WO2021006332A1 - Information processing device, program, and calculation method - Google Patents

Information processing device, program, and calculation method Download PDF

Info

Publication number
WO2021006332A1
WO2021006332A1 PCT/JP2020/026980 JP2020026980W WO2021006332A1 WO 2021006332 A1 WO2021006332 A1 WO 2021006332A1 JP 2020026980 W JP2020026980 W JP 2020026980W WO 2021006332 A1 WO2021006332 A1 WO 2021006332A1
Authority
WO
WIPO (PCT)
Prior art keywords
series data
parameter
time series
output
controller
Prior art date
Application number
PCT/JP2020/026980
Other languages
French (fr)
Japanese (ja)
Inventor
修一 矢作
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2021006332A1 publication Critical patent/WO2021006332A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Definitions

  • the present disclosure relates to an information processing device, a program, and a calculation method, and more particularly to a technique for setting control parameters of a closed-loop controller equipped with a disturbance compensator.
  • FRIT Fetitious Reference Iterative Tuning
  • the closed loop system is controlled using the control parameters obtained by data drive control such as FRIT, the system may become unstable.
  • the system tends to become unstable when there is no control parameter that realizes the response of the reference model used in FRIT.
  • the inventor of the present application has found by simulation that the system tends to be unstable even when there is a disturbance compensator for compensating for the disturbance mixed in the input to be controlled in FRIT.
  • an object of the present invention is to provide a technique for evaluating the stability of control in a system having a disturbance compensator in FRIT.
  • a certain aspect of the present disclosure includes a controller, a control target having an output of the control target as an input, and a disturbance compensator for compensating for a disturbance of the input of the control target, and the output of the control target is the said.
  • a control system fed back to the input of a controller it is an information processing device that calculates a first parameter which is a parameter of the controller and a second parameter which is a parameter of the disturbance compensator. This device acquires the first time-series data which is the time-series data obtained by adding the output of the disturbance compensator to the output of the controller and the second time-series data which is the time-series data of the output to be controlled.
  • the third time series data which is a pseudo reference signal of the control system, is calculated from the time series data acquisition unit, the first parameter, the second parameter, the first time series data, and the second time series data.
  • Pseudo-reference signal calculation unit a complementary sensitivity function calculation unit that calculates a complementary sensitivity function for the controller based on the second time series data and the third time series data, and an input signal of the control system. It includes an output calculation unit that calculates fourth time-series data, which is an output when applied to the complementary sensitivity function.
  • the control system may further include a reference model that models the output of the controlled object by using an input signal input to the controlled object as an input, and the information processing apparatus may include the third time series data in the reference model.
  • the model output acquisition unit that acquires the 5th time series data which is the output time series data when is input, and the evaluation function regarding the error between the 4th time series data and the 5th time series data.
  • a parameter update unit for updating the first parameter and the second parameter may be further provided.
  • the evaluation function may be the sum of squares of errors between the fourth time-series data and the fifth time-series data, and the parameter update unit performs iterative processing so that the evaluation value of the evaluation function becomes smaller.
  • the first parameter and the second parameter may be updated by.
  • This program includes a controller, a controlled object having the output of the controller as an input, and a disturbance compensator for compensating for disturbance of the input of the controlled object, and the output of the controlled object is the controller.
  • the output of the disturbance compensator is added to the output of the controller to the computer that calculates the first parameter which is the parameter of the controller and the second parameter which is the parameter of the disturbance compensator.
  • a function of calculating the complementary sensitivity function for the controller and a function of calculating the fourth time series data which is an output when the input signal of the control system is applied to the complementary sensitivity function are realized.
  • Another aspect of the present disclosure is a calculation method. This calculation method includes a controller, a control target whose input is the output of the control target, and a disturbance compensator for compensating for disturbance of the input of the control target, and the output of the control target is the controller.
  • Acquiring the first time-series data which is the time-series data obtained by adding the output of the compensator acquiring the second time-series data which is the time-series data of the output to be controlled, the first parameter, the first.
  • This storage medium includes a controller, a control target having the output of the control target as an input, and a disturbance compensator for compensating for disturbance of the input of the control target, and the output of the control target is the control.
  • a storage medium that stores a computer-readable computer program that calculates a first parameter, which is a parameter of the controller, and a second parameter, which is a parameter of the disturbance compensator, in a control system that feeds back to the input of the device.
  • the computer program when executed by the computer, causes the computer to do the following: first time series data, which is time series data obtained by adding the output of the disturbance compensator to the output of the controller.
  • first time series data which is time series data obtained by adding the output of the disturbance compensator to the output of the controller.
  • second time series data which is the time series data of the output of the control target
  • third time series data which is a pseudo reference signal of the control system
  • complementary sensitivity function for the controller based on the second time series data and the third time series data.
  • fourth time series data which is the output when the input signal of the control system is applied to the complementary sensitivity function.
  • a computer-readable recording medium on which this program is recorded may be provided, or this program may be transmitted over a communication line.
  • Engell et al. The cause of the above problem is the instability of the closed loop system because the unstable poles are canceled when the transfer function of the pseudo error (error between the pseudo reference signal and the plant output) is obtained from the plant output. It indicates that the conversion cannot be detected. Therefore, Engell et al. Proposed to obtain the sensitivity function related to the pseudo-reference input and the pseudo-error from the input / output data, and then apply the target value to the obtained sensitivity function to obtain the error that is the output of the sensitivity function. As a result, the error that is the output of the sensitivity function can be obtained without canceling the unstable poles, and the instability of the closed loop system can be detected.
  • the sensitivity function is identified based on the FIR (Finite Impulse Response) model. Therefore, the structure of the plant model is not required to identify the sensitivity function. Furthermore, since it is calculated in the time domain, it can be expanded to online calculation.
  • FIR Finite Impulse Response
  • an evaluation function is set so that the closed loop system and the reference model set by the designer match.
  • a pseudo-reference input is used to obtain a complementary sensitivity function for the controller to be adjusted. That is, the output of the complementary sensitivity function is a function of the control parameter.
  • the target value that the designer wants to give is applied to the complementary sensitivity function, and the output is obtained.
  • the output of the complementary sensitivity function is the output from the plant. That is, by looking at the output of the complementary sensitivity function, it is possible to evaluate the stability of control using the controller parameters in FRIT.
  • the controller parameter that minimizes the square error between the output obtained from the complementary sensitivity function and the output of the reference model set by the designer is obtained by an optimization method such as particle swarm optimization.
  • an optimization method such as particle swarm optimization.
  • FIG. 1 is a diagram for explaining application of standard FRIT to a control system S which is a closed loop system including a disturbance compensator Dw.
  • the controller C is represented by a function C ( ⁇ ) having a first parameter ⁇ as an argument, which is a parameter used for control.
  • the disturbance compensator Dw is represented by a function Dw ( ⁇ ) having a second parameter ⁇ , which is a parameter used for estimating the disturbance T d , as an argument.
  • the sum of the output u fb of the controller C and the estimated value T'd of the disturbance T d which is the output of the disturbance compensator D w, is the control amount u input to the control target P.
  • the purpose of the control system S shown in FIG. 1 is to match the output y of the controlled object P with the output of the reference model M described later. Specifically, it is an object to specify a first parameter ⁇ and a second parameter ⁇ that output a control amount u to be input to the control target P in order to achieve this object.
  • ⁇ and ⁇ are parameters that can be freely adjusted
  • u, T'd , and y are data that can be acquired by observation.
  • d is a target value of the control system S. The disturbance T d cannot be observed.
  • the FRIT When the FRIT is applied to the control system S provided with the disturbance compensator Dw, the FRIT automatically adjusts the first parameter ⁇ and the second parameter ⁇ from a set of input / output data and the reference model M.
  • a set of closed-loop experiments is performed using the initial first parameter ⁇ 0 and the second parameter ⁇ 0, and the input / output data u and y at that time are sampled and measured. At this time, it is assumed that the control system S is stable.
  • control target P will be described on the premise that the dynamics of the rotating body is the control target.
  • the control target P is represented by the following equation (1).
  • the control target is not limited to the rotating body.
  • J represents inertia
  • B represents the viscous braking coefficient
  • y represents the angular velocity
  • u is a torque
  • the control target P controls, for example, the rotation speed of the engine or the rotation speed of the motor by controlling the torque applied to the rotating body.
  • the disturbance compensator Dw estimates the disturbance based on the following equation (2).
  • is the filter time constant used by the disturbance compensator Dw
  • s is the Laplace operator.
  • the inertia J and the time constant ⁇ constitute the second parameter ⁇ , which is a parameter of the disturbance compensator Dw.
  • the method of taking ⁇ is not limited to this.
  • the pseudo reference signal r of the control system S is the following equation using u 0 (k) and y 0 (k) which are time series data of the input / output data u and y measured in advance by the experiment. It can be represented by (5).
  • the first parameter ⁇ and the second parameter ⁇ may be collectively described as the parameter ⁇ .
  • r ( ⁇ , ⁇ , k) is expressed as r ( ⁇ , k).
  • equations (1) to (5) are equations in the Laplace region. When these equations are implemented on a computer using a software program, for example, equations (2) and (5) are discretized.
  • the evaluation function J ⁇ regarding the error between the feedback control response shown in FIG. 1 and the target response obtained from the reference model M (z) and the pseudo reference signal r ( ⁇ , k) is expressed by the following equation (6).
  • the parameter ⁇ that minimizes the evaluation function J ⁇ minimizes the square error between the plant output y (k), which is the output of the controlled object P, and the output M (z) r ( ⁇ , k) of the reference model M. In that sense, it is an optimum parameter of the controller C and the disturbance compensator Dw. In general FRIT, the optimum parameter ⁇ is calculated by offline calculation.
  • the evaluation function is not limited to the form shown in the equation (6), and may be one in consideration of restrictions such as control input.
  • FRIT aims to find the optimum control parameters that match the transfer function of the closed-loop control system S with the reference model. That is, FRIT finds the optimum parameter that minimizes the evaluation function J ⁇ represented by the following equation (7).
  • FRIT is one of the data-driven controls that obtains the optimum control parameters offline using a set of input / output data acquired by experiments without repeating the closed loop test using the pseudo reference signal r ( ⁇ , k). It can be said that.
  • the complementary sensitivity function in the time domain (the complementary sensitivity function of the output y of the controlled object P with respect to the target value d of the control system S) is obtained by using the pseudo reference signal r ( ⁇ , k) and the plant output y 0 .
  • the target value d is applied to the obtained complementary sensitivity function, and the response y * is obtained.
  • the FIR model is used to identify the complementary sensitivity function. As a result, it is not necessary to know the structure of the controlled object P, and the complementary sensitivity function can be identified using only the acquired data.
  • Equation (9) the symbol * represents convolution, and t (k) represents the impulse response of the complementary sensitivity function T to the controller C to be adjusted.
  • the pseudo-reference signal r ( ⁇ , k) and the plant output y 0 are observable, but the impulse response t (k) of the complementary sensitivity function T is unknown.
  • Equation (9) becomes the following equation (10) when expressed using a matrix.
  • the impulse response t (k) of the complementary sensitivity function T is given by the following equation (11). expressed.
