WO2021010908A1 - Shock and muzzle detection and classification method using a cascade of classifiers - Google Patents

Shock and muzzle detection and classification method using a cascade of classifiers Download PDF

Info

Publication number
WO2021010908A1
WO2021010908A1 PCT/TR2019/050589 TR2019050589W WO2021010908A1 WO 2021010908 A1 WO2021010908 A1 WO 2021010908A1 TR 2019050589 W TR2019050589 W TR 2019050589W WO 2021010908 A1 WO2021010908 A1 WO 2021010908A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock
muzzle
signals
signal
classifiers
Prior art date
Application number
PCT/TR2019/050589
Other languages
French (fr)
Inventor
Lütfi Murat GEVREKCİ
Ömer ŞAHIN
Mehmet Umut DEMIRÇIN
Original Assignee
Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ filed Critical Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇
Priority to PCT/TR2019/050589 priority Critical patent/WO2021010908A1/en
Publication of WO2021010908A1 publication Critical patent/WO2021010908A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
    • G10L25/30Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/06Acoustic hit-indicating systems, i.e. detecting of shock waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/8083Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination

Definitions

  • the present disclosure relates to a method detects and classifies a shock and muzzle signal from acoustic system using a cascade of classifiers.
  • the patent numbered EP2204665 is an example for above stated drawbacks.
  • the patent document proposes a method for identifying a muzzle blast within a signal generated by an array of acoustic sensors forming an antenna comprises defining a width for a time window corresponding to a time required for the muzzle blast to traverse the array of acoustic sensors and detecting a shockwave within the generated signal. After detecting the shockwave, total energy of the generated signal in a series of consecutive time windows as a function of time and as a function of the number of acoustic sensors that generated the signal is measured, each time window having the defined width. One of the consecutive time windows having a measured total energy greater than each of the remainder of the consecutive time windows is identified; and the identified time window is associated as corresponding to the muzzle blast.
  • Proposed method detects and classifies a shock and muzzle signal from acoustic system.
  • the method works with both single and multiple microphones, such that when formed an acoustic array a time-difference-of-arrival (TDOA) reveals the shooter angle.
  • TDOA time-difference-of-arrival
  • Time difference between shock and muzzle can be used for range estimation.
  • the invention uses a cascade of classifiers with increasing complexity to eliminate false signals, such that computational complexity remains low and enables real-time performance for an array of microphones.
  • the inventive technique eliminates false shock and muzzles with feature engineering at early stages, and then with advanced techniques for rare potential candidates at later stages. Classified muzzles are further cross correlated for echo elimination for operation in urban environment.
  • the present method eliminates false signals with classifiers of increasing complexity such that only candidates are evaluated in complex and accurate classifiers, and proposed algorithm scales with increasing number of microphones.
  • Proposed algorithm verifies the validity of a shock using simple peak detector. Classified muzzles are further examined in terms of correlation. Low Pearson correlation muzzles stem from echo in urban environment. Such a technique allows system to operate in highly echoic environment.
  • Figure 1 shows spectrogram, raw data and FFT of shock and muzzle signals of a shot.
  • Figure 2 shows filtering and classification process.
  • FIG. 3 shows the flowchart of detection and classification of shock signals.
  • Figure 4 shows the flowchart of detection and classification of muzzle signals.
  • Figure 5 shows shock/muzzle selection scheme
  • Figure 6 shows normalized amplitude and time graphic of a shock signal including Tsize demonstration between peak points.
  • Figure 7 shows spectrogram of power normalized signals reveal the type of signal.
  • Gunshot acoustics are mainly composed of a shock wave and muzzle blast.
  • a supersonic bullet generates a shock wave pattern.
  • Shock wave has a conic pattern which deteriorates as bullet travels.
  • a sample of both waveforms are given in Figure 1.
  • shock and muzzle belong to the same shot. It is obvious that across figure both shock and muzzle vary drastically.
  • spectrogram is given in first row of Figure 1 .
  • Second row of figure show raw data, while third row show the Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • a processor records the acoustic signals from the microphone to a database.
  • Database contains shock, muzzles and noise signals.
  • Acoustic signals are FIR (Finite Impulse Response) / HR (Infinite Impulse Response) filtered using a high pass and band pass filters.
  • High pass filter aims to extract shock candidates at original scale without any decimation.
  • Band bass filter aims to extract muzzles using decimation since muzzles span a larger time scale. Shock and muzzle candidates are stored on different databases and processed differently.
  • Figure 3 and 4 demonstrates the flowcharts of shock and muzzle classification independently.
  • Peak time difference (Tsize) computation that finds the time elapsed between the first positive peak and the first negative peak.
  • Muzzle candidate signal is applied following cascade operations to be detected as a muzzle:
  • FIG. 5 shows shock/muzzle selection scheme. All signals acquired by each microphone is filtered to get regions of interest which might contain shock and muzzles. Shock regions are extracted using FIR/IIR filtering with high pass filter, while muzzle regions are extracted using IIR/FIR filtering using band pass filter. Muzzle filtering also utilizes decimation factor (e.g. decimation factor of 16 since muzzle spans a time of 6 ms, while shock spans only 1.25 ms in average). Each incoming signal is power RMS normalized as following:

