WO2021019823A1 - Transparent electrode member, electrostatic capacitance-type sensor, and input/output device - Google Patents

Transparent electrode member, electrostatic capacitance-type sensor, and input/output device Download PDF

Info

Publication number
WO2021019823A1
WO2021019823A1 PCT/JP2020/010987 JP2020010987W WO2021019823A1 WO 2021019823 A1 WO2021019823 A1 WO 2021019823A1 JP 2020010987 W JP2020010987 W JP 2020010987W WO 2021019823 A1 WO2021019823 A1 WO 2021019823A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
transparent
region
conductive
electrode member
Prior art date
Application number
PCT/JP2020/010987
Other languages
French (fr)
Japanese (ja)
Inventor
知行 山井
高橋 亨
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2021019823A1 publication Critical patent/WO2021019823A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a transparent electrode member, a capacitance type sensor, and an input / output device.
  • the capacitance type sensor is provided with a transparent electrode member having a transparent electrode in order to detect the position of the portion in contact with the operating body without deteriorating the visibility of the image displayed on the screen.
  • a transparent electrode member a metal oxide-based material such as indium tin oxide (ITO) is generally used.
  • a transparent electrode member having such a configuration when a patterned portion provided with a transparent electrode and a non-patterned portion (insulating portion) not provided with a transparent electrode are present, the patterned portion and the non-patterned portion are visually visible. Is classified as. Then, when the difference between the reflectance of the patterned portion and the reflectance of the non-patterned portion becomes large, the difference between the patterned portion and the non-patterned portion becomes visually clear. Then, there is a problem that the visibility of the appearance as a display element for displaying an image is lowered.
  • Patent Document 1 states that silver nanowires are embedded in an overcoat layer on the surface of a translucent base material.
  • the translucent conductive member on which the conductive layer is formed the conductive layer is divided into a conductive region and a non-conductive region having a surface resistance higher than that of the conductive region.
  • At least a part of the silver nanowires embedded in the overcoat layer is iodide, and in the non-conductive region, silver iodide is not exposed from the surface of the overcoat layer, or the non-conductive region
  • the amount of silver iodide exposed on the surface of the overcoat layer in the above is less than the amount of silver nanowires exposed on the surface of the overcoat layer in the conductive region.
  • Patent Document 2 describes a substrate sheet and a plurality of conductive nanofibers formed on the substrate sheet, which are conductive through the conductive nanofibers and have a size that cannot be visually recognized.
  • the provided conductive nanofiber sheet is disclosed.
  • the insulating pattern layer in the conductive nanofiber sheet described in Patent Document 2 has narrow grooves having a width that cannot be visually recognized, and the narrow grooves are insulated from the conductive pattern layer and a plurality of narrow grooves. It is formed like an island.
  • Patent Document 3 includes a base material having a surface, transparent conductive portions and transparent insulating portions arranged alternately in a plane on the surface, and the transparent insulating portion is a transparent conductive layer composed of a plurality of island portions. There is a description about a transparent conductive element in which the average boundary line length of the transparent conductive portion and the transparent insulating portion is 20 mm / mm 2 or less.
  • a floating electrode is formed between the conductive nanowire electrodes via an insulating groove, and insulating portions having few conductive nanowires are arranged discretely and in a grid pattern in the conductive nanowire electrode and the floating electrode.
  • Capacitive touch sensors are described.
  • the transparent electrode is provided with a conductive region and an optical adjustment region, and while maintaining the conductivity of the transparent electrode, the reflectance is reduced and the invisibility of the transparent electrode is enhanced.
  • a floating electrode is formed between the conductive nanowire electrodes via an insulating groove, and the outer shape of the electrode and the outer shape of the floating electrode are formed in a zigzag shape to suppress the occurrence of moire on the pixels of the display device.
  • the electrostatic touch sensor to be used is described.
  • Patent Document 6 provides an electrostatic touch sensor that prevents the occurrence of moire on the pixels of a display device by randomly providing a plurality of openings in a transparent electrode pattern portion and a plurality of island portions in an adjacent transparent insulating pattern portion. be written.
  • Patent Documents 7 and 8 describe that the pixels of R (red), G (green), and B (blue) are arranged in a pentile arrangement. There is. In the pentile array, pixels of different colors are alternately arranged in the X direction and the Y direction.
  • An object of the present invention is to provide a transparent electrode member, a capacitance type sensor, and an input / output device capable of improving the invisibility of a transparent electrode pattern and suppressing the occurrence of moire.
  • One aspect of the present invention is between a translucent and insulating base material, a plurality of transparent electrodes arranged on a first surface which is one surface of the base material, and having translucency, and a plurality of transparent electrodes.
  • the optical adjustment region has a plurality of partial regions arranged at positions that serve as lattice points of the lattice along the in-plane of the transparent electrode, and four lattices of the plurality of lattice points adjacent to each other.
  • the lengths of the two diagonal lines of the rectangular region are different from each other.
  • the vertical and horizontal pitches in the plurality of partial regions are different from each other, and the occurrence of moire can be suppressed in relation to the arrangement of the structures overlapping the plurality of partial regions.
  • the longer one is the first diagonal line
  • the shorter one is the second diagonal line
  • the length of the first diagonal line is L1
  • the length of the second diagonal line is L2.
  • L1 / L2 is preferably 1.2 or more and 2.7 or less.
  • the shape of the transparent electrode is preferably a substantially rectangular shape that is not similar to the rectangular region.
  • the insulating layer is provided in a linear shape connecting a plurality of lattice points without overlapping the partial region.
  • the arrangement of the plurality of partial regions and the extending direction of the insulating layer match the direction of the arrangement of the lattice points, and it becomes difficult to visually distinguish the plurality of partial regions from the insulating layer. , Invisibility can be improved.
  • the insulating layer arranged along the transparent electrode extends along a portion extending along the direction of the lattice line of the lattice and a non-lattice direction different from the direction of the lattice line. May have a portion.
  • the insulating layer arranged along the transparent electrode can extend in a zigzag pattern, and the invisibility of the insulating layer arranged along the transparent electrode can be enhanced.
  • the transparent electrodes are arranged side by side along the first direction on the substrate, and a plurality of first transparent electrodes electrically connected to each other and a second direction different from the first direction.
  • the two first transparent electrodes which are arranged side by side along the line and have a plurality of second transparent electrodes electrically connected to each other, and which are adjacent to each other in the first direction, are located between the two first transparent electrodes.
  • the two second transparent electrodes that are located and electrically connected to each other by the first transparent wiring consisting of the conductive region and adjacent to each other in the second direction are electrically connected by the second transparent wiring, and the first transparent wiring and the second transparent electrode are electrically connected to each other.
  • the transparent wiring may have a portion that overlaps with the insulating material.
  • the transparent electrodes are arranged side by side on the base material along the first direction of the base material, and are sandwiched between a plurality of first transparent electrodes electrically connected to each other and the base material.
  • a second surface located on the opposite side of the first surface has a plurality of second transparent electrodes arranged side by side along a second direction different from the first direction and electrically connected to each other.
  • the two first transparent electrodes adjacent to each other in the first direction are electrically connected to each other by the first transparent wiring located between the two first transparent electrodes and composed of a conductive region, and the two second transparent electrodes adjacent to each other in the second direction.
  • the two transparent electrodes are electrically connected by the second transparent wiring, and may have a portion where the first transparent wiring and the second transparent wiring overlap when viewed from the normal direction of the first surface.
  • the outer shape of the first transparent electrode and the outer shape of the second transparent electrode are both rectangular, and the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode and the outer shape of the second transparent electrode are rectangular. It may be provided so as to be aligned on two diagonals of the region.
  • the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode and the outer shape of the second transparent electrode may have the same length.
  • the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode and the outer shape of the second transparent electrode may be orthogonal to each other.
  • a material common to the transparent electrode when viewed from the normal direction of the first surface, is surrounded by an insulating layer between the second transparent electrodes arranged adjacent to the first transparent electrode. It has a configured dummy region, and the dummy region may have a plurality of partial regions.
  • the boundary line between the dummy region and the insulating layer may have a portion extending along the arrangement direction of the plurality of partial regions of the dummy region.
  • the insulating layer arranged along the dummy region extends along a portion extending along the direction of the lattice line of the lattice and a non-lattice direction different from the direction of the lattice line. May have a portion.
  • the insulating layer arranged along the dummy region can extend in a zigzag manner, and the invisibility of the insulating layer arranged along the dummy region can be enhanced.
  • One aspect of the present invention is a capacitance type sensor including the above-mentioned transparent electrode member and a detection unit for detecting a change in capacitance occurring between an operating body such as an operator's finger and the transparent electrode. is there.
  • a capacitance type sensor the transparency of the transparent electrode is high, and the occurrence of moire is suppressed in relation to the arrangement of the structure overlapping the plurality of partial regions. Therefore, the user can pass through the capacitance type sensor. It is possible to improve the visibility of the image observed in the image, and it is also possible to improve the display uniformity.
  • One aspect of the present invention is an input / output device including the above-mentioned capacitance type sensor and a display device overlapping the capacitance type sensor.
  • the transparency of the transparent electrode is high, and the occurrence of moire is suppressed in relation to the arrangement of the pixels of the display device that overlaps with a plurality of partial regions. It is possible to improve the visibility of the image observed in the image, and it is also possible to improve the display uniformity.
  • a plurality of pixels of the display device are arranged in a pentile, and the ratio of the length of the major axis to the length of the minor axis in the diagonal of the rectangle formed by the unit cell of the pentile arrangement is the length in the diagonal of the rectangular region. It is preferably different from the ratio of the shaft length to the minor shaft length.
  • a transparent electrode member capable of improving the invisibility of the transparent electrode pattern and suppressing the occurrence of moire.
  • FIG. 1 It is sectional drawing of the cut surface C2-C2 shown in FIG. It is a top view which illustrates the transparent electrode member which concerns on one Embodiment of this invention. It is an enlarged plan view which shows a part of the detection area of the transparent electrode member of this embodiment.
  • (A) and (b) are plan views illustrating the rectangular region of the transparent electrode member of this embodiment. It is a top view which exemplifies the pixel arrangement of a display device. It is a top view which illustrates the transparent electrode member which concerns on a comparative example (the 1).
  • (A) and (b) are plan views illustrating the rectangular region of the transparent electrode member according to Comparative Example (No. 1).
  • FIG. 1 It is a top view which illustrates the transparent electrode member which concerns on a comparative example (the 2).
  • (A) and (b) are plan views illustrating the rectangular region of the transparent electrode member according to Comparative Example (Part 2). It is a figure explaining the structure of the capacitance type sensor which concerns on other embodiment of this invention. It is a figure explaining the structure of the capacitance type sensor which concerns on another embodiment of this invention. It is a figure explaining the structure of the input / output device which concerns on another embodiment of this invention.
  • FIG. 1 is a plan view conceptually showing the structure of the transparent electrode member according to the embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line V1-V1 of FIG.
  • FIG. 3 is a partial cross-sectional view conceptually showing an example of a specific structure of the transparent electrode of the transparent electrode member according to the embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view conceptually showing another specific example of the specific structure of the transparent electrode of the transparent electrode member according to the embodiment of the present invention.
  • the transparent electrode member 100 includes a translucent insulating base material 101.
  • translucent and “translucent” refer to a state in which the visible light transmittance is 50% or more (preferably 80% or more). Further, the haze value is preferably 6% or less.
  • light-shielding and “light-shielding property” refer to a state in which the visible light transmittance is less than 50% (preferably less than 20%).
  • the base material 101 is formed of a film-like transparent base material such as polyethylene terephthalate (PET) or cyclic polyolefin (COP, COC), a glass base material, or the like.
  • the transparent electrode member 100 includes a transparent electrode 110 having translucency and an insulating layer 102 arranged on the first surface S1 which is one surface of the base material 101.
  • the insulating layer 102 is arranged in the insulating region IR located at least a part around the region where the transparent electrode 110 is arranged when viewed from the normal direction of the first surface S1.
  • the transparent electrode 110 includes a dispersion layer DL including a matrix MX made of an insulating material and conductive nanowires NW dispersed in the matrix MX.
  • the insulating material constituting the matrix MX include polyester resin, acrylic resin, polyurethane resin and the like.
  • the conductive nanowire NW at least one selected from the group consisting of gold nanowires, silver nanowires, and copper nanowires is used. The dispersibility of the conductive nanowires NW is ensured by the matrix MX. By contacting the plurality of conductive nanowires NW with each other at least in part, the in-plane conductivity of the transparent electrode 110 is maintained.
  • the transparent electrode 110 has a region (conductive region) CR composed of a conductive portion 111 and a region (optical) having an optical adjusting portion 112 when viewed from the normal direction of the first surface S1. Adjustment area) AR and.
  • the conductive portion 111 has higher conductivity than the optical adjusting portion 112, and the optical adjusting portion 112 has a lower dispersion density of the conductive nanowires NW in the dispersion layer DL than the conductive portion 111.
  • the conductive nanowires NW are dispersed and connected to each other in the matrix MX, so that the conductive nanowires NW are dispersed in the matrix MX and connected to each other, so that the conductive nanowires NW are compared with other transparent conductive materials, particularly oxide-based conductive materials.
  • High conductivity can be achieved.
  • the conductive nanowire NW itself does not have translucency, the reflectance of the transparent electrode 110 tends to be high due to the high dispersion density of the conductive nanowire NW in the dispersion layer DL.
  • the transparent electrode 110 is configured to have a conductive region CR having a relatively high conductivity and an optical adjustment region AR having a relatively low reflectance, while maintaining the conductivity of the transparent electrode 110. It is realized that the reflectance is reduced and the invisibility of the transparent electrode 110 is increased.
  • the optical adjustment region AR does not significantly change the optical characteristics (for example, the refractive index) other than the reflectance.
  • the reflectance of the can be made lower than the reflectance of the conductive region CR. Therefore, for example, when there is an image that is visually recognized through the transparent electrode member 100, the display uniformity of the image can be improved. Further, if the configuration of the optical adjustment region AR is appropriately controlled, it is possible to increase the conductivity of the optical adjustment region AR as compared with the through hole provided in the transparent electrode 110.
  • the conductivity of the transparent electrode 110 it is possible to increase the conductivity of the transparent electrode 110 as a whole, and it is also possible to increase the area ratio of the optical adjustment region AR in the transparent electrode 110. Therefore, by providing the optical adjustment region AR, it is possible to increase the conductivity and the invisibility of the transparent electrode 110 at a higher level than when the through hole is provided.
  • the reflectance of the insulating region IR is preferably lower than the reflectance of the conductive region CR.
  • the difference in reflectance between the transparent electrode 110 in which the overall reflectance is lowered and the insulating region IR is smaller than in the case where the optical adjustment region 112 is not provided. Therefore, the boundary between the transparent electrode 110 and the insulating region IR becomes difficult to see, and the invisibility of the transparent electrode 110 can be enhanced.
  • the insulating layer 102 arranged in the insulating region IR contains the matrix MX which is one of the components of the dispersion layer DL.
  • the optical characteristics for example, the refractive index
  • the display uniformity of the image is likely to be improved, and the invisibility of the transparent electrode 110 can be improved more stably.
  • the dispersion density of the conductive nanowires NW may be reduced to the extent that the dispersion layer DL of the optical adjustment unit 112 exhibits insulating properties.
  • FIG. 3 is a specific example of such a configuration (first configuration), in which the conductive nanowire NW is substantially not present in the dispersion layer DL of the optical adjustment unit 112, and the dispersion layer DL is composed of the matrix MX.
  • the conductive nanowire NW which is a member for increasing the reflectance, is substantially not present, the reflectance of the optical adjusting unit 112 is particularly low.
  • the insulating layer 102 arranged in the insulating region IR of the transparent electrode member 100 is composed of the matrix MX, similarly to the dispersion layer DL of the optical adjusting unit 112.
  • the transparent electrode member 100 has a structure in which the members arranged in the low reflectance region (insulation region IR and optical adjustment region AR) located around the conductive region CR are made of a common material (matrix MX). It becomes.
  • the reflectance of the entire transparent electrode 110 is particularly low, and the invisibility of the transparent electrode 110 is more stably improved.
  • FIG. 3 shows a case where the insulating layer 102 and the optical adjusting unit 112 are composed of the matrix MX without substantially the conductive nanowire NW, but the present invention is not limited to this.
  • the conductive nanowire NW or a substance based on the conductive nanowire NW can be used. It may still be dispersed in the matrix MX. The same applies to the structure of the insulating layer 102 shown in FIG. 4 described below.
  • the optical adjustment unit 112 may have higher conductivity than the insulating layer 102.
  • FIG. 4 is a specific example of such a configuration (second configuration), in which the dispersion layer DL of the optical adjustment unit 112 is a conductive nanowire NW on the side distal to the base material 101 (the side facing the user). The dispersion density is low, and the dispersion density of the conductive nanowires NW is high on the side proximal to the base material 101 (the side facing the base material 101). Of the conductive nanowires NW dispersed in the dispersion layer DL, the exposed conductive nanowire NW is most easily visible, and when the dispersion layer DL of the optical adjustment unit 112 has the structure shown in FIG.
  • the visibility of the optical adjustment unit 112 can be appropriately reduced.
  • the conductive nanowires NW located on the side proximal to the base material 101 can secure a certain degree of conductivity, although it is lower than the dispersion layer DL of the conductive portion 111. Therefore, when the dispersion layer DL of the optical adjustment unit 112 has the structure shown in FIG. 4, the conductivity of the entire transparent electrode 110 can be increased.
  • the difference between the dispersion density of the conductive nanowire NW in the dispersion layer DL of the optical adjustment unit 112 and the dispersion density of the conductive nanowire NW in the dispersion layer DL of the conductive unit 111 is relatively small, so that the transparent electrode In 110, the pattern formed by the optical adjusting unit 112 and the conductive unit 111 becomes difficult to see.
  • FIG. 4 shows a case where the optical adjustment unit 112 changes the dispersion density of the conductive nanowires NW along the normal direction of the first surface S1, but is not limited to this.
  • the optical adjustment unit 112 changes the dispersion density of the conductive nanowires NW along the normal direction of the first surface S1, but is not limited to this.
  • the conductive nanowire NW or a substance based on the conductive nanowire NW can be used. It may still be dispersed in the matrix MX.
  • the optical adjustment region AR is located in the conductive region CR.
  • the optical adjustment region AR does not have a portion that directly contacts the insulation region IR. Therefore, the conductive region CR makes it possible to appropriately form a conductive path in the transparent electrode 110, and it is possible to suppress a decrease in the conductivity of the transparent electrode 110.
  • the optical adjustment region AR has a portion that is in direct contact with the insulating region IR, the conductive path formed in the transparent electrode 110 may meander, and in this case, the conductivity of the transparent electrode 110 is lowered. It ends up. Further, as will be described later, invisibility may be reduced by having a portion where the optical adjustment region AR is connected to the insulation region IR.
  • the area ratio (adjustment rate) of the optical adjustment region AR may be preferably 10% or more and 40% or less.
  • the conductivity tends to be relatively lowered as a trade-off with lowering the reflectance.
  • the adjustment rate may be preferably 10% or more from the viewpoint of stably reducing the reflectance of the transparent electrode 110, and may be 15% or more. It may be more preferable.
  • the adjustment rate is increased to about 40% to improve the invisibility of the transparent electrode 110, the conductivity required for the transparent electrode 110 may be secured, and the adjustment rate should be 35% or less. May be preferable from the viewpoint of increasing conductivity while ensuring excellent invisibility.
  • the optical adjustment region AR has a plurality of partial regions discretely located in the conductive region CR.
  • the optical adjustment region AR and the conductive region CR which have relatively different translucency, form a large pattern with each other, there is a concern that the visibility of the pattern may be improved depending on the pattern shape. ..
  • the optical adjusting unit 112 is a region having relatively low conductivity, if it is collectively located in the transparent electrode 110, a conductive path meandering in the transparent electrode 110 may be formed. In this case, the conductivity of the transparent electrode 110 is reduced.
  • the partial regions that is, the optical adjustment region AR
  • the optical adjustment region AR the partial regions composed of the optical adjustment portion 112 having relatively low conductivity discretely in the conductive region CR
  • the reflectance of the insulating region IR located between the plurality of transparent electrodes 110 is the conductive portion 111 of the transparent electrode 110. The visibility of the insulating region IR may be improved due to the difference from the reflectance of.
  • the transparent electrode 110 is in a state where at least a part is surrounded by the insulating region IR. Invisibility can be improved.
  • the partial regions constituting the optical adjustment region AR are separated from each other by 30 ⁇ m or more. Since this separation distance sd is the width of the conductive region CR located between the discretely arranged optical adjustment portions 112, it is the width of each conductive path in the transparent electrode 110. Therefore, when the separation distance sd is 30 ⁇ m or more, the decrease in conductivity of the transparent electrode 110 is stably suppressed.
  • the shape of each of the plurality of partial regions is a circle, and the diameter of the circle may be 10 ⁇ m or more and 100 ⁇ m or less. From the viewpoint of more stably improving the invisibility of the transparent electrode 110, it is preferable that the shape of the plurality of partial regions (optical adjustment region AR) is uniform within the transparent electrode 110.
  • the shape of this partial region is a circle and the diameter thereof is within the above range, the distance between the plurality of partial regions (optical adjustment region AR) while setting the adjustment ratio to 40% or less. It can be easily realized that the distance is 30 ⁇ m or more.
  • each of the above-mentioned plurality of partial regions may be a quadrangle instead of a circle.
  • the length of the longest diagonal line among the diagonal lines of the quadrangle is preferably 10 ⁇ m or more and 100 ⁇ m or less for the same reason as the above-mentioned reason for the diameter of the circle.
  • the reflectance of the transparent electrode 110 as a whole is unlikely to vary. Invisibility is easily improved, which is preferable.
  • FIG. 5 is a plan view showing a capacitance type sensor according to the present embodiment.
  • FIG. 6 is an enlarged plan view of the region A1 shown in FIG.
  • FIG. 7 is a cross-sectional view of the cut surfaces C1-C1 shown in FIG.
  • FIG. 8 is a cross-sectional view of the cut surfaces C2-C2 shown in FIG. Since the transparent electrode is transparent, it cannot be visually recognized originally, but FIGS. 5 and 6 show the outer shape of the transparent electrode for easy understanding.
  • the capacitance type sensor 1 constitutes the base material 2, the first transparent electrode 4, the second transparent electrode 5, and the second transparent wiring. It includes a bridge wiring unit 10, a panel 3, a detection unit, and a control unit (neither of which is shown).
  • the panel 3 is provided on the side opposite to the base material 2 when viewed from the bridge wiring portion 10.
  • An optical transparent adhesive layer (OCA; Optical Clear Adhesive) 30 is provided between the base material 2 and the panel 3.
  • An insulating portion 20 made of an insulating material is provided between the base material 2 and the bridge wiring portion 10. As shown in FIG. 7, in the portion where the bridge wiring portion 10 is provided, the optical transparent adhesive layer 30 is provided between the bridge wiring portion 10 and the panel 3.
  • the base material 2 has translucency and is formed of a film-like transparent base material such as polyethylene terephthalate (PET), a glass base material, or the like.
  • a first transparent electrode 4 and a second transparent electrode 5 are provided on the first surface S1 which is one main surface of the base material 2. The details will be described later.
  • the panel 3 is provided on the side opposite to the base material 2 when viewed from the bridge wiring portion 10, and has translucency. An operating body such as an operator's finger is brought into contact with or close to the panel 3 side to operate the transparent electrode member.
  • the material of the panel 3 is not particularly limited, but a glass base material or a plastic base material is preferably applied as the material of the panel 3.
  • the panel 3 is bonded to the base material 2 via an optically transparent adhesive layer 30 provided between the base material 2 and the panel 3.
  • the optical transparent adhesive layer 30 is made of an acrylic adhesive, a double-sided adhesive tape, or the like.
  • the capacitance type sensor 1 does not detect the detection region 11 when viewed from the direction along the normal of the surface on the panel 3 side (Z1-Z2 direction: see FIGS. 7 and 8). It consists of an area 25.
  • the detection area 11 is an area that can be operated by an operating body such as a finger
  • the non-detection area 25 is a frame-shaped area located on the outer peripheral side of the detection area 11.
  • the non-detection region 25 is shielded by a decorative layer (not shown), and the light (external light is exemplified) from the surface on the panel 3 side to the surface on the base material 2 side in the capacitance type sensor 1 and the base material 2 Light from the side surface to the surface on the panel 3 side (light from the backlight of the display device used in combination with the capacitive sensor 1 is exemplified) is less likely to pass through the non-detection region 25. ing.
  • the capacitance type sensor 1 has a configuration in which the first electrode connecting body 8 and the second electrode connecting body 12 are provided on one main surface (first surface S1) of the base material 2.
  • the transparent electrode member 400 is provided.
  • the first electrode connector 8 is arranged in the detection region 11 and has a plurality of first transparent electrodes 4.
  • the plurality of first transparent electrodes 4 are formed on the first surface S1 of the base material 2 located on the Z1 side of the main surfaces whose normals are the directions along the Z1-Z2 directions. It is provided.
  • Each first transparent electrode 4 is connected in the Y1-Y2 direction (first direction) via an elongated connecting portion 7.
  • the first electrode connecting body 8 having a plurality of first transparent electrodes 4 connected in the Y1-Y2 direction is arranged at intervals in the X1-X2 direction.
  • the connecting portion 7 constitutes the first transparent wiring and is integrally formed with the first transparent electrode 4.
  • the connecting portion 7 electrically connects two adjacent first transparent electrodes 4 to each other.
  • An insulating region IR (insulating layer 21) is provided around the first electrode connecting body 8 and the second electrode connecting body 12.
  • the first transparent electrode 4 and the connecting portion 7 have translucency and are formed of a material containing conductive nanowires.
  • a material containing conductive nanowires By using a material containing conductive nanowires, it is possible to achieve high translucency and low electrical resistance of the first transparent electrode 4. Further, by using a material containing conductive nanowires, the deformation performance of the capacitance type sensor 1 can be improved.
  • the first transparent electrode 4 has a plurality of first optical adjustment regions 41.
  • the structure of the plurality of first optical adjustment regions 41 is equal to the above-mentioned optical adjustment region AR.
  • the plurality of first optical adjustment regions 41 are arranged apart from each other in the first transparent electrode 4, but are not provided in the non-adjustment region NR located around the connecting portion 7 in the first transparent electrode 4. , Is not provided in the connecting portion 7 connected to the first transparent electrode 4.
  • the distance (first distance) D1 between the plurality of adjacent first optical adjustment regions 41 is constant and is 30 ⁇ m or more.
  • the shape of the first optical adjustment region 41 is a circle.
  • the diameter D11 of the circle of the first optical adjustment region 41 is 10 ⁇ m or more and 100 ⁇ m or less.
  • the second electrode connector 12 is arranged in the detection region 11 and has a plurality of second transparent electrodes 5. As shown in FIGS. 7 and 8, the plurality of second transparent electrodes 5 are provided on the first surface S1 of the base material 2. As described above, the second transparent electrode 5 is provided on the same surface as the first transparent electrode 4 (first surface S1 of the base material 2). Each second transparent electrode 5 is connected in the X1-X2 direction (second direction) via an elongated bridge wiring portion 10. Then, as shown in FIG. 5, the second electrode connecting bodies 12 having the plurality of second transparent electrodes 5 connected in the X1-X2 direction are arranged at intervals in the Y1-Y2 direction.
  • the bridge wiring portion 10 is formed as a separate body from the second transparent electrode 5.
  • the X1-X2 direction intersects the Y1-Y2 direction. For example, the X1-X2 direction intersects the Y1-Y2 direction perpendicularly.
  • the second transparent electrode 5 has translucency and is formed of a material containing conductive nanowires.
  • the conductive nanowires are as described above with respect to the material of the first transparent electrode 4.
  • the second transparent electrode 5 has a plurality of second optical adjustment regions 51.
  • the structure of the plurality of second optical adjustment regions 51 is equal to the above-mentioned optical adjustment region AR.
  • the plurality of second optical adjustment regions 51 are arranged apart from each other in the second transparent electrode 5, but are not provided in the region overlapping the bridge wiring portion 10 and the non-adjustment region NR.
  • the distance (second distance) D2 between the plurality of adjacent second optical adjustment regions 51 is constant and is 30 ⁇ m or more.
  • the shape of the second optical adjustment region 51 is a circle.
  • the diameter D12 of the circle of the second optical adjustment region 51 is 10 ⁇ m or more and 100 ⁇ m or less.
  • the bridge wiring portion 10 is formed of a material containing an oxide-based material having translucency and conductivity.
  • Oxide-based materials having translucency and conductivity include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), GZO (Gallium-doped Zinc Oxide), AZO (Aluminum-doped Zinc Oxide) and FTO (Fluorine). -At least one selected from the group consisting of doped Tin Oxide) is used.
  • the bridge wiring portion 10 may have a first layer containing an oxide-based material such as ITO, and a second layer made of a transparent metal having a lower resistance than the first layer. Further, the bridge wiring portion 10 may further have a third layer containing an oxide-based material such as ITO. When the bridge wiring portion 10 has a laminated structure of the first layer and the second layer, or a laminated structure of the first layer, the second layer, and the third layer, the bridge wiring portion 10 and the first transparent electrode 4 It is desirable to have etching selectivity between the and the second transparent electrode 5.
  • ITO oxide-based material
  • an insulating portion 20 is provided on the surface of the connecting portion 7 that connects the first transparent electrodes 4 to each other. As shown in FIG. 7, the insulating portion 20 fills the space between the connecting portion 7 and the second transparent electrode 5, and slightly rides on the surface of the second transparent electrode 5. As the insulating portion 20, for example, a novolak resin (resist) is used.
  • the bridge wiring portion 10 is provided from the surface 20a of the insulating portion 20 to the surface of each second transparent electrode 5 located on both sides of the insulating portion 20 in the X1-X2 direction.
