WO2021008559A1 - Bispecific antibodies against pd-1 and lag-3 - Google Patents

Bispecific antibodies against pd-1 and lag-3 Download PDF

Info

Publication number
WO2021008559A1
WO2021008559A1 PCT/CN2020/102152 CN2020102152W WO2021008559A1 WO 2021008559 A1 WO2021008559 A1 WO 2021008559A1 CN 2020102152 W CN2020102152 W CN 2020102152W WO 2021008559 A1 WO2021008559 A1 WO 2021008559A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
binding fragment
antigen binding
sequence
lag
Prior art date
Application number
PCT/CN2020/102152
Other languages
French (fr)
Inventor
Yong Zheng
Qiong Wu
Jing Li
Original Assignee
Wuxi Biologics (Shanghai) Co., Ltd.
WuXi Biologics Ireland Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Biologics (Shanghai) Co., Ltd., WuXi Biologics Ireland Limited filed Critical Wuxi Biologics (Shanghai) Co., Ltd.
Priority to CN202080051323.7A priority Critical patent/CN114144429B/en
Publication of WO2021008559A1 publication Critical patent/WO2021008559A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention relates to bispecific antibodies. Moreover, the invention provides a polynucleotide encoding the antibodies, a vector comprising said polynucleotide, a host cell, a process for the production of the antibodies and immunotherapy in the treatment of cancer, infections or other human diseases using the bispecific antibodies.
  • PD-1 one of the immune-checkpoint proteins, is an inhibitory member of CD28 family expressed on activated CD4 + T cells and CD8 + T cells as well as on B cell. PD-1 plays a major role in down-regulating the immune system.
  • PD-1 is a type I transmembrane protein and the structure consists of an immunoglobulin variable-like extracellular domain and a cytoplasmic domain containing an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) .
  • ITIM immunoreceptor tyrosine-based inhibitory motif
  • ITMS immunoreceptor tyrosine-based switch motif
  • PD-1 has two known ligands, PD-L1 and PD-L2, which are cell surface expressed members of the B7 family. Upon ligation with its physiological ligand, PD-1 suppresses T-cell activation by recruiting SHP-2, which dephosphorylates and inactivates Zap70, a major integrator of T-cell receptor (TCR) -mediated signaling. As a result, PD-1 inhibits T cell proliferation and T cell functions such as cytokine production and cytotoxic activity.
  • TCR T-cell receptor
  • Monoclonal antibodies targeting PD-1 can block PD-1/PD-L1 binding and boost the immune response against cancer cells. These drugs have shown a great deal of promise in treating certain cancers. Multiple approved therapeutic antibodies targeting PD-1 have been developed by several pharmaceutical companies, including Pembrolizumab (Keytruda) , Nivolumab (Opdivo) , Cemiplimab (Libtayo) . These drugs have been shown to be effective in treating various types of cancer, including melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, and Hodgkin lymphoma. They are also being studied for use against many other types of cancer.
  • Lymphocyte-activation gene 3 also known as LAG-3, is a type I transmembrane protein that is a member of the immune-globulin superfamily (IgSF) .
  • LAG-3 is a cell surface molecule expressed on activated T cells, NK cells, B cells and plasmacytoid dendritic cells, but not on resting T cells.
  • LAG-3 shares approximately 20%amino acid sequence homology with CD4, but binds to MHC class II with higher affinity, providing negative regulation of T cell receptor signaling.
  • Blockade of LAG-3 in vitro augments T cell proliferation and cytokine production, and LAG-3-deficient mice have a defect in the downregulation of T cell responses induced by the superantigen staphylococcal enterotoxin B, by peptides or by Sendai virus infection.
  • LAG-3 is expressed on both activated natural Treg (nTreg) and induced CD4 + FoxP3 + Treg (iTreg) cells, where expression levels are higher than that observed on activated effector CD4 + T cells.
  • Blockade of LAG-3 on Treg cells abrogates Treg cell suppressor function whereas ectopic expression of LAG-3 in non-Treg CD4 + T cells confers suppressive activity.
  • LAG-3-specific monoclonal antibodies On the basis of the immunomodulatory role of LAG-3 on T cell function in chronic infection and cancer, the predicted mechanism of action for LAG-3-specific monoclonal antibodies is to inhibit the negative regulation of tumor-specific effector T cells. Furthermore, dual blockade of the PD-1 pathway and LAG-3 has been shown in mice and human to be more effective for anti-tumor immunity than blocking either molecule alone.
  • LAG-3 and PD-1 Co-expression of LAG-3 and PD-1 was found on antigen-specific CD8 + T cells, and co-blockade of both lead to improved proliferation and cytokine production.
  • Anti-LAG-3 in combination with anti-PD-1 therapy has entered clinical trials for various types of solid tumors.
  • the present invention provides isolated antibodies, in particular bispecific antibodies.
  • the present invention provides a bispecific antibody or an antigen binding fragment thereof, comprising:
  • a first polypeptide chain comprising, from N-terminus to C-terminus, a first heavy chain variable (VH) domain of a PD-1 antibody operably linked to a first T cell receptor (TCR) constant region and a second VH domain of LAG-3 antibody,
  • a second polypeptide chain comprising, from N-terminus to C-terminus, a first light chain variable (VL) domain of PD-1 antibody operably linked to a second TCR constant region,
  • a third polypeptide chain comprising, from N-terminus to C-terminus, a second VL domain of LAG-3 antibody operably linked to an antibody light chain constant (CL) domain,
  • first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one non-native interchain disulphide bond
  • the second VH domain of LAG-3 antibody comprises H-CDR1, H-CDR2 and H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 1, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 2, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 3, and conservative modifications thereof,
  • the first VH domain of PD-1 antibody comprises H-CDR1, H-CDR2, H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 4, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 5, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 6, and conservative modifications thereof.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the antibody or antigen binding fragment thereof provides bivalent binding sites specific for PD-1 or LAG-3.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the antibody or antigen binding fragment thereof comprises two of said first polypeptide chains, two of said second polypeptide chains and two of said third polypeptide chains.
  • the present invention provides an antibody or an antigen binding fragment thereof
  • the second VL domain of LAG-3 antibody comprises L-CDR1, L-CDR2 and L-CDR3; wherein the L-CDR3 comprises a sequence as depicted in SEQ ID NO: 7, and conservative modifications thereof; the L-CDR2 comprises a sequence as depicted in SEQ ID NO: 8, and conservative modifications thereof; the L-CDR1 comprises a sequence as depicted in SEQ ID NO: 9, and conservative modifications thereof.
  • the present invention provides an antibody or an antigen binding fragment thereof
  • the second VL domain of LAG-3 antibody comprises L-CDR1, L-CDR2 and L-CDR3; wherein the L-CDR3 comprises a sequence as depicted in SEQ ID NO: 10, and conservative modifications thereof; the L-CDR2 comprises a sequence as depicted in SEQ ID NO: 11, and conservative modifications thereof; the L-CDR1 comprises a sequence as depicted in SEQ ID NO: 12, and conservative modifications thereof.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VH domain of LAG-3 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 13.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VH domain of PD-1 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 14.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VL domain of LAG-3 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 15.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VL domain of PD-1 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 16.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein second VH domain of LAG-3 antibody comprises a sequence of SEQ ID NO: 13.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein first VH domain of PD-1 antibody comprises a sequence of SEQ ID NO: 14.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein second VL domain of LAG-3 antibody comprises a sequence of SEQ ID NO: 15.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein first VL domain of PD-1 antibody comprises a sequence of SEQ ID NO: 16.
  • the present invention provides an antibody or an antigen binding fragment thereof, wherein said first TCR constant region comprises an engineered TCR beta constant region, the engineered TCR beta constant region comprises one or more mutated residues that substitute for wild-type amino acid residues in TCR beta constant region.
  • the mutated residue in TCR beta constant region is selected from the group consisting of K9E, S56C, N69Q and C74A.
  • the second TCR constant region comprises an engineered TCR alpha constant region, the engineered TCR alpha constant region comprises one or more mutated residues that substitute for wild-type amino acid residues in TCR alpha constant region.
  • the mutated residue in TCR alpha constant region is selected from the group consisting of N32Q, T47C, N66Q, and N77Q.
  • said engineered TCR beta constant region comprises a sequence of SEQ ID NO: 21
  • said engineered TCR alpha constant region comprises a sequence of SEQ ID NO: 22
  • the present invention provides an antibody or an antigen binding fragment thereof, the first TCR constant region and the second VH domain are linked by a peptide sequence of SEQ ID NO: 23.
  • the present invention provides an antibody or an antigen binding fragment thereof, the first polypeptide further comprises an antibody heavy chain constant CH1 domain
  • the first polypeptide further comprises IgG Fc fragment, wherein the IgG Fc fragment is operably linked to the CH1 domain
  • the first polypeptide comprises a sequence of SEQ ID NO: 17 or 20.
  • the second polypeptide comprises a sequence of SEQ ID NO: 18.
  • the third polypeptide comprises a sequence of SEQ ID NO: 19.
  • the antibody of the invention can be a humanized antibody, or a fully human antibody.
  • the invention provides a nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
  • the invention provides a cloning or expression vector comprising the nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
  • the invention also provides a host cell comprising one or more cloning or expression vectors.
  • the invention provides a process, comprising culturing the host cell of the invention and isolating the antibody.
  • the invention provides pharmaceutical composition
  • pharmaceutical composition comprising the antibody, or the antigen binding fragment of said antibody in the invention, and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
  • the invention provides an immunoconjugate comprising said antibody, or antigen-binding fragment thereof in this invention, linked to a therapeutic agent.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising said immunoconjugate and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
  • the invention also provides a method of modulating an immune response in a subject comprising administering to the subject the antibody, or antigen binding fragment of any one of said antibodies in this invention.
  • the invention also provides the use of said antibody or the antigen binding fragment thereof in the manufacture of a medicament for the treatment or prophylaxis of an immune disorder or cancer.
  • the invention also provides a method of inhibiting growth of tumor cells in a subject, comprising administering to the subject a therapeutically effective amount of said antibody, or said antigen-binding fragment to inhibit growth of the tumor cells.
  • the invention provides the method, wherein the tumor cells are of a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
  • a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
  • a bispecific antibody against both PD-1 and LAG-3 pathways may provide several benefits in cancer therapy. Compared with anti-PD-1 therapy, the bispecific antibody may increase the response rate on PD-1 and LAG-3 double positive cancers.
  • Figure 1 shows PD-1 ⁇ LAG-3 bispecific antibodies to cell surface human PD-1.
  • Figure 2 PD-1 ⁇ LAG-3 bispecific antibodies bind to cell surface human LAG-3.
  • Figure 3 PD-1 ⁇ LAG-3 bispecific antibodies bind to cell surface cynomolgus PD-1.
  • Figure 4 PD-1 ⁇ LAG-3 bispecific antibodies bind to cell surface cynomolgus LAG-3.
  • Figure 5 shows binding of PD-1 ⁇ LAG-3 bispecific antibodies to mouse PD-1 and LAG-3.
  • Figure 5A shows that PD-1 ⁇ LAG-3 bispecific antibodies do not bind to mouse PD-1
  • Figure 5B PD-1 ⁇ LAG-3 bispecific antibodies do not bind to mouse LAG-3.
  • Figure 6 shows binding of PD-1 ⁇ LAG-3 bispecific antibodies to human CD4, CTLA-4 and CD28 protein.
  • Figure 6A shows that PD-1 ⁇ LAG-3 bispecific antibodies do not bind to human CTLA-4 protein
  • Figure 6B shows that PD-1 ⁇ LAG-3 bispecific antibodies do not bind to human CD28 protein
  • Figure 6C PD-1 ⁇ LAG-3 bispecific antibodies do not bind to human CD4 protein.
  • Figure 7 shows PD-1 ⁇ LAG-3 bispecific antibodies bind to human PD-1 and LAG-3 protein.
  • Figure 8 shows PD-1 ⁇ LAG-3 bispecific antibodies block the binding of PD-1 to PD-L1 expressing cells.
  • Figure 9 shows PD-1 ⁇ LAG-3 bispecific antibodies block the binding of LAG-3 to MHC-II.
  • Figure 10 shows PD-1 ⁇ LAG-3 bispecific antibodies enhance NFAT pathways in PD-1 and LAG-3 expressing Jurkat.
  • Figure 11 shows effects of PD-1 ⁇ LAG-3 bispecific antibodies on human allogeneic mixed lymphocyte reaction (MLR) .
  • Figure 11A shows that PD-1 ⁇ LAG-3 bispecific antibodies enhance IL-2 production in MLR assay
  • Figure 11B shows that PD-1 ⁇ LAG-3 bispecific antibodies enhance IFN- ⁇ production in MLR assay.
  • Figure 12 shows tumor volume and survival curve of treated mice.
  • Figure 12A shows that PD-1 ⁇ LAG-3 bispecific antibodies inhibit the growth of B16F10 tumor in transgenic mouse
  • Figure 12B shows weight of treated mouse.
  • Figure 13 shows a schematic representation of the PD-1 ⁇ LAG-3 bispecific antibodies format.
  • the antibody comprises two sets of tri-polypeptide chains comprising: i) VL (PD-1) -engineered TCR alpha constant region; 2) VL (LAG-3) -CL; and 3) VH (PD-1) -engineered TCR beta constant region-VH (LAG-3) -CH1-hinge-CH2-CH3.
  • a polypeptide complex means one polypeptide complex or more than one polypeptide complex.
  • the term “about” or “approximately” refers to a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1%to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length.
  • the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 15%, 10%, 5%, or 1%.
  • polypeptide refers to a polymer of amino acid residues, or an assembly of multiple polymers of amino acid residues.
  • the terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.
  • amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
  • Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, gamma-carboxyglutamate, and O-phosphoserine.
  • Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an alpha-carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium.
  • Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
  • An alpha-carbon refers to the first carbon atom that attaches to a functional group, such as a carbonyl.
  • a beta-carbon refers to the second carbon atom linked to the alpha-carbon, and the system continues naming the carbons in alphabetical order with Greek letters.
  • Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
  • the term “protein” typically refers to large polypeptides.
  • the term “peptide” typically refers to short polypeptides.
  • Polypeptide sequences are usually described as the left-hand end of a polypeptide sequence is the amino-terminus (N-terminus) ; the right-hand end of a polypeptide sequence is the carboxyl-terminus (C-terminus) .
  • Polypeptide complex refers to a complex comprising one or more polypeptides that are associated to perform certain functions. In certain embodiments, the polypeptides are immune-related.
  • antibody as referred to herein includes whole antibodies and any antigen-binding fragment (i.e., "antigen-binding portion” ) or single chains thereof.
  • An “antibody” refers to a protein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulphide bonds, or an antigen-binding portion thereof.
  • Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
  • the heavy chain constant region is comprised of three domains, CH1, CH2 and CH3.
  • Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region.
  • the light chain constant region is comprised of one domain, CL.
  • VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR) , interspersed with regions that are more conserved, termed framework regions (FR) .
  • CDR complementarity determining regions
  • FR framework regions
  • Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
  • H-CDRs The CDRs in heavy chain are abbreviated as H-CDRs, for example H-CDR1, H-CDR2, H-CDR3, and the CDRs in light chain are abbreviated as L-CDRs, for example L-CDR1, L-CDR2, L-CDR3.
  • antibody refers to an immunoglobulin or a fragment or a derivative thereof, and encompasses any polypeptide comprising an antigen-binding site, regardless whether it is produced in vitro or in vivo.
  • the term includes, but is not limited to, polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and grafted antibodies.
  • antibody also includes antibody fragments such as scFv, dAb, bispecific antibodies comprising a first VH domain and a second VH domain, and other antibody fragments that retain antigen-binding function, i.e., the ability to bind PD-1 and LAG-3 specifically. Typically, such fragments would comprise an antigen-binding fragment.
  • An antigen-binding fragment typically comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH) , however, it does not necessarily have to comprise both.
  • VL antibody light chain variable region
  • VH antibody heavy chain variable region
  • Fd antibody fragment consists only of a VH domain and CH1 domain, but still retains some antigen-binding function of the intact antibody.
  • Fc with regard to an antibody refers to that portion of the antibody consisting of the second (CH2) and third (CH3) constant regions of a first heavy chain bound to the second and third constant regions of a second heavy chain via disulphide bonding.