Abstract

The present invention relates to a shock and muzzle detection and classification method using a cascade of classifiers. The invention uses a cascade of classifiers with increasing complexity to eliminate false signals, such that computational complexity remains low and enables real-time performance for an array of microphones. Proposed method verifies the validity of a shock using simple peak detector. Classified muzzles are further examined in terms of correlation. Low Pearson correlation muzzles stem from echo in urban environment. Such a technique allows system to operate in highly echoic environment.

Description

SHOCK AND MUZZLE DETECTION AND CLASSIFICATION METHOD USING A
CASCADE OF CLASSIFIERS
Technical Field
The present disclosure relates to a method detects and classifies a shock and muzzle signal from acoustic system using a cascade of classifiers.
Background
Existing methods only use spectrogram based neural network approaches that take long processing time since spectrogram is computed in sliding window fashion and neural network is computationally costly for evaluation at every sliding window. Also, proposed framework rejects shocks with simple feature engineering, and eliminates echo in urban environment with correlation filtering. Available shock and muzzle detectors do not scale with the increasing number of microphones. Also, existing methods create excessive number of candidates which might create false shots.
Existing methods do not detect and classify shock and muzzle signals under the same framework considering the real-time constraints for low power processors. The patent numbered EP2204665 is an example for above stated drawbacks. The patent document proposes a method for identifying a muzzle blast within a signal generated by an array of acoustic sensors forming an antenna comprises defining a width for a time window corresponding to a time required for the muzzle blast to traverse the array of acoustic sensors and detecting a shockwave within the generated signal. After detecting the shockwave, total energy of the generated signal in a series of consecutive time windows as a function of time and as a function of the number of acoustic sensors that generated the signal is measured, each time window having the defined width. One of the consecutive time windows having a measured total energy greater than each of the remainder of the consecutive time windows is identified; and the identified time window is associated as corresponding to the muzzle blast.
Summary
Proposed method detects and classifies a shock and muzzle signal from acoustic system. The method works with both single and multiple microphones, such that when formed an acoustic array a time-difference-of-arrival (TDOA) reveals the shooter angle. Time difference between shock and muzzle can be used for range estimation.
The invention uses a cascade of classifiers with increasing complexity to eliminate false signals, such that computational complexity remains low and enables real-time performance for an array of microphones.
On the other hand, the inventive technique eliminates false shock and muzzles with feature engineering at early stages, and then with advanced techniques for rare potential candidates at later stages. Classified muzzles are further cross correlated for echo elimination for operation in urban environment.
The present method eliminates false signals with classifiers of increasing complexity such that only candidates are evaluated in complex and accurate classifiers, and proposed algorithm scales with increasing number of microphones.
Proposed algorithm verifies the validity of a shock using simple peak detector. Classified muzzles are further examined in terms of correlation. Low Pearson correlation muzzles stem from echo in urban environment. Such a technique allows system to operate in highly echoic environment.
Brief Description of the Drawings
Figure 1 shows spectrogram, raw data and FFT of shock and muzzle signals of a shot.
Figure 2 shows filtering and classification process.
Figure 3 shows the flowchart of detection and classification of shock signals.
Figure 4 shows the flowchart of detection and classification of muzzle signals.
Figure 5 shows shock/muzzle selection scheme.
Figure 6 shows normalized amplitude and time graphic of a shock signal including Tsize demonstration between peak points.
Figure 7 shows spectrogram of power normalized signals reveal the type of signal.