  • the bridge wiring unit 10 electrically connects two adjacent second transparent electrodes 5 to each other.
  • a bridge wiring portion 10 for connecting between the second transparent electrodes 5 is provided on the surface of the insulating portion 20 provided on the surface of the connecting portion 7.
  • the insulating portion 20 is interposed between the connecting portion 7 and the bridge wiring portion 10, and the first transparent electrode 4 and the second transparent electrode 5 are electrically insulated from each other.
  • the capacitance type sensor 1 can be made thinner.
  • the first transparent electrode 4 and the second transparent electrode 5 are arranged side by side on the first surface S1 of the base material 2 in an adjacent state.
  • the first transparent electrode 4 and the second transparent electrode 5 correspond to the transparent electrode 110 in FIG.
  • An insulating layer 21 is provided between the first transparent electrode 4 and the second transparent electrode 5.
  • the insulating layer 21 corresponds to the insulating region IR in FIGS. 1 and 5.
  • the width D3 of the insulating layer 21 is, for example, about 10 ⁇ m or more and 20 ⁇ m or less.
  • the connecting portion 7 shown in FIGS. 6 to 8 is integrally formed with the first transparent electrode 4 and extends in the Y1-Y2 direction. Further, the bridge wiring portion 10 shown in FIGS. 6 to 8 is formed on the surface 20a of the insulating portion 20 covering the connecting portion 7 as a separate body from the second transparent electrode 5, and extends in the X1-X2 direction.
  • the arrangement form of the connecting portion 7 and the bridge wiring portion 10 is not limited to this.
  • the connecting portion 7 may be integrally formed with the second transparent electrode 5 and extend in the X1-X2 direction. In this case, the connecting portion 7 electrically connects two adjacent second transparent electrodes 5 to each other.
  • the bridge wiring portion 10 may be formed on the surface 20a of the insulating portion 20 covering the connecting portion 7 as a separate body from the first transparent electrode 4, and may extend in the Y1-Y2 direction. In this case, the bridge wiring unit 10 electrically connects two adjacent first transparent electrodes 4 to each other.
  • the bridge wiring portion 10 is formed on the surface 20a of the insulating portion 20 covering the connecting portion 7 as a separate body from the second transparent electrode 5, and is formed in the X1-X2 direction. Take the case where it extends to.
  • each wiring unit 6 is connected to an external connection unit 27 that is electrically connected to a flexible printed circuit board (not shown). That is, each wiring portion 6 electrically connects the first electrode connecting body 8 and the second electrode connecting body 12 and the external connecting portion 27.
  • the external connection portion 27 is electrically connected to a flexible printed substrate (not shown) via a material having a metal such as a conductive paste, Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au.
  • the capacitance generated between the operating body and the transparent electrodes (mainly the first transparent electrode 4 and the second transparent electrode 5) is generated. It is equipped with a detection unit (not shown) that detects changes in the above and a control unit that calculates the position of the operating body based on the signal from the detection unit. Although detailed description will not be given, integrated circuits are used in the detection unit and the control unit.
  • Each wiring portion 6 is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, and Au.
  • the connection wiring 16 is formed of a transparent conductive material such as ITO or metal nanowires, and extends from the detection region 11 to the non-detection region 25.
  • the wiring portion 6 is laminated on the connection wiring 16 in the non-detection region 25 and is electrically connected to the connection wiring 16.
  • the dispersion layer DL having the same metal nanowires as the first transparent electrode 4 and the second transparent electrode 5 (specific example is silver nanowires) extends continuously to the non-detection region 25 to form the connection wiring 16.
  • the non-detection region 25 may have a laminated wiring structure in which the connection wiring 16 and the metal layer constituting the wiring portion 6 are laminated.
  • the connection wiring 16 made of the dispersion layer DL having the metal nanowires may further extend to form at least a part of the wiring portion 6.
  • the wiring portion 6 may have a laminated structure of the dispersed layer DL and the metal-based material.
  • the wiring portion 6 is provided in a portion located in the non-detection region 25 on the first surface S1 of the base material 2.
  • the external connection portion 27 is also provided in a portion located in the non-detection region 25 on the first surface S1 of the base material 2, similarly to the wiring portion 6.
  • the wiring portion 6 and the external connection portion 27 are displayed so as to be visually recognized for easy understanding, but in reality, the portion located in the non-detection region 25 has a light-shielding property.
  • a decorative layer (not shown) is provided. Therefore, when the capacitance type sensor 1 is viewed from the surface on the panel 3 side, the wiring portion 6 and the external connection portion 27 are hidden by the decorative layer and are not visible.
  • the material constituting the decorative layer is arbitrary as long as it has a light-shielding property.
  • the decorative layer may have an insulating property.
  • the capacitance type sensor 1 when a finger is brought into contact with the surface 3a of the panel 3, for example, as an example of the operating body shown in FIG. 7, between the finger and the first transparent electrode 4 close to the finger, And a capacitance is generated between the finger and the second transparent electrode 5 close to the finger.
  • the capacitance type sensor 1 can detect the change in capacitance at this time by the detection unit, and can calculate the contact position of the finger by the control unit based on the change in capacitance. That is, the capacitance type sensor 1 detects the X coordinate of the position of the finger based on the change in capacitance between the finger and the first electrode connector 8, and between the finger and the second electrode connector 12. The Y coordinate of the finger position is detected based on the change in capacitance of (self-capacitance detection type).
  • the capacitance type sensor 1 may be a mutual capacitance detection type. That is, the capacitance type sensor 1 applies a driving voltage to a row of one of the electrodes of the first electrode connecting body 8 and the second electrode connecting body 12 (for example, the first electrode connecting body 8), and applies a driving voltage to the first electrode. The change in capacitance between the connector 8 and the second electrode of the second electrode connector 12 (for example, the second electrode connector 12) and the finger may be detected.
  • the capacitance type sensor 1 detects the X coordinate of the position of the finger depending on which change in capacitance is detected when a voltage is applied to the first electrode connector 8, and whichever The Y coordinate of the finger position is detected depending on whether the capacitance of the second electrode connector 12 has changed.
  • the difference between the reflectance of the transparent electrode having the conductive portion including the conductive nanowire and the reflectance of the insulating portion including the gap between the adjacent transparent electrodes is As the size increases, the difference between the conductive portion and the insulating portion becomes visually apparent. Then, the transparent electrode becomes easily visible as a pattern.
  • the capacitance type sensor is provided with an antireflection layer or an antireflection layer, the difference between the reflectance of the conductive portion and the reflectance of the insulating portion can be suppressed, while the antireflection layer and the reflection reduction can be suppressed. It is necessary to add equipment for forming layers, and the manufacturing process of the capacitance type sensor is increased.
  • the first transparent electrode 4 has a plurality of first optical adjustment regions 41 arranged apart from each other.
  • the second transparent electrode 5 has a plurality of second optical adjustment regions 51 arranged apart from each other. Therefore, among the first transparent electrode 4 and the second transparent electrode 5, a plurality of conductive region CRs including conductive nanowires, a plurality of first optical adjustment regions 41, and a plurality of second optical adjustment regions 51 are formed. Region (optical adjustment region AR) and. Therefore, in the first transparent electrode 4 and the second transparent electrode 5, there are a plurality of boundaries (internal boundaries) between the conductive region CR and the optical adjustment region AR.
  • the non-adjustable region NR described above is composed of the conductive region CR, the non-adjustable region NR does not have an internal region (boundary between the conductive region CR and the optical adjustment region AR) and is an external region (first transparent region). Only the boundary between the electrode 4 or the second transparent electrode 5 and the insulating layer 21) is present.
  • both the internal boundary and the external boundary are visually recognized, so that it is suppressed that only the external boundary is emphasized, and the first transparent electrode 4 and the second transparent electrode are suppressed. 5 becomes difficult to be visually recognized as a pattern. Thereby, the invisibility of the pattern of the first transparent electrode 4 and the second transparent electrode 5 can be improved.
  • the first optical adjustment region 41 is provided in a region other than the non-adjustable region NR of the first transparent electrode 4, and the second optical adjustment region 51 is provided in a region other than the non-adjustable region NR of the second transparent electrode 5.
  • the first optical adjustment region 41 and the second optical adjustment region 51 are concentrated so that the first transparent electrode 4 and the second transparent electrode 5 are easily recognized as a pattern.
  • first distance between the plurality of adjacent first optical adjustment regions 41 is constant, and the second distance between the plurality of adjacent second optical adjustment regions 51 is constant. That is, the plurality of first optical adjustment regions 41 are uniformly provided in regions other than the non-adjustment region NR of the first transparent electrode 4.
  • the conductive nanowires contained in the materials of the first transparent electrode 4 and the second transparent electrode 5 are at least one selected from the group consisting of gold nanowires, silver nanowires, and copper nanowires.
  • the first transparent electrode 4 having the first optical adjustment region 41 is compared with the case where an oxide-based material such as ITO is used as the material of the first transparent electrode 4 and the second transparent electrode 5. And the electrical resistance of the second transparent electrode 5 having the second optical adjustment region 51 can be lowered.
  • FIG. 9 is a plan view illustrating a transparent electrode member according to an embodiment of the present invention.
  • FIG. 9 is an enlarged plan view of a region corresponding to the region A1 shown in FIG.
  • the first transparent electrode on the Y1 side in the Y1-Y2 direction is the first transparent electrode 4B1
  • the first transparent electrode on the Y2 direction in the Y1-Y2 direction is the first transparent electrode. It is shown as a transparent electrode 4B2.
  • FIG. 10 is an enlarged plan view showing a part of the detection region of the transparent electrode member of the present embodiment.
  • FIG. 10 is an enlarged plan view of a region corresponding to the region A3 shown in FIG.
  • the first transparent electrodes 4B1 and 4B2 of this example have a plurality of substantially circular first optical adjustment regions 41B, and the second transparent electrodes 5B1 and 5B2 have a plurality of substantially circular second optical adjustment regions 51B. It is common to the example shown in FIG. 6 in that the insulating layer 21 is provided between the transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2. The insulating portion 20 and the bridge wiring portion 10 are not shown for convenience of explanation.
  • the connecting portion 7 is located between the first transparent electrode 4B1 and the first transparent electrode 4B2 in the Y1-Y2 direction (first direction), and electrically connects the first transparent electrode 4B1 and the first transparent electrode 4B2. It is a transparent wiring (first transparent wiring) to be connected. Specifically, as shown in FIG. 9, the first transparent electrode 4B1 is located on the Y1 side of the connecting portion 7 in the Y1-Y2 direction (first direction), and the connecting portion 7 is located in the Y1-Y2 direction (first direction). Direction) The first transparent electrode 4B2 is located on the Y2 side.
  • the first transparent electrode 4B1 and the connecting portion 7 are continuous bodies that are in contact with each other at the first boundary line DL1, and are connected to the first transparent electrode 4B2.
  • Reference numeral 7 is a continuum tangent at the second boundary line DL2.
  • the first transparent electrode 4B1 when viewed from the Z1-Z2 direction (normal direction of the first surface S1), the first transparent electrode 4B1 is continuously in contact with the Y1-Y2 direction (first direction) Y1 side by the second boundary line DL2.
  • a connecting portion 7 is further provided as a body.
  • the first transparent electrode 4B2 when viewed from the Z1-Z2 direction (normal direction of the first surface S1), the first transparent electrode 4B2 is in contact with the Y1-Y2 direction (first direction) Y2 side by the first boundary line DL1 as a continuum.
  • a connecting portion 7 is further provided.
  • the plurality of first transparent electrodes 4B1 and 4B2 are electrically connected by the plurality of connecting portions 7, and the first electrode connecting body 8 extending in the Y1-Y2 direction (first direction) is formed.
  • the adjacent first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2 were electrically insulated from both the first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2 by the insulating layer 21.
  • a dummy region IF is provided surrounded by the insulating layer 21.
  • the dummy region IF has the same structure as the conductive region CR of the first transparent electrodes 4B1, 4B2 and the second transparent electrodes 5B1, 5B2, that is, the dummy conductive region having a structure in which the conductive nanowires are dispersed in the insulating material as a matrix. Has CR1.
  • a plurality of substantially circular dummy optical adjustment regions AR1 are formed in a plan view, similarly to the first optical adjustment region 41B and the second optical adjustment region 51B, from the viewpoint of reducing the visibility of the dummy region IF. , Are arranged discretely in the dummy conductive region CR1.
  • the dummy optical adjustment region AR1 is formed by the same method as the first optical adjustment region 41B and the second optical adjustment region 51B (a method of removing conductive nanowires from an insulating material that becomes a matrix at least on the surface portion). , The structure is common to the first optical adjustment region 41B and the second optical adjustment region 51B.
  • the optical adjustment area AR (first optical adjustment area 41B and second optical adjustment area 51B) and the dummy optical adjustment area AR1 are the first surface S1. It has a plurality of partial region PRs arranged at positions that serve as lattice points LP of the lattice LT along the plane of. That is, when a virtual grid LT is set along the in-plane of the first plane S1, the partial region PR is arranged on the grid point LP of the grid LT. From the viewpoint of ensuring the invisibility of each partial region PR, the circle-equivalent diameter ⁇ 0 of the partial region PR is preferably 100 ⁇ m or less.
  • FIG. 11 (a) and 11 (b) are plan views illustrating the rectangular region of the transparent electrode member of the present embodiment.
  • FIG. 11B shows one rectangular area of FIG. 11A.
  • the rectangular region RA is a rectangular region composed of four grid point LPs adjacent to each other as corners among a plurality of grid point LPs in the plane of the first surface S1.
  • the rectangular region RA having four grid point LPs adjacent to each other as corners among a plurality of grid point LPs
  • two diagonal lines of the rectangular region RA are formed.
  • the lengths L1 and L2 of are provided so as to be different from each other. That is, the internal angles of the rectangular region RA are not right angles.
  • the rectangular region RA is a rhombus whose internal angles are not right angles.
  • the shape of the rectangular region RA may be other than a rhombus as long as the lengths L1 and L2 of the two diagonal lines are different.
  • the direction of the grid line LL of the grid LT shown in FIG. 10 is other than 45 degrees with respect to the X1-X2 direction.
  • the direction of the grid line LL is about 30 degrees ⁇ 10 degrees with respect to the X1-X2 directions.
  • the shapes of the first transparent electrode 4 and the second transparent electrode 5 are substantially rectangular, which are not similar to the rectangular region RA. That is, the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5 are both rectangular (substantially rectangular), and there are two rectangular shapes formed by the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5. The diagonals are aligned with the two diagonals of the rectangular region RA.
  • one of the two diagonal lines is along the X1-X2 direction, and the two diagonal lines are The other is along the Y1-Y2 direction.
  • the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5 are orthogonal to each other, and as shown in FIG. 11B, the rectangular region RA.
  • the two diagonals are also orthogonal to each other.
  • the lengths of the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5 are equal to each other, the lengths of the two diagonal lines of the rectangular region RA are different from each other.
  • the vertical and horizontal (X1-X2 direction and Y1-Y2 direction respectively) pitches in the plurality of partial region PRs can be set. Since they are different from each other, the occurrence of moire can be suppressed in relation to the arrangement of the structures overlapping with the plurality of partial region PRs.
  • the vertical and horizontal pitches are often the same.
  • L1 / L2 is preferably 1.2 or more and 2.7 or less.
  • L1 / L2 is smaller than 1.2, the rectangular region RA approaches a square, so that the moire suppressing effect is weakened.
  • L1 / L2 exceeds 2.7, the difference between the pitch in the X1-X2 direction and the pitch in the Y1-Y2 direction of the optical adjustment region AR arranged at the grid point LP becomes too large, and the invisibility is reduced. It becomes easy to invite.
  • the insulating layer 21 arranged in the insulating region IR (the insulating layer 21 located between the adjacent first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2, and the adjacent first transparent electrodes 4B1 and 4B2).
  • the insulating layer 21 located between the dummy region IF and the insulating layer 21 located between the adjacent second transparent electrodes 5B1 and 5B2 and the dummy region IF) are in the Z1-Z2 direction (normal to the first surface S1). When viewed from the direction), it does not overlap with the partial region PR, and is provided in a linear shape connecting a plurality of lattice points LP.
  • the insulating layer 21 (insulating region IR) is provided so as to pass (connect) a plurality of lattice point LPs. That is, the boundary line between the dummy region IF and the insulating layer 21 has a portion extending along the arrangement direction of the plurality of partial region PRs of the dummy region IF.
  • the insulating layer 21 arranged along the transparent electrodes is the grid line LL of the grid LT in the plane of the first surface S1. It has a portion extending along the direction and a portion extending along a non-grid direction which is an in-plane direction of the first surface S1 but different from the direction of the grid line LL.
  • the insulating layer 21 arranged along the transparent electrode includes a portion extending along the direction extending from the lower left side to the upper right side in FIG. 10 among the directions of the two grid lines LL, and two. It has a portion extending along the vertical direction in FIG. 10 which is neither the direction of the grid line LL.
  • this vertical direction is a direction along one of the diagonal lines of the rectangular region RA, and specifically, a relatively short second of the two diagonal lines of the rectangular region RA.
  • the direction is along the two diagonal lines DiL2. That is, in FIG. 10, the non-grid direction is the direction along the second diagonal line DiL2.
  • the non-grid direction may be any direction other than the direction along the direction of the grid line LL, but it may be a direction along the diagonal line of the rectangular region RA, such as the direction along the second diagonal line DiL2 described above. preferable.
  • the transparent electrode member 100 When the transparent electrode member 100 is viewed from the Z1-Z2 direction (the normal direction of the first surface S1), the plurality of partial region PRs in the transparent electrode appear to be arranged side by side in the direction of the grid line LL, and are rectangular. It also appears to be aligned in the direction along the diagonal line of the region RA (first diagonal line DiL1, second diagonal line DiL2).
  • the non-lattice direction is the direction along the diagonal line of the rectangular region RA
  • the portion of the insulating layer 21 arranged along the non-lattice direction becomes difficult to see.
  • the length of the insulating layer 21 arranged along the non-lattice direction is larger than the length of the insulating layer 21 arranged along the non-lattice direction when the non-lattice direction is along the relatively long first diagonal line DiL1.
  • the lattice direction is along the second diagonal line DiL2, which is relatively short, the length of the insulating layer 21 arranged along the non-lattice direction is shorter. Therefore, it is preferable that the non-lattice direction is a direction along the second diagonal line DiL2 from the viewpoint of increasing invisibility.
  • the outer shape of the transparent electrodes is substantially rectangular (specifically, a square), and each side of this rectangle is in the X1-X2 direction. It extends along a direction tilted 45 degrees.
  • the direction of the grid line LL is along a direction inclined by 30 degrees with respect to the X1-X2 direction, as shown in FIG. Therefore, if the insulating layer 21 arranged along the transparent electrode extends only in the direction along the direction of the grid line LL, the extending direction of the rectangular side forming the outer shape of the transparent electrode is in the X1-X2 direction.
  • the insulating layer 21 so that the insulating layer 21 arranged along the transparent electrode has a portion arranged along the non-lattice direction, the entire insulating layer 21 arranged along the transparent electrode is set.
  • Direction can be different from the direction along the direction of the grid line LL.
  • the vertical diagonal line (second diagonal line DiL2) corresponding to the Y1-Y2 direction is the horizontal diagonal line (first diagonal line) corresponding to the X1-X2 direction. Since it is shorter than DiL1), the insulating layer 21 arranged along the transparent electrode is arranged along the transparent electrode by having a portion along this direction with the direction along the second diagonal line DiL2 as the non-lattice direction.
  • the overall extending direction of the insulating layer 21 can be set to be more inclined than the direction of the grid line LL with respect to the X1-X2 direction (horizontal direction).
  • the insulating layer 21 arranged along the transparent electrode preferably has a plurality of portions extending along the non-lattice direction.
  • the portion extending along the non-grid direction is relatively more visible than the portion extending along the direction of the grid line LL. This is because the arrangement of the plurality of partial regions PR located around the insulating layer 21 is along the direction of the grid line LL. Therefore, the insulating layer 21 is dispersed in the portion extending along the grid line LL rather than having a long portion extending along the non-lattice direction. It is preferable from the viewpoint of reducing the visibility of the extending portion.
  • the length of the portion extending along the non-lattice direction is inside the rectangular region RA.
  • the fit range that is, in the example shown in FIG. 10, it is preferable that it is equal to the length L2 of the second diagonal line DiL2 of the rectangular region RA.
  • the insulating layer 21 extends along the direction of the grid line LL. It is preferable to have an alternating arrangement portion in which the portion and the portion extending along the non-lattice direction are alternately arranged.
  • the insulating layer 21 having the alternately arranged portions has a zigzag shape as shown in FIG. 10, and can be set so as to extend in a direction different from the direction of the grid line LL as a whole. By doing so, it is appropriate to make the invisibility of the transparent electrode into a square composed of sides extending along a direction inclined by 45 degrees with respect to the X1-X2 direction. It is easily realized while maintaining.
  • the insulating layer arranged along the transparent electrode is arranged along the transparent electrode by having not only a portion extending along the lattice direction but also a portion extending along the non-lattice direction.
  • the overall extending direction of the insulating layer to be formed can be set in a direction different from the lattice direction while appropriately maintaining invisibility. Therefore, even if there is a deviation between the direction along the outer shape of the transparent electrodes (the first transparent electrode 4 and the second transparent electrode 5) and the direction of the grid line LL, the insulating layer 21 is formed in a linear shape connecting the grid points LP. It becomes possible to do. Specifically, as shown in FIG.
  • the direction of the grid line LL is a direction inclined by 30 degrees with respect to the lateral direction (X1-X2 direction in FIG. 5), and as shown in FIG.
  • the direction along the outer shape of the transparent electrodes (first transparent electrode 4 and second transparent electrode 5) is a direction inclined by 45 degrees with respect to the X1-X2 direction.
  • the insulating layer 21 may have a curved portion between two passing lattice points when viewed from the Z1-Z2 direction (the normal direction of the first surface S1).
  • the insulating layer 21 arranged along the dummy region IF is A portion extending along the direction of the grid line LL of the grid LT in the plane of the first plane S1 and a non-grid direction which is the in-plane direction of the first plane S1 but different from the direction of the grid line LL. It has an extending part.
  • the overall extending direction of the insulating layer arranged along the dummy region IF can be set in a direction different from the lattice direction while appropriately maintaining invisibility. Specifically, as shown in FIG.
  • the direction of the grid line LL is a direction inclined by 30 degrees with respect to the lateral direction (X1-X2 direction in FIG. 5), and as shown in FIG.
  • the direction along the outer shape of the dummy region IF is a direction inclined by 45 degrees with respect to the X1-X2 direction, and as shown in FIG. 10, the non-lattice direction is the vertical direction (Y1-Y2 direction).
  • the insulating layer 21 arranged along the dummy region IF preferably has a plurality of portions extending along the non-lattice direction, and the insulating layer 21 is arranged in the non-lattice direction.
  • the portions extending along the grid line LL are dispersed and arranged in the portion extending along the direction of the grid line LL, and the portion extending along the direction of the grid line LL and the portion extending along the non-grid line direction. It is particularly preferable to have alternating arrangement portions in which the extending portions are alternately arranged.
  • the non-lattice direction is preferably a direction along the diagonal line of the rectangular region RA, and more preferably along the direction of the second diagonal line DiL2 of the rectangular region RA.
  • the length of the portion of the insulating layer 21 along the non-grid direction extending from the portion extending along the direction of the grid line LL is equal to the length L2 of the second diagonal line DiL2. Is preferable.
  • FIG. 12 is a plan view illustrating the pixel arrangement of the display device.
  • the display device 800 is arranged with pixels of a plurality of colors for performing color display.
  • the red pixel 800R, the green pixel 800G, and the blue pixel 800B are arranged in a predetermined layout.
  • FIG. 12 shows an example of a pentile array as a pixel array.
  • the red pixel 800R and the blue pixel 800B are arranged in a staggered pattern, and four green pixels 800G are arranged around each of the red pixel 800R and the blue pixel 800B. ing.
  • the direction of arrangement of each pixel is 45 degrees with respect to the vertical and horizontal directions.
  • the absolute value of the difference between L1 / L2 and LP1 / LP2 may be in the range of 0.19 to 1.75. It may be preferable.
  • the direction of the arrangement of the plurality of pixels 800R, 800G and 800B of the display device 800 (the direction of the lattice line LLP) and the direction of the arrangement of the plurality of partial region PRs of the transparent electrode member (the direction of the lattice line LL) are changed. It will not match. Therefore, it is possible to suppress the occurrence of moire when the transparent electrode member (capacitance type sensor using the transparent electrode member) according to the present embodiment is superposed on the pentile array display device 800, and to improve the visibility of the image. Become.
  • FIG. 13 to 16 are plan views illustrating the transparent electrode member according to the comparative example.
  • FIG. 13 is a plan view showing a part of the detection region of the transparent electrode member according to the comparative example (No. 1).
  • FIG. 13 is an enlarged plan view of a region corresponding to the region A1 shown in FIG. 14 (a) and 14 (b) are plan views illustrating the rectangular region of the transparent electrode member according to the comparative example (No. 1).
  • the direction of the grid line LLa of the grid LT in which the plurality of partial region PRs are arranged is 45 degrees with respect to each of the X1-X2 direction and the Y1-Y2 direction. It has become. That is, since the rectangular region RAa of the transparent electrode member 100A has the same length of the two diagonal lines, it becomes a square inclined by 45 degrees with respect to the vertical and horizontal directions.
  • the transparent electrode member 100A according to the comparative example (No. 1) is superposed on the display device 800 having a pentile arrangement shown in FIG. 12, the directions (lattice) of the arrangement of the plurality of pixels 800R, 800G and 800B of the display device 800.
  • the direction of the line LLp) matches the direction of the arrangement of the plurality of partial regions PR of the transparent electrode member 100A (the direction of the lattice line LLa), and the possibility of generating moire increases.
  • the rectangular region RA shown in FIG. 11 has a shape in which the rectangular region RAa is extended in the horizontal direction and contracted in the vertical direction. Therefore, the area of the rectangular region RA and the area of the rectangular region RAa are equal, and the area ratio of the partial region PR in the rectangular region RA is equal to the area ratio of the partial region PR in the rectangular region RAa.
  • FIG. 15 is a plan view showing a part of the detection region of the transparent electrode member according to the comparative example (No. 2).
  • FIG. 15 is an enlarged plan view of a region corresponding to the region A1 shown in FIG. 16 (a) and 16 (b) are plan views illustrating the rectangular region of the transparent electrode member according to the comparative example (No. 2).
  • the direction of the grid line LLb of the grid LT in which the plurality of partial region PRs are arranged is from 45 degrees with respect to each of the X1-X2 direction and the Y1-Y2 direction. It is slightly inclined. In the illustrated example, it is tilted from 45 degrees to 10 degrees.
  • the rectangular region RAb of the transparent electrode member 100B is similar to the transparent electrode member 100A according to the comparative example (No. 1) in that the lengths of the two diagonal lines are equal and square, but the whole is 10 more than the rectangular region RAa. It differs in that it is tilted.
  • the transparent electrode member 100B according to the comparative example (No. 2) is superposed on the display device 800 having the pentile arrangement shown in FIG. 12, the directions of the arrangement of the plurality of pixels 800R, 800G and 800B of the display device 800 (lattice).
  • the direction of the line LLp) and the direction of the arrangement of the plurality of partial regions PR of the transparent electrode member 100A (the direction of the lattice line LLb) do not match, and the occurrence of moire can be suppressed.
  • the lines are adjacent to the lattice points LP.
  • the line is slightly inclined with respect to the line connecting the above (lattice line LLb).
  • the insulating layer 21 and the partial region PR overlap or become particularly close to each other, and the reflectance is locally lowered. , Invisibility is significantly reduced. Therefore, in the transparent electrode member 100B, there is a region where the partial region PR cannot be arranged. As a result, as shown in FIG. 9, the reflectance around the region where the partial region PR could not be arranged on the grid point LP becomes locally high, and the invisibility is inferior to that of the transparent electrode member 100. ..
  • the insulating layer 21 can be arranged along the outer shape of 5). Specifically, alternating arrangement portions are provided at the boundary between the transparent electrode and the insulating layer 21, and the boundary line has a zigzag shape.
  • alternating arrangement portions may be provided at the boundary between the dummy region IF and the insulating layer 21 so that the boundary line has a zigzag shape.
  • the rectangle is rotated in comparison with the rectangular region RAa as in the rectangular region RAb of Comparative Example (Part 2), moire can be eliminated, but it is difficult to arrange the insulating layer 21 so as not to impair invisibility. It becomes.
  • FIG. 17 is a diagram illustrating a configuration of a capacitance type sensor according to another embodiment of the present invention.
  • the transparent electrode member 500 included in the capacitive sensor 1A according to the embodiment of the present invention is a first surface which is one of the two main surfaces of the sheet-shaped base material 2.
  • a first electrode connecting body 8 having a plurality of first transparent electrodes 4 is provided on S1
  • a body 12 is provided.
  • the plurality of second transparent electrodes are arranged side by side in the second direction (specifically, the X1-X2 direction) different from the first direction (Y1-Y2 direction) of the in-plane directions of the second surface S2. , Are electrically connected to each other.
  • FIG. 18 is a diagram illustrating a configuration of a capacitance type sensor according to another embodiment of the present invention.
  • two transparent electrode members transparent electrode member 400a and transparent electrode member 400b
  • a laminated transparent electrode member 600 laminated in the (Z1-Z2 direction) is provided.
  • the first transparent electrodes 4 are arranged so as to line up in the Y1-Y2 direction, and the transparent electrodes on the Z2 side in the Z1-Z2 direction are relatively arranged.
  • the first transparent electrodes 4 are arranged so as to be arranged in the X1-X2 directions.
  • FIG. 19 is a diagram illustrating a configuration of an input / output device according to another embodiment of the present invention.
  • the input / output device 1000 according to the embodiment of the present invention has a display that overlaps the above-mentioned capacitance type sensors 1, 1A or 1B and the capacitance type sensors 1, 1A or 1B.
  • the device 800 is provided.
  • the capacitive sensors 1, 1A or 1B are conceptually shown.
  • An example of the input / output device 1000 is a touch panel display.
  • the display device 800 of the input / output device 1000 it is preferable to use one having pixels of the pentile array shown in FIG.
  • the two diagonal lines of the rectangular area RA are orthogonal to each other, the two diagonal lines of the rectangle formed by the unit cell of the pentile arrangement are also orthogonal to each other, and one of the two diagonal lines of the rectangular area RA is a rectangle formed by the unit cell of the pentile arrangement. It is located along one of the two diagonal lines of. Therefore, the other of the two diagonals of the rectangular region RA is located along the other of the two diagonals of the rectangle formed by the unit cell of the Pentile array.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