  • the Fc portion of the antibody is responsible for various effector functions such as ADCC, and CDC, but does not function in antigen binding.
  • CH2 domain refers to includes the portion of a heavy chain molecule that extends, e.g., from about amino acid 244 to amino acid 360 of an IgG antibody using conventional numbering schemes (amino acids 244 to 360, Kabat numbering system; and amino acids 231-340, EU numbering system; see Kabat, E., et al., U.S. Department of Health and Human Services, (1983) ) .
  • the “CH3 domain” extends from the CH2 domain to the C-terminus of the IgG molecule and comprises approximately 108 amino acids.
  • Certain immunoglobulin classes, e.g., IgM, further include a CH4 region.
  • antigen-binding moiety refers to an antibody fr agment formed from a portion of an antibody comprising one or more CDRs, o r any other antibody fragment that binds to an antigen but does not comprise an intact native antibody structure.
  • Programmed Death 1 “Programmed Cell Death 1” , “Protein PD-1” , “PD-1” , “PD1” , “PDCD1” , “hPD-1” , “CD279” and “hPD-F” are used interchangeably, and include variants, isoforms, species homologs of human PD-1, PD-1 of other species, and analogs having at least one common epitope with PD-1.
  • LAG-3 lymphocyte-activation gene 3
  • CD223 CD223
  • LAG-3 lymphocyte-activation gene 3
  • CD223 CD223
  • cross-reactivity refers to binding of an antigen fragment described herein to the same target molecule in human, monkey, and/or murine (mouse or rat) .
  • cross-reactivity is to be understood as an interspecies reactivity to the same molecule X expressed in different species, but not to a molecule other than X.
  • Cross-species specificity of a monoclonal antibody recognizing e.g. human PD-1, to monkey, and/or to a murine (mouse or rat) PD-1 can be determined, for instance, by FACS analysis.
  • conservative modifications i.e., nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence.
  • conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. Modifications can be introduced into the sequence by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.
  • Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • homolog and “homologous” as used herein are interchangeable and refer to nucleic acid sequences (or its complementary strand) or amino acid sequences that have sequence identity of at least 70%(e.g., at least 70%, 75%, 80%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) to another sequences when optimally aligned.
  • Percent (%) sequence identity with respect to amino acid sequence (or nucleic acid sequence) is defined as the percentage of amino acid (or nucleic acid) residues in a candidate sequence that are identical to the amino acid (or nucleic acid) residues in a reference sequence, after aligning the sequences and, if necessary, introducing gaps, to achieve the maximum number of identical amino acids (or nucleic acids) . Conservative substitution of the amino acid residues may or may not be considered as identical residues. Alignment for purposes of determining percent amino acid (or nucleic acid) sequence identity can be achieved, for example, using publicly available tools such as BLASTN, BLASTp (available on the website of U.S. National Center for Biotechnology Information (NCBI) , see also, Altschul S.F.
  • the term “specific binding” or “specifically binds” as used herein refers to a non-random binding reaction between two molecules, such as for example between an antibody and an antigen.
  • the polypeptide complex and the bispecific polypeptide complex provided herein specifically bind an antigen with a binding affinity (K D ) of ⁇ 10 -6 M (e.g., ⁇ 5 ⁇ 10 -7 M, ⁇ 2 ⁇ 10 -7 M, ⁇ 10 -7 M, ⁇ 5 ⁇ 10 -8 M, ⁇ 2 ⁇ 10 -8 M, ⁇ 10 -8 M, ⁇ 5 ⁇ 10 -9 M, ⁇ 2 ⁇ 10 -9 M, ⁇ 10 -9 M, or ⁇ 10 -10 M) .
  • K D refers to the ratio of the dissociation rate to the association rate (k off/k on) , may be determined using surface plasmon resonance methods for example using instrument such as Biacore.
  • operably link refers to a juxtaposition, with or without a spacer or linker, of two or more biological sequences of interest in such a way that they are in a relationship permitting them to function in an intended manner.
  • polypeptides it is intended to mean that the polypeptide sequences are linked in such a way that permits the linked product to have the intended biological function.
  • an antibody variable region may be operably linked to a constant region so as to provide for a stable product with antigen-binding activity.
  • the term may also be used with respect to polynucleotides.
  • a polynucleotide encoding a polypeptide when operably linked to a regulatory sequence (e.g., promoter, enhancer, silencer sequence, etc. ) , it is intended to mean that the polynucleotide sequences are linked in such a way that permits regulated expression of the polypeptide from the polynucleotide.
  • a regulatory sequence e.g., promoter, enhancer, silencer sequence, etc.
  • mutation or “mutated” with regard to amino acid residue as u sed herein refers to substitution, insertion, or addition of an amino acid residue.
  • a novel bispecific antibody or an antigen binding fragment thereof comprising: a first polypeptide chain comprising, from N-terminus to C-terminus, a first heavy chain variable VH domain of PD-1 antibody operably linked to a first TCR constant region and a second VH domain of LAG-3 antibody, a second polypeptide comprising, from N-terminus to C-terminus, a first VL domain of PD-1 antibody operably linked to a second TCR constant region, a third polypeptide comprising, from N-terminus to C-terminus, a second VL domain of LAG-3 antibody, wherein, the first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one interchain disulphide bond (Figure 13) .
  • the present disclosure provides herein a bispecific polypeptide complex.
  • the term “bispecific” as used herein means that, there are two antigen-binding moieties, each of which is capable of specifically binding to a different antigen.
  • the bispecific polypeptide complex provided herein comprises a first antigen-binding moiety comprising a first heavy chain variable domain operably linked to a first TCR constant region (TCR beta) and a first light chain variable domain operably linked to a second TCR constant region (TCR alpha) , wherein the first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one non-native and stabilizing interchain bond.
  • the bispecific polypeptide complex provided herein further comprises a second antigen-binding moiety comprising a second antigen-binding site but does not contain a sequence derived from a TCR constant region.
  • the polypeptide complexes provided herein with at least one non-native interchain bond can be recombinantly expressed and assembled into the desired conformation, which stabilizes the TCR constant region dimer while providing for good antigen-binding activity of the antibody variable regions.
  • the polypeptide complexes are found to well tolerate routine antibody engineering, for example, modification of glycosylation sites, and removal of some natural sequences.
  • the polypeptide complexes provided herein can be incorporated into a bispecific format which can be readily expressed and assembled with minimal or substantially no mispairing of the antigen-binding sequences due to the presence of the TCR constant regions in the polypeptide complexes. Additional advantages of the polypeptide complexes and constructs provided herein will become more evident in the following disclosure below.
  • the first and/or the second antigen binding moiety is bivalent.
  • bivalent denotes the presence of two binding site respectively, in an antigen-binding molecule. This, in certain embodiments, provides for stronger binding to the antigen or the epitope than a monovalent counterpart.
  • the first valent of binding site and the second valent of binding site are structurally identical (i.e. having the same sequences) .
  • Human TCR alpha chain constant region is known as TRAC, with the N CBI accession number of P01848 (https: //www. uniprot. org/uniprot/P01848) , the sequence of WT TCR alpha domain is: IQNPDPAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKTVLDMRSMDFKSNSAVAWSNKSDFACANAFNNSIIPEDTFFPSPESS (SEQ ID NO: 26) ;
  • the engineered TCR alpha chain constant region in the invention comprises one or more mutated sites selected from the group consisting of N32Q, T47C, N66Q, and N77Q.
  • Human TCR beta chain constant region has two different variants, known as TRBC1 and TRBC2 (IMGT nomenclature) .
  • the sequence of wild type TCR beta domain is DLKNVFPPKVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNG KEVHSGVSTDPQPLKEQPALNDSRYCLSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGR (SEQ ID NO : 27) , with the NCBI accession number of A0A5B9 (https: //www. uniprot. org/uniprot/A0A5B 9) and the engineered TCR beta domain comprises one or more mutated sites selected from the group consisting of K9E, S56C, N69Q, and C74A.
  • the first and the second TCR constant regions of the polypeptide complexes provided herein are capable of forming a dimer co mprising, between the TCR constant regions, at least one non-native interchain bond that is capable of stabilizing the dimer.
  • dimer refers to an associated structure formed by two molecules, such as polypeptides or proteins, via covalent or non-covalent interactions.
  • a homodimer or homodimerization is formed by two identical molecules, and a heterodimer or heterodimerization is formed by two different molecules.
  • the dimer formed by the first and the second TCR constant regions is a heterodimer.
  • an interchain bond is formed between one amino acid residue on one TCR constant region and another amino acid residue on the other TCR constant region.
  • the non-native interchain bond can be any bond or interaction that is capable of associating two TCR constant regions into a dimer.
  • suitable non-native interchain bond include, a disulphide bond, a hydrogen bond, electrostatic interaction, a salt bridge, or hydrophobic-hydrophilic interaction, a knobs-into-holes or the combination thereof.
  • a “disulphide bond” refers to a covalent bond with the structure R-S-S-R’.
  • the amino acid cysteine comprises a thiol group that can form a disulphide bond with a second thiol group, for example from another cysteine residue.
  • the disulphide bond can be formed between the thiol groups of two cysteine residues residing respectively on the two polypeptide chains, thereby forming an interchain bridge or interchain bond.
  • non-native interchain bond refers to an interchain bon d which is not found in a native association of the native counterpart TCR con stant regions.
  • a non-native interchain bond can be formed betwe en a mutated amino acid residue and a native amino acid residue, each residin g on a respective TCR constant region; or alternatively between two mutated a mino acid residues residing respectively on the TCR constant regions.
  • the at least one non-native interchain bond is formed betwee n a first mutated residue comprised in the first TCR constant region and a seco nd mutated residue comprised in the second TCR constant region of the polyp eptide complex.
  • contact interface refers to the particular region (s) on the polypeptides where the polypeptides interact/associate with each ot her.
  • a contact interface comprises one or more amino acid residues that are ca pable of interacting with the corresponding amino acid residue (s) that comes i nto contact or association when interaction occurs.
  • the amino acid residues in a contact interface may or may not be in a consecutive sequence. For exampl e,when the interface is three-dimensional, the amino acid residues within the i nterface may be separated at different positions on the linear sequence.
  • the present disclosure provides isolated nucleic acids or polynucleotides that encode the polypeptide complex, and the bispecific polypeptide complex provided herein.
  • nucleic acid or “polynucleotide” as used herein refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single-or double-stranded form. Unless specifically limited, the term encompasses polynucleotides containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides.
  • a particular polynucleotide sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) , alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated.
  • degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (see Batzer et al., Nucleic Acid Res. 19: 5081 (1991) ; Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985) ; and Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994) ) .
  • nucleic acids or polynucleotides encoding the polypeptide complex and the bispecific polypeptide complex provided herein can be constructed using recombinant techniques.
  • DNA encoding an antigen-binding moiety of a parent antibody (such as CDR or variable region) can be isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody) .
  • DNA encoding a TCR constant region can also be obtained.
  • the polynucleotide sequence encoding the variable domain (VH) and the polynucleotide sequence encoding the first TCR constant region are obtained and operably linked to allow transcription and expression in a host cell to produce the first polypeptide.
  • polynucleotide sequence encoding VL are operably linked to polynucleotide sequence encoding second TCR constant region, so as to allow expression of the second polypeptide in the host cell.
  • encoding polynucleotide sequences for one or more spacers are also operably linked to the other encoding sequences to allow expression of the desired product.
  • the encoding polynucleotide sequences can be further operably linked to one or more regulatory sequences, optionally in an expression vector, such that the expression or production of the first and the second polypeptides is feasible and under proper control.
  • the encoding polynucleotide sequence (s) can be inserted into a vector for further cloning (amplification of the DNA) or for expression, using recombinant techniques known in the art.
  • the polypeptide complex and the bispecific polypeptide complex provided herein may be produced by homologous recombination known in the art.
  • Many vectors are available.
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter (e.g. SV40, CMV, EF-1 ⁇ ) , and a transcription termination sequence.
  • vector refers to a vehicle into which a polynucleotide encoding a protein may be operably inserted so as to bring about the expression of that protein.
  • the construct also includes appropriate regulatory sequences.
  • the polynucleotide molecule can include regulatory sequences located in the 5’-flanking region of the nucleotide sequence encoding the guide RNA and/or the nucleotide sequence encoding a site-directed modifying polypeptide, operably linked to the coding sequences in a manner capable of expressing the desired transcript/gene in a host cell.
  • a vector may be used to transform, transduce, or transfect a host cell so as to bring about expression of the genetic element it carries within the host cell.
  • vectors include plasmids, phagemids, cosmids, artificial chromosomes such as yeast artificial chromosome (YAC) , bacterial artificial chromosome (BAC) , or P1-derived artificial chromosome (PAC) , bacteriophages such as lambda phage or M13 phage, and animal viruses.
  • a vector may contain a variety of elements for controlling expression, including promoter sequences, transcription initiation sequences, enhancer sequences, selectable elements, and reporter genes. In addition, the vector may contain an origin of replication.
  • a vector may also include materials to aid in its entry into the cell, including but not limited to a viral particle, a liposome, or a protein coating.
  • the vector system includes mammalian, bacterial, yeast systems, etc., and comprises plasmids such as, but not limited to, pALTER, pBAD, pcDNA, pCal, pL, pET, pGEMEX, pGEX, pCI, pCMV, pEGFP, pEGFT, pSV2, pFUSE, pVITRO, pVIVO, pMAL, pMONO, pSELECT, pUNO, pDUO, Psg5L, pBABE, pWPXL, pBI, p15TV-L, pPro18, pTD, pRS420, pLexA, pACT2.2 etc., and other laboratorial and commercially available vectors.
  • Suitable vectors may include, plasmid, or viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) .
  • Vectors comprising the polynucleotide sequence (s) provided herein can be introduced to a host cell for cloning or gene expression.
  • host cell refers to a cell into which an exogenous polynucleotide and/or a vector has been introduced.
  • Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above.
  • Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas such as P. aeruginosa, and Streptomyces.
  • Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella,
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the vectors encoding the polypeptide complex and the bispecific polypeptide complex.
  • Saccharomyces cerevisiae or common baker′syeast, is the most commonly used among lower eukaryotic host microorganisms.
  • a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12, 424) , K. bulgaricus (ATCC 16, 045) , K.
  • wickeramii ATCC 24, 178) , K. waltii (ATCC 56, 500) , K. drosophilarum (ATCC 36, 906) , K. thermotolerans, and K. marxianus; yarrowia (EP 402, 226) ; Pichia pastoris (EP 183, 070) ; Candida; Trichoderma reesia (EP 244, 234) ; Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
  • Suitable host cells for the expression of glycosylated polypeptide complex, the bispecific polypeptide complex provided herein are derived from multicellular organisms.
  • invertebrate cells include plant and insect cells.
  • Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar) , Aedes aegypti (mosquito) , Aedes albopictus (mosquito) , Drosophila melanogaster (fruiffly) , and Bombyx mori have been identified.
  • a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
  • vertebrate cells have been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure.
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651) ; human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36: 59 (1977) ) , such as Expi293; baby hamster kidney cells (BHK, ATCC CCL 10) ; Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci.
  • mice sertoli cells TM4, Mather, Biol. Reprod. 23: 243-251 (1980) ) ; monkey kidney cells (CV1 ATCC CCL 70) ; African green monkey kidney cells (VERO-76, ATCC CRL-1587) ; human cervical carcinoma cells (HELA, ATCC CCL 2) ; canine kidney cells (MDCK, ATCC CCL 34) ; buffalo rat liver cells (BRL 3A, ATCC CRL 1442) ; human lung cells (W138, ATCC CCL 75) ; human liver cells (Hep G2, HB 8065) ; mouse mammary tumor (MMT 060562, ATCC CCL51) ; TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383: 44-68 (1982) ) ; MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2) .
  • MRC 5 cells FS4 cells
  • a human hepatoma line Hep G
  • Host cells are transformed with the above-described expression or cloning vectors can be cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the cloning vectors.
  • the host cells transformed with the expression vector may be cultured in a variety of media.
  • Commercially available media such as Ham′s F10 (Sigma) , Minimal Essential Medium (MEM) , (Sigma) , RPMI-1640 (Sigma) , and Dulbecco′sModified Eagle′sMedium (DMEM) , Sigma) are suitable for culturing the host cells.
  • MEM Minimal Essential Medium
  • RPMI-1640 Sigma
  • DMEM Dulbecco′sModified Eagle′sMedium
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor) , salts (such as sodium chloride, calcium, magnesium, and phosphate) , buffers (such as HEPES) , nucleotides (such as adenosine and thymidine) , antibiotics (such as GENTAMYCIN TM drug) , trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range) , and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the polypeptide complex or the bispecific polype ptide complex may be linked to a conjugate indirectly, or indirectly for exampl e through another conjugate or through a linker.
  • the polypeptide c omplex or the bispecific polypeptide complex having a reactive residue such as cysteine may be linked to a thiol-reactive agent in which the reactive group is, for example, a maleimide, an iodoacetamide, a pyridyl disulphide, or other thio l-reactive conjugation partner (Haugland, 2003, Molecular Probes Handbook o f Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; Brinkle y, 1992, Bioconjugate Chem.
  • polypeptide complex or the bispecific polypepti de complex may be conjugated to biotin, then indirectly conjugated to a second conjugate that is conjugated to avidin.
  • polypepti de complex or the bispecific polypeptide complex may be linked to a linker wh ich further links to the conjugate.
  • linkers include bifunctional cou pling agents such as N-succinimidyl-3- (2-pyridyldithio) propionate (SPDP) , s uccinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) , im inothiolane (IT) , bifunctional derivatives of imidoesters (such as dimethyl adi pimidate HCl) , active esters (such as disuccinimidyl suherate) , aldehydes (su ch as glutaraldehyde) , bis-azido compounds (such as bis (p-azidobenzoyl) hex anediamine) , bis-diazonium derivatives (such as bis- (p-diazoniumbenzoyl) -et hylenediamine) , diisocyanates (such as toluene 2, 6-diis
  • Particularl y preferred coupling agents include N-succinimidyl-3- (2-pyridyldithio) propio nate (SPDP) (Carlsson et al., Biochem. J. 173: 723-737 (1978) ) and N-succini midyl-4- (2-pyridylthio) pentanoate (SPP) to provide for a disulphide linkage.
  • SPDP N-succinimidyl-3- (2-pyridyldithio) propio nate
  • SPP N-succini midyl-4- (2-pyridylthio) pentanoate
  • the conjugate can be a detectable label, a pharmacokinetic modifying mo iety, a purification moiety, or a cytotoxic moiety.
  • detectable label may include a fluorescent labels (e.g. fluorescein, rhodamine, dansyl, phycoery thrin, or Texas Red) , enzyme-substrate labels (e.g. horseradish peroxidase, alk aline phosphatase, luceriferases, glucoamylase, lysozyme, saccharide oxidases or ⁇ -D-galactosidase) , radioisotopes (e.g.
  • the conjugate can be a pharmacoki netic modifying moiety such as PEG which helps increase half-life of the antib ody.
  • the conjugate can be a purif ication moiety such as a magnetic bead.
  • a “cytotoxic moiety” can be any agent that is detrimental to cells or that can damage or kill cells.
  • cytoto xic moiety examples include, without limitation, taxol, cytochalasin B, gramicidin D, eth idium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblas tine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxan trone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, pr ocaine, tetracaine, lidocaine, propranolol, puromycin and analogs thereof, anti metabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5 -fluorouracil decarbazine) , alkylating agents (e.g., mechlorethamine, thioepa c hlorambuci
  • the present disclosure also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the polypeptide complex or the bispecific polypeptide complex provided herein and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable indicates that the designated carrier, vehicle, diluent, excipient (s) , and/or salt is generally chemically and/or physically compatible with the other ingredients comprising the formulation, and physiologically compatible with the recipient thereof.
  • a “pharmaceutically acceptable carrier” refers to an ingredient in a pharmaceutical formulation, other than an active ingredient, which is bioactivity acceptable and nontoxic to a subject.
  • Pharmaceutical acceptable carriers for use in the pharmaceutical compositions disclosed herein may include, for example, pharmaceutically acceptable liquid, gel, or solid carriers, aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, anesthetics, suspending/dispending agents, sequestering or chelating agents, diluents, adjuvants, excipients, or non-toxic auxiliary substances, other components known in the art, or various combinations thereof.
  • Therapeutic methods comprising: administering a therapeutically effective amount of the polypeptide complex or the bispecific polypeptide complex provided herein to a subject in need thereof, thereby treating or preventing a condition or a disorder.
  • the subject has been identified as having a disorder or condition likely to respond to the polypeptide complex or the bispecific polypeptide complex provided herein.
  • the term “subject” includes any human or nonhuman animal.
  • nonhuman animal includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. Except when noted, the terms “patient” or “subject” are used interchangeably.
  • treatment and “therapeutic method” refer to both therapeutic treatment and prophylactic/preventative measures. Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder.
  • the conditions and disorders include tumors and cancers, for example, non-small cell lung cancer, small cell lung cancer, renal c ell cancer, colorectal cancer, ovarian cancer, breast cancer, pancreatic cancer, g astric carcinoma, bladder cancer, esophageal cancer, mesothelioma, melanoma, head and neck cancer, thyroid cancer, sarcoma, prostate cancer, glioblastoma, cervical cancer, thymic carcinoma, leukemia, lymphomas, myelomas, mycoses fungoids, merkel cell cancer, and other hematologic malignancies, such as clas sical Hodgkin lymphoma (CHL) , primary mediastinal large B-cell lymphoma, T-cell/histiocyte-rich B-cell lymphoma, EBV-positive and -negative PTLD, an d EBV-associated diffuse large B-cell lymphoma (DLBCL) , plasmablastic lym
  • CHL
  • Nucleic acids encoding human PD-1, human and cynomolgus LAG-3 ECD were synthesized by Sangon Biotech.
  • PD-1 or LAG-3 gene fragments were amplified from the synthesized nucleic acid and inserted into the expression vector pcDNA3.3 (ThermoFisher) .
  • the inserted PD-1 or LAG-3 gene fragment was further confirmed by DNA sequencing.
  • Fusion proteins containing PD-1 or LAG-3 ECD with various tags, including human Fc, mouse Fc, were obtained by transfection of PD-1 or LAG-3 gene into 293F cells (ThermoFisher) .
  • the cells were cultured in FreeStyle 293 Expression Medium at 37 °C, 5%CO 2 .
  • fusion proteins were purified by protein A and/or SEC column.
  • An untagged LAG-3 ECD protein was generated by cleavage of ECD-hFc fusion protein with a cut site using Factor Xa protease. Purified proteins were used for screening and characterization.
  • Mouse Fc-tagged human PD-L1 ECD, human CTLA-4 ECD and CD28 ECD were generated as above.
  • LAG-3-BMK1 and PD-1-BMK1 Gene sequences of anti-human PD-1 or LAG-3 benchmark antibodies (LAG-3-BMK1 and PD-1-BMK1) were synthesized based on the information disclosed in patent applications US20110150892A1 (LAG-3-BMK1 was referred to as “25F7” ) and WO2006121168 (PD-1-BMK1 was referred to as “5C4” ) , respectively.
  • Sequences of anti-human PD-1 ⁇ LAG-3 benchmark antibodies BsAb-BMK1, BsAb-BMK2 and BsAb-BMK3 were synthesized based on the information disclosed in patent applications WO2015200119A8 (BsAb-BMK1 was referred to as “SEQ25 &SEQ27” ) , WO2017087589A2 (BsAb-BMK2 was referred to as “SEQ110” ) and WO2015200119A8 (BsAb-BMK3 was referred to as “SEQ 5 and 4” ) , respectively.
  • the synthesized gene sequences were incorporated into plasmids pcDNA3.3.
  • the cells transfected with the plasmids were cultured for 5 days and supernatant was collected for protein purification using Protein A column.
  • the obtained benchmark antibodies were analyzed by SDS-PAGE and SEC, and then stored at -80°C.
  • Human, cynomolgus PD-1 or LAG-3 transfectant cell lines were generated. Briefly, CHO-S or 293F cells were transfected with pcDNA3.3 expression vector containing full-length of human, cynomolgus PD-1 or LAG-3 using Lipofectamine transfection kit according to manufacturer’s protocol, respectively. At 48-72 hours post transfection, the transfected cells were cultured in medium containing blasticidin for selection and tested for target expression. Human PD-1-expressing monoclonal cell line and cynomolgus LAG-3-expressing monoclonal cell line were obtained by limiting dilution.
  • Jurkat cell line were transfected with plasmids containing human full length PD-1/NFAT reporter using Nucleofactor (Lonza) . At 72 hours post transfection, the transfected cells were cultured in medium containing hygromycin for selection and tested for target expression. Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene were obtained after two months.
  • DNA sequence encoding VH and VL of anti-PD-1 parental antibody was linked to the N-terminus of anti-LAG-3 parental antibody.
  • the CH1 and CL domains of the anti-PD-1 parental Fab were replaced by TCR beta and TCR alpha constant domains, respectively.
  • DNA sequences encoding the chimeric heavy chain fragment (anti-PD-1 VH and TCR beta) were linked to the N-terminus of the heavy chain of anti-LAG-3 parental antibody via a (G4S) x2 linker.
  • the genes coding the anti-PD-1 chimeric light chain (VL and TCR alpha) , the regular anti-LAG-3 light chain, or the above mentioned bispecific heavy chain were individually cloned into a modified pcDNA3.3 expression vector.
  • the plasmids of bispecific antibody were transfected into Expi293 cells.
  • the cells were cultured for five days and the supernatant was collected for protein purification using Protein A column (GE Healthcare, 175438) .
  • the obtained antibodies were analyzed by SDS-PAGE and HPLC-SEC, and then stored at -80 °C.
  • Human PD-1 expressing cells or transiently transfected human LAG-3 expressing 293F cells were incubated with various concentrations of PD-1 ⁇ LAG-3 antibodies, respectively.
  • PE-labeled goat anti-human IgG antibody was used to detect the binding of PD-1 ⁇ LAG-3 antibodies onto the cells.
  • MFI of the cells was measured by flow cytometry and analyzed by FlowJo (version 7.6.1) .
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibody for binding to cell surface human PD-1 is comparable to the benchmarks.
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibody for binding to cell surface human LAG-3 is comparable to the benchmarks.
  • cynomolgus PD-1 expressing 293F cells were incubated with various concentrations of PD-1 ⁇ LAG-3 antibodies, respectively.
  • PE-labeled goat anti-human IgG antibody was used to detect the binding of PD-1 ⁇ LAG-3 antibodies onto the cells.
  • MFI of the cells was measured by flow cytometry and analyzed by FlowJo.
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibody for binding to cell surface cynomolgus PD-1 is comparable to the benchmarks.
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibody for binding to cell surface cynomolgus LAG-3 is better than LAG-3-BMK1.
  • mice PD-1 binding plates were coated with mouse Fc tagged PD-1 overnight at 4 °C. After blocking and washing, various concentrations of bispecific antibodies were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-human IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • lead PD-1 ⁇ LAG-3 bispecific antibody does not bind to mouse PD-1 or LAG-3.
  • Cross-reactivity to human CD4, CTLA-4 or CD28 was measured by ELISA. Plates were coated with human CD4, CTLA-4 or CD28 at 1 ⁇ g/mL overnight at 4 °C. After blocking and washing, various concentrations of PD-1 ⁇ LAG-3 antibodies were added to the plates and incubated at room temperature for 1 h. The plates were then washed and subsequently incubated with corresponding secondary antibody for 60 min. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl.
  • Results in Figure 6A, 6B and 6C indicate that PD-1 ⁇ LAG-3 bispecific antibodies did not bind to human CTLA-4, CD28 or CD4 protein.
  • Binding affinity of the bispecific antibodies to the antigen was determined by SPR assay using Biacore 8K.
  • PD-1xLAG-3 antibodies were captured on an anti-human IgG Fc antibody immobilized CM5 sensor chip (GE) .
  • His-tagged human PD-1 protein (MW: 40KD) and cynomolgus PD-1 (MW: 40KD) at different concentrations were injected over the sensor chip at a flow rate of 30 ⁇ L/min for an association phase of 120 s, followed by 800 s dissociation.
  • PD-1xLAG-3 antibodies were immobilized on a CM5 sensor chip.
  • Human LAG-3 without tag at different concentrations was injected over the sensor chip at a flow rate of 30 ⁇ L/min for an association phase of 180 s, followed by 3600 s dissociation using single-cycle kinetics method.
  • the chip was regenerated with 10 mM glycine (pH 1.5) .
  • the sensorgrams of blank surface and buffer channel were subtracted from the test sensorgrams.
  • the experimental data was fitted by 1: 1 model using Langmiur analysis.
  • Plates were coated with mouse Fc-tagged human PD-1 at 1 ⁇ g/mL overnight at 4 °C. After blocking and washing, various concentrations of PD-1 ⁇ LAG-3 antibodies were added to the plates and incubated at room temperature for 1 hour after washing. The plates were then washed and subsequently incubated with His-tagged LAG-3 protein for 1 hour. After washing, HRP-labeled anti-His antibody was added to the plate and incubated at room temperature for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibodies for binding to LAG-3 protein is comparable to the BsAb-BMK3 and better than BsAb-BMK1 and BsAb-BMK2.
  • Antibodies were serially diluted in 1%BSA-PBS and mixed with mouse Fc-tagged PD-L1 protein at 4°C. The mixture was transferred into the 96-well plates seeded with PD-1 expressing CHO-S cells. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of PD-L1 protein to PD-1 expressing cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibodies for blocking the binding of PD-1 to PD-L1-expressed cells is comparable to the benchmarks.
  • Antibodies were serially diluted in complete medium and incubated with mouse Fc-tagged LAG-3 protein at 4°C. The mixture was transferred into the 96-well plates seeded with Raji cells which express MHC-II on the surface. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of LAG-3 protein to Raji cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
  • the EC 50 of lead PD-1 ⁇ LAG-3 bispecific antibody for blocking the binding of LAG-3 to MHC-II-expressed Raji cells is better than BsAb-BMK1 and BsAb-BMK2 and comparable to other benchmarks.
  • Full human LAG-3 plasmid was transiently transfected into Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene. After 48 hours, the cells were seeded in 96-well plates along with Raji cells in the presence of SEE (Staphylococcal enterotoxin E) . Testing antibodies were added to the cells. The plates were incubated for overnight at 37°C, 5%CO 2 . After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
  • SEE Staphylococcal enterotoxin E
  • antibodies enhanced NFAT pathway of PD-1 and LAG-3 expressing Jurkat in reporter gene assay.
  • the fold is higher than combination of PD-1-BMK1 and LAG-3-BMK1 as well as other benchmark antibodies.
  • PBMCs Human peripheral blood mononuclear cells
  • Monocytes were isolated using human monocyte enrichment kit according to the manufacturer’s instructions.
  • Cells were cultured in medium containing GM-CSF and IL-4 for 5 to 7 days to generate dendritic cells (DC) .
  • Human CD4+ T cells were isolated using human CD4+ T cell enrichment kit according to the manufacturer’s protocol.
  • Purified CD4+ T cells were co-cultured with allogeneic immature DCs (iDCs) in the presence of various concentrations of PD-1 ⁇ LAG-3 antibodies in 96-well plates. The plates were incubated at 37°C, 5%CO 2 .
  • lead antibodies enhanced IL-2 and IFN- ⁇ secretion in mixed lymphocyte reaction.
  • Tm of antibodies was investigated using QuantStudioTM 7 Flex Real-Time PCR system (Applied Biosystems) .
  • 19 ⁇ L of antibody solution was mixed with 1 ⁇ L of 62.5 ⁇ SYPRO Orange solution (Invitrogen) and transferred to a 96 well plate.
  • the plate was heated from 26°C to 95°C at a rate of 0.9 °C/min, and the resulting fluorescence data was collected.
  • the negative derivatives of the fluorescence changes with respect to different temperatures were calculated, and the maximal value was defined as melting temperature Tm. If a protein has multiple unfolding transitions, the first two Tm were reported, named as Tm1 and Tm2. Data collection and Tm calculation were conducted automatically by the operation software.
  • Human PD-1/LAG-3 knock-in mouse (Biocytogen) and B16F10 tumor model were used to evaluate the ability of PD-1 ⁇ LAG-3 antibody to inhibit the growth of tumor cells in vivo.
  • mice were intraperitoneally treated with PD-1 mAb (PD-1-BMK1) alone (10 mg/kg) , LAG-3 mAb (LAG-3-BMK1) alone (10 mg/kg) , PD-1 ⁇ LAG-3 antibody U6T1.
  • PD-1 mAb PD-1-BMK1 alone
  • LAG-3 mAb LAG-3-BMK1 alone
  • SP (13.1 mg/kg) or combination of PD-1-BMK1 (10 mg/kg) and LAG-3-BMK1 (10 mg/kg) .
  • Human IgG4 isotype control antibody (10 mg/kg) was given as negative control.
  • Tumor volume and animal weight were measured for two weeks post injection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are bispecific antibodies comprising a first polypeptide comprising, from N-terminus to C-terminus, a first VH domain of PD-1 antibody operably linked to a first TCR constant region and a second VH domain of LAG-3 antibody, a second polypeptide comprising, from N-terminus to C-terminus, a first VL domain of PD-1 antibody operably linked to a second TCR constant region, a third polypeptide comprising, from N-terminus to C-terminus, a second VL domain of LAG-3 antibody. Further provided are amino acid sequences of the antibodies, cloning or expression vectors, host cells, methods for expressing or isolating the antibodies, therapeutic compositions comprising the antibodies and methods for treating cancers and other diseases with the bispecific antibodies.

Description

Bispecific antibodies against PD-1 and LAG-3 Technical Field
The present invention relates to bispecific antibodies. Moreover, the invention provides a polynucleotide encoding the antibodies, a vector comprising said polynucleotide, a host cell, a process for the production of the antibodies and immunotherapy in the treatment of cancer, infections or other human diseases using the bispecific antibodies.
Background of the Invention
Over the last few years, immunotherapy has evolved into a very promising new frontier for fighting some types of cancers. PD-1, one of the immune-checkpoint proteins, is an inhibitory member of CD28 family expressed on activated CD4 + T cells and CD8 + T cells as well as on B cell. PD-1 plays a major role in down-regulating the immune system.
PD-1 is a type I transmembrane protein and the structure consists of an immunoglobulin variable-like extracellular domain and a cytoplasmic domain containing an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) .
PD-1 has two known ligands, PD-L1 and PD-L2, which are cell surface expressed members of the B7 family. Upon ligation with its physiological ligand, PD-1 suppresses T-cell activation by recruiting SHP-2, which dephosphorylates and inactivates Zap70, a major integrator of T-cell receptor (TCR) -mediated signaling. As a result, PD-1 inhibits T cell proliferation and T cell functions such as cytokine production and cytotoxic activity.
Monoclonal antibodies targeting PD-1 can block PD-1/PD-L1 binding and boost the immune response against cancer cells. These drugs have shown a great deal of promise in treating certain cancers. Multiple approved therapeutic antibodies targeting PD-1 have been developed by several pharmaceutical companies, including Pembrolizumab (Keytruda) , Nivolumab  (Opdivo) , Cemiplimab (Libtayo) . These drugs have been shown to be effective in treating various types of cancer, including melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, and Hodgkin lymphoma. They are also being studied for use against many other types of cancer.
Lymphocyte-activation gene 3, also known as LAG-3, is a type I transmembrane protein that is a member of the immune-globulin superfamily (IgSF) . LAG-3 is a cell surface molecule expressed on activated T cells, NK cells, B cells and plasmacytoid dendritic cells, but not on resting T cells. LAG-3 shares approximately 20%amino acid sequence homology with CD4, but binds to MHC class II with higher affinity, providing negative regulation of T cell receptor signaling.
Blockade of LAG-3 in vitro augments T cell proliferation and cytokine production, and LAG-3-deficient mice have a defect in the downregulation of T cell responses induced by the superantigen staphylococcal enterotoxin B, by peptides or by Sendai virus infection. LAG-3 is expressed on both activated natural Treg (nTreg) and induced CD4 +FoxP3 + Treg (iTreg) cells, where expression levels are higher than that observed on activated effector CD4 + T cells. Blockade of LAG-3 on Treg cells abrogates Treg cell suppressor function whereas ectopic expression of LAG-3 in non-Treg CD4 + T cells confers suppressive activity. On the basis of the immunomodulatory role of LAG-3 on T cell function in chronic infection and cancer, the predicted mechanism of action for LAG-3-specific monoclonal antibodies is to inhibit the negative regulation of tumor-specific effector T cells. Furthermore, dual blockade of the PD-1 pathway and LAG-3 has been shown in mice and human to be more effective for anti-tumor immunity than blocking either molecule alone.
Co-expression of LAG-3 and PD-1 was found on antigen-specific CD8 +T cells, and co-blockade of both lead to improved proliferation and cytokine production. Anti-LAG-3 in combination with anti-PD-1 therapy has entered  clinical trials for various types of solid tumors.
Summary of the Invention
The present invention provides isolated antibodies, in particular bispecific antibodies.
In one aspect, the present invention provides a bispecific antibody or an antigen binding fragment thereof, comprising:
a first polypeptide chain comprising, from N-terminus to C-terminus, a first heavy chain variable (VH) domain of a PD-1 antibody operably linked to a first T cell receptor (TCR) constant region and a second VH domain of LAG-3 antibody,
a second polypeptide chain comprising, from N-terminus to C-terminus, a first light chain variable (VL) domain of PD-1 antibody operably linked to a second TCR constant region,
a third polypeptide chain comprising, from N-terminus to C-terminus, a second VL domain of LAG-3 antibody operably linked to an antibody light chain constant (CL) domain,
wherein, the first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one non-native interchain disulphide bond,
wherein, the second VH domain of LAG-3 antibody comprises H-CDR1, H-CDR2 and H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 1, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 2, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 3, and conservative modifications thereof,
wherein, the first VH domain of PD-1 antibody comprises H-CDR1, H-CDR2, H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 4, and conservative modifications thereof; the H-CDR2  comprises a sequence as depicted in SEQ ID NO: 5, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 6, and conservative modifications thereof.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the antibody or antigen binding fragment thereof provides bivalent binding sites specific for PD-1 or LAG-3.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the antibody or antigen binding fragment thereof comprises two of said first polypeptide chains, two of said second polypeptide chains and two of said third polypeptide chains.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, the second VL domain of LAG-3 antibody comprises L-CDR1, L-CDR2 and L-CDR3; wherein the L-CDR3 comprises a sequence as depicted in SEQ ID NO: 7, and conservative modifications thereof; the L-CDR2 comprises a sequence as depicted in SEQ ID NO: 8, and conservative modifications thereof; the L-CDR1 comprises a sequence as depicted in SEQ ID NO: 9, and conservative modifications thereof.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, the second VL domain of LAG-3 antibody comprises L-CDR1, L-CDR2 and L-CDR3; wherein the L-CDR3 comprises a sequence as depicted in SEQ ID NO: 10, and conservative modifications thereof; the L-CDR2 comprises a sequence as depicted in SEQ ID NO: 11, and conservative modifications thereof; the L-CDR1 comprises a sequence as depicted in SEQ ID NO: 12, and conservative modifications thereof.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VH domain of LAG-3 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 13.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VH domain of PD-1 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 14.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the second VL domain of LAG-3 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 15.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein the first VL domain of PD-1 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 16.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein second VH domain of LAG-3 antibody comprises a sequence of SEQ ID NO: 13.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein first VH domain of PD-1 antibody comprises a sequence of SEQ ID NO: 14.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein second VL domain of LAG-3 antibody comprises a sequence of SEQ ID NO: 15.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein first VL domain of PD-1 antibody comprises a sequence of SEQ ID NO: 16.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, wherein said first TCR constant region comprises an engineered TCR beta constant region, the engineered TCR beta  constant region comprises one or more mutated residues that substitute for wild-type amino acid residues in TCR beta constant region. The mutated residue in TCR beta constant region is selected from the group consisting of K9E, S56C, N69Q and C74A. The second TCR constant region comprises an engineered TCR alpha constant region, the engineered TCR alpha constant region comprises one or more mutated residues that substitute for wild-type amino acid residues in TCR alpha constant region. The mutated residue in TCR alpha constant region is selected from the group consisting of N32Q, T47C, N66Q, and N77Q.
In one embodiment, said engineered TCR beta constant region comprises a sequence of SEQ ID NO: 21, said engineered TCR alpha constant region comprises a sequence of SEQ ID NO: 22,
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, the first TCR constant region and the second VH domain are linked by a peptide sequence of SEQ ID NO: 23.
In one embodiment, the present invention provides an antibody or an antigen binding fragment thereof, the first polypeptide further comprises an antibody heavy chain constant CH1 domain
In one embodiment, the first polypeptide further comprises IgG Fc fragment, wherein the IgG Fc fragment is operably linked to the CH1 domain
In one embodiment, the first polypeptide comprises a sequence of SEQ ID NO: 17 or 20.
In one embodiment, the second polypeptide comprises a sequence of SEQ ID NO: 18.
In one embodiment, the third polypeptide comprises a sequence of SEQ ID NO: 19.
The aforesaid antibody or an antigen binding fragment thereof, wherein  the antibody or the antigen binding-fragment
a) binds to human PD-1 with a K D of 9.88E-10 or less; and
b) binds to human LAG-3 with a KD of 1.70E-11-10 or less.
The sequence of said antibody is shown in Table 1 and Sequence Listing.
Table 1 Deduced amino acid sequences of the antibodies
Figure PCTCN2020102152-appb-000001
Figure PCTCN2020102152-appb-000002
Figure PCTCN2020102152-appb-000003
Figure PCTCN2020102152-appb-000004
The CDR sequences of said antibodies are shown in Table 2 and Sequence Listing.
Table 2 The CDR sequences of the antibodies
Figure PCTCN2020102152-appb-000005
The antibody of the invention can be a humanized antibody, or a fully human antibody.
In a further aspect, the invention provides a nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
The invention provides a cloning or expression vector comprising the nucleic acid molecule encoding the antibody, or antigen binding fragment thereof.
The invention also provides a host cell comprising one or more cloning or expression vectors.
In yet another aspect, the invention provides a process, comprising culturing the host cell of the invention and isolating the antibody.
In a further aspect, the invention provides pharmaceutical composition comprising the antibody, or the antigen binding fragment of said antibody in the invention, and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
The invention provides an immunoconjugate comprising said antibody, or antigen-binding fragment thereof in this invention, linked to a therapeutic agent.
Wherein, the invention provides a pharmaceutical composition comprising said immunoconjugate and one or more of a pharmaceutically acceptable excipient, a diluent or a carrier.
The invention also provides a method of modulating an immune response in a subject comprising administering to the subject the antibody, or antigen binding fragment of any one of said antibodies in this invention.
The invention also provides the use of said antibody or the antigen binding fragment thereof in the manufacture of a medicament for the treatment or prophylaxis of an immune disorder or cancer.
The invention also provides a method of inhibiting growth of tumor cells in a subject, comprising administering to the subject a therapeutically effective amount of said antibody, or said antigen-binding fragment to inhibit growth of the tumor cells.
Wherein, the invention provides the method, wherein the tumor cells are of a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
The features and advantages of this invention
A bispecific antibody against both PD-1 and LAG-3 pathways may provide several benefits in cancer therapy. Compared with anti-PD-1 therapy, the bispecific antibody may increase the response rate on PD-1 and LAG-3 double positive cancers.
Brief Description of the Drawings
Figure 1 shows PD-1×LAG-3 bispecific antibodies to cell surface human PD-1.
Figure 2 PD-1×LAG-3 bispecific antibodies bind to cell surface human LAG-3.
Figure 3 PD-1×LAG-3 bispecific antibodies bind to cell surface cynomolgus PD-1.
Figure 4 PD-1×LAG-3 bispecific antibodies bind to cell surface cynomolgus LAG-3.
Figure 5 shows binding of PD-1×LAG-3 bispecific antibodies to mouse PD-1 and LAG-3. Figure 5A shows that PD-1×LAG-3 bispecific antibodies do not bind to mouse PD-1, Figure 5B PD-1×LAG-3 bispecific antibodies do not bind to mouse LAG-3.
Figure 6 shows binding of PD-1×LAG-3 bispecific antibodies to human CD4, CTLA-4 and CD28 protein. Figure 6A shows that PD-1×LAG-3 bispecific antibodies do not bind to human CTLA-4 protein, Figure 6B shows that PD-1×LAG-3 bispecific antibodies do not bind to human CD28 protein, Figure 6C PD-1×LAG-3 bispecific antibodies do not bind to human CD4 protein.
Figure 7 shows PD-1×LAG-3 bispecific antibodies bind to human PD-1 and LAG-3 protein.
Figure 8 shows PD-1×LAG-3 bispecific antibodies block the binding of PD-1 to PD-L1 expressing cells.
Figure 9 shows PD-1×LAG-3 bispecific antibodies block the binding of LAG-3 to MHC-II.
Figure 10 shows PD-1×LAG-3 bispecific antibodies enhance NFAT pathways in PD-1 and LAG-3 expressing Jurkat.
Figure 11 shows effects of PD-1×LAG-3 bispecific antibodies on human allogeneic mixed lymphocyte reaction (MLR) . Figure 11A shows that PD-1×LAG-3 bispecific antibodies enhance IL-2 production in MLR assay, Figure 11B shows that PD-1×LAG-3 bispecific antibodies enhance IFN-γproduction in MLR assay.
Figure 12 shows tumor volume and survival curve of treated mice. Figure 12A shows that PD-1×LAG-3 bispecific antibodies inhibit the growth of B16F10 tumor in transgenic mouse, Figure 12B shows weight of treated mouse.
Figure 13 shows a schematic representation of the PD-1×LAG-3 bispecific antibodies format. The antibody comprises two sets of tri-polypeptide chains comprising: i) VL (PD-1) -engineered TCR alpha constant region; 2) VL (LAG-3) -CL; and 3) VH (PD-1) -engineered TCR beta constant region-VH (LAG-3) -CH1-hinge-CH2-CH3.
Detailed description
The following description of the disclosure is merely intended to illustrate various embodiments of the disclosure. As such, the specific modifications discussed are not to be construed as limitations on the scope of the disclosure. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the disclosure, and it is understood that such equivalent embodiments are to be included herein. All references cited herein, including publications, patents and patent applications are incorporated herein by reference in their entirety.
The articles “a” , “an” , and “the” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “a polypeptide complex” means one polypeptide complex or more than one polypeptide complex.
As used herein, the term “about” or “approximately” refers to a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1%to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length. In particular embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 15%, 10%, 5%, or 1%.
Throughout this disclosure, unless the context requires otherwise, the words “comprise” , “comprises” and “comprising” will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements. By “consisting of” is meant including, and limited to, whatever follows the phrase “consisting of” . Thus, the phrase “consisting of” indicates that the listed elements are required or mandatory, and that no other elements may be present. By “consisting essentially of” is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to  the activity or action specified in the disclosure for the listed elements. Thus, the phrase “consisting essentially of” indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present depending upon whether or not they affect the activity or action of the listed elements.