  • Equation (11) can be said to be a deconvolution of equation (9).
  • t depends on the parameter ⁇ .
  • Equation (12) becomes the following equation (13) when expressed using a matrix.
  • the pseudo-reference signal r ( ⁇ , k), which is a function of the parameter ⁇ is adjusted so as to match the acquired plant output y 0 .
  • the parameter ⁇ is adjusted to change the plant output y * so that the plant output y 0 matches the output M (z) d (k) of the reference model M. That is, while the standard FRIT finds the parameter ⁇ so as to match the plant output obtained in advance by the experiment, the method according to the embodiment matches the output M (z) d (k) of the reference model. To find the parameter ⁇ .
  • FIG. 2 is a diagram schematically showing a configuration of FRIT in consideration of stability.
  • the pseudo reference signal r ( ⁇ ) is calculated from the input / output data of the control system S when the first parameter ⁇ is the initial value ⁇ 0 and the initial value of the second parameter ⁇ is ⁇ 0 .
  • the complementary sensitivity function t is obtained by using the calculated pseudo reference input r ( ⁇ ) and the plant output y using the above equation (11), and the target value d, which is the input signal of the control system S, is used as the complementary sensitivity function t. Is entered in.
  • the parameter ⁇ that minimizes the error between the output y * which is the output of the complementary sensitivity function t, and the output M (z) d of the reference model is obtained by the optimization method.
  • FIG. 3 is a diagram schematically showing a functional configuration of the information processing device 1 according to the embodiment.
  • the information processing device 1 includes a storage unit 2 and a control unit 3.
  • the arrows indicate the main data flows, and there may be data flows not shown in FIG.
  • each functional block shows not the configuration of each hardware (device) but the configuration of each function. Therefore, the functional block shown in FIG. 3 may be mounted in a single device, or may be mounted separately in a plurality of devices. Data transfer between functional blocks may be performed via any means such as a data bus, a network, and a portable storage medium.
  • the storage unit 2 includes a ROM (Read Only Memory) that stores the BIOS (Basic Input Output System) of the computer that realizes the information processing device 1, a RAM (Random Access Memory) that serves as a work area of the information processing device 1, and an OS ( It is a large-capacity storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that stores various information referred to when the application program is executed, such as an Operating System) or an application program.
  • BIOS Basic Input Output System
  • RAM Random Access Memory
  • OS It is a large-capacity storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that stores various information referred to when the application program is executed, such as an Operating System) or an application program.
  • the control unit 3 is a processor such as a CPU (Central Processing Unit) or GPU (Graphics Processing Unit) of the information processing device 1, and the time-series data acquisition unit 30 is simulated by executing a program stored in the storage unit 2. It functions as a reference signal calculation unit 31, a complementary sensitivity function calculation unit 32, an output calculation unit 33, a model output acquisition unit 34, and a parameter update unit 35.
  • a processor such as a CPU (Central Processing Unit) or GPU (Graphics Processing Unit) of the information processing device 1
  • the time-series data acquisition unit 30 is simulated by executing a program stored in the storage unit 2. It functions as a reference signal calculation unit 31, a complementary sensitivity function calculation unit 32, an output calculation unit 33, a model output acquisition unit 34, and a parameter update unit 35.
  • FIG. 3 shows an example in which the information processing device 1 is composed of a single device.
  • the information processing device 1 may be realized by computing resources such as a plurality of processors and memories, such as a cloud computing system.
  • each unit constituting the control unit 3 is realized by executing a program by at least one of a plurality of different processors.
  • the information processing device 1 is a control system S including a controller C, a control target P having an output of the control C as an input, and a disturbance compensator Dw for compensating for a disturbance of the input of the control target P.
  • This is a device for calculating the first parameter ⁇ , which is a parameter of the controller C, and the second parameter ⁇ , which is a parameter of the disturbance compensator Dw.
  • the control system S is a closed loop system in which the output of the controlled object P is fed back to the input of the controller C.
  • the time-series data acquisition unit 30 includes the first time-series data which is the time-series data obtained by adding the output of the disturbance compensator Dw to the output of the controller C and the second time-series data which is the time-series data of the output of the control target P. And get.
  • the first time-series data corresponds to the control amount u to be input to the control target P described above
  • the second time-series data corresponds to the output y of the control target P described above. Therefore, in the present specification, they may be referred to as "first time series data u" and "second time series data y".
  • the pseudo-reference signal calculation unit 31 uses the first parameter ⁇ , the second parameter ⁇ , the first time-series data u, and the second time-series data y from the pseudo-reference of the control system S based on the above equation (5). Estimate the third time series data which is a signal.
  • the complementary sensitivity function calculation unit 32 calculates the complementary sensitivity function t for the controller C using the above equation (11) based on the second time series data y and the third time series data r ( ⁇ ). ..
  • the impulse response t of the complementary sensitivity function T is calculated by the complementary sensitivity function calculation unit 32, but the calculation result of the complementary sensitivity function calculation unit 32 is described as the complementary sensitivity function t for convenience of the following description.
  • the output calculation unit 33 calculates the fourth time series data which is the output when the input signal d of the control system S is applied to the complementary sensitivity function t by using the above equation (12) or equation (13).
  • the fourth time-series data corresponds to the output y * when the input signal d (target value) of the control system S is applied to the complementary sensitivity function T. Therefore, it may be described below as “fourth time series data y * ".
  • the first time series data u which is the control amount to be input to the control target P
  • the second time series data y which is the output of the control target P
  • the input signal d of the control system S are all quantities that can be acquired by observation. Is.
  • the information processing device 1 calculates the output y * when the input signal d is input to the control system S by using the first time series data u, the second time series data y, and the input signal d acquired by observation. can do.
  • the output y * is the output from the control target P.
  • the information processing device 1 analyzes the behavior of the output y * (for example, whether or not it diverges, whether or not it vibrates, whether or not it converges, etc.), thereby controlling the control having the disturbance compensator Dw in FRIT.
  • the stability of control using the first parameter ⁇ and the second parameter ⁇ in the system S can be evaluated.
  • the control system S includes a reference model M that realizes that the output of the control target P with respect to the input signal d is a predetermined output.
  • the reference model M is determined by the designer so that the output of the controlled object P is the output desired by the designer.
  • the model output acquisition unit 34 acquires the fifth time-series data, which is the output time-series data when the input signal d is input to the reference model M.
  • the fifth time series data corresponds to the output M (z) d of the reference model described above.
  • the fifth time-series data may be referred to as a "fifth time-series data y d".
  • the information processing device 1 can evaluate the stability of the control using the first parameter ⁇ and the second parameter ⁇ in the FRIT, the information processing device 1 has a parameter so that the control is stabilized.
  • first parameter ⁇ and second parameter ⁇
  • the parameter update unit 35 based on the evaluation value of the evaluation function J * (sigma) regarding the error of the fourth time-series data y * and fifth time-series data y d, updates the parameter sigma To do.
  • the evaluation function J * ( ⁇ ) used by the parameter update unit 35 is the fourth time series data y * and the fifth time series data. It is the sum of squares of the error with y d .
  • the parameter update unit 35 updates the parameter ⁇ by iterative processing so that the evaluation value of the evaluation function J * ( ⁇ ) becomes small. That is, the parameter updating unit 35 is determined by repeating the optimum parameter ⁇ in the sense that the sum of squares of errors between the fourth time-series data y * and fifth time-series data y d becomes smaller.
  • the fourth time series data y * diverges or vibrates, the sum of squares of the errors between the fourth time series data y * and the fifth time series data y d becomes large.
  • the information processing apparatus 1 updates the parameter ⁇ so that the sum of squares of the errors between the fourth time series data y * and the fifth time series data y d becomes smaller by the parameter update unit 35, so that the information processing apparatus 1 uses the first parameter in FRIT. It is possible to stabilize the control of the plant using ⁇ and the second parameter ⁇ .
  • the parameter update unit 35 may use any optimization method as long as the parameter ⁇ can be updated so that the evaluation value of the evaluation function becomes small.
  • the parameter updating unit 35 may update the parameter ⁇ by using a particle swarm optimization method with a predetermined number of repetitions as the upper limit of the number of iterations.
  • FIG. 4 is a flowchart for explaining the flow of information processing executed by the information processing apparatus 1 according to the embodiment. The process in this flowchart starts, for example, when the information processing device 1 is activated.
  • the time-series data acquisition unit 30 acquires the first time-series data u, which is the time-series data obtained by adding the output of the disturbance compensator Dw to the output of the controller C (S2). Further, the time-series data acquisition unit 30 acquires the second time-series data y, which is the time-series data of the output of the control target P (S4).
  • the pseudo-reference signal calculation unit 31 controls from the first parameter ⁇ which is a parameter of the controller C, the second parameter ⁇ which is a parameter of the disturbance compensator Dw, the first time series data u, and the second time series data y.
  • the third time series data r ( ⁇ ), which is a pseudo reference signal of the system S, is estimated (S6).
  • the complementary sensitivity function calculation unit 32 calculates the complementary sensitivity function t for the controller C using the equation (11) based on the second time series data y and the third time series data r ( ⁇ ) (S8). ..
  • the output calculation unit 33 uses the equation (14) to apply the input signal d of the control system S to the complementary sensitivity function t, which is the output of the fourth time series data y * (that is, the control target for the input signal d). Output of P) is calculated (S10).
  • the model output acquisition unit 34 acquires the fifth time series data y d , which is the output time series data when the input signal d is input to the reference model M (S12).
  • Parameter updating unit 35 calculates the evaluation value of the evaluation function J (sigma) regarding the error of the fourth time-series data y * and fifth time-series data y d (S14).
  • the parameter update unit 35 updates the parameter ⁇ (first parameter ⁇ and second parameter ⁇ ) by iterative processing so that the evaluation value of the evaluation function J ( ⁇ ) becomes smaller (S16).
  • the parameter ⁇ which is the parameter of the controller C in the control system S having the disturbance compensator Dw and the parameter of the disturbance compensator Dw.
  • the stability of control using the second parameter ⁇ can be evaluated.
  • the information processing apparatus 1 can also optimize the first parameter ⁇ and the second parameter ⁇ in FRIT so that the control of the closed loop system is stabilized.
  • the information processing apparatus, program, and calculation method of the present disclosure are useful in that the stability of control in a system having a disturbance compensator can be evaluated in FRIT.
  • Control unit 30 Time series data acquisition unit 31 ... Pseudo-reference signal calculation unit 32 ... Complementary sensitivity function calculation unit 33 ... Output calculation unit 34 ... Model output acquisition unit 35 ... Parameter update unit C ... Controller Dw ... Disturbance compensator M ... Reference model P ... Control target S ... Control system

Abstract

Provided is a feature for evaluating, with regard to FRIT, the stability of control in a system having a disturbance compensator. An information processing device (1) calculates a control parameter in a control system (S) of a closed loop system provided with a disturbance compensator (Dw). A time series data acquisition unit (30) acquires first time series data, which is time series data obtained by adding an output of the disturbance compensator (Dw) to an output of a controller (C), and second time series data, which is time series data of an output of a control subject (P). A pseudo-reference signal calculation unit (31) calculates third time series data, which is a pseudo-reference signal of the control system (S), from a first parameter, a second parameter, the first time series data, and the second time series data. A complementary sensitivity function calculation unit (32) calculates a complementary sensitivity function for the controller (C) on the basis of the second time series data and the third time series data. An output operation unit (33) calculates fourth time series data, which is an output when an input signal of the control system (S) is applied to the complementary sensitivity function.