A transparent electrode member according to one aspect of the present invention is provided with: an insulative base material having translucent property; a plurality of transparent electrodes that have a translucent property and are disposed on a first surface which is one surface of the base material; and an insulating layer formed between the transparent electrodes. Each of the transparent electrodes is provided with a dispersion layer including a matrix formed from an insulating material and conductive nanowires dispersed in the matrix. The transparent electrode has a conductive region comprising a conductive part and has an optical adjustment region having an optical adjustment part. The conductive part has an electric conductivity higher than that of the optical adjustment part. The dispersion density of the conductive nanowires in the dispersion layer is lower in the optical adjustment part than in the conductive part. The optical adjustment region has a plurality of partial regions disposed at positions corresponding to grid points of grids along the in-plane of the transparent electrode. In a rectangular area formed by defining the corners thereof with four adjacent grid points, among the plurality of grid points, the two diagonal lines of the rectangular area are different in length, and thus, invisibility of the pattern of the transparent electrode can be improved and generation of moire can be suppressed.

Description

透明電極部材、静電容量式センサおよび入出力装置Transparent electrode member, capacitive sensor and input / output device
 本発明は、透明電極部材、静電容量式センサおよび入出力装置に関する。 The present invention relates to a transparent electrode member, a capacitance type sensor, and an input / output device.
 静電容量式センサは、画面に表示される映像の視認性を低下させることなく操作体が接触した部分の位置を検知するために、透明電極を有する透明電極部材を備えている。この透明電極部材として、インジウム・スズ酸化物(ITO)などの金属酸化物系の材料が一般的に使用されている。 The capacitance type sensor is provided with a transparent electrode member having a transparent electrode in order to detect the position of the portion in contact with the operating body without deteriorating the visibility of the image displayed on the screen. As the transparent electrode member, a metal oxide-based material such as indium tin oxide (ITO) is generally used.
 近年、静電容量式センサを備える機器(例えばスマートフォン)の意匠性を高めることなどを目的として、静電容量式センサの可撓性を高める(曲げ耐性を高める)ことへの要請が高まっている。こうした要請に応えるために、従来使用されてきた金属酸化物系の材料に代えて、銀ナノワイヤなど導電性ナノワイヤをマトリックス樹脂に分散させた構成を有する透明電極部材が提案されている。 In recent years, there has been an increasing demand for increasing the flexibility (increasing bending resistance) of a capacitive sensor for the purpose of enhancing the design of a device (for example, a smartphone) equipped with a capacitive sensor. .. In order to meet such demands, a transparent electrode member having a configuration in which conductive nanowires such as silver nanowires are dispersed in a matrix resin has been proposed instead of the conventionally used metal oxide-based material.
 このような構成の透明電極部材において、透明電極が設けられたパターン部と透明電極が設けられていない非パターン部(絶縁部)とが存在する場合には、パターン部と非パターン部とが視覚的に区分される。そして、パターン部の反射率と非パターン部の反射率との間の差が大きくなると、パターン部と非パターン部との違いが視覚的に明らかになる。そうすると、映像を表示する表示素子としての外観の視認性が低下するという問題がある。 In a transparent electrode member having such a configuration, when a patterned portion provided with a transparent electrode and a non-patterned portion (insulating portion) not provided with a transparent electrode are present, the patterned portion and the non-patterned portion are visually visible. Is classified as. Then, when the difference between the reflectance of the patterned portion and the reflectance of the non-patterned portion becomes large, the difference between the patterned portion and the non-patterned portion becomes visually clear. Then, there is a problem that the visibility of the appearance as a display element for displaying an image is lowered.
 こうした外観の視認性低下の問題を克服する、すなわち、透明電極部材の不可視性を向上する観点から、特許文献1には、透光性の基材の表面に、オーバーコート層に銀ナノワイヤが埋設された導電層が形成されている透光性導電部材において、前記導電層が、導電領域と、前記導電領域よりも表面抵抗率の高い非導電領域とに区分され、前記非導電領域で、前記オーバーコート層に埋設されている銀ナノワイヤの少なくとも一部がヨウ化されており、前記非導電領域では、前記オーバーコート層の表面から銀ヨウ化物が露出していないか、または、前記非導電領域における前記オーバーコート層の表面に露出している銀ヨウ化物の量が、前記導電領域において前記オーバーコート層の表面に露出している銀ナノワイヤの量よりも少ないことを特徴とする透光性導電部材が記載されている。 From the viewpoint of overcoming the problem of deterioration of visibility of appearance, that is, improving the invisibility of the transparent electrode member, Patent Document 1 states that silver nanowires are embedded in an overcoat layer on the surface of a translucent base material. In the translucent conductive member on which the conductive layer is formed, the conductive layer is divided into a conductive region and a non-conductive region having a surface resistance higher than that of the conductive region. At least a part of the silver nanowires embedded in the overcoat layer is iodide, and in the non-conductive region, silver iodide is not exposed from the surface of the overcoat layer, or the non-conductive region The amount of silver iodide exposed on the surface of the overcoat layer in the above is less than the amount of silver nanowires exposed on the surface of the overcoat layer in the conductive region. Members are listed.
 特許文献2には、基体シートと、前記基体シート上に形成され、導電性ナノファイバーを含み、その導電性ナノファイバーを介して導通可能であり、目視により認識することができない大きさの複数の微小ピンホールを有する導電パターン層と、前記基体シート上の前記導電パターン層が形成されていない部分に形成され、前記導電性ナノファイバーを含み、前記導電パターン層から絶縁された絶縁パターン層とを備えた、導電性ナノファイバーシートが開示されている。特許文献2に記載された導電性ナノファイバーシートにおける前記絶縁パターン層は、目視により認識することができない幅の狭小溝を有し、その狭小溝により、前記導電パターン層から絶縁されると共に複数の島状に形成される。 Patent Document 2 describes a substrate sheet and a plurality of conductive nanofibers formed on the substrate sheet, which are conductive through the conductive nanofibers and have a size that cannot be visually recognized. A conductive pattern layer having minute pinholes and an insulating pattern layer formed on the substrate sheet where the conductive pattern layer is not formed, containing the conductive nanofibers, and insulated from the conductive pattern layer. The provided conductive nanofiber sheet is disclosed. The insulating pattern layer in the conductive nanofiber sheet described in Patent Document 2 has narrow grooves having a width that cannot be visually recognized, and the narrow grooves are insulated from the conductive pattern layer and a plurality of narrow grooves. It is formed like an island.
 特許文献3には、表面を有する基材と、上記表面に平面的に交互に並べられた透明導電部および透明絶縁部とを備え、上記透明絶縁部は、複数の島部からなる透明導電層であり、上記透明導電部および上記透明絶縁部の平均境界線長さが、20mm/mm2以下である透明導電性素子について記載がある。 Patent Document 3 includes a base material having a surface, transparent conductive portions and transparent insulating portions arranged alternately in a plane on the surface, and the transparent insulating portion is a transparent conductive layer composed of a plurality of island portions. There is a description about a transparent conductive element in which the average boundary line length of the transparent conductive portion and the transparent insulating portion is 20 mm / mm 2 or less.
 特許文献4には、導電性ナノワイヤ電極の間に絶縁溝を介して、フローティング電極が形成され、導電性ナノワイヤ電極とフローティング電極内に導電性ナノワイヤの少ない絶縁部が離散的且つ格子状に配列された静電容量式タッチセンサが記載される。この透明電極には、導電領域と光学調整領域とが設けられ、透明電極の導電性を維持しつつ反射率を低減して透明電極の不可視性を高めている。 In Patent Document 4, a floating electrode is formed between the conductive nanowire electrodes via an insulating groove, and insulating portions having few conductive nanowires are arranged discretely and in a grid pattern in the conductive nanowire electrode and the floating electrode. Capacitive touch sensors are described. The transparent electrode is provided with a conductive region and an optical adjustment region, and while maintaining the conductivity of the transparent electrode, the reflectance is reduced and the invisibility of the transparent electrode is enhanced.
 特許文献5には、導電性ナノワイヤ電極の間に絶縁溝を介して、フローティング電極が形成され、電極の外形及びフローティング電極の外形がジグザク形状に形成され、表示装置の画素に対するモアレの発生を抑制する静電タッチセンサが記載される。 In Patent Document 5, a floating electrode is formed between the conductive nanowire electrodes via an insulating groove, and the outer shape of the electrode and the outer shape of the floating electrode are formed in a zigzag shape to suppress the occurrence of moire on the pixels of the display device. The electrostatic touch sensor to be used is described.
 特許文献6には、透明電極パターン部に複数の開口部、隣接する透明絶縁パターン部に複数の島部をランダムに設けることで、表示装置の画素に対するモアレの発生を防止する静電タッチセンサが記載される。 Patent Document 6 provides an electrostatic touch sensor that prevents the occurrence of moire on the pixels of a display device by randomly providing a plurality of openings in a transparent electrode pattern portion and a plurality of island portions in an adjacent transparent insulating pattern portion. be written.
 一方、静電容量式タッチセンサが適用される表示装置において、特許文献7、8には、R(赤)、G(緑)、B(青)の画素をペンタイル配列にすることが記載されている。ペンタイル配列では、X方向およびY方向のそれぞれに異なる色の画素が交互に配置される。 On the other hand, in a display device to which a capacitive touch sensor is applied, Patent Documents 7 and 8 describe that the pixels of R (red), G (green), and B (blue) are arranged in a pentile arrangement. There is. In the pentile array, pixels of different colors are alternately arranged in the X direction and the Y direction.
国際公開WO2015/019805号International release WO2015 / 09805 特開2010-157400号公報JP-A-2010-157400 特開2013-152578号公報Japanese Unexamined Patent Publication No. 2013-152578 国際公開WO2018/101209号International release WO2018 / 101209 特開2017-215965号公報JP-A-2017-215965 特開2012-181816号公報Japanese Unexamined Patent Publication No. 2012-181816 特開2019-096428号公報Japanese Unexamined Patent Publication No. 2019-0964428 特開2019-114526号公報JP-A-2019-114526
 透明電極として導電性ナノワイヤを用いた透明電極部材では、パターンの不可視性を十分に得ることが重要である。また、このような透明電極部材を透明電極として用いた静電容量式タッチセンサを表示装置の上に配置する場合、表示装置の画素配列と、透明電極に関わる構造との関係から、モアレが発生する場合がある。 For transparent electrode members that use conductive nanowires as transparent electrodes, it is important to obtain sufficient invisibility of the pattern. Further, when a capacitive touch sensor using such a transparent electrode member as a transparent electrode is arranged on a display device, moire occurs due to the relationship between the pixel arrangement of the display device and the structure related to the transparent electrode. May be done.
 本発明は、透明電極のパターンの不可視性の向上とともにモアレの発生を抑制できる透明電極部材、静電容量式センサ及び入出力装置を提供することを目的とする。 An object of the present invention is to provide a transparent electrode member, a capacitance type sensor, and an input / output device capable of improving the invisibility of a transparent electrode pattern and suppressing the occurrence of moire.
 本発明の一態様は、透光性を有し絶縁性の基材と、基材の一つの面である第1面に複数配置され、透光性を有する透明電極と、複数の透明電極間に形成された絶縁層と、を備える透明電極部材であって、透明電極は、絶縁材料からなるマトリックスと、マトリックス内に分散した導電性ナノワイヤと、を含む分散層を備え、透明電極は、導電部からなる導電領域と、光学調整部を有する光学調整領域と、を有し、導電部は、光学調整部よりも導電性が高く、光学調整部は、分散層における導電性ナノワイヤの分散密度が導電部よりも低く、光学調整領域は、透明電極の面内に沿った格子の格子点となる位置に配置される複数の部分領域を有し、複数の格子点のうち互いに隣り合う4つの格子点を隅部として構成される矩形領域において、矩形領域の2つの対角線の長さが互いに異なる、ことを特徴とする。 One aspect of the present invention is between a translucent and insulating base material, a plurality of transparent electrodes arranged on a first surface which is one surface of the base material, and having translucency, and a plurality of transparent electrodes. A transparent electrode member including an insulating layer formed on the above, wherein the transparent electrode includes a dispersion layer including a matrix made of an insulating material and conductive nanowires dispersed in the matrix, and the transparent electrode is conductive. It has a conductive region composed of parts and an optical adjustment region having an optical adjustment portion. The conductive portion has higher conductivity than the optical adjustment portion, and the optical adjustment portion has a dispersion density of conductive nanowires in the dispersion layer. Lower than the conductive part, the optical adjustment region has a plurality of partial regions arranged at positions that serve as lattice points of the lattice along the in-plane of the transparent electrode, and four lattices of the plurality of lattice points adjacent to each other. In a rectangular region composed of points as corners, the lengths of the two diagonal lines of the rectangular region are different from each other.
 このような構成によれば、複数の部分領域における縦横のピッチが互いに異なるようになり、複数の部分領域と重なる構造物の配置との関係でモアレの発生を抑制することができる。 According to such a configuration, the vertical and horizontal pitches in the plurality of partial regions are different from each other, and the occurrence of moire can be suppressed in relation to the arrangement of the structures overlapping the plurality of partial regions.
 上記の透明電極部材において、矩形領域の2つの対角線のうち、長いほうを第1対角線、短いほうを第2対角線とし、第1対角線の長さをL1、第2対角線の長さをL2とした場合、L1/L2は、1.2以上2.7以下であることが好ましい。これにより、複数の部分領域と重なる構造物の配置の正方向であった場合、複数の部分領域の配置と構造物の配置との差を、モアレの発生を確実に抑制できる程度まで付けることができる。 In the above transparent electrode member, of the two diagonal lines in the rectangular region, the longer one is the first diagonal line, the shorter one is the second diagonal line, the length of the first diagonal line is L1, and the length of the second diagonal line is L2. In this case, L1 / L2 is preferably 1.2 or more and 2.7 or less. As a result, when the arrangement of the structure overlapping the plurality of partial regions is in the positive direction, the difference between the arrangement of the plurality of partial regions and the arrangement of the structures can be made to the extent that the occurrence of moire can be reliably suppressed. it can.
 上記の透明電極部材において、透明電極の形状は、矩形領域とは非相似形の略矩形であることが好ましい。 In the above transparent electrode member, the shape of the transparent electrode is preferably a substantially rectangular shape that is not similar to the rectangular region.
 上記の透明電極部材において、絶縁層は、部分領域とは重ならず、格子点の複数を結ぶ線状に設けられることが好ましい。これにより、複数の部分領域の並びと絶縁層の延在する方向とが格子点の並びの方向と合致するようになり、複数の部分領域と絶縁層との視覚的な区別が付きにくくなって、不可視性を向上させることができる。 In the above transparent electrode member, it is preferable that the insulating layer is provided in a linear shape connecting a plurality of lattice points without overlapping the partial region. As a result, the arrangement of the plurality of partial regions and the extending direction of the insulating layer match the direction of the arrangement of the lattice points, and it becomes difficult to visually distinguish the plurality of partial regions from the insulating layer. , Invisibility can be improved.
 上記の透明電極部材において、透明電極に沿って配置される絶縁層は、格子の格子線の方向に沿って延在する部分と、格子線の方向とは異なる非格子方向に沿って延在する部分とを有していてもよい。これにより、透明電極に沿って配置される絶縁層がジグザグに延在することが可能となり、透明電極に沿って配置される絶縁層の不可視性を高めることができる。 In the above transparent electrode member, the insulating layer arranged along the transparent electrode extends along a portion extending along the direction of the lattice line of the lattice and a non-lattice direction different from the direction of the lattice line. May have a portion. As a result, the insulating layer arranged along the transparent electrode can extend in a zigzag pattern, and the invisibility of the insulating layer arranged along the transparent electrode can be enhanced.
 上記の透明電極部材において、透明電極は、第1方向に沿って並んで基材上に配置され、互いに電気的に接続された複数の第1透明電極と、第1方向とは異なる第2方向に沿って並んで配置され、互いに電気的に接続された複数の第2透明電極と、を有し、第1方向に隣り合う2つの第1透明電極は、2つの第1透明電極の間に位置し導電領域からなる第1透明配線によって互いに電気的に接続され、第2方向に隣り合う2つの第2透明電極は、第2透明配線によって電気的に接続され、第1透明配線と第2透明配線とは、絶縁物を介して重なる部分を有していてもよい。 In the above transparent electrode member, the transparent electrodes are arranged side by side along the first direction on the substrate, and a plurality of first transparent electrodes electrically connected to each other and a second direction different from the first direction. The two first transparent electrodes, which are arranged side by side along the line and have a plurality of second transparent electrodes electrically connected to each other, and which are adjacent to each other in the first direction, are located between the two first transparent electrodes. The two second transparent electrodes that are located and electrically connected to each other by the first transparent wiring consisting of the conductive region and adjacent to each other in the second direction are electrically connected by the second transparent wiring, and the first transparent wiring and the second transparent electrode are electrically connected to each other. The transparent wiring may have a portion that overlaps with the insulating material.
 上記の透明電極部材において、透明電極は、基材の第1方向に沿って並んで基材上に配置され、互いに電気的に接続された複数の第1透明電極と、基材を挟んで第1面とは反対側に位置する第2面において、第1方向とは異なる第2方向に沿って並んで配置され、互いに電気的に接続された複数の第2透明電極と、を有し、第1方向に隣り合う2つの第1透明電極は、2つの第1透明電極の間に位置し導電領域からなる第1透明配線によって互いに電気的に接続され、第2方向に隣り合う2つの第2透明電極は、第2透明配線によって電気的に接続され、第1面の法線方向からみて、第1透明配線と第2透明配線とは重なる部分を有していてもよい。 In the above-mentioned transparent electrode member, the transparent electrodes are arranged side by side on the base material along the first direction of the base material, and are sandwiched between a plurality of first transparent electrodes electrically connected to each other and the base material. A second surface located on the opposite side of the first surface has a plurality of second transparent electrodes arranged side by side along a second direction different from the first direction and electrically connected to each other. The two first transparent electrodes adjacent to each other in the first direction are electrically connected to each other by the first transparent wiring located between the two first transparent electrodes and composed of a conductive region, and the two second transparent electrodes adjacent to each other in the second direction. The two transparent electrodes are electrically connected by the second transparent wiring, and may have a portion where the first transparent wiring and the second transparent wiring overlap when viewed from the normal direction of the first surface.
 上記の透明電極部材において、第1透明電極の外形および第2透明電極の外形はいずれも矩形であり、第1透明電極の外形および第2透明電極の外形が作る矩形の2つの対角線は、矩形領域の2つの対角線に揃って位置するよう設けられてもよい。 In the above transparent electrode member, the outer shape of the first transparent electrode and the outer shape of the second transparent electrode are both rectangular, and the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode and the outer shape of the second transparent electrode are rectangular. It may be provided so as to be aligned on two diagonals of the region.
 上記の透明電極部材において、第1透明電極の外形および第2透明電極の外形が作る矩形の2つの対角線は、長さが等しくなっていてもよい。 In the above transparent electrode member, the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode and the outer shape of the second transparent electrode may have the same length.
 上記の透明電極部材において、第1透明電極の外形および第2透明電極の外形が作る矩形の2つの対角線は、直交していてもよい。 In the above transparent electrode member, the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode and the outer shape of the second transparent electrode may be orthogonal to each other.
 上記の透明電極部材において、第1面の法線方向からみたときに、第1透明電極と隣り合って配置される第2透明電極の間に、絶縁層に囲まれ透明電極と共通する材料で構成されたダミー領域を有し、ダミー領域は、複数の部分領域を有していてもよい。 In the above transparent electrode member, when viewed from the normal direction of the first surface, a material common to the transparent electrode is surrounded by an insulating layer between the second transparent electrodes arranged adjacent to the first transparent electrode. It has a configured dummy region, and the dummy region may have a plurality of partial regions.
 上記の透明電極部材において、ダミー領域と絶縁層との境界線は、ダミー領域の複数の部分領域の配置方向に沿って延在する部分を有していてもよい。 In the above transparent electrode member, the boundary line between the dummy region and the insulating layer may have a portion extending along the arrangement direction of the plurality of partial regions of the dummy region.
 上記の透明電極部材において、ダミー領域に沿って配置される絶縁層は、格子の格子線の方向に沿って延在する部分と、格子線の方向とは異なる非格子方向に沿って延在する部分とを有していてもよい。これにより、ダミー領域に沿って配置される絶縁層がジグザグに延在することが可能となり、ダミー領域に沿って配置される絶縁層の不可視性を高めることができる。 In the above transparent electrode member, the insulating layer arranged along the dummy region extends along a portion extending along the direction of the lattice line of the lattice and a non-lattice direction different from the direction of the lattice line. May have a portion. As a result, the insulating layer arranged along the dummy region can extend in a zigzag manner, and the invisibility of the insulating layer arranged along the dummy region can be enhanced.
 本発明の一態様は、上記の透明電極部材と、操作者の指等の操作体と透明電極との間に生じる静電容量の変化を検知する検知部と、を備える静電容量式センサである。かかる静電容量式センサでは、透明電極の不可視性が高く、複数の部分領域と重なる構造物の配置との関係でモアレの発生が抑制されるため、静電容量式センサを透過して使用者に観察される画像の視認性を高めることが可能であり、表示均一性を高めることも可能である。 One aspect of the present invention is a capacitance type sensor including the above-mentioned transparent electrode member and a detection unit for detecting a change in capacitance occurring between an operating body such as an operator's finger and the transparent electrode. is there. In such a capacitance type sensor, the transparency of the transparent electrode is high, and the occurrence of moire is suppressed in relation to the arrangement of the structure overlapping the plurality of partial regions. Therefore, the user can pass through the capacitance type sensor. It is possible to improve the visibility of the image observed in the image, and it is also possible to improve the display uniformity.
 本発明の一態様は、上記の静電容量式センサと、静電容量式センサに重なる表示装置と、を備える入出力装置である。かかる入出力装置では、透明電極の不可視性が高く、複数の部分領域と重なる表示装置の画素の配置との関係でモアレの発生が抑制されるため、静電容量式センサを透過して使用者に観察される画像の視認性を高めることが可能であり、表示均一性を高めることも可能である。 One aspect of the present invention is an input / output device including the above-mentioned capacitance type sensor and a display device overlapping the capacitance type sensor. In such an input / output device, the transparency of the transparent electrode is high, and the occurrence of moire is suppressed in relation to the arrangement of the pixels of the display device that overlaps with a plurality of partial regions. It is possible to improve the visibility of the image observed in the image, and it is also possible to improve the display uniformity.
 上記の入出力装置において、表示装置の複数の画素はペンタイル配列され、ペンタイル配列の単位格子が作る矩形の対角線における長軸の長さの短軸の長さに対する比は、矩形領域の対角線における長軸の長さの短軸の長さに対する比とは異なることが好ましい。これにより、表示装置の複数の画素の配列がペンタイル配列である場合、静電容量式センサを重ねた際のモアレの発生を抑制して、画像の視認性を高めることがより安定的に可能となる。 In the above input / output device, a plurality of pixels of the display device are arranged in a pentile, and the ratio of the length of the major axis to the length of the minor axis in the diagonal of the rectangle formed by the unit cell of the pentile arrangement is the length in the diagonal of the rectangular region. It is preferably different from the ratio of the shaft length to the minor shaft length. As a result, when the arrangement of a plurality of pixels of the display device is a pentile arrangement, it is possible to suppress the occurrence of moire when the capacitive sensors are stacked and improve the visibility of the image more stably. Become.
 本発明によれば、透明電極のパターンの不可視性の向上とともにモアレの発生を抑制できる透明電極部材、静電容量式センサ及び入出力装置を提供することが可能となる。 According to the present invention, it is possible to provide a transparent electrode member, a capacitance type sensor, and an input / output device capable of improving the invisibility of the transparent electrode pattern and suppressing the occurrence of moire.
本発明の一実施形態に係る透明電極部材の構造を概念的に示す平面図である。It is a top view which conceptually shows the structure of the transparent electrode member which concerns on one Embodiment of this invention. 図1のV1-V1断面図である。It is a cross-sectional view of V1-V1 of FIG. 本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の一例を概念的に示す部分断面図である。It is a partial cross-sectional view which conceptually shows an example of the concrete structure of the transparent electrode of the transparent electrode member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の他の一例を概念的に示す部分断面図である。It is a partial cross-sectional view which conceptually shows another example of the concrete structure of the transparent electrode of the transparent electrode member which concerns on one Embodiment of this invention. 本実施形態に係る静電容量式センサを表す平面図である。It is a top view which shows the capacitance type sensor which concerns on this embodiment. 図5に表した領域A1を拡大した平面図である。It is an enlarged plan view of the region A1 shown in FIG. 図6に表した切断面C1-C1における断面図である。It is sectional drawing of the cut surface C1-C1 shown in FIG. 図6に表した切断面C2-C2における断面図である。It is sectional drawing of the cut surface C2-C2 shown in FIG. 本発明の一実施形態に係る透明電極部材を例示する平面図である。It is a top view which illustrates the transparent electrode member which concerns on one Embodiment of this invention. 本実施形態の透明電極部材の検出領域の一部を表す拡大平面図である。It is an enlarged plan view which shows a part of the detection area of the transparent electrode member of this embodiment. (a)および(b)は、本実施形態の透明電極部材の矩形領域について例示する平面図である。(A) and (b) are plan views illustrating the rectangular region of the transparent electrode member of this embodiment. 表示装置の画素配列について例示する平面図である。It is a top view which exemplifies the pixel arrangement of a display device. 比較例(その1)に係る透明電極部材を例示する平面図である。It is a top view which illustrates the transparent electrode member which concerns on a comparative example (the 1). (a)および(b)は、比較例(その1)に係る透明電極部材の矩形領域について例示する平面図である。(A) and (b) are plan views illustrating the rectangular region of the transparent electrode member according to Comparative Example (No. 1). 比較例(その2)に係る透明電極部材を例示する平面図である。It is a top view which illustrates the transparent electrode member which concerns on a comparative example (the 2). (a)および(b)は、比較例(その2)に係る透明電極部材の矩形領域について例示する平面図である。(A) and (b) are plan views illustrating the rectangular region of the transparent electrode member according to Comparative Example (Part 2). 本発明の他の実施形態に係る静電容量式センサの構成を説明する図である。It is a figure explaining the structure of the capacitance type sensor which concerns on other embodiment of this invention. 本発明の別の実施形態に係る静電容量式センサの構成を説明する図である。It is a figure explaining the structure of the capacitance type sensor which concerns on another embodiment of this invention. 本発明の別の実施形態に係る入出力装置の構成を説明する図である。It is a figure explaining the structure of the input / output device which concerns on another embodiment of this invention.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, similar components are designated by the same reference numerals and detailed description thereof will be omitted as appropriate.
 図1は、本発明の一実施形態に係る透明電極部材の構造を概念的に示す平面図である。図2は、図1のV1-V1断面図である。図3は、本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の一例を概念的に示す部分断面図である。図4は、本発明の一実施形態に係る透明電極部材の透明電極の具体的な構造の他の一例を概念的に示す部分断面図である。 FIG. 1 is a plan view conceptually showing the structure of the transparent electrode member according to the embodiment of the present invention. FIG. 2 is a sectional view taken along line V1-V1 of FIG. FIG. 3 is a partial cross-sectional view conceptually showing an example of a specific structure of the transparent electrode of the transparent electrode member according to the embodiment of the present invention. FIG. 4 is a partial cross-sectional view conceptually showing another specific example of the specific structure of the transparent electrode of the transparent electrode member according to the embodiment of the present invention.
 図1および図2に示されるように、本発明の一実施形態に係る透明電極部材100は、透光性を有する絶縁性の基材101を備える。本明細書において「透明」および「透光性」とは、可視光線透過率が50%以上(好ましくは80%以上)の状態を指す。更に、ヘイズ値が6%以下であることが好適である。本明細書において「遮光」および「遮光性」とは、可視光線透過率が50%未満(好ましくは20%未満)の状態を指す。基材101は、ポリエチレンテレフタレート(PET)、環状ポリオレフィン(COP,COC)等のフィルム状の透明基材やガラス基材等で形成される。 As shown in FIGS. 1 and 2, the transparent electrode member 100 according to the embodiment of the present invention includes a translucent insulating base material 101. As used herein, the terms "transparent" and "translucent" refer to a state in which the visible light transmittance is 50% or more (preferably 80% or more). Further, the haze value is preferably 6% or less. As used herein, the terms "light-shielding" and "light-shielding property" refer to a state in which the visible light transmittance is less than 50% (preferably less than 20%). The base material 101 is formed of a film-like transparent base material such as polyethylene terephthalate (PET) or cyclic polyolefin (COP, COC), a glass base material, or the like.
 透明電極部材100は、基材101の一つの面である第1面S1に配置された、透光性を有する透明電極110と絶縁層102とを備える。 The transparent electrode member 100 includes a transparent electrode 110 having translucency and an insulating layer 102 arranged on the first surface S1 which is one surface of the base material 101.
 絶縁層102は、第1面S1の法線方向からみたときに、透明電極110が配置された領域の周囲の少なくとも一部に位置する絶縁領域IRに配置される。 The insulating layer 102 is arranged in the insulating region IR located at least a part around the region where the transparent electrode 110 is arranged when viewed from the normal direction of the first surface S1.
 透明電極110は、図3および図4に示されるように、絶縁材料からなるマトリックスMXと、マトリックスMX内に分散した導電性ナノワイヤNWと、を含む分散層DLを備える。マトリックスMXを構成する絶縁材料の具体例として、ポリエステル樹脂、アクリル樹脂、およびポリウレタン樹脂などが挙げられる。導電性ナノワイヤNWとしては、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つが用いられる。導電性ナノワイヤNWの分散性は、マトリックスMXにより確保されている。複数の導電性ナノワイヤNWが少なくとも一部において互いに接触することにより、透明電極110の面内における導電性が保たれている。 As shown in FIGS. 3 and 4, the transparent electrode 110 includes a dispersion layer DL including a matrix MX made of an insulating material and conductive nanowires NW dispersed in the matrix MX. Specific examples of the insulating material constituting the matrix MX include polyester resin, acrylic resin, polyurethane resin and the like. As the conductive nanowire NW, at least one selected from the group consisting of gold nanowires, silver nanowires, and copper nanowires is used. The dispersibility of the conductive nanowires NW is ensured by the matrix MX. By contacting the plurality of conductive nanowires NW with each other at least in part, the in-plane conductivity of the transparent electrode 110 is maintained.
 透明電極110は、図1および図2に示されるように、第1面S1の法線方向からみたときに、導電部111からなる領域(導電領域)CRと光学調整部112を有する領域(光学調整領域)ARとを有する。導電部111は、光学調整部112よりも導電性が高く、光学調整部112は、分散層DLにおける導電性ナノワイヤNWの分散密度が導電部111よりも低い。 As shown in FIGS. 1 and 2, the transparent electrode 110 has a region (conductive region) CR composed of a conductive portion 111 and a region (optical) having an optical adjusting portion 112 when viewed from the normal direction of the first surface S1. Adjustment area) AR and. The conductive portion 111 has higher conductivity than the optical adjusting portion 112, and the optical adjusting portion 112 has a lower dispersion density of the conductive nanowires NW in the dispersion layer DL than the conductive portion 111.
 かかる構造では、透明電極110が備える分散層DLにおいて、導電性ナノワイヤNWがマトリックスMX内で分散しつつ互いに連結することによって、他の透明導電性材料、特に酸化物系の導電性材料に比べて、高い導電性を達成することができる。その一方で、導電性ナノワイヤNW自体は透光性を有していないため、分散層DLにおける導電性ナノワイヤNWの分散密度が高いことによって、透明電極110の反射率が高くなる傾向がある。すなわち、分散層DLを備える透明電極110では、導電性ナノワイヤNWの分散密度が導電性および反射率の双方に対して影響を及ぼすため、導電性を高めることと反射率を低下させることがトレードオフの関係にある。そこで、透明電極110を、相対的に導電性が高い導電領域CRと、相対的に反射率が低い光学調整領域ARと、を有する構成とすることにより、透明電極110の導電性を維持しつつ反射率を低減して、透明電極110の不可視性を高めることが実現される。 In such a structure, in the dispersion layer DL included in the transparent electrode 110, the conductive nanowires NW are dispersed and connected to each other in the matrix MX, so that the conductive nanowires NW are dispersed in the matrix MX and connected to each other, so that the conductive nanowires NW are compared with other transparent conductive materials, particularly oxide-based conductive materials. , High conductivity can be achieved. On the other hand, since the conductive nanowire NW itself does not have translucency, the reflectance of the transparent electrode 110 tends to be high due to the high dispersion density of the conductive nanowire NW in the dispersion layer DL. That is, in the transparent electrode 110 provided with the dispersion layer DL, the dispersion density of the conductive nanowire NW affects both the conductivity and the reflectance, so that there is a trade-off between increasing the conductivity and decreasing the reflectance. There is a relationship of. Therefore, the transparent electrode 110 is configured to have a conductive region CR having a relatively high conductivity and an optical adjustment region AR having a relatively low reflectance, while maintaining the conductivity of the transparent electrode 110. It is realized that the reflectance is reduced and the invisibility of the transparent electrode 110 is increased.