The terms “polypeptide” , “peptide” , and “protein” are used interchangeably herein to refer to a polymer of amino acid residues, or an assembly of multiple polymers of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer. The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, gamma-carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an alpha-carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. An alpha-carbon refers to the first carbon atom that attaches to a functional group, such as a carbonyl. A beta-carbon refers to the second carbon atom linked to the alpha-carbon, and the system continues naming the carbons in alphabetical order with Greek letters. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid. The term “protein” typically refers to large polypeptides. The term  “peptide” typically refers to short polypeptides. Polypeptide sequences are usually described as the left-hand end of a polypeptide sequence is the amino-terminus (N-terminus) ; the right-hand end of a polypeptide sequence is the carboxyl-terminus (C-terminus) . “Polypeptide complex” as used herein refers to a complex comprising one or more polypeptides that are associated to perform certain functions. In certain embodiments, the polypeptides are immune-related.
The term “antibody” as referred to herein includes whole antibodies and any antigen-binding fragment (i.e., "antigen-binding portion" ) or single chains thereof. An "antibody" refers to a protein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulphide bonds, or an antigen-binding portion thereof. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR) , interspersed with regions that are more conserved, termed framework regions (FR) . Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The CDRs in heavy chain are abbreviated as H-CDRs, for example H-CDR1, H-CDR2, H-CDR3, and the CDRs in light chain are abbreviated as L-CDRs, for example L-CDR1, L-CDR2, L-CDR3.
The term "antibody" as used in this disclosure, refers to an immunoglobulin or a fragment or a derivative thereof, and encompasses any polypeptide comprising an antigen-binding site, regardless whether it is  produced in vitro or in vivo. The term includes, but is not limited to, polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and grafted antibodies. The term "antibody" also includes antibody fragments such as scFv, dAb, bispecific antibodies comprising a first VH domain and a second VH domain, and other antibody fragments that retain antigen-binding function, i.e., the ability to bind PD-1 and LAG-3 specifically. Typically, such fragments would comprise an antigen-binding fragment.
An antigen-binding fragment typically comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH) , however, it does not necessarily have to comprise both. For example, a so-called Fd antibody fragment consists only of a VH domain and CH1 domain, but still retains some antigen-binding function of the intact antibody.
“Fc” with regard to an antibody refers to that portion of the antibody consisting of the second (CH2) and third (CH3) constant regions of a first heavy chain bound to the second and third constant regions of a second heavy chain via disulphide bonding. The Fc portion of the antibody is responsible for various effector functions such as ADCC, and CDC, but does not function in antigen binding.
“CH2 domain” as used herein refers to includes the portion of a heavy chain molecule that extends, e.g., from about amino acid 244 to amino acid 360 of an IgG antibody using conventional numbering schemes (amino acids 244 to 360, Kabat numbering system; and amino acids 231-340, EU numbering system; see Kabat, E., et al., U.S. Department of Health and Human Services, (1983) ) .
The “CH3 domain” extends from the CH2 domain to the C-terminus of the IgG molecule and comprises approximately 108 amino acids. Certain immunoglobulin classes, e.g., IgM, further include a CH4 region.
The term “antigen-binding moiety” as used herein refers to an antibody fr agment formed from a portion of an antibody comprising one or more CDRs, o r any other antibody fragment that binds to an antigen but does not comprise an intact native antibody structure.
The terms “Programmed Death 1” , “Programmed Cell Death 1” , “Protein PD-1” , “PD-1” , “PD1” , “PDCD1” , “hPD-1” , “CD279” and “hPD-F” are used interchangeably, and include variants, isoforms, species homologs of human PD-1, PD-1 of other species, and analogs having at least one common epitope with PD-1.
The terms "LAG-3" , "lymphocyte-activation gene 3" , "CD223" are used interchangeably, and include variants, isoforms, species homologs of human LAG-3, LAG-3 of other species, and analogs having at least one common epitope with LAG-3.
The term "cross-reactivity" refers to binding of an antigen fragment described herein to the same target molecule in human, monkey, and/or murine (mouse or rat) . Thus, "cross-reactivity" is to be understood as an interspecies reactivity to the same molecule X expressed in different species, but not to a molecule other than X. Cross-species specificity of a monoclonal antibody recognizing e.g. human PD-1, to monkey, and/or to a murine (mouse or rat) PD-1, can be determined, for instance, by FACS analysis.
The terms "conservative modifications" i.e., nucleotide and amino acid sequence modifications which do not significantly affect or alter the binding characteristics of the antibody encoded by the nucleotide sequence or containing the amino acid sequence. Such conservative sequence modifications include nucleotide and amino acid substitutions, additions and deletions. Modifications can be introduced into the sequence by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions include ones in which the  amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine) , acidic side chains (e.g., aspartic acid, glutamic acid) , uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan) , nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine) , beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine) .
The term “homolog” and “homologous” as used herein are interchangeable and refer to nucleic acid sequences (or its complementary strand) or amino acid sequences that have sequence identity of at least 70%(e.g., at least 70%, 75%, 80%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%) to another sequences when optimally aligned.
“Percent (%) sequence identity” with respect to amino acid sequence (or nucleic acid sequence) is defined as the percentage of amino acid (or nucleic acid) residues in a candidate sequence that are identical to the amino acid (or nucleic acid) residues in a reference sequence, after aligning the sequences and, if necessary, introducing gaps, to achieve the maximum number of identical amino acids (or nucleic acids) . Conservative substitution of the amino acid residues may or may not be considered as identical residues. Alignment for purposes of determining percent amino acid (or nucleic acid) sequence identity can be achieved, for example, using publicly available tools such as BLASTN, BLASTp (available on the website of U.S. National Center for Biotechnology Information (NCBI) , see also, Altschul S.F. et al., J. Mol. Biol., 215: 403-410 (1990) ; Stephen F. et al., Nucleic Acids Res., 25: 3389-3402 (1997) ) , ClustalW2 (available on the website of European Bioinformatics Institute, see also, Higgins D. G. et al., Methods in Enzymology, 266: 383-402 (1996) ; Larkin M.A. et al., Bioinformatics (Oxford, England) , 23 (21) : 2947-8  (2007) ) , and ALIGN or Megalign (DNASTAR) software. Those skilled in the art may use the default parameters provided by the tool, or may customize the parameters as appropriate for the alignment, such as for example, by selecting a suitable algorithm.
The term “specific binding” or “specifically binds” as used herein refers to a non-random binding reaction between two molecules, such as for example between an antibody and an antigen. In certain embodiments, the polypeptide complex and the bispecific polypeptide complex provided herein specifically bind an antigen with a binding affinity (K D) of ≤ 10  -6 M (e.g., ≤ 5×10  -7 M, ≤ 2×10  -7 M, ≤ 10  -7 M, ≤ 5×10  -8 M, ≤ 2×10  -8 M, ≤ 10  -8 M, ≤ 5×10  -9 M, ≤ 2×10  -9 M, ≤ 10  -9 M, or ≤ 10  -10 M) . K D as used herein refers to the ratio of the dissociation rate to the association rate (k off/k on) , may be determined using surface plasmon resonance methods for example using instrument such as Biacore.
The term “operably link” or “operably linked” refers to a juxtaposition, with or without a spacer or linker, of two or more biological sequences of interest in such a way that they are in a relationship permitting them to function in an intended manner. When used with respect to polypeptides, it is intended to mean that the polypeptide sequences are linked in such a way that permits the linked product to have the intended biological function. For example, an antibody variable region may be operably linked to a constant region so as to provide for a stable product with antigen-binding activity. The term may also be used with respect to polynucleotides. For one instance, when a polynucleotide encoding a polypeptide is operably linked to a regulatory sequence (e.g., promoter, enhancer, silencer sequence, etc. ) , it is intended to mean that the polynucleotide sequences are linked in such a way that permits regulated expression of the polypeptide from the polynucleotide.
The term “mutation” or “mutated” with regard to amino acid residue as u sed herein refers to substitution, insertion, or addition of an amino acid residue.
Bispecific format
Provided herein is a novel bispecific antibody or an antigen binding fragment thereof, comprising: a first polypeptide chain comprising, from N-terminus to C-terminus, a first heavy chain variable VH domain of PD-1 antibody operably linked to a first TCR constant region and a second VH domain of LAG-3 antibody, a second polypeptide comprising, from N-terminus to C-terminus, a first VL domain of PD-1 antibody operably linked to a second TCR constant region, a third polypeptide comprising, from N-terminus to C-terminus, a second VL domain of LAG-3 antibody, wherein, the first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one interchain disulphide bond (Figure 13) .
In one aspect, the present disclosure provides herein a bispecific polypeptide complex. The term “bispecific” as used herein means that, there are two antigen-binding moieties, each of which is capable of specifically binding to a different antigen. The bispecific polypeptide complex provided herein comprises a first antigen-binding moiety comprising a first heavy chain variable domain operably linked to a first TCR constant region (TCR beta) and a first light chain variable domain operably linked to a second TCR constant region (TCR alpha) , wherein the first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one non-native and stabilizing interchain bond. The bispecific polypeptide complex provided herein further comprises a second antigen-binding moiety comprising a second antigen-binding site but does not contain a sequence derived from a TCR constant region.
It is surprisingly found that the polypeptide complexes provided herein with at least one non-native interchain bond (in particular a non-native disulphlide bond) can be recombinantly expressed and assembled into the desired conformation, which stabilizes the TCR constant region dimer while providing for good antigen-binding activity of the antibody variable regions.  Moreover, the polypeptide complexes are found to well tolerate routine antibody engineering, for example, modification of glycosylation sites, and removal of some natural sequences. Furthermore, the polypeptide complexes provided herein can be incorporated into a bispecific format which can be readily expressed and assembled with minimal or substantially no mispairing of the antigen-binding sequences due to the presence of the TCR constant regions in the polypeptide complexes. Additional advantages of the polypeptide complexes and constructs provided herein will become more evident in the following disclosure below.
In certain embodiments, the first and/or the second antigen binding moiety is bivalent. The terms “bivalent” denotes the presence of two binding site respectively, in an antigen-binding molecule. This, in certain embodiments, provides for stronger binding to the antigen or the epitope than a monovalent counterpart. In certain embodiments, in a bivalent antigen-binding moiety, the first valent of binding site and the second valent of binding site are structurally identical (i.e. having the same sequences) .
TCR constant region
Human TCR alpha chain constant region is known as TRAC, with the N CBI accession number of P01848 (https: //www. uniprot. org/uniprot/P01848) , the sequence of WT TCR alpha domain is: IQNPDPAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKTVLDMRSMDFKSNSAVAWSNKSDFACANAFNNSIIPEDTFFPSPESS (SEQ ID NO: 26) ; The engineered TCR alpha chain constant region in the invention comprises one or more mutated sites selected from the group consisting of N32Q, T47C, N66Q, and N77Q.
Human TCR beta chain constant region has two different variants, known as TRBC1 and TRBC2 (IMGT nomenclature) . In the invention, the sequence of wild type TCR beta domain is DLKNVFPPKVAVFEPSEAEISHTQKATLVCLATGFYPDHVELSWWVNG KEVHSGVSTDPQPLKEQPALNDSRYCLSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIVSAEAWGR (SEQ ID NO : 27) , with the NCBI accession number of A0A5B9 (https: //www. uniprot. org/uniprot/A0A5B 9) and the engineered TCR beta domain comprises one or more mutated sites selected from the group consisting of K9E, S56C, N69Q, and C74A.
In the present disclosure, the first and the second TCR constant regions of the polypeptide complexes provided herein are capable of forming a dimer co mprising, between the TCR constant regions, at least one non-native interchain bond that is capable of stabilizing the dimer.
The term “dimer” as used herein refers to an associated structure formed by two molecules, such as polypeptides or proteins, via covalent or non-covalent interactions. A homodimer or homodimerization is formed by two identical molecules, and a heterodimer or heterodimerization is formed by two different molecules. The dimer formed by the first and the second TCR constant regions is a heterodimer.
An interchain bond is formed between one amino acid residue on one TCR constant region and another amino acid residue on the other TCR constant region. In certain embodiments, the non-native interchain bond can be any bond or interaction that is capable of associating two TCR constant regions into a dimer. Examples of suitable non-native interchain bond include, a disulphide bond, a hydrogen bond, electrostatic interaction, a salt bridge, or hydrophobic-hydrophilic interaction, a knobs-into-holes or the combination thereof.
A “disulphide bond” refers to a covalent bond with the structure R-S-S-R’. The amino acid cysteine comprises a thiol group that can form a disulphide bond with a second thiol group, for example from another cysteine residue. The disulphide bond can be formed between the thiol groups of two cysteine residues residing respectively on the two polypeptide chains, thereby forming an interchain bridge or interchain bond.
A “non-native” interchain bond as used herein refers to an interchain bon  d which is not found in a native association of the native counterpart TCR con stant regions. For example, a non-native interchain bond can be formed betwe en a mutated amino acid residue and a native amino acid residue, each residin g on a respective TCR constant region; or alternatively between two mutated a mino acid residues residing respectively on the TCR constant regions. In certa in embodiments, the at least one non-native interchain bond is formed betwee n a first mutated residue comprised in the first TCR constant region and a seco nd mutated residue comprised in the second TCR constant region of the polyp eptide complex.
The term “contact interface” as used herein refers to the particular region (s) on the polypeptides where the polypeptides interact/associate with each ot her. A contact interface comprises one or more amino acid residues that are ca pable of interacting with the corresponding amino acid residue (s) that comes i nto contact or association when interaction occurs. The amino acid residues in a contact interface may or may not be in a consecutive sequence. For exampl e,when the interface is three-dimensional, the amino acid residues within the i nterface may be separated at different positions on the linear sequence.
Method of preparation
The present disclosure provides isolated nucleic acids or polynucleotides that encode the polypeptide complex, and the bispecific polypeptide complex provided herein.