Description

情報処理装置、プログラム、及び算出方法Information processing equipment, programs, and calculation methods
 本開示は情報処理装置、プログラム、及び算出方法に関し、特に、外乱補償器を備える閉ループ系の制御器の制御パラメータを設定する技術に関する。 The present disclosure relates to an information processing device, a program, and a calculation method, and more particularly to a technique for setting control parameters of a closed-loop controller equipped with a disturbance compensator.
 閉ループ系における制御対象のモデルを用いない制御手法が種々提案されている。このようなモデルを用いない制御器パラメータの自動調整手法の一つとしてFRIT(Fictitious Reference Iterative Tuning)が知られている(特許文献1参照)。 Various control methods that do not use a model to be controlled in a closed loop system have been proposed. FRIT (Fictitious Reference Iterative Tuning) is known as one of the methods for automatically adjusting controller parameters without using such a model (see Patent Document 1).
日本国特開2017-182624号公報Japanese Patent Application Laid-Open No. 2017-182624
 FRIT等のデータ駆動制御により得られた制御パラメータを用いて閉ループ系を制御すると、系が不安定となる場合がある。特に、FRITで用いられる参照モデルの応答を実現する制御パラメータが存在しない場合に系が不安定となりやすいことが知られている。また、本願の発明者は、FRITにおいて制御対象の入力に混入する外乱を補償する外乱補償器が存在する場合にも、系が不安定となりやすいことをシミュレーションにより見出した。 If the closed loop system is controlled using the control parameters obtained by data drive control such as FRIT, the system may become unstable. In particular, it is known that the system tends to become unstable when there is no control parameter that realizes the response of the reference model used in FRIT. Further, the inventor of the present application has found by simulation that the system tends to be unstable even when there is a disturbance compensator for compensating for the disturbance mixed in the input to be controlled in FRIT.
 本開示はこれらの点に鑑みてなされたものであり、FRITにおいて、外乱補償器を有する系における制御の安定性を評価する技術を提供することを目的とする。 The present disclosure has been made in view of these points, and an object of the present invention is to provide a technique for evaluating the stability of control in a system having a disturbance compensator in FRIT.
 本開示のある態様は、制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器とを備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出する情報処理装置である。この装置は、前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データと、前記制御対象の出力の時系列データである第2時系列データとを取得する時系列データ取得部と、前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出する擬似参照信号算出部と、前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する相補感度関数算出部と、前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出する出力演算部と、を備える。 A certain aspect of the present disclosure includes a controller, a control target having an output of the control target as an input, and a disturbance compensator for compensating for a disturbance of the input of the control target, and the output of the control target is the said. In a control system fed back to the input of a controller, it is an information processing device that calculates a first parameter which is a parameter of the controller and a second parameter which is a parameter of the disturbance compensator. This device acquires the first time-series data which is the time-series data obtained by adding the output of the disturbance compensator to the output of the controller and the second time-series data which is the time-series data of the output to be controlled. The third time series data, which is a pseudo reference signal of the control system, is calculated from the time series data acquisition unit, the first parameter, the second parameter, the first time series data, and the second time series data. Pseudo-reference signal calculation unit, a complementary sensitivity function calculation unit that calculates a complementary sensitivity function for the controller based on the second time series data and the third time series data, and an input signal of the control system. It includes an output calculation unit that calculates fourth time-series data, which is an output when applied to the complementary sensitivity function.
 前記制御システムは、前記制御対象に入力する入力信号を入力として前記制御対象の出力をモデル化する参照モデルをさらに備えてもよく、前記情報処理装置は、前記参照モデルに前記第3時系列データを入力した場合の出力の時系列データである第5時系列データを取得するモデル出力取得部と、前記第4時系列データと前記第5時系列データとの誤差に関する評価関数の評価値に基づいて前記第1パラメータと前記第2パラメータとを更新するパラメータ更新部と、をさらに備えてもよい。 The control system may further include a reference model that models the output of the controlled object by using an input signal input to the controlled object as an input, and the information processing apparatus may include the third time series data in the reference model. Based on the evaluation value of the model output acquisition unit that acquires the 5th time series data which is the output time series data when is input, and the evaluation function regarding the error between the 4th time series data and the 5th time series data. Further, a parameter update unit for updating the first parameter and the second parameter may be further provided.
 前記評価関数は、前記第4時系列データと前記第5時系列データとの誤差の二乗和であってもよく、前記パラメータ更新部は、前記評価関数の評価値が小さくなるように、反復処理によって前記第1パラメータ及び前記第2パラメータを更新してもよい。 The evaluation function may be the sum of squares of errors between the fourth time-series data and the fifth time-series data, and the parameter update unit performs iterative processing so that the evaluation value of the evaluation function becomes smaller. The first parameter and the second parameter may be updated by.
 本開示の別の態様は、プログラムである。このプログラムは、制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器とを備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出するコンピュータに、前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データを取得する機能と、前記制御対象の出力の時系列データである第2時系列データを取得する機能と、前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出する機能と、前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する機能と、前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出する機能と、を実現させる。
 本開示の別の態様は、算出方法である。この算出方法は、制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器とを備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出する算出方法であって、前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データを取得すること、前記制御対象の出力の時系列データである第2時系列データを取得すること、前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出すること、前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出すること、及び前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出すること、を含む。
 本開示の別の態様は、記憶媒体である。この記憶媒体は、制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器と、を備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出するコンピュータによって読取可能なコンピュータプログラムを記憶する記憶媒体であって、前記コンピュータプログラムは、前記コンピュータにより実行されると、前記コンピュータに以下を実行させる:前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データを取得すること、前記制御対象の出力の時系列データである第2時系列データを取得すること、前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出すること、前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出すること、及び前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出すること。
Another aspect of the disclosure is a program. This program includes a controller, a controlled object having the output of the controller as an input, and a disturbance compensator for compensating for disturbance of the input of the controlled object, and the output of the controlled object is the controller. In the control system fed back to the input, the output of the disturbance compensator is added to the output of the controller to the computer that calculates the first parameter which is the parameter of the controller and the second parameter which is the parameter of the disturbance compensator. The function of acquiring the first time-series data which is the time-series data obtained by adding the above, the function of acquiring the second time-series data which is the time-series data of the output of the control target, the first parameter, and the second parameter. , The function of calculating the third time series data which is a pseudo reference signal of the control system from the first time series data and the second time series data, and the second time series data and the third time series data. Based on the above, a function of calculating the complementary sensitivity function for the controller and a function of calculating the fourth time series data which is an output when the input signal of the control system is applied to the complementary sensitivity function are realized. Let me.
Another aspect of the present disclosure is a calculation method. This calculation method includes a controller, a control target whose input is the output of the control target, and a disturbance compensator for compensating for disturbance of the input of the control target, and the output of the control target is the controller. This is a calculation method for calculating a first parameter which is a parameter of the controller and a second parameter which is a parameter of the disturbance compensator in the control system fed back to the input of the controller, and the disturbance is output to the output of the controller. Acquiring the first time-series data which is the time-series data obtained by adding the output of the compensator, acquiring the second time-series data which is the time-series data of the output to be controlled, the first parameter, the first. To calculate the third time series data which is a pseudo reference signal of the control system from the two parameters, the first time series data, and the second time series data, the second time series data and the third time series. It includes calculating the complementary sensitivity function for the controller based on the data, and calculating the fourth time series data which is the output when the input signal of the control system is applied to the complementary sensitivity function. ..
Another aspect of the disclosure is a storage medium. This storage medium includes a controller, a control target having the output of the control target as an input, and a disturbance compensator for compensating for disturbance of the input of the control target, and the output of the control target is the control. A storage medium that stores a computer-readable computer program that calculates a first parameter, which is a parameter of the controller, and a second parameter, which is a parameter of the disturbance compensator, in a control system that feeds back to the input of the device. The computer program, when executed by the computer, causes the computer to do the following: first time series data, which is time series data obtained by adding the output of the disturbance compensator to the output of the controller. To acquire, to acquire the second time series data which is the time series data of the output of the control target, from the first parameter, the second parameter, the first time series data, and the second time series data. To calculate the third time series data which is a pseudo reference signal of the control system, and to calculate the complementary sensitivity function for the controller based on the second time series data and the third time series data. And to calculate the fourth time series data which is the output when the input signal of the control system is applied to the complementary sensitivity function.
 このプログラムを提供するため、あるいはプログラムの一部をアップデートするために、このプログラムを記録したコンピュータ読み取り可能な記録媒体が提供されてもよく、また、このプログラムが通信回線で伝送されてもよい。 In order to provide this program or to update a part of the program, a computer-readable recording medium on which this program is recorded may be provided, or this program may be transmitted over a communication line.
 なお、以上の構成要素の任意の組み合わせ、本開示の表現を方法、装置、システム、コンピュータプログラム、データ構造、記録媒体などの間で変換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present disclosure between methods, devices, systems, computer programs, data structures, recording media, etc. are also effective as aspects of the present disclosure.
 本開示によれば、FRITにおいて、外乱補償器を有する系における制御の安定性を評価することができる。 According to the present disclosure, it is possible to evaluate the stability of control in a system having a disturbance compensator in FRIT.
外乱補償器を備える閉ループ系である制御システムに標準的なFRITを適用することを説明するための図である。It is a figure for demonstrating the application of a standard FRIT to a control system which is a closed loop system equipped with a disturbance compensator. 安定性を考慮したFRITの構成を模式的に示す図である。It is a figure which shows typically the structure of FRIT in consideration of stability. 実施の形態に係る情報処理装置の機能構成を模式的に示す図である。It is a figure which shows typically the functional structure of the information processing apparatus which concerns on embodiment. 実施の形態に係る情報処理装置が実行する情報処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the information processing executed by the information processing apparatus which concerns on embodiment.
[1.概略]
 FRITや非反証制御等のデータ駆動制御により得られた制御パラメータを用いて制御を行うと、閉ループ系が不安定化する場合がある。特に、制御器の構造上、参照モデルの応答を実現する制御パラメータが存在しない場合に不安定化が生じやすいことが知られている。この問題はSafonovが提案した擬似参照入力を使用する場合に生じる。
[1. Summary]
If control is performed using control parameters obtained by data-driven control such as FRIT or non-proof control, the closed loop system may become unstable. In particular, it is known that instability is likely to occur when there is no control parameter that realizes the response of the reference model due to the structure of the controller. This problem arises when using the pseudo-reference input proposed by Safonov.