 また、特許文献2や特許文献3に記載されるような、透明電極に貫通孔を有する場合に比べると、反射率以外の光学特性(例えば屈折率)を大きく相違させることなく、光学調整領域ARの反射率を導電領域CRの反射率よりも低くすることができる。したがって、例えば、透明電極部材100を透過して視認される画像がある場合において、その画像の表示均一性を高めることができる。さらに、光学調整領域ARの構成を適切に制御すれば、透明電極110に設けられた貫通孔に比べて光学調整領域ARの導電性を高めることも可能である。この場合には、透明電極110全体としての導電性を高めることが可能であり、透明電極110における光学調整領域ARの面積割合を高めることも可能である。したがって、光学調整領域ARを設けることにより、透明電極110の導電性を高めることと不可視性を高めることとが、貫通孔を設けた場合に比べて、高次に実現されうる。 Further, as compared with the case where the transparent electrode has a through hole as described in Patent Document 2 and Patent Document 3, the optical adjustment region AR does not significantly change the optical characteristics (for example, the refractive index) other than the reflectance. The reflectance of the can be made lower than the reflectance of the conductive region CR. Therefore, for example, when there is an image that is visually recognized through the transparent electrode member 100, the display uniformity of the image can be improved. Further, if the configuration of the optical adjustment region AR is appropriately controlled, it is possible to increase the conductivity of the optical adjustment region AR as compared with the through hole provided in the transparent electrode 110. In this case, it is possible to increase the conductivity of the transparent electrode 110 as a whole, and it is also possible to increase the area ratio of the optical adjustment region AR in the transparent electrode 110. Therefore, by providing the optical adjustment region AR, it is possible to increase the conductivity and the invisibility of the transparent electrode 110 at a higher level than when the through hole is provided.
 ここで、絶縁領域IRの反射率は、導電領域CRの反射率よりも低いことが好ましい。この場合には、光学調整領域ARを有することにより、全体的な反射率が低下した透明電極110と絶縁領域IRとにおける反射率の差が、光学調整部112を有しない場合よりも低くなる。したがって、透明電極110と絶縁領域IRとの境界が視認されにくくなって、透明電極110の不可視性を高めることが実現される。 Here, the reflectance of the insulating region IR is preferably lower than the reflectance of the conductive region CR. In this case, by having the optical adjustment region AR, the difference in reflectance between the transparent electrode 110 in which the overall reflectance is lowered and the insulating region IR is smaller than in the case where the optical adjustment region 112 is not provided. Therefore, the boundary between the transparent electrode 110 and the insulating region IR becomes difficult to see, and the invisibility of the transparent electrode 110 can be enhanced.
 さらに、絶縁領域IRに配置される絶縁層102が分散層DLの構成要素の一つであるマトリックスMXを含有することが好ましい。この場合には、マトリックスMXを共通に含有することに起因して、光学調整部112の反射率以外の光学特性(例えば屈折率)と絶縁層102の光学特性とが近似する。このため、例えば、透明電極部材100を透過して視認される画像がある場合において、その画像の表示均一性が高まりやすくなり、透明電極110の不可視性をより安定的に向上させることができる。 Further, it is preferable that the insulating layer 102 arranged in the insulating region IR contains the matrix MX which is one of the components of the dispersion layer DL. In this case, due to the common inclusion of the matrix MX, the optical characteristics (for example, the refractive index) other than the reflectance of the optical adjustment unit 112 and the optical characteristics of the insulating layer 102 are approximated. Therefore, for example, when there is an image that is visually recognized through the transparent electrode member 100, the display uniformity of the image is likely to be improved, and the invisibility of the transparent electrode 110 can be improved more stably.
 透明電極部材100において、光学調整部112の分散層DLでは、絶縁性を示す程度に、導電性ナノワイヤNWの分散密度が低減されていてもよい。図3はかかる構成(第1構成)の具体例であり、光学調整部112の分散層DLには導電性ナノワイヤNWが実質的に存在せず、分散層DLはマトリックスMXから構成される。この場合には、反射率を高める部材である導電性ナノワイヤNWが実質的に存在しないため、光学調整部112の反射率が特に低くなる。ここで、図3に示されるように、透明電極部材100の絶縁領域IRに配置される絶縁層102は、光学調整部112の分散層DLと同様に、マトリックスMXから構成されている。この場合には、透明電極部材100は、導電領域CRの周囲に位置する反射率が低い領域(絶縁領域IRおよび光学調整領域AR)に配置された部材が共通の材料(マトリックスMX)からなる構成となる。かかる構成を備える場合には、透明電極110全体の反射率が特に低くなって、透明電極110の不可視性がより安定的に向上する。 In the transparent electrode member 100, the dispersion density of the conductive nanowires NW may be reduced to the extent that the dispersion layer DL of the optical adjustment unit 112 exhibits insulating properties. FIG. 3 is a specific example of such a configuration (first configuration), in which the conductive nanowire NW is substantially not present in the dispersion layer DL of the optical adjustment unit 112, and the dispersion layer DL is composed of the matrix MX. In this case, since the conductive nanowire NW, which is a member for increasing the reflectance, is substantially not present, the reflectance of the optical adjusting unit 112 is particularly low. Here, as shown in FIG. 3, the insulating layer 102 arranged in the insulating region IR of the transparent electrode member 100 is composed of the matrix MX, similarly to the dispersion layer DL of the optical adjusting unit 112. In this case, the transparent electrode member 100 has a structure in which the members arranged in the low reflectance region (insulation region IR and optical adjustment region AR) located around the conductive region CR are made of a common material (matrix MX). It becomes. When such a configuration is provided, the reflectance of the entire transparent electrode 110 is particularly low, and the invisibility of the transparent electrode 110 is more stably improved.
 なお、図3では、絶縁層102および光学調整部112はいずれも、導電性ナノワイヤNWが実質的に存在せず、マトリックスMXから構成される場合が示されているが、これに限定されない。絶縁層102および光学調整部112のいずれについても、この部分の導電性が適切に低下して非導電性となって、絶縁機能を発揮することができれば、導電性ナノワイヤNWまたはこれに基づく物質がマトリックスMXに依然として分散していてもよい。次に説明する図4に示される絶縁層102の構造も同様である。 Note that FIG. 3 shows a case where the insulating layer 102 and the optical adjusting unit 112 are composed of the matrix MX without substantially the conductive nanowire NW, but the present invention is not limited to this. For both the insulating layer 102 and the optical adjusting unit 112, if the conductivity of this portion is appropriately lowered to become non-conductive and the insulating function can be exhibited, the conductive nanowire NW or a substance based on the conductive nanowire NW can be used. It may still be dispersed in the matrix MX. The same applies to the structure of the insulating layer 102 shown in FIG. 4 described below.
 透明電極部材100において、光学調整部112は、絶縁層102よりも高い導電性を有してもよい。図4はかかる構成(第2構成)の具体例であり、光学調整部112の分散層DLは、基材101に対して遠位な側(使用者に対向する側)では導電性ナノワイヤNWの分散密度が低く、基材101に近位な側(基材101に対向する側)では導電性ナノワイヤNWの分散密度が高くなっている。分散層DLに分散する導電性ナノワイヤNWのうち、露出する導電性ナノワイヤNWが最も視認されやすいところ、光学調整部112の分散層DLが図4に示される構造を有している場合には、光学調整部112の視認性を適切に低下させることができる。しかも、基材101に近位な側に位置する導電性ナノワイヤNWによって、導電部111の分散層DLよりは低いものの、ある程度の導電性を確保することができる。したがって、光学調整部112の分散層DLが図4に示される構造を有している場合には、透明電極110全体の導電性を高くすることができる。また、この場合には光学調整部112の分散層DLにおける導電性ナノワイヤNWの分散密度と導電部111の分散層DLにおける導電性ナノワイヤNWの分散密度との差が比較的少なくなるため、透明電極110において光学調整部112と導電部111とによって形成されるパターンが視認されにくくなる。 In the transparent electrode member 100, the optical adjustment unit 112 may have higher conductivity than the insulating layer 102. FIG. 4 is a specific example of such a configuration (second configuration), in which the dispersion layer DL of the optical adjustment unit 112 is a conductive nanowire NW on the side distal to the base material 101 (the side facing the user). The dispersion density is low, and the dispersion density of the conductive nanowires NW is high on the side proximal to the base material 101 (the side facing the base material 101). Of the conductive nanowires NW dispersed in the dispersion layer DL, the exposed conductive nanowire NW is most easily visible, and when the dispersion layer DL of the optical adjustment unit 112 has the structure shown in FIG. The visibility of the optical adjustment unit 112 can be appropriately reduced. Moreover, the conductive nanowires NW located on the side proximal to the base material 101 can secure a certain degree of conductivity, although it is lower than the dispersion layer DL of the conductive portion 111. Therefore, when the dispersion layer DL of the optical adjustment unit 112 has the structure shown in FIG. 4, the conductivity of the entire transparent electrode 110 can be increased. Further, in this case, the difference between the dispersion density of the conductive nanowire NW in the dispersion layer DL of the optical adjustment unit 112 and the dispersion density of the conductive nanowire NW in the dispersion layer DL of the conductive unit 111 is relatively small, so that the transparent electrode In 110, the pattern formed by the optical adjusting unit 112 and the conductive unit 111 becomes difficult to see.
 なお、図4では、光学調整部112は、第1面S1の法線方向に沿って、導電性ナノワイヤNWの分散密度が変化している場合が示されているが、これに限定されない。絶縁層102および光学調整部112のいずれについても、この部分の導電性が適切に低下して非導電性となって、絶縁機能を発揮することができれば、導電性ナノワイヤNWまたはこれに基づく物質がマトリックスMXに依然として分散していてもよい。 Note that FIG. 4 shows a case where the optical adjustment unit 112 changes the dispersion density of the conductive nanowires NW along the normal direction of the first surface S1, but is not limited to this. For both the insulating layer 102 and the optical adjusting unit 112, if the conductivity of this portion is appropriately lowered to become non-conductive and the insulating function can be exhibited, the conductive nanowire NW or a substance based on the conductive nanowire NW can be used. It may still be dispersed in the matrix MX.
 図1に示されるように、透明電極部材100において、光学調整領域ARは、導電領域CR内に位置する。かかる構成の場合には、光学調整領域ARが絶縁領域IRに直接的に接する部分を有しない。このため、導電領域CRによって透明電極110に導電路を適切に形成することが可能となり、透明電極110としての導電性が低下することが抑制される。光学調整領域ARが絶縁領域IRに直接的に接する部分を有すると、透明電極110に形成される導電路が蛇行してしまう場合があり、この場合には透明電極110としての導電性が低下してしまう。また、後述するように、光学調整領域ARが絶縁領域IRに接続する部分を有することにより、不可視性が低下してしまう場合がある。 As shown in FIG. 1, in the transparent electrode member 100, the optical adjustment region AR is located in the conductive region CR. In the case of such a configuration, the optical adjustment region AR does not have a portion that directly contacts the insulation region IR. Therefore, the conductive region CR makes it possible to appropriately form a conductive path in the transparent electrode 110, and it is possible to suppress a decrease in the conductivity of the transparent electrode 110. If the optical adjustment region AR has a portion that is in direct contact with the insulating region IR, the conductive path formed in the transparent electrode 110 may meander, and in this case, the conductivity of the transparent electrode 110 is lowered. It ends up. Further, as will be described later, invisibility may be reduced by having a portion where the optical adjustment region AR is connected to the insulation region IR.
 透明電極部材100において、光学調整領域ARの面積割合(調整率)は、10%以上40%以下であることが好ましい場合がある。光学調整部112では反射率を低下させることとのトレードオフとして導電性が相対的に低下する傾向がある。本発明の一実施形態に係る透明電極部材100では、透明電極110の反射率を安定的に低下させる観点から調整率を10%以上とすることが好ましい場合があり、15%以上とすることがより好ましい場合がある。一方、調整率を40%程度まで高めて透明電極110の不可視性を向上させても、透明電極110として求められる導電性を確保することができる場合があり、調整率を35%以下とすることが優れた不可視性を確保しつつ導電性を高める観点から好ましい場合がある。 In the transparent electrode member 100, the area ratio (adjustment rate) of the optical adjustment region AR may be preferably 10% or more and 40% or less. In the optical adjusting unit 112, the conductivity tends to be relatively lowered as a trade-off with lowering the reflectance. In the transparent electrode member 100 according to the embodiment of the present invention, the adjustment rate may be preferably 10% or more from the viewpoint of stably reducing the reflectance of the transparent electrode 110, and may be 15% or more. It may be more preferable. On the other hand, even if the adjustment rate is increased to about 40% to improve the invisibility of the transparent electrode 110, the conductivity required for the transparent electrode 110 may be secured, and the adjustment rate should be 35% or less. May be preferable from the viewpoint of increasing conductivity while ensuring excellent invisibility.
 本発明の一実施形態に係る透明電極110では、光学調整領域ARは、導電領域CR内に離散的に位置する複数の部分領域を有している。相対的に透光性が異なる光学調整領域ARと導電領域CRとが互いに大きなパターンを形成している場合には、そのパターン形状によっては、パターンの視認性が高くなってしまうことが懸念される。また、光学調整部112は相対的に導電性が低い領域であるから、これが透明電極110内でまとまって位置する場合には、透明電極110内を蛇行する導電路が形成されるおそれがあり、この場合には、透明電極110としての導電性が低下してしまう。したがって、上記のように、相対的に導電性の低い光学調整部112からなる部分領域(すなわち光学調整領域AR)を導電領域CR内に離散的に配置することによって、透明電極110内に視認されやすいパターンが形成されたり、実質的に導電性が低下したりすることが抑制される。また、後述するように、透明電極110が絶縁領域IRを介して複数配置されている場合には、複数の透明電極110の間に位置する絶縁領域IRの反射率が透明電極110の導電部111の反射率と相違することに起因して、絶縁領域IRの視認性が高まってしまうこともある。このような場合であっても、透明電極110の導電領域CR内に光学調整領域ARが離散的に配置されていることにより、絶縁領域IRに少なくとも一部が囲まれた状態にある透明電極110の不可視性を向上させることができる。 In the transparent electrode 110 according to the embodiment of the present invention, the optical adjustment region AR has a plurality of partial regions discretely located in the conductive region CR. When the optical adjustment region AR and the conductive region CR, which have relatively different translucency, form a large pattern with each other, there is a concern that the visibility of the pattern may be improved depending on the pattern shape. .. Further, since the optical adjusting unit 112 is a region having relatively low conductivity, if it is collectively located in the transparent electrode 110, a conductive path meandering in the transparent electrode 110 may be formed. In this case, the conductivity of the transparent electrode 110 is reduced. Therefore, as described above, by arranging the partial regions (that is, the optical adjustment region AR) composed of the optical adjustment portion 112 having relatively low conductivity discretely in the conductive region CR, it is visually recognized in the transparent electrode 110. It is suppressed that an easy pattern is formed and the conductivity is substantially lowered. Further, as will be described later, when a plurality of transparent electrodes 110 are arranged via the insulating region IR, the reflectance of the insulating region IR located between the plurality of transparent electrodes 110 is the conductive portion 111 of the transparent electrode 110. The visibility of the insulating region IR may be improved due to the difference from the reflectance of. Even in such a case, since the optical adjustment region AR is discretely arranged in the conductive region CR of the transparent electrode 110, the transparent electrode 110 is in a state where at least a part is surrounded by the insulating region IR. Invisibility can be improved.
 光学調整領域ARを構成する部分領域は、互いに30μm以上離間していることが好ましい場合がある。この離間距離sdは、すなわち、離散配置される光学調整部112の間に位置する導電領域CRの幅であるから、透明電極110における個々の導電路の幅となる。したがって、離間距離sdが30μm以上であることにより、透明電極110としての導電性が低下することが安定的に抑制される。 It may be preferable that the partial regions constituting the optical adjustment region AR are separated from each other by 30 μm or more. Since this separation distance sd is the width of the conductive region CR located between the discretely arranged optical adjustment portions 112, it is the width of each conductive path in the transparent electrode 110. Therefore, when the separation distance sd is 30 μm or more, the decrease in conductivity of the transparent electrode 110 is stably suppressed.
 光学調整領域ARが離散的に配置されている場合において、複数の部分領域(光学調整領域AR)のそれぞれの形状は円であり、円の直径は、10μm以上、100μm以下であってもよい。透明電極110の不可視性をより安定的に向上させる観点から、上記の複数の部分領域(光学調整領域AR)の形状は、透明電極110内で均一であることが好ましい。この部分領域(光学調整領域AR)の形状が円であって、その直径が上記の範囲である場合には、調整率を40%以下としつつ、複数の部分領域(光学調整領域AR)の離間距離を30μm以上とすることを容易に実現することができる。 When the optical adjustment region AR is arranged discretely, the shape of each of the plurality of partial regions (optical adjustment region AR) is a circle, and the diameter of the circle may be 10 μm or more and 100 μm or less. From the viewpoint of more stably improving the invisibility of the transparent electrode 110, it is preferable that the shape of the plurality of partial regions (optical adjustment region AR) is uniform within the transparent electrode 110. When the shape of this partial region (optical adjustment region AR) is a circle and the diameter thereof is within the above range, the distance between the plurality of partial regions (optical adjustment region AR) while setting the adjustment ratio to 40% or less. It can be easily realized that the distance is 30 μm or more.
 上記の複数の部分領域(光学調整領域AR)のそれぞれの形状を、円に代えて、四角形としてもよい。この場合には、四角形の対角線のうちで最長の対角線の長さは、10μm以上、100μm以下であることが、上記の円の直径の理由と同様の理由により、好ましい。 The shape of each of the above-mentioned plurality of partial regions (optical adjustment region AR) may be a quadrangle instead of a circle. In this case, the length of the longest diagonal line among the diagonal lines of the quadrangle is preferably 10 μm or more and 100 μm or less for the same reason as the above-mentioned reason for the diameter of the circle.
 図1に示されるように、複数の部分領域(光学調整領域AR)が透明電極110の全体にわたって配置される場合には、透明電極110全体として反射率にばらつきが生じにくいため、透明電極110の不可視性が向上しやすく、好ましい。 As shown in FIG. 1, when a plurality of partial regions (optical adjustment region AR) are arranged over the entire transparent electrode 110, the reflectance of the transparent electrode 110 as a whole is unlikely to vary. Invisibility is easily improved, which is preferable.
 図5は、本実施形態に係る静電容量式センサを表す平面図である。図6は、図5に表した領域A1を拡大した平面図である。図7は、図6に表した切断面C1-C1における断面図である。図8は、図6に表した切断面C2-C2における断面図である。なお、透明電極は透明なので本来は視認できないが、図5および図6では理解を容易にするため透明電極の外形を示している。 FIG. 5 is a plan view showing a capacitance type sensor according to the present embodiment. FIG. 6 is an enlarged plan view of the region A1 shown in FIG. FIG. 7 is a cross-sectional view of the cut surfaces C1-C1 shown in FIG. FIG. 8 is a cross-sectional view of the cut surfaces C2-C2 shown in FIG. Since the transparent electrode is transparent, it cannot be visually recognized originally, but FIGS. 5 and 6 show the outer shape of the transparent electrode for easy understanding.
 図5から図8に表したように、本実施形態に係る静電容量式センサ1は、基材2と、第1透明電極4と、第2透明電極5と、第2透明配線を構成するブリッジ配線部10と、パネル3と、検知部および制御部(いずれも図示していない)と、を備える。ブリッジ配線部10からみて基材2と反対側にパネル3が設けられている。基材2とパネル3との間には、光学透明粘着層(OCA;Optical Clear Adhesive)30が設けられている。基材2とブリッジ配線部10との間には、絶縁物からなる絶縁部20が設けられている。図7に表したように、ブリッジ配線部10が設けられた部分においては、光学透明粘着層30は、ブリッジ配線部10とパネル3との間に設けられている。 As shown in FIGS. 5 to 8, the capacitance type sensor 1 according to the present embodiment constitutes the base material 2, the first transparent electrode 4, the second transparent electrode 5, and the second transparent wiring. It includes a bridge wiring unit 10, a panel 3, a detection unit, and a control unit (neither of which is shown). The panel 3 is provided on the side opposite to the base material 2 when viewed from the bridge wiring portion 10. An optical transparent adhesive layer (OCA; Optical Clear Adhesive) 30 is provided between the base material 2 and the panel 3. An insulating portion 20 made of an insulating material is provided between the base material 2 and the bridge wiring portion 10. As shown in FIG. 7, in the portion where the bridge wiring portion 10 is provided, the optical transparent adhesive layer 30 is provided between the bridge wiring portion 10 and the panel 3.
 基材2は、透光性を有し、ポリエチレンテレフタレート(PET)等のフィルム状の透明基材やガラス基材等で形成される。基材2の一方の主面である第1面S1には、第1透明電極4および第2透明電極5が設けられている。この詳細については、後述する。図7に表したように、パネル3は、ブリッジ配線部10からみて基材2とは反対側に設けられ、透光性を有する。このパネル3側から操作者の指などの操作体が接触または近接されて透明電極部材への操作が行われる。パネル3の材料は、特には限定されないが、パネル3の材料としては、ガラス基材やプラスチック基材が好ましく適用される。パネル3は、基材2とパネル3との間に設けられた光学透明粘着層30を介して基材2と接合されている。光学透明粘着層30は、アクリル系粘着剤や両面粘着テープ等からなる。 The base material 2 has translucency and is formed of a film-like transparent base material such as polyethylene terephthalate (PET), a glass base material, or the like. A first transparent electrode 4 and a second transparent electrode 5 are provided on the first surface S1 which is one main surface of the base material 2. The details will be described later. As shown in FIG. 7, the panel 3 is provided on the side opposite to the base material 2 when viewed from the bridge wiring portion 10, and has translucency. An operating body such as an operator's finger is brought into contact with or close to the panel 3 side to operate the transparent electrode member. The material of the panel 3 is not particularly limited, but a glass base material or a plastic base material is preferably applied as the material of the panel 3. The panel 3 is bonded to the base material 2 via an optically transparent adhesive layer 30 provided between the base material 2 and the panel 3. The optical transparent adhesive layer 30 is made of an acrylic adhesive, a double-sided adhesive tape, or the like.
 図5に表したように、静電容量式センサ1は、パネル3側の面の法線に沿った方向(Z1-Z2方向:図7および図8参照)からみて、検出領域11と非検出領域25とからなる。検出領域11は、指などの操作体により操作を行うことができる領域であり、非検出領域25は、検出領域11の外周側に位置する額縁状の領域である。非検出領域25は、図示しない加飾層によって遮光され、静電容量式センサ1におけるパネル3側の面から基材2側の面への光(外光が例示される。)および基材2側の面からパネル3側の面への光(静電容量式センサ1と組み合わせて使用される表示装置のバックライトからの光が例示される。)は、非検出領域25を透過しにくくなっている。 As shown in FIG. 5, the capacitance type sensor 1 does not detect the detection region 11 when viewed from the direction along the normal of the surface on the panel 3 side (Z1-Z2 direction: see FIGS. 7 and 8). It consists of an area 25. The detection area 11 is an area that can be operated by an operating body such as a finger, and the non-detection area 25 is a frame-shaped area located on the outer peripheral side of the detection area 11. The non-detection region 25 is shielded by a decorative layer (not shown), and the light (external light is exemplified) from the surface on the panel 3 side to the surface on the base material 2 side in the capacitance type sensor 1 and the base material 2 Light from the side surface to the surface on the panel 3 side (light from the backlight of the display device used in combination with the capacitive sensor 1 is exemplified) is less likely to pass through the non-detection region 25. ing.
 図5に表したように、静電容量式センサ1は、第1電極連結体8と第2電極連結体12とが基材2の一方の主面(第1面S1)に設けられた構成を有する透明電極部材400を備える。第1電極連結体8は、検出領域11に配置され、複数の第1透明電極4を有する。図7および図8に示すように、複数の第1透明電極4は、基材2におけるZ1-Z2方向に沿った方向を法線とする主面のうちZ1側に位置する第1面S1に設けられている。各第1透明電極4は、細長い連結部7を介してY1-Y2方向(第1の方向)に連結されている。そして、Y1-Y2方向に連結された複数の第1透明電極4を有する第1電極連結体8が、X1-X2方向に間隔を空けて配列されている。連結部7は第1透明配線を構成し、第1透明電極4に一体として形成されている。連結部7は、隣り合う2つの第1透明電極4を互いに電気的に接続している。第1電極連結体8および第2電極連結体12の周囲には絶縁領域IR(絶縁層21)が設けられている。 As shown in FIG. 5, the capacitance type sensor 1 has a configuration in which the first electrode connecting body 8 and the second electrode connecting body 12 are provided on one main surface (first surface S1) of the base material 2. The transparent electrode member 400 is provided. The first electrode connector 8 is arranged in the detection region 11 and has a plurality of first transparent electrodes 4. As shown in FIGS. 7 and 8, the plurality of first transparent electrodes 4 are formed on the first surface S1 of the base material 2 located on the Z1 side of the main surfaces whose normals are the directions along the Z1-Z2 directions. It is provided. Each first transparent electrode 4 is connected in the Y1-Y2 direction (first direction) via an elongated connecting portion 7. Then, the first electrode connecting body 8 having a plurality of first transparent electrodes 4 connected in the Y1-Y2 direction is arranged at intervals in the X1-X2 direction. The connecting portion 7 constitutes the first transparent wiring and is integrally formed with the first transparent electrode 4. The connecting portion 7 electrically connects two adjacent first transparent electrodes 4 to each other. An insulating region IR (insulating layer 21) is provided around the first electrode connecting body 8 and the second electrode connecting body 12.
 第1透明電極4および連結部7は、透光性を有し、導電性ナノワイヤを含む材料により形成される。導電性ナノワイヤを含む材料を用いることで、第1透明電極4の高い透光性とともに低電気抵抗化を図ることができる。また、導電性ナノワイヤを含む材料を用いることで、静電容量式センサ1の変形性能を向上させることができる。 The first transparent electrode 4 and the connecting portion 7 have translucency and are formed of a material containing conductive nanowires. By using a material containing conductive nanowires, it is possible to achieve high translucency and low electrical resistance of the first transparent electrode 4. Further, by using a material containing conductive nanowires, the deformation performance of the capacitance type sensor 1 can be improved.
 図6および図8に表したように、第1透明電極4は複数の第1光学調整領域41を有する。複数の第1光学調整領域41の構造は、前述の光学調整領域ARに等しい。複数の第1光学調整領域41は、第1透明電極4において互いに離れて配設されるが、第1透明電極4における連結部7の周囲に位置する無調整領域NRには設けられておらず、第1透明電極4に連設される連結部7にも設けられていない。隣り合う複数の第1光学調整領域41同士の間の距離(第1距離)D1は、一定であり、30μm以上である。図6に表した例では、第1光学調整領域41の形状は、円である。第1光学調整領域41の円の直径D11は、10μm以上、100μm以下である。 As shown in FIGS. 6 and 8, the first transparent electrode 4 has a plurality of first optical adjustment regions 41. The structure of the plurality of first optical adjustment regions 41 is equal to the above-mentioned optical adjustment region AR. The plurality of first optical adjustment regions 41 are arranged apart from each other in the first transparent electrode 4, but are not provided in the non-adjustment region NR located around the connecting portion 7 in the first transparent electrode 4. , Is not provided in the connecting portion 7 connected to the first transparent electrode 4. The distance (first distance) D1 between the plurality of adjacent first optical adjustment regions 41 is constant and is 30 μm or more. In the example shown in FIG. 6, the shape of the first optical adjustment region 41 is a circle. The diameter D11 of the circle of the first optical adjustment region 41 is 10 μm or more and 100 μm or less.
 第2電極連結体12は、検出領域11に配置され、複数の第2透明電極5を有する。図7および図8に示すように、複数の第2透明電極5は、基材2の第1面S1に設けられている。このように、第2透明電極5は、第1透明電極4と同じ面(基材2の第1面S1)に設けられている。各第2透明電極5は、細長いブリッジ配線部10を介してX1-X2方向(第2の方向)に連結されている。そして、図5に示すように、X1-X2方向に連結された複数の第2透明電極5を有する第2電極連結体12が、Y1-Y2方向に間隔を空けて配列されている。ブリッジ配線部10は、第2透明電極5とは別体として形成されている。なお、X1-X2方向は、Y1-Y2方向と交差している。例えば、X1-X2方向は、Y1-Y2方向と垂直に交わっている。 The second electrode connector 12 is arranged in the detection region 11 and has a plurality of second transparent electrodes 5. As shown in FIGS. 7 and 8, the plurality of second transparent electrodes 5 are provided on the first surface S1 of the base material 2. As described above, the second transparent electrode 5 is provided on the same surface as the first transparent electrode 4 (first surface S1 of the base material 2). Each second transparent electrode 5 is connected in the X1-X2 direction (second direction) via an elongated bridge wiring portion 10. Then, as shown in FIG. 5, the second electrode connecting bodies 12 having the plurality of second transparent electrodes 5 connected in the X1-X2 direction are arranged at intervals in the Y1-Y2 direction. The bridge wiring portion 10 is formed as a separate body from the second transparent electrode 5. The X1-X2 direction intersects the Y1-Y2 direction. For example, the X1-X2 direction intersects the Y1-Y2 direction perpendicularly.
 第2透明電極5は、透光性を有し、導電性ナノワイヤを含む材料により形成される。導電性ナノワイヤは、第1透明電極4の材料に関して前述した通りである。 The second transparent electrode 5 has translucency and is formed of a material containing conductive nanowires. The conductive nanowires are as described above with respect to the material of the first transparent electrode 4.
 図6および図7に表したように、第2透明電極5は複数の第2光学調整領域51を有する。複数の第2光学調整領域51の構造は、前述の光学調整領域ARに等しい。複数の第2光学調整領域51は、第2透明電極5において互いに離れて配設されるが、ブリッジ配線部10と重なる領域および無調整領域NRには設けられていない。隣り合う複数の第2光学調整領域51同士の間の距離(第2距離)D2は、一定であり、30μm以上である。図6に表した例では、第2光学調整領域51の形状は、円である。第2光学調整領域51の円の直径D12は、10μm以上、100μm以下である。 As shown in FIGS. 6 and 7, the second transparent electrode 5 has a plurality of second optical adjustment regions 51. The structure of the plurality of second optical adjustment regions 51 is equal to the above-mentioned optical adjustment region AR. The plurality of second optical adjustment regions 51 are arranged apart from each other in the second transparent electrode 5, but are not provided in the region overlapping the bridge wiring portion 10 and the non-adjustment region NR. The distance (second distance) D2 between the plurality of adjacent second optical adjustment regions 51 is constant and is 30 μm or more. In the example shown in FIG. 6, the shape of the second optical adjustment region 51 is a circle. The diameter D12 of the circle of the second optical adjustment region 51 is 10 μm or more and 100 μm or less.
 ブリッジ配線部10は、透光性および導電性を有する酸化物系材料を含む材料により形成される。透光性および導電性を有する酸化物系材料としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)、AZO(Aluminum-doped Zinc Oxide)およびFTO(Fluorine-doped Tin Oxide)よりなる群から選択された少なくとも1つが用いられる。 The bridge wiring portion 10 is formed of a material containing an oxide-based material having translucency and conductivity. Oxide-based materials having translucency and conductivity include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), GZO (Gallium-doped Zinc Oxide), AZO (Aluminum-doped Zinc Oxide) and FTO (Fluorine). -At least one selected from the group consisting of doped Tin Oxide) is used.
 あるいは、ブリッジ配線部10は、ITO等の酸化物系材料を含む第1層と、第1層よりも低抵抗で透明な金属からなる第2層と、を有していてもよい。また、ブリッジ配線部10は、ITO等の酸化物系材料を含む第3層をさらに有していてもよい。ブリッジ配線部10が第1層と第2層との積層構造、あるいは第1層と第2層と第3層との積層構造を有する場合には、ブリッジ配線部10と、第1透明電極4および第2透明電極5と、の間においてエッチング選択性を有することが望ましい。 Alternatively, the bridge wiring portion 10 may have a first layer containing an oxide-based material such as ITO, and a second layer made of a transparent metal having a lower resistance than the first layer. Further, the bridge wiring portion 10 may further have a third layer containing an oxide-based material such as ITO. When the bridge wiring portion 10 has a laminated structure of the first layer and the second layer, or a laminated structure of the first layer, the second layer, and the third layer, the bridge wiring portion 10 and the first transparent electrode 4 It is desirable to have etching selectivity between the and the second transparent electrode 5.
 図6から図8に示すように、各第1透明電極4間を連結する連結部7の表面には、絶縁部20が設けられている。図7に示すように、絶縁部20は、連結部7と第2透明電極5との間の空間を埋め、第2透明電極5の表面にも多少乗り上げている。絶縁部20としては、例えばノボラック樹脂(レジスト)が用いられる。 As shown in FIGS. 6 to 8, an insulating portion 20 is provided on the surface of the connecting portion 7 that connects the first transparent electrodes 4 to each other. As shown in FIG. 7, the insulating portion 20 fills the space between the connecting portion 7 and the second transparent electrode 5, and slightly rides on the surface of the second transparent electrode 5. As the insulating portion 20, for example, a novolak resin (resist) is used.
 図7および図8に示すように、ブリッジ配線部10は、絶縁部20の表面20aから絶縁部20のX1-X2方向の両側に位置する各第2透明電極5の表面にかけて設けられている。ブリッジ配線部10は、隣り合う2つの第2透明電極5を互いに電気的に接続している。 As shown in FIGS. 7 and 8, the bridge wiring portion 10 is provided from the surface 20a of the insulating portion 20 to the surface of each second transparent electrode 5 located on both sides of the insulating portion 20 in the X1-X2 direction. The bridge wiring unit 10 electrically connects two adjacent second transparent electrodes 5 to each other.
 図7および図8に示すように、連結部7の表面に設けられた絶縁部20の表面に各第2透明電極5間を接続するブリッジ配線部10が設けられている。このように、連結部7とブリッジ配線部10との間には絶縁部20が介在し、第1透明電極4と第2透明電極5とは互いに電気的に絶縁された状態となっている。本実施形態では、第1透明電極4と第2透明電極5とが同じ面(基材2の第1面S1)に設けられているため、静電容量式センサ1の薄型化を実現できる。 As shown in FIGS. 7 and 8, a bridge wiring portion 10 for connecting between the second transparent electrodes 5 is provided on the surface of the insulating portion 20 provided on the surface of the connecting portion 7. In this way, the insulating portion 20 is interposed between the connecting portion 7 and the bridge wiring portion 10, and the first transparent electrode 4 and the second transparent electrode 5 are electrically insulated from each other. In the present embodiment, since the first transparent electrode 4 and the second transparent electrode 5 are provided on the same surface (first surface S1 of the base material 2), the capacitance type sensor 1 can be made thinner.
 図6に表したように、第1透明電極4および第2透明電極5は、基材2の第1面S1において隣り合った状態で並んで配置されている。第1透明電極4および第2透明電極5は、図1における透明電極110に対応する。第1透明電極4と第2透明電極5との間には、絶縁層21が設けられている。絶縁層21は、図1、図5における絶縁領域IRに対応する。これにより、第1透明電極4と第2透明電極5とは、互いに電気的に絶縁された状態となっている。絶縁層21の幅D3は、例えば約10μm以上、20μm以下程度である。 As shown in FIG. 6, the first transparent electrode 4 and the second transparent electrode 5 are arranged side by side on the first surface S1 of the base material 2 in an adjacent state. The first transparent electrode 4 and the second transparent electrode 5 correspond to the transparent electrode 110 in FIG. An insulating layer 21 is provided between the first transparent electrode 4 and the second transparent electrode 5. The insulating layer 21 corresponds to the insulating region IR in FIGS. 1 and 5. As a result, the first transparent electrode 4 and the second transparent electrode 5 are electrically insulated from each other. The width D3 of the insulating layer 21 is, for example, about 10 μm or more and 20 μm or less.
