 itself does not mount the GPS module 15a.
  • the position represented by the system can be calculated.
  • the operator who manages the flight and operation of the unmanned helicopter 1 can also fly the unmanned helicopter 1 along the flight route prepared in advance while visually observing the flight state.
  • a remote control receiving antenna 23 for receiving a command signal from the remote control pilot is provided.
  • the LiDAR sensor 20 is an optical device that measures the distance to a reflection point by, for example, emitting a near-infrared laser pulse 22 and detecting the reflected light of the laser pulse 22.
  • the LiDAR sensor 20 is of a mechanical rotation type, and can scan 360 degrees in all directions by rotating a detector that detects a laser and reflected light of a laser pulse.
  • the scannable range of the LiDAR sensor 20 that is blocked by the aircraft 4 of the unmanned helicopter 1 for example, the range of ⁇ 60 degrees (120 degrees in total) centered on the + Z direction of the LiDAR sensor 20 is measured. Not reflected in the result.
  • One laser pulse may be emitted for each rotation in a certain angle direction, or a plurality of laser pulses may be emitted at the same time.
  • FIG. 2 shows how N laser pulses 22 are emitted at the same time. However, for convenience of description, it is described in a beam shape instead of a pulse shape. An example of N is 12. When N is 2 or more, the LiDAR sensor 20 is provided with N laser pulse outlets.
  • a laser pulse emitted from a certain outlet will be described with reference to FIG.
  • the LiDAR sensor 20 rotates while changing the direction at predetermined angular pitch ⁇ (rad) to emit the laser pulse 22, and detects the reflected light of each laser pulse 22.
  • angular pitch
  • the predetermined angle pitch ⁇ may be a fixed value or a variable value.
  • the number of emission times M per unit time and the number of rotations R per unit time may also be fixed values or variable values.
  • N be the number of laser pulses emitted simultaneously in the same angular direction (Fig. 2).
  • MN 600,000 (pieces / sec)
  • R 10 (rotation / sec)
  • N 16
  • the predetermined angle pitch ⁇ is about 0.0017 (rad), about 0. It is 096 degrees.
  • the scan range is set to 360 degrees.
  • FIG. 5 shows an unmanned helicopter 1 that uses a LiDAR sensor 20 to perform forest measurement on a forest 54 on a slope 52.
  • Each straight line extending radially from the unmanned helicopter 1 schematically represents each laser pulse 22 as in FIG.
  • Each laser pulse 22 reciprocates between the LiDAR sensor 20 and the reflection point along each straight line.
  • the forest 54 on the slope 52 will be referred to as "slope forest 54".
  • the unmanned helicopter 1 is programmed to fly along a flight path determined by the method described below.
  • the laser pulse emitted from the LiDAR sensor 20 reaches not only the canopy of the slope forest 54 but also the trunk and is reflected.
  • the laser pulse 22 hits both the canopy 56a and the trunk 56b of the tree 56.
  • the laser pulse emitted below the horizontal direction but also the laser pulse emitted in the horizontal direction and the laser pulse 22 emitted above the horizontal direction are incident on the trunk 56b. .. This makes it possible to measure the canopy and trunk of trees in forests, especially slope forests 54.
  • the “horizontal direction” here means a direction in which a plane (horizontal plane) orthogonal to the vertical direction spreads when the unmanned helicopter 1 is flying in the posture shown in FIG.
  • the position of the horizontal plane in the vertical direction is the position of the outlet of the LiDAR sensor 20.
  • “above the horizontal direction” is also referred to as “diagonally upward direction” except for vertically upward direction (directly upward direction).
  • “below the horizontal direction” is also referred to as “diagonally downward direction” except for the vertical downward direction (directly downward direction).
  • the “diagonal upward direction” and the “diagonal downward direction” are also collectively referred to as the "diagonal direction”.
  • the LiDAR sensor 20 is mounted on the unmanned helicopter 1 so that its rotation axis (or swing axis) 20a faces the traveling direction of the body 4 of the unmanned helicopter 1.
  • the rotation axis or the swing axis faces the traveling direction of the machine body 4" includes that the rotation axis or the swing axis is parallel to the Y axis, but it does not have to be strictly parallel to the Y axis. If the rotation axis or the swing axis is in a direction parallel to the YZ plane, for example, and is within a predetermined angle range from the traveling direction of the machine body 4, the rotation axis or the swinging axis is in the traveling direction of the machine body 4. It can be said that it is suitable.
  • An example of the "predetermined angle range” is a range of ⁇ 30 degrees from the traveling direction of the aircraft 4. The reason for allowing such a mounting method is that the unmanned helicopter 1 can fly with the nose side slightly lowered (forward leaning attitude).
  • the direction is "parallel to the YZ plane" in the above example. This is because it is possible to measure the forest even if it deviates in the + X direction or the -X direction. That is, the rotation axis or the swing axis of the LiDAR sensor 20 should be in the "direction parallel to the YZ plane" and in the "direction not parallel to the YZ plane" as long as it is within the range where the forest meter v measurement can be performed. You may turn to it.
  • FIG. 6 shows a modified example of the mounting position of the LiDAR sensor 20.
  • the LiDAR sensor 20 is mounted so as to be surrounded by a lower portion near the center of the body 4 of the unmanned helicopter 1 and a skid 16.
  • the description of the rotation axis or the swing axis of the LiDAR sensor 20 is the same as the example of FIG.
  • the orientation of the attached LiDAR sensor 20 is opposite to that of the example of FIG.
  • it can be said that the rotation axis or the swing axis faces the traveling direction of the machine body 4.
  • the skid 16 of the unmanned helicopter 1 enters the scan range of the LiDAR sensor 20. Therefore, the LiDAR sensor 20 always detects the distance to the skid. The distance to the position of other reflection points may be calculated without reflecting the reflected light from the skid in the measurement result.
  • the LiDAR sensor 20 may be provided at the lower part of the tail body 3 in order to prevent the skid 16 of the unmanned helicopter 1 from entering the scanning range of the LiDAR sensor 20. Also in this case, the description of the rotation axis or the swing axis of the LiDAR sensor 20 is the same as the example of FIG.
  • FIG. 7A is a perspective view showing a part of the flight path 60 in the exemplary embodiment
  • FIG. 7B is a top view showing a part of the flight path 60.
  • the description of the forest 54 on the slope 52 of the mountain 50 is omitted.
  • the flight path can include many segments. 7A and 7B show some of the many segments. Specifically, it is a path segment that flies along the first contour line 60a and a path segment that flies along the second contour line 60b. In the present embodiment, a large number of route segments flying along the contour lines are set, and forest measurement is performed for the forest in the observation target area.
  • the route segment of such a flight path 60 may be set by an operator who manages the flight and operation of the unmanned helicopter 1. When moving from the route segment along the first contour line 60a to the route segment along the second contour line 60b, the unmanned helicopter 1 flies, for example, along the route segment 60c that descends the slope in the direction perpendicular to the contour line.
  • the route segment 60c may also be set by the operator, or is automatically set by a tablet computer, a base station control device, or the like described later after setting the route segment along the first contour line 60a and the route segment along the second contour line 60b. May be done.
  • the explanation of the long broken line 60d shown in FIG. 7B will be described later.
  • FIG. 8 is a cross-sectional view of a slope 52 showing an unmanned helicopter 1 flying along the first contour line 60a and an unmanned helicopter 1 flying along the second contour line 60b.
  • the cross section is along the AA line of FIGS. 7A and 7B.
  • the horizontal offset of the first contour line 60a and the second contour line 60b is D.
  • FIG. 8 shows that the true altitude (MSL) of the unmanned helicopter 1 flying along the second contour line 60b is Hm.
  • the true altitude Hm is substantially the same as the altitude indicated by the first contour line 60a. Therefore, it is understood that the laser pulse emitted from the LiDAR sensor 20 of the unmanned helicopter 1 flying along the second contour line 60b is incident on the trunk of a tree (not shown) near the first contour line 60a at a right angle. To. This makes it possible to measure the canopy and trunk of the LiDAR sensor 20.
  • the measurement target area may include the edge of the forest 54.
  • a flight path that passes over a position separated by a predetermined distance in the direction of the non-forest area from the end of the forest 54 may be adopted.
  • An example of the “position separated by a predetermined distance” is the long broken line 60d shown in FIG. 7B.
  • the trunks of the trees at the end of the forest 54 are located diagonally downward to the right or diagonally downward to the left in the direction of travel of the unmanned helicopter 1. This makes it possible to scan the trunks of trees at the edges of the forest 54 using the LiDAR sensor 20 and acquire a point cloud of reflection points.
  • FIG. 10 shows the results of forest measurement performed by the method according to the exemplary embodiment. Forest measurement was performed on forests on slopes similar to the slopes illustrated in FIG. As shown in FIG. 10, it is understood that not only the canopy of each tree in the forest but also the trunk is measured. From the obtained results, the present inventor confirmed that the forest measurement method according to the present embodiment is effective.
  • the operator can set the flight path 60 in which the contour lines and the absolute altitude are specified as described above by using a computer device such as a tablet computer or a base station control device.
  • a computer device such as a tablet computer or a base station control device.
  • the unmanned helicopter 1 and such a computer device are collectively referred to as a "forest measurement system”.
  • FIG. 11A shows an example of a forest measurement system 100 including an unmanned helicopter 1 and a tablet computer 70.
  • FIG. 11B also shows an example of a forest measurement system 100 including an unmanned helicopter 1 and a base station control device 80.
  • Both the tablet computer 70 and the base station control device 80 have a built-in or external storage device, and the contour line data 90 described later is stored in the storage device.
  • the tablet computer 70 and the base station control device 80 display the contour line data 90 on the display and receive the designation of the flight path 60 from the operator.
  • the tablet computer 70 has a touch screen panel, and accepts designation of contour lines (route segments) to fly the unmanned helicopter 1 and designation of absolute altitude by touch operation from the operator.
  • the base station control device 80 according to the present embodiment is a notebook PC and supports the same touch operation as the tablet computer 70.
  • the tablet computer 70 shown in FIG. 11A will be described as an example.
  • the basic configuration of the tablet computer 70 and the basic configuration of the base station control device 80 are substantially the same. Therefore, the following description can be read as a description of the base station control device 80.
  • FIG. 12 shows an example of the hardware configuration of the tablet computer 70.
  • the tablet computer 70 has a CPU 71, a memory 72, a communication circuit 73, an image processing circuit 74, a display 75, a touch screen panel 76, and a communication bus 77.
  • the CPU 71, the memory 72, the communication circuit 73, the image processing circuit 74, and the touch screen panel 76 are connected by a communication bus 77, and data can be exchanged with each other via the communication bus 77.
  • the CPU 71 is a signal processing circuit (computer) that controls the operation of the tablet computer 70.
  • the CPU 71 is a semiconductor integrated circuit.
  • the CPU 71 may be simply referred to as a "processing circuit".
  • the memory 72 stores a computer program that controls the operation of the CPU 71.
  • the memory 72 may store a computer program for causing the CPU 71 to control the forest measurement.
  • the memory 72 may store a computer program for causing the CPU 71 to control the flight of the unmanned helicopter 1. Similar to the computer programs described above, such computer programs may be installed on the tablet computer 70 from the recording medium on which they are recorded, or may be downloaded via a telecommunication line such as the Internet. Also, such a computer program may be installed on the tablet computer 70 via wireless communication. Such computer programs may be sold as packaged software.
  • the memory 72 may be a volatile storage device (for example, RAM) for storing a computer program executed by the CPU 71, and a non-volatile storage device (for example, a flash memory) for storing contour data 90.
  • the RAM can also be used as a work memory when the CPU 71 performs an operation.
  • the computer program may be stored in flash memory. When the tablet computer 70 starts up, the CPU 71 reads a computer program from the flash memory, expands the computer program into RAM, and executes the program.
  • the communication circuit 73 is, for example, a wireless communication circuit that performs wireless communication conforming to the Bluetooth (registered trademark) and / or Wi-Fi (registered trademark) standard. Similar to the communication circuit 15f of the unmanned helicopter 1, in the present specification, the tablet computer 70 performs wireless communication conforming to the Bluetooth (registered trademark) standard and / or the Wi-Fi standard, and communicates with the unmanned helicopter 1 on a one-to-one basis. To do.
  • the communication circuit 73 receives data to be transmitted to the unmanned helicopter 1 from the CPU 71 via the communication bus 77. Further, the communication circuit 73 transmits the data received from the unmanned helicopter 1 (for example, the measurement result of the LiDAR sensor 20) to the CPU 71 and / or the memory 72 via the communication bus 77.
  • the image processing circuit 74 generates an image to be displayed on the display (display device) 75 according to the instruction of the CPU 71. For example, the image processing circuit 74 uses the contour line data 90 to display an image of the mountain 50 in which the contour lines are exemplified, and the flight path on the display 75 in response to the touch operation of the operator received via the touch screen panel 76. Draw 60.
  • the touch screen panel 76 can detect the operator's touch made with a finger, a pen, or the like.
  • the detection method an electrostatic type, a resistive film type, an optical type, an ultrasonic method, an electromagnetic type and the like are known.
  • the capacitance type touch screen panel 76 detects a change in capacitance at a specific position and transmits data related to the change to the CPU 71 via the communication bus 77.
  • the CPU 71 determines whether or not there is a touch by the operator based on the sent data.
  • An example of "data on change" is data on the position where the capacitance changed and the time length changed.
  • “Touch” includes various operations such as short press (or tap), long press, and slide.
  • a short press is an operation in which the operator touches the touch screen panel 76 with a finger and then releases the finger within a predetermined reference time.
  • the long press is an operation in which the operator touches the touch screen panel 76, maintains the state without moving the finger, and releases the finger after a time longer than the reference time has elapsed.
  • the touch screen panel 76 is provided so as to be superimposed on the display 75.
  • the operator touches the desired contour line image while looking at the mountain 50 and contour line image displayed on the display 75.
  • the CPU 71 determines which position of the image displayed on the display 75 the detection position data output from the touch screen panel 76 indicates. As a result of the determination, the CPU 71 can determine the position of the contour line associated with the image displayed at the position.
  • another input device such as a mouse, a keyboard, a joystick, and a microphone may be provided instead of the touch screen panel 76, or together with the touch screen panel 76.
  • FIG. 13 shows an example of contour line data 90 in the observation target area read into the memory 72.
  • the contour data may be prepared for each fixed altitude (for example, every 10 m).
  • the contour line data does not have to be the image data as shown in FIG. 13, and it is sufficient that the elevation data and the coordinate data are related to each other.
  • "contour line data" may be referred to as "information about contour lines”.
  • the CPU 71 of the tablet computer 70 can calculate the elevation of the specified position. For example, let the elevation of the first contour line be Z1 and the elevation of the second contour line be Z2. It is assumed that the operator specifies the position W that divides the area between the first contour line and the second contour line into W1: W2. Using the proportional relationship, the altitude of the position W can be expressed as (W1, Z2 + W2, Z1) / (W1 + W2). In this way, the CPU 71 can extract an altitude at a designated arbitrary position and a contour line connecting a plurality of points having the altitude. The CPU 71 may present the extracted contour line candidates to the operator.
  • FIG. 14 is a flowchart showing a procedure of flight path setting processing according to an exemplary embodiment.
  • the procedure shown in FIG. 14 is executed under the control of the CPU 71 (FIG. 12) of the tablet computer 70 or the base station control device 80.
  • the CPU 71 FIG. 12
  • the base station control device 80 When a plurality of observation target areas can be selected, one of them is assumed to be specified in advance.
  • step S2 the CPU 71 acquires information on contour lines related to the observation target area.
  • step S4 the CPU 71 accepts the designation of contour lines via the touch screen panel 76.
  • Various methods for designating contour lines can be considered.
  • the operator short-presses and specifies a plurality of positions on the desired contour lines displayed on the tablet computer 70.
  • the order specified can be the order of the flight transit points of the unmanned helicopter 1.
  • the CPU 71 of the tablet computer 70 determines the altitude corresponding to the touched position.
  • the CPU 71 extracts a plurality of positions having a determined altitude and automatically displays contour lines connecting them. By touching the displayed contour line, the operator can specify the flight path along the contour line as a route segment.
  • a new contour line may be determined and a route segment may be added in the same procedure.
  • the CPU 71 may automatically extract and display a plurality of contour lines in the observation target area. If approval is obtained from the operator, each contour line may be set as a route segment and one flight route may be determined.
  • step S6 the CPU 71 determines whether or not the contour line setting is completed. For example, the CPU 71 repeats the processes of steps S4 and S6, assuming that the contour line setting is not completed, until the operator receives an input indicating that the contour line setting is completed. On the other hand, when the input indicating that the contour line setting is completed is received, the CPU 71 determines that the contour line setting is completed, and proceeds to step S8.
  • step S8 the CPU 71 accepts the absolute altitude designation via the touch screen panel 76.
  • a “+” button for increasing the absolute altitude value and a “ ⁇ ” button for decreasing the absolute altitude value are displayed.
  • the software keyboard may be displayed so that numerical values can be directly input, or numerical values may be input using a GUI such as a dial or a slider.
  • the flight path 60 (FIGS. 7A and 7B) of the unmanned helicopter 1 is set.
  • the data indicating the flight path 60 is, for example, wirelessly transmitted from the communication circuit 73 of the tablet computer 70 and received by the communication circuit 15f (FIG. 4) of the unmanned helicopter 1.
  • the signal processing circuit 15g (FIG. 4) of the unmanned helicopter 1 stores the received data in the RAM 15i. After that, forest measurement is performed according to the procedure shown in FIGS. 15 and 16.
  • FIG. 15 is a flowchart showing the flight operation procedure of the unmanned helicopter 1 in which the flight path is set. The procedure shown in FIG. 15 is executed under the control of the signal processing circuit 15g of the unmanned helicopter 1.
  • step S10 the signal processing circuit 15g of the unmanned helicopter 1 flies the unmanned helicopter 1 to the start position of the forest measurement while acquiring its own position by using the GPS module 15a or the like.
  • the "start position" referred to here includes the absolute altitude in addition to the longitude and latitude of the position where the forest measurement is started on the contour line of the flight path 60.
  • step S12 the signal processing circuit 15g starts the forest measurement using the LiDAR sensor 20.
  • step S14 the signal processing circuit 15g flies the unmanned helicopter 1 along the set contour lines and at the set absolute altitude. The details of the process in step S14 will be described later with reference to FIG.
  • step S16 the signal processing circuit 15g determines whether or not the forest measurement has been completed. Specifically, the signal processing circuit 15g determines whether or not the flight has flown along the preset flight path 60. The processes of steps S14 and S16 are repeated until the forest measurement is completed.
  • the unmanned helicopter 1 makes an autonomous flight, for example, and returns.
  • FIG. 16 shows the details of the process of step S14 in FIG.
  • step S140 the signal processing circuit 15g detects the flight position (latitude and longitude) and altitude (elevation). For example, the signal processing circuit 15g uses the output of the GPS module 15a to detect the flight position, and uses the output of the barometric pressure sensor 15c to detect the altitude.
  • step S142 the signal processing circuit 15g determines whether or not the amount of deviation from the contour line is within the first predetermined value.
  • the "deviation amount” represents the distance from the current flight position to the contour line.
  • An example of the "first predetermined value” is 10 m. If the deviation amount is within the first predetermined value, the process proceeds to the next step S146, and if the deviation amount is not within the first predetermined value, the process proceeds to step S144.
  • step S144 the signal processing circuit 15g corrects the flight position so that the deviation amount is within the first predetermined value. As a result, the flight position of the unmanned helicopter 1 approaches the contour line.
  • the signal processing circuit 15g determines whether or not the deviation amount of the absolute altitude is within the second predetermined value.
  • the "absolute altitude deviation amount” represents the difference between the absolute altitude at the current flight position and the preset absolute altitude.
  • the absolute altitude at the current flight position is the difference between the altitude at the current flight position and the altitude of the contour line of the set flight path.
  • An example of the "second predetermined value" is 10 m.
  • step S16 If the absolute altitude deviation amount is within the second predetermined value, the process proceeds to step S16 (FIG. 15). If the deviation amount is not within the predetermined value, the process proceeds to step S148.
  • step S148 the signal processing circuit 15g corrects the current absolute altitude so that the deviation amount of the absolute altitude is within the second predetermined value.
  • the unmanned helicopter 1 flies along the contour lines. By flying along the contour lines, fluctuations in the distance to the ground surface and / or the surface layer of the canopy can be suppressed. Since it is not necessary to frequently raise and lower the unmanned helicopter 1 to keep the distance to the ground surface and / or the surface layer of the canopy constant, energy consumption can be reduced and the cruising range can be increased. it can.
  • the point cloud data on the opposite side of the slope 52 is unnecessary. Therefore, the point cloud data on the opposite side of the slope 52 may not be stored in the storage device. As a result, the amount of data at the time of analyzing the point cloud data can be reduced, and the analysis speed can be improved.
  • the point cloud data on the opposite side of the slope 52 may not be stored in the storage device 15j of the unmanned helicopter 1, or may not be stored in the memory 72 of the tablet computer 70, for example. Further, when analyzing the point cloud data with the tablet computer 70 or another computer, only the point cloud data on the slope 52 side may be used. As a result, the analysis speed can be improved.
  • FIG. 17 shows the slope 52 of the mountain 50 scanned by the unmanned helicopter 1 in flight.
  • a broken line is shown on the slope 52.
  • Each point constituting the broken line schematically and schematically shows the incident position of the laser pulse.
  • FIG. 18 is a diagram for explaining the relationship between the two sides constituting the region S in FIG.
  • the region S is represented by a rectangle in FIGS. 17 and 18, this is an ideal shape when there is no phase shift for emitting a laser pulse, disturbance during flight, or the like.
  • the area S is not always rectangular.
  • ⁇ t be the time required for the LiDAR sensor 20 to make one rotation.
  • the LiDAR sensor 20 emits laser pulses radially in a plane approximately perpendicular to the flight direction of the unmanned helicopter 1. Each laser pulse is incident one after another at the position where the above-mentioned plane and the slope 52 intersect.
  • the position of the unmanned helicopter 1 changes during the period ⁇ t during which the LiDAR sensor 20 makes one rotation.
  • the LiDAR sensor 20 makes one rotation again and emits a laser pulse radially.
  • these laser pulses are incident at a position slightly deviated in the traveling direction from the incident position of the laser pulse incident on the slope 52 between the time t and the time t + ⁇ t.
  • the laser pulses incident on the slope 52 will be distributed in a mesh or grid pattern.
  • the position where the laser pulse is incident (incident point) is the reflection position (reflection point) of the laser pulse.
  • the region S shown in the partially enlarged view is a region surrounded by the incident points a k , a k + 1 , b k , and b k + 1 of four adjacent laser pulses incident on the slope 52 between the time t and the time t + 2 ⁇ t.
  • the incident points a k and a k + 1 indicate the incident points of two laser pulses adjacent to each other in the laser pulse group emitted between the time t and the time t + ⁇ t.
  • the LiDAR sensor 20 emits these two laser pulses with a predetermined angle pitch ⁇ open (FIG. 18).
  • the incident points b k and b k + 1 indicate the incident points of two laser pulses adjacent to each other in the laser pulse group emitted between the time t + ⁇ t and the time t + 2 ⁇ t.
  • the incident point a k and the incident point b k are the incident points of the two laser pulses emitted from the LiDAR sensor 20 in the same angular direction with a time interval ⁇ t.
  • the relationship between the incident point a k + 1 and the incident point b k + 1 is also the same.
  • the above description assumes that the number of laser pulses emitted from the LiDAR sensor 20 at a certain time is one. However, as shown in FIG. 2, there is also a LiDAR sensor 20 that has N emission ports and can simultaneously emit N laser pulses 22 from each emission port. Even in such a case, the above description can be applied to the laser pulse emitted from each outlet.
  • Zd be the distance between the incident points a k and a k + 1 (or the distance between the incident points b k and b k + 1 ), and the distance between the incident points a k and b k (or the distance between the incident points a k + 1 and b k + 1). ) Is Yd. Considering the case where the region S is not rectangular, the distance Zd means the distance on the XZ plane when the incident points a k and a k + 1 are projected onto the XZ plane perpendicular to the Y direction.
  • the distance Yd means the distance between the incident points a k and b k along the Y direction or the distance on the YZ plane when the incident points a k and b k are projected on the YZ plane perpendicular to the X direction. To do.
  • the flight speed of the unmanned helicopter 1 is V (m / s), the number of laser pulses emitted simultaneously in the same angular direction is N, the frequency of the laser pulses emitted in the same angular direction is f (Hz), and the predetermined angular pitch is set.
  • L (m) be the distance from the ⁇ (rad) and LiDAR sensor 20 to the incident point ak .
  • Laser pulses emitted at the same angle direction for example, represent the two laser pulses incident on the incident point b k and the incident point a k described above. In the following, these values may be referred to as "parameters".
  • the interval Yd can be expressed as V / f. There are N incident points between the intervals Yd. If the distance between two adjacent incident points is yd, yd can be expressed as V / (f ⁇ N). The interval Zd is approximated to ⁇ ⁇ L.
  • the present inventor has determined that if the interval Zd and the interval yd are equalized, the density of measurement points in the scanning direction of the LiDAR sensor 20 and the density of measurement points in the flight direction of the unmanned helicopter 1 can be kept constant. However, the intervals Zd and yd need not be exactly equal. Therefore, the present inventor used the LiDAR sensor 20 to target the forest on the slope 52 while flying the unmanned helicopter 1 so that the relative values of ⁇ and L with respect to V / (f ⁇ N) fall within a predetermined range. It was decided to carry out forest measurement.
  • the "relative value of ⁇ / L with respect to V / (f / N)" here can be expressed by a ratio or a difference. As described with reference to FIG.
  • an example of a "predetermined range” is in the range 0.9 to 1.1 when the "relative value" is expressed as a ratio, which is a wider range of 0.8. It may be in the range of 1.2 to 1.2, or it may be in a wider range of about 0.5-2.0.
  • the measurement point cloud is distributed in a substantially square mesh or grid shape. As a result, it is possible to secure a substantially uniform measurement point density.
  • the above parameters V, N, f, ⁇ and L can all be variable values.
  • the flight speed V of the unmanned helicopter 1 is clearly a variable value.
  • the parameters N, f and ⁇ can also be changed according to the specifications of the LiDAR sensor 20 and / or by being set by the operator.
  • the distance L can be arbitrarily set as a distance to the ground surface at a position or direction in which a desired measurement point density is desired to be secured.
  • the flight speed V of the unmanned helicopter 1 can be autonomously adjusted by the signal processing circuit 15g of the unmanned helicopter 1.
  • the parameters N, f, ⁇ and L can be preset or specified by the operator operating the tablet computer 70 or the base station control device 80 of the forest measurement system 100 (FIGS.
  • the parameters N, f, ⁇ and L can be stored in the storage device 15j of the unmanned helicopter 1.
  • the parameter L may be adjusted autonomously by the signal processing circuit 15g of the unmanned helicopter 1. It is also a category of the forest measurement system 100 to accept necessary parameters and have the unmanned helicopter 1 perform forest measurement while adjusting the flight speed and the like according to the parameters.
  • V / (f ⁇ N) and ⁇ ⁇ L values the higher the measurement point density. Therefore, for example, when the predetermined angle pitch ⁇ is variable, it is conceivable to fix it to the minimum possible value.
  • the flight speed V may be reduced and / or the frequency f and / or the number N may be increased within a range that does not interfere with the flight.
  • the LiDAR sensor 20 is a mechanical rotation type
  • FIG. 19 is a flowchart showing a processing procedure for making the measurement point density uniform by changing the parameters.
  • the procedure shown in FIG. 19 is executed under the control of the signal processing circuit 15 g (FIG. 4) of the unmanned helicopter 1 after the unmanned helicopter 1 arrives in the airspace where the forest measurement is performed.
  • step S20 the signal processing circuit 15g starts forest measurement using the LiDAR sensor 20.
  • the signal processing circuit 15g detects the flight speed V of the current unmanned helicopter 1 and the distance L to the position where the desired measurement point density is desired.
  • the signal processing circuit 15g may obtain the flight speed V by obtaining the movement amount per unit time by using the output of the GPS module 15a.
  • the signal processing circuit 15g may acquire the flight speed V by time-integrating the acceleration in the flight direction using the output of the acceleration sensor 15b.
  • the signal processing circuit 15g acquires the distance L from the output of the LiDAR sensor 20 to the position where the desired measurement point density is desired to be secured.
  • step S24 the signal processing circuit 15g determines whether or not the relative value of ⁇ / L with respect to V / (f ⁇ N) (hereinafter abbreviated as “relative value”) is within a predetermined range.
  • the "predetermined range” may be set by the operator prior to flight.
  • the signal processing circuit 15g may hold each value of the parameters f, N, ⁇ set by the operator in the RAM 15i or the like, or may acquire the parameters f, N, ⁇ from the LiDAR sensor 20 in real time. Good. If the relative value is within the predetermined range, the process proceeds to step S28, and if the relative value is not within the predetermined range, the process proceeds to step S26.
  • step S26 the signal processing circuit 15g adjusts at least one of V, f, N, ⁇ , and L. For example, when the parameters f, N, ⁇ , and L are fixed during flight, the signal processing circuit 15g adjusts the flight speed V of the unmanned helicopter 1.
  • step S28 the signal processing circuit 15g determines whether or not the forest measurement to be performed has been completed.
  • the signal processing circuit 15g repeatedly executes the processes after step S22 until the forest measurement is completed.
  • FIG. 20 is a flowchart showing a specific example of the process shown in FIG. In FIG. 20, steps S30, S32, S34 and S36 which are more specific steps S24 and S26 of FIG. 19 are provided. Hereinafter, steps S30 to 36 will be described.
  • step S30 the signal processing circuit 15g determines whether or not the relative value is equal to or greater than the lower limit value Qmin. If the relative value is less than the lower limit value Qmin, the process proceeds to step S32, and if the relative value is more than the lower limit value Qmin, the process proceeds to step S34.
  • step S32 the signal processing circuit 15g reduces the flight speed V of the unmanned helicopter 1 and / or increases the distance L. After that, the process returns to step S30.
  • step S34 the signal processing circuit 15g determines whether or not the relative value is less than the upper limit value Qmax. If the relative value is less than the lower limit value Qmin, the process proceeds to step S28, and if the relative value is equal to or more than the upper limit value Qmax, the process proceeds to step S36.
  • step S36 the signal processing circuit 15g increases the flight speed V of the unmanned helicopter 1 and / or decreases the distance L. After that, the process returns to step S30.
  • the measurement point density in the flight direction and the scan direction can be made uniform.
  • the laser pulse 22 emitted from the LiDAR sensor 20 irradiates the object to be measured to form a laser spot on the surface of the object to be measured.
  • the laser pulse 22 emitted from the LiDAR sensor 20 travels while diverging at a predetermined divergence angle even when the laser beam is collimated. Therefore, the size of the laser spot formed on the measurement target increases in proportion to the distance between the LiDAR sensor 20 and the measurement target. When the distance between the LiDAR sensor 20 and the measurement target is shortened, the size of the laser spot formed on the measurement target becomes smaller.
  • the size of the laser spot formed on the measurement target becomes smaller.
  • a gap is created between the laser spots adjacent to each other.
  • FIG. 21 is a diagram schematically showing a plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is viewed from the front.
  • FIG. 21 shows the laser pulses 22a, 22b, and 22c as the laser pulse 22.
  • Area indicated by a dot pattern sandwiched by the solid line in FIG. 21 represents a single laser pulse 22a which travels while diverging at a divergence angle theta 1.
  • the region indicated by the dot pattern sandwiched by the broken line represents a single laser pulse 22b that travels while diverging at a divergence angle ⁇ 1 .
  • the region represented by the dot pattern sandwiched by the alternate long and short dash line represents a single laser pulse 22c that travels while diverging at a divergence angle ⁇ 1 .
  • FIG. 22 is a diagram schematically showing a plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is viewed from the side.
  • FIG. 22 shows laser pulses 22a, 22i, and 22p as the laser pulse 22.
  • the region indicated by the dot pattern sandwiched by the solid line in FIG. 22 represents a single laser pulse 22a that travels while diverging at a divergence angle ⁇ 2 .
  • the region indicated by the dot pattern sandwiched by the broken line represents a single laser pulse 22i that travels while diverging at a divergence angle ⁇ 2 .
  • the region represented by the dot pattern sandwiched by the alternate long and short dash line represents a single laser pulse 22p that travels while diverging at a divergence angle ⁇ 2 .
  • the divergence angles ⁇ 1 and ⁇ 2 of the laser pulse 22 are predetermined by the specifications of the LiDAR sensor 20 and are fixed values.
  • the measurement object 51 is a flat ground surface in order to explain the present embodiment in an easy-to-understand manner, but the measurement object 51 is not limited thereto.
  • the measurement object 51 may be a slope 52, a forest 54, or a forest 54 (slope forest) on the slope 52.
  • FIG. 23 is a diagram showing a laser spot formed on the measurement object 51 by the laser pulse 22.
  • FIG. 23 shows a laser spot 24a formed on the measurement object 51 by the laser pulse 22a, a laser spot 24b formed on the measurement object 51 by the laser pulse 22b, and a laser spot 22c formed on the measurement object 51 by the laser pulse 22c.
  • the laser spot 24c is shown.
  • FIG. 23 further shows a laser spot 24i formed on the measurement object 51 by the laser pulse 22i and a laser spot 24p formed on the measurement object 51 by the laser pulse 22p.
  • the cross-sectional shape of the laser pulse 22 along the plane in the direction perpendicular to the traveling direction of the laser pulse 22 is substantially rectangular. Therefore, the shape of the laser spot 24 formed by the laser pulse 22 is also substantially rectangular.
  • the shape of the laser spots 24 is not limited to a rectangle, but in order to efficiently arrange the laser spots 24 in a plane without gaps, the shapes of the individual laser spots 24 must have a rectangular shape or a substantially rectangular shape. However, it is preferable as compared with the case where it has an elliptical shape, for example.
  • the laser spot 24 may have any shape by adjusting the shape of the light emitting region of the laser light source (typically an array of semiconductor laser elements).
  • the LiDAR sensor 20 emits the laser pulse 22 while changing the emission direction of the laser pulse 22 at a predetermined angle pitch ⁇ .
  • the laser pulse 22a is a laser pulse emitted from one outlet of the LiDAR sensor 20.
  • the laser pulse 22b is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 is rotated by an angle ⁇ from the timing when the laser pulse 22a is emitted.
  • the laser pulse 22c is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 is further rotated by an angle ⁇ .
  • Each of the laser pulses 22a, 22b, and 22c diverges at a divergence angle ⁇ 1 in a direction perpendicular to the rotation axis 20a (FIGS. 21 and 22) of the LiDAR sensor 20.
  • the predetermined angle pitch ⁇ of the LiDAR sensor 20 is adjusted to be smaller than the divergence angle ⁇ 1 .
  • the laser pulse 22a and the laser pulse 22b can be overlapped on the plane (ZX plane) perpendicular to the rotation axis 20a of the LiDAR sensor 20.
  • the laser pulse 22b and the laser pulse 22c can be overlapped with each other. That is, the laser spot 24a (FIG.
  • the laser pulse 22a is a laser pulse emitted from one outlet of the LiDAR sensor 20.
  • the laser pulse 22i is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 makes one rotation from the timing when the laser pulse 22a is emitted.
  • the laser pulse 22p is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 rotates one more time.
  • the laser pulse 22a diverges at a divergence angle ⁇ 2 in a plane parallel to both the aircraft traveling direction 201 and the emission direction of the laser pulse 22a.
  • the laser pulse 22i diverges at a divergence angle ⁇ 2 in a plane parallel to both the aircraft traveling direction 201 and the emission direction of the laser pulse 22i.
  • the laser pulse 22p diverges at a divergence angle ⁇ 2 in a plane parallel to both the aircraft traveling direction 201 and the emitting direction of the laser pulse 22p.
  • Each of the laser pulses 22a, 22i, and 22p diverging at the divergence angle ⁇ 2 forms a laser spot on the measurement object 51.
  • the length of each laser spot in the direction parallel to the aircraft traveling direction 201 is represented by K.
  • the flight distance that the unmanned helicopter 1 flies while the LiDAR sensor 20 makes one rotation is represented by J.
  • the length K of the laser spot is proportional to the distance L between the LiDAR sensor 20 and the object to be measured 51, the length K of the laser spot can be grasped if the distance L is known.
  • the distance L is, for example, the absolute altitude H.
  • the absolute altitude H can be detected using a barometric pressure sensor 15c, a LiDAR sensor 20, a radio altimeter, or the like. Further, as described above, the absolute altitude H may be the distance from the ground surface or the distance from the surface layer of the canopy.
  • the flight speed V of the unmanned helicopter 1 is adjusted so that the flight distance J is shorter than the length K.
  • the laser spot 24a (FIG. 23) formed on the measurement object 51 by the laser pulse 22a and the laser spot formed on the measurement object 51 by the laser pulse 22i.
  • the 24i can be overlapped, and the laser spot 24i and the laser spot 24p formed on the measurement object 51 by the laser pulse 22p can be overlapped.
  • the laser spot 24j is a laser spot formed by a laser pulse emitted from the same emission port at a timing when the LiDAR sensor 20 is rotated by an angle ⁇ from the timing when the laser pulse 22i is emitted.
  • the laser spot 24k is a laser spot formed by a laser pulse emitted from the same outlet at a timing when the LiDAR sensor 20 is further rotated by an angle ⁇ .
  • the laser spot 24q is a laser spot formed by a laser pulse emitted from the same outlet at a timing when the LiDAR sensor 20 is rotated by an angle ⁇ from the timing when the laser pulse 22p is emitted.
  • the laser spot 24r is a laser spot formed by a laser pulse emitted from the same outlet at a timing when the LiDAR sensor 20 is further rotated by an angle ⁇ .
  • the flight distance J is made shorter than the length K of the laser spot, and the predetermined angle pitch ⁇ is made smaller than the divergence angle ⁇ 1 of the laser pulse 22.
  • the laser spots can be overlapped with each other in both the airframe traveling direction 201 of the unmanned helicopter 1 and the direction perpendicular to the airframe traveling direction 201.
  • the laser pulse 22 can be evenly applied to the measurement target object 51, and the measurement target object 51 can be measured in detail.
  • the LiDAR sensor 20 has N exit ports arranged along the direction in which the rotation shaft 20a extends, and can simultaneously emit a maximum of N laser pulses 22.
  • the length K of the laser spot 24 is the length of the laser spot formed by one laser pulse emitted from one emission port, but it is emitted from two or more emission ports at the same time. It may be the length of the laser spot formed by two or more laser pulses. In this case, the laser spots formed by each of the two or more laser pulses emitted at the same time overlap to form one laser spot as a whole.
  • the length K is the length of one laser spot formed from the two or more laser pulses. In this case as well, the laser spots can be overlapped with each other in both the airframe traveling direction 201 and the direction perpendicular to the airframe traveling direction 201 of the unmanned helicopter 1.
  • FIG. 24 is a flowchart showing a forest measurement procedure performed while irradiating the forest 54, which is an example of the measurement object 51, with the laser pulse 22 evenly.
  • step S40 the predetermined angle pitch ⁇ is adjusted so that the predetermined angle pitch ⁇ becomes smaller than the divergence angle ⁇ 1 of the laser pulse 22.
  • the adjustment of the predetermined angle pitch ⁇ is executed, for example, by the CPU 71 (FIG. 12) of the tablet computer 70.
  • the divergence angle ⁇ 1 is a fixed value known in advance.
  • the CPU 71 adjusts the predetermined angle pitch ⁇ so as to be smaller than the divergence angle ⁇ 1 by changing at least one of the number of times the laser pulse 22 is emitted M and the number of rotations R of the LiDAR sensor 20 per unit time. To do. For example, by changing the rotation speed R, the predetermined angle pitch ⁇ is made smaller than the divergence angle ⁇ 1 .
  • the operator may set the predetermined angle pitch ⁇ by inputting the value of the predetermined angle pitch ⁇ into the tablet computer 70 before the flight.
  • step S42 the CPU 71 sets at least one of the flight speed V, the rotation speed R, and the altitude H so that the flight distance J of the unmanned helicopter 1 is shorter than the length K of the laser spot 24. adjust.
  • the flight speed V is adjusted so that the flight distance J is shorter than the length K.
  • the rotation speed R adjust within a range in which the relationship of ⁇ ⁇ 1 can be maintained.
  • the range of the value taken by the distance L between the LiDAR sensor 20 and the forest 54 is set in advance at the time of forest measurement
  • the range of the value taken by the length K of the laser spot 24 can be grasped in advance. it can.
  • the operator inputs the range of values taken by the distance L to the tablet computer 70.
  • the CPU 71 calculates the lower limit value of the range of values taken by the length K from the range of values taken by the distance L.
  • the CPU 71 sets the calculated lower limit value as the value of the length K used for comparison with the flight distance J.
  • the operator may set the value of the length K used for comparison with the flight distance J by inputting the value of the length K into the tablet computer 70 before the flight.
  • the CPU 71 sets, for example, the flight speed V so that the flight distance J is shorter than the set length K.
  • step S44 forest measurement is started. Forest measurement is performed by any of the procedures described with reference to FIGS. 15 and 16, the procedures described with reference to FIGS. 19 and 20, or a combination of these procedures.
  • step S46 compares the flight distance J with the length K (step S46). When the CPU 71 determines that the flight distance J is less than the length K, the CPU 71 continues the forest measurement (step S48). The process of step S46 is repeated until the forest measurement is completed (step S52).
  • step S46 determines that the flight distance J is shorter than the length K at least among the flight speed V, the rotation speed R, and the altitude H. Adjust one (step S50). For example, the flight distance J is adjusted to be shorter than the length K by performing at least one of lowering the flight speed V, increasing the rotation speed R, and increasing the altitude H. For example, by lowering the flight speed V, the flight distance J is made shorter than the length K.
  • the rotation speed R adjust within a range in which the relationship of ⁇ ⁇ 1 can be maintained.
  • the distance L is adjusted so that it can be maintained within a preset range. After the adjustment, the process of step S46 is executed again.
  • the distance L between the LiDAR sensor 20 and the forest 54 may be measured during the forest measurement, and the length K may be calculated from the measured distance L.
  • the distance L can be calculated from the difference between the emission time of the laser pulse 22 and the acquisition time of the reflection pulse of the laser pulse 22. Since the length K is proportional to the distance L, the length K can be calculated from the distance L.
  • steps S40, S42, S46 and S50 is executed by the CPU 71, but the signal processing circuit 15g (FIG. 4) of the unmanned helicopter 1 may execute the processing. Further, these processes may be shared by the CPU 71 and the signal processing circuit 15 g.
  • the unmanned helicopter 1 can fly at an altitude lower than that of a conventional aircraft, thereby increasing the in-plane number density of laser spots and reducing the laser spot center spacing.
  • the measurement target area becomes narrow because the cruising range is short in the multicopter that operates the electric motor with the electric power supplied from the battery.
  • an unmanned helicopter flying by an internal combustion engine has a long cruising range, so that a sufficient measurement target area can be secured even if the flight speed is reduced.
  • an unmanned aerial vehicle equipped with a LiDAR sensor has been illustrated and described.
  • a flash LiDAR sensor may be used.
  • the flash LiDAR sensor does not have a rotation axis or a swing axis, it may be attached to the unmanned helicopter 1 at a position and an angle capable of performing forest measurement for a forest on a slope.
  • LiDAR sensors radar ranging devices such as millimeter waves, antennas and imaging devices (cameras) can be called “observers”.
  • the LiDAR sensor has been illustrated as an observer, but other observers may be mounted on an unmanned aerial vehicle.
  • mountains, forests, slopes, flat lands, etc. observed using an observer are "observation target areas”.
  • the flight method illustrated in the above embodiment is suitable for searching for a victim on a slope.
  • the light acquired by the camera at the time of shooting corresponds to the reflected pulse from the reflection point acquired by the LiDAR sensor.
  • the camera does not emit a laser pulse like LiDAR, the camera does not have a rotation axis or a swing axis.
  • the camera may be mounted on an unmanned aerial vehicle so that the field of view of the camera includes at least the slopes of the forest.
  • equipment different from the observer may be mounted on the unmanned aerial vehicle.
  • An example of such a device is a drug sprayer.
  • Unmanned aerial vehicles have already been used to spray chemicals such as herbicides and pesticides. Chemicals may be sprayed on sloped forests for forest management and utilization. At that time, the spraying target area is determined, and the chemical is sprayed on the slope by the spraying device while the unmanned aerial vehicle is flying in the spraying target area by the above-mentioned flight method. Then, the drug can be sprayed at a substantially uniform density while maintaining the distance from the slope. Since the spraying device does not emit a laser pulse like LiDAR, the spraying device does not have a rotation axis or a swing axis.
  • the sprayer may be mounted on an unmanned aerial vehicle so that the sprayer sprays the drug at least on the slopes of the forest.
  • the target of forest measurement is mainly the forest 54 on the slope 52, but the target of forest measurement is not limited to that.
  • the target of forest measurement may be a flat forest.
  • the method according to an embodiment of the present invention is a method in which an unmanned aerial vehicle 1 equipped with a lidar (LiDAR) sensor 20 is flown to perform forest measurement on a slope forest 54.
  • the rotation shaft 20a or the swing shaft 20a of the sensor 20 is mounted on the unmanned aerial vehicle 1 so as to face the traveling direction of the aircraft, and (i) while flying the unmanned aerial vehicle 1 along the first contour line 60a at a predetermined absolute altitude.
  • the method may further include pre-specifying the first contour lines 60a, the second contour lines 60b and a predetermined absolute altitude prior to steps (i) and (ii).
  • the method further comprises having the rider sensor 20 scan the end of the forest 54 while the unmanned aerial vehicle 1 is flying over a predetermined distance from the end. You may.
  • the rider sensor 20 may scan the canopy and trunk of each tree in the forest 54.
  • steps (i) and (ii) may include causing the rider sensor 20 to scan the forest 54 using a horizontally emitted laser pulse 22.
  • steps (i) and (ii) may include causing the rider sensor 20 to scan the forest 54 using a laser pulse 22 emitted in an oblique direction.
  • the unmanned aerial vehicle 1 may be an unmanned helicopter or an unmanned multicopter.
  • a method is a method of determining a flight path of an unmanned aerial vehicle 1 equipped with an observer 20, in which the observation target area by the observer 20 is specified, and the observation target area includes a slope. , Determining a plurality of route segments in which the unmanned aerial vehicle 1 flies at a predetermined absolute altitude along any of the contour lines by referring to the contour data in the observation target area, and determining a flight route including a plurality of route segments. To do, to do.
  • determining a plurality of path segments may include setting a plurality of transit points on one or more selected contour lines and specifying an absolute altitude.
  • the observation area may include a slope forest 54.
  • the observer 20 may be a lidar (LiDAR) sensor 20.
  • LiDAR lidar
  • determining the flight path may include determining a flight path at the edge of the forest 54 that passes over a predetermined distance from the edge.
  • the observer 20 may be an infrared camera.
  • a method according to an embodiment of the present invention is a method in which an unmanned aerial vehicle 1 equipped with a lidar (LiDAR) sensor 20 is flown to perform forest measurement targeting a forest 54 on a slope, and the rotation axis of the rider sensor 20.
  • the 20a or the swing axis 20a is mounted on the unmanned aerial vehicle 1 so as to face the traveling direction of the aircraft, and (i) the unmanned aerial vehicle 1 is flying at a predetermined absolute altitude and a predetermined first true altitude while riding the forest 54.
  • the forest 54 is driven by the rider sensor 20 while scanning with the sensor 20 and (ii) flying the unmanned aerial vehicle 1 at a predetermined absolute altitude and a predetermined second true altitude different from the predetermined first true altitude. To scan again.
  • the forest measurement system 100 has an unmanned aircraft 1 and a computer device 70, and is a forest measurement system for flying an unmanned aircraft 1 to perform forest measurement for a slope forest 54.
  • the unmanned aircraft 1 has a lidar (LiDAR) sensor 20, a first signal processing circuit 15g, a first storage device 15j, and a first communication circuit 15f, and the rotation shaft 20a of the rider sensor 20.
  • the swing shaft 20a is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer device 70 stores information on the display device 75, the input device 76, the second signal processing circuit 71, and the contour lines.
  • the second storage device 72 and the second communication circuit 73 are provided, and the second signal processing circuit 71 acquires information on the contour line from the second storage device 72, and the first contour line 60a, via the input device 76,
  • the designation of the second contour line 60b and the absolute altitude is accepted, and the designated first contour line 60a, the second contour line 60b and the absolute altitude data are transmitted to the unmanned aircraft 1 via the second communication circuit 73, and the first signal processing is performed.
  • the circuit 15g receives the data of the first contour line 60a, the second contour line 60b and the absolute altitude via the first communication circuit 15f, and receives the received first contour line 60a, the second contour line 60b and the absolute altitude data first.
  • the forest 54 Stored in the storage device 15j, while flying the unmanned aircraft 1 along the first contour line 60a at absolute altitude, the forest 54 is scanned by the rider sensor 20, and the unmanned aircraft 1 is flown along the second contour line 60b at absolute altitude.
  • the rider sensor 20 scans the forest 54 again.
  • the imaging method is a method of photographing an observation target by using an unmanned aerial vehicle 1 provided with an image pickup device 20, and when the observation target area is specified and the observation target area includes a slope.
  • the image pickup device 20 While flying the unmanned aerial vehicle 1 along the determined flight path, the image pickup device 20 performs imaging.
  • the spraying method is a method of spraying a drug using an unmanned aerial vehicle 1 provided with a drug spraying device 20, wherein the spraying device 20 specifies an area to be sprayed, and the spraying target area is When including a slope, refer to the contour data in the area to be sprayed to determine a plurality of route segments in which the unmanned aerial vehicle 1 flies at a predetermined absolute altitude along any of the contour lines, and a flight including a plurality of route segments. The route is determined, and the drug is sprayed while the unmanned aerial vehicle 1 is flying along the determined flight route.
  • a computer program is a computer program for causing a computer to control forest measurement for a slope forest 54 performed by flying an unmanned aircraft 1 equipped with a lidar (LiDAR) sensor 20.
  • the rotation shaft 20a or the swing shaft 20a of the rider sensor 20 is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer program determines (i) the unmanned aircraft 1 along the first contour line 60a.
  • the forest 54 is scanned by the rider sensor 20 while flying at the absolute altitude of, and (ii) the unmanned aircraft 1 is flown at a predetermined absolute altitude along the second contour line 60b different from the first contour line 60a.
  • the rider sensor 20 causes the computer to control the scanning of the forest 54 again.
  • a method according to an embodiment of the present invention is a method in which an unmanned aerial vehicle 1 equipped with a lidar (LiDAR) sensor 20 is flown to perform forest measurement targeting a forest 54, and the rotation axis 20a of the lidar sensor 20 or The rocking shaft 20a is mounted on the unmanned aerial vehicle 1 so as to face the traveling direction of the aircraft, and the lidar sensor 20 is used to emit the laser pulse 22 while changing the emission direction at a predetermined angular pitch to measure the surrounding space.
  • the distance to the forest 54 is L
  • the flight speed of the unmanned aerial vehicle 1 is V
  • the number of laser pulses 22 emitted simultaneously in the same angular direction is N
  • the frequency of the laser pulses 22 emitted in the same angular direction is f.
  • the forest 54 is operated by using the lidar sensor 20 while flying the unmanned aerial vehicle 1 so that the relative values of ⁇ and L with respect to V / (f ⁇ N) are within the predetermined range. Perform the forest measurement of interest.
  • the predetermined angle pitch ⁇ may be a fixed value.
  • the predetermined angle pitch ⁇ may be fixed to a settable minimum value.
  • the number of emission times M per unit time and the number of rotations R per unit time may be variable values.
  • the number of emission times M per unit time and the number of rotations R per unit time may be fixed values.
  • the lidar sensor 20 is of a mechanical rotation system
  • the predetermined angle pitch ⁇ is smaller than the divergence angle ⁇ 1 in the direction perpendicular to the rotation axis 20a of the laser pulse 22, and in the above method, the rider sensor 20 is 1.
  • the flight speed V of the unmanned aircraft 1 is such that the flight distance J that the unmanned aircraft 1 flies while rotating is shorter than the length K in the direction parallel to the traveling direction of the aircraft at the laser spot 24 formed in the forest 54. It may include adjusting at least one of the number of revolutions R of the rider sensor 20 per unit time and the altitude H of the unmanned aircraft 1.
  • the above method changes the divergence angle ⁇ 1 by changing at least one of the number of times M and the number of revolutions R of the pulse emitted per unit time at one outlet for emitting the laser pulse 22. May include adjusting the predetermined angle pitch ⁇ so that
  • the unmanned aerial vehicle 1 may be an unmanned helicopter or an unmanned multicopter.
  • the forest 54 may be a sloped forest.
  • the forest measurement system 100 is a forest measurement system 100 having an unmanned aircraft 1 and a computer device 70, for flying the unmanned aircraft 1 and performing forest measurement for the forest 54.
  • the unmanned aircraft 1 has a lidar (LiDAR) sensor 20, a first signal processing circuit 15g, a storage device 15j, and a first communication circuit 15f, and has a rotation shaft 20a or a rotation shaft 20a of the rider (LiDAR) sensor 20.
  • the rocking shaft 20a is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer device 70 includes a display device 75, an input device 76, a second signal processing circuit 71, and a second communication circuit 73.
  • the second signal processing circuit 71 has the number N of laser pulses 22 simultaneously emitted in the same angular direction, the frequency f of the laser pulses 22 emitted in the same angular direction, and a predetermined value via the input device 76.
  • the designation of the angle pitch ⁇ is accepted, and the data of the specified number N, the frequency f and the predetermined angle pitch ⁇ are transmitted to the unmanned aircraft 1 via the second communication circuit 73, and the first signal processing circuit 15g is the first.
  • the data of the number N, the frequency f and the predetermined angle pitch ⁇ are received via the communication circuit 15f, the received data of the number N, the frequency f and the predetermined angle pitch ⁇ are stored in the storage device 15j, and the distance to the forest 54.
  • a computer program according to an embodiment of the present invention is a computer program that causes computers 15 and 70 to control forest measurement for a forest 54 performed by flying an unmanned aircraft 1 equipped with a lidar (LiDAR) sensor 20. Therefore, the rotation shaft 20a or the swing shaft 20a of the lidar sensor 20 is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer program uses the lidar sensor 20 to determine the emission direction of the laser pulse 22. Emit while changing at a predetermined angle pitch to measure the surrounding space, the distance to the forest 54 is L, the flight speed of the unmanned aircraft 1 is V, and the number of laser pulses 22 simultaneously emitted in the same angle direction is N.
  • LiDAR lidar
  • the computers 15 and 70 are made to control the forest measurement for the forest 54 by using the lidar sensor 20 while flying the aircraft 1.
  • the technique of the present invention can be suitably used when performing forest measurement, searching for victims, spraying chemicals, etc. on forests, especially forests on slopes.