 Engellらは、上記の問題が発生する原因として、プラント出力から擬似誤差(擬似参照信号とプラント出力の誤差)の伝達関数を求める際に不安定極が相殺されてしまうため、閉ループ系の不安定化を検知できないことを示している。そこで、Engellらは、擬似参照入力と擬似誤差に関する感度関数を入出力データから求めた後、得られた感度関数に目標値を印加し感度関数の出力である誤差を求めることを提案した。これにより、不安定極を相殺することなく感度関数の出力である誤差を求めることができ、閉ループ系の不安定化を検知することができる。Engellらの手法において、感度関数はFIR(Finite Impulse Response)モデルに基づいて同定される。このため、感度関数の同定にプラントモデルの構造は不要である。さらに、時間領域で計算していることからオンライン計算への展開が可能となる。 Engell et al., The cause of the above problem is the instability of the closed loop system because the unstable poles are canceled when the transfer function of the pseudo error (error between the pseudo reference signal and the plant output) is obtained from the plant output. It indicates that the conversion cannot be detected. Therefore, Engell et al. Proposed to obtain the sensitivity function related to the pseudo-reference input and the pseudo-error from the input / output data, and then apply the target value to the obtained sensitivity function to obtain the error that is the output of the sensitivity function. As a result, the error that is the output of the sensitivity function can be obtained without canceling the unstable poles, and the instability of the closed loop system can be detected. In the method of Engell et al., The sensitivity function is identified based on the FIR (Finite Impulse Response) model. Therefore, the structure of the plant model is not required to identify the sensitivity function. Furthermore, since it is calculated in the time domain, it can be expanded to online calculation.
 Engellらは感度関数の出力である誤差を最小にする評価関数を設定した。これに対し、実施の形態に係る手法は、閉ループ系と設計者が設定した参照モデルとが一致するような評価関数を設定する。具体的には、本実施の形態では、まず、擬似参照入力を利用し、調整する制御器に対する相補感度関数を求める。すなわち相補感度関数の出力は制御パラメータの関数となる。次に、設計者が与えたい目標値を相補感度関数に印加しその出力を求める。相補感度関数の出力はプラントからの出力である。すなわち、相補感度関数の出力を見ることにより、FRITにおいて制御器パラメータを用いた制御の安定性を評価することができる。 Engell et al. Set an evaluation function that minimizes the error that is the output of the sensitivity function. On the other hand, in the method according to the embodiment, an evaluation function is set so that the closed loop system and the reference model set by the designer match. Specifically, in the present embodiment, first, a pseudo-reference input is used to obtain a complementary sensitivity function for the controller to be adjusted. That is, the output of the complementary sensitivity function is a function of the control parameter. Next, the target value that the designer wants to give is applied to the complementary sensitivity function, and the output is obtained. The output of the complementary sensitivity function is the output from the plant. That is, by looking at the output of the complementary sensitivity function, it is possible to evaluate the stability of control using the controller parameters in FRIT.
 実施の形態に係る手法では、相補感度関数から得られた出力と設計者が設定した参照モデルの出力の二乗誤差が最小になる制御器パラメータを粒子群最適化等の最適化手法により求める。これにより、標準的なFRITでは閉ループ系が不安定になる場合であっても、本実施の形態では安定な制御パラメータが得られる。これより、実施の形態は標準FRITの利点を活かしたまま不安定化を軽減することができる。 In the method according to the embodiment, the controller parameter that minimizes the square error between the output obtained from the complementary sensitivity function and the output of the reference model set by the designer is obtained by an optimization method such as particle swarm optimization. As a result, stable control parameters can be obtained in the present embodiment even when the closed loop system becomes unstable in the standard FRIT. From this, the embodiment can reduce the instability while taking advantage of the standard FRIT.
[2.安定性を考慮したFRITの導出][2.1.標準FRIT]
 図1は、外乱補償器Dwを備える閉ループ系である制御システムSに標準的なFRITを適用することを説明するための図である。図1に示す制御システムSにおいて、制御器Cは制御に用いるパラメータである第1パラメータθを引数とする関数C(θ)で表現されている。また、外乱補償器Dwは、外乱Tの推定に用いるパラメータである第2パラメータξを引数とする関数Dw(ξ)で表現されている。制御器Cの出力ufbと、外乱補償器Dwの出力である外乱Tの推定値T’との和が、制御対象Pに入力される制御量uとなる。
[2. Derivation of FRIT in consideration of stability] [2.1. Standard FRIT]
FIG. 1 is a diagram for explaining application of standard FRIT to a control system S which is a closed loop system including a disturbance compensator Dw. In the control system S shown in FIG. 1, the controller C is represented by a function C (θ) having a first parameter θ as an argument, which is a parameter used for control. Further, the disturbance compensator Dw is represented by a function Dw (ξ) having a second parameter ξ, which is a parameter used for estimating the disturbance T d , as an argument. The sum of the output u fb of the controller C and the estimated value T'd of the disturbance T d , which is the output of the disturbance compensator D w, is the control amount u input to the control target P.
 図1に示す制御システムSは、制御対象Pの出力yと後述する参照モデルMの出力とを一致させることが目的である。具体的には、この目的を達成するために制御対象Pに入力すべき制御量uを出力するような第1パラメータθ及び第2パラメータξを特定することが目的である。なお、図1において、θ及びξは自由に調整できるパラメータであり、u、T’、及びyは観測により取得可能なデータである。また、dは制御システムSの目標値である。外乱Tは観測することができない。 The purpose of the control system S shown in FIG. 1 is to match the output y of the controlled object P with the output of the reference model M described later. Specifically, it is an object to specify a first parameter θ and a second parameter ξ that output a control amount u to be input to the control target P in order to achieve this object. In FIG. 1, θ and ξ are parameters that can be freely adjusted, and u, T'd , and y are data that can be acquired by observation. Further, d is a target value of the control system S. The disturbance T d cannot be observed.
 外乱補償器Dwを備える制御システムSにFRITを適用する場合、FRITは1組の入出力データと参照モデルMとから、第1パラメータθと第2パラメータξとを自動調整することになる。初期の第1パラメータθ及び第2パラメータξを用いて1組の閉ループ実験を行い、そのときの入出力データu及びyをサンプリングして計測する。このとき、制御システムSは安定であるとする。 When the FRIT is applied to the control system S provided with the disturbance compensator Dw, the FRIT automatically adjusts the first parameter θ and the second parameter ξ from a set of input / output data and the reference model M. A set of closed-loop experiments is performed using the initial first parameter θ 0 and the second parameter ξ 0, and the input / output data u and y at that time are sampled and measured. At this time, it is assumed that the control system S is stable.
 以下、本明細書では、制御対象Pは回転体の動力学を制御対象であることを前提として説明する。この場合、制御対象Pは以下の式(1)で表される。しかしながら、制御対象は回転体に限られないことは当業者であれば理解できることである。 Hereinafter, in the present specification, the control target P will be described on the premise that the dynamics of the rotating body is the control target. In this case, the control target P is represented by the following equation (1). However, those skilled in the art can understand that the control target is not limited to the rotating body.
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Jはイナーシャ、Bは粘性制動係数を表し、yは角速度を表す。この場合、uはトルクであり、制御対象Pは、回転体に与えるトルクを制御することにより、例えばエンジンの回転数やモータの回転数を制御する。
Figure JPOXMLDOC01-appb-M000001
In equation (1), J represents inertia, B represents the viscous braking coefficient, and y represents the angular velocity. In this case, u is a torque, and the control target P controls, for example, the rotation speed of the engine or the rotation speed of the motor by controlling the torque applied to the rotating body.
 外乱補償器Dwは、以下の式(2)に基づいて外乱を推定する。 The disturbance compensator Dw estimates the disturbance based on the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 式(2)において、τは外乱補償器Dwが使用するフィルタ時定数であり、sはラプラス演算子である。ここでは、一例として、イナーシャJ及び時定数τが、外乱補償器Dwのパラメータである第2パラメータξを構成する。なお、ξの取り方はこれに限らない。
Figure JPOXMLDOC01-appb-M000002
In equation (2), τ is the filter time constant used by the disturbance compensator Dw, and s is the Laplace operator. Here, as an example, the inertia J and the time constant τ constitute the second parameter ξ, which is a parameter of the disturbance compensator Dw. The method of taking ξ is not limited to this.
 式(1)、式(2)、及び図1より、以下の式(3)が成り立つ。 From equations (1), (2), and FIG. 1, the following equation (3) holds.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)を整理すると以下の式(4)を得る。 The following formula (4) is obtained by rearranging the formula (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)より、制御システムSの擬似参照信号rは、実験によりあらかじめ測定した入出力データu及びyの時系列データであるu(k)及びy(k)を用いて以下の式(5)で表せる。 From the equation (4), the pseudo reference signal r of the control system S is the following equation using u 0 (k) and y 0 (k) which are time series data of the input / output data u and y measured in advance by the experiment. It can be represented by (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以下、記載の便宜のため、第1パラメータθと第2パラメータξとをあわせてパラメータσと記載することがある。この場合、r(θ,ξ,k)はr(σ,k)と表現される。また、説明の便宜上、上記式(1)から式(5)はラプラス領域における式である。これらの式をソフトウェアプログラムを用いて計算機上で実装する場合には、例えば式(2)や式(5)は離散化することになる。 Hereinafter, for convenience of description, the first parameter θ and the second parameter ξ may be collectively described as the parameter σ. In this case, r (θ, ξ, k) is expressed as r (σ, k). Further, for convenience of explanation, the above equations (1) to (5) are equations in the Laplace region. When these equations are implemented on a computer using a software program, for example, equations (2) and (5) are discretized.
 図1に示すフィードバック制御の応答と、参照モデルM(z)及び擬似参照信号r(σ,k)から得られる目標応答との誤差に関する評価関数Jσは次式(6)で表される。 The evaluation function J σ regarding the error between the feedback control response shown in FIG. 1 and the target response obtained from the reference model M (z) and the pseudo reference signal r (σ, k) is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この評価関数Jσを最小にするパラメータσは、制御対象Pの出力であるプラント出力y(k)と参照モデルMの出力M(z)r(σ,k)との二乗誤差を最小化するという意味において、制御器C及び外乱補償器Dwの最適なパラメータである。一般的なFRITでは、オフライン計算で最適なパラメータσが計算される。なお、評価関数は式(6)に示す形に限られず、制御入力等の制約を考慮したものであってもよい。 The parameter σ that minimizes the evaluation function J σ minimizes the square error between the plant output y (k), which is the output of the controlled object P, and the output M (z) r (σ, k) of the reference model M. In that sense, it is an optimum parameter of the controller C and the disturbance compensator Dw. In general FRIT, the optimum parameter σ is calculated by offline calculation. The evaluation function is not limited to the form shown in the equation (6), and may be one in consideration of restrictions such as control input.
 式(6)から明らかなように、FRITは閉ループ系の制御システムSの伝達関数と参照モデルがマッチングする最適な制御器パラメータを求めることを目的としている。すなわち、FRITは、以下の式(7)で表される評価関数Jσを最小にする最適パラメータを求める。FRITは擬似参照信号r(σ,k)を利用して、閉ループ試験を繰り返すことなく実験により取得した1組の入出力データを用いてオフラインで最適制御パラメータを求めるデータ駆動制御の1つであるともいえる。 As is clear from equation (6), FRIT aims to find the optimum control parameters that match the transfer function of the closed-loop control system S with the reference model. That is, FRIT finds the optimum parameter that minimizes the evaluation function J σ represented by the following equation (7). FRIT is one of the data-driven controls that obtains the optimum control parameters offline using a set of input / output data acquired by experiments without repeating the closed loop test using the pseudo reference signal r (σ, k). It can be said that.
 FRITの評価関数Jσ、及び擬似誤差e(σ,k)は次式で表される。 The evaluation function J σ of FRIT and the pseudo error e (σ, k) are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
[2.2.安定性を考慮したFRIT]
 擬似参照信号r(σ,k)を用いる場合にはFRITの閉ループ系の不安定化を検知できない。そこで、まず、擬似参照信号r(σ,k)とプラント出力yを用いて時間領域における相補感度関数(制御システムSの目標値dに対する制御対象Pの出力yの相補感度関数)を求める。求めた相補感度関数に目標値dを印加し、その応答yを求める。この応答yが参照モデルMの応答M(z)dと一致するようなパラメータσを求める。なお、相補感度関数の同定はFIRモデルを用いる。これにより、制御対象Pの構造を知る必要はなく、取得したデータのみを用いて相補感度関数を同定することができる。
[2.2. FRIT considering stability]
When the pseudo reference signal r (σ, k) is used, the instability of the closed loop system of FRIT cannot be detected. Therefore, first, the complementary sensitivity function in the time domain (the complementary sensitivity function of the output y of the controlled object P with respect to the target value d of the control system S) is obtained by using the pseudo reference signal r (σ, k) and the plant output y 0 . The target value d is applied to the obtained complementary sensitivity function, and the response y * is obtained. Find the parameter σ such that this response y * matches the response M (z) d of the reference model M. The FIR model is used to identify the complementary sensitivity function. As a result, it is not necessary to know the structure of the controlled object P, and the complementary sensitivity function can be identified using only the acquired data.
 時間領域における擬似参照信号r(σ,k)とプラント出力yとの関係について説明する。時間領域における擬似参照信号r(σ,k)とプラント出力yとの関係は次式(9)となる。 The relationship between the pseudo reference signal r (σ, k) in the time domain and the plant output y 0 will be described. The relationship between the pseudo reference signal r (σ, k) in the time domain and the plant output y 0 is given by the following equation (9).
Figure JPOXMLDOC01-appb-M000008