 なお、図6から図8に表した連結部7は、第1透明電極4に一体として形成され、Y1-Y2方向に延びている。また、図6から図8に表したブリッジ配線部10は、連結部7を覆う絶縁部20の表面20aに第2透明電極5とは別体として形成され、X1-X2方向に延びている。但し、連結部7およびブリッジ配線部10の配置形態は、これだけには限定されない。例えば、連結部7は、第2透明電極5に一体として形成され、X1-X2方向に延びていてもよい。この場合には、連結部7は、隣り合う2つの第2透明電極5を互いに電気的に接続する。ブリッジ配線部10は、連結部7を覆う絶縁部20の表面20aに第1透明電極4とは別体として形成され、Y1-Y2方向に延びていてもよい。この場合には、ブリッジ配線部10は、隣り合う2つの第1透明電極4を互いに電気的に接続する。本実施形態に係る静電容量式センサ1の説明では、ブリッジ配線部10が、連結部7を覆う絶縁部20の表面20aに第2透明電極5とは別体として形成され、X1-X2方向に延びた場合を例に挙げる。 The connecting portion 7 shown in FIGS. 6 to 8 is integrally formed with the first transparent electrode 4 and extends in the Y1-Y2 direction. Further, the bridge wiring portion 10 shown in FIGS. 6 to 8 is formed on the surface 20a of the insulating portion 20 covering the connecting portion 7 as a separate body from the second transparent electrode 5, and extends in the X1-X2 direction. However, the arrangement form of the connecting portion 7 and the bridge wiring portion 10 is not limited to this. For example, the connecting portion 7 may be integrally formed with the second transparent electrode 5 and extend in the X1-X2 direction. In this case, the connecting portion 7 electrically connects two adjacent second transparent electrodes 5 to each other. The bridge wiring portion 10 may be formed on the surface 20a of the insulating portion 20 covering the connecting portion 7 as a separate body from the first transparent electrode 4, and may extend in the Y1-Y2 direction. In this case, the bridge wiring unit 10 electrically connects two adjacent first transparent electrodes 4 to each other. In the description of the capacitance type sensor 1 according to the present embodiment, the bridge wiring portion 10 is formed on the surface 20a of the insulating portion 20 covering the connecting portion 7 as a separate body from the second transparent electrode 5, and is formed in the X1-X2 direction. Take the case where it extends to.
 図5に示すように、非検出領域25には、各第1電極連結体8および各第2電極連結体12から引き出された複数本の配線部6が形成されている。第1電極連結体8および第2電極連結体12のそれぞれは、接続配線16を介して配線部6と電気的に接続されている。各配線部6は、図示しないフレキシブルプリント基板と電気的に接続される外部接続部27に接続されている。すなわち、各配線部6は、第1電極連結体8および第2電極連結体12と、外部接続部27と、を電気的に接続している。外部接続部27は、例えば導電ペースト、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料を介して、図示しないフレキシブルプリント基板と電気的に接続されている。 As shown in FIG. 5, in the non-detection region 25, a plurality of wiring portions 6 drawn out from each first electrode connecting body 8 and each second electrode connecting body 12 are formed. Each of the first electrode connecting body 8 and the second electrode connecting body 12 is electrically connected to the wiring portion 6 via the connecting wiring 16. Each wiring unit 6 is connected to an external connection unit 27 that is electrically connected to a flexible printed circuit board (not shown). That is, each wiring portion 6 electrically connects the first electrode connecting body 8 and the second electrode connecting body 12 and the external connecting portion 27. The external connection portion 27 is electrically connected to a flexible printed substrate (not shown) via a material having a metal such as a conductive paste, Cu, Cu alloy, CuNi alloy, Ni, Ag, or Au.
 そして、このフレキシブルプリント基板と接続されたプリント配線板(図示していない)には、操作体と透明電極(主に第1透明電極4および第2透明電極5)との間に生じる静電容量の変化を検知する検知部(図示していない)と、検知部からの信号に基づいて操作体の位置を算出する制御部が搭載されている。なお、詳細な説明は行わないが、検知部や制御部には、集積回路が用いられている。 Then, in the printed wiring board (not shown) connected to the flexible printed circuit board, the capacitance generated between the operating body and the transparent electrodes (mainly the first transparent electrode 4 and the second transparent electrode 5) is generated. It is equipped with a detection unit (not shown) that detects changes in the above and a control unit that calculates the position of the operating body based on the signal from the detection unit. Although detailed description will not be given, integrated circuits are used in the detection unit and the control unit.
 各配線部6は、Cu、Cu合金、CuNi合金、Ni、Ag、Au等の金属を有する材料により形成される。接続配線16は、ITO、金属ナノワイヤ等の透明導電性材料で形成され、検出領域11から非検出領域25に延出している。配線部6は、接続配線16の上に非検出領域25内で積層され、接続配線16と電気的に接続されている。また、第1透明電極4や第2透明電極5と同じ金属ナノワイヤ(具体例として銀ナノワイヤが挙げられる。)を有する分散層DLが連続して非検出領域25に延出して接続配線16を構成し、非検出領域25においてこの接続配線16と配線部6を構成する金属層とが積層された積層配線構造を有していてもよい。金属ナノワイヤを有する分散層DLからなる接続配線16がさらに延出して配線部6の少なくとも一部を構成していてもよい。この場合において、配線部6は、分散層DLと金属系の材料との積層構造であってもよい。 Each wiring portion 6 is formed of a material having a metal such as Cu, Cu alloy, CuNi alloy, Ni, Ag, and Au. The connection wiring 16 is formed of a transparent conductive material such as ITO or metal nanowires, and extends from the detection region 11 to the non-detection region 25. The wiring portion 6 is laminated on the connection wiring 16 in the non-detection region 25 and is electrically connected to the connection wiring 16. Further, the dispersion layer DL having the same metal nanowires as the first transparent electrode 4 and the second transparent electrode 5 (specific example is silver nanowires) extends continuously to the non-detection region 25 to form the connection wiring 16. However, the non-detection region 25 may have a laminated wiring structure in which the connection wiring 16 and the metal layer constituting the wiring portion 6 are laminated. The connection wiring 16 made of the dispersion layer DL having the metal nanowires may further extend to form at least a part of the wiring portion 6. In this case, the wiring portion 6 may have a laminated structure of the dispersed layer DL and the metal-based material.
 配線部6は、基材2の第1面S1における非検出領域25に位置する部分に設けられている。外部接続部27も、配線部6と同様に、基材2の第1面S1における非検出領域25に位置する部分に設けられている。 The wiring portion 6 is provided in a portion located in the non-detection region 25 on the first surface S1 of the base material 2. The external connection portion 27 is also provided in a portion located in the non-detection region 25 on the first surface S1 of the base material 2, similarly to the wiring portion 6.
 図5では、理解を容易にするために配線部6や外部接続部27が視認されるように表示しているが、実際には、非検出領域25に位置する部分には、遮光性を有する加飾層(図示せず)が設けられている。このため、静電容量式センサ1をパネル3側の面からみると、配線部6および外部接続部27は加飾層によって隠蔽され、視認されない。加飾層を構成する材料は、遮光性を有する限り任意である。加飾層は絶縁性を有していてもよい。 In FIG. 5, the wiring portion 6 and the external connection portion 27 are displayed so as to be visually recognized for easy understanding, but in reality, the portion located in the non-detection region 25 has a light-shielding property. A decorative layer (not shown) is provided. Therefore, when the capacitance type sensor 1 is viewed from the surface on the panel 3 side, the wiring portion 6 and the external connection portion 27 are hidden by the decorative layer and are not visible. The material constituting the decorative layer is arbitrary as long as it has a light-shielding property. The decorative layer may have an insulating property.
 本実施形態に係る静電容量式センサ1では、図7に示す例えばパネル3の面3a上に操作体の一例として指を接触させると、指と指に近い第1透明電極4との間、および指と指に近い第2透明電極5との間で静電容量が生じる。静電容量式センサ1は、このときの静電容量の変化を検知部により検知し、この静電容量変化に基づいて、指の接触位置を制御部によって算出することが可能である。つまり、静電容量式センサ1は、指と第1電極連結体8との間の静電容量変化に基づいて指の位置のX座標を検知し、指と第2電極連結体12との間の静電容量変化に基づいて指の位置のY座標を検知する(自己容量検出型)。 In the capacitance type sensor 1 according to the present embodiment, when a finger is brought into contact with the surface 3a of the panel 3, for example, as an example of the operating body shown in FIG. 7, between the finger and the first transparent electrode 4 close to the finger, And a capacitance is generated between the finger and the second transparent electrode 5 close to the finger. The capacitance type sensor 1 can detect the change in capacitance at this time by the detection unit, and can calculate the contact position of the finger by the control unit based on the change in capacitance. That is, the capacitance type sensor 1 detects the X coordinate of the position of the finger based on the change in capacitance between the finger and the first electrode connector 8, and between the finger and the second electrode connector 12. The Y coordinate of the finger position is detected based on the change in capacitance of (self-capacitance detection type).
 あるいは、静電容量式センサ1は、相互容量検出型であってもよい。すなわち、静電容量式センサ1は、第1電極連結体8および第2電極連結体12のいずれか一方の電極(例えば第1電極連結体8)の一列に駆動電圧を印加し、第1電極連結体8および第2電極連結体12のいずれか他方の電極(例えば第2電極連結体12)と指との間の静電容量の変化を検知してもよい。この場合には、静電容量式センサ1は、いずれの第1電極連結体8に電圧を印加したときに静電容量の変化が検出されたかにより指の位置のX座標を検知し、いずれの第2電極連結体12において静電容量が変化したかにより指の位置のY座標を検知する。 Alternatively, the capacitance type sensor 1 may be a mutual capacitance detection type. That is, the capacitance type sensor 1 applies a driving voltage to a row of one of the electrodes of the first electrode connecting body 8 and the second electrode connecting body 12 (for example, the first electrode connecting body 8), and applies a driving voltage to the first electrode. The change in capacitance between the connector 8 and the second electrode of the second electrode connector 12 (for example, the second electrode connector 12) and the finger may be detected. In this case, the capacitance type sensor 1 detects the X coordinate of the position of the finger depending on which change in capacitance is detected when a voltage is applied to the first electrode connector 8, and whichever The Y coordinate of the finger position is detected depending on whether the capacitance of the second electrode connector 12 has changed.
 ここで、従来技術に係る静電容量式センサでは、導電性ナノワイヤを含む導電部分を有する透明電極の反射率と、隣り合う透明電極の間隙を含む絶縁部分の反射率と、の間の差が大きくなると、導電部分と絶縁部分との違いが視覚的に明らかになる。そうすると、透明電極がパターンとして視認されやすくなる。静電容量式センサが反射防止層や反射低減層などを備える場合には、導電部分の反射率と絶縁部分の反射率との間の差を抑えることができる一方で、反射防止層や反射低減層を形成する設備の追加が必要になったり、静電容量式センサの製造工程が増加したりする。 Here, in the capacitance type sensor according to the prior art, the difference between the reflectance of the transparent electrode having the conductive portion including the conductive nanowire and the reflectance of the insulating portion including the gap between the adjacent transparent electrodes is As the size increases, the difference between the conductive portion and the insulating portion becomes visually apparent. Then, the transparent electrode becomes easily visible as a pattern. When the capacitance type sensor is provided with an antireflection layer or an antireflection layer, the difference between the reflectance of the conductive portion and the reflectance of the insulating portion can be suppressed, while the antireflection layer and the reflection reduction can be suppressed. It is necessary to add equipment for forming layers, and the manufacturing process of the capacitance type sensor is increased.
 これに対して、本実施形態に係る静電容量式センサ1では、第1透明電極4は互いに離れて配設された複数の第1光学調整領域41を有する。また、第2透明電極5は互いに離れて配設された複数の第2光学調整領域51を有する。そのため、第1透明電極4および第2透明電極5のうちには、導電性ナノワイヤを含む導電領域CRと、複数の第1光学調整領域41および複数の第2光学調整領域51により形成された複数の領域(光学調整領域AR)と、が存在する。そのため、第1透明電極4および第2透明電極5のうちには、導電領域CRと光学調整領域ARとの間の複数の境界(内部境界)が存在する。一方で、第1透明電極4と絶縁層21との間の境界(外部境界)、および第2透明電極と絶縁層21との間の境界(外部境界)が存在する。なお、前述の無調整領域NRは導電領域CRからなるため、無調整領域NRには内部領域(導電領域CRと光学調整領域ARとの間の境界)は存在せず、外部領域(第1透明電極4または第2透明電極5と絶縁層21との間の境界)のみが存在する。 On the other hand, in the capacitance type sensor 1 according to the present embodiment, the first transparent electrode 4 has a plurality of first optical adjustment regions 41 arranged apart from each other. Further, the second transparent electrode 5 has a plurality of second optical adjustment regions 51 arranged apart from each other. Therefore, among the first transparent electrode 4 and the second transparent electrode 5, a plurality of conductive region CRs including conductive nanowires, a plurality of first optical adjustment regions 41, and a plurality of second optical adjustment regions 51 are formed. Region (optical adjustment region AR) and. Therefore, in the first transparent electrode 4 and the second transparent electrode 5, there are a plurality of boundaries (internal boundaries) between the conductive region CR and the optical adjustment region AR. On the other hand, there is a boundary (external boundary) between the first transparent electrode 4 and the insulating layer 21 and a boundary (external boundary) between the second transparent electrode and the insulating layer 21. Since the non-adjustable region NR described above is composed of the conductive region CR, the non-adjustable region NR does not have an internal region (boundary between the conductive region CR and the optical adjustment region AR) and is an external region (first transparent region). Only the boundary between the electrode 4 or the second transparent electrode 5 and the insulating layer 21) is present.
 このように、静電容量式センサ1の平面視において、内部境界および外部境界の両方が視認されるため、外部境界だけが強調されることが抑えられ、第1透明電極4および第2透明電極5がパターンとして視認され難くなる。これにより、第1透明電極4および第2透明電極5のパターンの不可視性を向上させることができる。 In this way, in the plan view of the capacitance type sensor 1, both the internal boundary and the external boundary are visually recognized, so that it is suppressed that only the external boundary is emphasized, and the first transparent electrode 4 and the second transparent electrode are suppressed. 5 becomes difficult to be visually recognized as a pattern. Thereby, the invisibility of the pattern of the first transparent electrode 4 and the second transparent electrode 5 can be improved.
 また、第1光学調整領域41は、第1透明電極4の無調整領域NR以外の領域に設けられ、第2光学調整領域51は、第2透明電極5の無調整領域NR以外の領域に設けられている。これによれば、第1光学調整領域41および第2光学調整領域51が設けられたことで第1透明電極4および第2透明電極5の電気抵抗が過度に低くなることを抑えることができる。また、第1光学調整領域41および第2光学調整領域51が集中し、第1透明電極4および第2透明電極5がパターンとして視認され易くなることを抑えることができる。 Further, the first optical adjustment region 41 is provided in a region other than the non-adjustable region NR of the first transparent electrode 4, and the second optical adjustment region 51 is provided in a region other than the non-adjustable region NR of the second transparent electrode 5. Has been done. According to this, it is possible to prevent the electric resistance of the first transparent electrode 4 and the second transparent electrode 5 from becoming excessively low due to the provision of the first optical adjustment region 41 and the second optical adjustment region 51. Further, it is possible to prevent the first optical adjustment region 41 and the second optical adjustment region 51 from being concentrated so that the first transparent electrode 4 and the second transparent electrode 5 are easily recognized as a pattern.
 また、隣り合う複数の第1光学調整領域41同士の間の第1距離は一定であり、隣り合う複数の第2光学調整領域51同士の間の第2距離は一定である。つまり、複数の第1光学調整領域41は、第1透明電極4の無調整領域NR以外の領域において均一に設けられている。 Further, the first distance between the plurality of adjacent first optical adjustment regions 41 is constant, and the second distance between the plurality of adjacent second optical adjustment regions 51 is constant. That is, the plurality of first optical adjustment regions 41 are uniformly provided in regions other than the non-adjustment region NR of the first transparent electrode 4.
 また、第1透明電極4および第2透明電極5の材料に含まれる導電性ナノワイヤは、金ナノワイヤ、銀ナノワイヤ、および銅ナノワイヤよりなる群から選択された少なくとも1つである。これによれば、第1透明電極4および第2透明電極5の材料として例えばITOなどの酸化物系材料が用いられた場合と比較して、第1光学調整領域41を有する第1透明電極4および第2光学調整領域51を有する第2透明電極5の電気抵抗を低くすることができる。 Further, the conductive nanowires contained in the materials of the first transparent electrode 4 and the second transparent electrode 5 are at least one selected from the group consisting of gold nanowires, silver nanowires, and copper nanowires. According to this, the first transparent electrode 4 having the first optical adjustment region 41 is compared with the case where an oxide-based material such as ITO is used as the material of the first transparent electrode 4 and the second transparent electrode 5. And the electrical resistance of the second transparent electrode 5 having the second optical adjustment region 51 can be lowered.
 図9は、本発明の一実施形態に係る透明電極部材を例示する平面図である。図9は、図5に表した領域A1に対応する領域を拡大した平面図である。図9では、Y1-Y2方向に並ぶ2つの第1透明電極について、Y1-Y2方向Y1側の第1透明電極を第1透明電極4B1、Y1-Y2方向Y2側の第1透明電極を第1透明電極4B2として示している。
 図10は、本実施形態の透明電極部材の検出領域の一部を表す拡大平面図である。図10は、図9に表した領域A3に対応する領域を拡大した平面図である。
FIG. 9 is a plan view illustrating a transparent electrode member according to an embodiment of the present invention. FIG. 9 is an enlarged plan view of a region corresponding to the region A1 shown in FIG. In FIG. 9, regarding the two first transparent electrodes arranged in the Y1-Y2 direction, the first transparent electrode on the Y1 side in the Y1-Y2 direction is the first transparent electrode 4B1, and the first transparent electrode on the Y2 direction in the Y1-Y2 direction is the first transparent electrode. It is shown as a transparent electrode 4B2.
FIG. 10 is an enlarged plan view showing a part of the detection region of the transparent electrode member of the present embodiment. FIG. 10 is an enlarged plan view of a region corresponding to the region A3 shown in FIG.
 本例の第1透明電極4B1、4B2が複数のほぼ円形の第1光学調整領域41Bを有し、第2透明電極5B1、5B2が複数のほぼ円形の第2光学調整領域51Bを有し、第1透明電極4B1、4B2と第2透明電極5B1、5B2との間に絶縁層21を有する点で、図6に示した例と共通する。絶縁部20とブリッジ配線部10とは、説明の都合上、図示を省略している。 The first transparent electrodes 4B1 and 4B2 of this example have a plurality of substantially circular first optical adjustment regions 41B, and the second transparent electrodes 5B1 and 5B2 have a plurality of substantially circular second optical adjustment regions 51B. It is common to the example shown in FIG. 6 in that the insulating layer 21 is provided between the transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2. The insulating portion 20 and the bridge wiring portion 10 are not shown for convenience of explanation.
 連結部7は、Y1-Y2方向(第1方向)で第1透明電極4B1と第1透明電極4B2との間に位置して、第1透明電極4B1と第1透明電極4B2とを電気的に接続する透明配線(第1透明配線)である。具体的には、図9に示されるように、連結部7のY1-Y2方向(第1方向)Y1側には第1透明電極4B1が位置し、連結部7のY1-Y2方向(第1方向)Y2側には第1透明電極4B2が位置する。 The connecting portion 7 is located between the first transparent electrode 4B1 and the first transparent electrode 4B2 in the Y1-Y2 direction (first direction), and electrically connects the first transparent electrode 4B1 and the first transparent electrode 4B2. It is a transparent wiring (first transparent wiring) to be connected. Specifically, as shown in FIG. 9, the first transparent electrode 4B1 is located on the Y1 side of the connecting portion 7 in the Y1-Y2 direction (first direction), and the connecting portion 7 is located in the Y1-Y2 direction (first direction). Direction) The first transparent electrode 4B2 is located on the Y2 side.
 Z1-Z2方向(第1面S1の法線方向)からみたときに、第1透明電極4B1と連結部7とは第1境界線DL1において接する連続体であり、第1透明電極4B2と連結部7とは第2境界線DL2において接する連続体である。図示しないが、Z1-Z2方向(第1面S1の法線方向)からみたときに、第1透明電極4B1のY1-Y2方向(第1方向)Y1側には第2境界線DL2によって接する連続体として連結部7がさらに設けられている。また、Z1-Z2方向(第1面S1の法線方向)からみたときに、第1透明電極4B2のY1-Y2方向(第1方向)Y2側には第1境界線DL1によって接する連続体として連結部7がさらに設けられている。こうして、複数の第1透明電極4B1、4B2は複数の連結部7によって電気的に接続され、Y1-Y2方向(第1方向)に延びる第1電極連結体8が構成されている。 When viewed from the Z1-Z2 direction (normal direction of the first surface S1), the first transparent electrode 4B1 and the connecting portion 7 are continuous bodies that are in contact with each other at the first boundary line DL1, and are connected to the first transparent electrode 4B2. Reference numeral 7 is a continuum tangent at the second boundary line DL2. Although not shown, when viewed from the Z1-Z2 direction (normal direction of the first surface S1), the first transparent electrode 4B1 is continuously in contact with the Y1-Y2 direction (first direction) Y1 side by the second boundary line DL2. A connecting portion 7 is further provided as a body. Further, when viewed from the Z1-Z2 direction (normal direction of the first surface S1), the first transparent electrode 4B2 is in contact with the Y1-Y2 direction (first direction) Y2 side by the first boundary line DL1 as a continuum. A connecting portion 7 is further provided. In this way, the plurality of first transparent electrodes 4B1 and 4B2 are electrically connected by the plurality of connecting portions 7, and the first electrode connecting body 8 extending in the Y1-Y2 direction (first direction) is formed.
 隣り合う第1透明電極4B1、4B2と第2透明電極5B1、5B2との間は、第1透明電極4B1、4B2および第2透明電極5B1、5B2の双方から絶縁層21により電気的に絶縁されたダミー領域IFが、絶縁層21に囲まれて設けられている。ダミー領域IFは、第1透明電極4B1、4B2および第2透明電極5B1、5B2の導電領域CRと構造が共通する、すなわち、導電性ナノワイヤがマトリックスとなる絶縁材料に分散した構造を有するダミー導電領域CR1を有する。このようなダミー領域IFを設けることにより、第1透明電極4B1、4B2と第2透明電極5B1、5B2との間のXY平面内での離間距離を不可視性への影響を抑えて変更することができる。これらの電極の離間距離を変更することにより、電極間の容量を調整することができる。 The adjacent first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2 were electrically insulated from both the first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2 by the insulating layer 21. A dummy region IF is provided surrounded by the insulating layer 21. The dummy region IF has the same structure as the conductive region CR of the first transparent electrodes 4B1, 4B2 and the second transparent electrodes 5B1, 5B2, that is, the dummy conductive region having a structure in which the conductive nanowires are dispersed in the insulating material as a matrix. Has CR1. By providing such a dummy region IF, it is possible to change the separation distance between the first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2 in the XY plane while suppressing the influence on invisibility. it can. By changing the separation distance between these electrodes, the capacitance between the electrodes can be adjusted.
 ダミー領域IFには、ダミー領域IFの視認性を低下させる観点から、第1光学調整領域41Bおよび第2光学調整領域51Bと同様に、ほぼ円形のダミー光学調整領域AR1の複数が、平面視で、ダミー導電領域CR1内に互いに離散して配置されている。ダミー光学調整領域AR1は、第1光学調整領域41Bおよび第2光学調整領域51Bと同様の方法(少なくとも表面部においてマトリックスとなる絶縁材料から導電性ナノワイヤを除去する方法)により形成されたものであり、第1光学調整領域41Bおよび第2光学調整領域51Bと構造が共通する。 In the dummy region IF, a plurality of substantially circular dummy optical adjustment regions AR1 are formed in a plan view, similarly to the first optical adjustment region 41B and the second optical adjustment region 51B, from the viewpoint of reducing the visibility of the dummy region IF. , Are arranged discretely in the dummy conductive region CR1. The dummy optical adjustment region AR1 is formed by the same method as the first optical adjustment region 41B and the second optical adjustment region 51B (a method of removing conductive nanowires from an insulating material that becomes a matrix at least on the surface portion). , The structure is common to the first optical adjustment region 41B and the second optical adjustment region 51B.
 Z1-Z2方向(第1面S1の法線方向)からみたときに、光学調整領域AR(第1光学調整領域41Bおよび第2光学調整領域51B)およびダミー光学調整領域AR1は、第1面S1の面内に沿った格子LTの格子点LPとなる位置に配置される複数の部分領域PRを有する。すなわち、第1面S1の面内に沿った仮想的な格子LTを設定した場合、格子LTの格子点LPの上に部分領域PRが配置される。それぞれの部分領域PRの不可視性を確保する観点から、部分領域PRの円換算直径φ0は100μm以下であることが好ましい。 When viewed from the Z1-Z2 direction (normal direction of the first surface S1), the optical adjustment area AR (first optical adjustment area 41B and second optical adjustment area 51B) and the dummy optical adjustment area AR1 are the first surface S1. It has a plurality of partial region PRs arranged at positions that serve as lattice points LP of the lattice LT along the plane of. That is, when a virtual grid LT is set along the in-plane of the first plane S1, the partial region PR is arranged on the grid point LP of the grid LT. From the viewpoint of ensuring the invisibility of each partial region PR, the circle-equivalent diameter φ0 of the partial region PR is preferably 100 μm or less.
 図11(a)および(b)は、本実施形態の透明電極部材の矩形領域について例示する平面図である。図11(b)には、図11(a)の一つの矩形領域が示される。
 図11(a)に示すように、矩形領域RAは、第1面S1の面内における複数の格子点LPのうち互いに隣り合う4つの格子点LPを隅部として構成される矩形の領域のことを言う。
11 (a) and 11 (b) are plan views illustrating the rectangular region of the transparent electrode member of the present embodiment. FIG. 11B shows one rectangular area of FIG. 11A.
As shown in FIG. 11A, the rectangular region RA is a rectangular region composed of four grid point LPs adjacent to each other as corners among a plurality of grid point LPs in the plane of the first surface S1. Say.
 図11(b)に示すように、本実施形態では、複数の格子点LPのうち互いに隣り合う4つの格子点LPを隅部として構成される矩形領域RAにおいて、この矩形領域RAの2つの対角線の長さL1、L2が互いに異なるように設けられる。すなわち、矩形領域RAの内角は直角ではない。例えば、矩形領域RAは内角が直角でないひし形になっている。なお、矩形領域RAの形状は、2つの対角線の長さL1、L2が異なっていればひし形以外であってもよい。このような矩形領域RAを構成するためには、図10に示す格子LTの格子線LLの方向は、X1-X2方向に対して45度以外となっている。例えば、格子線LLの方向は、X1-X2方向に対して30度±10度程度になっている。 As shown in FIG. 11B, in the present embodiment, in a rectangular region RA having four grid point LPs adjacent to each other as corners among a plurality of grid point LPs, two diagonal lines of the rectangular region RA are formed. The lengths L1 and L2 of are provided so as to be different from each other. That is, the internal angles of the rectangular region RA are not right angles. For example, the rectangular region RA is a rhombus whose internal angles are not right angles. The shape of the rectangular region RA may be other than a rhombus as long as the lengths L1 and L2 of the two diagonal lines are different. In order to form such a rectangular region RA, the direction of the grid line LL of the grid LT shown in FIG. 10 is other than 45 degrees with respect to the X1-X2 direction. For example, the direction of the grid line LL is about 30 degrees ± 10 degrees with respect to the X1-X2 directions.
 図5に示すように、透明電極の形状との関係では、本実施形態では第1透明電極4および第2透明電極5の形状は、矩形領域RAとは非相似形の略矩形となる。すなわち、第1透明電極4の外形および第2透明電極5の外形はいずれも矩形(略矩形)であり、これら第1透明電極4の外形および第2透明電極5の外形が作る矩形の2つの対角線は、矩形領域RAの2つの対角線に揃って位置する。具体的には、透明電極(第1透明電極4および第2透明電極5)の外形についても、矩形領域RAについても、2つの対角線の一方はX1-X2方向に沿っており、2つの対角線の他方はY1-Y2方向に沿っている。また、図5に示すように、第1透明電極4の外形および第2透明電極5の外形が作る矩形の2つの対角線は互いに直交し、図11(b)に示すように、矩形領域RAの2つの対角線も互いに直交している。しかし、第1透明電極4の外形および第2透明電極5の外形が作る矩形の2つの対角線の長さは互いに等しいが、矩形領域RAの2つの対角線の長さは互いに異なっている。 As shown in FIG. 5, in relation to the shape of the transparent electrode, in the present embodiment, the shapes of the first transparent electrode 4 and the second transparent electrode 5 are substantially rectangular, which are not similar to the rectangular region RA. That is, the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5 are both rectangular (substantially rectangular), and there are two rectangular shapes formed by the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5. The diagonals are aligned with the two diagonals of the rectangular region RA. Specifically, regarding the outer shape of the transparent electrodes (first transparent electrode 4 and second transparent electrode 5) and the rectangular region RA, one of the two diagonal lines is along the X1-X2 direction, and the two diagonal lines are The other is along the Y1-Y2 direction. Further, as shown in FIG. 5, the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5 are orthogonal to each other, and as shown in FIG. 11B, the rectangular region RA. The two diagonals are also orthogonal to each other. However, although the lengths of the two diagonal lines of the rectangle formed by the outer shape of the first transparent electrode 4 and the outer shape of the second transparent electrode 5 are equal to each other, the lengths of the two diagonal lines of the rectangular region RA are different from each other.
 このように、矩形領域RAの2つの対角線の長さL1、L2が互いに異なるように設けられることで、複数の部分領域PRにおける縦横(X1-X2方向およびY1-Y2方向のそれぞれ)のピッチが互いに異なることになり、複数の部分領域PRと重なる構造物の配置との関係でモアレの発生を抑制することができる。例えば、液晶表示装置や有機EL表示装置などの表示装置の画素の配列では、縦横のピッチが同じである場合が多い。このような表示装置の上に本例の透明電極部材100を配置すると、複数の画素の位置を格子点とする仮想的な格子の角度と、複数の部分領域PRの位置を格子点とする仮想的な格子の角度とが合致せず、モアレの発生を抑制することができる。この点については、図12を用いて後に詳説する。 In this way, by providing the lengths L1 and L2 of the two diagonal lines of the rectangular region RA so as to be different from each other, the vertical and horizontal (X1-X2 direction and Y1-Y2 direction respectively) pitches in the plurality of partial region PRs can be set. Since they are different from each other, the occurrence of moire can be suppressed in relation to the arrangement of the structures overlapping with the plurality of partial region PRs. For example, in the arrangement of pixels of a display device such as a liquid crystal display device or an organic EL display device, the vertical and horizontal pitches are often the same. When the transparent electrode member 100 of this example is placed on such a display device, a virtual grid angle having the positions of a plurality of pixels as grid points and a virtual grid angle having the positions of a plurality of partial regions PR as grid points The angle of the grid does not match, and the occurrence of moire can be suppressed. This point will be described in detail later with reference to FIG.
 ここで、矩形領域RAの2つの対角線のうち、長いほうを第1対角線DiL1、短いほうを第2対角線DiL2とし、第1対角線DiL1の長さをL1、第2対角線DiL2の長さをL2とした場合、L1/L2は、1.2以上2.7以下であることが好ましい。L1/L2が1.2より小さいと矩形領域RAが正方形に近づくため、モアレの抑制効果が弱くなる。一方、L1/L2が2.7を超えると格子点LPに配置される光学調整領域ARのX1-X2方向のピッチと、Y1-Y2方向のピッチとの差が大きくなりすぎ、不可視性の低下を招きやすくなる。 Here, of the two diagonal lines of the rectangular region RA, the longer one is the first diagonal line DiL1, the shorter one is the second diagonal line DiL2, the length of the first diagonal line DiL1 is L1, and the length of the second diagonal line DiL2 is L2. If so, L1 / L2 is preferably 1.2 or more and 2.7 or less. When L1 / L2 is smaller than 1.2, the rectangular region RA approaches a square, so that the moire suppressing effect is weakened. On the other hand, when L1 / L2 exceeds 2.7, the difference between the pitch in the X1-X2 direction and the pitch in the Y1-Y2 direction of the optical adjustment region AR arranged at the grid point LP becomes too large, and the invisibility is reduced. It becomes easy to invite.
 また、絶縁領域IRに配置された絶縁層21(隣り合う第1透明電極4B1、4B2と第2透明電極5B1、5B2との間に位置する絶縁層21、隣り合う第1透明電極4B1、4B2とダミー領域IFとの間に位置する絶縁層21、隣り合う第2透明電極5B1、5B2とダミー領域IFとの間に位置する絶縁層21)は、Z1-Z2方向(第1面S1の法線方向)からみたときに、部分領域PRとは重ならず、格子点LPの複数を結ぶ線状に設けられる。すなわち、絶縁層21(絶縁領域IR)は、格子点LPの複数を通る(繋ぐ)ように設けられる。つまり、ダミー領域IFと絶縁層21との境界線は、ダミー領域IFの複数の部分領域PRの配置方向に沿って延在する部分を有する。 Further, the insulating layer 21 arranged in the insulating region IR (the insulating layer 21 located between the adjacent first transparent electrodes 4B1 and 4B2 and the second transparent electrodes 5B1 and 5B2, and the adjacent first transparent electrodes 4B1 and 4B2). The insulating layer 21 located between the dummy region IF and the insulating layer 21 located between the adjacent second transparent electrodes 5B1 and 5B2 and the dummy region IF) are in the Z1-Z2 direction (normal to the first surface S1). When viewed from the direction), it does not overlap with the partial region PR, and is provided in a linear shape connecting a plurality of lattice points LP. That is, the insulating layer 21 (insulating region IR) is provided so as to pass (connect) a plurality of lattice point LPs. That is, the boundary line between the dummy region IF and the insulating layer 21 has a portion extending along the arrangement direction of the plurality of partial region PRs of the dummy region IF.
 図10に示す例では、透明電極(第1透明電極4および第2透明電極5のそれぞれ)に沿って配置される絶縁層21は、第1面S1の面内の格子LTの格子線LLの方向に沿って延在する部分と、第1面S1の面内方向であるが格子線LLの方向とは異なる非格子方向に沿って延在する部分とを有する。具体的には、透明電極に沿って配置される絶縁層21は、2つの格子線LLの方向のうち、図10において左下側から右上側に延びる方向にそって延在する部分と、2つの格子線LLの方向のいずれでもなく、図10において上下方向に沿って延在する部分とを有する。この上下方向は、図11(b)に示されるように、矩形領域RAの対角線の一つに沿った方向であり、具体的には、矩形領域RAの2つの対角線のうち相対的に短い第2対角線DiL2に沿った方向である。すなわち、図10では非格子方向は第2対角線DiL2に沿った方向である。 In the example shown in FIG. 10, the insulating layer 21 arranged along the transparent electrodes (each of the first transparent electrode 4 and the second transparent electrode 5) is the grid line LL of the grid LT in the plane of the first surface S1. It has a portion extending along the direction and a portion extending along a non-grid direction which is an in-plane direction of the first surface S1 but different from the direction of the grid line LL. Specifically, the insulating layer 21 arranged along the transparent electrode includes a portion extending along the direction extending from the lower left side to the upper right side in FIG. 10 among the directions of the two grid lines LL, and two. It has a portion extending along the vertical direction in FIG. 10 which is neither the direction of the grid line LL. As shown in FIG. 11B, this vertical direction is a direction along one of the diagonal lines of the rectangular region RA, and specifically, a relatively short second of the two diagonal lines of the rectangular region RA. The direction is along the two diagonal lines DiL2. That is, in FIG. 10, the non-grid direction is the direction along the second diagonal line DiL2.