Abstract

According to the present invention, an unmanned aerial vehicle equipped with a LiDAR sensor is flown to perform forest mensuration of a forest on an inclined surface. The LiDAR sensor is mounted on the unmanned aerial vehicle in such a way that the axis of rotation or the axis of oscillation thereof faces in the direction of travel of the aircraft. The method for performing forest mensuration includes (i) scanning the forest using the LiDAR sensor while flying the unmanned aerial vehicle at a predetermined absolute altitude along a first contour line, and (ii) re-scanning the forest using the LiDAR sensor while flying the unmanned aerial vehicle at the predetermined absolute altitude along a second contour line different from the first contour line.

Description

森林計測を行う方法、森林計測システム、無人航空機の飛行経路を決定する方法、撮影方法、散布方法およびコンピュータプログラムHow to make forest measurements, forest measurement systems, how to determine the flight path of unmanned aerial vehicles, how to shoot, how to spray and computer programs
 本発明は、無人航空機を利用して森林計測を行う技術、無人航空機の飛行経路を決定する技術等に関する。 The present invention relates to a technique for performing forest measurement using an unmanned aerial vehicle, a technique for determining a flight path of an unmanned aerial vehicle, and the like.
 森林計測を行うための方法として、種々の方法が知られている。例えば特許文献1は、上空からカメラで森林を撮影し、得られた画像から画像処理によって樹冠円を抽出する方法を開示する。特許文献2は、上空から波長の異なるレーダ波をそれぞれ森林に送信して、樹木の最上部からの反射波および地面からの反射波から算出されるそれぞれの高さの差分から樹木の高さを求める方法を開示する。特許文献3は、航空機にレーザ測距装置を搭載し、レーザ測距装置を用いて、樹木等を含めた地上の三次元データを取得する方法を開示する。 Various methods are known as methods for performing forest measurement. For example, Patent Document 1 discloses a method of photographing a forest with a camera from the sky and extracting a canopy circle from the obtained image by image processing. Patent Document 2 transmits radar waves having different wavelengths from the sky to the forest, and calculates the height of the tree from the difference in height calculated from the reflected wave from the top of the tree and the reflected wave from the ground. Disclose the method of request. Patent Document 3 discloses a method in which a laser ranging device is mounted on an aircraft and the laser ranging device is used to acquire three-dimensional data on the ground including trees and the like.
特開2007-66050号公報JP-A-2007-66050 特開平9-184880号公報Japanese Unexamined Patent Publication No. 9-184880 特開2016-70708号公報Japanese Unexamined Patent Publication No. 2016-070708
 上空からレーザ測距装置を用いて森林計測を行うと、森林上部表面(樹冠上面)のデータである点群データは得られる。しかしながら、樹木の葉等によってレーザ光が遮られるため、幹のデータを取得することは困難である。そのため計測結果から、最も太い幹である主幹の本数を推定する必要があった。 When forest measurement is performed from the sky using a laser ranging device, point cloud data, which is data on the upper surface of the forest (upper surface of the canopy), can be obtained. However, it is difficult to acquire trunk data because the laser beam is blocked by the leaves of trees and the like. Therefore, it was necessary to estimate the number of main trunks, which are the thickest trunks, from the measurement results.
 特許文献3は、人間が森林内にレーザ測距装置等の装置を持ち込み、三次元の点群データをさらに取得し、上空からの計測によって得られた点群データと、地上での計測によって得られた点群データとを融合させることに言及する。しかしながら、2種類の点群データを取得することは非常に大きな手間がかかる。 In Patent Document 3, a human brings a device such as a laser ranging device into a forest, further acquires three-dimensional point cloud data, and obtains point cloud data obtained by measurement from the sky and measurement on the ground. It is mentioned to fuse with the point cloud data. However, it takes a lot of time and effort to acquire two types of point cloud data.
 森林内の木々の樹冠および幹を、無人航空機を用いて計測することが求められている。 It is required to measure the canopy and trunk of trees in the forest using an unmanned aerial vehicle.
 本発明のある実施形態に係る方法は、ライダー(LiDAR)センサを搭載した無人航空機を飛行させて斜面の森林を対象とする森林計測を行う方法であって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、(i)前記無人航空機を第1等高線に沿って所定の絶対高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせること、および(ii)前記無人航空機を前記第1等高線とは異なる第2等高線に沿って前記所定の絶対高度で飛行させながら、前記ライダーセンサで前記森林を再度スキャンさせることを実行する。 A method according to an embodiment of the present invention is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement for a forest on a slope, and the rotation axis or swing of the rider sensor. The axis is mounted on the unmanned aerial vehicle so as to face the direction of travel of the aircraft, and (i) the rider sensor scans the forest while flying the unmanned aerial vehicle at a predetermined absolute altitude along the first contour line. , And (ii) the rider sensor rescans the forest while flying the unmanned aerial vehicle along a second contour line different from the first contour line at the predetermined absolute altitude.
 ある実施形態において、前記方法は、前記工程(i)および(ii)の前に、前記第1等高線、前記第2等高線および前記所定の絶対高度を予め指定することをさらに包含してもよい。 In certain embodiments, the method may further include pre-designating the first contour lines, the second contour lines and the predetermined absolute altitude prior to the steps (i) and (ii).
 ある実施形態において、前記方法は、前記森林の端部においては、前記無人航空機を前記端部から所定距離離れた位置の上空を飛行させながら、前記ライダーセンサで前記端部をスキャンさせることをさらに包含してもよい。 In certain embodiments, the method further comprises causing the rider sensor to scan the edge of the forest while flying the unmanned aerial vehicle over a position a predetermined distance away from the edge. It may be included.
 ある実施形態において、前記ライダーセンサは前記森林の各樹木の樹冠および幹をスキャンしてもよい。 In certain embodiments, the rider sensor may scan the canopy and trunk of each tree in the forest.
 ある実施形態において、前記工程(i)および(ii)は、水平方向に出射されたレーザパルスを用いて前記ライダーセンサに前記森林をスキャンさせることを含んでもよい。 In certain embodiments, the steps (i) and (ii) may include causing the rider sensor to scan the forest with a laser pulse emitted in the horizontal direction.
 ある実施形態において、前記工程(i)および(ii)は、斜め方向に出射されたレーザパルスを用いて前記ライダーセンサに前記森林をスキャンさせることを含んでもよい。 In certain embodiments, steps (i) and (ii) may include causing the rider sensor to scan the forest using laser pulses emitted in an oblique direction.
 ある実施形態において、前記無人航空機は無人ヘリコプターまたは無人マルチコプターであってもよい。 In certain embodiments, the unmanned aerial vehicle may be an unmanned helicopter or an unmanned multicopter.
 本発明のある実施形態に係る方法は、観測器を備える無人航空機の飛行経路を決定する方法であって、前記観測器による観測対象エリアを特定すること、前記観測対象エリアが斜面を含む場合、前記観測対象エリア内の等高線データを参照し、前記無人航空機が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、および前記複数の経路セグメントを含む飛行経路を決定すること、を実行する。 A method according to an embodiment of the present invention is a method of determining a flight path of an unmanned aerial vehicle equipped with an observer, in which the observation target area by the observer is specified, and when the observation target area includes a slope. With reference to the contour data in the observation target area, determining a plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines, and determining a flight path including the plurality of route segments. To decide, to do.
 ある実施形態において、前記複数の経路セグメントを決定することは、選択された1または複数の等高線上に複数の通過点を設定すること、および、前記絶対高度を指定することを包含してもよい。 In certain embodiments, determining the plurality of route segments may include setting a plurality of transit points on one or more selected contour lines and specifying the absolute altitude. ..
 ある実施形態において、前記観測対象エリアは前記斜面の森林を含んでもよい。 In certain embodiments, the observation area may include forests on the slope.
 ある実施形態において、前記観測器はライダー(LiDAR)センサであってもよい。 In certain embodiments, the observer may be a lidar (LiDAR) sensor.
 ある実施形態において、前記飛行経路を決定することは、前記森林の端部において、前記端部から所定距離離れた位置の上空を通過する前記飛行経路を決定することを含んでもよい。 In certain embodiments, determining the flight path may include determining the flight path at the edge of the forest that passes over a position a predetermined distance away from the edge.
 ある実施形態において、前記観測器は赤外線カメラであってもよい。 In certain embodiments, the observer may be an infrared camera.
 本発明のある実施形態に係る方法は、ライダー(LiDAR)センサを搭載した無人航空機を飛行させて斜面の森林を対象とする森林計測を行う方法であって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、(i)前記無人航空機を所定の絶対高度および所定の第1真高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせること、および(ii)前記無人航空機を前記所定の絶対高度および、前記所定の第1真高度とは異なる所定の第2真高度で飛行させながら、前記森林を前記ライダーセンサで前記森林を再度スキャンさせることを実行する。 A method according to an embodiment of the present invention is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement for a forest on a slope, and the rotation axis or swing of the rider sensor. The axis is mounted on the unmanned aerial vehicle so as to face the direction of travel of the aircraft, and (i) the rider sensor scans the forest while flying the unmanned aerial vehicle at a predetermined absolute altitude and a predetermined first true altitude. And (ii) scan the forest again with the rider sensor while flying the unmanned aerial vehicle at the predetermined absolute altitude and a predetermined second true altitude different from the predetermined first true altitude. Do what you want.
 本発明のある実施形態に係る森林計測システムは、無人航空機とコンピュータ装置とを有し、前記無人航空機を飛行させて斜面の森林を対象とする森林計測を行うための森林計測システムであって、前記無人航空機は、ライダー(LiDAR)センサと、第1信号処理回路と、第1記憶装置と、第1通信回路とを有し、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、前記コンピュータ装置は、表示装置と、入力装置と、第2信号処理回路と、等高線に関する情報を記憶した第2記憶装置と、第2通信回路とを有し、前記第2信号処理回路は、前記等高線に関する情報を前記第2記憶装置から取得し、前記入力装置を介して第1等高線、第2等高線および絶対高度の指定を受け付け、指定された前記第1等高線、前記第2等高線および前記絶対高度のデータを、前記第2通信回路を介して前記無人航空機に送信し、前記第1信号処理回路は、前記第1通信回路を介して、前記第1等高線、前記第2等高線および前記絶対高度のデータを受信し、受信した前記第1等高線、前記第2等高線および前記絶対高度のデータを前記第1記憶装置に格納し、前記無人航空機を前記第1等高線に沿って前記絶対高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせ、前記無人航空機を前記第2等高線に沿って前記絶対高度で飛行させながら、前記ライダーセンサで前記森林を再度スキャンさせる。 The forest measurement system according to an embodiment of the present invention is a forest measurement system having an unmanned aircraft and a computer device, and for flying the unmanned aircraft to perform forest measurement targeting a forest on a slope. The unmanned aircraft has a lidar (LiDAR) sensor, a first signal processing circuit, a first storage device, and a first communication circuit, and the rotation axis or swing axis of the rider sensor determines the traveling direction of the aircraft. It is mounted on the unmanned aircraft so as to face the unmanned aircraft, and the computer device includes a display device, an input device, a second signal processing circuit, a second storage device that stores information about contour lines, and a second communication circuit. Then, the second signal processing circuit acquires information about the contour line from the second storage device, receives designation of the first contour line, the second contour line, and the absolute altitude via the input device, and receives the designation of the designated first contour line. The first contour line, the second contour line, and the absolute altitude data are transmitted to the unmanned aircraft via the second communication circuit, and the first signal processing circuit is the first through the first communication circuit. The data of the contour line, the second contour line and the absolute altitude are received, the received data of the first contour line, the second contour line and the absolute altitude are stored in the first storage device, and the unmanned aircraft is stored in the first storage device. The rider sensor scans the forest while flying along the contour line at the absolute altitude, and the rider sensor scans the forest again while flying the unmanned aircraft at the absolute altitude along the second contour line. Let me.
 本発明のある実施形態に係る撮影方法は、撮像装置を備える無人航空機を用いて観測対象を撮影する方法であって、観測対象エリアを特定すること、前記観測対象エリアが斜面を含む場合、前記観測対象エリア内の等高線データを参照し、前記無人航空機が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、前記複数の経路セグメントを含む飛行経路を決定すること、決定された飛行経路に沿って前記無人航空機を飛行させながら前記撮像装置で撮影することを実行する。 The imaging method according to an embodiment of the present invention is a method of photographing an observation target by using an unmanned aerial vehicle equipped with an imaging device, and the observation target area is specified, and when the observation target area includes a slope, the above-mentioned With reference to the contour data in the observation target area, determine a plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines, and determine a flight route including the plurality of route segments. That is, taking a picture with the image pickup device while flying the unmanned aerial vehicle along the determined flight path.
 本発明のある実施形態に係る散布方法は、薬剤の散布装置を備える無人航空機を用いて薬剤を散布する方法であって、前記散布装置による散布対象エリアを特定すること、前記散布対象エリアが斜面を含む場合、前記散布対象エリア内の等高線データを参照し、前記無人航空機が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、前記複数の経路セグメントを含む飛行経路を決定すること、決定された飛行経路に沿って前記無人航空機を飛行させながら薬剤を散布することを実行する。 The spraying method according to an embodiment of the present invention is a method of spraying a drug using an unmanned aerial vehicle equipped with a drug spraying device, specifying an area to be sprayed by the spraying device, and the spraying target area is a slope. In the case of including, the plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines are determined by referring to the contour data in the spraying target area. Determining the flight path and spraying the drug while flying the unmanned aerial vehicle along the determined flight path.
 本発明のある実施形態に係るコンピュータプログラムは、ライダー(LiDAR)センサを搭載した無人航空機を飛行させて行う斜面の森林を対象とする森林計測の制御をコンピュータに実行させるコンピュータプログラムであって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、前記コンピュータプログラムは、(i)前記無人航空機を第1等高線に沿って所定の絶対高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせること、および(ii)前記無人航空機を前記第1等高線とは異なる第2等高線に沿って前記所定の絶対高度で飛行させながら、前記ライダーセンサで前記森林を再度スキャンさせることの制御を前記コンピュータに実行させる。 A computer program according to an embodiment of the present invention is a computer program for causing a computer to control forest measurement for a forest on a slope by flying an unmanned aircraft equipped with a lidar (LiDAR) sensor. The axis of rotation or swing of the rider sensor is mounted on the unmanned aircraft so that it faces the direction of travel of the aircraft, and the computer program (i) flies the unmanned aircraft along a first contour line at a predetermined absolute altitude. While allowing the rider sensor to scan the forest, and (ii) flying the unmanned aircraft along a second contour line different from the first contour line at the predetermined absolute altitude, the rider sensor said. Let the computer perform control of rescanning the forest.
 本発明のある実施形態に係る方法は、ライダー(LiDAR)センサを搭載した無人航空機を飛行させて森林を対象とする森林計測を行う方法であって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、前記ライダーセンサを用いて、レーザパルスの出射方向を所定角度ピッチで変化させながら出射して周囲の空間を計測すること、前記森林までの距離をL、前記無人航空機の飛行速度をV、同じ角度方向に同時に出射されるレーザパルスの個数をN、前記同じ角度方向に出射される前記レーザパルスの周波数をf、前記所定角度ピッチをαとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、前記無人航空機を飛行させながら前記ライダーセンサを用いて前記森林を対象とする森林計測を行うことを実行する。 A method according to an embodiment of the present invention is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement for a forest, wherein the rotation axis or the swing axis of the lidar sensor is , It is mounted on the unmanned aerial vehicle so as to face the traveling direction of the aircraft, and the lidar sensor is used to emit the laser pulse while changing the emission direction at a predetermined angular pitch to measure the surrounding space. The distance is L, the flight speed of the unmanned aerial vehicle is V, the number of laser pulses emitted simultaneously in the same angular direction is N, the frequency of the laser pulses emitted in the same angular direction is f, and the predetermined angular pitch is When α is set, forest measurement targeting the forest using the lidar sensor while flying the unmanned aerial vehicle so that the relative value of α / L with respect to V / (f · N) falls within a predetermined range. Do what you do.
 ある実施形態において、前記所定角度ピッチαは固定値であってもよい。 In a certain embodiment, the predetermined angle pitch α may be a fixed value.
 ある実施形態において、前記所定角度ピッチαは設定可能な最小値に固定されていてもよい。 In a certain embodiment, the predetermined angle pitch α may be fixed to a settable minimum value.
 ある実施形態において、前記ライダーセンサは機械回転方式であり、レーザパルスを出射する1つの出射口における単位時間当たりのレーザパルスの出射回数をM、および単位時間当たりの回転数をRとするとき、前記所定角度ピッチαはα(rad)=2・π・R/Mによって求められ、前記森林計測を行うことは、V/(f・N)に対する(2・π・R/M)・Lの相対値が前記所定の範囲内に収まるように、前記無人航空機を飛行させることを包含してもよい。 In a certain embodiment, the lidar sensor is of a mechanical rotation type, and when the number of times the laser pulse is emitted per unit time at one outlet that emits the laser pulse is M and the number of rotations per unit time is R, The predetermined angle pitch α is obtained by α (rad) = 2.π · R / M, and the forest measurement is performed by (2 · π · R / M) · L with respect to V / (f · N). It may include flying the unmanned aerial vehicle so that the relative value falls within the predetermined range.
 ある実施形態において、前記単位時間当たりの出射回数M、および前記単位時間当たりの回転数Rは可変値であってもよい。 In a certain embodiment, the number of times of emission M per unit time and the number of rotations R per unit time may be variable values.
 ある実施形態において、前記単位時間当たりの出射回数M、および前記単位時間当たりの回転数Rは固定値であってもよい。 In a certain embodiment, the number of emission times M per unit time and the number of rotations R per unit time may be fixed values.
 ある実施形態において、前記ライダーセンサは機械回転方式であり、前記所定角度ピッチαは、前記レーザパルスの前記回転軸に垂直な方向の発散角θよりも小さく、前記方法は、前記ライダーセンサが1回転する間に前記無人航空機が飛行する飛行距離Jが、前記森林に形成されるレーザスポットにおける前記機体進行方向に平行な方向の長さKよりも短くなるように、前記無人航空機の飛行速度V、前記ライダーセンサの単位時間当たりの回転数Rおよび前記無人航空機の高度Hのうちの少なくとも一つを調整することを包含してもよい。 In one embodiment, the rider sensor is of a mechanical rotation type, the predetermined angle pitch α is smaller than the divergence angle θ 1 of the laser pulse in the direction perpendicular to the rotation axis, and the method is such that the rider sensor The flight speed of the unmanned aircraft so that the flight distance J that the unmanned aircraft flies during one rotation is shorter than the length K in the direction parallel to the traveling direction of the aircraft at the laser spot formed in the forest. It may include adjusting V, the number of revolutions R of the rider sensor per unit time, and at least one of the altitude H of the unmanned aircraft.
 ある実施形態において、前記方法は、前記レーザパルスを出射する1つの出射口における単位時間当たりのパルスの出射回数Mおよび前記回転数Rのうちの少なくとも一つを変更することより、前記発散角θよりも小さくなるように前記所定角度ピッチαを調整することを包含してもよい。 In certain embodiments, the method changes the divergence angle θ by changing at least one of the number of times M and the number of revolutions R of the pulse emitted per unit time at one outlet for emitting the laser pulse. It may include adjusting the predetermined angle pitch α so as to be smaller than 1 .
 ある実施形態において、前記無人航空機は無人ヘリコプターまたは無人マルチコプターであってもよい。 In certain embodiments, the unmanned aerial vehicle may be an unmanned helicopter or an unmanned multicopter.
 ある実施形態において、前記森林は、斜面の森林であってもよい。 In certain embodiments, the forest may be a sloped forest.
 本発明のある実施形態に係る森林計測システムは、無人航空機とコンピュータ装置とを有し、前記無人航空機を飛行させて森林を対象とする森林計測を行うための森林計測システムであって、前記無人航空機は、ライダー(LiDAR)センサと、第1信号処理回路と、記憶装置と、第1通信回路とを有し、前記ライダー(LiDAR)センサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、前記コンピュータ装置は、表示装置と、入力装置と、第2信号処理回路と、第2通信回路とを有し、前記第2信号処理回路は、前記入力装置を介して、同じ角度方向に同時に出射されるレーザパルスの個数N、前記同じ角度方向に出射される前記レーザパルスの周波数f、および所定角度ピッチαの指定を受け付け、指定された前記個数N、前記周波数fおよび前記所定角度ピッチαのデータを、前記第2通信回路を介して前記無人航空機に送信し、前記第1信号処理回路は、前記第1通信回路を介して、前記個数N、前記周波数fおよび前記所定角度ピッチαのデータを受信し、受信した前記個数N、前記周波数fおよび前記所定角度ピッチαのデータを前記記憶装置に格納し、前記森林までの距離をL、前記無人航空機の飛行速度をVとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、前記無人航空機を飛行させて、前記ライダーセンサを用いて前記森林を対象とする森林計測を行う。 The forest measurement system according to an embodiment of the present invention is a forest measurement system having an unmanned aircraft and a computer device for flying the unmanned aircraft to perform forest measurement targeting the forest, and is the unmanned forest measurement system. The aircraft has a lidar (LiDAR) sensor, a first signal processing circuit, a storage device, and a first communication circuit, and the rotation axis or swing axis of the lidar (LiDAR) sensor faces the traveling direction of the aircraft. The computer device includes a display device, an input device, a second signal processing circuit, and a second communication circuit, and the second signal processing circuit is the input device. The number N of laser pulses emitted simultaneously in the same angular direction, the frequency f of the laser pulses emitted in the same angular direction, and the predetermined number N of the predetermined angle pitch α are specified. The data of the frequency f and the predetermined angle pitch α are transmitted to the unmanned aircraft via the second communication circuit, and the first signal processing circuit is the number N, the said, via the first communication circuit. The data of the frequency f and the predetermined angle pitch α are received, the received data of the number N, the frequency f and the predetermined angle pitch α are stored in the storage device, the distance to the forest is L, and the unmanned aircraft. When the flight speed of is V, the unmanned aircraft is flown so that the relative value of α · L with respect to V / (f · N) falls within a predetermined range, and the forest is cleared by using the rider sensor. Perform target forest measurement.
 本発明のある実施形態に係るコンピュータプログラムは、ライダー(LiDAR)センサを搭載した無人航空機を飛行させて行う森林を対象とする森林計測の制御をコンピュータに実行させるコンピュータプログラムであって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、前記コンピュータプログラムは、前記ライダーセンサを用いて、レーザパルスの出射方向を所定角度ピッチで変化させながら出射して周囲の空間を計測すること、前記森林までの距離をL、前記無人航空機の飛行速度をV、同じ角度方向に同時に出射されるレーザパルスの個数をN、前記同じ角度方向に出射される前記レーザパルスの周波数をf、前記所定角度ピッチをαとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、前記無人航空機を飛行させながら前記ライダーセンサを用いて前記森林を対象とする森林計測を行うことの制御を前記コンピュータに実行させる。 A computer program according to an embodiment of the present invention is a computer program for causing a computer to control forest measurement for a forest by flying an unmanned aircraft equipped with a lidar (LiDAR) sensor. The rotation axis or swing axis of the aircraft is mounted on the unmanned aircraft so as to face the traveling direction of the aircraft, and the computer program uses the lidar sensor to emit while changing the emission direction of the laser pulse at a predetermined angular pitch. The surrounding space is measured, the distance to the forest is L, the flight speed of the unmanned aircraft is V, the number of laser pulses emitted simultaneously in the same angular direction is N, and the laser pulses are emitted in the same angular direction. When the frequency of the laser pulse is f and the predetermined angular pitch is α, the unmanned aircraft is being flown so that the relative values of α and L with respect to V / (f ・ N) are within a predetermined range. The computer is made to control the forest measurement for the forest by using the lidar sensor.
 本発明の実施形態は、ライダー(LiDAR)センサを搭載した無人航空機を飛行させて森林を対象とする森林計測を行う際、取得される点群データの空間密度の偏りを抑制し、点群データから樹冠および幹の位置・形状を正確に決定または推定することを可能にする。 In the embodiment of the present invention, when an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor is flown to perform forest measurement for a forest, the bias of the spatial density of the acquired point cloud data is suppressed, and the point cloud data It makes it possible to accurately determine or estimate the position and shape of the canopy and trunk from.
森林計測を行う無人ヘリコプター1を示す図である。It is a figure which shows the unmanned helicopter 1 which performs the forest measurement. LiDARセンサ20を搭載した無人ヘリコプター1の外観側面図である。It is an external side view of the unmanned helicopter 1 equipped with the LiDAR sensor 20. 無人ヘリコプター1の正面図である。It is a front view of the unmanned helicopter 1. 飛行制御ボックス15のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of the flight control box 15. LiDARセンサ20を利用して斜面52の森林54を対象とする森林計測を行う無人ヘリコプター1を示す図である。It is a figure which shows the unmanned helicopter 1 which performs the forest measurement for the forest 54 of the slope 52 using the LiDAR sensor 20. LiDARセンサ20の搭載位置に関する変形例を示す図である。It is a figure which shows the modification about the mounting position of the LiDAR sensor 20. 例示的な実施形態における飛行経路60の一部を示す斜視図である。It is a perspective view which shows a part of the flight path 60 in an exemplary embodiment. 飛行経路60の一部を示す上面図である。It is a top view which shows a part of the flight path 60. 第1等高線60aに沿って飛行する無人ヘリコプター1と、第2等高線60b上に沿って飛行する無人ヘリコプター1とを示す、斜面52の断面図である。FIG. 5 is a cross-sectional view of a slope 52 showing an unmanned helicopter 1 flying along the first contour line 60a and an unmanned helicopter 1 flying along the second contour line 60b. 絶対高度AGLを一定にしたときの、斜面52に入射するレーザパルスの分布を示す図である。It is a figure which shows the distribution of the laser pulse incident on the slope 52 when the absolute altitude AGL is made constant. 真高度MSLを一定に維持したときの、斜面52に入射するレーザパルスの分布を示す図である。It is a figure which shows the distribution of the laser pulse incident on the slope 52 when the true altitude MSL is maintained constant. 例示的な実施形態にかかる方法によって行われた森林計測の結果を示す図である。It is a figure which shows the result of the forest measurement performed by the method which concerns on an exemplary embodiment. 無人ヘリコプター1とタブレットコンピュータ70とを含む森林計測システム100の一例を示す図である。It is a figure which shows an example of the forest measurement system 100 including an unmanned helicopter 1 and a tablet computer 70. 無人ヘリコプター1と基地局操縦装置80とを含む森林計測システム100の一例を示す図である。It is a figure which shows an example of the forest measurement system 100 including an unmanned helicopter 1 and a base station control device 80. タブレットコンピュータ70のハードウェア構成例を示す図である。It is a figure which shows the hardware configuration example of a tablet computer 70. メモリ72に読み込まれた、観測対象エリア内の等高線データ90の一例を示す図である。It is a figure which shows an example of the contour line data 90 in the observation target area read into the memory 72. 例示的な実施形態による飛行経路の設定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the flight path setting processing by an exemplary embodiment. 飛行経路が設定された無人ヘリコプター1の飛行動作の手順を示すフローチャートである。It is a flowchart which shows the procedure of the flight operation of the unmanned helicopter 1 which set the flight path. 図15におけるステップS14の処理の詳細を示す図である。It is a figure which shows the detail of the process of step S14 in FIG. 飛行中の無人ヘリコプター1によってスキャンされる山50の斜面52を示す図である。It is a figure which shows the slope 52 of the mountain 50 scanned by the unmanned helicopter 1 in flight. 図17中の領域Sを構成する2辺の関係を説明するための図である。It is a figure for demonstrating the relationship of two sides constituting the region S in FIG. パラメータを変更することにより、計測点密度を均一化するための処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process for making the measurement point density uniform by changing a parameter. 図19に示す処理の具体例を示すフローチャートである。It is a flowchart which shows the specific example of the process shown in FIG. 飛行中の無人ヘリコプター1を正面から見たときのLiDARセンサ20から出射される複数のレーザパルス22を模式的に示す図である。It is a figure which shows typically the plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is seen from the front. 飛行中の無人ヘリコプター1を側面から見たときのLiDARセンサ20から出射される複数のレーザパルス22を模式的に示す図である。It is a figure which shows typically the plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is viewed from the side. レーザパルス22により計測対象物51上に形成されるレーザスポットを示す図である。It is a figure which shows the laser spot formed on the measurement object 51 by the laser pulse 22. 計測対象物51の一例である森林54に満遍なくレーザパルス22を照射させながら行う森林計測の手順を示すフローチャートである。It is a flowchart which shows the procedure of the forest measurement which performs while irradiating the forest 54 which is an example of a measurement object 51 evenly with a laser pulse 22.
 森林資源の管理・利用を行うためには、いわゆる「森林計測」を行うことが重要である。この「森林計測」には、森林の構造の調査、森林の材積の推定、一定期間における森林の変化量の把握等が含まれ得る。従来の森林計測のような、林木の一本一本を計測し、得られたデータから様々な集計・分析を行っていくことは非常に人手と時間がかかる。そこで、無人航空機にレーザ測距装置(LiDARセンサ)を搭載し、LiDARセンサを用いて空中から森林計測を行うことが進められている。 In order to manage and use forest resources, it is important to perform so-called "forest measurement". This "forest measurement" may include surveying the structure of the forest, estimating the volume of the forest, and grasping the amount of change in the forest over a certain period of time. It takes a lot of manpower and time to measure each forest tree and perform various aggregation and analysis from the obtained data as in the conventional forest measurement. Therefore, a laser ranging device (LiDAR sensor) is mounted on an unmanned aerial vehicle, and forest measurement is being carried out from the air using the LiDAR sensor.
 無人航空機を利用して山間部の深い森林、特に斜面の森林、を計測する場合には、無人航空機が飛行中に山の斜面や斜面に植生する樹木に接触しないように飛行させることが求められる。 When using an unmanned aerial vehicle to measure deep forests in the mountains, especially forests on slopes, it is necessary to fly the unmanned aerial vehicle so that it does not come into contact with the vegetation on the slopes and slopes of the mountains during flight. ..
 航空機等の飛行方法として、地形に追従しながら(すなわち絶対高度を一定に保った状態で)飛行すること、または、余裕のある海抜高度を維持しながら飛行すること、が考えられる。 As a flight method for aircraft, etc., it is conceivable to fly while following the terrain (that is, keeping the absolute altitude constant), or to fly while maintaining a sufficient altitude above sea level.
 前者の場合、真下を計測対象とする場合のLiDARセンサによる計測点密度を均一化できるというメリットがあるが、斜面からの距離が大きく変動し得る。斜面に入射するレーザビームのパルスの計測点密度が均一にならずに偏る、という新たな問題が生じる。斜面の森林に関する森林計測として改善の余地がある。 The former has the advantage that the density of measurement points by the LiDAR sensor can be made uniform when the measurement target is directly below, but the distance from the slope can fluctuate greatly. There is a new problem that the measurement point density of the pulse of the laser beam incident on the slope is not uniform and is biased. There is room for improvement as a forest measurement for slope forests.
 後者の場合、一般には観測(測定、測量、捜索)の対象エリア内で最も高い山の標高点に基づいて飛行高度(海抜高度)を決定することになる。比較的高い位置を飛行するため真下ですらLiDARセンサによる計測点密度が低下する。斜面に入射するパルスの計測点密度はより少なくなる。計測方法として改善の余地が大きい。 In the latter case, the flight altitude (elevation above sea level) is generally determined based on the altitude point of the highest mountain in the target area of observation (measurement, surveying, search). Since it flies at a relatively high position, the density of measurement points by the LiDAR sensor decreases even directly below. The density of measurement points for pulses incident on the slope is lower. There is a lot of room for improvement as a measurement method.
 本開示の実施形態を説明する前に、本明細書において使用する用語の定義を説明する。 Before explaining the embodiments of the present disclosure, definitions of terms used in the present specification will be described.
 <用語>
 本明細書では、LiDARセンサを用いて上空から森林をスキャンし、スキャンデータを取得すること自体を「森林計測」に含む。スキャンデータは、典型的には、スキャンごとに取得される点群(point cloud)を構成する各点の位置座標によって表現され得る。スキャンごとに取得される点の位置座標は、無人航空機とともに移動するローカル座標系によって規定される。このようなローカル座標系は、移動体座標系またはセンサ座標系と呼ばれ得る。一般的には、「森林計測」は、ローカル座標系で表現された各反射点の位置を地理座標系に変換することを含む。「森林計測」はさらに、地理座標系への変換後に、森林の構造を解析すること、森林および/または樹木の形を視覚的に表示すること、森林内の樹木の種類ごとの存在比率を求めること、森林の容積密度を求めること等を含み得る。
<Terms>
In the present specification, "forest measurement" includes scanning a forest from the sky using a LiDAR sensor and acquiring scan data itself. The scan data can typically be represented by the position coordinates of each point that constitutes a point cloud acquired for each scan. The position coordinates of the points obtained for each scan are defined by the local coordinate system that travels with the unmanned aerial vehicle. Such a local coordinate system may be referred to as a mobile coordinate system or a sensor coordinate system. In general, "forest measurement" involves converting the position of each reflection point represented in the local coordinate system into a geographic coordinate system. "Forest measurement" further analyzes the structure of the forest after conversion to the geographic coordinate system, visually displays the shape of the forest and / or trees, and determines the abundance ratio of each type of tree in the forest. It may include finding the volume density of the forest.
 「無人航空機」(UAV;Unmanned aerial vehicle)とは、操縦者としての人が搭乗しない航空機であり、ドローンと呼ばれることもある。航空機は回転翼機および固定翼機を含み得る。回転翼を有する無人航空機の一例は、無人ヘリコプターまたは無人マルチコプターである。回転翼はエンジン(内燃機関)によって回転してもよいし、電動モータによって回転してもよい。無人航空機の飛行は、コンピュータプログラムによる自律飛行、一部を自動化する半自律飛行、無線を用いた人による遠隔操作による飛行のいずれかを行い得る。無人航空機は、GNSS(Global Navigation Satellite System)を援用して、現在位置を三次元的に測定、修正しながら飛行することが可能である。以下に説明する例示的な実施形態においては、「無人航空機」は「無人ヘリコプター」である。 An "unmanned aerial vehicle" (UAV) is an aircraft on which a person as a pilot does not board, and is sometimes called a drone. Aircraft may include rotorcraft and fixed-wing aircraft. An example of an unmanned aerial vehicle with rotors is an unmanned helicopter or unmanned multicopter. The rotor blades may be rotated by an engine (internal combustion engine) or by an electric motor. The flight of an unmanned aerial vehicle can be either autonomous flight by computer program, semi-autonomous flight by partially automating, or remote control flight by a person using radio. The unmanned aerial vehicle can fly while measuring and correcting the current position three-dimensionally with the help of GNSS (Global Navigation Satellite System). In the exemplary embodiments described below, the "unmanned aerial vehicle" is an "unmanned helicopter."
 「無人」の用語は、航空機の操縦のために人が搭乗する必要がないことを意味しており、無人航空機が操縦者でない人を運搬することは除外しない。 The term "unmanned" means that no one needs to be on board to fly the aircraft, and does not exclude unmanned aerial vehicles carrying non-pilots.
 「等高線」とは、地図上で、土地の起伏を正確に表すために、標準海面から等しい高さの点を結んだ曲線を言う。日本では、東京湾の平均海面を標準海面(0m)とする高さが測量されている。標準海面からの高さは「標高」と呼ばれる。日本の地図では、縮尺によっては標高差10mごとに主曲線が引かれ、50mごとに計曲線が引かれる。しかしながら本明細書において「等高線」は、標準海面から等しい高さの点を結んだ曲線であればよく、地図に掲載されていない曲線も含む。例えば、標高563mの高さの点を結んだ曲線も等高線であり得る。 "Contour line" is a curve that connects points at the same height from the standard sea level in order to accurately represent the undulations of the land on the map. In Japan, the height is measured with the average sea level of Tokyo Bay as the standard sea level (0 m). The height above standard sea level is called "elevation". On Japanese maps, depending on the scale, a main curve is drawn every 10 m above sea level, and a total curve is drawn every 50 m. However, in the present specification, the "contour line" may be a curve connecting points at the same height from the standard sea level, and includes a curve not shown on the map. For example, a curve connecting points at an altitude of 563 m can also be contour lines.
 さらに本明細書では、「等高線」は、実際の地形上で、標準海面から等しい高さの位置を結んだ仮想的な曲線を含む。ここでいう「標準海面から等しい高さ」は厳密でなくてよい。例えば、「標準海面から等しい高さ」の±30メートルの範囲に入る高さの位置を結んだ仮想的な曲線も等高線であり得る。さらに、無人航空機が飛行しながらLiDARセンサを用いて所定位置の標高(等高線)を計測する場合には、測定誤差を考慮して±50メートルの範囲に入る高さの位置を結んだ仮想的な曲線を等高線として含めてもよい。 Furthermore, in this specification, the "contour line" includes a virtual curve connecting positions at the same height as the standard sea level on the actual terrain. The "equal height above the standard sea level" here does not have to be exact. For example, a virtual curve connecting positions at heights within ± 30 meters of "equal height to standard sea level" can also be contour lines. Furthermore, when an unmanned aerial vehicle is flying and measures the altitude (contour line) of a predetermined position using a LiDAR sensor, a virtual position with a height within ± 50 meters is connected in consideration of measurement error. Curves may be included as contour lines.
 「絶対高度」とは、地表面または水面からの距離をいい、「AGL」(Above Ground Level)とも表現され得る。航空機が山岳地を飛行しているときは,山岳の地表面から航空機までの垂直距離が「絶対高度」になる。「絶対高度」は、一般には電波高度計を用いて測定された値であるが、本明細書では後述するLiDAR(ライダー)センサを用いて測定された値も絶対高度として採用することを含む。また本明細書では、「絶対高度」は例えば、数値表層モデルまたはDSM(Digital Surface Model)で表現される表層からの距離も含む。つまり、絶対高度Hメートル、というときは、地表面から計測した距離がHメートルであってもよいし、樹冠の表層から計測した距離がHメートであってもよい。 "Absolute altitude" refers to the distance from the ground surface or water surface, and can also be expressed as "AGL" (Above Ground Level). When the aircraft is flying in the mountains, the vertical distance from the surface of the mountains to the aircraft is the "absolute altitude". The "absolute altitude" is generally a value measured using a radio altimeter, but the present specification includes adopting a value measured using a LiDAR (lidar) sensor described later as an absolute altitude. Further, in the present specification, "absolute altitude" includes, for example, a distance from a surface layer represented by a digital surface model or a DSM (Digital Surface Model). That is, when the absolute altitude is H meters, the distance measured from the ground surface may be H meters, or the distance measured from the surface layer of the canopy may be H meters.
 「真高度」とは、平均海面(MSL;Mean Sea Level)からの高さをいう。本明細書では説明の便宜のため、「真高度」と「標高」とは等しいとする。すなわち「真高度」を定義する「平均海面」は、東京湾の平均海面であるとする。 "True altitude" means the height from the average sea level (MSL; Mean Sea Level). In this specification, for convenience of explanation, "true altitude" and "elevation" are assumed to be equal. That is, the "average sea level" that defines "true altitude" is the average sea level of Tokyo Bay.
 以下、添付の図面を参照しながら、本発明による森林計測方法の実施形態を説明する。 Hereinafter, embodiments of the forest measurement method according to the present invention will be described with reference to the attached drawings.
 図1は、森林計測を行う無人ヘリコプター1を示している。例示的な実施形態において、森林計測は、山50の斜面52の森林54を対象として行われる。山50または斜面52を含む、森林計測を行う対象として選択された領域を「観測対象エリア」と呼ぶことがある。「観測対象エリア」は斜面52の森林54、および/または山50の地表面を含み、さらに平坦地の森林、地表面を含んでもよい。 FIG. 1 shows an unmanned helicopter 1 that performs forest measurement. In an exemplary embodiment, forest measurement is performed on forest 54 on slope 52 of mountain 50. The area selected as the target for forest measurement, including the mountain 50 or the slope 52, may be referred to as an “observation target area”. The “observation target area” includes the ground surface of the forest 54 on the slope 52 and / or the mountain 50, and may further include the forest and the ground surface on a flat land.
 無人ヘリコプター1は後述のライダー(LiDAR)センサを搭載している。図2は、LiDARセンサ(ライダーセンサ)20を搭載した無人ヘリコプター1の外観側面図である。また図3は、無人ヘリコプター1の正面図である。 The unmanned helicopter 1 is equipped with a lidar (LiDAR) sensor, which will be described later. FIG. 2 is an external side view of the unmanned helicopter 1 equipped with the LiDAR sensor (rider sensor) 20. FIG. 3 is a front view of the unmanned helicopter 1.
 LiDARセンサ20はレーザビームのパルス(以下「レーザパルス」と略記する。)22を、出射方向を変えながら次々と出射し、出射時刻と各レーザパルスの反射パルスを取得した時刻との時間差から各反射点の位置までの距離を計測することができる。「反射点」は、森林54を構成する各樹木の樹冠および/または幹、または、山50の斜面52、平坦地等の地表面であり得る。 The LiDAR sensor 20 emits laser beam pulses (hereinafter abbreviated as “laser pulses”) 22 one after another while changing the emission direction, and each is based on the time difference between the emission time and the time when the reflected pulse of each laser pulse is acquired. The distance to the position of the reflection point can be measured. The "reflection point" can be the canopy and / or trunk of each tree constituting the forest 54, or the ground surface such as the slope 52 of the mountain 50 or flat land.
 LiDARセンサ20には、レーザパルスを出射する方法の違いに応じて複数の方式が存在する。複数の方式とは、例えば機械回転方式、MEMS方式、フェーズドアレイ方式である。機械回転方式のLiDARセンサは筒状であり、レーザおよびレーザパルスの反射光を検出する検出器を回転させて、回転軸の周囲360度全方位の計測対象物をスキャンする。MEMS方式のLiDARセンサは、MEMSミラーを用いてレーザパルスの出射方向を揺動させ、揺動軸を中心とした所定の角度範囲内の計測対象物をスキャンする。フェーズドアレイ方式のLiDARセンサは、光の位相を制御して光の出射方向を揺動させ、揺動軸を中心とした所定の角度範囲内の計測対象物をスキャンする。 The LiDAR sensor 20 has a plurality of methods depending on the difference in the method of emitting a laser pulse. The plurality of methods are, for example, a mechanical rotation method, a MEMS method, and a phased array method. The mechanical rotation type LiDAR sensor has a tubular shape, and rotates a detector that detects a laser and reflected light of a laser pulse to scan a measurement object 360 degrees around the rotation axis in all directions. The MEMS-type LiDAR sensor swings the emission direction of the laser pulse using a MEMS mirror, and scans a measurement object within a predetermined angle range centered on the swing axis. The phased array type LiDAR sensor controls the phase of light to swing the light emission direction, and scans a measurement object within a predetermined angle range centered on the swing axis.
 本実施形態では、LiDARセンサの回転軸または揺動軸は、無人ヘリコプター1の機体進行方向を向くように搭載されている。本実施形態にかかる森林計測方法は、(i)無人ヘリコプター1を第1等高線60aに沿って所定の絶対高度で飛行させながら、斜面52の森林54をLiDARセンサでスキャンさせること、および(ii)無人ヘリコプター1を第1等高線60aとは異なる第2等高線60bに沿って同じ絶対高度で飛行させながら、LiDARセンサで森林54を再度スキャンさせること、を包含する。絶対高度は森林54を構成する各樹木の高さに応じて適宜決定され得る。絶対高度の一例は50mである。無人ヘリコプター1は絶対高度を一定に保つため、急な高低差のある山間部でも無人ヘリコプター1と樹木との距離を十分に確保することができる。 In the present embodiment, the rotation axis or the swing axis of the LiDAR sensor is mounted so as to face the traveling direction of the unmanned helicopter 1. The forest measurement method according to the present embodiment is (i) to scan the forest 54 on the slope 52 with a LiDAR sensor while flying the unmanned helicopter 1 along the first contour line 60a at a predetermined absolute altitude, and (ii). This includes rescanning the forest 54 with a LiDAR sensor while flying the unmanned helicopter 1 along a second contour line 60b different from the first contour line 60a at the same absolute altitude. The absolute altitude can be appropriately determined according to the height of each tree constituting the forest 54. An example of absolute altitude is 50m. Since the unmanned helicopter 1 keeps the absolute altitude constant, it is possible to secure a sufficient distance between the unmanned helicopter 1 and the trees even in a mountainous area where there is a steep height difference.
 LiDARセンサは、その回転軸または揺動軸が無人ヘリコプター1の機体進行方向を向くよう、無人ヘリコプター1に搭載されているため、回転軸または揺動軸は等高線が伸びる方向に概ね一致する。特に斜面52においては、森林54を構成する木々の幹に概ね垂直に、すなわち木々の横方向から、レーザパルスを照射できる。これにより、基本的に日光を受けるために水平に生えている葉の間をレーザパルスが通りやすくなるため、木々の樹冠だけでなく、幹も計測することが可能になる。 Since the LiDAR sensor is mounted on the unmanned helicopter 1 so that its rotation axis or rocking axis faces the airframe traveling direction of the unmanned helicopter 1, the rotation axis or rocking axis generally coincides with the direction in which the contour lines extend. In particular, on the slope 52, the laser pulse can be irradiated substantially perpendicular to the trunks of the trees constituting the forest 54, that is, from the lateral direction of the trees. This makes it easier for the laser pulse to pass between the leaves that grow horizontally, basically because of the sunlight, so it is possible to measure not only the canopy of the trees but also the trunk.
 上述の森林計測方法において、等高線に沿って無人ヘリコプター1を飛行させる意義は、無人ヘリコプター1のLiDARセンサから斜面52までの距離を概ね一定に保つことにある。当該距離を概ね一定に保つことにより、斜面52の方向に出射されるレーザパルスの単位面積あたりの個数密度、すなわち計測点密度、を概ね一定に保つことができる。これにより、得られる点群データの空間密度も概ね一定になり、斜面52の森林54を対象とする森林計測の品質を均一化できる。 In the above-mentioned forest measurement method, the significance of flying the unmanned helicopter 1 along the contour line is to keep the distance from the LiDAR sensor of the unmanned helicopter 1 to the slope 52 substantially constant. By keeping the distance substantially constant, the number density per unit area of the laser pulses emitted in the direction of the slope 52, that is, the measurement point density can be kept substantially constant. As a result, the spatial density of the obtained point cloud data becomes substantially constant, and the quality of forest measurement for the forest 54 on the slope 52 can be made uniform.
 上述の飛行方法は、第1等高線60aに関しては第1等高線60aが表す標高または真高度と絶対高度とを同時に一定に保ちながら飛行することを意味し、第2等高線60bに関しては第2等高線60bが表す標高または真高度と絶対高度とを同時に一定に保ちながら飛行することを意味する。 The above-mentioned flight method means that the altitude or true altitude represented by the first contour line 60a and the absolute altitude are kept constant at the same time for the first contour line 60a, and the second contour line 60b is for the second contour line 60b. It means flying while keeping the altitude or true altitude and the absolute altitude constant at the same time.
 そこで上述の飛行方法は次のように言い換えることができる。すなわち森林計測を行う方法は、(i)無人航空機を所定の絶対高度および所定の第1真高度で飛行させながら、斜面の森林をLiDARセンサでスキャンさせること、および(ii)無人航空機を所定の絶対高度および、所定の第1真高度とは異なる所定の第2真高度で飛行させながら、森林をLiDARセンサで森林を再度スキャンさせること、である。 Therefore, the above flight method can be paraphrased as follows. That is, the method of performing forest measurement is (i) to scan the forest on the slope with a LiDAR sensor while flying the unmanned aerial vehicle at a predetermined absolute altitude and a predetermined first true altitude, and (ii) to perform the unmanned aerial vehicle at a predetermined altitude. The LiDAR sensor is used to scan the forest again while flying at an absolute altitude and a predetermined second true altitude different from the predetermined first true altitude.
 本発明者は、森林計測の品質を均一化するために好適な森林計測方法についてさらに検討を進めた。その結果、以下のように無人ヘリコプター1を飛行させることを見出した。なお、LiDARセンサの無人ヘリコプター1への搭載方法は先に説明したとおりである。 The present inventor further studied a suitable forest measurement method for making the quality of forest measurement uniform. As a result, it was found that the unmanned helicopter 1 was flown as follows. The method of mounting the LiDAR sensor on the unmanned helicopter 1 is as described above.
 本発明者が見出した他の森林計測方法は、(i)LiDARセンサを用いて、パルスの出射方向を所定角度ピッチで変化させながら出射して周囲の空間を計測すること、(ii)斜面までの距離をL、無人ヘリコプター1の飛行速度をV、同じ角度方向に同時に出射されるレーザパルスの個数をN、同じ角度方向に出射されるレーザパルスの周波数をf、所定角度ピッチをαとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、無人航空機を飛行させながらLiDARセンサを用いて斜面の森林を対象とする森林計測を行うこと、を包含する。 Other forest measurement methods found by the present inventor are (i) using a LiDAR sensor to emit while changing the emission direction of a pulse at a predetermined angular pitch to measure the surrounding space, and (ii) up to a slope. The distance is L, the flight speed of the unmanned helicopter 1 is V, the number of laser pulses emitted simultaneously in the same angular direction is N, the frequency of the laser pulses emitted in the same angular direction is f, and the predetermined angular pitch is α. At that time, perform forest measurement for the forest on the slope using the LiDAR sensor while flying an unmanned aircraft so that the relative value of α ・ L with respect to V / (f ・ N) falls within a predetermined range. Including.
 ここで「α・L」は所定角度ピッチαの間隔で出射された2個のレーザパルスが距離Lだけ離れた地表面に到達したときの、2個の到達位置の間隔である。また「V/(f・N)」のうちのV/fは、LiDARセンサのある放射口から1個のレーザパルスが放射されてから、その1周期後に同じ放射口から次の1個のレーザパルスが放射されるまでの微小時間の間に無人ヘリコプター1が飛行する距離である。この距離は、これら2個のレーザパルスが地表面に到達したときの、2つの到達位置の間隔を意味する。レーザパルスが同時にN個出射される場合には、距離V/fだけ離れた2つの位置の間にN個のレーザパルスが到達する。つまり、「V/(f・N)」はN個の到達位置の中で隣り合う2つの到達位置の平均距離であると言える。 Here, "α · L" is the distance between the two arrival positions when the two laser pulses emitted at intervals of a predetermined angle pitch α reach the ground surface separated by a distance L. Further, V / f of "V / (f · N)" is the next one laser from the same emission port one cycle after one laser pulse is emitted from the emission port of the LiDAR sensor. This is the distance that the unmanned helicopter 1 flies during the minute time until the pulse is emitted. This distance means the distance between the two arrival positions when these two laser pulses reach the ground surface. When N laser pulses are emitted at the same time, N laser pulses reach between two positions separated by a distance of V / f. That is, it can be said that "V / (f · N)" is the average distance between two adjacent arrival positions among the N arrival positions.
 つまり、「V/(f・N)に対するα・Lの相対値が所定の範囲内に収まること」の意味は、無人ヘリコプター1の飛行方向に関して地表面に入射するレーザパルスの間隔(A)に対する、進行方向と直角な方向に関して地表面に入射するレーザパルスの間隔(B)の相対値が所定の範囲内に収まっていることを意味している。「所定の範囲」の一例は、「相対値」が比B/Aまたは比A/Bで表される場合には、比が0.9から1.1の範囲であり、より広い0.8から1.3の範囲、さらに広い0.5-2.0程度の範囲であってもよい。なお、範囲が広いと解析時にデータ量に対して解析精度が下がるため、計算効率が悪くなることが想定される。しかしながら、0.5未満の値および/または2.0より大きい値を境界値として有する範囲を採用してもよい。当業者であれば、解析精度および計算効率等を考慮して適切な比の範囲を設定し得る。「相対値」は、上述した間隔(A)と間隔(B)との差を用いても定義し得る。ただし「差」の大きさは、LiDARセンサ20を動作させている条件、および/または飛行速度等に応じて大きく変わり得る。よって差に関する「所定の範囲内」の例示は省略する。 That is, the meaning of "the relative value of α / L with respect to V / (f / N) is within a predetermined range" is relative to the interval (A) of the laser pulses incident on the ground surface with respect to the flight direction of the unmanned helicopter 1. It means that the relative value of the interval (B) of the laser pulses incident on the ground surface with respect to the direction perpendicular to the traveling direction is within a predetermined range. An example of a "predetermined range" is when the "relative value" is represented by a ratio B / A or a ratio A / B, the ratio is in the range 0.9 to 1.1, which is wider 0.8. The range may be from 1.3 to 1.3, and may be a wider range of about 0.5-2.0. If the range is wide, the analysis accuracy will decrease with respect to the amount of data during analysis, and it is expected that the calculation efficiency will deteriorate. However, a range having a value less than 0.5 and / or a value greater than 2.0 as a boundary value may be adopted. A person skilled in the art can set an appropriate ratio range in consideration of analysis accuracy, calculation efficiency, and the like. The "relative value" can also be defined by using the difference between the interval (A) and the interval (B) described above. However, the magnitude of the "difference" can vary greatly depending on the conditions under which the LiDAR sensor 20 is operating and / or the flight speed and the like. Therefore, the example of "within a predetermined range" regarding the difference is omitted.
 比が1の場合、または差が0の場合には、上述の間隔(A)と間隔(B)とが等しいことを表す。このときは、計測点群は正方形のメッシュ状またはグリッド状に分布することになり、概ね均等な計測点密度を確保することができる。相対値を比で表すとしても差で表すとしても、V/(f・N)およびα・Lの具体的な値は、必要とされる計測点密度から決定し得る。 When the ratio is 1 or the difference is 0, it means that the above-mentioned interval (A) and interval (B) are equal. At this time, the measurement point group is distributed in a square mesh shape or a grid shape, and a substantially uniform measurement point density can be ensured. Whether the relative values are expressed as ratios or differences, the specific values of V / (f · N) and α · L can be determined from the required measurement point densities.
 なお「α・L」の「L」は、無人ヘリコプター1の真下に近いほど短く、無人ヘリコプター1から離れるほど大きくなる。そのため、所望の計測点密度を確保したい位置または方向の地表面までの距離を、「L」として設定すればよい。ここで言う「方向」の一例は、飛行中の無人ヘリコプター1の飛行方向に垂直な平面を想定したとき、当該平面上の、鉛直下向きから45度の方向である。 The "L" of "α ・ L" is shorter as it is closer to the bottom of the unmanned helicopter 1, and becomes larger as it is farther from the unmanned helicopter 1. Therefore, the distance to the ground surface at the position or direction in which the desired measurement point density is desired may be set as "L". An example of the "direction" referred to here is a direction 45 degrees from the vertical downward direction on the plane assuming a plane perpendicular to the flight direction of the unmanned helicopter 1 in flight.
 図2を参照する。無人ヘリコプター1が平坦な地面に静止しているとき、図示されるようにX軸、Y軸およびZ軸を取る。X軸の正の方向は紙面手前から奥に向かう方向であるとする。+Y方向は飛行時の機体4の進行方向であり、+Z方向は鉛直上向き、-Z方向は鉛直下向きである。 Refer to Fig. 2. When the unmanned helicopter 1 is stationary on flat ground, it takes X, Y and Z axes as shown. It is assumed that the positive direction of the X-axis is the direction from the front to the back of the paper. The + Y direction is the traveling direction of the aircraft 4 during flight, the + Z direction is vertically upward, and the −Z direction is vertically downward.
 無人ヘリコプター1は、メインボディ2およびテールボディ3を有する機体4を備えている。機体4の前方(+Y方向)で、かつ機体4の下方(-Z方向)にはLiDARセンサ20が取り付けられている。メインボディ2の上方(+Z方向)にはメインロータ5が設けられ、テールボディ3の後部にテールロータ6が設けられる。メインボディ2の前部にはラジエータ7が設けられている。メインボディ2内には、いずれも図示しないエンジン、吸気系、メインロータ軸、燃料タンクが収容されている。 The unmanned helicopter 1 is equipped with an airframe 4 having a main body 2 and a tail body 3. A LiDAR sensor 20 is attached to the front of the machine 4 (in the + Y direction) and below the body 4 (in the −Z direction). A main rotor 5 is provided above the main body 2 (in the + Z direction), and a tail rotor 6 is provided at the rear of the tail body 3. A radiator 7 is provided at the front portion of the main body 2. An engine, an intake system, a main rotor shaft, and a fuel tank (not shown) are housed in the main body 2.
 メインボディ2の後部上側にはコントロールパネル10が設けられ、後部下側に表示灯11が設けられる。コントロールパネル10は、飛行前のチェックポイントやセルフチェック結果等を表示する。コントロールパネル10の表示は地上局でも確認できる。表示灯11は、GNSS制御の状態や機体の異常警告等の表示を行う。メインボディ2の中央部下側には、着陸時に機体4を支える脚であるスキッド16が設けられている。 A control panel 10 is provided on the upper rear side of the main body 2, and an indicator light 11 is provided on the lower rear side. The control panel 10 displays a checkpoint before flight, a self-check result, and the like. The display on the control panel 10 can also be confirmed by the ground station. The indicator light 11 displays the state of GNSS control, an abnormality warning of the aircraft, and the like. A skid 16 which is a leg that supports the aircraft 4 at the time of landing is provided on the lower side of the central portion of the main body 2.
 メインボディ2には飛行制御ボックス15が搭載される。 The flight control box 15 is mounted on the main body 2.
 図4は、飛行制御ボックス15のハードウェア構成例を示している。飛行制御ボックス15は、GPSモジュール15a、加速度センサ15b、気圧センサ15c、地磁気センサ15d、超音波センサ15e、通信回路15f、信号処理回路15g、および、ROM15h、RAM15i等の記憶装置15jを収容する。各構成要素は、例えば配線または内部バス15kを介して相互にデータを送受信し得る。なお、GPSモジュール15aを初めとする各種のセンサを設ける位置は、常に飛行制御ボックス15内である必要はない。例えばGPS衛星からの信号を取得しやすくするため、GPSモジュール15aをテールボディ3上部に設けてもよい。 FIG. 4 shows an example of the hardware configuration of the flight control box 15. The flight control box 15 houses a GPS module 15a, an acceleration sensor 15b, a pressure sensor 15c, a geomagnetic sensor 15d, an ultrasonic sensor 15e, a communication circuit 15f, a signal processing circuit 15g, and a storage device 15j such as a ROM 15h and a RAM 15i. The components may send and receive data to and from each other, for example via wiring or internal bus 15k. The position where various sensors such as the GPS module 15a are provided does not always have to be in the flight control box 15. For example, in order to facilitate the acquisition of signals from GPS satellites, the GPS module 15a may be provided on the upper part of the tail body 3.
 飛行制御ボックス15は、GNSSモジュールの一例としてGPSモジュール15aを備える。GPSモジュール15aは、GPS(Global Positioning System)を用いて現在位置および飛行速度等の飛行データを取得する。GPSモジュール15aの数は1個であってもよいし、複数(例えば2個)であってもよい。加速度センサ15bは、X軸、Y軸およびZ軸の各方向の加速度を検出する三軸加速度センサである。加速度センサ15bが六軸加速度センサであれば、さらに無人ヘリコプター1のロール加速度、ピッチ角速度およびヨー加速度を検出可能である。気圧センサ15cは気圧を検出する。検出された気圧から現在の標高を知ることができる。なお気圧と標高との関係式は公知であるから、本明細書では説明は省略する。地磁気センサ15dは無人ヘリコプター1の現在の方位を検出する。加速度センサ15bおよび地磁気センサ15dの各々から出力されるデータ(機体データ)を利用することにより、無人ヘリコプター1の現在の姿勢を判断することができる。飛行データおよび機体データは、信号処理回路15gに提供される。 The flight control box 15 includes a GPS module 15a as an example of a GNSS module. The GPS module 15a acquires flight data such as the current position and flight speed using GPS (Global Positioning System). The number of GPS modules 15a may be one or may be plural (for example, two). The acceleration sensor 15b is a three-axis acceleration sensor that detects acceleration in each of the X-axis, Y-axis, and Z-axis directions. If the acceleration sensor 15b is a six-axis acceleration sensor, it can further detect the roll acceleration, pitch angular velocity, and yaw acceleration of the unmanned helicopter 1. The barometric pressure sensor 15c detects the barometric pressure. The current altitude can be known from the detected atmospheric pressure. Since the relational expression between the atmospheric pressure and the altitude is known, the description thereof is omitted in the present specification. The geomagnetic sensor 15d detects the current orientation of the unmanned helicopter 1. By using the data (airframe data) output from each of the acceleration sensor 15b and the geomagnetic sensor 15d, the current attitude of the unmanned helicopter 1 can be determined. Flight data and airframe data are provided to the signal processing circuit 15g.
 通信回路15fは、Bluetooth(登録商標)および/またはWi-Fi(登録商標)規格に準拠した無線通信を行う通信回路を有する。通信回路15fはさらに、携帯電話回線または人工衛星を経由する回線を利用した無線通信を行ってもよい。通信回路15fは、飛行前においては飛行経路のデータを受信し、飛行時には無線によって地上と必要な通信を行う。なお本実施形態では、飛行経路のデータは、無人ヘリコプター1が沿って飛行すべき等高線および絶対高度の各データを含む。 The communication circuit 15f has a communication circuit that performs wireless communication conforming to the Bluetooth (registered trademark) and / or Wi-Fi (registered trademark) standard. The communication circuit 15f may further perform wireless communication using a mobile phone line or a line via an artificial satellite. The communication circuit 15f receives flight path data before flight, and wirelessly performs necessary communication with the ground during flight. In the present embodiment, the flight path data includes contour line and absolute altitude data that the unmanned helicopter 1 should fly along.
 記憶装置15jは、信号処理回路15gの動作を制御するコンピュータプログラムを記憶している。記憶装置15jは、無人ヘリコプター1の飛行の制御および後述する森林計測の制御を信号処理回路15gに実行させるためのコンピュータプログラムを記憶し得る。そのようなコンピュータプログラムは、それが記録された記録媒体(半導体メモリ、光ディスク等)から無人ヘリコプター1へインストールしてもよいし、インターネット等の電気通信回線を介してダウンロードしてもよい。また、無線通信を介してそのようなコンピュータプログラムを無人ヘリコプター1へインストールしてもよい。このようなコンピュータプログラムは、パッケージソフトウェアとして販売され得る。 The storage device 15j stores a computer program that controls the operation of the signal processing circuit 15g. The storage device 15j may store a computer program for causing the signal processing circuit 15g to control the flight of the unmanned helicopter 1 and the forest measurement described later. Such a computer program may be installed on the unmanned helicopter 1 from a recording medium (semiconductor memory, optical disk, etc.) on which it is recorded, or may be downloaded via a telecommunication line such as the Internet. You may also install such a computer program on the unmanned helicopter 1 via wireless communication. Such computer programs may be sold as packaged software.
 信号処理回路15gは、記憶装置15jに記憶された制御プログラムを実行して無人ヘリコプター1を飛行させる。より具体的には信号処理回路15gは、上述した飛行データ、機体データ、エンジン回転数やスロットル開度などの運転状態データ等を監視しながら、予め用意された飛行経路に沿って無人ヘリコプター1を飛行させる。 The signal processing circuit 15g executes the control program stored in the storage device 15j to fly the unmanned helicopter 1. More specifically, the signal processing circuit 15g monitors the above-mentioned flight data, aircraft data, operating state data such as engine speed and throttle opening, and performs the unmanned helicopter 1 along a flight path prepared in advance. Let it fly.
 本実施形態では、飛行制御ボックス15はLiDARセンサ20と接続されている。飛行制御ボックス15は、例えば、GPSモジュール15aが取得した、無人ヘリコプター1の飛行位置を示す位置データをLiDARセンサ20に提供してもよい。これにより、LiDARセンサ20は自らがGPSモジュール15aを搭載しなくても、スキャンを行った時刻における位置データとスキャン結果(時刻データ、方角データおよび距離データの組)とを用いて、例えば地理座標系で表現された位置を算出できる。 In this embodiment, the flight control box 15 is connected to the LiDAR sensor 20. The flight control box 15 may provide the LiDAR sensor 20 with position data indicating the flight position of the unmanned helicopter 1 acquired by the GPS module 15a, for example. As a result, the LiDAR sensor 20 can use, for example, geographic coordinates by using the position data and the scan result (a set of time data, direction data, and distance data) at the time of scanning even if the LiDAR sensor 20 itself does not mount the GPS module 15a. The position represented by the system can be calculated.
 なお、無人ヘリコプター1の飛行・運用を管理するオペレータは、飛行状態を目視しながら、予め用意した飛行経路に沿って無人ヘリコプター1を飛行させることもできる。テールボディ3の後端部には、リモコン操縦機からの指令信号を受信するリモコン受信アンテナ23が設けられている。 The operator who manages the flight and operation of the unmanned helicopter 1 can also fly the unmanned helicopter 1 along the flight route prepared in advance while visually observing the flight state. At the rear end of the tail body 3, a remote control receiving antenna 23 for receiving a command signal from the remote control pilot is provided.
 再び図2を参照する。LiDARセンサ20は、たとえば近赤外線のレーザパルス22を放射し、当該レーザパルス22の反射光を検出することにより、反射点までの距離を測定する光学機器である。 Refer to Fig. 2 again. The LiDAR sensor 20 is an optical device that measures the distance to a reflection point by, for example, emitting a near-infrared laser pulse 22 and detecting the reflected light of the laser pulse 22.
 例示的な実施形態ではLiDARセンサ20は機械回転方式であり、レーザおよびレーザパルスの反射光を検出する検出器を回転させて、360度全方位をスキャンすることができる。ただし本実施形態では、LiDARセンサ20のスキャン可能範囲のうち無人ヘリコプター1の機体4に遮られる範囲、例えばLiDARセンサ20の+Z方向を中心とした±60度(計120度)の範囲、は計測結果に反映しない。 In an exemplary embodiment, the LiDAR sensor 20 is of a mechanical rotation type, and can scan 360 degrees in all directions by rotating a detector that detects a laser and reflected light of a laser pulse. However, in the present embodiment, the scannable range of the LiDAR sensor 20 that is blocked by the aircraft 4 of the unmanned helicopter 1, for example, the range of ± 60 degrees (120 degrees in total) centered on the + Z direction of the LiDAR sensor 20 is measured. Not reflected in the result.
 レーザパルスは、ある角度方向について1回転ごとに1個ずつ出射されてもよいし、同時に複数個出射されてもよい。図2では、同時にN個のレーザパルス22が出射される様子を表している。ただし記載の便宜上、パルス状ではなくビーム状で記載している。Nの一例は12である。Nが2以上の場合、LiDARセンサ20にはN個のレーザパルスの出射口が設けられる。 One laser pulse may be emitted for each rotation in a certain angle direction, or a plurality of laser pulses may be emitted at the same time. FIG. 2 shows how N laser pulses 22 are emitted at the same time. However, for convenience of description, it is described in a beam shape instead of a pulse shape. An example of N is 12. When N is 2 or more, the LiDAR sensor 20 is provided with N laser pulse outlets.
 図3を参照しながら、ある1つの出射口から出射されるレーザパルスを説明する。LiDARセンサ20は、所定角度ピッチα(rad)ごとに方向を変化させながら回転してレーザパルス22を放射し、各レーザパルス22の反射光を検出する。これにより、当該所定角度ピッチαごとの方向における反射点までの距離のデータを得ることができる。1つの出射口についてLiDARセンサ20の単位時間当たりのパルスの出射回数をM、単位時間当たりの回転数をRとするとき、所定角度ピッチαはα(rad)=2・π・R/Mによって求められる。 A laser pulse emitted from a certain outlet will be described with reference to FIG. The LiDAR sensor 20 rotates while changing the direction at predetermined angular pitch α (rad) to emit the laser pulse 22, and detects the reflected light of each laser pulse 22. As a result, it is possible to obtain data on the distance to the reflection point in the direction for each predetermined angular pitch α. When the number of pulses emitted per unit time of the LiDAR sensor 20 is M and the number of rotations per unit time is R for one outlet, the predetermined angle pitch α is α (rad) = 2.π · R / M. Desired.
 所定角度ピッチαは固定値であってもよいし、可変値であってもよい。単位時間当たりの出射回数M、および単位時間当たりの回転数Rもまた、固定値であってもよいし、可変値であってもよい。 The predetermined angle pitch α may be a fixed value or a variable value. The number of emission times M per unit time and the number of rotations R per unit time may also be fixed values or variable values.
 同じ角度方向に同時に出射されるレーザパルスの個数をNとする(図2)。例示的な実施形態では、M・N=60万(個/秒)、R=10(回転/秒)、N=16のとき、所定角度ピッチαは約0.0017(rad)、約0.096度である。ただし計算の簡単化のため、スキャン範囲は360度であるとした。 Let N be the number of laser pulses emitted simultaneously in the same angular direction (Fig. 2). In an exemplary embodiment, when MN = 600,000 (pieces / sec), R = 10 (rotation / sec), and N = 16, the predetermined angle pitch α is about 0.0017 (rad), about 0. It is 096 degrees. However, for the sake of simplification of calculation, the scan range is set to 360 degrees.
 図5は、LiDARセンサ20を利用して斜面52の森林54を対象とする森林計測を行う無人ヘリコプター1を示している。無人ヘリコプター1から放射状に伸びる各直線は、図3と同様、各レーザパルス22を模式的に表している。各レーザパルス22は各直線に沿ってLiDARセンサ20と反射点との間を往復する。なお以下では、斜面52の森林54を「斜面林54」と記述する。 FIG. 5 shows an unmanned helicopter 1 that uses a LiDAR sensor 20 to perform forest measurement on a forest 54 on a slope 52. Each straight line extending radially from the unmanned helicopter 1 schematically represents each laser pulse 22 as in FIG. Each laser pulse 22 reciprocates between the LiDAR sensor 20 and the reflection point along each straight line. In the following, the forest 54 on the slope 52 will be referred to as "slope forest 54".
 無人ヘリコプター1は、後述する方法によって決定された飛行経路に沿って飛行するよう、プログラミングされている。当該飛行経路を飛行することにより、LiDARセンサ20から出射されたレーザパルスは、斜面林54の樹冠だけでなく幹にも到達し、反射される。例えば斜面林54を構成する樹木56に注目すると、レーザパルス22は、樹木56の樹冠56aおよび幹56bのいずれにも当たっている。幹56bには、水平方向より下に出射されたレーザパルスだけでなく、水平方向に出射されたレーザパルス、および、水平方向よりも上に出射されたレーザパルス22が幹56bに入射している。これにより、森林、特に斜面林54、の木々の樹冠および幹を計測することが可能になる。なお、ここでいう「水平方向」とは、無人ヘリコプター1が図2に示す姿勢で飛行している状況であれば、鉛直方向に直交する平面(水平面)が広がる方向を言う。なお、鉛直方向に関する水平面の位置は、LiDARセンサ20の出射口の位置である。また「水平方向よりも上」は、鉛直上向き(真上の方向)を除き、「斜め上方向」とも言う。さらに「水平方向よりも下」は鉛直下向き(真下の方向)を除き、「斜め下方向」とも言う。「斜め上方向」と「斜め下方向」を包括して「斜め方向」とも呼ぶ。 The unmanned helicopter 1 is programmed to fly along a flight path determined by the method described below. By flying in the flight path, the laser pulse emitted from the LiDAR sensor 20 reaches not only the canopy of the slope forest 54 but also the trunk and is reflected. For example, paying attention to the tree 56 constituting the slope forest 54, the laser pulse 22 hits both the canopy 56a and the trunk 56b of the tree 56. Not only the laser pulse emitted below the horizontal direction but also the laser pulse emitted in the horizontal direction and the laser pulse 22 emitted above the horizontal direction are incident on the trunk 56b. .. This makes it possible to measure the canopy and trunk of trees in forests, especially slope forests 54. The "horizontal direction" here means a direction in which a plane (horizontal plane) orthogonal to the vertical direction spreads when the unmanned helicopter 1 is flying in the posture shown in FIG. The position of the horizontal plane in the vertical direction is the position of the outlet of the LiDAR sensor 20. In addition, "above the horizontal direction" is also referred to as "diagonally upward direction" except for vertically upward direction (directly upward direction). Furthermore, "below the horizontal direction" is also referred to as "diagonally downward direction" except for the vertical downward direction (directly downward direction). The "diagonal upward direction" and the "diagonal downward direction" are also collectively referred to as the "diagonal direction".
 LiDARセンサ20は、その回転軸(または揺動軸)20aが無人ヘリコプター1の機体4の進行方向を向くよう、無人ヘリコプター1に搭載されている。回転軸または揺動軸が「機体4の進行方向を向く」とは、回転軸または揺動軸がY軸と平行であることを含むが、厳密にY軸と平行でなくてもよい。回転軸または揺動軸が、例えばYZ平面に平行な方向であって、かつ機体4の進行方向から所定の角度範囲内に入っていれば、回転軸または揺動軸が機体4の進行方向を向いていると言える。「所定の角度範囲」の一例は、機体4の進行方向から±30度の範囲である。このような搭載方法を許容する理由は、無人ヘリコプター1は機首側を若干下げた状態(前傾姿勢)で飛行し得るからである。 The LiDAR sensor 20 is mounted on the unmanned helicopter 1 so that its rotation axis (or swing axis) 20a faces the traveling direction of the body 4 of the unmanned helicopter 1. "The rotation axis or the swing axis faces the traveling direction of the machine body 4" includes that the rotation axis or the swing axis is parallel to the Y axis, but it does not have to be strictly parallel to the Y axis. If the rotation axis or the swing axis is in a direction parallel to the YZ plane, for example, and is within a predetermined angle range from the traveling direction of the machine body 4, the rotation axis or the swinging axis is in the traveling direction of the machine body 4. It can be said that it is suitable. An example of the "predetermined angle range" is a range of ± 30 degrees from the traveling direction of the aircraft 4. The reason for allowing such a mounting method is that the unmanned helicopter 1 can fly with the nose side slightly lowered (forward leaning attitude).
 さらに、上述の例における「YZ平面に平行な方向」であることも必須ではない。+X方向または-X方向にずれていても森林計測を行うことは可能だからである。つまり、LiDARセンサ20の回転軸または揺動軸は、「YZ平面に平行な方向」に加え、森林計v測を行うことが可能な範囲内であれば「YZ平面に平行ではない方向」を向いてもよい。 Furthermore, it is not essential that the direction is "parallel to the YZ plane" in the above example. This is because it is possible to measure the forest even if it deviates in the + X direction or the -X direction. That is, the rotation axis or the swing axis of the LiDAR sensor 20 should be in the "direction parallel to the YZ plane" and in the "direction not parallel to the YZ plane" as long as it is within the range where the forest meter v measurement can be performed. You may turn to it.
 図6は、LiDARセンサ20の搭載位置に関する変形例を示している。LiDARセンサ20は、無人ヘリコプター1の機体4の中央部付近の下部と、スキッド16とに囲まれるように搭載されている。LiDARセンサ20の回転軸または揺動軸に関する説明は図2の例と同じである。なお、図6の例では、取り付けられたLiDARセンサ20の向きが図2の例とは逆である。しかしながら、図6の例もまた、回転軸または揺動軸が機体4の進行方向を向いていると言える。 FIG. 6 shows a modified example of the mounting position of the LiDAR sensor 20. The LiDAR sensor 20 is mounted so as to be surrounded by a lower portion near the center of the body 4 of the unmanned helicopter 1 and a skid 16. The description of the rotation axis or the swing axis of the LiDAR sensor 20 is the same as the example of FIG. In the example of FIG. 6, the orientation of the attached LiDAR sensor 20 is opposite to that of the example of FIG. However, also in the example of FIG. 6, it can be said that the rotation axis or the swing axis faces the traveling direction of the machine body 4.
 図6の設置例の場合、LiDARセンサ20のスキャン範囲に無人ヘリコプター1のスキッド16が入る。そのため、LiDARセンサ20は常にスキッドまでの距離を検出することになる。スキッドからの反射光を計測結果に反映することなく、その他の反射点について、その位置までの距離を算出してもよい。 In the case of the installation example of FIG. 6, the skid 16 of the unmanned helicopter 1 enters the scan range of the LiDAR sensor 20. Therefore, the LiDAR sensor 20 always detects the distance to the skid. The distance to the position of other reflection points may be calculated without reflecting the reflected light from the skid in the measurement result.
 LiDARセンサ20のスキャン範囲に無人ヘリコプター1のスキッド16が入らないようにするため、LiDARセンサ20をテールボディ3の下部に設けてもよい。この場合も、LiDARセンサ20の回転軸または揺動軸に関する説明は図2の例と同じである。 The LiDAR sensor 20 may be provided at the lower part of the tail body 3 in order to prevent the skid 16 of the unmanned helicopter 1 from entering the scanning range of the LiDAR sensor 20. Also in this case, the description of the rotation axis or the swing axis of the LiDAR sensor 20 is the same as the example of FIG.
 以下、例示的な実施形態における森林計測方法を説明する。 The forest measurement method in the exemplary embodiment will be described below.
 図7Aは、例示的な実施形態における飛行経路60の一部を示す斜視図であり、図7Bは、飛行経路60の一部を示す上面図である。説明の便宜のため、山50の斜面52における森林54の記載は省略した。 FIG. 7A is a perspective view showing a part of the flight path 60 in the exemplary embodiment, and FIG. 7B is a top view showing a part of the flight path 60. For convenience of explanation, the description of the forest 54 on the slope 52 of the mountain 50 is omitted.
 飛行経路は多数のセグメントを含み得る。図7Aおよび図7Bには、多数のセグメントのうちの一部が示されている。具体的には、第1等高線60aに沿って飛行する経路セグメント、および、第2等高線60bに沿って飛行する経路セグメントである。本実施形態では、等高線に沿って飛行する多数の経路セグメントが設定され、それにより観測対象エリアの森林を対象とした森林計測を行う。このような飛行経路60の経路セグメントは、無人ヘリコプター1の飛行・運用を管理するオペレータによって設定され得る。第1等高線60aに沿う経路セグメントから、第2等高線60bに沿う経路セグメントに移るときは、無人ヘリコプター1は、例えば等高線に直角な方向に斜面を下る経路セグメント60cに沿って飛行する。経路セグメント60cもまたオペレータによって設定されてもよいし、第1等高線60aに沿う経路セグメントおよび第2等高線60bに沿う経路セグメントの設定後に、後述のタブレットコンピュータ、基地局操縦装置等によって自動的に設定されてもよい。なお図7Bに示されている長破線60dの説明は後述する。 The flight path can include many segments. 7A and 7B show some of the many segments. Specifically, it is a path segment that flies along the first contour line 60a and a path segment that flies along the second contour line 60b. In the present embodiment, a large number of route segments flying along the contour lines are set, and forest measurement is performed for the forest in the observation target area. The route segment of such a flight path 60 may be set by an operator who manages the flight and operation of the unmanned helicopter 1. When moving from the route segment along the first contour line 60a to the route segment along the second contour line 60b, the unmanned helicopter 1 flies, for example, along the route segment 60c that descends the slope in the direction perpendicular to the contour line. The route segment 60c may also be set by the operator, or is automatically set by a tablet computer, a base station control device, or the like described later after setting the route segment along the first contour line 60a and the route segment along the second contour line 60b. May be done. The explanation of the long broken line 60d shown in FIG. 7B will be described later.
 図8は、第1等高線60aに沿って飛行する無人ヘリコプター1と、第2等高線60b上に沿って飛行する無人ヘリコプター1とを示す、斜面52の断面図である。断面は、図7Aおよび図7BのA-A線に沿う。 FIG. 8 is a cross-sectional view of a slope 52 showing an unmanned helicopter 1 flying along the first contour line 60a and an unmanned helicopter 1 flying along the second contour line 60b. The cross section is along the AA line of FIGS. 7A and 7B.
 無人ヘリコプター1が飛行する絶対高度(AGL)は、第1等高線60a上および第2等高線60b上のいずれの場合も一定(AGL=Ha)である。第1等高線60aおよび第2等高線60bの水平方向のオフセットはDである。 The absolute altitude (AGL) that the unmanned helicopter 1 flies is constant (AGL = Ha) in both cases on the first contour line 60a and the second contour line 60b. The horizontal offset of the first contour line 60a and the second contour line 60b is D.
 図8には、第2等高線60bに沿って飛行する無人ヘリコプター1の真高度(MSL)がHmであることが示されている。図8の例では、真高度Hmは、第1等高線60aが示す標高と概ね同じである。そのため、第2等高線60bに沿って飛行する無人ヘリコプター1のLiDARセンサ20から出射されるレーザパルスは、第1等高線60a付近の樹木(図示せず)の幹に概ね直角に入射することが理解される。これにより、LiDARセンサ20の樹冠および幹を計測することが可能になる。 FIG. 8 shows that the true altitude (MSL) of the unmanned helicopter 1 flying along the second contour line 60b is Hm. In the example of FIG. 8, the true altitude Hm is substantially the same as the altitude indicated by the first contour line 60a. Therefore, it is understood that the laser pulse emitted from the LiDAR sensor 20 of the unmanned helicopter 1 flying along the second contour line 60b is incident on the trunk of a tree (not shown) near the first contour line 60a at a right angle. To. This makes it possible to measure the canopy and trunk of the LiDAR sensor 20.
 なお、計測対象エリアが森林54の端部を含む場合がある。その場合、飛行経路60の決定に当たっては、森林54の端部から、非森林地帯の方向に所定距離離れた位置の上空を通過する飛行経路を採用してもよい。「所定距離離れた位置」の一例が、図7Bに示す長破線60dである。そのような飛行経路を採用すると、森林54の端部の木々の幹は、無人ヘリコプター1の進行方向に向かって右斜め下方向または左斜め下方向に位置する。これにより、LiDARセンサ20を用いて森林54の端部の木々の幹をスキャンし、反射点の点群を取得することが可能になる。 Note that the measurement target area may include the edge of the forest 54. In that case, in determining the flight path 60, a flight path that passes over a position separated by a predetermined distance in the direction of the non-forest area from the end of the forest 54 may be adopted. An example of the “position separated by a predetermined distance” is the long broken line 60d shown in FIG. 7B. When such a flight path is adopted, the trunks of the trees at the end of the forest 54 are located diagonally downward to the right or diagonally downward to the left in the direction of travel of the unmanned helicopter 1. This makes it possible to scan the trunks of trees at the edges of the forest 54 using the LiDAR sensor 20 and acquire a point cloud of reflection points.
 ここで、図9Aおよび図9Bを参照しながら、絶対高度Haを一定に維持する他の利点を説明する。 Here, other advantages of maintaining the absolute altitude Ha constant will be described with reference to FIGS. 9A and 9B.
 図9Aは、絶対高度AGLを一定にしたとき(AGL=Ha)の、斜面52に入射するレーザパルスの分布を示している。図9Bは、真高度MSLを一定に維持したとき(MSL=Hm)の、斜面52に入射するレーザパルスの分布を示している。いずれの図でも、無人ヘリコプターは紙面の奥から手前または手前から奥に向かって飛行している。 FIG. 9A shows the distribution of laser pulses incident on the slope 52 when the absolute altitude AGL is constant (AGL = Ha). FIG. 9B shows the distribution of laser pulses incident on the slope 52 when the true altitude MSL is maintained constant (MSL = Hm). In both figures, the unmanned helicopter is flying from the back to the front or from the front to the back of the paper.
 絶対高度AGLを一定に維持する場合(図9A)、どの等高線に沿って飛行するかにかかわらず、無人ヘリコプター1と斜面52との距離は概ね一定である。その結果、LiDARセンサ20から斜面52に到達するレーザパルスの計測点密度を概ね一定に維持できる。 When the absolute altitude AGL is maintained constant (Fig. 9A), the distance between the unmanned helicopter 1 and the slope 52 is almost constant regardless of which contour line the flight is along. As a result, the measurement point density of the laser pulse reaching the slope 52 from the LiDAR sensor 20 can be maintained substantially constant.
 一方、真高度MSLを一定に維持する場合(図9B)、無人ヘリコプター1が低い等高線に沿って飛行するほど、無人ヘリコプター1は斜面52から離れる。その結果、斜面52上の計測点密度は低下する。つまり、計測点密度を均一化することは困難である。 On the other hand, when the true altitude MSL is maintained constant (Fig. 9B), the more the unmanned helicopter 1 flies along the lower contour line, the farther the unmanned helicopter 1 is from the slope 52. As a result, the density of measurement points on the slope 52 decreases. That is, it is difficult to make the measurement point density uniform.
 したがって、計測点密度を均一化するために絶対高度Haを一定に維持することが好適である。 Therefore, it is preferable to keep the absolute altitude Ha constant in order to make the measurement point density uniform.
 図10は、例示的な実施形態にかかる方法によって行われた森林計測の結果を示している。図8に例示した斜面に類似する斜面の森林を対象として森林計測を行った。図10に示されるように、森林の各樹木の樹冠のみならず、幹も計測されていることが理解される。本発明者は、得られた結果から、本実施形態にかかる森林計測方法が有効であることを確認した。 FIG. 10 shows the results of forest measurement performed by the method according to the exemplary embodiment. Forest measurement was performed on forests on slopes similar to the slopes illustrated in FIG. As shown in FIG. 10, it is understood that not only the canopy of each tree in the forest but also the trunk is measured. From the obtained results, the present inventor confirmed that the forest measurement method according to the present embodiment is effective.
 オペレータは、タブレットコンピュータ、基地局操縦装置等のコンピュータ装置を利用して、上述のような等高線および絶対高度が指定された飛行経路60を設定し得る。本明細書では、無人ヘリコプター1と、そのようなコンピュータ装置とを合わせて「森林計測システム」と呼ぶ。 The operator can set the flight path 60 in which the contour lines and the absolute altitude are specified as described above by using a computer device such as a tablet computer or a base station control device. In the present specification, the unmanned helicopter 1 and such a computer device are collectively referred to as a "forest measurement system".
 図11Aは、無人ヘリコプター1とタブレットコンピュータ70とを含む森林計測システム100の一例を示している。また図11Bは、無人ヘリコプター1と基地局操縦装置80とを含む森林計測システム100の一例を示している。タブレットコンピュータ70および基地局操縦装置80はいずれも、内蔵された、または外付けの記憶装置を有しており、当該記憶装置に後述の等高線データ90を記憶している。タブレットコンピュータ70および基地局操縦装置80は、等高線データ90をディスプレイに表示してオペレータから飛行経路60の指定を受け付ける。タブレットコンピュータ70はタッチスクリーンパネルを有しており、オペレータからのタッチ操作により、無人ヘリコプター1を飛行させるべき等高線(経路セグメント)の指定、および絶対高度の指定を受け付ける。なお、本実施形態による基地局操縦装置80はノート型PCであり、かつタブレットコンピュータ70と同様のタッチ操作に対応しているとする。 FIG. 11A shows an example of a forest measurement system 100 including an unmanned helicopter 1 and a tablet computer 70. FIG. 11B also shows an example of a forest measurement system 100 including an unmanned helicopter 1 and a base station control device 80. Both the tablet computer 70 and the base station control device 80 have a built-in or external storage device, and the contour line data 90 described later is stored in the storage device. The tablet computer 70 and the base station control device 80 display the contour line data 90 on the display and receive the designation of the flight path 60 from the operator. The tablet computer 70 has a touch screen panel, and accepts designation of contour lines (route segments) to fly the unmanned helicopter 1 and designation of absolute altitude by touch operation from the operator. It is assumed that the base station control device 80 according to the present embodiment is a notebook PC and supports the same touch operation as the tablet computer 70.
 以下、図11Aに示すタブレットコンピュータ70を例示して説明する。タブレットコンピュータ70の基本的な構成と基地局操縦装置80の基本的な構成とは概ね同じである。よって、下記の説明は基地局操縦装置80の説明として読み替えることができる。 Hereinafter, the tablet computer 70 shown in FIG. 11A will be described as an example. The basic configuration of the tablet computer 70 and the basic configuration of the base station control device 80 are substantially the same. Therefore, the following description can be read as a description of the base station control device 80.
 図12は、タブレットコンピュータ70のハードウェア構成例を示している。 FIG. 12 shows an example of the hardware configuration of the tablet computer 70.
 タブレットコンピュータ70は、CPU71と、メモリ72と、通信回路73と、画像処理回路74と、ディスプレイ75と、タッチスクリーンパネル76と、通信バス77とを有する。CPU71、メモリ72、通信回路73、画像処理回路74およびタッチスクリーンパネル76は通信バス77で接続されており、通信バス77を介して相互にデータを授受することが可能である。 The tablet computer 70 has a CPU 71, a memory 72, a communication circuit 73, an image processing circuit 74, a display 75, a touch screen panel 76, and a communication bus 77. The CPU 71, the memory 72, the communication circuit 73, the image processing circuit 74, and the touch screen panel 76 are connected by a communication bus 77, and data can be exchanged with each other via the communication bus 77.
 CPU71は、タブレットコンピュータ70の動作を制御する信号処理回路(コンピュータ)である。典型的にはCPU71は半導体集積回路である。CPU71を単に「処理回路」と呼ぶこともある。 The CPU 71 is a signal processing circuit (computer) that controls the operation of the tablet computer 70. Typically, the CPU 71 is a semiconductor integrated circuit. The CPU 71 may be simply referred to as a "processing circuit".
 メモリ72は、CPU71の動作を制御するコンピュータプログラムを記憶している。メモリ72は、森林計測の制御をCPU71に実行させるためのコンピュータプログラムを記憶し得る。メモリ72は、無人ヘリコプター1の飛行の制御をCPU71に実行させるためのコンピュータプログラムを記憶していてもよい。上述したコンピュータプログラムと同様に、そのようなコンピュータプログラムは、それが記録された記録媒体からタブレットコンピュータ70へインストールしてもよいし、インターネット等の電気通信回線を介してダウンロードしてもよい。また、無線通信を介してそのようなコンピュータプログラムをタブレットコンピュータ70へインストールしてもよい。このようなコンピュータプログラムは、パッケージソフトウェアとして販売され得る。 The memory 72 stores a computer program that controls the operation of the CPU 71. The memory 72 may store a computer program for causing the CPU 71 to control the forest measurement. The memory 72 may store a computer program for causing the CPU 71 to control the flight of the unmanned helicopter 1. Similar to the computer programs described above, such computer programs may be installed on the tablet computer 70 from the recording medium on which they are recorded, or may be downloaded via a telecommunication line such as the Internet. Also, such a computer program may be installed on the tablet computer 70 via wireless communication. Such computer programs may be sold as packaged software.
 メモリ72は、CPU71が実行するコンピュータプログラムを記憶する揮発性の記憶装置(例えばRAM)、および、等高線データ90を記憶する不揮発性の記憶装置(例えばフラッシュメモリ)であり得る。RAMは、CPU71が演算を行う際のワークメモリとしても利用され得る。コンピュータプログラムは、フラッシュメモリに格納されていてもよい。CPU71は、タブレットコンピュータ70の起動時にフラッシュメモリからコンピュータプログラムを読み出してRAMに展開し、実行する。 The memory 72 may be a volatile storage device (for example, RAM) for storing a computer program executed by the CPU 71, and a non-volatile storage device (for example, a flash memory) for storing contour data 90. The RAM can also be used as a work memory when the CPU 71 performs an operation. The computer program may be stored in flash memory. When the tablet computer 70 starts up, the CPU 71 reads a computer program from the flash memory, expands the computer program into RAM, and executes the program.
 通信回路73は、たとえば、Bluetooth(登録商標)および/またはWi-Fi(登録商標)規格に準拠した無線通信を行う無線通信回路である。無人ヘリコプター1の通信回路15fと同様、本明細書では、タブレットコンピュータ70は、Bluetooth(登録商標)規格および/またはWi-Fi規格に準拠した無線通信を行い、1対1で無人ヘリコプター1と通信する。通信回路73は、無人ヘリコプター1に送信すべきデータを、通信バス77を介してCPU71から受信する。また通信回路73は、無人ヘリコプター1から受信したデータ(例えばLiDARセンサ20の計測結果)を、通信バス77を介してCPU71および/またはメモリ72に送信する。 The communication circuit 73 is, for example, a wireless communication circuit that performs wireless communication conforming to the Bluetooth (registered trademark) and / or Wi-Fi (registered trademark) standard. Similar to the communication circuit 15f of the unmanned helicopter 1, in the present specification, the tablet computer 70 performs wireless communication conforming to the Bluetooth (registered trademark) standard and / or the Wi-Fi standard, and communicates with the unmanned helicopter 1 on a one-to-one basis. To do. The communication circuit 73 receives data to be transmitted to the unmanned helicopter 1 from the CPU 71 via the communication bus 77. Further, the communication circuit 73 transmits the data received from the unmanned helicopter 1 (for example, the measurement result of the LiDAR sensor 20) to the CPU 71 and / or the memory 72 via the communication bus 77.
 画像処理回路74は、CPU71の指示に従い、ディスプレイ(表示装置)75に表示する画像を生成する。たとえば画像処理回路74は、等高線データ90を利用して等高線が例示された山50の画像を表示し、タッチスクリーンパネル76を介して受け付けたオペレータのタッチ操作に応じて、ディスプレイ75上に飛行経路60を描画する。 The image processing circuit 74 generates an image to be displayed on the display (display device) 75 according to the instruction of the CPU 71. For example, the image processing circuit 74 uses the contour line data 90 to display an image of the mountain 50 in which the contour lines are exemplified, and the flight path on the display 75 in response to the touch operation of the operator received via the touch screen panel 76. Draw 60.
 タッチスクリーンパネル76は、指やペンなどで行われたオペレータのタッチを検出することができる。検出方式として、静電式、抵抗膜式、光学式、超音波方式、電磁式などが知られている。たとえば、静電容量方式のタッチスクリーンパネル76の場合、タッチスクリーンパネル76は、特定の位置における静電容量の変化を検出し、当該変化に関するデータを、通信バス77を介してCPU71に送信する。CPU71は、送られてきたデータに基づいて、オペレータによるタッチの有無を判断する。「変化に関するデータ」の例は、静電容量が変化した位置および変化した時間長のデータである。 The touch screen panel 76 can detect the operator's touch made with a finger, a pen, or the like. As the detection method, an electrostatic type, a resistive film type, an optical type, an ultrasonic method, an electromagnetic type and the like are known. For example, in the case of the capacitance type touch screen panel 76, the touch screen panel 76 detects a change in capacitance at a specific position and transmits data related to the change to the CPU 71 via the communication bus 77. The CPU 71 determines whether or not there is a touch by the operator based on the sent data. An example of "data on change" is data on the position where the capacitance changed and the time length changed.
 「タッチ」は、短押し(またはタップ)、長押し、スライド等の種々の操作を含む。例えば短押しは、オペレータがタッチスクリーンパネル76に指を触れた後、予め定められた基準時間以内に指を離す操作である。長押しは、オペレータがタッチスクリーンパネル76に指を触れてから指を動かさずにその状態を維持し、当該基準時間よりも長い時間が経過した後、指を離す操作である。 "Touch" includes various operations such as short press (or tap), long press, and slide. For example, a short press is an operation in which the operator touches the touch screen panel 76 with a finger and then releases the finger within a predetermined reference time. The long press is an operation in which the operator touches the touch screen panel 76, maintains the state without moving the finger, and releases the finger after a time longer than the reference time has elapsed.
 本実施形態では、タッチスクリーンパネル76はディスプレイ75に重畳して設けられている。オペレータは、ディスプレイ75に表示された山50と等高線の画像を見ながら、所望の等高線の画像へのタッチを行う。CPU71は、タッチスクリーンパネル76から出力された検出位置のデータが、ディスプレイ75に表示されている画像のどの位置を示しているかを判定する。判定の結果、CPU71は、位置に表示されている画像に対応付けられた等高線の位置を決定することができる。なお、タッチスクリーンパネル76に代えて、またはタッチスクリーンパネル76とともに、マウス、キーボード、ジョイスティック、マイク等の他の入力装置を有していてもよい。 In the present embodiment, the touch screen panel 76 is provided so as to be superimposed on the display 75. The operator touches the desired contour line image while looking at the mountain 50 and contour line image displayed on the display 75. The CPU 71 determines which position of the image displayed on the display 75 the detection position data output from the touch screen panel 76 indicates. As a result of the determination, the CPU 71 can determine the position of the contour line associated with the image displayed at the position. In addition, instead of the touch screen panel 76, or together with the touch screen panel 76, another input device such as a mouse, a keyboard, a joystick, and a microphone may be provided.
 図13は、メモリ72に読み込まれた、観測対象エリア内の等高線データ90の一例を示している。等高線データは、一定の標高ごと(例えば10mごと)に用意されていればよい。等高線データは、図13に示すような画像データでなくてもよく、標高データと座標データとが関係付けられていればよい。本明細書では、「等高線データ」を「等高線に関する情報」と呼ぶことがある。 FIG. 13 shows an example of contour line data 90 in the observation target area read into the memory 72. The contour data may be prepared for each fixed altitude (for example, every 10 m). The contour line data does not have to be the image data as shown in FIG. 13, and it is sufficient that the elevation data and the coordinate data are related to each other. In the present specification, "contour line data" may be referred to as "information about contour lines".
 オペレータがある等高線(第1等高線)と隣接する等高線(第2等高線)との間を指定した場合、タブレットコンピュータ70のCPU71は、指定された位置の標高を計算によって求めることができる。例えば第1等高線の標高をZ1とし、第2等高線の標高をZ2とする。オペレータが、第1等高線と第2等高線との間をW1:W2に分ける位置Wを指定したとする。比例関係を利用すると、位置Wの標高は、(W1・Z2+W2・Z1)/(W1+W2)と表すことができる。このようにして、CPU71は指定された任意の位置の標高および当該標高を有する複数点を結ぶ等高線を抽出できる。CPU71は、抽出した等高線の候補をオペレータに提示してもよい。 When the operator specifies between a contour line (first contour line) and an adjacent contour line (second contour line), the CPU 71 of the tablet computer 70 can calculate the elevation of the specified position. For example, let the elevation of the first contour line be Z1 and the elevation of the second contour line be Z2. It is assumed that the operator specifies the position W that divides the area between the first contour line and the second contour line into W1: W2. Using the proportional relationship, the altitude of the position W can be expressed as (W1, Z2 + W2, Z1) / (W1 + W2). In this way, the CPU 71 can extract an altitude at a designated arbitrary position and a contour line connecting a plurality of points having the altitude. The CPU 71 may present the extracted contour line candidates to the operator.
 以下、森林計測システム100のタブレットコンピュータ70を利用した飛行経路の設定方法と、設定された飛行経路に沿った無人ヘリコプター1の飛行方法を説明する。 Hereinafter, a flight route setting method using the tablet computer 70 of the forest measurement system 100 and a flight method of the unmanned helicopter 1 along the set flight route will be described.
 図14は、例示的な実施形態による飛行経路の設定処理の手順を示すフローチャートである。図14に示す手順は、タブレットコンピュータ70または基地局操縦装置80のCPU71(図12)の制御により実行される。なお、複数の観測対象エリアが選択され得る場合には、そのうちの一つが予め指定されているとする。 FIG. 14 is a flowchart showing a procedure of flight path setting processing according to an exemplary embodiment. The procedure shown in FIG. 14 is executed under the control of the CPU 71 (FIG. 12) of the tablet computer 70 or the base station control device 80. When a plurality of observation target areas can be selected, one of them is assumed to be specified in advance.
 ステップS2において、CPU71はその観測対象エリアに関する等高線に関する情報を取得する。 In step S2, the CPU 71 acquires information on contour lines related to the observation target area.
 ステップS4において、CPU71はタッチスクリーンパネル76を介して等高線の指定を受け付ける。等高線の指定方法は種々考えられる。例えば、オペレータは、タブレットコンピュータ70に表示された所望の等高線上の複数の位置を短押しして指定する。指定された順序は、無人ヘリコプター1の飛行経由点の順序であり得る。また他の例として、オペレータがタブレットコンピュータ70に表示された地図上のある位置を長押しすると、タブレットコンピュータ70のCPU71がタッチされた位置に対応する標高を決定する。CPU71は、決定した標高を有する複数の位置を抽出し、それらをつなぐ等高線を自動的に表示する。オペレータは、表示された等高線をタッチすることで、その等高線に沿う飛行経路を経路セグメントとして指定できる。オペレータがさらに異なる標高の位置を長押しすると、同様の手順でさらに新たな等高線が決定され、経路セグメントが追加されてもよい。さらに他の例として、CPU71が観測対象エリア内の複数の等高線を自動的に抽出して表示してもよい。オペレータからの承認が得られた場合には、各等高線を経路セグメントとして設定し、1つの飛行経路を決定すればよい。 In step S4, the CPU 71 accepts the designation of contour lines via the touch screen panel 76. Various methods for designating contour lines can be considered. For example, the operator short-presses and specifies a plurality of positions on the desired contour lines displayed on the tablet computer 70. The order specified can be the order of the flight transit points of the unmanned helicopter 1. As another example, when the operator presses and holds a certain position on the map displayed on the tablet computer 70, the CPU 71 of the tablet computer 70 determines the altitude corresponding to the touched position. The CPU 71 extracts a plurality of positions having a determined altitude and automatically displays contour lines connecting them. By touching the displayed contour line, the operator can specify the flight path along the contour line as a route segment. If the operator presses and holds a position at a different elevation, a new contour line may be determined and a route segment may be added in the same procedure. As yet another example, the CPU 71 may automatically extract and display a plurality of contour lines in the observation target area. If approval is obtained from the operator, each contour line may be set as a route segment and one flight route may be determined.
 ステップS6において、CPU71は等高線の設定が完了したか否かを判定する。例えばCPU71は、等高線の設定を完了したことを示す入力をオペレータから受け付けるまでは、等高線の設定が完了していないとして、ステップS4およびS6の処理を繰り返す。一方、等高線の設定を完了したことを示す入力を受け付けると、CPU71は等高線の設定が完了したと判定し、ステップS8に進む。ステップS8において、CPU71はタッチスクリーンパネル76を介して絶対高度の指定を受け付ける。図11Aには、絶対高度の数値を増加させる「+」ボタンと減少させる「-」ボタンとが表示されている。なお、ソフトウェアキーボードを表示させて数値を直接入力できるようにしてもよいし、ダイヤルまたはスライダ等のGUIを利用して入力できるようにしてもよい。 In step S6, the CPU 71 determines whether or not the contour line setting is completed. For example, the CPU 71 repeats the processes of steps S4 and S6, assuming that the contour line setting is not completed, until the operator receives an input indicating that the contour line setting is completed. On the other hand, when the input indicating that the contour line setting is completed is received, the CPU 71 determines that the contour line setting is completed, and proceeds to step S8. In step S8, the CPU 71 accepts the absolute altitude designation via the touch screen panel 76. In FIG. 11A, a “+” button for increasing the absolute altitude value and a “−” button for decreasing the absolute altitude value are displayed. The software keyboard may be displayed so that numerical values can be directly input, or numerical values may be input using a GUI such as a dial or a slider.
 以上の処理により、無人ヘリコプター1の飛行経路60(図7Aおよび図7B)が設定される。飛行経路60を示すデータは、例えば無線でタブレットコンピュータ70の通信回路73から送信され、無人ヘリコプター1の通信回路15f(図4)によって受信される。無人ヘリコプター1の信号処理回路15g(図4)は、受信したデータをRAM15iに格納する。その後、図15および図16に示す手順で森林計測を実行する。 By the above processing, the flight path 60 (FIGS. 7A and 7B) of the unmanned helicopter 1 is set. The data indicating the flight path 60 is, for example, wirelessly transmitted from the communication circuit 73 of the tablet computer 70 and received by the communication circuit 15f (FIG. 4) of the unmanned helicopter 1. The signal processing circuit 15g (FIG. 4) of the unmanned helicopter 1 stores the received data in the RAM 15i. After that, forest measurement is performed according to the procedure shown in FIGS. 15 and 16.
 図15は、飛行経路が設定された無人ヘリコプター1の飛行動作の手順を示すフローチャートである。図15に示す手順は、無人ヘリコプター1の信号処理回路15gの制御により実行される。 FIG. 15 is a flowchart showing the flight operation procedure of the unmanned helicopter 1 in which the flight path is set. The procedure shown in FIG. 15 is executed under the control of the signal processing circuit 15g of the unmanned helicopter 1.
 ステップS10において、無人ヘリコプター1の信号処理回路15gは、GPSモジュール15a等を利用して自己位置を取得しながら、森林計測の開始位置まで無人ヘリコプター1を飛行させる。なお、ここで言う「開始位置」は、飛行経路60の等高線上の、森林計測を開始する位置の経度および緯度に加え、絶対高度も含む。森林計測の開始位置に到達すると、ステップS12において、信号処理回路15gはLiDARセンサ20を用いた森林計測を開始する。 In step S10, the signal processing circuit 15g of the unmanned helicopter 1 flies the unmanned helicopter 1 to the start position of the forest measurement while acquiring its own position by using the GPS module 15a or the like. The "start position" referred to here includes the absolute altitude in addition to the longitude and latitude of the position where the forest measurement is started on the contour line of the flight path 60. When the start position of the forest measurement is reached, in step S12, the signal processing circuit 15g starts the forest measurement using the LiDAR sensor 20.
 ステップS14において、信号処理回路15gは、設定された等高線に沿って、かつ、設定された絶対高度で無人ヘリコプター1を飛行させる。ステップS14の処理の詳細は、後に図16を参照しながら説明する。 In step S14, the signal processing circuit 15g flies the unmanned helicopter 1 along the set contour lines and at the set absolute altitude. The details of the process in step S14 will be described later with reference to FIG.
 ステップS16において、信号処理回路15gは、森林計測が終了したか否かを判定する。具体的には信号処理回路15gは、予め設定された飛行経路60に沿って飛行したか否かを判定する。森林計測が終了するまでステップS14およびステップS16の処理を繰り返す。 In step S16, the signal processing circuit 15g determines whether or not the forest measurement has been completed. Specifically, the signal processing circuit 15g determines whether or not the flight has flown along the preset flight path 60. The processes of steps S14 and S16 are repeated until the forest measurement is completed.
 森林計測が終了すると、無人ヘリコプター1は、例えば自律飛行を行って帰還する。 When the forest measurement is completed, the unmanned helicopter 1 makes an autonomous flight, for example, and returns.
 図16は、図15におけるステップS14の処理の詳細を示している。 FIG. 16 shows the details of the process of step S14 in FIG.
 ステップS140において、信号処理回路15gは、飛行位置(緯度および経度)および高度(標高)を検出する。例えば信号処理回路15gは、GPSモジュール15aの出力を利用して飛行位置を検出し、気圧センサ15cの出力を利用して高度を検出する。 In step S140, the signal processing circuit 15g detects the flight position (latitude and longitude) and altitude (elevation). For example, the signal processing circuit 15g uses the output of the GPS module 15a to detect the flight position, and uses the output of the barometric pressure sensor 15c to detect the altitude.
 ステップS142において、信号処理回路15gは、等高線からのずれ量が第1所定値以内か否かを判定する。「ずれ量」とは、現在の飛行位置から等高線までの距離を表す。「第1所定値」の一例は10mである。ずれ量が第1所定値以内であれば処理は次のステップS146に進み、ずれ量が第1所定値以内でなければ処理はステップS144に進む。 In step S142, the signal processing circuit 15g determines whether or not the amount of deviation from the contour line is within the first predetermined value. The "deviation amount" represents the distance from the current flight position to the contour line. An example of the "first predetermined value" is 10 m. If the deviation amount is within the first predetermined value, the process proceeds to the next step S146, and if the deviation amount is not within the first predetermined value, the process proceeds to step S144.
 ステップS144において、信号処理回路15gは、ずれ量が第1所定値以内になるよう飛行位置を修正する。これにより、無人ヘリコプター1の飛行位置は等高線に近付く。 In step S144, the signal processing circuit 15g corrects the flight position so that the deviation amount is within the first predetermined value. As a result, the flight position of the unmanned helicopter 1 approaches the contour line.
 次のステップS146において、信号処理回路15gは、絶対高度のずれ量が第2所定値以内か否かを判定する。「絶対高度のずれ量」とは、現在の飛行位置における絶対高度と、予め設定された絶対高度との差を表す。なお、現在の飛行位置における絶対高度は、現在の飛行位置における標高と設定された飛行経路の等高線の標高との差である。「第2所定値」の一例は10mである。 In the next step S146, the signal processing circuit 15g determines whether or not the deviation amount of the absolute altitude is within the second predetermined value. The "absolute altitude deviation amount" represents the difference between the absolute altitude at the current flight position and the preset absolute altitude. The absolute altitude at the current flight position is the difference between the altitude at the current flight position and the altitude of the contour line of the set flight path. An example of the "second predetermined value" is 10 m.
 絶対高度のずれ量が第2所定値以内であれば処理はステップS16(図15)に進む。ずれ量が所定値以内でなければ処理はステップS148に進む。 If the absolute altitude deviation amount is within the second predetermined value, the process proceeds to step S16 (FIG. 15). If the deviation amount is not within the predetermined value, the process proceeds to step S148.
 ステップS148において、信号処理回路15gは、絶対高度のずれ量が第2所定値以内になるよう、現在の絶対高度を修正する。 In step S148, the signal processing circuit 15g corrects the current absolute altitude so that the deviation amount of the absolute altitude is within the second predetermined value.
 本実施形態では、無人ヘリコプター1は等高線に沿って飛行する。等高線に沿って飛行することで、地表面および/または樹冠の表層までの距離の変動を抑えることができる。地表面および/または樹冠の表層までの距離を一定に保つために、無人ヘリコプター1を頻繁に上昇および下降させる必要はないため、エネルギ消費量を低減させることができ、航続距離を長くすることができる。 In this embodiment, the unmanned helicopter 1 flies along the contour lines. By flying along the contour lines, fluctuations in the distance to the ground surface and / or the surface layer of the canopy can be suppressed. Since it is not necessary to frequently raise and lower the unmanned helicopter 1 to keep the distance to the ground surface and / or the surface layer of the canopy constant, energy consumption can be reduced and the cruising range can be increased. it can.
 また、斜面52の森林54を対象とする森林計測では、斜面52の反対側の点群データは不要となる。このため、斜面52の反対側の点群データについては記憶装置に記憶しないようにしてもよい。これにより、点群データの解析時のデータ量を減らすことができ、解析速度を向上させることができる。斜面52の反対側の点群データについては、例えば、無人ヘリコプター1の記憶装置15jに記憶しないようにしてもよいし、タブレットコンピュータ70のメモリ72に記憶しないようにしてもよい。また、タブレットコンピュータ70または他のコンピュータで点群データを解析する際に、斜面52側の点群データのみを用いるようにしてもよい。これにより、解析速度を向上させることができる。 In addition, in the forest measurement targeting the forest 54 on the slope 52, the point cloud data on the opposite side of the slope 52 is unnecessary. Therefore, the point cloud data on the opposite side of the slope 52 may not be stored in the storage device. As a result, the amount of data at the time of analyzing the point cloud data can be reduced, and the analysis speed can be improved. The point cloud data on the opposite side of the slope 52 may not be stored in the storage device 15j of the unmanned helicopter 1, or may not be stored in the memory 72 of the tablet computer 70, for example. Further, when analyzing the point cloud data with the tablet computer 70 or another computer, only the point cloud data on the slope 52 side may be used. As a result, the analysis speed can be improved.
 絶対高度を一定に維持しながら無人ヘリコプター1を等高線に沿って飛行させることの利点の一つは、斜面52上の計測点密度を概ね一定に維持できることにあった。本発明者は、計測点密度を概ね一定に維持するための、さらなる飛行方法を検討した。 One of the advantages of flying the unmanned helicopter 1 along the contour line while maintaining the absolute altitude constant was that the density of measurement points on the slope 52 could be maintained substantially constant. The present inventor has investigated a further flight method for maintaining the measurement point density substantially constant.
 図17は、飛行中の無人ヘリコプター1によってスキャンされる山50の斜面52を示している。説明の便宜のため、森林の記載は省略した。斜面52上には破線が示されている。破線を構成する各点は、レーザパルスの入射位置を模式的かつ概略的に示している。また図18は、図17中の領域Sを構成する2辺の関係を説明するための図である。なお、図17および図18では領域Sを長方形で表現しているが、これはレーザパルスを出射する位相のずれや飛行時の外乱等が存在しない場合の理想的な形状である。領域Sは長方形になるとは限らない。 FIG. 17 shows the slope 52 of the mountain 50 scanned by the unmanned helicopter 1 in flight. For convenience of explanation, the description of forest is omitted. A broken line is shown on the slope 52. Each point constituting the broken line schematically and schematically shows the incident position of the laser pulse. Further, FIG. 18 is a diagram for explaining the relationship between the two sides constituting the region S in FIG. Although the region S is represented by a rectangle in FIGS. 17 and 18, this is an ideal shape when there is no phase shift for emitting a laser pulse, disturbance during flight, or the like. The area S is not always rectangular.
 LiDARセンサ20が1回転するのに要する時間をΔtとする。ある時刻tから時刻t+Δtの間に、LiDARセンサ20は、概ね、無人ヘリコプター1の飛行方向に垂直な平面内でレーザパルスを放射状に出射する。各レーザパルスは上述した平面と斜面52とが交わる位置に次々と入射する。 Let Δt be the time required for the LiDAR sensor 20 to make one rotation. Between a certain time t and a time t + Δt, the LiDAR sensor 20 emits laser pulses radially in a plane approximately perpendicular to the flight direction of the unmanned helicopter 1. Each laser pulse is incident one after another at the position where the above-mentioned plane and the slope 52 intersect.
 一方、無人ヘリコプター1は飛行しているため、LiDARセンサ20が1回転する期間Δtの間に無人ヘリコプター1の位置が変化する。位置が変化した後の時刻t+Δtから次の時刻t+2Δtの間に、再びLiDARセンサ20が1回転してレーザパルスを放射状に出射する。その結果、これらのレーザパルスは、時刻tから時刻t+Δtの間に斜面52に入射したレーザパルスの入射位置からは進行方向にわずかにずれた位置に入射する。無人ヘリコプター1が飛行を継続することにより、斜面52上に入射したレーザパルスはメッシュ状またはグリッド状に分布することになる。なお、レーザパルスが入射した位置(入射点)は、レーザパルスの反射位置(反射点)である。 On the other hand, since the unmanned helicopter 1 is flying, the position of the unmanned helicopter 1 changes during the period Δt during which the LiDAR sensor 20 makes one rotation. Between the time t + Δt after the position change and the next time t + 2Δt, the LiDAR sensor 20 makes one rotation again and emits a laser pulse radially. As a result, these laser pulses are incident at a position slightly deviated in the traveling direction from the incident position of the laser pulse incident on the slope 52 between the time t and the time t + Δt. As the unmanned helicopter 1 continues to fly, the laser pulses incident on the slope 52 will be distributed in a mesh or grid pattern. The position where the laser pulse is incident (incident point) is the reflection position (reflection point) of the laser pulse.
 部分拡大図に示す領域Sは、時刻tから時刻t+2Δtの間に斜面52に入射した4つの隣接するレーザパルスの入射点a、ak+1、b、bk+1によって囲まれる領域である。入射点aおよびak+1は、時刻tから時刻t+Δtの間に出射されたレーザパルス群のうちの互いに隣接する2個のレーザパルスの入射点を示している。LiDARセンサ20は、これら2個のレーザパルスを、所定角度ピッチαだけ開けて出射する(図18)。入射点bおよびbk+1は、時刻t+Δtから時刻t+2Δtの間に出射されたレーザパルス群のうちの互いに隣接する2個のレーザパルスの入射点を示している。 The region S shown in the partially enlarged view is a region surrounded by the incident points a k , a k + 1 , b k , and b k + 1 of four adjacent laser pulses incident on the slope 52 between the time t and the time t + 2Δt. The incident points a k and a k + 1 indicate the incident points of two laser pulses adjacent to each other in the laser pulse group emitted between the time t and the time t + Δt. The LiDAR sensor 20 emits these two laser pulses with a predetermined angle pitch α open (FIG. 18). The incident points b k and b k + 1 indicate the incident points of two laser pulses adjacent to each other in the laser pulse group emitted between the time t + Δt and the time t + 2Δt.
 入射点aおよび入射点bは、LiDARセンサ20からみて同じ角度方向に、時間間隔Δtを開けて出射された2つのレーザパルスのそれぞれの入射点である。入射点ak+1と入射点bk+1との関係も同じである。 The incident point a k and the incident point b k are the incident points of the two laser pulses emitted from the LiDAR sensor 20 in the same angular direction with a time interval Δt. The relationship between the incident point a k + 1 and the incident point b k + 1 is also the same.
 上述の説明は、ある時刻においてLiDARセンサ20から出射されるレーザパルスの個数が1つであることを想定している。しかしながら、図2に示すように、N個の出射口を有し、各出射口から同時にN個のレーザパルス22を出射可能なLiDARセンサ20も存在する。そのような場合でも、各出射口から出射されるレーザパルスについて上述の説明が適用可能である。 The above description assumes that the number of laser pulses emitted from the LiDAR sensor 20 at a certain time is one. However, as shown in FIG. 2, there is also a LiDAR sensor 20 that has N emission ports and can simultaneously emit N laser pulses 22 from each emission port. Even in such a case, the above description can be applied to the laser pulse emitted from each outlet.
 図18を参照する。入射点aとak+1との距離(または入射点bとbk+1との距離)をZdとおき、入射点aとbとの距離(または入射点ak+1とbk+1との距離)をYdとおく。領域Sが長方形にならない場合を踏まえると、距離Zdは、入射点aとak+1とをY方向に垂直なXZ平面に投影した場合のXZ平面上での距離を意味する。また距離Ydは、Y方向に沿った入射点aとbとの距離または入射点aとbとをX方向に垂直なYZ平面に投影した場合のYZ平面上での距離を意味する。 See FIG. Let Zd be the distance between the incident points a k and a k + 1 (or the distance between the incident points b k and b k + 1 ), and the distance between the incident points a k and b k (or the distance between the incident points a k + 1 and b k + 1). ) Is Yd. Considering the case where the region S is not rectangular, the distance Zd means the distance on the XZ plane when the incident points a k and a k + 1 are projected onto the XZ plane perpendicular to the Y direction. Further, the distance Yd means the distance between the incident points a k and b k along the Y direction or the distance on the YZ plane when the incident points a k and b k are projected on the YZ plane perpendicular to the X direction. To do.
 無人ヘリコプター1の飛行速度をV(m/s)、同じ角度方向に同時に出射されるレーザパルスの個数をN、同じ角度方向に出射されるレーザパルスの周波数をf(Hz)、所定角度ピッチをα(rad)、LiDARセンサ20から入射点aまでの距離をL(m)とする。「同じ角度方向に出射されるレーザパルス」は、例えば、上述の入射点aと入射点bとに入射する2個のレーザパルスを表している。以下ではこれらの値を「パラメータ」と呼ぶことがある。 The flight speed of the unmanned helicopter 1 is V (m / s), the number of laser pulses emitted simultaneously in the same angular direction is N, the frequency of the laser pulses emitted in the same angular direction is f (Hz), and the predetermined angular pitch is set. Let L (m) be the distance from the α (rad) and LiDAR sensor 20 to the incident point ak . "Laser pulses emitted at the same angle direction", for example, represent the two laser pulses incident on the incident point b k and the incident point a k described above. In the following, these values may be referred to as "parameters".
 上述のようなパラメータを利用すると、間隔YdはV/fと表すことができる。間隔Ydの間にはN個の入射点が存在する。隣接する2つの入射点の間の距離をydとおくと、ydはV/(f・N)と表すことができる。また間隔Zdはα・Lと近似される。 Using the above parameters, the interval Yd can be expressed as V / f. There are N incident points between the intervals Yd. If the distance between two adjacent incident points is yd, yd can be expressed as V / (f · N). The interval Zd is approximated to α · L.
 本発明者は、間隔Zdと間隔ydとを等しくすると、LiDARセンサ20のスキャン方向に関する計測点密度と、無人ヘリコプター1の飛行方向に関する計測点密度とを一定に維持できると判断した。ただし、間隔Zdおよびydを厳密に等しくする必要はない。そこで本発明者は、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、無人ヘリコプター1を飛行させながらLiDARセンサ20を用いて斜面52の森林を対象とする森林計測を行うこととした。ここでいう「V/(f・N)に対するα・Lの相対値」は、比で表すこともできるし、差で表すこともできる。図1を参照しながら説明したように、「所定の範囲」の一例は、「相対値」が比で表される場合には0.9から1.1の範囲であり、より広い0.8から1.2の範囲であってもよいし、さらに広い0.5-2.0程度の範囲であってもよい。このとき、計測点群は概ね正方形のメッシュ状またはグリッド状に分布する。これにより、概ね均等な計測点密度を確保することができる。 The present inventor has determined that if the interval Zd and the interval yd are equalized, the density of measurement points in the scanning direction of the LiDAR sensor 20 and the density of measurement points in the flight direction of the unmanned helicopter 1 can be kept constant. However, the intervals Zd and yd need not be exactly equal. Therefore, the present inventor used the LiDAR sensor 20 to target the forest on the slope 52 while flying the unmanned helicopter 1 so that the relative values of α and L with respect to V / (f ・ N) fall within a predetermined range. It was decided to carry out forest measurement. The "relative value of α / L with respect to V / (f / N)" here can be expressed by a ratio or a difference. As described with reference to FIG. 1, an example of a "predetermined range" is in the range 0.9 to 1.1 when the "relative value" is expressed as a ratio, which is a wider range of 0.8. It may be in the range of 1.2 to 1.2, or it may be in a wider range of about 0.5-2.0. At this time, the measurement point cloud is distributed in a substantially square mesh or grid shape. As a result, it is possible to secure a substantially uniform measurement point density.
 上述のパラメータV、N、f、α、Lはいずれも可変値であり得る。例えば無人ヘリコプター1の飛行速度Vは明らかに可変値である。またパラメータN、fおよびαは、LiDARセンサ20の仕様によって、および/または、オペレータが設定することによって変化させ得る。距離Lは、所望の計測点密度を確保したい位置または方向の地表面までの距離として任意に設定し得る。無人ヘリコプター1の飛行速度Vは無人ヘリコプター1の信号処理回路15gが自律的に調整し得る。一方、パラメータN、f、αおよびLは、オペレータが上述の森林計測システム100(図11Aおよび図11B)のタブレットコンピュータ70または基地局操縦装置80を操作することによって予め設定または指定され得る。パラメータN、f、αおよびLは、無人ヘリコプター1の記憶装置15jに記憶され得る。なお、パラメータLを無人ヘリコプター1の信号処理回路15gが自律的に調整してもよい。必要なパラメータを受け付け、当該パラメータに従って無人ヘリコプター1に飛行速度等を調整させながら森林計測を行わせることも、森林計測システム100の範疇である。 The above parameters V, N, f, α and L can all be variable values. For example, the flight speed V of the unmanned helicopter 1 is clearly a variable value. The parameters N, f and α can also be changed according to the specifications of the LiDAR sensor 20 and / or by being set by the operator. The distance L can be arbitrarily set as a distance to the ground surface at a position or direction in which a desired measurement point density is desired to be secured. The flight speed V of the unmanned helicopter 1 can be autonomously adjusted by the signal processing circuit 15g of the unmanned helicopter 1. On the other hand, the parameters N, f, α and L can be preset or specified by the operator operating the tablet computer 70 or the base station control device 80 of the forest measurement system 100 (FIGS. 11A and 11B) described above. The parameters N, f, α and L can be stored in the storage device 15j of the unmanned helicopter 1. The parameter L may be adjusted autonomously by the signal processing circuit 15g of the unmanned helicopter 1. It is also a category of the forest measurement system 100 to accept necessary parameters and have the unmanned helicopter 1 perform forest measurement while adjusting the flight speed and the like according to the parameters.
 V/(f・N)およびα・Lの値が小さいほど、計測点密度を高めることが可能である。そのため、例えば所定角度ピッチαが可変の場合にはその取り得る最小値に固定することが考えられる。このとき、飛行に支障のない範囲で飛行速度Vも低下させ、および/または、周波数fおよび/または個数Nを大きくすればよい。 The smaller the V / (f · N) and α · L values, the higher the measurement point density. Therefore, for example, when the predetermined angle pitch α is variable, it is conceivable to fix it to the minimum possible value. At this time, the flight speed V may be reduced and / or the frequency f and / or the number N may be increased within a range that does not interfere with the flight.
 LiDARセンサ20が機械回転式の場合、単位時間当たりのパルスの出射回数をM、および単位時間当たりの回転数をRとするとき、所定角度ピッチαはα(rad)=2・π・R・N/Mによって求められる。よって上述したパラメータαを以下のように置き換えてもよい。すなわち、V/(f・N)に対する(2・π・R・N/M)・Lの相対値が所定の範囲内に収まるように、無人ヘリコプター1を飛行させ森林計測を行わせてもよい。 When the LiDAR sensor 20 is a mechanical rotation type, when the number of pulse emissions per unit time is M and the rotation speed per unit time is R, the predetermined angle pitch α is α (rad) = 2.π · R ·. Obtained by N / M. Therefore, the above-mentioned parameter α may be replaced as follows. That is, the unmanned helicopter 1 may be flown to perform forest measurement so that the relative values of (2, π, R, N / M), and L with respect to V / (f, N) fall within a predetermined range. ..
 図19は、パラメータを変更することにより、計測点密度を均一化するための処理の手順を示すフローチャートである。図19に示す手順は、無人ヘリコプター1が森林計測を行う空域に到着した後、無人ヘリコプター1の信号処理回路15g(図4)の制御により実行される。 FIG. 19 is a flowchart showing a processing procedure for making the measurement point density uniform by changing the parameters. The procedure shown in FIG. 19 is executed under the control of the signal processing circuit 15 g (FIG. 4) of the unmanned helicopter 1 after the unmanned helicopter 1 arrives in the airspace where the forest measurement is performed.
 ステップS20において、信号処理回路15gはLiDARセンサ20を用いた森林計測を開始する。 In step S20, the signal processing circuit 15g starts forest measurement using the LiDAR sensor 20.
 ステップS22において、信号処理回路15gは、現在の無人ヘリコプター1の飛行速度V、および、所望の計測点密度を確保したい位置までの距離Lを検出する。例えば信号処理回路15gは、GPSモジュール15aの出力を利用して、単位時間当たりの移動量を求めて飛行速度Vを取得してもよい。または、信号処理回路15gは、加速度センサ15bの出力を利用して、飛行方向の加速度を時間積分することによって飛行速度Vを取得してもよい。さらに信号処理回路15gは、LiDARセンサ20の出力から、所望の計測点密度を確保したい位置までの距離Lを取得する。 In step S22, the signal processing circuit 15g detects the flight speed V of the current unmanned helicopter 1 and the distance L to the position where the desired measurement point density is desired. For example, the signal processing circuit 15g may obtain the flight speed V by obtaining the movement amount per unit time by using the output of the GPS module 15a. Alternatively, the signal processing circuit 15g may acquire the flight speed V by time-integrating the acceleration in the flight direction using the output of the acceleration sensor 15b. Further, the signal processing circuit 15g acquires the distance L from the output of the LiDAR sensor 20 to the position where the desired measurement point density is desired to be secured.
 ステップS24において、信号処理回路15gは、V/(f・N)に対するα・Lの相対値(以下「相対値」と略記する。)は所定の範囲内か否かを判定する。「所定の範囲」は飛行前にオペレータによって設定され得る。信号処理回路15gは、オペレータによって設定されたパラメータf,N,αの各値をRAM15i等に保持しておいてもよいし、LiDARセンサ20からリアルタイムでパラメータf,N,αを取得してもよい。相対値が所定の範囲内であれば処理はステップS28に進み、相対値が所定の範囲内でなければ処理はステップS26に進む。 In step S24, the signal processing circuit 15g determines whether or not the relative value of α / L with respect to V / (f · N) (hereinafter abbreviated as “relative value”) is within a predetermined range. The "predetermined range" may be set by the operator prior to flight. The signal processing circuit 15g may hold each value of the parameters f, N, α set by the operator in the RAM 15i or the like, or may acquire the parameters f, N, α from the LiDAR sensor 20 in real time. Good. If the relative value is within the predetermined range, the process proceeds to step S28, and if the relative value is not within the predetermined range, the process proceeds to step S26.
 ステップS26において、信号処理回路15gは、V、f、N、α、Lの少なくとも一つを調整する。例えば、飛行中はパラメータf、N、α、Lが固定されている場合には、信号処理回路15gは無人ヘリコプター1の飛行速度Vを調整する。 In step S26, the signal processing circuit 15g adjusts at least one of V, f, N, α, and L. For example, when the parameters f, N, α, and L are fixed during flight, the signal processing circuit 15g adjusts the flight speed V of the unmanned helicopter 1.
 ステップS28において、信号処理回路15gは行うべき森林計測が終了したか否かを判定する。森林計測が終了するまで、信号処理回路15gはステップS22以降の処理を繰り返し実行する。 In step S28, the signal processing circuit 15g determines whether or not the forest measurement to be performed has been completed. The signal processing circuit 15g repeatedly executes the processes after step S22 until the forest measurement is completed.
 図20は、図19に示す処理の具体例を示すフローチャートである。図20では、図19のステップS24およびS26をより具体的にしたステップS30、S32、S34およびS36が設けられている。以下、ステップS30~36を説明する。 FIG. 20 is a flowchart showing a specific example of the process shown in FIG. In FIG. 20, steps S30, S32, S34 and S36 which are more specific steps S24 and S26 of FIG. 19 are provided. Hereinafter, steps S30 to 36 will be described.
 ステップS30において、信号処理回路15gは、相対値が下限値Qmin以上であるか否かを判定する。相対値が下限値Qmin未満であれば処理はステップS32に進み、相対値が下限値Qmin以上であれば処理はステップS34に進む。 In step S30, the signal processing circuit 15g determines whether or not the relative value is equal to or greater than the lower limit value Qmin. If the relative value is less than the lower limit value Qmin, the process proceeds to step S32, and if the relative value is more than the lower limit value Qmin, the process proceeds to step S34.
 ステップS32において、信号処理回路15gは、無人ヘリコプター1の飛行速度Vを減少させる、および/または、距離Lを増加させる。その後処理はステップS30に戻る。 In step S32, the signal processing circuit 15g reduces the flight speed V of the unmanned helicopter 1 and / or increases the distance L. After that, the process returns to step S30.
 ステップS34において、信号処理回路15gは、相対値が上限値Qmax未満であるか否かを判定する。相対値が下限値Qmin未満であれば処理はステップS28に進み、相対値が上限値Qmax以上であれば処理はステップS36に進む。 In step S34, the signal processing circuit 15g determines whether or not the relative value is less than the upper limit value Qmax. If the relative value is less than the lower limit value Qmin, the process proceeds to step S28, and if the relative value is equal to or more than the upper limit value Qmax, the process proceeds to step S36.
 ステップS36において、信号処理回路15gは、無人ヘリコプター1の飛行速度Vを増加させる、および/または、距離Lを減少させる。その後処理はステップS30に戻る。 In step S36, the signal processing circuit 15g increases the flight speed V of the unmanned helicopter 1 and / or decreases the distance L. After that, the process returns to step S30.
 以上の処理によれば、相対値が所定の範囲内に入るようパラメータVおよび/またはLを調整することにより、飛行方向およびスキャン方向に関する計測点密度を均一化することができる。 According to the above processing, by adjusting the parameters V and / or L so that the relative value falls within a predetermined range, the measurement point density in the flight direction and the scan direction can be made uniform.
 次に、森林54などの計測対象物に満遍なくレーザパルス22を照射させる方法を説明する。 Next, a method of irradiating the measurement object such as the forest 54 with the laser pulse 22 evenly will be described.
 LiDARセンサ20から出射されたレーザパルス22は計測対象物に照射され、計測対象物の表面にレーザスポットを形成する。LiDARセンサ20から出射されたレーザパルス22は、レーザビームがコリメートされている場合でも、所定の発散角で発散しながら進行する。このため、計測対象物上に形成されるレーザスポットのサイズは、LiDARセンサ20と計測対象物との間の距離に比例して大きくなる。LiDARセンサ20と計測対象物との間の距離を短くすると、計測対象物上に形成されるレーザスポットのサイズは小さくなる。 The laser pulse 22 emitted from the LiDAR sensor 20 irradiates the object to be measured to form a laser spot on the surface of the object to be measured. The laser pulse 22 emitted from the LiDAR sensor 20 travels while diverging at a predetermined divergence angle even when the laser beam is collimated. Therefore, the size of the laser spot formed on the measurement target increases in proportion to the distance between the LiDAR sensor 20 and the measurement target. When the distance between the LiDAR sensor 20 and the measurement target is shortened, the size of the laser spot formed on the measurement target becomes smaller.
 例えば計測対象物を詳細に計測するために、LiDARセンサ20と計測対象物との間の距離を短くすると、計測対象物上に形成されるレーザスポットのサイズは小さくなる。レーザスポットのサイズが小さくなると、互いに隣接するレーザスポット同士の間に隙間が生じることになる。森林を計測するときは、樹冠だけでなく、幹および地表にもレーザパルス22を照射させたい。レーザスポットが葉と葉の隙間を外すことが無いようにするには、森林に対して隙間なくレーザパルス22を照射させることが望ましい。 For example, if the distance between the LiDAR sensor 20 and the measurement target is shortened in order to measure the measurement target in detail, the size of the laser spot formed on the measurement target becomes smaller. As the size of the laser spots becomes smaller, a gap is created between the laser spots adjacent to each other. When measuring the forest, we want to irradiate not only the canopy but also the trunk and the ground surface with the laser pulse 22. In order to prevent the laser spot from removing the gap between the leaves, it is desirable to irradiate the forest with the laser pulse 22 without a gap.
 図21は、飛行中の無人ヘリコプター1を正面から見たときのLiDARセンサ20から出射される複数のレーザパルス22を模式的に示す図である。 FIG. 21 is a diagram schematically showing a plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is viewed from the front.
 図21は、レーザパルス22として、レーザパルス22a、22b、22cを示している。図21中の実線で挟まれたドットパターンで示される領域は、発散角θで発散しながら進行する一本のレーザパルス22aを表している。破線で挟まれたドットパターンで示される領域は、発散角θで発散しながら進行する一本のレーザパルス22bを表している。一点鎖線で挟まれたドットパターンで示される領域は、発散角θで発散しながら進行する一本のレーザパルス22cを表している。 FIG. 21 shows the laser pulses 22a, 22b, and 22c as the laser pulse 22. Area indicated by a dot pattern sandwiched by the solid line in FIG. 21 represents a single laser pulse 22a which travels while diverging at a divergence angle theta 1. The region indicated by the dot pattern sandwiched by the broken line represents a single laser pulse 22b that travels while diverging at a divergence angle θ 1 . The region represented by the dot pattern sandwiched by the alternate long and short dash line represents a single laser pulse 22c that travels while diverging at a divergence angle θ 1 .
 図22は、飛行中の無人ヘリコプター1を側面から見たときのLiDARセンサ20から出射される複数のレーザパルス22を模式的に示す図である。 FIG. 22 is a diagram schematically showing a plurality of laser pulses 22 emitted from the LiDAR sensor 20 when the unmanned helicopter 1 in flight is viewed from the side.
 図22は、レーザパルス22として、レーザパルス22a、22i、22pを示している。図22中の実線で挟まれたドットパターンで示される領域は、発散角θで発散しながら進行する一本のレーザパルス22aを表している。破線で挟まれたドットパターンで示される領域は、発散角θで発散しながら進行する一本のレーザパルス22iを表している。一点鎖線で挟まれたドットパターンで示される領域は、発散角θで発散しながら進行する一本のレーザパルス22pを表している。レーザパルス22の発散角θおよびθはLiDARセンサ20の仕様により予め決まっており、固定値である。 FIG. 22 shows laser pulses 22a, 22i, and 22p as the laser pulse 22. The region indicated by the dot pattern sandwiched by the solid line in FIG. 22 represents a single laser pulse 22a that travels while diverging at a divergence angle θ 2 . The region indicated by the dot pattern sandwiched by the broken line represents a single laser pulse 22i that travels while diverging at a divergence angle θ 2 . The region represented by the dot pattern sandwiched by the alternate long and short dash line represents a single laser pulse 22p that travels while diverging at a divergence angle θ 2 . The divergence angles θ 1 and θ 2 of the laser pulse 22 are predetermined by the specifications of the LiDAR sensor 20 and are fixed values.
 図21および図22では、本実施形態を分かりやすく説明するために、計測対象物51が平坦な地表である例を示しているが、計測対象物51はそれに限定されない。例えば、計測対象物51は、斜面52、森林54、斜面52の森林54(斜面林)であってもよい。 21 and 22 show an example in which the measurement object 51 is a flat ground surface in order to explain the present embodiment in an easy-to-understand manner, but the measurement object 51 is not limited thereto. For example, the measurement object 51 may be a slope 52, a forest 54, or a forest 54 (slope forest) on the slope 52.
 図23は、レーザパルス22により計測対象物51上に形成されるレーザスポットを示す図である。図23は、レーザパルス22aにより計測対象物51上に形成されるレーザスポット24a、レーザパルス22bにより計測対象物51上に形成されるレーザスポット24b、レーザパルス22cにより計測対象物51上に形成されるレーザスポット24cを示している。図23はさらに、レーザパルス22iにより計測対象物51上に形成されるレーザスポット24i、レーザパルス22pにより計測対象物51上に形成されるレーザスポット24pを示している。本実施形態では、レーザパルス22の進行方向に垂直な方向の平面に沿ったレーザパルス22の断面形状は、略矩形である。このため、レーザパルス22が形成するレーザスポット24の形状も略矩形となる。 FIG. 23 is a diagram showing a laser spot formed on the measurement object 51 by the laser pulse 22. FIG. 23 shows a laser spot 24a formed on the measurement object 51 by the laser pulse 22a, a laser spot 24b formed on the measurement object 51 by the laser pulse 22b, and a laser spot 22c formed on the measurement object 51 by the laser pulse 22c. The laser spot 24c is shown. FIG. 23 further shows a laser spot 24i formed on the measurement object 51 by the laser pulse 22i and a laser spot 24p formed on the measurement object 51 by the laser pulse 22p. In the present embodiment, the cross-sectional shape of the laser pulse 22 along the plane in the direction perpendicular to the traveling direction of the laser pulse 22 is substantially rectangular. Therefore, the shape of the laser spot 24 formed by the laser pulse 22 is also substantially rectangular.
 レーザスポット24の形状は矩形に限定されないが、レーザスポット24を面内に隙間なく効率的に並べるには、個々のレーザスポット24の形状が矩形または概略的に矩形の形状を有していることが、例えば楕円形状を有している場合に比べて、望ましい。レーザスポット24は、レーザ光源(典型的には半導体レーザ素子のアレイ)の発光領域の形状を調整することにより、任意の形状を有し得る。 The shape of the laser spots 24 is not limited to a rectangle, but in order to efficiently arrange the laser spots 24 in a plane without gaps, the shapes of the individual laser spots 24 must have a rectangular shape or a substantially rectangular shape. However, it is preferable as compared with the case where it has an elliptical shape, for example. The laser spot 24 may have any shape by adjusting the shape of the light emitting region of the laser light source (typically an array of semiconductor laser elements).
 図3を参照しながら上述したように、LiDARセンサ20は、レーザパルス22の出射方向を所定角度ピッチαで変化させながらレーザパルス22を出射する。図21を参照して、レーザパルス22aは、LiDARセンサ20のある1つの出射口から出射されたレーザパルスである。レーザパルス22bは、レーザパルス22aが出射されたタイミングからLiDARセンサ20が角度αだけ回転したタイミングで、同じ出射口から出射されたレーザパルスである。レーザパルス22cは、LiDARセンサ20が角度αだけさらに回転したタイミングで、同じ出射口から出射されたレーザパルスである。 As described above with reference to FIG. 3, the LiDAR sensor 20 emits the laser pulse 22 while changing the emission direction of the laser pulse 22 at a predetermined angle pitch α. With reference to FIG. 21, the laser pulse 22a is a laser pulse emitted from one outlet of the LiDAR sensor 20. The laser pulse 22b is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 is rotated by an angle α from the timing when the laser pulse 22a is emitted. The laser pulse 22c is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 is further rotated by an angle α.
 レーザパルス22a、22b、22cのそれぞれは、LiDARセンサ20の回転軸20a(図21、図22)に垂直な方向において発散角θで発散する。本実施形態では、LiDARセンサ20の所定角度ピッチαを発散角θよりも小さくなるように調整する。これにより、図21に示すように、LiDARセンサ20の回転軸20aに垂直な平面(ZX平面)において、レーザパルス22aとレーザパルス22bとをオーバーラップさせることができる。また、レーザパルス22bとレーザパルス22cとをオーバーラップさせることができる。すなわち、レーザパルス22aにより計測対象物51上に形成されるレーザスポット24a(図23)と、レーザパルス22bにより計測対象物51上に形成されるレーザスポット24bとをオーバーラップさせることができるとともに、レーザスポット24bとレーザパルス22cにより計測対象物51上に形成されるレーザスポット24cとをオーバーラップさせることができる。図23では、角度ピッチαと発散角θとの関係をレーザスポット上に仮想的に示している。 Each of the laser pulses 22a, 22b, and 22c diverges at a divergence angle θ 1 in a direction perpendicular to the rotation axis 20a (FIGS. 21 and 22) of the LiDAR sensor 20. In the present embodiment, the predetermined angle pitch α of the LiDAR sensor 20 is adjusted to be smaller than the divergence angle θ 1 . As a result, as shown in FIG. 21, the laser pulse 22a and the laser pulse 22b can be overlapped on the plane (ZX plane) perpendicular to the rotation axis 20a of the LiDAR sensor 20. Further, the laser pulse 22b and the laser pulse 22c can be overlapped with each other. That is, the laser spot 24a (FIG. 23) formed on the measurement object 51 by the laser pulse 22a and the laser spot 24b formed on the measurement object 51 by the laser pulse 22b can be overlapped with each other. The laser spot 24b and the laser spot 24c formed on the measurement object 51 by the laser pulse 22c can be overlapped with each other. In FIG. 23, the relationship between the angle pitch α and the divergence angle θ 1 is virtually shown on the laser spot.
 次に、無人ヘリコプター1の機体進行方向(飛行方向)において、レーザスポット同士をオーバーラップさせる方法を説明する。図22を参照して、レーザパルス22aは、LiDARセンサ20のある1つの出射口から出射されたレーザパルスである。レーザパルス22iは、レーザパルス22aが出射されたタイミングからLiDARセンサ20が1回転したタイミングで、同じ出射口から出射されたレーザパルスである。レーザパルス22pは、LiDARセンサ20がさらにもう1回転したタイミングで、同じ出射口から出射されたレーザパルスである。 Next, a method of overlapping the laser spots in the aircraft traveling direction (flight direction) of the unmanned helicopter 1 will be described. With reference to FIG. 22, the laser pulse 22a is a laser pulse emitted from one outlet of the LiDAR sensor 20. The laser pulse 22i is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 makes one rotation from the timing when the laser pulse 22a is emitted. The laser pulse 22p is a laser pulse emitted from the same outlet at the timing when the LiDAR sensor 20 rotates one more time.
 レーザパルス22aは、機体進行方向201およびレーザパルス22aの出射方向の両方に平行な平面において発散角θで発散する。レーザパルス22iは、機体進行方向201およびレーザパルス22iの出射方向の両方に平行な平面において発散角θで発散する。レーザパルス22pは、機体進行方向201およびレーザパルス22pの出射方向の両方に平行な平面において発散角θで発散する。発散角θで発散するレーザパルス22a、22i、22pのそれぞれは、計測対象物51にレーザスポットを形成する。図22に示す例では、各レーザスポットにおける機体進行方向201に平行な方向の長さをKで表している。また、LiDARセンサ20が1回転する間に無人ヘリコプター1が飛行する飛行距離をJで表している。 The laser pulse 22a diverges at a divergence angle θ 2 in a plane parallel to both the aircraft traveling direction 201 and the emission direction of the laser pulse 22a. The laser pulse 22i diverges at a divergence angle θ 2 in a plane parallel to both the aircraft traveling direction 201 and the emission direction of the laser pulse 22i. The laser pulse 22p diverges at a divergence angle θ 2 in a plane parallel to both the aircraft traveling direction 201 and the emitting direction of the laser pulse 22p. Each of the laser pulses 22a, 22i, and 22p diverging at the divergence angle θ 2 forms a laser spot on the measurement object 51. In the example shown in FIG. 22, the length of each laser spot in the direction parallel to the aircraft traveling direction 201 is represented by K. Further, the flight distance that the unmanned helicopter 1 flies while the LiDAR sensor 20 makes one rotation is represented by J.
 レーザスポットの長さKは、LiDARセンサ20と計測対象物51との間の距離Lに比例するため、距離Lが分かればレーザスポットの長さKを把握することができる。距離Lは、例えば絶対高度Hである。上述したように、絶対高度Hは、気圧センサ15c、LiDARセンサ20、電波高度計等を用いて検出され得る。また、上述したように、絶対高度Hは、地表面からの距離であってもよいし、樹冠の表層からの距離であってもよい。 Since the length K of the laser spot is proportional to the distance L between the LiDAR sensor 20 and the object to be measured 51, the length K of the laser spot can be grasped if the distance L is known. The distance L is, for example, the absolute altitude H. As described above, the absolute altitude H can be detected using a barometric pressure sensor 15c, a LiDAR sensor 20, a radio altimeter, or the like. Further, as described above, the absolute altitude H may be the distance from the ground surface or the distance from the surface layer of the canopy.
 本実施形態では、無人ヘリコプター1の飛行距離Jが、レーザスポット24の長さKよりも短くなるように、無人ヘリコプター1の飛行速度V、LiDARセンサ20の単位時間当たりの回転数Rおよび無人ヘリコプター1の高度Hのうちの少なくとも一つを調整する。例えば、無人ヘリコプター1の飛行速度Vを調整して、飛行距離Jが長さKよりも短くなるようにする。これにより、無人ヘリコプター1の機体進行方向201において、レーザパルス22aにより計測対象物51上に形成されるレーザスポット24a(図23)と、レーザパルス22iにより計測対象物51上に形成されるレーザスポット24iとをオーバーラップさせることができるとともに、レーザスポット24iとレーザパルス22pにより計測対象物51上に形成されるレーザスポット24pとをオーバーラップさせることができる。 In the present embodiment, the flight speed V of the unmanned helicopter 1, the rotation speed R of the LiDAR sensor 20 per unit time, and the unmanned helicopter so that the flight distance J of the unmanned helicopter 1 is shorter than the length K of the laser spot 24. Adjust at least one of the altitudes H of 1. For example, the flight speed V of the unmanned helicopter 1 is adjusted so that the flight distance J is shorter than the length K. As a result, in the aircraft traveling direction 201 of the unmanned helicopter 1, the laser spot 24a (FIG. 23) formed on the measurement object 51 by the laser pulse 22a and the laser spot formed on the measurement object 51 by the laser pulse 22i. The 24i can be overlapped, and the laser spot 24i and the laser spot 24p formed on the measurement object 51 by the laser pulse 22p can be overlapped.
 図22および図23を参照して、レーザスポット24jは、レーザパルス22iが出射されたタイミングからLiDARセンサ20が角度αだけ回転したタイミングで、同じ出射口から出射されたレーザパルスが形成するレーザスポットである。レーザスポット24kは、LiDARセンサ20が角度αだけさらに回転したタイミングで、同じ出射口から出射されたレーザパルスが形成するレーザスポットである。レーザスポット24qは、レーザパルス22pが出射されたタイミングからLiDARセンサ20が角度αだけ回転したタイミングで、同じ出射口から出射されたレーザパルスが形成するレーザスポットである。レーザスポット24rは、LiDARセンサ20が角度αだけさらに回転したタイミングで、同じ出射口から出射されたレーザパルスが形成するレーザスポットである。 With reference to FIGS. 22 and 23, the laser spot 24j is a laser spot formed by a laser pulse emitted from the same emission port at a timing when the LiDAR sensor 20 is rotated by an angle α from the timing when the laser pulse 22i is emitted. Is. The laser spot 24k is a laser spot formed by a laser pulse emitted from the same outlet at a timing when the LiDAR sensor 20 is further rotated by an angle α. The laser spot 24q is a laser spot formed by a laser pulse emitted from the same outlet at a timing when the LiDAR sensor 20 is rotated by an angle α from the timing when the laser pulse 22p is emitted. The laser spot 24r is a laser spot formed by a laser pulse emitted from the same outlet at a timing when the LiDAR sensor 20 is further rotated by an angle α.
 本実施形態では、飛行距離Jをレーザスポットの長さKよりも短くするとともに、所定角度ピッチαをレーザパルス22の発散角θよりも小さくする。これにより、図23に示すように、無人ヘリコプター1の機体進行方向201および機体進行方向201に垂直な方向の両方において、レーザスポット同士をオーバーラップさせることができる。レーザスポット同士がオーバーラップすることにより、計測対象物51に満遍なくレーザパルス22を照射させることができ、計測対象物51の計測を詳細に行うことができる。 In the present embodiment, the flight distance J is made shorter than the length K of the laser spot, and the predetermined angle pitch α is made smaller than the divergence angle θ 1 of the laser pulse 22. As a result, as shown in FIG. 23, the laser spots can be overlapped with each other in both the airframe traveling direction 201 of the unmanned helicopter 1 and the direction perpendicular to the airframe traveling direction 201. By overlapping the laser spots, the laser pulse 22 can be evenly applied to the measurement target object 51, and the measurement target object 51 can be measured in detail.
 上述したように、LiDARセンサ20は、回転軸20aが延びる方向に沿って配置されたN個の出射口を有し、最大でN個のレーザパルス22を同時に出射可能である。上記の説明では、レーザスポット24の長さKは、1つの出射口から出射された1つのレーザパルスが形成するレーザスポットの長さであったが、2つ以上の出射口から同時に出射された2つ以上のレーザパルスによって形成されるレーザスポットの長さであってもよい。この場合、その同時に出射された2つ以上のレーザパルスのそれぞれが形成するレーザスポットがオーバーラップし、全体として一つのレーザスポットを形成する。長さKは、その2つ以上のレーザパルスから形成された一つのレーザスポットの長さとなる。この場合も、上記と同様に、無人ヘリコプター1の機体進行方向201および機体進行方向201に垂直な方向の両方において、レーザスポット同士をオーバーラップさせることができる。 As described above, the LiDAR sensor 20 has N exit ports arranged along the direction in which the rotation shaft 20a extends, and can simultaneously emit a maximum of N laser pulses 22. In the above description, the length K of the laser spot 24 is the length of the laser spot formed by one laser pulse emitted from one emission port, but it is emitted from two or more emission ports at the same time. It may be the length of the laser spot formed by two or more laser pulses. In this case, the laser spots formed by each of the two or more laser pulses emitted at the same time overlap to form one laser spot as a whole. The length K is the length of one laser spot formed from the two or more laser pulses. In this case as well, the laser spots can be overlapped with each other in both the airframe traveling direction 201 and the direction perpendicular to the airframe traveling direction 201 of the unmanned helicopter 1.
 図24は、計測対象物51の一例である森林54に満遍なくレーザパルス22を照射させながら行う森林計測の手順を示すフローチャートである。 FIG. 24 is a flowchart showing a forest measurement procedure performed while irradiating the forest 54, which is an example of the measurement object 51, with the laser pulse 22 evenly.
 ステップS40において、所定角度ピッチαがレーザパルス22の発散角θよりも小さくなるように、所定角度ピッチαを調整する。所定角度ピッチαの調整は、例えばタブレットコンピュータ70のCPU71(図12)により実行される。 In step S40, the predetermined angle pitch α is adjusted so that the predetermined angle pitch α becomes smaller than the divergence angle θ 1 of the laser pulse 22. The adjustment of the predetermined angle pitch α is executed, for example, by the CPU 71 (FIG. 12) of the tablet computer 70.
 上述したように、所定角度ピッチαは、α=2・π・R/Mで表される。発散角θは予め分かっている固定値である。CPU71は、単位時間当たりのレーザパルス22の出射回数MおよびLiDARセンサ20の回転数Rのうちの少なくとも一つを変更することより、発散角θよりも小さくなるように所定角度ピッチαを調整する。例えば、回転数Rを変更することより、所定角度ピッチαを発散角θよりも小さくする。なお、飛行前にオペレータが、所定角度ピッチαの値をタブレットコンピュータ70に入力することにより、所定角度ピッチαを設定してもよい。 As described above, the predetermined angle pitch α is represented by α = 2.π · R / M. The divergence angle θ 1 is a fixed value known in advance. The CPU 71 adjusts the predetermined angle pitch α so as to be smaller than the divergence angle θ 1 by changing at least one of the number of times the laser pulse 22 is emitted M and the number of rotations R of the LiDAR sensor 20 per unit time. To do. For example, by changing the rotation speed R, the predetermined angle pitch α is made smaller than the divergence angle θ 1 . The operator may set the predetermined angle pitch α by inputting the value of the predetermined angle pitch α into the tablet computer 70 before the flight.
 次に、ステップS42において、CPU71は、無人ヘリコプター1の飛行距離Jが、レーザスポット24の長さKよりも短くなるように、飛行速度V、回転数Rおよび高度Hのうちの少なくとも一つを調整する。例えば、飛行速度Vを調整して、飛行距離Jが長さKよりも短くなるようにする。回転数Rを調整する場合は、α<θの関係が維持できる範囲で調整する。 Next, in step S42, the CPU 71 sets at least one of the flight speed V, the rotation speed R, and the altitude H so that the flight distance J of the unmanned helicopter 1 is shorter than the length K of the laser spot 24. adjust. For example, the flight speed V is adjusted so that the flight distance J is shorter than the length K. When adjusting the rotation speed R, adjust within a range in which the relationship of α <θ 1 can be maintained.
 例えば、森林計測時にLiDARセンサ20と森林54との間の距離Lがとる値の範囲を予め設定して計測を行う場合、レーザスポット24の長さKがとる値の範囲を予め把握することができる。例えば、飛行前にオペレータがタブレットコンピュータ70に距離Lがとる値の範囲を入力する。CPU71は、距離Lがとる値の範囲から、長さKがとる値の範囲の下限値を演算する。CPU71は、演算した下限値を飛行距離Jとの比較に用いる長さKの値として設定する。なお、飛行前にオペレータが、長さKの値をタブレットコンピュータ70に入力することにより、飛行距離Jとの比較に用いる長さKの値を設定してもよい。CPU71は、設定した長さKよりも飛行距離Jが短くなるように、例えば飛行速度Vを設定する。 For example, when the range of the value taken by the distance L between the LiDAR sensor 20 and the forest 54 is set in advance at the time of forest measurement, the range of the value taken by the length K of the laser spot 24 can be grasped in advance. it can. For example, before the flight, the operator inputs the range of values taken by the distance L to the tablet computer 70. The CPU 71 calculates the lower limit value of the range of values taken by the length K from the range of values taken by the distance L. The CPU 71 sets the calculated lower limit value as the value of the length K used for comparison with the flight distance J. The operator may set the value of the length K used for comparison with the flight distance J by inputting the value of the length K into the tablet computer 70 before the flight. The CPU 71 sets, for example, the flight speed V so that the flight distance J is shorter than the set length K.
 次に、ステップS44において、森林計測を開始する。森林計測は、図15および図16を参照しながら説明した手順、図19および図20を参照しながら説明した手順のいずれか、またはそれらの手順の組み合わせにより行われる。 Next, in step S44, forest measurement is started. Forest measurement is performed by any of the procedures described with reference to FIGS. 15 and 16, the procedures described with reference to FIGS. 19 and 20, or a combination of these procedures.
 森林計測中、CPU71は、飛行距離Jと長さKとを比較する(ステップS46)。CPU71は、飛行距離Jは長さK未満であると判定した場合は、森林計測を継続する(ステップS48)。森林計測が終了するまでステップS46の処理を繰り返す(ステップS52)。 During forest measurement, the CPU 71 compares the flight distance J with the length K (step S46). When the CPU 71 determines that the flight distance J is less than the length K, the CPU 71 continues the forest measurement (step S48). The process of step S46 is repeated until the forest measurement is completed (step S52).
 ステップS46において、飛行距離Jは長さK以上であると判定した場合、CPU71は、飛行距離Jが長さKよりも短くなるように、飛行速度V、回転数Rおよび高度Hのうちの少なくとも一つを調整する(ステップS50)。例えば、飛行速度Vを低くする、回転数Rを高くする、高度Hを高くするのうちの少なくとも一つを行うことにより、飛行距離Jが長さKよりも短くなるように調整する。例えば、飛行速度Vを低くすることにより、飛行距離Jを長さKよりも短くする。回転数Rを高くする場合は、α<θの関係が維持できる範囲で調整する。高度Hを高くする場合は、距離Lが予め設定された範囲内を維持できるように調整する。調整後は、ステップS46の処理を再び実行する。 When it is determined in step S46 that the flight distance J is the length K or more, the CPU 71 determines that the flight distance J is shorter than the length K at least among the flight speed V, the rotation speed R, and the altitude H. Adjust one (step S50). For example, the flight distance J is adjusted to be shorter than the length K by performing at least one of lowering the flight speed V, increasing the rotation speed R, and increasing the altitude H. For example, by lowering the flight speed V, the flight distance J is made shorter than the length K. When increasing the rotation speed R, adjust within a range in which the relationship of α <θ 1 can be maintained. When increasing the altitude H, the distance L is adjusted so that it can be maintained within a preset range. After the adjustment, the process of step S46 is executed again.
 上記の処理を実行することにより、森林54に満遍なくレーザパルス22を照射させながら森林計測を行うことができる。 By executing the above processing, it is possible to measure the forest while irradiating the forest 54 with the laser pulse 22 evenly.
 なお、森林計測中に、LiDARセンサ20と森林54との間の距離Lを測定し、測定した距離Lから長さKを演算してもよい。例えば、距離Lは、レーザパルス22の出射時刻とレーザパルス22の反射パルスを取得した時刻との差から演算することができる。長さKは距離Lに比例するため、距離Lから長さKを演算することができる。 Note that the distance L between the LiDAR sensor 20 and the forest 54 may be measured during the forest measurement, and the length K may be calculated from the measured distance L. For example, the distance L can be calculated from the difference between the emission time of the laser pulse 22 and the acquisition time of the reflection pulse of the laser pulse 22. Since the length K is proportional to the distance L, the length K can be calculated from the distance L.
 上記の説明では、ステップS40、S42、S46およびS50の処理はCPU71が実行するとしたが、無人ヘリコプター1の信号処理回路15g(図4)が実行してもよい。また、これらの処理は、CPU71と信号処理回路15gとが分担して行ってもよい。 In the above description, the processing of steps S40, S42, S46 and S50 is executed by the CPU 71, but the signal processing circuit 15g (FIG. 4) of the unmanned helicopter 1 may execute the processing. Further, these processes may be shared by the CPU 71 and the signal processing circuit 15 g.
 本実施形態によれば、無人ヘリコプター1が従来の航空機よりも低い高度を飛ぶことにより、レーザスポットの面内個数密度を高めるとともに、レーザスポット中心間隔を縮小することができる。 According to the present embodiment, the unmanned helicopter 1 can fly at an altitude lower than that of a conventional aircraft, thereby increasing the in-plane number density of laser spots and reducing the laser spot center spacing.
 低い高度の飛行に伴い飛行速度を低下させた場合、バッテリから供給される電力で電動モータを動作させるマルチコプターでは、航続距離が短いため、計測対象エリアが狭くなってしまう。一方、内燃機関により飛行する無人ヘリコプターは、航続距離が長いため、飛行速度を低下させても、十分な計測対象エリアを確保することができる。 When the flight speed is reduced due to flight at a low altitude, the measurement target area becomes narrow because the cruising range is short in the multicopter that operates the electric motor with the electric power supplied from the battery. On the other hand, an unmanned helicopter flying by an internal combustion engine has a long cruising range, so that a sufficient measurement target area can be secured even if the flight speed is reduced.
 なお、本明細書では、LiDARセンサを搭載した無人航空機を例示して説明した。機械回転方式、MEMS方式、フェーズドアレイ方式のLiDARセンサを例示したが、フラッシュLiDARセンサを用いてもよい。フラッシュLiDARセンサには回転軸または揺動軸は存在しないが、斜面の森林を対象とする森林計測を行い得るような位置および角度で無人ヘリコプター1に取り付けられればよい。 In this specification, an unmanned aerial vehicle equipped with a LiDAR sensor has been illustrated and described. Although the mechanical rotation type, MEMS type, and phased array type LiDAR sensors have been exemplified, a flash LiDAR sensor may be used. Although the flash LiDAR sensor does not have a rotation axis or a swing axis, it may be attached to the unmanned helicopter 1 at a position and an angle capable of performing forest measurement for a forest on a slope.
 LiDARセンサおよびミリ波等のレーダ測距装置、アンテナおよび撮像装置(カメラ)は「観測器」と呼び得る。上述の実施形態では、観測器としてLiDARセンサを例示して説明したが、他の観測器を無人航空機に搭載してもよい。この場合、観測器を用いて観測する山、森林、斜面、平坦地等が「観測対象エリア」である。例えば、無人航空機にカメラを搭載する場合、上述の実施形態で例示した飛行方法は、斜面の遭難者の捜索に好適である。撮影時にカメラが取得する光は、LiDARセンサが取得する、反射点からの反射パルスに対応する。無人航空機を上述の飛行方法で飛行させると、斜面からの距離を概ね維持しながら斜面の遭難者を含む映像をカメラで撮影できる。よって遭難者を緻密に捜索できる。なお、カメラはLiDARのようにレーザパルスを出射しないため、カメラには回転軸または揺動軸は存在しない。カメラの視野が少なくとも森林の斜面を含むよう、カメラを無人航空機に搭載すればよい。 LiDAR sensors, radar ranging devices such as millimeter waves, antennas and imaging devices (cameras) can be called "observers". In the above-described embodiment, the LiDAR sensor has been illustrated as an observer, but other observers may be mounted on an unmanned aerial vehicle. In this case, mountains, forests, slopes, flat lands, etc. observed using an observer are "observation target areas". For example, when a camera is mounted on an unmanned aerial vehicle, the flight method illustrated in the above embodiment is suitable for searching for a victim on a slope. The light acquired by the camera at the time of shooting corresponds to the reflected pulse from the reflection point acquired by the LiDAR sensor. When an unmanned aerial vehicle is flown by the above-mentioned flight method, it is possible to take an image including a victim of the slope with a camera while maintaining a general distance from the slope. Therefore, the victim can be searched precisely. Since the camera does not emit a laser pulse like LiDAR, the camera does not have a rotation axis or a swing axis. The camera may be mounted on an unmanned aerial vehicle so that the field of view of the camera includes at least the slopes of the forest.
 さらに、観測器とは異なる機器を無人航空機に搭載してもよい。そのような機器の一例は、薬剤の散布装置である。無人航空機は、除草剤、殺虫剤等の薬剤の散布に既に利用されている。森林の管理・利用のために斜面の森林に薬剤を散布することがあり得る。その際、散布対象エリアを決定し、無人航空機を上述の飛行方法で散布対象エリアを飛行させながら散布装置で薬剤を斜面に散布する。すると、斜面からの距離を概ね維持しながら、概ね均一な密度で薬剤を散布できる。なお、散布装置もLiDARのようにレーザパルスを出射しないため、散布装置には回転軸または揺動軸は存在しない。散布装置が薬剤を散布する範囲が少なくとも森林の斜面を含むよう、散布装置を無人航空機に搭載すればよい。 Furthermore, equipment different from the observer may be mounted on the unmanned aerial vehicle. An example of such a device is a drug sprayer. Unmanned aerial vehicles have already been used to spray chemicals such as herbicides and pesticides. Chemicals may be sprayed on sloped forests for forest management and utilization. At that time, the spraying target area is determined, and the chemical is sprayed on the slope by the spraying device while the unmanned aerial vehicle is flying in the spraying target area by the above-mentioned flight method. Then, the drug can be sprayed at a substantially uniform density while maintaining the distance from the slope. Since the spraying device does not emit a laser pulse like LiDAR, the spraying device does not have a rotation axis or a swing axis. The sprayer may be mounted on an unmanned aerial vehicle so that the sprayer sprays the drug at least on the slopes of the forest.
 上述の実施形態の説明では、森林計測の対象は主に斜面52の森林54であったが、森林計測の対象はそれに限定されない。森林計測の対象は平坦地の森林であってもよい。 In the above description of the embodiment, the target of forest measurement is mainly the forest 54 on the slope 52, but the target of forest measurement is not limited to that. The target of forest measurement may be a flat forest.
 以上、本発明の例示的な実施形態を説明した。 The exemplary embodiments of the present invention have been described above.
 上述したように、本発明のある実施形態に係る方法は、ライダー(LiDAR)センサ20を搭載した無人航空機1を飛行させて斜面の森林54を対象とする森林計測を行う方法であって、ライダーセンサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、(i)無人航空機1を第1等高線60aに沿って所定の絶対高度で飛行させながら、森林54をライダーセンサ20でスキャンさせること、および(ii)無人航空機1を第1等高線60aとは異なる第2等高線60bに沿って所定の絶対高度で飛行させながら、ライダーセンサ20で森林54を再度スキャンさせることを実行する。 As described above, the method according to an embodiment of the present invention is a method in which an unmanned aerial vehicle 1 equipped with a lidar (LiDAR) sensor 20 is flown to perform forest measurement on a slope forest 54. The rotation shaft 20a or the swing shaft 20a of the sensor 20 is mounted on the unmanned aerial vehicle 1 so as to face the traveling direction of the aircraft, and (i) while flying the unmanned aerial vehicle 1 along the first contour line 60a at a predetermined absolute altitude. , Scan the forest 54 with the rider sensor 20, and (ii) fly the unmanned aerial vehicle 1 along the second contour line 60b, which is different from the first contour line 60a, at a predetermined absolute altitude, while the rider sensor 20 scans the forest 54. Perform a scan again.
 ある実施形態において、上記方法は、工程(i)および(ii)の前に、第1等高線60a、第2等高線60bおよび所定の絶対高度を予め指定することをさらに包含してもよい。 In certain embodiments, the method may further include pre-specifying the first contour lines 60a, the second contour lines 60b and a predetermined absolute altitude prior to steps (i) and (ii).
 ある実施形態において、上記方法は、森林54の端部においては、無人航空機1を端部から所定距離離れた位置の上空を飛行させながら、ライダーセンサ20で端部をスキャンさせることをさらに包含してもよい。 In certain embodiments, the method further comprises having the rider sensor 20 scan the end of the forest 54 while the unmanned aerial vehicle 1 is flying over a predetermined distance from the end. You may.
 ある実施形態において、ライダーセンサ20は森林54の各樹木の樹冠および幹をスキャンしてもよい。 In certain embodiments, the rider sensor 20 may scan the canopy and trunk of each tree in the forest 54.
 ある実施形態において、工程(i)および(ii)は、水平方向に出射されたレーザパルス22を用いてライダーセンサ20に森林54をスキャンさせることを含んでもよい。 In certain embodiments, steps (i) and (ii) may include causing the rider sensor 20 to scan the forest 54 using a horizontally emitted laser pulse 22.
 ある実施形態において、工程(i)および(ii)は、斜め方向に出射されたレーザパルス22を用いてライダーセンサ20に森林54をスキャンさせることを含んでもよい。 In certain embodiments, steps (i) and (ii) may include causing the rider sensor 20 to scan the forest 54 using a laser pulse 22 emitted in an oblique direction.
 ある実施形態において、無人航空機1は無人ヘリコプターまたは無人マルチコプターであってもよい。 In certain embodiments, the unmanned aerial vehicle 1 may be an unmanned helicopter or an unmanned multicopter.
 本発明のある実施形態に係る方法は、観測器20を備える無人航空機1の飛行経路を決定する方法であって、観測器20による観測対象エリアを特定すること、観測対象エリアが斜面を含む場合、観測対象エリア内の等高線データを参照し、無人航空機1が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、および複数の経路セグメントを含む飛行経路を決定すること、を実行する。 A method according to an embodiment of the present invention is a method of determining a flight path of an unmanned aerial vehicle 1 equipped with an observer 20, in which the observation target area by the observer 20 is specified, and the observation target area includes a slope. , Determining a plurality of route segments in which the unmanned aerial vehicle 1 flies at a predetermined absolute altitude along any of the contour lines by referring to the contour data in the observation target area, and determining a flight route including a plurality of route segments. To do, to do.
 ある実施形態において、複数の経路セグメントを決定することは、選択された1または複数の等高線上に複数の通過点を設定すること、および、絶対高度を指定することを包含してもよい。 In certain embodiments, determining a plurality of path segments may include setting a plurality of transit points on one or more selected contour lines and specifying an absolute altitude.
 ある実施形態において、観測対象エリアは斜面の森林54を含んでもよい。 In some embodiments, the observation area may include a slope forest 54.
 ある実施形態において、観測器20はライダー(LiDAR)センサ20であってもよい。 In certain embodiments, the observer 20 may be a lidar (LiDAR) sensor 20.
 ある実施形態において、飛行経路を決定することは、森林54の端部において、端部から所定距離離れた位置の上空を通過する飛行経路を決定することを含んでもよい。 In certain embodiments, determining the flight path may include determining a flight path at the edge of the forest 54 that passes over a predetermined distance from the edge.
 ある実施形態において、観測器20は赤外線カメラであってもよい。 In certain embodiments, the observer 20 may be an infrared camera.
 本発明のある実施形態に係る方法は、ライダー(LiDAR)センサ20を搭載した無人航空機1を飛行させて斜面の森林54を対象とする森林計測を行う方法であって、ライダーセンサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、(i)無人航空機1を所定の絶対高度および所定の第1真高度で飛行させながら、森林54をライダーセンサ20でスキャンさせること、および(ii)無人航空機1を所定の絶対高度および、所定の第1真高度とは異なる所定の第2真高度で飛行させながら、森林54をライダーセンサ20で森林54を再度スキャンさせることを実行する。 A method according to an embodiment of the present invention is a method in which an unmanned aerial vehicle 1 equipped with a lidar (LiDAR) sensor 20 is flown to perform forest measurement targeting a forest 54 on a slope, and the rotation axis of the rider sensor 20. The 20a or the swing axis 20a is mounted on the unmanned aerial vehicle 1 so as to face the traveling direction of the aircraft, and (i) the unmanned aerial vehicle 1 is flying at a predetermined absolute altitude and a predetermined first true altitude while riding the forest 54. The forest 54 is driven by the rider sensor 20 while scanning with the sensor 20 and (ii) flying the unmanned aerial vehicle 1 at a predetermined absolute altitude and a predetermined second true altitude different from the predetermined first true altitude. To scan again.
 本発明のある実施形態に係る森林計測システム100は、無人航空機1とコンピュータ装置70とを有し、無人航空機1を飛行させて斜面の森林54を対象とする森林計測を行うための森林計測システム100であって、無人航空機1は、ライダー(LiDAR)センサ20と、第1信号処理回路15gと、第1記憶装置15jと、第1通信回路15fとを有し、ライダーセンサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、コンピュータ装置70は、表示装置75と、入力装置76と、第2信号処理回路71と、等高線に関する情報を記憶した第2記憶装置72と、第2通信回路73とを有し、第2信号処理回路71は、等高線に関する情報を第2記憶装置72から取得し、入力装置76を介して第1等高線60a、第2等高線60bおよび絶対高度の指定を受け付け、指定された第1等高線60a、第2等高線60bおよび絶対高度のデータを、第2通信回路73を介して無人航空機1に送信し、第1信号処理回路15gは、第1通信回路15fを介して、第1等高線60a、第2等高線60bおよび絶対高度のデータを受信し、受信した第1等高線60a、第2等高線60bおよび絶対高度のデータを第1記憶装置15jに格納し、無人航空機1を第1等高線60aに沿って絶対高度で飛行させながら、森林54をライダーセンサ20でスキャンさせ、無人航空機1を第2等高線60bに沿って絶対高度で飛行させながら、ライダーセンサ20で森林54を再度スキャンさせる。 The forest measurement system 100 according to an embodiment of the present invention has an unmanned aircraft 1 and a computer device 70, and is a forest measurement system for flying an unmanned aircraft 1 to perform forest measurement for a slope forest 54. 100, the unmanned aircraft 1 has a lidar (LiDAR) sensor 20, a first signal processing circuit 15g, a first storage device 15j, and a first communication circuit 15f, and the rotation shaft 20a of the rider sensor 20. Alternatively, the swing shaft 20a is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer device 70 stores information on the display device 75, the input device 76, the second signal processing circuit 71, and the contour lines. The second storage device 72 and the second communication circuit 73 are provided, and the second signal processing circuit 71 acquires information on the contour line from the second storage device 72, and the first contour line 60a, via the input device 76, The designation of the second contour line 60b and the absolute altitude is accepted, and the designated first contour line 60a, the second contour line 60b and the absolute altitude data are transmitted to the unmanned aircraft 1 via the second communication circuit 73, and the first signal processing is performed. The circuit 15g receives the data of the first contour line 60a, the second contour line 60b and the absolute altitude via the first communication circuit 15f, and receives the received first contour line 60a, the second contour line 60b and the absolute altitude data first. Stored in the storage device 15j, while flying the unmanned aircraft 1 along the first contour line 60a at absolute altitude, the forest 54 is scanned by the rider sensor 20, and the unmanned aircraft 1 is flown along the second contour line 60b at absolute altitude. The rider sensor 20 scans the forest 54 again.
 本発明のある実施形態に係る撮影方法は、撮像装置20を備える無人航空機1を用いて観測対象を撮影する方法であって、観測対象エリアを特定すること、観測対象エリアが斜面を含む場合、観測対象エリア内の等高線データを参照し、無人航空機1が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、複数の経路セグメントを含む飛行経路を決定すること、決定された飛行経路に沿って無人航空機1を飛行させながら撮像装置20で撮影することを実行する。 The imaging method according to an embodiment of the present invention is a method of photographing an observation target by using an unmanned aerial vehicle 1 provided with an image pickup device 20, and when the observation target area is specified and the observation target area includes a slope. To determine a plurality of route segments in which the unmanned aerial vehicle 1 flies at a predetermined absolute altitude along any of the contour lines by referring to the contour data in the observation target area, and to determine a flight route including a plurality of route segments. , While flying the unmanned aerial vehicle 1 along the determined flight path, the image pickup device 20 performs imaging.
 本発明のある実施形態に係る散布方法は、薬剤の散布装置20を備える無人航空機1を用いて薬剤を散布する方法であって、散布装置20による散布対象エリアを特定すること、散布対象エリアが斜面を含む場合、散布対象エリア内の等高線データを参照し、無人航空機1が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、複数の経路セグメントを含む飛行経路を決定すること、決定された飛行経路に沿って無人航空機1を飛行させながら薬剤を散布することを実行する。 The spraying method according to an embodiment of the present invention is a method of spraying a drug using an unmanned aerial vehicle 1 provided with a drug spraying device 20, wherein the spraying device 20 specifies an area to be sprayed, and the spraying target area is When including a slope, refer to the contour data in the area to be sprayed to determine a plurality of route segments in which the unmanned aerial vehicle 1 flies at a predetermined absolute altitude along any of the contour lines, and a flight including a plurality of route segments. The route is determined, and the drug is sprayed while the unmanned aerial vehicle 1 is flying along the determined flight route.
 本発明のある実施形態に係るコンピュータプログラムは、ライダー(LiDAR)センサ20を搭載した無人航空機1を飛行させて行う斜面の森林54を対象とする森林計測の制御をコンピュータに実行させるコンピュータプログラムであって、ライダーセンサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、コンピュータプログラムは、(i)無人航空機1を第1等高線60aに沿って所定の絶対高度で飛行させながら、森林54をライダーセンサ20でスキャンさせること、および(ii)無人航空機1を第1等高線60aとは異なる第2等高線60bに沿って所定の絶対高度で飛行させながら、ライダーセンサ20で森林54を再度スキャンさせることの制御をコンピュータに実行させる。 A computer program according to an embodiment of the present invention is a computer program for causing a computer to control forest measurement for a slope forest 54 performed by flying an unmanned aircraft 1 equipped with a lidar (LiDAR) sensor 20. The rotation shaft 20a or the swing shaft 20a of the rider sensor 20 is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer program determines (i) the unmanned aircraft 1 along the first contour line 60a. The forest 54 is scanned by the rider sensor 20 while flying at the absolute altitude of, and (ii) the unmanned aircraft 1 is flown at a predetermined absolute altitude along the second contour line 60b different from the first contour line 60a. The rider sensor 20 causes the computer to control the scanning of the forest 54 again.
 本発明のある実施形態に係る方法は、ライダー(LiDAR)センサ20を搭載した無人航空機1を飛行させて森林54を対象とする森林計測を行う方法であって、ライダーセンサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、ライダーセンサ20を用いて、レーザパルス22の出射方向を所定角度ピッチで変化させながら出射して周囲の空間を計測すること、森林54までの距離をL、無人航空機1の飛行速度をV、同じ角度方向に同時に出射されるレーザパルス22の個数をN、同じ角度方向に出射されるレーザパルス22の周波数をf、所定角度ピッチをαとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、無人航空機1を飛行させながらライダーセンサ20を用いて森林54を対象とする森林計測を行うことを実行する。 A method according to an embodiment of the present invention is a method in which an unmanned aerial vehicle 1 equipped with a lidar (LiDAR) sensor 20 is flown to perform forest measurement targeting a forest 54, and the rotation axis 20a of the lidar sensor 20 or The rocking shaft 20a is mounted on the unmanned aerial vehicle 1 so as to face the traveling direction of the aircraft, and the lidar sensor 20 is used to emit the laser pulse 22 while changing the emission direction at a predetermined angular pitch to measure the surrounding space. The distance to the forest 54 is L, the flight speed of the unmanned aerial vehicle 1 is V, the number of laser pulses 22 emitted simultaneously in the same angular direction is N, and the frequency of the laser pulses 22 emitted in the same angular direction is f. When the predetermined angle pitch is α, the forest 54 is operated by using the lidar sensor 20 while flying the unmanned aerial vehicle 1 so that the relative values of α and L with respect to V / (f ・ N) are within the predetermined range. Perform the forest measurement of interest.
 ある実施形態において、所定角度ピッチαは固定値であってもよい。 In a certain embodiment, the predetermined angle pitch α may be a fixed value.
 ある実施形態において、所定角度ピッチαは設定可能な最小値に固定されていてもよい。 In a certain embodiment, the predetermined angle pitch α may be fixed to a settable minimum value.
 ある実施形態において、ライダーセンサ20は機械回転方式であり、レーザパルス22を出射する1つの出射口における単位時間当たりのレーザパルス22の出射回数をM、および単位時間当たりの回転数をRとするとき、所定角度ピッチαはα(rad)=2・π・R/Mによって求められ、森林計測を行うことは、V/(f・N)に対する(2・π・R/M)・Lの相対値が所定の範囲内に収まるように、無人航空機1を飛行させることを包含してもよい。 In a certain embodiment, the lidar sensor 20 is a mechanical rotation type, and the number of times the laser pulse 22 is emitted per unit time at one outlet for emitting the laser pulse 22 is M, and the number of rotations per unit time is R. Then, the predetermined angle pitch α is obtained by α (rad) = 2.π · R / M, and the forest measurement is performed by (2 · π · R / M) · L with respect to V / (f · N). It may include flying the unmanned aerial vehicle 1 so that the relative value falls within a predetermined range.
 ある実施形態において、単位時間当たりの出射回数M、および単位時間当たりの回転数Rは可変値であってもよい。 In a certain embodiment, the number of emission times M per unit time and the number of rotations R per unit time may be variable values.
 ある実施形態において、単位時間当たりの出射回数M、および単位時間当たりの回転数Rは固定値であってもよい。 In a certain embodiment, the number of emission times M per unit time and the number of rotations R per unit time may be fixed values.
 ある実施形態において、ライダーセンサ20は機械回転方式であり、所定角度ピッチαは、レーザパルス22の回転軸20aに垂直な方向の発散角θよりも小さく、上記方法は、ライダーセンサ20が1回転する間に無人航空機1が飛行する飛行距離Jが、森林54に形成されるレーザスポット24における機体進行方向に平行な方向の長さKよりも短くなるように、無人航空機1の飛行速度V、ライダーセンサ20の単位時間当たりの回転数Rおよび無人航空機1の高度Hのうちの少なくとも一つを調整することを包含してもよい。 In one embodiment, the lidar sensor 20 is of a mechanical rotation system, the predetermined angle pitch α is smaller than the divergence angle θ 1 in the direction perpendicular to the rotation axis 20a of the laser pulse 22, and in the above method, the rider sensor 20 is 1. The flight speed V of the unmanned aircraft 1 is such that the flight distance J that the unmanned aircraft 1 flies while rotating is shorter than the length K in the direction parallel to the traveling direction of the aircraft at the laser spot 24 formed in the forest 54. It may include adjusting at least one of the number of revolutions R of the rider sensor 20 per unit time and the altitude H of the unmanned aircraft 1.
 ある実施形態において、上記方法は、レーザパルス22を出射する1つの出射口における単位時間当たりのパルスの出射回数Mおよび回転数Rのうちの少なくとも一つを変更することより、発散角θよりも小さくなるように所定角度ピッチαを調整することを包含してもよい。 In a certain embodiment, the above method changes the divergence angle θ 1 by changing at least one of the number of times M and the number of revolutions R of the pulse emitted per unit time at one outlet for emitting the laser pulse 22. May include adjusting the predetermined angle pitch α so that
 ある実施形態において、無人航空機1は無人ヘリコプターまたは無人マルチコプターであってもよい。 In certain embodiments, the unmanned aerial vehicle 1 may be an unmanned helicopter or an unmanned multicopter.
 ある実施形態において、森林54は、斜面の森林であってもよい。 In certain embodiments, the forest 54 may be a sloped forest.
 本発明のある実施形態に係る森林計測システム100は、無人航空機1とコンピュータ装置70とを有し、無人航空機1を飛行させて森林54を対象とする森林計測を行うための森林計測システム100であって、無人航空機1は、ライダー(LiDAR)センサ20と、第1信号処理回路15gと、記憶装置15jと、第1通信回路15fとを有し、ライダー(LiDAR)センサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、コンピュータ装置70は、表示装置75と、入力装置76と、第2信号処理回路71と、第2通信回路73とを有し、第2信号処理回路71は、入力装置76を介して、同じ角度方向に同時に出射されるレーザパルス22の個数N、同じ角度方向に出射されるレーザパルス22の周波数f、および所定角度ピッチαの指定を受け付け、指定された個数N、周波数fおよび所定角度ピッチαのデータを、第2通信回路73を介して無人航空機1に送信し、第1信号処理回路15gは、第1通信回路15fを介して、個数N、周波数fおよび所定角度ピッチαのデータを受信し、受信した個数N、周波数fおよび所定角度ピッチαのデータを記憶装置15jに格納し、森林54までの距離をL、無人航空機1の飛行速度をVとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、無人航空機1を飛行させて、ライダーセンサ20を用いて森林54を対象とする森林計測を行う。 The forest measurement system 100 according to an embodiment of the present invention is a forest measurement system 100 having an unmanned aircraft 1 and a computer device 70, for flying the unmanned aircraft 1 and performing forest measurement for the forest 54. The unmanned aircraft 1 has a lidar (LiDAR) sensor 20, a first signal processing circuit 15g, a storage device 15j, and a first communication circuit 15f, and has a rotation shaft 20a or a rotation shaft 20a of the rider (LiDAR) sensor 20. The rocking shaft 20a is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer device 70 includes a display device 75, an input device 76, a second signal processing circuit 71, and a second communication circuit 73. The second signal processing circuit 71 has the number N of laser pulses 22 simultaneously emitted in the same angular direction, the frequency f of the laser pulses 22 emitted in the same angular direction, and a predetermined value via the input device 76. The designation of the angle pitch α is accepted, and the data of the specified number N, the frequency f and the predetermined angle pitch α are transmitted to the unmanned aircraft 1 via the second communication circuit 73, and the first signal processing circuit 15g is the first. The data of the number N, the frequency f and the predetermined angle pitch α are received via the communication circuit 15f, the received data of the number N, the frequency f and the predetermined angle pitch α are stored in the storage device 15j, and the distance to the forest 54. Let L be, and let V be the flight speed of the unmanned aircraft 1, then the unmanned aircraft 1 is flown so that the relative value of α · L with respect to V / (f · N) falls within a predetermined range, and the rider sensor 20 Is used to measure the forest of the forest 54.
 本発明のある実施形態に係るコンピュータプログラムは、ライダー(LiDAR)センサ20を搭載した無人航空機1を飛行させて行う森林54を対象とする森林計測の制御をコンピュータ15、70に実行させるコンピュータプログラムであって、ライダーセンサ20の回転軸20aまたは揺動軸20aは、機体進行方向を向くよう無人航空機1に搭載されており、コンピュータプログラムは、ライダーセンサ20を用いて、レーザパルス22の出射方向を所定角度ピッチで変化させながら出射して周囲の空間を計測すること、森林54までの距離をL、無人航空機1の飛行速度をV、同じ角度方向に同時に出射されるレーザパルス22の個数をN、同じ角度方向に出射されるレーザパルス22の周波数をf、所定角度ピッチをαとするとき、V/(f・N)に対するα・Lの相対値が所定の範囲内に収まるように、無人航空機1を飛行させながらライダーセンサ20を用いて森林54を対象とする森林計測を行うことの制御をコンピュータ15、70に実行させる。 A computer program according to an embodiment of the present invention is a computer program that causes computers 15 and 70 to control forest measurement for a forest 54 performed by flying an unmanned aircraft 1 equipped with a lidar (LiDAR) sensor 20. Therefore, the rotation shaft 20a or the swing shaft 20a of the lidar sensor 20 is mounted on the unmanned aircraft 1 so as to face the traveling direction of the aircraft, and the computer program uses the lidar sensor 20 to determine the emission direction of the laser pulse 22. Emit while changing at a predetermined angle pitch to measure the surrounding space, the distance to the forest 54 is L, the flight speed of the unmanned aircraft 1 is V, and the number of laser pulses 22 simultaneously emitted in the same angle direction is N. When the frequency of the laser pulse 22 emitted in the same angular direction is f and the predetermined angular pitch is α, the relative value of α ・ L with respect to V / (f ・ N) falls within the predetermined range. The computers 15 and 70 are made to control the forest measurement for the forest 54 by using the lidar sensor 20 while flying the aircraft 1.
 本発明の技術は、森林、特に斜面の森林、を対象とする森林計測、遭難者捜索、薬剤の散布等を行う際に好適に利用され得る。 The technique of the present invention can be suitably used when performing forest measurement, searching for victims, spraying chemicals, etc. on forests, especially forests on slopes.
 1:無人ヘリコプター、4:機体、15:飛行制御ボックス、15a:GPSモジュール、15b:加速度センサ、15c:気圧センサ、15d:地磁気センサ、15e:超音波センサ、15f:通信回路、15g:信号処理回路、15h:ROM、15i:RAM、15j:記憶装置、15k:内部バス、20:LiDARセンサ、22:レーザパルス、50:山、52:斜面、54:森林(斜面林)、60:飛行経路、60a:第1等高線(経路セグメント)、60b:第2等高線(経路セグメント)、60c:経路セグメント、70:タブレットコンピュータ、71:CPU、72:メモリ、73:通信回路、74:画像処理回路、75:ディスプレイ、76:タッチスクリーンパネル、77:通信バス、80:基地局操縦装置、90:等高線データ、100:森林計測システム
 
1: Unmanned helicopter, 4: Aircraft, 15: Flight control box, 15a: GPS module, 15b: Acceleration sensor, 15c: Pressure sensor, 15d: Geomagnetic sensor, 15e: Ultrasonic sensor, 15f: Communication circuit, 15g: Signal processing Circuit, 15h: ROM, 15i: RAM, 15j: Storage device, 15k: Internal bus, 20: LiDAR sensor, 22: Laser pulse, 50: Mountain, 52: Slope, 54: Forest (slope forest), 60: Flight path , 60a: 1st contour line (path segment), 60b: 2nd contour line (path segment), 60c: path segment, 70: tablet computer, 71: CPU, 72: memory, 73: communication circuit, 74: image processing circuit, 75: Display, 76: Touch screen panel, 77: Communication bus, 80: Base station control device, 90: Contour line data, 100: Forest measurement system

Claims (18)

  1.  ライダー(LiDAR)センサを搭載した無人航空機を飛行させて斜面の森林を対象とする森林計測を行う方法であって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、
    (i)前記無人航空機を第1等高線に沿って所定の絶対高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせること、および
    (ii)前記無人航空機を前記第1等高線とは異なる第2等高線に沿って前記所定の絶対高度で飛行させながら、前記ライダーセンサで前記森林を再度スキャンさせること
     を実行する、方法。
    It is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement on a forest on a slope, and the rotation axis or swing axis of the lidar sensor is directed toward the traveling direction of the aircraft. Onboard the aircraft
    (I) The unmanned aerial vehicle is made to scan the forest with the rider sensor while flying along the first contour line at a predetermined absolute altitude, and (ii) the unmanned aerial vehicle is different from the first contour line. A method of performing rescanning of the forest with the rider sensor while flying along the contour lines at the predetermined absolute altitude.
  2.  前記工程(i)および(ii)の前に、前記第1等高線、前記第2等高線および前記所定の絶対高度を予め指定することをさらに包含する、請求項1に記載の方法。 The method according to claim 1, further comprising pre-designating the first contour line, the second contour line, and the predetermined absolute altitude before the steps (i) and (ii).
  3.  前記森林の端部においては、前記無人航空機を前記端部から所定距離離れた位置の上空を飛行させながら、前記ライダーセンサで前記端部をスキャンさせることをさらに包含する、請求項1または2に記載の方法。 At the edge of the forest, claim 1 or 2, further comprising scanning the edge with the rider sensor while flying the unmanned aerial vehicle over a position a predetermined distance away from the edge. The method described.
  4.  前記ライダーセンサは前記森林の各樹木の樹冠および幹をスキャンする、請求項1から3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the rider sensor scans the canopy and trunk of each tree in the forest.
  5.  前記工程(i)および(ii)は、水平方向に出射されたレーザパルスを用いて前記ライダーセンサに前記森林をスキャンさせることを含む、請求項1から4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the steps (i) and (ii) include causing the rider sensor to scan the forest using a laser pulse emitted in the horizontal direction.
  6.  前記工程(i)および(ii)は、斜め方向に出射されたレーザパルスを用いて前記ライダーセンサに前記森林をスキャンさせることを含む、請求項1から5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the steps (i) and (ii) include causing the rider sensor to scan the forest using a laser pulse emitted in an oblique direction.
  7.  前記無人航空機は無人ヘリコプターまたは無人マルチコプターである、請求項1から6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the unmanned aerial vehicle is an unmanned helicopter or an unmanned multicopter.
  8.  観測器を備える無人航空機の飛行経路を決定する方法であって、
     前記観測器による観測対象エリアを特定すること、
     前記観測対象エリアが斜面を含む場合、前記観測対象エリア内の等高線データを参照し、前記無人航空機が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、および
     前記複数の経路セグメントを含む飛行経路を決定すること、
    を実行する、方法。
    A method of determining the flight path of an unmanned aerial vehicle equipped with an observer.
    Identifying the observation target area with the observer,
    When the observation target area includes a slope, the contour data in the observation target area is referred to to determine a plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines, and Determining a flight path that includes the plurality of path segments,
    How to do it.
  9.  前記複数の経路セグメントを決定することは、
      選択された1または複数の等高線上に複数の通過点を設定すること、および、
      前記絶対高度を指定すること
     を包含する、請求項8に記載の方法。
    Determining the plurality of route segments is
    Setting multiple transit points on one or more selected contour lines, and
    The method of claim 8, comprising designating the absolute altitude.
  10.  前記観測対象エリアは前記斜面の森林を含む、請求項8または9に記載の方法。 The method according to claim 8 or 9, wherein the observation target area includes a forest on the slope.
  11.  前記観測器はライダー(LiDAR)センサである、請求項10に記載の方法。 The method according to claim 10, wherein the observer is a lidar (LiDAR) sensor.
  12.  前記飛行経路を決定することは、前記森林の端部において、前記端部から所定距離離れた位置の上空を通過する前記飛行経路を決定することを含む、請求項10または11に記載の方法。 The method according to claim 10 or 11, wherein determining the flight path includes determining the flight path that passes over a position separated from the end by a predetermined distance at the end of the forest.
  13.  前記観測器は赤外線カメラである、請求項8に記載の方法。 The method according to claim 8, wherein the observer is an infrared camera.
  14.  ライダー(LiDAR)センサを搭載した無人航空機を飛行させて斜面の森林を対象とする森林計測を行う方法であって、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、
    (i)前記無人航空機を所定の絶対高度および所定の第1真高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせること、および
    (ii)前記無人航空機を前記所定の絶対高度および、前記所定の第1真高度とは異なる所定の第2真高度で飛行させながら、前記森林を前記ライダーセンサで前記森林を再度スキャンさせること
     を実行する、方法。
    It is a method of flying an unmanned aerial vehicle equipped with a lidar (LiDAR) sensor to perform forest measurement on a forest on a slope, and the rotation axis or swing axis of the lidar sensor is directed toward the traveling direction of the aircraft. Onboard the aircraft
    (I) The unmanned aerial vehicle is made to scan the forest with the rider sensor while flying at a predetermined absolute altitude and a predetermined first true altitude, and (ii) the unmanned aerial vehicle is operated at the predetermined absolute altitude and the said. A method of rescanning the forest with the rider sensor while flying at a predetermined second true altitude different from the predetermined first true altitude.
  15.  無人航空機とコンピュータ装置とを有し、前記無人航空機を飛行させて斜面の森林を対象とする森林計測を行うための森林計測システムであって、
     前記無人航空機は、
      ライダー(LiDAR)センサと、
      第1信号処理回路と、
      第1記憶装置と、
      第1通信回路と
     を有し、前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、
     前記コンピュータ装置は、
      表示装置と、
      入力装置と、
      第2信号処理回路と、
      等高線に関する情報を記憶した第2記憶装置と、
      第2通信回路と
     を有し、
     前記第2信号処理回路は、
      前記等高線に関する情報を前記第2記憶装置から取得し、
      前記入力装置を介して第1等高線、第2等高線および絶対高度の指定を受け付け、
      指定された前記第1等高線、前記第2等高線および前記絶対高度のデータを、前記第2通信回路を介して前記無人航空機に送信し、
     前記第1信号処理回路は、
      前記第1通信回路を介して、前記第1等高線、前記第2等高線および前記絶対高度のデータを受信し、
      受信した前記第1等高線、前記第2等高線および前記絶対高度のデータを前記第1記憶装置に格納し、
      前記無人航空機を前記第1等高線に沿って前記絶対高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせ、
      前記無人航空機を前記第2等高線に沿って前記絶対高度で飛行させながら、前記ライダーセンサで前記森林を再度スキャンさせる、
     森林計測システム。
    It is a forest measurement system that has an unmanned aerial vehicle and a computer device, and allows the unmanned aerial vehicle to fly to perform forest measurement for forests on slopes.
    The unmanned aerial vehicle
    With a lidar sensor,
    The first signal processing circuit and
    The first storage device and
    It has a first communication circuit, and the rotation axis or swing axis of the rider sensor is mounted on the unmanned aerial vehicle so as to face the traveling direction of the aircraft.
    The computer device
    Display device and
    Input device and
    The second signal processing circuit and
    A second storage device that stores information about contour lines,
    Has a second communication circuit
    The second signal processing circuit
    Information about the contour lines is acquired from the second storage device,
    The designation of the first contour line, the second contour line and the absolute altitude is accepted via the input device.
    The designated first contour line, the second contour line, and the absolute altitude data are transmitted to the unmanned aerial vehicle via the second communication circuit.
    The first signal processing circuit
    Data of the first contour line, the second contour line, and the absolute altitude are received via the first communication circuit.
    The received first contour line, the second contour line, and the absolute altitude data are stored in the first storage device.
    While flying the unmanned aerial vehicle along the first contour line at the absolute altitude, the forest is scanned by the rider sensor.
    The rider sensor scans the forest again while flying the unmanned aerial vehicle along the second contour line at the absolute altitude.
    Forest measurement system.
  16.  撮像装置を備える無人航空機を用いて観測対象を撮影する方法であって、
     観測対象エリアを特定すること、
     前記観測対象エリアが斜面を含む場合、前記観測対象エリア内の等高線データを参照し、前記無人航空機が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、
     前記複数の経路セグメントを含む飛行経路を決定すること、
     決定された飛行経路に沿って前記無人航空機を飛行させながら前記撮像装置で撮影すること
    を実行する、撮影方法。
    It is a method of photographing an observation target using an unmanned aerial vehicle equipped with an imaging device.
    Identifying the observation target area,
    When the observation target area includes a slope, the contour data in the observation target area is referred to to determine a plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines.
    Determining a flight path that includes the plurality of path segments,
    An imaging method in which the unmanned aerial vehicle is made to fly along a determined flight path and photographed by the imaging device.
  17.  薬剤の散布装置を備える無人航空機を用いて薬剤を散布する方法であって、
     前記散布装置による散布対象エリアを特定すること、
     前記散布対象エリアが斜面を含む場合、前記散布対象エリア内の等高線データを参照し、前記無人航空機が等高線のいずれかに沿って所定の絶対高度で飛行する複数の経路セグメントを決定すること、
     前記複数の経路セグメントを含む飛行経路を決定すること、
     決定された飛行経路に沿って前記無人航空機を飛行させながら薬剤を散布すること
    を実行する、散布方法。
    It is a method of spraying chemicals using an unmanned aerial vehicle equipped with a chemical spraying device.
    Identifying the area to be sprayed by the spraying device,
    When the area to be sprayed includes a slope, the contour data in the area to be sprayed is referred to to determine a plurality of route segments in which the unmanned aerial vehicle flies at a predetermined absolute altitude along any of the contour lines.
    Determining a flight path that includes the plurality of path segments,
    A spraying method that performs spraying of a drug while flying the unmanned aerial vehicle along a determined flight path.
  18.  ライダー(LiDAR)センサを搭載した無人航空機を飛行させて行う斜面の森林を対象とする森林計測の制御をコンピュータに実行させるコンピュータプログラムであって、
     前記ライダーセンサの回転軸または揺動軸は、機体進行方向を向くよう前記無人航空機に搭載されており、
     前記コンピュータプログラムは、
    (i)前記無人航空機を第1等高線に沿って所定の絶対高度で飛行させながら、前記森林を前記ライダーセンサでスキャンさせること、および
    (ii)前記無人航空機を前記第1等高線とは異なる第2等高線に沿って前記所定の絶対高度で飛行させながら、前記ライダーセンサで前記森林を再度スキャンさせること
     の制御を前記コンピュータに実行させる、コンピュータプログラム。
    A computer program that allows a computer to control forest measurements for forests on slopes by flying an unmanned aerial vehicle equipped with a lidar sensor.
    The rotation axis or swing axis of the rider sensor is mounted on the unmanned aerial vehicle so as to face the traveling direction of the aircraft.
    The computer program
    (I) The unmanned aerial vehicle is made to scan the forest with the rider sensor while flying along the first contour line at a predetermined absolute altitude, and (ii) the unmanned aerial vehicle is different from the first contour line. A computer program that causes the computer to control the rescanning of the forest with the rider sensor while flying along the contour lines at the predetermined absolute altitude.
PCT/JP2020/029506 2019-07-31 2020-07-31 Method for performing forest mensuration, forest mensuration system, method for determining flight path of unmanned aerial vehicle, image capturing method, dispersion method, and computer program WO2021020569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535465A JP7141538B2 (en) 2019-07-31 2020-07-31 A method for forest measurement, a forest measurement system, a method for determining a flight path of an unmanned aerial vehicle, a photographing method, a spraying method, and a computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019141708 2019-07-31
JP2019-141708 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020569A1 true WO2021020569A1 (en) 2021-02-04

Family

ID=74230679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029506 WO2021020569A1 (en) 2019-07-31 2020-07-31 Method for performing forest mensuration, forest mensuration system, method for determining flight path of unmanned aerial vehicle, image capturing method, dispersion method, and computer program

Country Status (2)

Country Link
JP (1) JP7141538B2 (en)
WO (1) WO2021020569A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508678A (en) * 2021-08-09 2021-10-19 安徽农业大学 Profiling weeding device using unmanned aerial vehicle as carrier and adapted to slope terrain and weed height
CN113810625A (en) * 2021-10-15 2021-12-17 江苏泰扬金属制品有限公司 Cloud service system for resource allocation
JP7374977B2 (en) 2021-12-17 2023-11-07 ヤマハ発動機株式会社 Tree information estimation system, tree information estimation method, and computer program
CN117570911A (en) * 2024-01-15 2024-02-20 张家口市际源路桥工程有限公司 System and method for detecting construction space deviation of cast-in-situ box girder steel bars for bridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777703B (en) * 2022-04-25 2024-04-16 贵州省第三测绘院(贵州省国土资源遥感监测中心) Forestry sample plot accurate positioning method and device based on distance matching

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032495A1 (en) * 2008-09-16 2010-03-25 株式会社アドイン研究所 Tree information measuring method, tree information measuring device, and program
JP2014122019A (en) * 2012-12-12 2014-07-03 Boeing Co Tree metrology system
JP2017096789A (en) * 2015-11-25 2017-06-01 中国電力株式会社 Stock coal temperature measurement device and stock coal temperature measurement method
JP2018527669A (en) * 2016-08-03 2018-09-20 コアンチョウ・エックスエアークラフト・テクノロジー・カンパニー・リミテッド Method, apparatus and unmanned aerial vehicle for terrain following flight of unmanned aerial vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032495A1 (en) * 2008-09-16 2010-03-25 株式会社アドイン研究所 Tree information measuring method, tree information measuring device, and program
JP2014122019A (en) * 2012-12-12 2014-07-03 Boeing Co Tree metrology system
JP2017096789A (en) * 2015-11-25 2017-06-01 中国電力株式会社 Stock coal temperature measurement device and stock coal temperature measurement method
JP2018527669A (en) * 2016-08-03 2018-09-20 コアンチョウ・エックスエアークラフト・テクノロジー・カンパニー・リミテッド Method, apparatus and unmanned aerial vehicle for terrain following flight of unmanned aerial vehicles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508678A (en) * 2021-08-09 2021-10-19 安徽农业大学 Profiling weeding device using unmanned aerial vehicle as carrier and adapted to slope terrain and weed height
CN113508678B (en) * 2021-08-09 2022-11-04 安徽农业大学 Use profile modeling weeding device of unmanned aerial vehicle as adaptation slope topography and weeds height of carrier
CN113810625A (en) * 2021-10-15 2021-12-17 江苏泰扬金属制品有限公司 Cloud service system for resource allocation
JP7374977B2 (en) 2021-12-17 2023-11-07 ヤマハ発動機株式会社 Tree information estimation system, tree information estimation method, and computer program
CN117570911A (en) * 2024-01-15 2024-02-20 张家口市际源路桥工程有限公司 System and method for detecting construction space deviation of cast-in-situ box girder steel bars for bridge
CN117570911B (en) * 2024-01-15 2024-03-26 张家口市际源路桥工程有限公司 System and method for detecting construction space deviation of cast-in-situ box girder steel bars for bridge

Also Published As

Publication number Publication date
JP7141538B2 (en) 2022-09-22
JPWO2021020569A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021020569A1 (en) Method for performing forest mensuration, forest mensuration system, method for determining flight path of unmanned aerial vehicle, image capturing method, dispersion method, and computer program
US20210064024A1 (en) Scanning environments and tracking unmanned aerial vehicles
US20230213931A1 (en) Unmanned Aerial Vehicle Inspection System
US20240092483A1 (en) Unmanned Aerial Vehicle Inspection System
US9513635B1 (en) Unmanned aerial vehicle inspection system
US20180032088A1 (en) Flight planning for unmanned aerial tower inspection
US10313575B1 (en) Drone-based inspection of terrestrial assets and corresponding methods, systems, and apparatuses
US20180267561A1 (en) Autonomous control of unmanned aircraft
JP6290735B2 (en) Survey method
JP7007137B2 (en) Information processing equipment, information processing methods and programs for information processing
JP6675537B1 (en) Flight path generation device, flight path generation method and program, and structure inspection method
US10417755B1 (en) Drone-based inspection of wireless communication towers and corresponding methods, systems, and apparatuses
EP3093616A1 (en) Device and method for designating characteristic points
CN111142548A (en) Surveying and mapping unmanned aerial vehicle and surveying and mapping method based on unmanned aerial vehicle
WO2021020570A1 (en) Method for measuring forest, forest measurement system, and computer program
US20230152094A1 (en) Survey system, survey method, and survey program
Ali et al. The impact of UAV flight planning parameters on topographic mapping quality control
KR102467855B1 (en) A method for setting an autonomous navigation map, a method for an unmanned aerial vehicle to fly autonomously based on an autonomous navigation map, and a system for implementing the same
CN112823322A (en) Route planning method, equipment and storage medium
JP2020071580A (en) Information processing apparatus, flight control method and flight control system
US20210254980A1 (en) Traveling route generating system, traveling route generating method, traveling route generating program, coordinate measuring system, and drone
JP7412039B2 (en) Display device, computer program
JP7200191B2 (en) Measuring system and measuring method
JP2022143773A (en) Measurement system, measurement method and computer program
JP2023090165A (en) Tree information estimation system, tree information estimation method and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846999

Country of ref document: EP

Kind code of ref document: A1