Detailed Description
Gunshot acoustics are mainly composed of a shock wave and muzzle blast. A supersonic bullet generates a shock wave pattern. Shock wave has a conic pattern which deteriorates as bullet travels. A sample of both waveforms are given in Figure 1. In figure, shock and muzzle belong to the same shot. It is obvious that across figure both shock and muzzle vary drastically. In first row of Figure 1 , spectrogram is given. Second row of figure show raw data, while third row show the Fast Fourier Transform (FFT).
As shown in Figure 2, in the method, a processor records the acoustic signals from the microphone to a database. Database contains shock, muzzles and noise signals. Acoustic signals are FIR (Finite Impulse Response) / HR (Infinite Impulse Response) filtered using a high pass and band pass filters. High pass filter aims to extract shock candidates at original scale without any decimation. Band bass filter aims to extract muzzles using decimation since muzzles span a larger time scale. Shock and muzzle candidates are stored on different databases and processed differently. Figure 3 and 4 demonstrates the flowcharts of shock and muzzle classification independently.
Shock candidates are applied following operations consecutively:
• Shock candidate signal is preprocessed using RMS (Root Mean Square) normalization.
• Peak time difference (Tsize) computation that finds the time elapsed between the first positive peak and the first negative peak. (Figure 6)
• Logistic regression classifier is applied using FFT of the signal.
• Convolutional neural network is applied using spectrogram of the signal.
Muzzle candidate signal is applied following cascade operations to be detected as a muzzle:
• Muzzle candidate signal is preprocessed using RMS normalization.
• Decimation and band pass filtering in original size is operated using HR or FIR.
(implemented as LP + Decimate + HP)
• Logistic regression classifier is applied using FFT of the signal
• Convolutional neural network is applied using spectrogram of the signal
Echo of muzzles within urban environment creates a muzzle candidate that fulfills all muzzle criteria, so muzzles are aligned and the Pearson correlation is computed. Only muzzles with high correlation scores are reported in urban environment to eliminate echo conditions.
Figure 5 shows shock/muzzle selection scheme. All signals acquired by each microphone is filtered to get regions of interest which might contain shock and muzzles. Shock regions are extracted using FIR/IIR filtering with high pass filter, while muzzle regions are extracted using IIR/FIR filtering using band pass filter. Muzzle filtering also utilizes decimation factor (e.g. decimation factor of 16 since muzzle spans a time of 6 ms, while shock spans only 1.25 ms in average). Each incoming signal is power RMS normalized as following:
Figure imgf000006_0001
Then signal is exposed to a three-stage cascade classifier for efficiency. Signals whose IIR/FIR response small then a limit value are considered noise and rejected. Signals passing this level are FFT taken in a window (e.g. limit value is 5 and 512 point FFT is used), then classified using Logistic Regression (LR) to decide if a signal is noise or shock/muzzle. Finally, if a candidate passes previous levels, it is classified as shock or muzzle in final stage using spectrogram features and Convolutional Neural Network (CNN).
There can be multiple ripples in shock region that can correspond to a real shock signal. It is critical to select the first positive peak and the second negative peak of shock, since this is a critical feature for range estimation. A derivate based approach is proposed to locate these peaks. A five-point derivative is used for reliability, e.g. using coefficients of [1 -8 0 8 -1] / 12. Then, second order derivative is taken only using two points. A signal peak is where first order derivate switches signs, and second order derivative has a certain amplitude. This simple criterion allows peak time difference estimation with sample accuracy.
Given spectrogram of power normalized signals reveal the type of signal clearly as shown in Figure 7, which type can be noise, shock or muzzle. Although spectrogram computation is costly with respect to FFT, this approach yields a rich information. Combined with convolutional neural networks (CNN), this approach provides classification accuracy above %99, compared to logistic regression (LR) %89.

Claims

1. A method for detecting and classifying shock and muzzle signals from acoustic signal using a cascade of classifiers, comprising the steps of:
• filtering recorded signals in database acquired by at least one microphone to get regions of interest,
• filtering acoustic signals with FIR/IIR using high pass and band pass filters to extract shock and muzzle signals respectively,
• applying RMS normalization to filtered acoustic signals,
• applying logistic regression classifier using FFT of the signals,
• applying convolutional neural network using spectrogram of the signal to decide if a signal is noise or shock/muzzle.
2. The method according to claim 1 , determining shooter angle and range using multiple microphones by:
• calculating time-difference-of-arrival for determining the shooter angle,
• estimating shooting range by using time difference between shock and muzzle.
3. The method according to claim 1 , utilizing decimation factor while muzzle regions are extracted using IIR/FIR filtering using band-pass filter.
4. The method according to claim 3, wherein the decimation factor is 16.
5. The method according to claim 1 , cross correlating classified muzzles for echo elimination to operate in echoic environment.
6. The method according to claim 1 and 2, computing peak time difference that finds the time elapsed between the first positive peak and the first negative peak for range estimation.
PCT/TR2019/050589 2019-07-17 2019-07-17 Shock and muzzle detection and classification method using a cascade of classifiers WO2021010908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/TR2019/050589 WO2021010908A1 (en) 2019-07-17 2019-07-17 Shock and muzzle detection and classification method using a cascade of classifiers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/TR2019/050589 WO2021010908A1 (en) 2019-07-17 2019-07-17 Shock and muzzle detection and classification method using a cascade of classifiers

Publications (1)

Publication Number Publication Date
WO2021010908A1 true WO2021010908A1 (en) 2021-01-21

Family

ID=68318928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2019/050589 WO2021010908A1 (en) 2019-07-17 2019-07-17 Shock and muzzle detection and classification method using a cascade of classifiers

Country Status (1)

Country Link
WO (1) WO2021010908A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178141B1 (en) * 1996-11-20 2001-01-23 Gte Internetworking Incorporated Acoustic counter-sniper system
EP2204665A1 (en) 2004-08-24 2010-07-07 BBN Technologies Corp. A method for identifying a muzzle blast
US20120300587A1 (en) * 2011-05-26 2012-11-29 Information System Technologies, Inc. Gunshot locating system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6178141B1 (en) * 1996-11-20 2001-01-23 Gte Internetworking Incorporated Acoustic counter-sniper system
EP2204665A1 (en) 2004-08-24 2010-07-07 BBN Technologies Corp. A method for identifying a muzzle blast
US20120300587A1 (en) * 2011-05-26 2012-11-29 Information System Technologies, Inc. Gunshot locating system and method
US8817577B2 (en) * 2011-05-26 2014-08-26 Mahmood R. Azimi-Sadjadi Gunshot locating system and method

Similar Documents

Publication Publication Date Title
US6792118B2 (en) Computation of multi-sensor time delays
US7961550B2 (en) Systems and methods of processing impulses including bullet pulses and/or muzzle pulses in association with time domain representations
US7362654B2 (en) System and a method for detecting the direction of arrival of a sound signal
CN111239680B (en) Direction-of-arrival estimation method based on differential array
De Seixas et al. Preprocessing passive sonar signals for neural classification
CN109977724B (en) Underwater target classification method
CN109741609B (en) Motor vehicle whistling monitoring method based on microphone array
Hrabina et al. Gunshot recognition using low level features in the time domain
JP4760614B2 (en) Method for selecting learning data of signal identification device
CN105424170A (en) Shot detection counting method and system
CN108269566B (en) Rifling wave identification method based on multi-scale sub-band energy set characteristics
Svatos et al. Impulse acoustic event detection, classification, and localization system
Ramos et al. A spectral subtraction based algorithm for real-time noise cancellation with application to gunshot acoustics
WO2021010908A1 (en) Shock and muzzle detection and classification method using a cascade of classifiers
Lara et al. A real-time microearthquakes-detector based on voice activity detection and endpoint detection: An approach to Cotopaxi Volcano
CN110992972B (en) Sound source noise reduction method based on multi-microphone earphone, electronic equipment and computer readable storage medium
CN110275138B (en) Multi-sound-source positioning method using dominant sound source component removal
Svatos et al. Smart acoustic sensor
GB2501058A (en) A speaker diarization system
CN111968671B (en) Low-altitude sound target comprehensive identification method and device based on multidimensional feature space
CN112068193B (en) Automatic micro-seismic shear source weak event S wave first arrival pickup method
Borzino et al. Gunshot signal enhancement for DOA estimation andweapon recognition
Faeza et al. Identification of shockwave and muzzle blast in a gunshot signal using frequency analysis techniques
CN110398716B (en) Multi-sound-source positioning method utilizing sparse component equalization among sound sources
Kabir et al. Machine learning inspired efficient acoustic gunshot detection and localization system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791381

Country of ref document: EP

Kind code of ref document: A1