 非格子方向は、格子線LLの方向に沿った方向以外であればいずれの方向でもよいが、上記の第2対角線DiL2に沿った方向など、矩形領域RAの対角線に沿った方向であることが好ましい。Z1-Z2方向(第1面S1の法線方向)から透明電極部材100をみたときに、透明電極における複数の部分領域PRは、格子線LLの方向に沿った方向に並んで見えるほか、矩形領域RAの対角線(第1対角線DiL1、第2対角線DiL2)に沿った方向に並んでいるようにも見える。このため、非格子方向が矩形領域RAの対角線に沿った方向である場合には、絶縁層21における非格子方向に沿って配置された部分が見えにくくなる。矩形領域RAの対角線の2つを対比すると、非格子方向が相対的に長い第1対角線DiL1に沿った方向である場合において非格子方向に沿って配置される絶縁層21の長さよりも、非格子方向が相対的に短い第2対角線DiL2に沿った方向である場合において非格子方向に沿って配置される絶縁層21の長さの方が、短くなる。したがって、非格子方向は第2対角線DiL2に沿った方向であることが、不可視性を高める観点から好ましい。 The non-grid direction may be any direction other than the direction along the direction of the grid line LL, but it may be a direction along the diagonal line of the rectangular region RA, such as the direction along the second diagonal line DiL2 described above. preferable. When the transparent electrode member 100 is viewed from the Z1-Z2 direction (the normal direction of the first surface S1), the plurality of partial region PRs in the transparent electrode appear to be arranged side by side in the direction of the grid line LL, and are rectangular. It also appears to be aligned in the direction along the diagonal line of the region RA (first diagonal line DiL1, second diagonal line DiL2). Therefore, when the non-lattice direction is the direction along the diagonal line of the rectangular region RA, the portion of the insulating layer 21 arranged along the non-lattice direction becomes difficult to see. Comparing the two diagonal lines of the rectangular region RA, the length of the insulating layer 21 arranged along the non-lattice direction is larger than the length of the insulating layer 21 arranged along the non-lattice direction when the non-lattice direction is along the relatively long first diagonal line DiL1. When the lattice direction is along the second diagonal line DiL2, which is relatively short, the length of the insulating layer 21 arranged along the non-lattice direction is shorter. Therefore, it is preferable that the non-lattice direction is a direction along the second diagonal line DiL2 from the viewpoint of increasing invisibility.
 図5に示されるように、透明電極(第1透明電極4、第2透明電極5)の外形は略矩形(具体的には正方形)であって、この矩形の各辺はX1-X2方向に対して45度傾いた方向に沿って延在する。これに対し、格子線LLの方向は、図10に示されるように、X1-X2方向に対して30度傾いた方向に沿っている。したがって、透明電極に沿って配置される絶縁層21が格子線LLの方向に沿った方向にのみ延在していると、透明電極の外形をなす矩形の辺の延在方向をX1-X2方向に対して45度傾いた方向にすることは、透明電極の不可視性を適切に維持しつつ実現することが容易でない。そこで、透明電極に沿って配置される絶縁層21が非格子方向に沿って配置された部分を有するように絶縁層21を設定することにより、透明電極に沿って配置される絶縁層21の全体的な方向を格子線LLの方向に沿った方向とは異なる方向にすることができる。 As shown in FIG. 5, the outer shape of the transparent electrodes (first transparent electrode 4, second transparent electrode 5) is substantially rectangular (specifically, a square), and each side of this rectangle is in the X1-X2 direction. It extends along a direction tilted 45 degrees. On the other hand, the direction of the grid line LL is along a direction inclined by 30 degrees with respect to the X1-X2 direction, as shown in FIG. Therefore, if the insulating layer 21 arranged along the transparent electrode extends only in the direction along the direction of the grid line LL, the extending direction of the rectangular side forming the outer shape of the transparent electrode is in the X1-X2 direction. It is not easy to achieve the direction tilted by 45 degrees with respect to the invisibility of the transparent electrode while maintaining it appropriately. Therefore, by setting the insulating layer 21 so that the insulating layer 21 arranged along the transparent electrode has a portion arranged along the non-lattice direction, the entire insulating layer 21 arranged along the transparent electrode is set. Direction can be different from the direction along the direction of the grid line LL.
 図11(b)に示されるように、矩形領域RAでは、Y1-Y2方向に対応する縦方向の対角線(第2対角線DiL2)が、X1-X2方向に対応する横方向の対角線(第1対角線DiL1)よりも短いため、透明電極に沿って配置される絶縁層21が第2対角線DiL2に沿った方向を非格子方向としてこの方向に沿った部分を有することにより、透明電極に沿って配置される絶縁層21の全体的な延在方向をX1-X2方向(横方向)に対して格子線LLの方向よりも傾いた方向とすることができる。 As shown in FIG. 11B, in the rectangular region RA, the vertical diagonal line (second diagonal line DiL2) corresponding to the Y1-Y2 direction is the horizontal diagonal line (first diagonal line) corresponding to the X1-X2 direction. Since it is shorter than DiL1), the insulating layer 21 arranged along the transparent electrode is arranged along the transparent electrode by having a portion along this direction with the direction along the second diagonal line DiL2 as the non-lattice direction. The overall extending direction of the insulating layer 21 can be set to be more inclined than the direction of the grid line LL with respect to the X1-X2 direction (horizontal direction).
 透明電極に沿って配置される絶縁層21は非格子方向に沿って延在する部分を複数有することが好ましい。絶縁層21において、非格子方向に沿って延在する部分は、格子線LLの方向に沿って延在する部分よりも、相対的に視認されやすい。絶縁層21の周囲に位置する複数の部分領域PRの並びは格子線LLの方向に沿っているためである。それゆえ、絶縁層21は非格子方向に沿って延在する部分が長く存在するよりも、格子線LLの方向に沿って延在する部分に分散して存在することが、非格子方向に沿って延在する部分の視認性を低下させる観点から好ましい。このとき、絶縁層21における非格子方向に沿って延在する部分の視認性をより安定的に低下させる観点から、非格子方向に沿って延在する部分の長さは矩形領域RAの内部に収まる範囲、すなわち図10に示す例では、矩形領域RAの第2対角線DiL2の長さL2と等しいことが好ましい。 The insulating layer 21 arranged along the transparent electrode preferably has a plurality of portions extending along the non-lattice direction. In the insulating layer 21, the portion extending along the non-grid direction is relatively more visible than the portion extending along the direction of the grid line LL. This is because the arrangement of the plurality of partial regions PR located around the insulating layer 21 is along the direction of the grid line LL. Therefore, the insulating layer 21 is dispersed in the portion extending along the grid line LL rather than having a long portion extending along the non-lattice direction. It is preferable from the viewpoint of reducing the visibility of the extending portion. At this time, from the viewpoint of more stably reducing the visibility of the portion extending along the non-lattice direction in the insulating layer 21, the length of the portion extending along the non-lattice direction is inside the rectangular region RA. In the fit range, that is, in the example shown in FIG. 10, it is preferable that it is equal to the length L2 of the second diagonal line DiL2 of the rectangular region RA.
 また、透明電極に沿って配置される絶縁層21について非格子方向に沿って延在する部分が分散して位置する場合には、絶縁層21は、格子線LLの方向に沿って延在する部分と、非格子方向に沿って延在する部分とが交互に配置される交互配置部分を有することが好ましい。交互配置部分を有する絶縁層21は図10に示されるようにジグザグ形状となり、全体的に格子線LLの方向の方向とは異なる方向に延在するように設定することができる。このようにすることで、透明電極のおおよその外形をX1-X2方向に対して45度傾いた方向に沿って延在する辺から構成された正方形とすることが、透明電極の不可視性を適切に維持しつつ容易に実現される。 Further, when the portion extending along the non-grid direction is dispersedly located in the insulating layer 21 arranged along the transparent electrode, the insulating layer 21 extends along the direction of the grid line LL. It is preferable to have an alternating arrangement portion in which the portion and the portion extending along the non-lattice direction are alternately arranged. The insulating layer 21 having the alternately arranged portions has a zigzag shape as shown in FIG. 10, and can be set so as to extend in a direction different from the direction of the grid line LL as a whole. By doing so, it is appropriate to make the invisibility of the transparent electrode into a square composed of sides extending along a direction inclined by 45 degrees with respect to the X1-X2 direction. It is easily realized while maintaining.
 このように、透明電極に沿って配置される絶縁層が、格子方向に沿って延在する部分のみならず、非格子方向に沿って延在する部分を有することにより、透明電極に沿って配置される絶縁層の全体的な延在方向を、不可視性を適切に維持しつつ格子方向とは異なる方向に設定することができる。したがって、透明電極(第1透明電極4および第2透明電極5)の外形に沿った方向と格子線LLの方向とにずれがあっても、格子点LPを結ぶ線状に絶縁層21を形成することが可能となる。具体的には、図11(b)に示すように、格子線LLの方向は横方向(図5のX1-X2方向)に対して30度傾いた方向であり、図5に示すように、透明電極(第1透明電極4および第2透明電極5)の外形に沿った方向は、X1-X2方向に対して45度傾いた方向である。なお、絶縁層21は、Z1-Z2方向(第1面S1の法線方向)からみたときに、通過する2つの格子点の間に湾曲部を有していてもよい。 In this way, the insulating layer arranged along the transparent electrode is arranged along the transparent electrode by having not only a portion extending along the lattice direction but also a portion extending along the non-lattice direction. The overall extending direction of the insulating layer to be formed can be set in a direction different from the lattice direction while appropriately maintaining invisibility. Therefore, even if there is a deviation between the direction along the outer shape of the transparent electrodes (the first transparent electrode 4 and the second transparent electrode 5) and the direction of the grid line LL, the insulating layer 21 is formed in a linear shape connecting the grid points LP. It becomes possible to do. Specifically, as shown in FIG. 11B, the direction of the grid line LL is a direction inclined by 30 degrees with respect to the lateral direction (X1-X2 direction in FIG. 5), and as shown in FIG. The direction along the outer shape of the transparent electrodes (first transparent electrode 4 and second transparent electrode 5) is a direction inclined by 45 degrees with respect to the X1-X2 direction. The insulating layer 21 may have a curved portion between two passing lattice points when viewed from the Z1-Z2 direction (the normal direction of the first surface S1).
 また、上記のような透明電極(第1透明電極4および第2透明電極5のそれぞれ)に沿って配置される絶縁層21と同様に、ダミー領域IFに沿って配置される絶縁層21は、第1面S1の面内の格子LTの格子線LLの方向に沿って延在する部分と、第1面S1の面内方向であるが格子線LLの方向とは異なる非格子方向に沿って延在する部分とを有する。これにより、ダミー領域IFに沿って配置される絶縁層の全体的な延在方向を、不可視性を適切に維持しつつ格子方向とは異なる方向に設定することができる。具体的には、図11(b)に示すように、格子線LLの方向は横方向(図5のX1-X2方向)に対して30度傾いた方向であり、図9に示されるように、ダミー領域IFの外形に沿った方向は、X1-X2方向に対して45度傾いた方向であり、図10に示されるように、非格子方向は縦方向(Y1-Y2方向)である。透明電極に沿って配置される絶縁層21と同様に、ダミー領域IFに沿って配置される絶縁層21は、非格子方向に沿って延在する部分を複数有することが好ましく、非格子方向に沿って延在する部分が格子線LLの方向に沿って延在する部分に分散して配置されていることがより好ましく、格子線LLの方向に沿って延在する部分と非格子方向に沿って延在する部分とが交互に配置される交互配置部分を有することが特に好ましい。非格子方向は、矩形領域RAの対角線に沿った方向であることが好ましく、矩形領域RAの第2対角線DiL2の方向に沿っていることがより好ましい。このより好ましい場合において、絶縁層21の、格子線LLの方向に沿って延在する部分から延設される非格子方向に沿った部分の長さは、第2対角線DiL2の長さL2に等しいことが好ましい。 Further, similarly to the insulating layer 21 arranged along the transparent electrodes (each of the first transparent electrode 4 and the second transparent electrode 5) as described above, the insulating layer 21 arranged along the dummy region IF is A portion extending along the direction of the grid line LL of the grid LT in the plane of the first plane S1 and a non-grid direction which is the in-plane direction of the first plane S1 but different from the direction of the grid line LL. It has an extending part. As a result, the overall extending direction of the insulating layer arranged along the dummy region IF can be set in a direction different from the lattice direction while appropriately maintaining invisibility. Specifically, as shown in FIG. 11B, the direction of the grid line LL is a direction inclined by 30 degrees with respect to the lateral direction (X1-X2 direction in FIG. 5), and as shown in FIG. The direction along the outer shape of the dummy region IF is a direction inclined by 45 degrees with respect to the X1-X2 direction, and as shown in FIG. 10, the non-lattice direction is the vertical direction (Y1-Y2 direction). Similar to the insulating layer 21 arranged along the transparent electrode, the insulating layer 21 arranged along the dummy region IF preferably has a plurality of portions extending along the non-lattice direction, and the insulating layer 21 is arranged in the non-lattice direction. It is more preferable that the portions extending along the grid line LL are dispersed and arranged in the portion extending along the direction of the grid line LL, and the portion extending along the direction of the grid line LL and the portion extending along the non-grid line direction. It is particularly preferable to have alternating arrangement portions in which the extending portions are alternately arranged. The non-lattice direction is preferably a direction along the diagonal line of the rectangular region RA, and more preferably along the direction of the second diagonal line DiL2 of the rectangular region RA. In a more preferable case, the length of the portion of the insulating layer 21 along the non-grid direction extending from the portion extending along the direction of the grid line LL is equal to the length L2 of the second diagonal line DiL2. Is preferable.
 図12は、表示装置の画素配列について例示する平面図である。
 表示装置800には、カラー表示を行うための複数色の画素が配置される。例えば、赤色の画素800R、緑色の画素800Gおよび青色の画素800Bが所定のレイアウトで配置される。図12には、画素配列としてペンタイル配列の例が示される。ペンタイル配列の一例では、赤色の画素800Rと青色の画素800Bとが千鳥状に配置され、赤色の画素800Rおよび青色の画素800Bのそれぞれの周囲に4つの緑色の画素800Gが配置されるレイアウトになっている。各画素の配置の方向は、縦横方向に対して45度になっている。
FIG. 12 is a plan view illustrating the pixel arrangement of the display device.
The display device 800 is arranged with pixels of a plurality of colors for performing color display. For example, the red pixel 800R, the green pixel 800G, and the blue pixel 800B are arranged in a predetermined layout. FIG. 12 shows an example of a pentile array as a pixel array. In an example of the pentile arrangement, the red pixel 800R and the blue pixel 800B are arranged in a staggered pattern, and four green pixels 800G are arranged around each of the red pixel 800R and the blue pixel 800B. ing. The direction of arrangement of each pixel is 45 degrees with respect to the vertical and horizontal directions.
 このような表示装置800において、ペンタイル配列の単位格子が作る矩形の対角線における長軸の長さをLP1、短軸の長さをLP2とすると、長軸の長さLP1の短軸の長さLP2に対する比(LP1/LP2)は1となる。この表示装置800に本実施形態に係る透明電極部材を重ね合わせる場合、矩形領域RAにおける第1対角線DiL1の長さL1の、第2対角線DiL2に対する比であるL1/L2は、LP1/LP2とは異なっている。モアレの発生を安定的に抑制する観点から、LP1/LP2に対するL1/L2の相違の絶対値(|L1/L2-LP1/LP2|)は、0.19から1.75の範囲とすることが好ましい場合がある。 In such a display device 800, assuming that the length of the major axis on the diagonal line of the rectangle formed by the unit cell of the pentile arrangement is LP1 and the length of the minor axis is LP2, the length of the major axis is LP1 and the length of the minor axis is LP2. The ratio to (LP1 / LP2) is 1. When the transparent electrode member according to the present embodiment is superimposed on the display device 800, L1 / L2, which is the ratio of the length L1 of the first diagonal line DiL1 to the second diagonal line DiL2 in the rectangular region RA, is different from LP1 / LP2. It's different. From the viewpoint of stably suppressing the occurrence of moire, the absolute value of the difference between L1 / L2 and LP1 / LP2 (| L1 / L2-LP1 / LP2 |) may be in the range of 0.19 to 1.75. It may be preferable.
 これにより、表示装置800の複数の画素800R、800Gおよび800Bの配列の方向(格子線LLPの方向)と、透明電極部材の複数の部分領域PRの配列の方向(格子線LLの方向)とが合致しなくなる。したがって、ペンタイル配列の表示装置800に本実施形態に係る透明電極部材(これを用いた静電容量式センサ)を重ねた際のモアレの発生が抑制され、画像の視認性を高めることが可能となる。 As a result, the direction of the arrangement of the plurality of pixels 800R, 800G and 800B of the display device 800 (the direction of the lattice line LLP) and the direction of the arrangement of the plurality of partial region PRs of the transparent electrode member (the direction of the lattice line LL) are changed. It will not match. Therefore, it is possible to suppress the occurrence of moire when the transparent electrode member (capacitance type sensor using the transparent electrode member) according to the present embodiment is superposed on the pentile array display device 800, and to improve the visibility of the image. Become.
 図13から図16は、比較例に係る透明電極部材を例示する平面図である。
 図13は、比較例(その1)に係る透明電極部材の検出領域の一部を表す平面図である。図13は、図5に表した領域A1に対応する領域を拡大した平面図である。
 図14(a)および(b)は、比較例(その1)に係る透明電極部材の矩形領域について例示する平面図である。
13 to 16 are plan views illustrating the transparent electrode member according to the comparative example.
FIG. 13 is a plan view showing a part of the detection region of the transparent electrode member according to the comparative example (No. 1). FIG. 13 is an enlarged plan view of a region corresponding to the region A1 shown in FIG.
14 (a) and 14 (b) are plan views illustrating the rectangular region of the transparent electrode member according to the comparative example (No. 1).
 比較例(その1)に係る透明電極部材100Aでは、複数の部分領域PRが配置される格子LTの格子線LLaの方向は、X1-X2方向およびY1-Y2方向のそれぞれに対して45度となっている。すなわち、この透明電極部材100Aの矩形領域RAaは2つの対角線の長さが等しくなるため、縦横に対して45度傾いた正方形となる。 In the transparent electrode member 100A according to the comparative example (No. 1), the direction of the grid line LLa of the grid LT in which the plurality of partial region PRs are arranged is 45 degrees with respect to each of the X1-X2 direction and the Y1-Y2 direction. It has become. That is, since the rectangular region RAa of the transparent electrode member 100A has the same length of the two diagonal lines, it becomes a square inclined by 45 degrees with respect to the vertical and horizontal directions.
 このような比較例(その1)に係る透明電極部材100Aを図12に示すペンタイル配列の表示装置800に重ね合わせた場合、表示装置800の複数の画素800R、800Gおよび800Bの配列の方向(格子線LLpの方向)と、透明電極部材100Aの複数の部分領域PRの配列の方向(格子線LLaの方向)とが合致し、モアレを発生させる可能性が高まる。なお、図11に示す矩形領域RAは、矩形領域RAaを横方向に延ばし縦方向に縮めた形状を有する。このため、矩形領域RAの面積と矩形領域RAaの面積とは等しく、矩形領域RAにおける部分領域PRの面積割合は、矩形領域RAaにおける部分領域PRの面積割合に等しい。 When the transparent electrode member 100A according to the comparative example (No. 1) is superposed on the display device 800 having a pentile arrangement shown in FIG. 12, the directions (lattice) of the arrangement of the plurality of pixels 800R, 800G and 800B of the display device 800. The direction of the line LLp) matches the direction of the arrangement of the plurality of partial regions PR of the transparent electrode member 100A (the direction of the lattice line LLa), and the possibility of generating moire increases. The rectangular region RA shown in FIG. 11 has a shape in which the rectangular region RAa is extended in the horizontal direction and contracted in the vertical direction. Therefore, the area of the rectangular region RA and the area of the rectangular region RAa are equal, and the area ratio of the partial region PR in the rectangular region RA is equal to the area ratio of the partial region PR in the rectangular region RAa.
 図15は、比較例(その2)に係る透明電極部材の検出領域の一部を表す平面図である。図15は、図5に表した領域A1に対応する領域を拡大した平面図である。
 図16(a)および(b)は、比較例(その2)に係る透明電極部材の矩形領域について例示する平面図である。
FIG. 15 is a plan view showing a part of the detection region of the transparent electrode member according to the comparative example (No. 2). FIG. 15 is an enlarged plan view of a region corresponding to the region A1 shown in FIG.
16 (a) and 16 (b) are plan views illustrating the rectangular region of the transparent electrode member according to the comparative example (No. 2).
 比較例(その2)に係る透明電極部材100Bでは、複数の部分領域PRが配置される格子LTの格子線LLbの方向は、X1-X2方向およびY1-Y2方向のそれぞれに対して45度から僅かに傾斜している。図示する例では、45度から10度傾斜している。この透明電極部材100Bの矩形領域RAbは、2つの対角線の長さが等しく正方形となる点で比較例(その1)に係る透明電極部材100Aと同様であるが、矩形領域RAaよりも全体を10度傾斜させている点で相違する。 In the transparent electrode member 100B according to the comparative example (No. 2), the direction of the grid line LLb of the grid LT in which the plurality of partial region PRs are arranged is from 45 degrees with respect to each of the X1-X2 direction and the Y1-Y2 direction. It is slightly inclined. In the illustrated example, it is tilted from 45 degrees to 10 degrees. The rectangular region RAb of the transparent electrode member 100B is similar to the transparent electrode member 100A according to the comparative example (No. 1) in that the lengths of the two diagonal lines are equal and square, but the whole is 10 more than the rectangular region RAa. It differs in that it is tilted.
 このような比較例(その2)に係る透明電極部材100Bを図12に示すペンタイル配列の表示装置800に重ね合わせた場合、表示装置800の複数の画素800R、800Gおよび800Bの配列の方向(格子線LLpの方向)と、透明電極部材100Aの複数の部分領域PRの配列の方向(格子線LLbの方向)とが合致しなくなり、モアレの発生を抑制することができる。しかし、図15に示すように、絶縁層21を格子点LPの複数を結びつつX1-X2方向に対して45度に傾いた線状に延在しようとすると、その線は隣り合う格子点LPを結ぶ線(格子線LLb)に対してわずかに傾いた線となってしまう。このような線上に絶縁層21を配置して格子点LP上に部分領域PR配置すると、絶縁層21と部分領域PRとが重なったり特に近くなったりして局所的に反射率が低くなってしまい、不可視性が著しく低下する。それゆえ、透明電極部材100Bでは部分領域PRを配置できない領域が生じてしまう。その結果、図9に示されるように、格子点LP上に部分領域PRを配置できなかった領域周辺の反射率が局所的に高くなり、透明電極部材100に比べて不可視性は劣ることになる。 When the transparent electrode member 100B according to the comparative example (No. 2) is superposed on the display device 800 having the pentile arrangement shown in FIG. 12, the directions of the arrangement of the plurality of pixels 800R, 800G and 800B of the display device 800 (lattice). The direction of the line LLp) and the direction of the arrangement of the plurality of partial regions PR of the transparent electrode member 100A (the direction of the lattice line LLb) do not match, and the occurrence of moire can be suppressed. However, as shown in FIG. 15, when the insulating layer 21 is connected to a plurality of lattice point LPs and is attempted to extend in a linear shape inclined at 45 degrees with respect to the X1-X2 direction, the lines are adjacent to the lattice points LP. The line is slightly inclined with respect to the line connecting the above (lattice line LLb). When the insulating layer 21 is arranged on such a line and the partial region PR is arranged on the grid point LP, the insulating layer 21 and the partial region PR overlap or become particularly close to each other, and the reflectance is locally lowered. , Invisibility is significantly reduced. Therefore, in the transparent electrode member 100B, there is a region where the partial region PR cannot be arranged. As a result, as shown in FIG. 9, the reflectance around the region where the partial region PR could not be arranged on the grid point LP becomes locally high, and the invisibility is inferior to that of the transparent electrode member 100. ..
 すなわち、比較例(その1)の矩形領域RAaでは、表示装置800の画素の配列(ペンタイル配列)との関係でモアレが発生してしまうため、矩形領域RAaに対して何らかの変更を行うことが必要なる。本例の矩形領域RAのように、矩形の長軸と短軸とを異ならせる場合には、モアレを解消でき、さらに不可視性を損なうことなく透明電極(第1透明電極4および第2透明電極5)の外形に沿って絶縁層21を配置することができる。具体的には透明電極と絶縁層21との境界に交互配置部分を設けて境界線をジグザク形状とする。ダミー領域IFが設けられる場合には、ダミー領域IFと絶縁層21との境界にも交互配置部分を設けて境界線をジグザク形状とすればよい。一方、比較例(その2)の矩形領域RAbのように矩形領域RAaとの対比で矩形を回転させると、モアレを解消できるが、不可視性を損なわないように絶縁層21を配置することが困難となる。 That is, in the rectangular area RAa of the comparative example (No. 1), moire occurs in relation to the pixel arrangement (pentile arrangement) of the display device 800, so it is necessary to make some changes to the rectangular area RAa. Become. When the long axis and the short axis of the rectangle are different from each other as in the rectangular region RA of this example, moire can be eliminated, and the transparent electrodes (first transparent electrode 4 and second transparent electrode) without impairing invisibility are not impaired. The insulating layer 21 can be arranged along the outer shape of 5). Specifically, alternating arrangement portions are provided at the boundary between the transparent electrode and the insulating layer 21, and the boundary line has a zigzag shape. When the dummy region IF is provided, alternating arrangement portions may be provided at the boundary between the dummy region IF and the insulating layer 21 so that the boundary line has a zigzag shape. On the other hand, if the rectangle is rotated in comparison with the rectangular region RAa as in the rectangular region RAb of Comparative Example (Part 2), moire can be eliminated, but it is difficult to arrange the insulating layer 21 so as not to impair invisibility. It becomes.
 図17は本発明の他の実施形態に係る静電容量式センサの構成を説明する図である。図17に示されるように、本発明の一実施形態に係る静電容量式センサ1Aが備える透明電極部材500は、シート状の基材2が有する2つの主面の一つである第1面S1に複数の第1透明電極4を備える第1電極連結体8が設けられ、2つの主面の他の一つである第2面S2に複数の第2透明電極5を備える第2電極連結体12が設けられている。複数の第2透明電極は、第2面S2の面内方向のうち第1方向(Y1-Y2方向)とは異なる第2方向(具体的にはX1-X2方向)に沿って並んで配置され、互いに電気的に接続されている。 FIG. 17 is a diagram illustrating a configuration of a capacitance type sensor according to another embodiment of the present invention. As shown in FIG. 17, the transparent electrode member 500 included in the capacitive sensor 1A according to the embodiment of the present invention is a first surface which is one of the two main surfaces of the sheet-shaped base material 2. A first electrode connecting body 8 having a plurality of first transparent electrodes 4 is provided on S1, and a second electrode connecting body having a plurality of second transparent electrodes 5 on a second surface S2, which is one of the other two main surfaces. A body 12 is provided. The plurality of second transparent electrodes are arranged side by side in the second direction (specifically, the X1-X2 direction) different from the first direction (Y1-Y2 direction) of the in-plane directions of the second surface S2. , Are electrically connected to each other.
 図18は本発明の別の実施形態に係る静電容量式センサの構成を説明する図である。図18に示されるように、本発明の一実施形態に係る静電容量式センサ1Bは、透明電極部材の2つ(透明電極部材400a、透明電極部材400b)が第1面S1の法線方向(Z1-Z2方向)に積層された積層透明電極部材600を備える。2つの透明電極部材(透明電極部材400a、透明電極部材400b)の第1方向が互いに異なる方向となるように、透明電極部材400aの第1透明電極4と、透明電極部材400bの第1透明電極4とが配置されている。具体的には、相対的にZ1-Z2方向Z1側の透明電極部材400aでは、第1透明電極4はY1-Y2方向に並ぶように配置され、相対的にZ1-Z2方向Z2側の透明電極部材400bでは、第1透明電極4はX1-X2方向に並ぶように配置されている。 FIG. 18 is a diagram illustrating a configuration of a capacitance type sensor according to another embodiment of the present invention. As shown in FIG. 18, in the capacitance type sensor 1B according to the embodiment of the present invention, two transparent electrode members (transparent electrode member 400a and transparent electrode member 400b) are in the normal direction of the first surface S1. A laminated transparent electrode member 600 laminated in the (Z1-Z2 direction) is provided. The first transparent electrode 4 of the transparent electrode member 400a and the first transparent electrode of the transparent electrode member 400b so that the first directions of the two transparent electrode members (transparent electrode member 400a and the transparent electrode member 400b) are different from each other. 4 and are arranged. Specifically, in the transparent electrode member 400a on the Z1 side in the Z1-Z2 direction, the first transparent electrodes 4 are arranged so as to line up in the Y1-Y2 direction, and the transparent electrodes on the Z2 side in the Z1-Z2 direction are relatively arranged. In the member 400b, the first transparent electrodes 4 are arranged so as to be arranged in the X1-X2 directions.
 図19は本発明の別の実施形態に係る入出力装置の構成を説明する図である。図19に示されるように、本発明の一実施形態に係る入出力装置1000は、上記の静電容量式センサ1、1Aまたは1Bと、この静電容量式センサ1、1Aまたは1Bに重なる表示装置800とを備える。図19では、静電容量式センサ1、1Aまたは1Bは概念的に示されている。入出力装置1000の一例は、タッチパネルディスプレイである。入出力装置1000の表示装置800としては、図12に示すペンタイル配列の画素を備えたものを用いることが好ましい。これにより、静電容量式センサ1、1Aまたは1Bを重ねた際のモアレの発生を抑制して、画像の視認性を高めることが可能となる。静電容量式センサ1を具体例として説明すれば、静電容量式センサ1の透明電極110における矩形領域RAの2つの対角線に関するL1/L2(=第1対角線DiL1の長さ/第2対角線DiL12の長さ)は、表示装置800のペンタイル配列の単位格子が作る矩形の2つの対角線に関するLP1/LP2(長軸の長さLP1/短軸の長さLP2)とは相違している。すなわち、|L1/L2-LP1/LP2|>0である。モアレの発生を安定的に抑制する観点から、|L1/L2-LP1/LP2|は、0.19以上1.75以下であることが好ましい場合がある。なお、矩形領域RAの2つの対角線は互いに直交し、ペンタイル配列の単位格子が作る矩形の2つの対角線も互いに直交し、矩形領域RAの2つの対角線の一方は、ペンタイル配列の単位格子が作る矩形の2つの対角線の一方に沿った方向に位置している。したがって、矩形領域RAの2つの対角線の他方は、ペンタイル配列の単位格子が作る矩形の2つの対角線の他方に沿った方向に位置している。 FIG. 19 is a diagram illustrating a configuration of an input / output device according to another embodiment of the present invention. As shown in FIG. 19, the input / output device 1000 according to the embodiment of the present invention has a display that overlaps the above-mentioned capacitance type sensors 1, 1A or 1B and the capacitance type sensors 1, 1A or 1B. The device 800 is provided. In FIG. 19, the capacitive sensors 1, 1A or 1B are conceptually shown. An example of the input / output device 1000 is a touch panel display. As the display device 800 of the input / output device 1000, it is preferable to use one having pixels of the pentile array shown in FIG. This makes it possible to suppress the occurrence of moire when the capacitive sensors 1, 1A or 1B are stacked, and improve the visibility of the image. Explaining the capacitance type sensor 1 as a specific example, L1 / L2 (= length of the first diagonal line DiL1 / second diagonal line DiL12) relating to the two diagonal lines of the rectangular region RA in the transparent electrode 110 of the capacitance type sensor 1 Is different from LP1 / LP2 (long axis length LP1 / minor axis length LP2) with respect to the two diagonal lines of the rectangle formed by the unit cell of the pentile arrangement of the display device 800. That is, | L1 / L2-LP1 / LP2 |> 0. From the viewpoint of stably suppressing the generation of moire, it may be preferable that | L1 / L2-LP1 / LP2 | is 0.19 or more and 1.75 or less. The two diagonal lines of the rectangular area RA are orthogonal to each other, the two diagonal lines of the rectangle formed by the unit cell of the pentile arrangement are also orthogonal to each other, and one of the two diagonal lines of the rectangular area RA is a rectangle formed by the unit cell of the pentile arrangement. It is located along one of the two diagonal lines of. Therefore, the other of the two diagonals of the rectangular region RA is located along the other of the two diagonals of the rectangle formed by the unit cell of the Pentile array.
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の構成例の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。 Although the present embodiment has been described above, the present invention is not limited to these examples. For example, those skilled in the art appropriately adding, deleting, or changing the design of each of the above-described embodiments, or combining the features of the constituent examples of each embodiment as appropriate are also gist of the present invention. As long as it is provided, it is included in the scope of the present invention.
 100,100A,100B,400,500,400a,400b 透明電極部材
 600 積層透明電極部材
 800 表示装置
 800R,800G,800B 画素
 1000 入出力装置
 101 基材
 A1,A3 領域
 S1 第1面
 S2 第2面
 110 透明電極
 102 絶縁層
 IR 絶縁領域
 IF ダミー領域
 MX マトリックス
 NW 導電性ナノワイヤ
 DL 分散層
 111 導電部
 CR 導電領域
 CR1 ダミー導電領域
 112 光学調整部
 AR 光学調整領域
 AR1 ダミー光学調整領域
 sd 離間距離
 NR 無調整領域
 1,1A,1B 静電容量式センサ
 2 基材
 3 パネル
 3a 面
 4,4B1,4B2 第1透明電極
 5,5B1,5B2 第2透明電極
 6 配線部
 7 連結部(第1透明配線)
 8 第1電極連結体
 10 ブリッジ配線部(第2透明配線)
 11 検出領域
 12 第2電極連結体
 16 接続配線
 20 絶縁部
 20a 表面
 21 絶縁層
 25 非検出領域
 27 外部接続部
 30 光学透明粘着層
 41,41B 第1光学調整領域
 51,51B 第2光学調整領域
 DL1 第1境界線
 DL2 第2境界線
 LT 格子
 LP 格子点
 LL,LLa,LLb,LLp 格子線
 PR 部分領域
 φ0 部分領域PRの円換算直径
 RA,RAa,RAb 矩形領域
 DiL1 長いほうの対角線(第1対角線)
 DiL2 短いほうの対角線(第2対角線)
 L1 第1対角線DiL1の長さ
 L2 第2対角線DiL2の長さ
 LP1 長軸の長さ
 LP2 短軸の長さ
100, 100A, 100B, 400, 500, 400a, 400b Transparent electrode member 600 Laminated transparent electrode member 800 Display device 800R, 800G, 800B Pixel 1000 Input / output device 101 Base material A1, A3 area S1 1st surface S2 2nd surface 110 Transparent electrode 102 Insulation layer IR Insulation area IF Dummy area MX matrix NW Conductive nanowire DL Dispersion layer 111 Conductive part CR Conductive area CR1 Dummy conductive area 112 Optical adjustment part AR Optical adjustment area AR1 Dummy optical adjustment area sd Separation distance NR No adjustment area 1,1A, 1B Capacitive sensor 2 Base material 3 Panel 3a surface 4,4B1,4B2 1st transparent electrode 5,5B1,5B2 2nd transparent electrode 6 Wiring part 7 Connecting part (1st transparent wiring)
8 1st electrode connector 10 Bridge wiring part (2nd transparent wiring)
11 Detection area 12 Second electrode connector 16 Connection wiring 20 Insulation part 20a Surface 21 Insulation layer 25 Non-detection area 27 External connection part 30 Optical transparent adhesive layer 41, 41B First optical adjustment area 51, 51B Second optical adjustment area DL1 1st boundary line DL2 2nd boundary line LT lattice LP lattice point LL, LLa, LLb, LLp lattice line PR partial area φ0 partial area PR circle conversion diameter RA, RAa, RAb rectangular area DiL1 longer diagonal line (1st diagonal line) )
DiL2 Shorter diagonal (2nd diagonal)
L1 Length of the first diagonal line DiL1 L2 Length of the second diagonal line DiL2 LP1 Length of the major axis LP2 Length of the minor axis