The term “nucleic acid” or “polynucleotide” as used herein refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single-or double-stranded form. Unless specifically limited, the term encompasses polynucleotides containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular polynucleotide sequence also implicitly encompasses conservatively modified variants thereof (e.g.,  degenerate codon substitutions) , alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (see Batzer et al., Nucleic Acid Res. 19: 5081 (1991) ; Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985) ; and Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994) ) .
The nucleic acids or polynucleotides encoding the polypeptide complex and the bispecific polypeptide complex provided herein can be constructed using recombinant techniques. To this end, DNA encoding an antigen-binding moiety of a parent antibody (such as CDR or variable region) can be isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody) . Likewise, DNA encoding a TCR constant region can also be obtained. As an example, the polynucleotide sequence encoding the variable domain (VH) and the polynucleotide sequence encoding the first TCR constant region are obtained and operably linked to allow transcription and expression in a host cell to produce the first polypeptide. Similarly, polynucleotide sequence encoding VL are operably linked to polynucleotide sequence encoding second TCR constant region, so as to allow expression of the second polypeptide in the host cell. If needed, encoding polynucleotide sequences for one or more spacers are also operably linked to the other encoding sequences to allow expression of the desired product.
The encoding polynucleotide sequences can be further operably linked to one or more regulatory sequences, optionally in an expression vector, such that the expression or production of the first and the second polypeptides is feasible and under proper control.
The encoding polynucleotide sequence (s) can be inserted into a vector for further cloning (amplification of the DNA) or for expression, using  recombinant techniques known in the art. In another embodiment, the polypeptide complex and the bispecific polypeptide complex provided herein may be produced by homologous recombination known in the art. Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter (e.g. SV40, CMV, EF-1α) , and a transcription termination sequence.
The term “vector” as used herein refers to a vehicle into which a polynucleotide encoding a protein may be operably inserted so as to bring about the expression of that protein. Typically, the construct also includes appropriate regulatory sequences. For example, the polynucleotide molecule can include regulatory sequences located in the 5’-flanking region of the nucleotide sequence encoding the guide RNA and/or the nucleotide sequence encoding a site-directed modifying polypeptide, operably linked to the coding sequences in a manner capable of expressing the desired transcript/gene in a host cell. A vector may be used to transform, transduce, or transfect a host cell so as to bring about expression of the genetic element it carries within the host cell. Examples of vectors include plasmids, phagemids, cosmids, artificial chromosomes such as yeast artificial chromosome (YAC) , bacterial artificial chromosome (BAC) , or P1-derived artificial chromosome (PAC) , bacteriophages such as lambda phage or M13 phage, and animal viruses. Categories of animal viruses used as vectors include retrovirus (including lentivirus) , adenovirus, adeno-associated virus, herpesvirus (e.g., herpes simplex virus) , poxvirus, baculovirus, papillomavirus, and papovavirus (e.g., SV40) . A vector may contain a variety of elements for controlling expression, including promoter sequences, transcription initiation sequences, enhancer sequences, selectable elements, and reporter genes. In addition, the vector may contain an origin of replication. A vector may also include materials to aid in its entry into the cell, including but not limited to a viral particle, a liposome, or a protein coating.
In some embodiments, the vector system includes mammalian, bacterial, yeast systems, etc., and comprises plasmids such as, but not limited to, pALTER, pBAD, pcDNA, pCal, pL, pET, pGEMEX, pGEX, pCI, pCMV, pEGFP, pEGFT, pSV2, pFUSE, pVITRO, pVIVO, pMAL, pMONO, pSELECT, pUNO, pDUO, Psg5L, pBABE, pWPXL, pBI, p15TV-L, pPro18, pTD, pRS420, pLexA, pACT2.2 etc., and other laboratorial and commercially available vectors. Suitable vectors may include, plasmid, or viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) .
Vectors comprising the polynucleotide sequence (s) provided herein can be introduced to a host cell for cloning or gene expression. The phrase “host cell” as used herein refers to a cell into which an exogenous polynucleotide and/or a vector has been introduced.
Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis, Pseudomonas such as P. aeruginosa, and Streptomyces.
In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for the vectors encoding the polypeptide complex and the bispecific polypeptide complex. Saccharomyces cerevisiae, or common baker′syeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12, 424) , K. bulgaricus (ATCC 16, 045) , K. wickeramii (ATCC 24, 178) , K. waltii (ATCC 56, 500) , K. drosophilarum (ATCC 36, 906) , K.  thermotolerans, and K. marxianus; yarrowia (EP 402, 226) ; Pichia pastoris (EP 183, 070) ; Candida; Trichoderma reesia (EP 244, 234) ; Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.
Suitable host cells for the expression of glycosylated polypeptide complex, the bispecific polypeptide complex provided herein are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar) , Aedes aegypti (mosquito) , Aedes albopictus (mosquito) , Drosophila melanogaster (fruiffly) , and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts.
However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651) ; human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36: 59 (1977) ) , such as Expi293; baby hamster kidney cells (BHK, ATCC CCL 10) ; Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980) ) ; mouse sertoli cells (TM4, Mather, Biol. Reprod. 23: 243-251 (1980) ) ; monkey kidney cells (CV1 ATCC CCL 70) ; African green monkey kidney cells (VERO-76, ATCC CRL-1587) ; human cervical carcinoma cells (HELA, ATCC CCL 2) ; canine  kidney cells (MDCK, ATCC CCL 34) ; buffalo rat liver cells (BRL 3A, ATCC CRL 1442) ; human lung cells (W138, ATCC CCL 75) ; human liver cells (Hep G2, HB 8065) ; mouse mammary tumor (MMT 060562, ATCC CCL51) ; TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383: 44-68 (1982) ) ; MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2) .
Host cells are transformed with the above-described expression or cloning vectors can be cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the cloning vectors.
For production of the polypeptide complex and the bispecific polypeptide complex provided herein, the host cells transformed with the expression vector may be cultured in a variety of media. Commercially available media such as Ham′s F10 (Sigma) , Minimal Essential Medium (MEM) , (Sigma) , RPMI-1640 (Sigma) , and Dulbecco′sModified Eagle′sMedium (DMEM) , Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58: 44 (1979) , Barnes et al., Anal. Biochem. 102: 255 (1980) , U.S. Pat. No. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor) , salts (such as sodium chloride, calcium, magnesium, and phosphate) , buffers (such as HEPES) , nucleotides (such as adenosine and thymidine) , antibiotics (such as GENTAMYCIN TM drug) , trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range) , and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent  to the ordinarily skilled artisan.
In certain embodiments, the polypeptide complex or the bispecific polype ptide complex may be linked to a conjugate indirectly, or indirectly for exampl e through another conjugate or through a linker. For example, the polypeptide c omplex or the bispecific polypeptide complex having a reactive residue such as cysteine may be linked to a thiol-reactive agent in which the reactive group is, for example, a maleimide, an iodoacetamide, a pyridyl disulphide, or other thio l-reactive conjugation partner (Haugland, 2003, Molecular Probes Handbook o f Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; Brinkle y, 1992, Bioconjugate Chem. 3: 2; Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London; Means (1990) Bioconjugate C hem. 1: 2; Hermanson, G. in Bioconjugate Techniques (1996) Academic Press, San Diego, pp. 40-55, 643-671) .
For another example, the polypeptide complex or the bispecific polypepti de complex may be conjugated to biotin, then indirectly conjugated to a second conjugate that is conjugated to avidin. For still another example, the polypepti de complex or the bispecific polypeptide complex may be linked to a linker wh ich further links to the conjugate. Examples of linkers include bifunctional cou pling agents such as N-succinimidyl-3- (2-pyridyldithio) propionate (SPDP) , s uccinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) , im inothiolane (IT) , bifunctional derivatives of imidoesters (such as dimethyl adi pimidate HCl) , active esters (such as disuccinimidyl suherate) , aldehydes (su ch as glutaraldehyde) , bis-azido compounds (such as bis (p-azidobenzoyl) hex anediamine) , bis-diazonium derivatives (such as bis- (p-diazoniumbenzoyl) -et hylenediamine) , diisocyanates (such as toluene 2, 6-diisocyanate) , and his-act ive fluorine compounds (such as 1, 5-difluoro-2, 4-dinitrobenzene) . Particularl y preferred coupling agents include N-succinimidyl-3- (2-pyridyldithio) propio nate (SPDP) (Carlsson et al., Biochem. J. 173: 723-737 (1978) ) and N-succini midyl-4- (2-pyridylthio) pentanoate (SPP) to provide for a disulphide linkage.
The conjugate can be a detectable label, a pharmacokinetic modifying mo iety, a purification moiety, or a cytotoxic moiety. Examples of detectable label may include a fluorescent labels (e.g. fluorescein, rhodamine, dansyl, phycoery thrin, or Texas Red) , enzyme-substrate labels (e.g. horseradish peroxidase, alk aline phosphatase, luceriferases, glucoamylase, lysozyme, saccharide oxidases or β-D-galactosidase) , radioisotopes (e.g. 123I, 124I, 125I, 131I, 35S, 3H, 111In, 112In, 14C, 64Cu, 67Cu, 86Y, 88Y, 90Y, 177Lu, 211At, 186Re, 188Re, 153Sm, 212Bi, and 32P, other lanthanides, luminescent labels) , chromophoric moiety, digoxigenin, biotin/avidin, a DNA molecule or gold for detection. In certain embodiments, the conjugate can be a pharmacoki netic modifying moiety such as PEG which helps increase half-life of the antib ody. Other suitable polymers include, such as, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, copolymers of ethylene glycol/prop ylene glycol, and the like. In certain embodiments, the conjugate can be a purif ication moiety such as a magnetic bead. A “cytotoxic moiety” can be any agent that is detrimental to cells or that can damage or kill cells. Examples of cytoto xic moiety include, without limitation, taxol, cytochalasin B, gramicidin D, eth idium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblas tine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxan trone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, pr ocaine, tetracaine, lidocaine, propranolol, puromycin and analogs thereof, anti metabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5 -fluorouracil decarbazine) , alkylating agents (e.g., mechlorethamine, thioepa c hlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU) , cyclotho sphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-di chlorodiamine platinum (II) (DDP) cisplatin) , anthracyclines (e.g., daunorubic in (formerly daunomycin) and doxorubicin) , antibiotics (e.g., dactinomycin (f ormerly actinomycin) , bleomycin, mithramycin, and anthramycin (AMC) ) , a nd anti-mitotic agents (e.g., vincristine and vinblastine) .
Methods for the conjugation of conjugates to proteins such as antibodies,  immunoglobulins or fragments thereof are found, for example, in U.S. Pat. No. 5,208,020; U.S. Pat. No. 6,441,163; WO2005037992; WO2005081711; and W O2006/034488, which are incorporated herein by reference to the entirety.
Pharmaceutical composition
The present disclosure also provides a pharmaceutical composition comprising the polypeptide complex or the bispecific polypeptide complex provided herein and a pharmaceutically acceptable carrier.
The term “pharmaceutically acceptable” indicates that the designated carrier, vehicle, diluent, excipient (s) , and/or salt is generally chemically and/or physically compatible with the other ingredients comprising the formulation, and physiologically compatible with the recipient thereof.
A “pharmaceutically acceptable carrier” refers to an ingredient in a pharmaceutical formulation, other than an active ingredient, which is bioactivity acceptable and nontoxic to a subject. Pharmaceutical acceptable carriers for use in the pharmaceutical compositions disclosed herein may include, for example, pharmaceutically acceptable liquid, gel, or solid carriers, aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, anesthetics, suspending/dispending agents, sequestering or chelating agents, diluents, adjuvants, excipients, or non-toxic auxiliary substances, other components known in the art, or various combinations thereof.
Method of treatment
Therapeutic methods are also provided, comprising: administering a therapeutically effective amount of the polypeptide complex or the bispecific polypeptide complex provided herein to a subject in need thereof, thereby treating or preventing a condition or a disorder. In certain embodiments, the subject has been identified as having a disorder or condition likely to respond to the polypeptide complex or the bispecific polypeptide complex provided  herein.
As used herein, the term "subject" includes any human or nonhuman animal. The term "nonhuman animal" includes all vertebrates, e.g., mammals and non-mammals, such as nonhuman primates, sheep, dogs, cats, horses, cows, chickens, amphibians, reptiles, etc. Except when noted, the terms "patient" or "subject" are used interchangeably.
The terms "treatment" and "therapeutic method" refer to both therapeutic treatment and prophylactic/preventative measures. Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder.
In certain embodiments, the conditions and disorders include tumors and cancers, for example, non-small cell lung cancer, small cell lung cancer, renal c ell cancer, colorectal cancer, ovarian cancer, breast cancer, pancreatic cancer, g astric carcinoma, bladder cancer, esophageal cancer, mesothelioma, melanoma, head and neck cancer, thyroid cancer, sarcoma, prostate cancer, glioblastoma, cervical cancer, thymic carcinoma, leukemia, lymphomas, myelomas, mycoses fungoids, merkel cell cancer, and other hematologic malignancies, such as clas sical Hodgkin lymphoma (CHL) , primary mediastinal large B-cell lymphoma, T-cell/histiocyte-rich B-cell lymphoma, EBV-positive and -negative PTLD, an d EBV-associated diffuse large B-cell lymphoma (DLBCL) , plasmablastic lym phoma, extranodal NK/T-cell lymphoma, nasopharyngeal carcinoma, and HHV 8-associated primary effusion lymphoma, Hodgkin′slymphoma, neoplasm of t he central nervous system (CNS) , such as primary CNS lymphoma, spinal axis tumor, brain stem glioma.
Examples
Example 1: Research materials preparation
1. Commercial Materials
Figure PCTCN2020102152-appb-000006
Figure PCTCN2020102152-appb-000007
2. Antigen and Other Proteins Generation
2.1 Production of antigens
Nucleic acids encoding human PD-1, human and cynomolgus LAG-3 ECD (extracellular domain) were synthesized by Sangon Biotech. PD-1 or LAG-3 gene fragments were amplified from the synthesized nucleic acid and inserted into the expression vector pcDNA3.3 (ThermoFisher) . The inserted PD-1 or LAG-3 gene fragment was further confirmed by DNA sequencing. Fusion proteins containing PD-1 or LAG-3 ECD with various tags, including human Fc, mouse Fc, were obtained by transfection of PD-1 or LAG-3 gene into 293F cells (ThermoFisher) . The cells were cultured in FreeStyle 293 Expression Medium at 37 ℃, 5%CO 2. After 5 days of culture, supernatants  were harvested from the culture of transiently transfected cells for protein purification. The fusion proteins were purified by protein A and/or SEC column. An untagged LAG-3 ECD protein was generated by cleavage of ECD-hFc fusion protein with a cut site using Factor Xa protease. Purified proteins were used for screening and characterization.
Mouse Fc-tagged human PD-L1 ECD, human CTLA-4 ECD and CD28 ECD were generated as above.
2.2 Production of Benchmark Antibodies
Gene sequences of anti-human PD-1 or LAG-3 benchmark antibodies (LAG-3-BMK1 and PD-1-BMK1) were synthesized based on the information disclosed in patent applications US20110150892A1 (LAG-3-BMK1 was referred to as “25F7” ) and WO2006121168 (PD-1-BMK1 was referred to as “5C4” ) , respectively.
Sequences of anti-human PD-1×LAG-3 benchmark antibodies BsAb-BMK1, BsAb-BMK2 and BsAb-BMK3 were synthesized based on the information disclosed in patent applications WO2015200119A8 (BsAb-BMK1 was referred to as “SEQ25 &SEQ27” ) , WO2017087589A2 (BsAb-BMK2 was referred to as “SEQ110” ) and WO2015200119A8 (BsAb-BMK3 was referred to as “SEQ 5 and 4” ) , respectively. The synthesized gene sequences were incorporated into plasmids pcDNA3.3. The cells transfected with the plasmids were cultured for 5 days and supernatant was collected for protein purification using Protein A column. The obtained benchmark antibodies were analyzed by SDS-PAGE and SEC, and then stored at -80℃.
3. Cell Line Generation
Human, cynomolgus PD-1 or LAG-3 transfectant cell lines were generated. Briefly, CHO-S or 293F cells were transfected with pcDNA3.3 expression vector containing full-length of human, cynomolgus PD-1 or LAG-3 using Lipofectamine transfection kit according to manufacturer’s  protocol, respectively. At 48-72 hours post transfection, the transfected cells were cultured in medium containing blasticidin for selection and tested for target expression. Human PD-1-expressing monoclonal cell line and cynomolgus LAG-3-expressing monoclonal cell line were obtained by limiting dilution.
Jurkat cell line were transfected with plasmids containing human full length PD-1/NFAT reporter using Nucleofactor (Lonza) . At 72 hours post transfection, the transfected cells were cultured in medium containing hygromycin for selection and tested for target expression. Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene were obtained after two months.
Example 2: Bispecific Antibody Generation
1. Construct expression vectors
DNA sequence encoding VH and VL of anti-PD-1 parental antibody was linked to the N-terminus of anti-LAG-3 parental antibody. The CH1 and CL domains of the anti-PD-1 parental Fab were replaced by TCR beta and TCR alpha constant domains, respectively. DNA sequences encoding the chimeric heavy chain fragment (anti-PD-1 VH and TCR beta) were linked to the N-terminus of the heavy chain of anti-LAG-3 parental antibody via a (G4S) x2 linker. The genes coding the anti-PD-1 chimeric light chain (VL and TCR alpha) , the regular anti-LAG-3 light chain, or the above mentioned bispecific heavy chain were individually cloned into a modified pcDNA3.3 expression vector.
Further, U6T1. G25-1. uIgG4. SP (YTE) , with the triple mutation M252Y/S254T/T256E (YTE) introduced into the Fc portion of U6T1. G25-1. uIgG4. SP, was constructed to facilitate the longer half-life in serum.
2. Small scale Transfection, expression and purification
The plasmids of bispecific antibody were transfected into Expi293 cells. The cells were cultured for five days and the supernatant was collected for protein purification using Protein A column (GE Healthcare, 175438) . The obtained antibodies were analyzed by SDS-PAGE and HPLC-SEC, and then stored at -80 ℃.
3. Results
Sequence of lead candidates
The sequences of antibody leads are listed in the Table 2 and the CDRs are listed in Table 1.
Example 4: In vitro Characterization
1. Binding of PD-1×LAG-3 bispecific antibodies to human PD-1 or  LAG-3 protein
Human PD-1 expressing cells or transiently transfected human LAG-3 expressing 293F cells were incubated with various concentrations of PD-1×LAG-3 antibodies, respectively. PE-labeled goat anti-human IgG antibody was used to detect the binding of PD-1×LAG-3 antibodies onto the cells. MFI of the cells was measured by flow cytometry and analyzed by FlowJo (version 7.6.1) .
As shown in Figure 1 and Table 3, the EC 50 of lead PD-1×LAG-3 bispecific antibody for binding to cell surface human PD-1 is comparable to the benchmarks.
Table 3. EC 50 of PD-1×LAG-3 bispecific antibodies bind to cell surface human PD-1
Figure PCTCN2020102152-appb-000008
As shown in Figure 2 and Table 4, the EC 50 of lead PD-1×LAG-3 bispecific antibody for binding to cell surface human LAG-3 is comparable to the benchmarks.
Table 4. EC 50 of PD-1×LAG-3 bispecific antibodies bind to cell surface human LAG-3
Antibody EC 50 (nM)
U6T1. G25-1. uIgG4. SP 3.76
LAG-3-BMK1 2.40
BsAb-BMK3 0.96
2. Binding of PD-1×LAG-3 bispecific antibodies to cynomolgus PD-1 or  LAG-3
For PD-1 binding, cynomolgus PD-1 expressing 293F cells were incubated with various concentrations of PD-1×LAG-3 antibodies, respectively. PE-labeled goat anti-human IgG antibody was used to detect the binding of PD-1×LAG-3 antibodies onto the cells. MFI of the cells was measured by flow cytometry and analyzed by FlowJo.
For LAG-3 binding, plates were coated with PD-1×LAG-3 antibodies overnight at 4 ℃. After blocking and washing, various concentrations of His-tagged cynomolgus LAG-3 protein were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled mouse anti-His antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in Figure 3 and Table 5, the EC 50 of lead PD-1×LAG-3 bispecific antibody for binding to cell surface cynomolgus PD-1 is comparable to the benchmarks.
Table 5. EC 50 of PD-1×LAG-3 bispecific antibodies bind to cell surface  cynomolgus PD-1
Antibody EC 50 (nM)
U6T1. G25-1. uIgG4. SP 0.50
PD-1-BMK1 0.28
LAG-3-BMK3 0.33
As shown in Figure 4 and Table 6, the EC 50 of lead PD-1×LAG-3 bispecific antibody for binding to cell surface cynomolgus LAG-3 is better than LAG-3-BMK1.
Table 6. EC 50 of PD-1×LAG-3 bispecific antibodies bind to cell surface cynomolgus LAG-3 protein
Antibody EC 50 (nM)
U6T1. G25-1. uIgG4. SP 0.14
LAG-3-BMK1 Weak
BsAb-BMK3 0.33
3. Binding of PD-1×LAG-3 bispecific antibodies to mouse PD-1 or LAG-3
For mouse PD-1 binding, plates were coated with mouse Fc tagged PD-1 overnight at 4 ℃. After blocking and washing, various concentrations of bispecific antibodies were added to the plates and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-human IgG antibody for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
For mouse LAG-3 binding, plates were coated with mouse anti-His antibody overnight at 4 ℃. After blocking and washing, His-tagged LAG-3 protein was added to the wells. Various concentrations of PD-1×LAG-3 antibodies were added to the plates after wash and incubated at room temperature for 1 hour. The plates were then washed and subsequently incubated with HRP-labeled goat anti-human IgG antibody for 1 hour. After  washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in figure 5A and 5B, lead PD-1×LAG-3 bispecific antibody does not bind to mouse PD-1 or LAG-3.
4. Cross-reactivity to human CD4, CTLA-4 and CD28
Cross-reactivity to human CD4, CTLA-4 or CD28 was measured by ELISA. Plates were coated with human CD4, CTLA-4 or CD28 at 1 μg/mL overnight at 4 ℃. After blocking and washing, various concentrations of PD-1×LAG-3 antibodies were added to the plates and incubated at room temperature for 1 h. The plates were then washed and subsequently incubated with corresponding secondary antibody for 60 min. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl.
Results in Figure 6A, 6B and 6C indicate that PD-1×LAG-3 bispecific antibodies did not bind to human CTLA-4, CD28 or CD4 protein.
5. Affinity test against human, mouse, cynomolgus PD-1 and LAG-3 by  SPR
Binding affinity of the bispecific antibodies to the antigen was determined by SPR assay using Biacore 8K. PD-1xLAG-3 antibodies were captured on an anti-human IgG Fc antibody immobilized CM5 sensor chip (GE) . His-tagged human PD-1 protein (MW: 40KD) and cynomolgus PD-1 (MW: 40KD) at different concentrations were injected over the sensor chip at a flow rate of 30 μL/min for an association phase of 120 s, followed by 800 s dissociation.
For affinity against human LAG-3, PD-1xLAG-3 antibodies were immobilized on a CM5 sensor chip. Human LAG-3 without tag at different concentrations was injected over the sensor chip at a flow rate of 30 μL/min for an association phase of 180 s, followed by 3600 s dissociation using single-cycle kinetics method. The chip was regenerated with 10 mM glycine  (pH 1.5) .
The sensorgrams of blank surface and buffer channel were subtracted from the test sensorgrams. The experimental data was fitted by 1: 1 model using Langmiur analysis.
Table 7. Affinity of PD-1×LAG-3 bispecific antibodies against human PD-1
Ab ka (1/Ms) kd (1/s) KD (M)
U6T1. G25-1. uIgG4. SP 1.20E+06 1.19E-03 9.88E-10
PD-1-BMK1 4.02E+05 1.35E-03 3.37E-09
BsAb-BMK3 3.80E+05 1.36E-03 3.58E-09
Table 8. Affinity of PD-1×LAG-3 bispecific antibodies against human LAG-3
Ab ka (1/Ms) kd (1/s) KD (M)
U6T1. G25-1. uIgG4. SP 5.90E+05 <1.00E-05 <1.70E-11
PD-1-BMK1 4.87E+05 3.34E-04 6.85E-10
BsAb-BMK3 1.02E+07 8.70E-04 8.51E-11
6. Dual binding of PD-1×LAG-3 bispecific antibodies to human PD-1 and  LAG-3 protein
Plates were coated with mouse Fc-tagged human PD-1 at 1 μg/mL overnight at 4 ℃. After blocking and washing, various concentrations of PD-1×LAG-3 antibodies were added to the plates and incubated at room temperature for 1 hour after washing. The plates were then washed and subsequently incubated with His-tagged LAG-3 protein for 1 hour. After washing, HRP-labeled anti-His antibody was added to the plate and incubated at room temperature for 1 hour. After washing, TMB substrate was added and the color reaction was stopped by 2M HCl. The absorbance at 450 nm was read using a microplate reader.
As shown in Figure 7 and Table 9, the EC 50 of lead PD-1×LAG-3 bispecific antibodies for binding to LAG-3 protein is comparable to the  BsAb-BMK3 and better than BsAb-BMK1 and BsAb-BMK2.
Table 9. EC 50 of PD-1×LAG-3 bispecific antibodies bind to human PD-1 and LAG-3 protein
Figure PCTCN2020102152-appb-000009
7. Blocking of PD-L1 protein binding to PD-1 expressing cells
Antibodies were serially diluted in 1%BSA-PBS and mixed with mouse Fc-tagged PD-L1 protein at 4℃. The mixture was transferred into the 96-well plates seeded with PD-1 expressing CHO-S cells. Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of PD-L1 protein to PD-1 expressing cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
As shown in Figure 8 and Table 10, the EC 50 of lead PD-1×LAG-3 bispecific antibodies for blocking the binding of PD-1 to PD-L1-expressed cells is comparable to the benchmarks.
Table 10. EC 50 of PD-1×LAG-3 bispecific antibodies block the binding of PD-1 to PD-L1
Antibody EC 50 (nM)
U6T1. G25-1. uIgG4. SP 1.34
PD-1-BMK1 0.22
BsAb-BMK3 0.33
8. Blocking of LAG-3 protein binding to MHC-II expressed on Raji cells
Antibodies were serially diluted in complete medium and incubated with mouse Fc-tagged LAG-3 protein at 4℃. The mixture was transferred into the 96-well plates seeded with Raji cells which express MHC-II on the surface.  Goat anti-mouse IgG Fc-PE antibody was used to detect the binding of LAG-3 protein to Raji cells. The MFI was evaluated by flow cytometry and analyzed by the software FlowJo.
As shown in Figure 9 and Table 11, the EC 50 of lead PD-1×LAG-3 bispecific antibody for blocking the binding of LAG-3 to MHC-II-expressed Raji cells is better than BsAb-BMK1 and BsAb-BMK2 and comparable to other benchmarks.
Table 11. EC 50 of PD-1×LAG-3 bispecific antibodies block the binding of LAG-3 to MHC-II
Antibody EC 50 (nM)
U6T1. G25-1. uIgG4. SP 1.24
LAG-3-BMK1 1.18
BsAb-BMK2 5.21
BsAb-BMK3 1.58
9. Effects of PD-1×LAG-3 bispecific antibodies on PD-1 and LAG-3  expressing Jurkat with NFAT reporter gene
Full human LAG-3 plasmid was transiently transfected into Jurkat cells expressing human PD-1 along with stably integrated NFAT luciferase reporter gene. After 48 hours, the cells were seeded in 96-well plates along with Raji cells in the presence of SEE (Staphylococcal enterotoxin E) . Testing antibodies were added to the cells. The plates were incubated for overnight at 37℃, 5%CO 2. After incubation, reconstituted luciferase substrate One-Glo was added and the luciferase intensity was measured by a microplate spectrophotometer.
As demonstrated in Figure 10, antibodies enhanced NFAT pathway of PD-1 and LAG-3 expressing Jurkat in reporter gene assay. The fold is higher than combination of PD-1-BMK1 and LAG-3-BMK1 as well as other benchmark antibodies.
10. Effects of PD-1×LAG-3 bispecific antibodies on human allogeneic  mixed lymphocyte reaction (MLR)
Human peripheral blood mononuclear cells (PBMCs) were freshly isolated from healthy donors using Ficoll-Paque PLUS gradient centrifugation. Monocytes were isolated using human monocyte enrichment kit according to the manufacturer’s instructions. Cells were cultured in medium containing GM-CSF and IL-4 for 5 to 7 days to generate dendritic cells (DC) . Human CD4+ T cells were isolated using human CD4+ T cell enrichment kit according to the manufacturer’s protocol. Purified CD4+ T cells were co-cultured with allogeneic immature DCs (iDCs) in the presence of various concentrations of PD-1×LAG-3 antibodies in 96-well plates. The plates were incubated at 37℃, 5%CO 2. Supernatants were harvested for IL-2 and IFN-γ test at day 3 and day 5, respectively. Human IL-2 and IFN-γ release were measured by ELISA using matched antibody pairs. Recombinant human IL-2 and IFN-γ were used as standards, respectively. The plates were pre-coated with capture antibody specific for human IL-2 or IFN-γ, respectively. After blocking, 50 μL of standards or samples were pipetted into each well and incubated for 2 hours at ambient temperature. Following removal of the unbound substances, the biotin-conjugated detecting antibody specific for corresponding cytokine was added to the wells and incubated for one hour. HRP-labeled streptavidin was then added to the wells for 30 minutes incubation at ambient temperature. The color was developed by dispensing 50 μL of TMB substrate, and then stopped by 50 μL of 2N HCl. The absorbance was read at 450 nM using a microplate spectrophotometer.
As demonstrated in Figure 11A and 11B, lead antibodies enhanced IL-2 and IFN-γ secretion in mixed lymphocyte reaction.
11. Thermal stability test by differential scanning fluorimetry (DSF)
Tm of antibodies was investigated using QuantStudioTM 7 Flex  Real-Time PCR system (Applied Biosystems) . 19 μL of antibody solution was mixed with 1 μL of 62.5× SYPRO Orange solution (Invitrogen) and transferred to a 96 well plate. The plate was heated from 26℃ to 95℃ at a rate of 0.9 ℃/min, and the resulting fluorescence data was collected. The negative derivatives of the fluorescence changes with respect to different temperatures were calculated, and the maximal value was defined as melting temperature Tm. If a protein has multiple unfolding transitions, the first two Tm were reported, named as Tm1 and Tm2. Data collection and Tm calculation were conducted automatically by the operation software.
Table 12. Tm of PD-1×LAG-3 bispecific antibodies
Figure PCTCN2020102152-appb-000010
Example 5: In vivo Characterization
1. In vivo anti-tumor activity of PD-1 × LAG-3 antibodies
Human PD-1/LAG-3 knock-in mouse (Biocytogen) and B16F10 tumor model were used to evaluate the ability of PD-1×LAG-3 antibody to inhibit the growth of tumor cells in vivo. Mouse were implanted subcutaneously with 1×10 6 mouse melanoma cells B16F10 on day 0 and the mice were grouped (n=8) when the tumor reached 50-60 mm 3.
On day 0, day 3, day 6, day 9, day 12 and day 15, the mice were intraperitoneally treated with PD-1 mAb (PD-1-BMK1) alone (10 mg/kg) , LAG-3 mAb (LAG-3-BMK1) alone (10 mg/kg) , PD-1×LAG-3 antibody U6T1. G25-1. uIgG4. SP (13.1 mg/kg) or combination of PD-1-BMK1 (10 mg/kg) and LAG-3-BMK1 (10 mg/kg) . Human IgG4 isotype control antibody (10 mg/kg) was given as negative control.
Tumor volume and animal weight were measured for two weeks post injection. The tumor volume will be expressed in mm 3 using the formula: V = 0.5ab 2, where a and b are the long and short diameters of the tumor, respectively.
Tumor volume and survival curve of treated mice were shown in Figure 12A and 12B. The results show that the treatment with LAG-3-BMK1 or PD-1-BMK1 antibody had little effect on B16F10 tumor growth inhibition in hLAG-3/hPD-1 knock-in mouse, while U6T1. G25-1. uIgG4. SP led to greater tumor growth inhibition than LAG-3-BMK1 alone or PD-1-BMK1 alone. The efficacy of U6T1. G25-1. uIgG4. SP was comparable to combination of PD-1 and LAG-3 antibodies. Meanwhile, in Figure 12B, the weight growth of each group indicated good safety without obvious toxicity.

Claims (36)

  1. A bispecific antibody or antigen binding fragment thereof, comprising:
    a first polypeptide chain comprising, from N-terminus to C-terminus, a first heavy chain variable (VH) domain of a PD-1 antibody operably linked to a first T cell receptor (TCR) constant region and a second VH domain of LAG-3 antibody,
    a second polypeptide chain comprising, from N-terminus to C-terminus, a first light chain variable (VL) domain of PD-1 antibody operably linked to a second TCR constant region,
    a third polypeptide chain comprising, from N-terminus to C-terminus, a second VL domain of LAG-3 antibody operably linked to an antibody light chain constant (CL) domain,
    wherein, the first TCR constant region and the second TCR constant region are capable of forming a dimer comprising at least one non-native interchain disulphide bond,
    wherein the second VH domain of LAG-3 antibody comprises H-CDR1, H-CDR2 and H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 1, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 2, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 3, and conservative modifications thereof,
    wherein the first VH domain of PD-1 antibody comprises H-CDR1, H-CDR2, H-CDR3; wherein the H-CDR3 comprises a sequence as depicted in SEQ ID NO: 4, and conservative modifications thereof; the H-CDR2 comprises a sequence as depicted in SEQ ID NO: 5, and conservative modifications thereof; the H-CDR1 comprises a sequence as depicted in SEQ ID NO: 6, and conservative modifications thereof.
  2. The antibody of antigen binding fragment thereof of claim 1, wherein the  antibody or antigen binding fragment thereof provides bivalent binding sites specific for PD-1 or LAG-3.
  3. The antibody or antigen binding fragment thereof of claim 2, wherein the antibody or antigen binding fragment thereof comprises two of said first polypeptide chains, two of said second polypeptide chains and two of said third polypeptide chains.
  4. The antibody or antigen binding fragment thereof of any one of claims 1-3, wherein the second VL domain of LAG-3 antibody comprises L-CDR1, L-CDR2 and L-CDR3; wherein the L-CDR3 comprises a sequence as depicted in SEQ ID NO: 7, and conservative modifications thereof; the L-CDR2 comprises a sequence as depicted in SEQ ID NO: 8, and conservative modifications thereof; the L-CDR1 comprises a sequence as depicted in SEQ ID NO: 9, and conservative modifications thereof.
  5. The antibody or antigen binding fragment thereof of any one of claims 1-4, wherein the second VL domain of LAG-3 antibody comprises L-CDR1, L-CDR2 and L-CDR3; wherein the L-CDR3 comprises a sequence as depicted in SEQ ID NO: 10, and conservative modifications thereof; the L-CDR2 comprises a sequence as depicted in SEQ ID NO: 11, and conservative modifications thereof; the L-CDR1 comprises a sequence as depicted in SEQ ID NO: 12, and conservative modifications thereof.
  6. The antibody or antigen binding fragment thereof of claim 1, wherein the second VH domain of LAG-3 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 13.
  7. The antibody or antigen binding fragment thereof of claim 1 or 6, wherein the first VH domain of PD-1 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 14.
  8. The antibody or antigen binding fragment thereof of any one of claims 1 and 6-7, wherein the second VL domain of LAG-3 antibody comprises a  sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 15.
  9. The antibody or antigen binding fragment thereof of any one of claims 1 and 6-8, wherein the first VL domain of PD-1 antibody comprises a sequence that is at least 70%, 80%, 85%, 90%, 95%or 99%homologous to SEQ ID NO: 16.
  10. The antibody or antigen binding fragment thereof of claim 1, wherein second VH domain of LAG-3 antibody comprises a sequence of SEQ ID NO: 13.
  11. The antibody or antigen binding fragment thereof of claim 1 or 10, wherein first VH domain of PD-1 antibody comprises a sequence of SEQ ID NO: 14.
  12. The antibody or antigen binding fragment thereof of any one of claims 1 and 10-11, wherein second VL domain of LAG-3 antibody comprises a sequence of SEQ ID NO: 15.
  13. The antibody or antigen binding fragment thereof of any one of claims 1 and 10-12, wherein first VL domain of PD-1 antibody comprises a sequence of SEQ ID NO: 16.
  14. The antibody or antigen binding fragment thereof of any one of claims 1-13, wherein said first TCR constant region comprises an engineered TCR beta constant region, the engineered TCR beta constant region comprises one or more mutated residues selected from the group consisting of K9E, S56C, N69Q and C74A relative to a wild type TCR beta constant region comprising a sequence of SEQ ID NO: 27.
  15. The antibody or antigen binding fragment thereof of any one of claims 1-14, wherein said second TCR constant region comprises an engineered TCR alpha constant region, the engineered TCR alpha constant region comprises one or more mutated residues selected from the group consisting of N32Q, T47C, N66Q, and N77Q relative to a wild type TCR alpha constant region  comprising a sequence of SEQ ID NO: 26.
  16. The antibody or antigen binding fragment thereof of claim 16, wherein said engineered TCR beta constant region comprises a sequence of SEQ ID NO: 21.
  17. The antibody or antigen binding fragment thereof of claim 17, wherein said engineered TCR alpha constant region comprises a sequence of SEQ ID NO: 22.
  18. The antibody or antigen binding fragment thereof of any one of claims 1-15, wherein the first TCR constant region and the second VH domain are linked by a peptide sequence of SEQ ID NO: 23.
  19. The antibody or antigen binding fragment thereof of any one of claims 1-16, wherein the first polypeptide further comprises an antibody heavy chain constant CH1 domain.
  20. The antibody or antigen binding fragment thereof of claim 19, wherein the first polypeptide further comprises IgG Fc fragment, wherein the IgG Fc fragment is operably linked to the CH1 domain.
  21. The antibody or antigen binding fragment thereof of claim 1, wherein the first polypeptide comprises a sequence of SEQ ID NO: 17 or 20.
  22. The antibody or antigen binding fragment thereof of claim 1, wherein the second polypeptide chain comprises a sequence of SEQ ID NO: 18.
  23. The antibody or antigen binding fragment thereof of claim 1, wherein the third polypeptide chain comprises a sequence of SEQ ID NO: 19.
  24. The antibody or antigen binding fragment thereof of any one of claims 1-23, wherein the antibody or antigen binding fragment
    a) binds to human PD-1 with a K D of 9.88E-10 or less; and
    b) binds to human LAG-3 with a K D of 1.70E-11 or less.
  25. The antibody or antigen binding fragment thereof of any one of claims 1-21, wherein the antibody is a humanized antibody.
  26. A nucleic acid molecule encoding the antibody or antigen binding fragment thereof of any one of claims 1-21.
  27. A cloning or expression vector comprising the nucleic acid molecule of claim 24.
  28. A host cell comprising one or more cloning or expression vectors of claim 25.
  29. A process for production of the antibody or antigen binding fragment thereof of any one of claims 1-21, comprising culturing the host cell of claim 26 and isolating the antibody.
  30. A pharmaceutical composition comprising the antibody or antigen binding fragment thereof of any one of claims 1-21, and one or more of a pharmaceutically acceptable excipient, a diluent and a carrier.
  31. An immunoconjugate comprising the antibody or antigen binding fragment thereof of any one of claims 1-21, linked to a therapeutic agent.
  32. A pharmaceutical composition comprising the immunoconjugate of claim 29 and one or more of a pharmaceutically acceptable excipient, a diluent and a carrier.
  33. A method of modulating an immune response in a subject comprising administering to the subject the antibody or antigen binding fragment thereof of any one of claims 1-21.
  34. Use of the antibody or antigen binding fragment thereof of any one of claims 1-21 in the manufacture of a medicament for the treatment or prophylaxis of an immune disorder or cancer.
  35. A method of inhibiting growth of tumor cells in a subject, comprising  administering to the subject a therapeutically effective amount of the antibody or antigen binding fragment thereof of any one of claims 1-21, to inhibit growth of the tumor cells.
  36. The method of claim 33, wherein the tumor cells are of a cancer selected from a group consisting of melanoma, renal cancer, prostate cancer, breast cancer, colon cancer, lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, and rectal cancer.
PCT/CN2020/102152 2019-07-16 2020-07-15 Bispecific antibodies against pd-1 and lag-3 WO2021008559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080051323.7A CN114144429B (en) 2019-07-16 2020-07-15 Bispecific antibodies against PD-1 and LAG-3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/096203 2019-07-16
CN2019096203 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021008559A1 true WO2021008559A1 (en) 2021-01-21

Family

ID=74210147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102152 WO2021008559A1 (en) 2019-07-16 2020-07-15 Bispecific antibodies against pd-1 and lag-3

Country Status (2)

Country Link
CN (1) CN114144429B (en)
WO (1) WO2021008559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036137A1 (en) * 2021-09-10 2023-03-16 Wuxi Biologics (Shanghai) Co. Ltd. Process for preparing highly homogenous antibody-drug conjugates for engineered antibodies

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014796A1 (en) * 2012-07-18 2014-01-23 Eli Lilly And Company Multi-specific igg-(fab)2 constructs containing t-cell receptor constant domains
WO2015200119A1 (en) * 2014-06-26 2015-12-30 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
WO2017025051A1 (en) * 2015-08-11 2017-02-16 Wuxi Biologics (Shanghai) Co. Ltd. Novel anti-pd-1 antibodies
CN108473585A (en) * 2015-11-18 2018-08-31 默沙东公司 PD1 and/or LAG3 bonding agents
WO2018217940A2 (en) * 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2019057122A1 (en) * 2017-09-22 2019-03-28 Wuxi Biologics (Shanghai) Co., Ltd. Novel bispecific polypeptide complexes
WO2019129137A1 (en) * 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
WO2019179422A1 (en) * 2018-03-20 2019-09-26 Wuxi Biologics (Shanghai) Co., Ltd. Novel bispecific pd-1/lag-3 antibody molecules

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432494B9 (en) * 2015-08-11 2022-02-15 广州誉衡生物科技有限公司 Novel anti-PD-1 antibodies
EP3758751A4 (en) * 2018-02-28 2021-11-17 Wuxi Biologics Ireland Limited. Monoclonal antibody against human lag-3, method for preparing same, and use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014796A1 (en) * 2012-07-18 2014-01-23 Eli Lilly And Company Multi-specific igg-(fab)2 constructs containing t-cell receptor constant domains
WO2015200119A1 (en) * 2014-06-26 2015-12-30 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
WO2017025051A1 (en) * 2015-08-11 2017-02-16 Wuxi Biologics (Shanghai) Co. Ltd. Novel anti-pd-1 antibodies
CN108473585A (en) * 2015-11-18 2018-08-31 默沙东公司 PD1 and/or LAG3 bonding agents
WO2018217940A2 (en) * 2017-05-24 2018-11-29 Sutro Biopharma, Inc. Pd-1/lag3 bi-specific antibodies, compositions thereof, and methods of making and using the same
WO2019057122A1 (en) * 2017-09-22 2019-03-28 Wuxi Biologics (Shanghai) Co., Ltd. Novel bispecific polypeptide complexes
WO2019129137A1 (en) * 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Anti-lag-3 antibody and uses thereof
WO2019179422A1 (en) * 2018-03-20 2019-09-26 Wuxi Biologics (Shanghai) Co., Ltd. Novel bispecific pd-1/lag-3 antibody molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAHLEN,E.ET AL.: "Bispecific antibodies in cancer immunotherapy", THERAPEUTIC ADVANCES IN VACCINES AND IMMUNOTHERAPY, vol. 6, no. 1, 31 December 2018 (2018-12-31), pages 3 - 17, XP055545956, DOI: 20200918132534A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036137A1 (en) * 2021-09-10 2023-03-16 Wuxi Biologics (Shanghai) Co. Ltd. Process for preparing highly homogenous antibody-drug conjugates for engineered antibodies

Also Published As

Publication number Publication date
CN114144429A (en) 2022-03-04
CN114144429B (en) 2023-10-13

Similar Documents

Publication Publication Date Title
KR102629905B1 (en) Anti-PD-L1/anti-PD-1 natural antibody structure-like heterodimeric bispecific antibody and preparation thereof
CN111133003A (en) Novel bispecific polypeptide complexes
US11440962B2 (en) Anti-CD3epsilon antibodies
KR20180033501A (en) The bispecific antibody constructs that bind to DLL3 and CD3
US20210347908A1 (en) Novel anti-sirpa antibodies
CA2952540A1 (en) Bispecific single chain antibody construct with enhanced tissue distribution
KR20190028771A (en) Specific binding antibody-like binding protein &amp;lt; RTI ID = 0.0 &amp;gt;
KR20220050971A (en) Novel anti-CD39 antibody
CA3056374A1 (en) Anti-psma antibodies and use thereof
US20230035169A1 (en) BI-FUNCTIONAL ANTIBODY AGAINST PD-L1 AND TGF-Beta
CA3074524A1 (en) Novel anti-cd19 antibodies
WO2022105817A1 (en) Bi-functional molecules
WO2022111576A1 (en) Novel conjugate molecules targeting cd39 and tgfβeta
WO2021008559A1 (en) Bispecific antibodies against pd-1 and lag-3
WO2020216348A1 (en) Bispecific antibodies against pd-1 and lag-3
CN110305216B (en) Novel anti-TIM-3 antibodies
WO2021036929A1 (en) Humanized antibodies against pd-l1
US20230203159A1 (en) Novel anti-cd3epsilon antibodies
WO2023227062A1 (en) Novel anti-gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof
JP2023548345A (en) Antigen-binding domain with reduced clipping rate
TW202313699A (en) Novel anti-sirpa antibodies
EA042856B1 (en) NEW ANTI-CD3 EPSILON ANTIBODIES
NZ762170B2 (en) Novel anti-cd3epsilon antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840798

Country of ref document: EP

Kind code of ref document: A1