 式(9)において、記号*は畳み込みを表し、t(k)は調整対象とする制御器Cに対する相補感度関数Tのインパルス応答を表す。擬似参照信号r(σ,k)とプラント出力yとは観測可能であるが、相補感度関数Tのインパルス応答t(k)は未知である。
Figure JPOXMLDOC01-appb-M000008
In equation (9), the symbol * represents convolution, and t (k) represents the impulse response of the complementary sensitivity function T to the controller C to be adjusted. The pseudo-reference signal r (σ, k) and the plant output y 0 are observable, but the impulse response t (k) of the complementary sensitivity function T is unknown.
 式(9)は行列を用いて表すと以下の式(10)となる。 Equation (9) becomes the following equation (10) when expressed using a matrix.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(10)の左辺をベクトルy、右辺第1項を行列Rσ、右辺第2項をベクトルtとすると、相補感度関数Tのインパルス応答t(k)は、以下の式(11)で表される。 Assuming that the left side of the equation (10) is the vector y 0 , the first term on the right side is the matrix R σ , and the second term on the right side is the vector t, the impulse response t (k) of the complementary sensitivity function T is given by the following equation (11). expressed.
Figure JPOXMLDOC01-appb-M000010
 式(11)は、式(9)のデコンボリューションともいえる。tは、パラメータσに依存する。
Figure JPOXMLDOC01-appb-M000010
Equation (11) can be said to be a deconvolution of equation (9). t depends on the parameter σ.
 制御システムSの入力信号d(目標値)を相補感度関数Tに印加した場合の出力yを時間領域で表すと、次式(12)となる。 The output y * when the input signal d (target value) of the control system S is applied to the complementary sensitivity function T is expressed in the time domain by the following equation (12).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(12)は行列を用いて表すと以下の式(13)となる。 Equation (12) becomes the following equation (13) when expressed using a matrix.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(13)の左辺をベクトルy、右辺第1項を行列D、右辺第2項をベクトルtとし、式(11)を用いてtを消去すると、式(13)は式(14)に変形できる。 When the left side of the equation (13) is the vector y * , the first term on the right side is the matrix D, and the second term on the right side is the vector t, and t is eliminated using the equation (11), the equation (13) becomes the equation (14). Can be transformed.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(14)の右辺は全て観測により取得可能であるから、制御器C及び外乱補償器Dwを用いたときの目標値dを閉ループ系の制御システムSに印加したときの出力ベクトルyを演算により取得することができる。この出力ベクトルyと参照モデルMの出力y(k)=M(z)d(k)との誤差eの二乗和を、次式(15)で表される評価関数J(σ)とする。 Since all the right sides of the equation (14) can be obtained by observation, the output vector y * when the target value d when the controller C and the disturbance compensator Dw are applied to the closed loop control system S is calculated. Can be obtained by. The error e * of the sum of squares of the output y d of the output vector y * and the reference model M (k) = M (z ) d (k), evaluation is expressed by the following equation (15) function J * (sigma ).
Figure JPOXMLDOC01-appb-M000014
 式(15)において、
 e(σ,k)=y(σ,k)-y(k)  (16)である。
Figure JPOXMLDOC01-appb-M000014
In equation (15)
e * (σ, k) = y * (σ, k) -y d (k) (16).
 標準的なFRITでは、取得したプラント出力yに一致するようにパラメータσの関数である擬似参照信号r(σ,k)を調整する。これに対し、実施の形態に係る手法では、参照モデルMの出力M(z)d(k)にプラント出力yが一致するように、パラメータσを調整してプラント出力yを変更する。すなわち、標準的なFRITは実験によりあらかじめ取得したプラント出力に合うようにパラメータσを求めているのに対し、実施の形態に係る手法は参照モデルの出力M(z)d(k)に合うように、パラメータσを求める。 In standard FRIT, the pseudo-reference signal r (σ, k), which is a function of the parameter σ, is adjusted so as to match the acquired plant output y 0 . On the other hand, in the method according to the embodiment, the parameter σ is adjusted to change the plant output y * so that the plant output y 0 matches the output M (z) d (k) of the reference model M. That is, while the standard FRIT finds the parameter σ so as to match the plant output obtained in advance by the experiment, the method according to the embodiment matches the output M (z) d (k) of the reference model. To find the parameter σ.
[2.3.安定性を考慮したFRITの構成]
 図2は、安定性を考慮したFRITの構成を模式的に示す図である。まず、第1パラメータθが初期値θであり第2パラメータξの初期値がξときの制御システムSの入出力データから擬似参照信号r(σ)が算出される。算出された擬似参照入力r(σ)とプラント出力yとを用いて相補感度関数tが上記式(11)を用いて求められ、制御システムSの入力信号である目標値dを相補感度関数tに入力される。相補感度関数tの出力である出力yと、参照モデルの出力M(z)dとの誤差を最小にするパラメータσが、最適化手法により求められる。
[2.3. Configuration of FRIT considering stability]
FIG. 2 is a diagram schematically showing a configuration of FRIT in consideration of stability. First, the pseudo reference signal r (σ) is calculated from the input / output data of the control system S when the first parameter θ is the initial value θ 0 and the initial value of the second parameter ξ is ξ 0 . The complementary sensitivity function t is obtained by using the calculated pseudo reference input r (σ) and the plant output y using the above equation (11), and the target value d, which is the input signal of the control system S, is used as the complementary sensitivity function t. Is entered in. The parameter σ that minimizes the error between the output y * , which is the output of the complementary sensitivity function t, and the output M (z) d of the reference model is obtained by the optimization method.
[3.参考文献](FRIT)・相馬 将太郎, 金子 修, 藤井 隆雄, 一回の実験データに基づく制御器パラメータチューニングの新しいアプローチ  Fictitious Reference Iterative Tuning の提案, システム制御情報学会論文誌, Vol. 17, No.12 (2004), pp. 528-536・奥谷 明大, 金子 修, 山本 茂, FRITを用いた多入出力むだ時間系に対するスミス補償器のチューニング, システム制御情報学会論文誌, Vol. 28, No 2 (2015), pp. 58-65
・データを直接用いた制御器のパラメータチューニング, 金子修, 計測と制御, Vol.43, No.11 (2008), pp903-908
[3. References] (FRIT) ・ Shotaro Soma, Osamu Kaneko, Takao Fujii, A new approach to controller parameter tuning based on one-time experimental data Proposal of Fictitious Reference Iterative Tuning, Journal of the Society of Systems Control and Information Science, Vol. 17, No .12 (2004), pp. 528-536 ・ Akihiro Okutani, Osamu Kaneko, Shigeru Yamamoto, Tuning Smith Compensator for Multi-Input Waste Time System Using FRIT, Journal of the Society of System Control and Information Science, Vol. 28, No 2 (2015), pp. 58-65
・ Parameter tuning of controllers using data directly, Osamu Kaneko, Measurement and control, Vol.43, No.11 (2008), pp903-908
(非反証制御)・M. G. Safonov and T. C. Tsao, The unfalsified control, concept and learning, IEEE Trans. on Automat.Contr., Vol. 42, No. 6, pp. 843-847 (1997) (Non-proof control) ・ M. G. Safonov and T. C. Tsao, The unfalsified control, concept and learning, IEEE Trans. On Automat. Contr., Vol. 42, No. 6, pp. 843-847 (1997) )
(安定性の考慮)・弓場井 一裕, 藤井 宏樹, 平井 淳之, パラメータ更新時の閉ループシステムの安定性を考慮したFCbTの提案, 電気学会論文誌D(産業応用部門誌), Vol.132, No.6 (2011),pp. 607-615・Kazuhiro Yubai, Hiroki Fujii, Junji Hirai, Fictitious Correlation-based Tuning Integrating the Data-Based Stability Test at Each Parameter Update, Electrical Power Systems and Computers, LNEE 99, pp. 511-518. (Consideration of stability) ・ Kazuhiro Yubai, Hiroki Fujii, Atsuyuki Hirai, Proposal of FCbT considering the stability of closed loop system at the time of parameter update, IEEJ Journal D (Industrial Application Division), Vol.132, No.6 (2011), pp. 607-615 ・ Kazuhiro Yubai, Hiroki Fujii, Junji Hirai, Fictitious Correlation-based Tuning Integration the Data-Based Stability Test at Each Parameter Update, Electrical Power Systems and Computer 511-518.
(擬似参照信号の問題と安定性)・S. Engell, T. Tometzki and T. Wonghong, A New Approach to Adaptive Unfalsified Control. In Proc. European Control Conf., Kos, 2007, 1328-1333.・T. Wonghong and S. Engell, Application of a New Scheme for Adaptive Unfalsified Control to a CSTR. Proc. IFAC World Congress, Korea, 13247-13252, 2008. (Problems and stability of pseudo-reference signal) ・ S. Engell, T. Tometzki and T. Wonghong, A New Approach to Adaptive Unfalsified Control. In Proc. European Control Conf., Kos, 2007, 1328-1333. ・ T. Wonghong and S. Engell, Application of a New Scheme for Adaptive Unfalsified Control to a CSTR. Proc. IFAC World Congress, Korea, 13247-13252, 2008.
[4.実施の形態]
 以上を踏まえ、本開示の実施の形態について説明する。
[4. Embodiment]
Based on the above, embodiments of the present disclosure will be described.
 図3は、実施の形態に係る情報処理装置1の機能構成を模式的に示す図である。情報処理装置1は、記憶部2と制御部3とを備える。図3において、矢印は主なデータの流れを示しており、図3に示していないデータの流れがあってもよい。図3において、各機能ブロックはハードウェア(装置)単位の構成ではなく、機能単位の構成を示している。そのため、図3に示す機能ブロックは単一の装置内に実装されてもよく、あるいは複数の装置内に分かれて実装されてもよい。機能ブロック間のデータの授受は、データバス、ネットワーク、可搬記憶媒体等、任意の手段を介して行われてもよい。 FIG. 3 is a diagram schematically showing a functional configuration of the information processing device 1 according to the embodiment. The information processing device 1 includes a storage unit 2 and a control unit 3. In FIG. 3, the arrows indicate the main data flows, and there may be data flows not shown in FIG. In FIG. 3, each functional block shows not the configuration of each hardware (device) but the configuration of each function. Therefore, the functional block shown in FIG. 3 may be mounted in a single device, or may be mounted separately in a plurality of devices. Data transfer between functional blocks may be performed via any means such as a data bus, a network, and a portable storage medium.
 記憶部2は、情報処理装置1を実現するコンピュータのBIOS(Basic Input Output System)等を格納するROM(Read Only Memory)や情報処理装置1の作業領域となるRAM(Random Access Memory)、OS(Operating System)やアプリケーションプログラム、当該アプリケーションプログラムの実行時に参照される種々の情報を格納するHDD(Hard Disk Drive)やSSD(Solid State Drive)等の大容量記憶装置である。 The storage unit 2 includes a ROM (Read Only Memory) that stores the BIOS (Basic Input Output System) of the computer that realizes the information processing device 1, a RAM (Random Access Memory) that serves as a work area of the information processing device 1, and an OS ( It is a large-capacity storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that stores various information referred to when the application program is executed, such as an Operating System) or an application program.
 制御部3は、情報処理装置1のCPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサであり、記憶部2に記憶されたプログラムを実行することによって時系列データ取得部30、擬似参照信号算出部31、相補感度関数算出部32、出力演算部33、モデル出力取得部34、及びパラメータ更新部35として機能する。 The control unit 3 is a processor such as a CPU (Central Processing Unit) or GPU (Graphics Processing Unit) of the information processing device 1, and the time-series data acquisition unit 30 is simulated by executing a program stored in the storage unit 2. It functions as a reference signal calculation unit 31, a complementary sensitivity function calculation unit 32, an output calculation unit 33, a model output acquisition unit 34, and a parameter update unit 35.
 なお、図3は、情報処理装置1が単一の装置で構成されている場合の例を示している。しかしながら、情報処理装置1は、例えばクラウドコンピューティングシステムのように複数のプロセッサやメモリ等の計算リソースによって実現されてもよい。この場合、制御部3を構成する各部は、複数の異なるプロセッサの中の少なくともいずれかのプロセッサがプログラムを実行することによって実現される。 Note that FIG. 3 shows an example in which the information processing device 1 is composed of a single device. However, the information processing device 1 may be realized by computing resources such as a plurality of processors and memories, such as a cloud computing system. In this case, each unit constituting the control unit 3 is realized by executing a program by at least one of a plurality of different processors.
 情報処理装置1は、制御器Cと、制御器Cの出力を入力とする制御対象Pと、制御対象Pの入力の外乱を補償するための外乱補償器Dwと、を備える制御システムSにおいて、制御器Cのパラメータである第1パラメータθと外乱補償器Dwのパラメータである第2パラメータξとを算出するための装置である。図3に示すように、制御システムSは、制御対象Pの出力が制御器Cの入力にフィードバックされる閉ループ系である。 The information processing device 1 is a control system S including a controller C, a control target P having an output of the control C as an input, and a disturbance compensator Dw for compensating for a disturbance of the input of the control target P. This is a device for calculating the first parameter θ, which is a parameter of the controller C, and the second parameter ξ, which is a parameter of the disturbance compensator Dw. As shown in FIG. 3, the control system S is a closed loop system in which the output of the controlled object P is fed back to the input of the controller C.
 時系列データ取得部30は制御器Cの出力に外乱補償器Dwの出力を加算した時系列データである第1時系列データと、制御対象Pの出力の時系列データである第2時系列データとを取得する。ここで、第1時系列データは上述した制御対象Pに入力すべき制御量uに対応し、第2時系列データは上述した制御対象Pの出力yに対応する。したがって、以下本明細書において、「第1時系列データu」、「第2時系列データy」と記載することがある。 The time-series data acquisition unit 30 includes the first time-series data which is the time-series data obtained by adding the output of the disturbance compensator Dw to the output of the controller C and the second time-series data which is the time-series data of the output of the control target P. And get. Here, the first time-series data corresponds to the control amount u to be input to the control target P described above, and the second time-series data corresponds to the output y of the control target P described above. Therefore, in the present specification, they may be referred to as "first time series data u" and "second time series data y".
 擬似参照信号算出部31は、第1パラメータθ、第2パラメータξ、第1時系列データu、及び第2時系列データyから、上述した式(5)に基づいて、制御システムSの擬似参照信号である第3時系列データを推定する。第3時系列データは、上述した擬似参照信号r(θ,ξ、k)=r(σ,k)に対応する。したがって、以下、「第3時系列データr(σ)」と記載することがある。 The pseudo-reference signal calculation unit 31 uses the first parameter θ, the second parameter ξ, the first time-series data u, and the second time-series data y from the pseudo-reference of the control system S based on the above equation (5). Estimate the third time series data which is a signal. The third time series data corresponds to the above-mentioned pseudo reference signal r (θ, ξ, k) = r (σ, k). Therefore, it may be described below as "third time series data r (σ)".
 相補感度関数算出部32は、第2時系列データyと第3時系列データr(σ)とに基づいて、上述した式(11)を用いて、制御器Cに対する相補感度関数tを算出する。なお、相補感度関数算出部32が算出するものは相補感度関数Tのインパルス応答tであるが、以下説明の便宜上、相補感度関数算出部32の算出結果を相補感度関数tと記載する。 The complementary sensitivity function calculation unit 32 calculates the complementary sensitivity function t for the controller C using the above equation (11) based on the second time series data y and the third time series data r (σ). .. The impulse response t of the complementary sensitivity function T is calculated by the complementary sensitivity function calculation unit 32, but the calculation result of the complementary sensitivity function calculation unit 32 is described as the complementary sensitivity function t for convenience of the following description.
 出力演算部33は、上述した式(12)又は式(13)を用いて、制御システムSの入力信号dを相補感度関数tに印加したときの出力である第4時系列データを算出する。第4時系列データは、制御システムSの入力信号d(目標値)を相補感度関数Tに印加した場合の出力yに対応する。したがって、以下、「第4時系列データy」と記載することがある。 The output calculation unit 33 calculates the fourth time series data which is the output when the input signal d of the control system S is applied to the complementary sensitivity function t by using the above equation (12) or equation (13). The fourth time-series data corresponds to the output y * when the input signal d (target value) of the control system S is applied to the complementary sensitivity function T. Therefore, it may be described below as "fourth time series data y * ".
 制御対象Pに入力すべき制御量である第1時系列データu、制御対象Pの出力である第2時系列データy、及び制御システムSの入力信号dは、いずれも観測により取得可能な量である。情報処理装置1は、観測により取得した第1時系列データu、第2時系列データy、及び入力信号dを用いることで、制御システムSに入力信号dを入力したときの出力yを算出することができる。出力yは、制御対象Pからの出力である。情報処理装置1は、この出力yの振る舞い(例えば、発散するか否か、振動するか否か、収束するか否か等)を解析することで、FRITにおいて、外乱補償器Dwを有する制御システムSにおける第1パラメータθ及第2パラメータξを用いた制御の安定性を評価することができる。 The first time series data u, which is the control amount to be input to the control target P, the second time series data y, which is the output of the control target P, and the input signal d of the control system S are all quantities that can be acquired by observation. Is. The information processing device 1 calculates the output y * when the input signal d is input to the control system S by using the first time series data u, the second time series data y, and the input signal d acquired by observation. can do. The output y * is the output from the control target P. The information processing device 1 analyzes the behavior of the output y * (for example, whether or not it diverges, whether or not it vibrates, whether or not it converges, etc.), thereby controlling the control having the disturbance compensator Dw in FRIT. The stability of control using the first parameter θ and the second parameter ξ in the system S can be evaluated.
 図2及び図3に示すように、制御システムSは制御対象Pの入力信号dに対する出力を所定の出力とすることを実現する参照モデルMを備えている。なお、参照モデルMは、制御対象Pの出力が設計者が希望する出力となるように、設計者が決定する。モデル出力取得部34は、参照モデルMに入力信号dを入力した場合の出力の時系列データである第5時系列データを取得する。第5時系列データは、上述した参照モデルの出力M(z)dに対応する。以下、第5時系列データを「第5時系列データy」と記載することがある。 As shown in FIGS. 2 and 3, the control system S includes a reference model M that realizes that the output of the control target P with respect to the input signal d is a predetermined output. The reference model M is determined by the designer so that the output of the controlled object P is the output desired by the designer. The model output acquisition unit 34 acquires the fifth time-series data, which is the output time-series data when the input signal d is input to the reference model M. The fifth time series data corresponds to the output M (z) d of the reference model described above. Hereinafter, the fifth time-series data may be referred to as a "fifth time-series data y d".
 ここで、情報処理装置1がFRITにおける第1パラメータθ及び第2パラメータξを用いた制御の安定性を評価することができるのであれば、情報処理装置1は、制御が安定化するようにパラメータσ(第1パラメータθ及び第2パラメータξ)を最適化することもできる。これを実現するために、パラメータ更新部35は、第4時系列データyと第5時系列データyとの誤差に関する評価関数J(σ)の評価値に基づいて、パラメータσを更新する。 Here, if the information processing device 1 can evaluate the stability of the control using the first parameter θ and the second parameter ξ in the FRIT, the information processing device 1 has a parameter so that the control is stabilized. σ (first parameter θ and second parameter ξ) can also be optimized. To achieve this, the parameter update unit 35, based on the evaluation value of the evaluation function J * (sigma) regarding the error of the fourth time-series data y * and fifth time-series data y d, updates the parameter sigma To do.
 より具体的には、上述した式(15)及び式(16)に示すように、パラメータ更新部35が用いる評価関数J(σ)は、第4時系列データyと第5時系列データyとの誤差の二乗和である。パラメータ更新部35は、評価関数J(σ)の評価値が小さくなるように、反復処理によってパラメータσを更新する。すなわち、パラメータ更新部35は、第4時系列データyと第5時系列データyとの誤差の二乗和が小さくなるという意味において最適なパラメータσを反復によって求める。 More specifically, as shown in the above equations (15) and (16), the evaluation function J * (σ) used by the parameter update unit 35 is the fourth time series data y * and the fifth time series data. It is the sum of squares of the error with y d . The parameter update unit 35 updates the parameter σ by iterative processing so that the evaluation value of the evaluation function J * (σ) becomes small. That is, the parameter updating unit 35 is determined by repeating the optimum parameter σ in the sense that the sum of squares of errors between the fourth time-series data y * and fifth time-series data y d becomes smaller.
 一般に、第4時系列データyが発散したり振動したりすると、第4時系列データyと第5時系列データyとの誤差の二乗和は大きくなる。パラメータ更新部35が第4時系列データyと第5時系列データyとの誤差の二乗和が小さくなるようにパラメータσを更新することにより、情報処理装置1は、FRITにおいて第1パラメータθ及び第2パラメータξを用いたプラントの制御を安定化させることができる。 In general, when the fourth time series data y * diverges or vibrates, the sum of squares of the errors between the fourth time series data y * and the fifth time series data y d becomes large. The information processing apparatus 1 updates the parameter σ so that the sum of squares of the errors between the fourth time series data y * and the fifth time series data y d becomes smaller by the parameter update unit 35, so that the information processing apparatus 1 uses the first parameter in FRIT. It is possible to stabilize the control of the plant using θ and the second parameter ξ.
 なお、パラメータ更新部35は、評価関数の評価値が小さくなるようにパラメータσを更新できるのであればどのような最適化手法を用いてもよい。一例としてパラメータ更新部35は、あらかじめ定められた所定の回数を反復回数の上限として、粒子群最適化の手法を用いてパラメータσを更新してもよい。 The parameter update unit 35 may use any optimization method as long as the parameter σ can be updated so that the evaluation value of the evaluation function becomes small. As an example, the parameter updating unit 35 may update the parameter σ by using a particle swarm optimization method with a predetermined number of repetitions as the upper limit of the number of iterations.
<情報処理装置1が実行する情報処理方法の処理フロー>
 図4は、実施の形態に係る情報処理装置1が実行する情報処理の流れを説明するためのフローチャートである。本フローチャートにおける処理は、例えば情報処理装置1が起動したときに開始する。
<Processing flow of information processing method executed by information processing device 1>
FIG. 4 is a flowchart for explaining the flow of information processing executed by the information processing apparatus 1 according to the embodiment. The process in this flowchart starts, for example, when the information processing device 1 is activated.
 時系列データ取得部30は、制御器Cの出力に外乱補償器Dwの出力を加算した時系列データである第1時系列データuを取得する(S2)。また、時系列データ取得部30は、制御対象Pの出力の時系列データである第2時系列データyを取得する(S4)。 The time-series data acquisition unit 30 acquires the first time-series data u, which is the time-series data obtained by adding the output of the disturbance compensator Dw to the output of the controller C (S2). Further, the time-series data acquisition unit 30 acquires the second time-series data y, which is the time-series data of the output of the control target P (S4).
 擬似参照信号算出部31は、制御器Cのパラメータである第1パラメータθ、外乱補償器Dwのパラメータである第2パラメータξ、第1時系列データu、及び第2時系列データyから、制御システムSの擬似参照信号である第3時系列データr(σ)を推定する(S6)。 The pseudo-reference signal calculation unit 31 controls from the first parameter θ which is a parameter of the controller C, the second parameter ξ which is a parameter of the disturbance compensator Dw, the first time series data u, and the second time series data y. The third time series data r (σ), which is a pseudo reference signal of the system S, is estimated (S6).
 相補感度関数算出部32は、第2時系列データyと第3時系列データr(θ)とに基づいて、式(11)を用いて制御器Cに対する相補感度関数tを算出する(S8)。出力演算部33は、式(14)を用いて、制御システムSの入力信号dを相補感度関数tに印加したときの出力である第4時系列データy(すなわち、入力信号dに対する制御対象Pの出力)を算出する(S10)。 The complementary sensitivity function calculation unit 32 calculates the complementary sensitivity function t for the controller C using the equation (11) based on the second time series data y and the third time series data r (θ) (S8). .. The output calculation unit 33 uses the equation (14) to apply the input signal d of the control system S to the complementary sensitivity function t, which is the output of the fourth time series data y * (that is, the control target for the input signal d). Output of P) is calculated (S10).
 モデル出力取得部34は、参照モデルMに入力信号dを入力した場合の出力の時系列データである第5時系列データyを取得する(S12)。パラメータ更新部35は、式(15)及び式(16)を用いて、第4時系列データyと第5時系列データyとの誤差に関する評価関数J(σ)の評価値を算出する(S14)。パラメータ更新部35は、評価関数J(σ)の評価値が小さくなるように、反復処理によってパラメータσ(第1パラメータθ及び第2パラメータξ)を更新する(S16)。 The model output acquisition unit 34 acquires the fifth time series data y d , which is the output time series data when the input signal d is input to the reference model M (S12). Parameter updating unit 35, the formula (15) and using equation (16) calculates the evaluation value of the evaluation function J (sigma) regarding the error of the fourth time-series data y * and fifth time-series data y d (S14). The parameter update unit 35 updates the parameter σ (first parameter θ and second parameter ξ) by iterative processing so that the evaluation value of the evaluation function J (σ) becomes smaller (S16).
 パラメータ更新部35がパラメータσを更新すると、本フローチャートにおける処理は終了する。情報処理装置1は、上記の処理をオンラインで繰り返すことにより、パラメータσの更新を継続する。 When the parameter update unit 35 updates the parameter σ, the process in this flowchart ends. The information processing apparatus 1 continues to update the parameter σ by repeating the above processing online.
<実施の形態に係る情報処理装置1が奏する効果>
 以上説明したように、実施の形態に係る情報処理装置1によれば、FRITにおいて、外乱補償器Dwを有する制御システムSにおける制御器Cのパラメータであるパラメータθ及び外乱補償器Dwのパラメータである第2パラメータξを用いた制御の安定性を評価することができる。また、情報処理装置1は、閉ループ系の制御が安定化するようにFRITにおける第1パラメータθ及び第2パラメータξを最適化することもできる。
<Effects of the information processing device 1 according to the embodiment>
As described above, according to the information processing apparatus 1 according to the embodiment, in the FRIT, the parameter θ which is the parameter of the controller C in the control system S having the disturbance compensator Dw and the parameter of the disturbance compensator Dw. The stability of control using the second parameter ξ can be evaluated. Further, the information processing apparatus 1 can also optimize the first parameter θ and the second parameter ξ in FRIT so that the control of the closed loop system is stabilized.
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本開示の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。 Although the present disclosure has been described above using the embodiments, the technical scope of the present disclosure is not limited to the scope described in the above embodiments, and various modifications and changes can be made within the scope of the gist. is there. For example, all or a part of the device can be functionally or physically distributed / integrated in any unit. Also included in the embodiments of the present disclosure are new embodiments resulting from any combination of the plurality of embodiments. The effect of the new embodiment produced by the combination has the effect of the original embodiment.
 本出願は、2019年7月11日付で出願された日本国特許出願(特願2019-129028)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2019-129028) filed on July 11, 2019, the contents of which are incorporated herein by reference.
 本開示の情報処理装置、及びプログラム、及び算出方法は、FRITにおいて、外乱補償器を有する系における制御の安定性を評価することができる点において有用である。 The information processing apparatus, program, and calculation method of the present disclosure are useful in that the stability of control in a system having a disturbance compensator can be evaluated in FRIT.
1・・・情報処理装置
2・・・記憶部
3・・・制御部
30・・・時系列データ取得部
31・・・擬似参照信号算出部
32・・・相補感度関数算出部
33・・・出力演算部
34・・・モデル出力取得部
35・・・パラメータ更新部
C・・・制御器
Dw・・・外乱補償器
M・・・参照モデル
P・・・制御対象
S・・・制御システム
1 ... Information processing device 2 ... Storage unit 3 ... Control unit 30 ... Time series data acquisition unit 31 ... Pseudo-reference signal calculation unit 32 ... Complementary sensitivity function calculation unit 33 ... Output calculation unit 34 ... Model output acquisition unit 35 ... Parameter update unit C ... Controller Dw ... Disturbance compensator M ... Reference model P ... Control target S ... Control system

Claims (5)

  1.  制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器とを備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出する情報処理装置であって、
     前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データと、前記制御対象の出力の時系列データである第2時系列データとを取得する時系列データ取得部と、
     前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出する擬似参照信号算出部と、
     前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する相補感度関数算出部と、
     前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出する出力演算部と、
     を備える情報処理装置。
    A controller, a control target having an output of the control target as an input, and a disturbance compensator for compensating for a disturbance of the input of the control target are provided, and the output of the control target is fed back to the input of the controller. An information processing device that calculates a first parameter that is a parameter of the controller and a second parameter that is a parameter of the disturbance compensator in the control system.
    Time-series data for acquiring the first time-series data which is the time-series data obtained by adding the output of the disturbance compensator to the output of the controller and the second time-series data which is the time-series data of the output to be controlled. Acquisition department and
    A pseudo reference signal calculation unit that calculates a third time series data, which is a pseudo reference signal of the control system, from the first parameter, the second parameter, the first time series data, and the second time series data.
    A complementary sensitivity function calculation unit that calculates a complementary sensitivity function for the controller based on the second time series data and the third time series data.
    An output calculation unit that calculates the fourth time series data, which is the output when the input signal of the control system is applied to the complementary sensitivity function.
    Information processing device equipped with.
  2.  前記制御システムは、前記制御対象に入力する入力信号を入力として前記制御対象の出力をモデル化する参照モデルをさらに備えており、
     前記情報処理装置は、
      前記参照モデルに前記第3時系列データを入力した場合の出力の時系列データである第5時系列データを取得するモデル出力取得部と、
      前記第4時系列データと前記第5時系列データとの誤差に関する評価関数の評価値に基づいて前記第1パラメータと前記第2パラメータとを更新するパラメータ更新部と、
     をさらに備える請求項1に記載の情報処理装置。
    The control system further includes a reference model that models the output of the controlled object by using an input signal input to the controlled object as an input.
    The information processing device
    A model output acquisition unit that acquires the fifth time series data, which is the output time series data when the third time series data is input to the reference model.
    A parameter update unit that updates the first parameter and the second parameter based on the evaluation value of the evaluation function regarding the error between the fourth time series data and the fifth time series data.
    The information processing apparatus according to claim 1, further comprising.
  3.  前記評価関数は、前記第4時系列データと前記第5時系列データとの誤差の二乗和であり、
     前記パラメータ更新部は、前記評価関数の評価値が小さくなるように、反復処理によって前記第1パラメータ及び前記第2パラメータを更新する、
     請求項2に記載の情報処理装置。
    The evaluation function is the sum of squares of errors between the fourth time series data and the fifth time series data.
    The parameter update unit updates the first parameter and the second parameter by iterative processing so that the evaluation value of the evaluation function becomes smaller.
    The information processing device according to claim 2.
  4.  制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器とを備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出するコンピュータに、
     前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データを取得する機能と、
     前記制御対象の出力の時系列データである第2時系列データを取得する機能と、
     前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出する機能と、
     前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出する機能と、
     前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出する機能と、
     を実現させるプログラム。
    A controller, a control target having an output of the control target as an input, and a disturbance compensator for compensating for a disturbance of the input of the control target are provided, and the output of the control target is fed back to the input of the controller. In a control system, a computer that calculates a first parameter that is a parameter of the controller and a second parameter that is a parameter of the disturbance compensator
    A function to acquire first time-series data, which is time-series data obtained by adding the output of the disturbance compensator to the output of the controller, and
    A function to acquire the second time series data which is the time series data of the output to be controlled, and
    A function of calculating a third time series data, which is a pseudo reference signal of the control system, from the first parameter, the second parameter, the first time series data, and the second time series data.
    A function of calculating a complementary sensitivity function for the controller based on the second time series data and the third time series data, and
    A function to calculate the fourth time series data which is an output when the input signal of the control system is applied to the complementary sensitivity function, and
    A program that realizes.
  5.  制御器と、前記制御器の出力を入力とする制御対象と、前記制御対象の入力の外乱を補償するための外乱補償器とを備え、前記制御対象の出力が前記制御器の入力にフィードバックされる制御システムにおいて、前記制御器のパラメータである第1パラメータと前記外乱補償器のパラメータである第2パラメータとを算出する算出方法であって、
     前記制御器の出力に前記外乱補償器の出力を加算した時系列データである第1時系列データを取得すること、
     前記制御対象の出力の時系列データである第2時系列データを取得すること、
     前記第1パラメータ、前記第2パラメータ、前記第1時系列データ、及び前記第2時系列データから、前記制御システムの擬似参照信号である第3時系列データを算出すること、
     前記第2時系列データと前記第3時系列データとに基づいて、前記制御器に対する相補感度関数を算出すること、及び
     前記制御システムの入力信号を前記相補感度関数に印加したときの出力である第4時系列データを算出すること、
     を含む算出方法。
    A controller, a control target having an output of the control target as an input, and a disturbance compensator for compensating for a disturbance of the input of the control target are provided, and the output of the control target is fed back to the input of the controller. This is a calculation method for calculating the first parameter, which is a parameter of the controller, and the second parameter, which is a parameter of the disturbance compensator, in the control system.
    Acquiring the first time series data which is the time series data obtained by adding the output of the disturbance compensator to the output of the controller.
    Acquiring the second time series data which is the time series data of the output of the controlled object,
    To calculate the third time series data, which is a pseudo reference signal of the control system, from the first parameter, the second parameter, the first time series data, and the second time series data.
    It is an output when the complementary sensitivity function for the controller is calculated based on the second time series data and the third time series data, and when the input signal of the control system is applied to the complementary sensitivity function. Calculating the 4th time series data,
    Calculation method including.
PCT/JP2020/026980 2019-07-11 2020-07-10 Information processing device, program, and calculation method WO2021006332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-129028 2019-07-11
JP2019129028A JP2021015394A (en) 2019-07-11 2019-07-11 Information processing device and program

Publications (1)

Publication Number Publication Date
WO2021006332A1 true WO2021006332A1 (en) 2021-01-14

Family

ID=74114538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026980 WO2021006332A1 (en) 2019-07-11 2020-07-10 Information processing device, program, and calculation method

Country Status (2)

Country Link
JP (1) JP2021015394A (en)
WO (1) WO2021006332A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022112300A (en) * 2021-01-21 2022-08-02 いすゞ自動車株式会社 Parameter adjusting device and parameter adjusting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182624A (en) * 2016-03-31 2017-10-05 ブラザー工業株式会社 Parameter updating method, parameter updating device and program
JP2018112857A (en) * 2017-01-11 2018-07-19 横河電機株式会社 Data processing apparatus and data processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182624A (en) * 2016-03-31 2017-10-05 ブラザー工業株式会社 Parameter updating method, parameter updating device and program
JP2018112857A (en) * 2017-01-11 2018-07-19 横河電機株式会社 Data processing apparatus and data processing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISHII, YUKI ET AL.: "Fictitious Reference Iterative Tuning for Disturbance Attenuation Based on Variance Evaluation for Non-minimum Phase Plants", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 52, no. 5, 25 May 2016 (2016-05-25), pages 1593 - 1598, XP032809838, DOI: 10.1109/CCA.2015.7320837 *
KANEKO, OSAMU: "Direct Data-Driven Controller Tuning -FRIT Approach", JOURNAL OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 52, no. 10, October 2013 (2013-10-01), pages 853 - 859, XP055782861 *
WAKAYAMA, NAOYA ET AL.: "Correlation-based Multivariable Controller Parameter Tuning by Using One-shot Experimental Data", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 43, no. 5, 2007, pages 391 - 399, XP055770268, DOI: 10.9746/ve.sicetr1965.43.391 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022112300A (en) * 2021-01-21 2022-08-02 いすゞ自動車株式会社 Parameter adjusting device and parameter adjusting method

Also Published As

Publication number Publication date
JP2021015394A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP5523624B2 (en) Control device and method for calculating output variables for control
CN108628163B (en) Method and apparatus for performing observer-based control of a vehicle
JP5723582B2 (en) Method, program and system for configuring controller in sliding mode control system
JP2022537606A (en) Constraint Adapter for Reinforcement Learning Control
JP2021051462A (en) Information processing apparatus and program
CN110580373B (en) Preprocessing collaborative simulation method and device
WO2021006332A1 (en) Information processing device, program, and calculation method
Miller et al. 23 Real-Time Simulation of Physical Systems Using Simscape™
WO2020246531A1 (en) Information processing device, program, and calculation method
JP2023517142A (en) Apparatus and method for control using data-driven model adaptation
JP6984597B2 (en) Linear parameter variation model estimation system, method and program
JP2020144713A (en) Strategy improvement method, strategy improvement program, and strategy improvement device
Prescott et al. Using high-fidelity multibody vehicle models in real-time simulations
Singh et al. Randomized probabilistic approach for parametric uncertainties in unmanned helicopters
JP7207473B1 (en) Information processing equipment
JP7287420B2 (en) Information processing equipment
JP7207474B1 (en) Information processing equipment
Bottasso et al. Parameter estimation of multibody models of unstable systems from experimental data, with application to rotorcraft vehicles
KR20200029160A (en) Control method of aircraft based on angular acceleration information
US20240045388A1 (en) Management apparatus, prediction method, and prediction program
CN116859981B (en) Carrier rocket attitude control method and device and computing equipment
JP2020003893A (en) Robust adjustment device and model creation method
US20220058176A1 (en) Method for assessing validation points for a simulation model
US9329584B2 (en) Method, system and program for constructing a controller
Hausenblas et al. A PARTICLE FILTER FOR NONLINEAR FILTERING WITH L\'EVY JUMPS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836279

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836279

Country of ref document: EP

Kind code of ref document: A1