Claims (16)

  1.  透光性を有し絶縁性の基材と、
     前記基材の一つの面である第1面に複数配置され、透光性を有する透明電極と、
     複数の前記透明電極間に形成された絶縁層と、
     を備える透明電極部材であって、
     前記透明電極は、絶縁材料からなるマトリックスと、前記マトリックス内に分散した導電性ナノワイヤと、を含む分散層を備え、
     前記透明電極は、導電部からなる導電領域と、光学調整部を有する光学調整領域と、を有し、
     前記導電部は、前記光学調整部よりも導電性が高く、
     前記光学調整部は、前記分散層における前記導電性ナノワイヤの分散密度が前記導電部よりも低く、
     前記光学調整領域は、前記透明電極の面内に沿った格子の格子点となる位置に配置される複数の部分領域を有し、
     複数の前記格子点のうち互いに隣り合う4つの格子点を隅部として構成される矩形領域において、前記矩形領域の2つの対角線の長さが互いに異なる、ことを特徴とする透明電極部材。
    With a translucent and insulating base material,
    A plurality of transparent electrodes arranged on the first surface, which is one surface of the base material, and having translucency,
    An insulating layer formed between the plurality of transparent electrodes and
    It is a transparent electrode member provided with
    The transparent electrode includes a dispersion layer including a matrix made of an insulating material and conductive nanowires dispersed in the matrix.
    The transparent electrode has a conductive region made of a conductive portion and an optical adjustment region having an optical adjustment portion.
    The conductive portion has higher conductivity than the optical adjustment portion,
    In the optical adjusting section, the dispersion density of the conductive nanowires in the dispersion layer is lower than that of the conductive section.
    The optical adjustment region has a plurality of partial regions arranged at positions that serve as lattice points of a grid along the in-plane of the transparent electrode.
    A transparent electrode member characterized in that, in a rectangular region formed by four grid points adjacent to each other among a plurality of the grid points, the lengths of the two diagonal lines of the rectangular region are different from each other.
  2.  前記矩形領域の2つの対角線のうち、長いほうを第1対角線、短いほうを第2対角線とし、前記第1対角線の長さをL1、前記第2対角線の長さをL2とした場合、
     L1/L2は、1.2以上2.7以下である、請求項1記載の透明電極部材。
    When the longer one of the two diagonal lines of the rectangular region is the first diagonal line and the shorter one is the second diagonal line, the length of the first diagonal line is L1 and the length of the second diagonal line is L2.
    The transparent electrode member according to claim 1, wherein L1 / L2 is 1.2 or more and 2.7 or less.
  3.  前記透明電極の形状は、前記矩形領域とは非相似形の略矩形である、請求項1または請求項2に記載の透明電極部材。 The transparent electrode member according to claim 1 or 2, wherein the shape of the transparent electrode is a substantially rectangular shape that is not similar to the rectangular region.
  4.  前記絶縁層は、前記部分領域とは重ならず、前記格子点の複数を結ぶ線状に設けられた、請求項1から請求項3のいずれか一項に記載の透明電極部材。 The transparent electrode member according to any one of claims 1 to 3, wherein the insulating layer does not overlap with the partial region and is provided in a linear shape connecting a plurality of the lattice points.
  5.  前記透明電極に沿って配置される前記絶縁層は、前記格子の格子線の方向に沿って延在する部分と、前記格子線の方向とは異なる非格子方向に沿って延在する部分とを有する、請求項1から請求項4のいずれか一項に記載の透明電極部材。 The insulating layer arranged along the transparent electrode includes a portion extending along the direction of the lattice line of the lattice and a portion extending along a non-lattice direction different from the direction of the lattice line. The transparent electrode member according to any one of claims 1 to 4.
  6.  前記透明電極は、
      第1方向に沿って並んで前記基材上に配置され、互いに電気的に接続された複数の第1透明電極と、
      前記第1方向とは異なる第2方向に沿って並んで配置され、互いに電気的に接続された複数の第2透明電極と、を有し、
     前記第1方向に隣り合う2つの前記第1透明電極は、前記2つの前記第1透明電極の間に位置し前記導電領域からなる第1透明配線によって互いに電気的に接続され、
     前記第2方向に隣り合う2つの前記第2透明電極は、第2透明配線によって電気的に接続され、
     前記第1透明配線と前記第2透明配線とは、絶縁物を介して重なる部分を有する、請求項1から請求項5のいずれか一項に記載の透明電極部材。
    The transparent electrode
    A plurality of first transparent electrodes arranged side by side along the first direction on the substrate and electrically connected to each other.
    It has a plurality of second transparent electrodes arranged side by side along a second direction different from the first direction and electrically connected to each other.
    The two first transparent electrodes adjacent to each other in the first direction are electrically connected to each other by a first transparent wiring located between the two first transparent electrodes and composed of the conductive region.
    The two second transparent electrodes adjacent to each other in the second direction are electrically connected by a second transparent wiring.
    The transparent electrode member according to any one of claims 1 to 5, wherein the first transparent wiring and the second transparent wiring have a portion that overlaps with each other via an insulating material.
  7.  前記透明電極は、
      第1方向に沿って並んで前記基材上に配置され、互いに電気的に接続された複数の第1透明電極と、
      前記基材を挟んで前記第1面とは反対側に位置する第2面において、前記第1方向とは異なる第2方向に沿って並んで配置され、互いに電気的に接続された複数の第2透明電極と、を有し、
     前記第1方向に隣り合う2つの前記第1透明電極は、前記2つの前記第1透明電極の間に位置し前記導電領域からなる第1透明配線によって互いに電気的に接続され、
     前記第2方向に隣り合う2つの前記第2透明電極は、第2透明配線によって電気的に接続され、前記第1面の法線方向からみて、前記第1透明配線と前記第2透明配線とは重なる部分を有する、請求項1から請求項5のいずれか一項に記載の透明電極部材。
    The transparent electrode
    A plurality of first transparent electrodes arranged side by side along the first direction on the substrate and electrically connected to each other.
    A plurality of second surfaces arranged side by side along a second direction different from the first direction and electrically connected to each other on a second surface located on the side opposite to the first surface with the base material interposed therebetween. With 2 transparent electrodes,
    The two first transparent electrodes adjacent to each other in the first direction are electrically connected to each other by a first transparent wiring located between the two first transparent electrodes and composed of the conductive region.
    The two second transparent electrodes adjacent to each other in the second direction are electrically connected by the second transparent wiring, and when viewed from the normal direction of the first surface, the first transparent wiring and the second transparent wiring The transparent electrode member according to any one of claims 1 to 5, wherein the transparent electrode member has an overlapping portion.
  8.  前記第1透明電極の外形および前記第2透明電極の外形はいずれも矩形であり、
     前記第1透明電極の外形および前記第2透明電極の外形が作る矩形の2つの対角線は、前記矩形領域の2つの対角線に揃って位置する、請求項6または請求項7に記載の透明電極部材。
    The outer shape of the first transparent electrode and the outer shape of the second transparent electrode are both rectangular.
    The transparent electrode member according to claim 6 or 7, wherein the outer shape of the first transparent electrode and the two diagonal lines of the rectangle formed by the outer shape of the second transparent electrode are aligned with the two diagonal lines of the rectangular region. ..
  9.  前記第1透明電極の外形および前記第2透明電極の外形が作る矩形の2つの対角線は、長さが等しい、請求項8に記載の透明電極部材。 The transparent electrode member according to claim 8, wherein the outer shape of the first transparent electrode and the two diagonal lines of the rectangle formed by the outer shape of the second transparent electrode have the same length.
  10.  前記第1透明電極の外形および前記第2透明電極の外形が作る矩形の2つの対角線は、直交している、請求項8または請求項9に記載の透明電極部材。 The transparent electrode member according to claim 8 or 9, wherein the outer shape of the first transparent electrode and the two diagonal lines of the rectangle formed by the outer shape of the second transparent electrode are orthogonal to each other.
  11.  前記第1面の法線方向からみたときに、前記第1透明電極と隣り合って配置される前記第2透明電極の間に、前記絶縁層に囲まれ前記透明電極と共通する材料で構成されたダミー領域を有し、
     前記ダミー領域は、前記複数の部分領域を有する、請求項6から請求項10のいずれか一項に記載の透明電極部材。
    When viewed from the normal direction of the first surface, it is surrounded by the insulating layer and is made of a material common to the transparent electrode between the second transparent electrodes arranged adjacent to the first transparent electrode. Has a dummy area
    The transparent electrode member according to any one of claims 6 to 10, wherein the dummy region has the plurality of partial regions.
  12.  前記ダミー領域と前記絶縁層との境界線は、前記ダミー領域の前記複数の部分領域の配置方向に沿って延在する部分を有する、請求項11に記載の透明電極部材。 The transparent electrode member according to claim 11, wherein the boundary line between the dummy region and the insulating layer has a portion extending along the arrangement direction of the plurality of partial regions of the dummy region.
  13.  前記ダミー領域に沿って配置される前記絶縁層は、前記格子の格子線の方向に沿って延在する部分と、前記格子線の方向とは異なる非格子方向に沿って延在する部分とを有する、請求項11請求項12に記載の透明電極部材。 The insulating layer arranged along the dummy region includes a portion extending along the direction of the lattice line of the lattice and a portion extending along a non-lattice direction different from the direction of the lattice line. 11. The transparent electrode member according to claim 12.
  14.  請求項1から請求項13のいずれか一項に記載される透明電極部材と、
     操作者の指等の操作体と透明電極との間に生じる静電容量の変化を検知する検知部と、を備える、静電容量式センサ。
    The transparent electrode member according to any one of claims 1 to 13.
    A capacitance type sensor including a detection unit that detects a change in capacitance that occurs between an operating body such as an operator's finger and a transparent electrode.
  15.  請求項14に記載の静電容量式センサと、
     前記静電容量式センサに重なる表示装置と、を備える、入出力装置。
    The capacitive sensor according to claim 14,
    An input / output device including a display device that overlaps the capacitance type sensor.
  16.  前記表示装置の複数の画素はペンタイル配列され、
     前記ペンタイル配列の単位格子が作る矩形の対角線における長軸の長さの短軸の長さに対する比は、前記矩形領域の対角線における長軸の長さの短軸の長さに対する比とは異なる、請求項15に記載の入出力装置。
    A plurality of pixels of the display device are arranged in a pentile.
    The ratio of the length of the major axis to the length of the minor axis in the diagonal of the rectangle formed by the unit cell of the pentile arrangement is different from the ratio of the length of the major axis to the length of the minor axis in the diagonal of the rectangular region. The input / output device according to claim 15.
PCT/JP2020/010987 2019-07-30 2020-03-13 Transparent electrode member, electrostatic capacitance-type sensor, and input/output device WO2021019823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140272A JP2022133487A (en) 2019-07-30 2019-07-30 Transparent electrode member, capacitive sensor, and input and output apparatus
JP2019-140272 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021019823A1 true WO2021019823A1 (en) 2021-02-04

Family

ID=74228229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010987 WO2021019823A1 (en) 2019-07-30 2020-03-13 Transparent electrode member, electrostatic capacitance-type sensor, and input/output device

Country Status (2)

Country Link
JP (1) JP2022133487A (en)
WO (1) WO2021019823A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152578A (en) * 2012-01-24 2013-08-08 Sony Corp Transparent conductive element, input device, electronic apparatus and master disk for producing transparent conductive element
JP2017215965A (en) * 2016-05-31 2017-12-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display device
WO2018101209A1 (en) * 2016-12-02 2018-06-07 アルプス電気株式会社 Transparent electrode member, method for producing same, and capacitive sensor using said transparent electrode member
JP2018088391A (en) * 2016-11-22 2018-06-07 Tianma Japan株式会社 Display device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152578A (en) * 2012-01-24 2013-08-08 Sony Corp Transparent conductive element, input device, electronic apparatus and master disk for producing transparent conductive element
JP2017215965A (en) * 2016-05-31 2017-12-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display device
JP2018088391A (en) * 2016-11-22 2018-06-07 Tianma Japan株式会社 Display device and method of manufacturing the same
WO2018101209A1 (en) * 2016-12-02 2018-06-07 アルプス電気株式会社 Transparent electrode member, method for producing same, and capacitive sensor using said transparent electrode member

Also Published As

Publication number Publication date
JP2022133487A (en) 2022-09-14

Similar Documents

Publication Publication Date Title
KR101905789B1 (en) flexible touch screen panel and flexible display device with the same
US9354756B2 (en) Touch screen panel and display device having the same
KR102303214B1 (en) Touch screen panel and manufacturing method thereof
US20150085205A1 (en) Touch panel
US9891764B2 (en) Touch screen panel
KR20100080469A (en) Capacitive touch panel
US10496232B2 (en) Capacitive touch panel
KR20180025389A (en) Touch panel and display device including the same
KR20150029507A (en) Touch screen sensor, Touch screen panel of electrostatic capacitive type and image display device
US11294519B2 (en) Touch panel
TW201923531A (en) Electroconductive member and touch panel
TW201519031A (en) Touch panel and touch display panel
US11402943B2 (en) Input sensing unit and display device including the same
TW201831971A (en) Transparent electrode member, method for producing same, and capacitive sensor using said transparent electrode member
US20170308194A1 (en) Touch Sensor Mesh Designs
JP6735850B2 (en) Capacitive sensor and equipment
JP6406575B2 (en) Touch panel sensor, touch panel device, and display device
JP6853414B2 (en) Transparent electrode member, laminated transparent electrode member and capacitive sensor
JP3181933U (en) Touch electrode device
JP2013206198A (en) Touch sensor
KR20140040432A (en) Touch panel
WO2021019823A1 (en) Transparent electrode member, electrostatic capacitance-type sensor, and input/output device
TW201439833A (en) Touch panel
CN113534999A (en) Touch sensor and display device including the same
KR20100126140A (en) Electrode pattern structure of capacitive touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP