WO2021005830A1 - Radar device, presence determination method, and program - Google Patents

Radar device, presence determination method, and program Download PDF

Info

Publication number
WO2021005830A1
WO2021005830A1 PCT/JP2020/009157 JP2020009157W WO2021005830A1 WO 2021005830 A1 WO2021005830 A1 WO 2021005830A1 JP 2020009157 W JP2020009157 W JP 2020009157W WO 2021005830 A1 WO2021005830 A1 WO 2021005830A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
calculation unit
unit
area
power
Prior art date
Application number
PCT/JP2020/009157
Other languages
French (fr)
Japanese (ja)
Inventor
一馬 三嶋
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019126449A external-priority patent/JP7484094B2/en
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021005830A1 publication Critical patent/WO2021005830A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to a radar device, and more specifically, to a device that obtains information about the object by emitting an electromagnetic wave toward the object and observing a reflected wave by the object.
  • the present invention also relates to an existence determination method for determining whether or not an object exists by such a radar device.
  • the present invention also relates to a program for causing a computer to execute such an existence determination method.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013-167554
  • a radar wave is emitted and a reflected wave by an object of the radar wave is received. It is known to specify the position of the object (including the distance from the radar device to the object).
  • a lower limit for example, about 10 cm
  • a lower limit for example, about 10 cm
  • close range the lower limit of the distance detection range
  • the subject of the present invention is a radar device that obtains information about the object by emitting electromagnetic waves toward the object and observing the reflected wave by the object, and the object is in a close range.
  • the purpose is to provide something that can determine whether or not it exists.
  • Another object of the present invention is to provide an existence determination method capable of determining whether or not an object exists in a close range by such a radar device.
  • Another object of the present invention is to provide a program for causing a computer to execute such an existence determination method.
  • the radar device of this disclosure is It is a radar device that obtains information about the object by emitting electromagnetic waves from the transmitter / receiver toward the object and observing the reflected wave by the object. Based on the reflected wave, the reflected power calculation unit that obtains the reflected power for a specific range from the first distance separated by the minimum resolution of the distance from the transmitting / receiving unit to the second distance larger than the first distance.
  • An area calculation unit that integrates the above reflected power to calculate the area, It is provided with an existence determination unit that determines whether or not an object exists in a predetermined close range from the transmission / reception unit.
  • the existence determination unit is The first that the current area calculated for the specific range by the area calculation unit is larger than the standard area calculated for the specific range by the area calculation unit when there is no object in the close range. It is characterized by including a first determination unit for determining that an object exists in the close range when the condition is satisfied.
  • the "radar device” is generally a device that measures a distance or direction to an object by emitting an electromagnetic wave toward the object and observing a reflected wave by the object.
  • the electromagnetic wave is typically millimeter wave or microwave, but is not limited to this, and may have a longer wavelength or a shorter wavelength (for example, light).
  • the "close range” refers to, for example, the range from the transmission / reception unit to the lower limit of the distance detection range of the transmission / reception unit.
  • the “close range” is a range up to 10 cm from the transmitter / receiver.
  • the "second distance” that defines the “specific range” may or may not match the upper limit of the "close range” (for example, the lower limit of the distance detection range).
  • the transmission / reception unit emits an electromagnetic wave toward an object and observes the reflected wave by the object. Based on the reflected wave, the reflected power calculation unit performs the reflected power for a specific range from the first distance separated from the transmitting / receiving unit by the minimum resolution regarding the distance to the second distance larger than the first distance. Ask for.
  • the area calculation unit integrates the reflected power to calculate the area.
  • the first determination unit included in the existence determination unit is specified by the area calculation unit with respect to the reference area calculated for the specific range by the area calculation unit when the object does not exist in the close range. When the first condition that the current area calculated for the range is large is satisfied, it is determined that the object exists in the close range. In this way, according to this radar device, it is possible to determine whether or not an object exists in a close range.
  • the existence determination unit is When there is no object within the close distance, the current reflection power is detected by the reflection power calculation unit at the first distance with respect to the reference reflection power detected at the first distance by the reflection power calculation unit. Includes a second determination unit that determines whether or not the second condition that the difference from the reflected power of is larger than a predetermined threshold value is satisfied. In addition to the first condition, it is determined that the object exists only when the second condition is satisfied.
  • the method of determining the existence of this disclosure is It is an existence determination method for a radar device that obtains information about an object by emitting an electromagnetic wave toward the object from a transmission / reception unit and observing a reflected wave by the object.
  • the above radar device Based on the reflected wave, the reflected power calculation unit that obtains the reflected power for a specific range from the first distance separated by the minimum resolution of the distance from the transmitting / receiving unit to the second distance larger than the first distance.
  • the above existence determination method is When an object does not exist in a predetermined close range from the transmission / reception unit, the first distance is separated from the transmission / reception unit by the minimum resolution regarding the distance based on the reflected wave in advance by the reflection power calculation unit. Therefore, the reflected power is obtained for a specific range up to the second distance larger than the first distance, and the reflected power is integrated by the area calculation unit to calculate the reference area. The current reflection power is obtained for the specific range by the reflection power calculation unit, and the current reflection power is integrated by the area calculation unit to calculate the current area. When the first condition that the current area calculated by the area calculation unit for the specific range is larger than the area of the reference is satisfied, it is determined that the object exists in the close range. It is a feature.
  • the existence determination method of this disclosure when an object does not exist in a predetermined close range from the transmission / reception unit, the minimum resolution regarding the distance from the transmission / reception unit is determined in advance by the reflection power calculation unit based on the reflected wave.
  • the reflected power is obtained for a specific range from the first distance separated by a minute to the second distance larger than the first distance, and the reflected power is integrated by the area calculation unit to calculate the reference area. Keep it.
  • the reflection power calculation unit obtains the current reflection power for the specific range, and the area calculation unit integrates the current reflection power to calculate the current area.
  • the first condition that the current area calculated by the area calculation unit for the specific range is larger than the reference area is satisfied, it is determined that the object exists in the close range. To do.
  • this existence determination method it is possible to determine whether or not an object exists in a close range.
  • the program of this disclosure is a program for causing a computer to execute the above-mentioned existence determination method.
  • the above existence determination method can be implemented by causing a computer to execute the program of this disclosure.
  • the radar device and the existence determination method of this disclosure can determine whether or not an object exists in a close range. Further, by causing the computer to execute the program of this disclosure, it is possible to carry out the above-mentioned existence determination method.
  • FIG. 2 (A) and 2 (B) are diagrams for explaining the principle that the radar device measures the distance from the radar transmission / reception unit to the object.
  • FIG. 2C is a diagram illustrating a principle that the radar device measures the direction of an object with respect to a radar transmission / reception unit. It is a figure which shows the experimental measurement environment which determines the existence of an object by the said radar apparatus.
  • FIG. 3 is a diagram showing reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object of FIG. 3 does not exist.
  • FIG. 5A is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmitter / receiver when the object is a metal rod and exists at a distance of 0 cm. is there.
  • FIG. 5B is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a metal rod and exists at a distance of 10 cm. is there.
  • FIG. 6A is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a human body model and exists at a distance of 0 cm. is there.
  • FIG. 6B is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmitter / receiver when the object is a human body model and exists at a distance of 10 cm. is there.
  • FIG. 7A is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a reflector and exists at a distance of 0 cm. ..
  • FIG. 7B is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a reflector and exists at a distance of 10 cm. ..
  • FIG. 9A is a diagram showing the reflected power observed according to the distance from the radar transmission / reception unit when the object does not exist.
  • FIG. 9B is a diagram showing the reflected power observed according to the distance from the radar transmission / reception unit when the object is a metal rod and exists at a distance of 0 cm. It is an enlarged view which shows the reflected power (total power in the angular direction) observed according to the distance from a radar transmission / reception part when an object does not exist.
  • FIG. 1 shows a block configuration of a radar device (indicated by reference numeral 1) according to an embodiment of the present invention.
  • the radar device 1 includes a radar transmission / reception unit 10 as a transmission / reception unit, a radar data processing unit 20 as a reflection power calculation unit, an existence processing unit 30 as an area calculation unit and an existence determination unit, and a subsequent processing unit 40. It includes a data output unit 50.
  • the radar transmitter / receiver 10 has a synthesizer 11 that generates a chirp signal (described later), a transmitting antenna 12 that emits (transmits) the chirp signal generated by the synthesizer 11 as an electromagnetic wave EM1 toward the object 90, and the object 90.
  • the receiving antenna 13 that receives the reflected wave EM2, the transmitting signal EM1 transmitted by the transmitting antenna 12 (represented by the same code as the transmitted electromagnetic wave for ease of understanding), and the receiving signal received by the receiving antenna 13.
  • It includes a mixer 14 that is mixed with EM2 (represented by the same code as the reflected wave for ease of understanding) to generate an intermediate frequency signal IFS.
  • the reception signal EM2 starts up with a delay time ⁇ from the start of transmission of the transmission signal EM1.
  • the frequency f of the received signal EM2 increases in the same manner as the frequency f of the transmitted signal EM1.
  • the frequency difference S ⁇ between the transmission signal EM1 and the reception signal EM2 is a value proportional to the delay time ⁇ .
  • the mixer 14 mixes the transmission signal EM1 and the reception signal EM2 to generate an intermediate frequency signal IFS.
  • the frequency (intermediate frequency) of the signal IFS corresponds to the frequency difference S ⁇ between the transmission signal EM1 and the reception signal EM2, and is therefore a value proportional to the delay time ⁇ .
  • the period during which the signal IFS is obtained is the period during which the transmission signal EM1 and the reception signal EM2 are superimposed (in FIG. 2B, the period between the two vertical broken lines).
  • a plurality of transmitting antennas 12 and receiving antennas 13 shown in FIG. 1 are provided in order to detect the direction of the object 90 with respect to the radar transmitting / receiving unit 10 in the horizontal plane.
  • one transmitting antenna 12 and two receiving antennas 13 are common. It is assumed that they are arranged apart from each other in the horizontal direction on the substrate 2.
  • the two receiving antennas 13-1 and 13-2 are separated from each other by a distance L in the horizontal direction.
  • the distance between the object 90 and the receiving antenna 13-1 is expressed as d
  • the distance between the object 90 and the receiving antenna 13-2 is expressed as (d + ⁇ d).
  • a phase difference ⁇ is generated between the received signal EM2-1 obtained by the receiving antenna 13-1 and the received signal EM2-2 obtained by the receiving antenna 13-2.
  • ⁇ d Lsin ( ⁇ )
  • the radar data processing unit 20 shown in FIG. 1 has a low-pass filter (not shown) that extracts an intermediate frequency signal IFS from the output of the mixer 14, and an AD (analog) that converts the extracted signal IFS from an analog signal to a digital signal.
  • a two-digital) conversion unit 21 and an FFT (fast Fourier transform) processing unit 22 that performs a Fourier transform process are included.
  • the radar data processing unit 20 obtains the distance d, the direction ⁇ , and the reflection power PW of the object 90 with respect to the radar transmission / reception unit 10.
  • the signal IFS extracted from the output of the mixer 14 is the distance d between the radar transmission / reception unit 10 and those objects 90 if a plurality of objects 90 are present in the field of view of the radar transmission / reception unit 10. Each shows a different frequency (frequency difference S ⁇ . This is called a "tone").
  • the FFT processing unit 22 Fourier transforms those signal IFSs to obtain a frequency spectrum having an individual peak (reflection power) for each different tone. Each peak indicates that the object 90 is present at a distance d corresponding to the frequency indicated by the peak. Therefore, the distance d of the object 90 with respect to the radar transmission / reception unit 10 is obtained.
  • the radar data processing unit 20 can obtain the distance d, the direction ⁇ , and the reflected power PW, but the detectable range of the distance d and the direction ⁇ is provided with upper and lower limits in the specifications. In this example, it is 10 cm. Therefore, the detection of the distance d and the direction ⁇ is not used for the purpose of detecting whether or not the object exists in the range below the lower limit of the detectable range, that is, in the close range. Therefore, the reflected power PW of the object 90 with respect to the radar transmission / reception unit 10 is used to detect whether or not the object exists in the close range.
  • the existence processing unit 30 shown in FIG. 1 integrates the reflected power PW obtained by the laser data processing unit 20 to calculate an area, and based on the calculated area, whether or not an object exists in a close range. Performs the process of determining whether or not. The operation of the existence processing unit 30 will be described in detail later.
  • the post-stage processing unit shown in FIG. 1 performs a known process of converting the data after processing by the existence processing unit 30 into information necessary for the post-stage.
  • the post-stage processing unit 40 performs a clustering process for grouping the objects 90 as a cluster, a tracking process for tracking the objects 90, and the like.
  • the data output unit 50 outputs the data processed by the post-stage processing unit 40 to an external device (for example, a display device, a robot control device, an AGV (automated guided vehicle), a warning device, etc.).
  • an external device for example, a display device, a robot control device, an AGV (automated guided vehicle), a warning device, etc.
  • the elements other than the existence processing unit 30, that is, the radar transmission / reception unit 10, the radar data processing unit 20, the post-stage processing unit 40, and the data output unit 50 in the radar device 1 are realized in a known millimeter wave sensor device. ing. In the example of the millimeter wave sensor device, the radar transmission / reception unit 10, the radar data processing unit 20, the post-stage processing unit 40, and the data output unit 50 are mounted on a common substrate 2. In this example, the millimeter wave sensor device is used for the elements other than the existence processing unit 30 in the radar device 1. In this example, the existence processing unit 30 is composed of a microprocessor that operates according to software (computer program).
  • FIG. 3 shows an experimental measurement environment when the radar device 1 determines that the object 90 exists.
  • the substrate 2 on which the radar transmission / reception unit 10 is mounted is arranged on the floor surface 99 in front of the floor surface 99.
  • the XYZ Cartesian coordinate system is set with the depth direction as the Y direction, the left and right direction as the X direction, and the vertical direction as the Z direction in the horizontal plane when viewed from the radar transmission / reception unit 10 on the substrate 2.
  • the radar transmission / reception unit 10 is arranged at the origin O of the XYZ Cartesian coordinate system with the + Y direction as the front.
  • a metal rod 90A as an object 90 is placed at a position corresponding to a distance d on the substantially front surface (+ Y direction) of the substrate 2 (radar transmission / reception unit 10).
  • the metal rod 90A is placed on the styrofoam 80.
  • the substrate 2 radar transmission / reception unit 10
  • the metal rod 90A are at substantially the same height level in the vertical direction.
  • the metal rod 90A reflects the electromagnetic wave EM1 transmitted from the radar transmission / reception unit 10 to generate a reflected wave EM2 toward the radar transmission / reception unit 10.
  • FIG. 5 (A) and 5 (B) show the frequency spectrum obtained by the FFT processing unit 22 of the radar data processing unit 20, that is, the distance d from the radar transmission / reception unit 10 in the case of the measurement environment of FIG.
  • the data of the reflected power PW (relative value, unit dB) observed accordingly is shown.
  • FIG. 4 is observed according to the frequency spectrum obtained by the FFT processing unit 22, that is, the distance d from the radar transmission / reception unit 10 when the object 90 does not exist in the close range in front of the radar transmission / reception unit 10.
  • the reflected power PW data (relative value, unit dB) is shown. More specifically, FIG.
  • the reflected power PW in the close range is greatly increased.
  • FIGS. 6 (A) and 6 (B) show the case where the measurement is performed using the human body model 90B instead of the metal rod 90A.
  • the human body model 90B consists of a PET (polyethylene terephthalate) bottle containing water.
  • the reflected power PW in the close range is greatly increased as compared with the case where the object 90 is not present (FIG. 4).
  • FIGS. 7 (A) and 7 (B) show the case where the measurement is performed using the reflector 90C instead of the metal rod 90A.
  • the reflector 90C is a standard product made of a metal plate forming three surfaces of a regular tetrahedron, and the remaining one surface (front surface facing the radar transmission / reception unit 10) is omitted to form a concave shape.
  • the recess of the reflector 90C is directed toward the radar transmitter / receiver 10.
  • the reflected power PW in the close range is greatly increased as compared with the case where the object 90 is not present (FIG. 4).
  • FIG. 9A shows the reflected power PW when the object 90 does not exist in the close range in front of the radar transmission / reception unit 10.
  • the reference (initial value) reflection power PW when there is no object in the close range and the reflection power detected when the metal rod 90A is present It can be seen that there is a difference D between the PW and the PW. In this example, by comparing the difference D with a predetermined threshold value Th, it is possible to determine with high accuracy whether or not an object exists.
  • the existence determination method of one embodiment when the object 90 does not exist in the close range in front of the radar transmission / reception unit 10. , The area obtained by integrating the reflected power PW and its reflected power PW over a specific range, and the area obtained by integrating the current reflected power PW and its reflected power PW over a specific range. By comparing, it is determined whether or not the object 90 currently exists in a close range in front of the radar transmission / reception unit 10.
  • the specific range is the range from the radar transmitter / receiver 10 to 10 cm (that is, in this example, the specific range coincides with the close range).
  • the existence determination method calculates the reference reflection power PW in advance from the transmission / reception unit 10 when the object does not exist in a predetermined close range.
  • FIG. 10 shows the reflected power PW when the object 90 does not exist in front of the radar transmission / reception unit 10.
  • the individual data points P1 ... P4 (indicated by ⁇ ) in FIG. 10 indicate a specific range from the distance of P1 which is separated from the transmission / reception unit 10 by the minimum resolution regarding the distance to P4 which is larger than the distance of P1. There is.
  • the FFT processing unit 22 calculates the reflected power PW in advance across the data points P1 ... P4.
  • the existence processing unit 30 works as an area calculation unit, and calculates the total of the reflected power PWs of the data points P1 ... P4 as the reference area SR obtained by integrating the reflected power PW over a specific range.
  • the existence processing unit 30 acts as an area calculation unit, integrates the reflected power PW over a specific range to calculate the current area SC, and further acts as a first determination unit. Therefore, the current area SC calculated by the area calculation unit over the specific range is larger than the standard area SR calculated by the area calculation unit over the specific range when there is no object in the close range. 1 Determine whether or not the condition is satisfied.
  • it was running total SC A0 252dB of data points P A0 1 ... P A0 4 as the current area SC.
  • step S3 of FIG. 8 the existence determination unit acts as the second determination unit, and when the object does not exist within a close distance, the FFT processing unit 22 performs the first distance at the first distance.
  • the second condition that the difference between the detected reference reflected power PW and the current reflected power PW detected by the FFT processing unit 22 at the first distance is larger than the predetermined threshold value Th (). Determine whether or not (see Table 1 below) is satisfied. In this example, it is assumed that the reflected power PWs at a position 10 cm away from the radar transmission / reception unit 10 are compared with each other.
  • the existence processing unit 30 acts as an existence determination unit and determines that the object exists. On the other hand, if either of the first and second conditions is not satisfied, the existence processing unit 30 determines that the object does not exist, as shown in step S5 of FIG.
  • the total SC A10 234dB of the current data point P A10 1 ... P A10 4
  • the human arm model 90H like the human body model 90B, is made of a PET bottle containing water.
  • this radar device 1 it is possible to determine whether or not an object exists in a close range.
  • the total number of data points is not limited to one detection result. It may be summed based on the results of multiple detections. In this example, the area is calculated from the sum of the data points, but is not limited to this. It may be calculated by the integral calculation from the function formula for the distance of the reflected power PW.
  • the specific range is not limited to this, and the specific range may be wider or narrower than the close range.
  • the existence determination unit functions as a second determination unit to compare the reflected power PWs at a position 10 cm away from the radar transmission / reception unit 10.
  • the present invention is not limited to this, and the reflected power PWs at other positions, for example, at a position 5 cm away from the radar transmission / reception unit 10, may be compared with each other.
  • the above-mentioned existence processing unit 30 is composed of a microprocessor that operates according to software (computer program). However, the present invention is not limited to this, and the existence processing unit 30 may be configured by a logic circuit (integrated circuit) such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array). Further, the existence processing unit 30 may be incorporated in, for example, a commercially available millimeter wave sensor device.
  • a logic circuit integrated circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Data can be stored non-transitory on CDs (compact discs), DVDs (digital universal discs), flash memories, etc. using the above-mentioned existence determination method (or existence processing method) as software (computer programs). It may be recorded on various recording media. By installing the software recorded on such a recording medium on a substantial computer device such as a personal computer, a PDA (Personal Digital Assistance), or a smartphone, the above-mentioned existence determination method ( Or the existence processing method) can be executed.
  • a substantial computer device such as a personal computer, a PDA (Personal Digital Assistance), or a smartphone.
  • Radar device 10 Radar transmission / reception unit 20 Radar data processing unit 30 Existence processing unit 40 Post-stage processing unit 50 Data output unit 90 Object

Abstract

This radar device comprises a surface area calculation unit (30) for calculating a surface area by integrating reflection power and a presence determination unit (30) for determining whether an object is present within a predetermined close range from a transmission and reception unit. The presence determination unit (30) determines that an object is present within the close range if the following first condition is met: the current surface area calculated by the surface area calculation unit (30) for a specific range is larger than a reference surface area that was calculated for the specific range by the surface area calculation unit (30) when no object was present in the close range.

Description

レーダ装置、存在判定方法、およびプログラムRadar device, existence determination method, and program
 この発明はレーダ装置に関し、より詳しくは、電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物についての情報を得る装置に関する。また、この発明は、そのようなレーダ装置によって対象物が存在するか否かを判定する存在判定方法に関する。また、この発明は、そのような存在判定方法をコンピュータに実行させるためのプログラムに関する。 The present invention relates to a radar device, and more specifically, to a device that obtains information about the object by emitting an electromagnetic wave toward the object and observing a reflected wave by the object. The present invention also relates to an existence determination method for determining whether or not an object exists by such a radar device. The present invention also relates to a program for causing a computer to execute such an existence determination method.
 従来、この種のレーダ装置としては、例えば特許文献1(特開2013-167554号公報)に開示されているように、レーダ波を発射し、該レーダ波の対象物による反射波を受信することによって該対象物の位置(レーダ装置から該対象物までの距離を含む)を特定するものが知られている。 Conventionally, as a radar device of this type, for example, as disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-167554), a radar wave is emitted and a reflected wave by an object of the radar wave is received. It is known to specify the position of the object (including the distance from the radar device to the object).
特開2013-167554号公報Japanese Unexamined Patent Publication No. 2013-167554
 ところで、市販のレーダ装置では、レーダ波を発射してから反射波を受信するまでの時間差が或る程度必要であることから、距離検出可能範囲に下限(例えば、10cm程度)が設けられている。一般的に、市販のレーダ装置は、距離検出可能範囲の下限以下の範囲(以下、「至近範囲」という。)に対象物が存在するか否かを検出できる仕様になっていない。このため、至近範囲に対象物が存在するか否かを検出しようとすると、至近範囲に特化した別型式のセンサを用いる必要があり、設備が複雑になり、コスト面でも不利になる。したがって、上記レーダ装置を使用して、至近範囲に対象物が存在するか否かを検出することは、有益である、と考えられる。 By the way, in a commercially available radar device, since a certain time difference between emitting a radar wave and receiving a reflected wave is required, a lower limit (for example, about 10 cm) is provided in the distance detectable range. .. In general, commercially available radar devices do not have specifications that can detect whether or not an object exists in a range below the lower limit of the distance detection range (hereinafter, referred to as "close range"). Therefore, in order to detect whether or not an object exists in a close range, it is necessary to use a different type of sensor specialized for the close range, which complicates the equipment and is disadvantageous in terms of cost. Therefore, it is considered useful to detect whether or not an object is present in a close range by using the radar device.
 そこで、この発明の課題は、電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物についての情報を得るレーダ装置であって、至近範囲に対象物が存在するか否かを判定できるものを提供することにある。また、この発明の課題は、そのようなレーダ装置によって至近範囲に対象物が存在するか否かを判定できる存在判定方法を提供することにある。また、この発明の課題は、そのような存在判定方法をコンピュータに実行させるためのプログラムを提供することにある。 Therefore, the subject of the present invention is a radar device that obtains information about the object by emitting electromagnetic waves toward the object and observing the reflected wave by the object, and the object is in a close range. The purpose is to provide something that can determine whether or not it exists. Another object of the present invention is to provide an existence determination method capable of determining whether or not an object exists in a close range by such a radar device. Another object of the present invention is to provide a program for causing a computer to execute such an existence determination method.
 上記課題を解決するため、この開示のレーダ装置は、
 送受信部から電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物についての情報を得るレーダ装置であって、
 上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求める反射パワー算出部と、
 上記反射パワーを積分して面積を算出する面積算出部と、
 上記送受信部から予め定められた至近範囲に対象物が存在するか否かを判定する存在判定部とを備え、
 上記存在判定部は、
 上記至近範囲に対象物が存在しないとき上記面積算出部によって上記特定範囲について算出された基準の面積に対して、上記面積算出部によって上記特定範囲について算出される現在の面積が大きい、という第1条件が満たされているとき、上記至近範囲に対象物が存在すると判定する第1判定部を含む
ことを特徴とする。
In order to solve the above problems, the radar device of this disclosure is
It is a radar device that obtains information about the object by emitting electromagnetic waves from the transmitter / receiver toward the object and observing the reflected wave by the object.
Based on the reflected wave, the reflected power calculation unit that obtains the reflected power for a specific range from the first distance separated by the minimum resolution of the distance from the transmitting / receiving unit to the second distance larger than the first distance. When,
An area calculation unit that integrates the above reflected power to calculate the area,
It is provided with an existence determination unit that determines whether or not an object exists in a predetermined close range from the transmission / reception unit.
The existence determination unit is
The first that the current area calculated for the specific range by the area calculation unit is larger than the standard area calculated for the specific range by the area calculation unit when there is no object in the close range. It is characterized by including a first determination unit for determining that an object exists in the close range when the condition is satisfied.
 本明細書で、「レーダ装置」とは、一般的に、電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物までの距離や方向を測定する装置を意味する。本発明では、電磁波は、典型的にはミリ波ないしマイクロ波であるが、これに限られるものではなく、より長波長、または、より短波長(例えば光)であってもよい。 In the present specification, the "radar device" is generally a device that measures a distance or direction to an object by emitting an electromagnetic wave toward the object and observing a reflected wave by the object. Means. In the present invention, the electromagnetic wave is typically millimeter wave or microwave, but is not limited to this, and may have a longer wavelength or a shorter wavelength (for example, light).
 また、「至近範囲」とは、例えば、上記送受信部から、この送受信部の距離検出可能範囲の下限までの範囲を指す。典型的には、「至近範囲」は、上記送受信部から10cmまでの範囲である。「特定範囲」を定める「第2の距離」は、「至近範囲」の上限(例えば、上記距離検出可能範囲の下限)と一致していてもよいし、一致していなくてもよい。 Further, the "close range" refers to, for example, the range from the transmission / reception unit to the lower limit of the distance detection range of the transmission / reception unit. Typically, the "close range" is a range up to 10 cm from the transmitter / receiver. The "second distance" that defines the "specific range" may or may not match the upper limit of the "close range" (for example, the lower limit of the distance detection range).
 この開示のレーダ装置では、送受信部は、電磁波を対象物へ向けて発射し、上記対象物による反射波を観測する。反射パワー算出部は、上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求める。面積算出部は、上記反射パワーを積分して面積を算出する。上記存在判定部に含まれた第1判定部は、上記至近範囲に対象物が存在しないとき上記面積算出部によって上記特定範囲について算出された基準の面積に対して、上記面積算出部によって上記特定範囲について算出される現在の面積が大きい、という第1条件が満たされているとき、上記至近範囲に対象物が存在すると判定する。このようにして、このレーダ装置によれば、至近範囲に対象物が存在するか否かを判定することが可能となる。 In the radar device of this disclosure, the transmission / reception unit emits an electromagnetic wave toward an object and observes the reflected wave by the object. Based on the reflected wave, the reflected power calculation unit performs the reflected power for a specific range from the first distance separated from the transmitting / receiving unit by the minimum resolution regarding the distance to the second distance larger than the first distance. Ask for. The area calculation unit integrates the reflected power to calculate the area. The first determination unit included in the existence determination unit is specified by the area calculation unit with respect to the reference area calculated for the specific range by the area calculation unit when the object does not exist in the close range. When the first condition that the current area calculated for the range is large is satisfied, it is determined that the object exists in the close range. In this way, according to this radar device, it is possible to determine whether or not an object exists in a close range.
 一実施形態のレーダ装置では、
 上記存在判定部は、
 上記至近距離内に対象物が存在しないとき上記反射パワー算出部によって上記第1の距離で検出された基準の反射パワーに対して、上記反射パワー算出部によって上記第1の距離で検出される現在の反射パワーとの差が、予め定められた閾値よりも大きい、という第2条件が満たされているか否かを判定する第2判定部を含み、
 上記第1条件に加えて、上記第2条件が満たされているときに限り、上記対象物が存在すると判定する
ことを特徴とする。
In the radar device of one embodiment,
The existence determination unit is
When there is no object within the close distance, the current reflection power is detected by the reflection power calculation unit at the first distance with respect to the reference reflection power detected at the first distance by the reflection power calculation unit. Includes a second determination unit that determines whether or not the second condition that the difference from the reflected power of is larger than a predetermined threshold value is satisfied.
In addition to the first condition, it is determined that the object exists only when the second condition is satisfied.
 この一実施形態のレーダ装置では、対象物が存在するか否かをより高精度で判定することが可能となる。 With the radar device of this one embodiment, it is possible to determine with higher accuracy whether or not an object exists.
 別の局面では、この開示の存在判定方法は、
 送受信部から電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物についての情報を得るレーダ装置のための存在判定方法であって、
 上記レーダ装置は、
 上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求める反射パワー算出部と、
 上記反射パワーを積分して面積を算出する面積算出部と、を含み、
 上記存在判定方法は、
 上記送受信部から予め定められた至近範囲に対象物が存在しないとき、予め、上記反射パワー算出部によって、上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求め、上記面積算出部によって上記反射パワーを積分して基準の面積を算出しておき、
 上記反射パワー算出部によって、上記特定範囲について現在の反射パワーを求め、上記面積算出部によって上記現在の反射パワーを積分して現在の面積を算出し、
 上記基準の面積に対して、上記面積算出部によって上記特定範囲について算出される現在の面積が大きい、という第1条件が満たされているとき、上記至近範囲に対象物が存在すると判定する
ことを特徴とする。
In another aspect, the method of determining the existence of this disclosure is
It is an existence determination method for a radar device that obtains information about an object by emitting an electromagnetic wave toward the object from a transmission / reception unit and observing a reflected wave by the object.
The above radar device
Based on the reflected wave, the reflected power calculation unit that obtains the reflected power for a specific range from the first distance separated by the minimum resolution of the distance from the transmitting / receiving unit to the second distance larger than the first distance. When,
Including an area calculation unit that integrates the above reflected power to calculate the area,
The above existence determination method is
When an object does not exist in a predetermined close range from the transmission / reception unit, the first distance is separated from the transmission / reception unit by the minimum resolution regarding the distance based on the reflected wave in advance by the reflection power calculation unit. Therefore, the reflected power is obtained for a specific range up to the second distance larger than the first distance, and the reflected power is integrated by the area calculation unit to calculate the reference area.
The current reflection power is obtained for the specific range by the reflection power calculation unit, and the current reflection power is integrated by the area calculation unit to calculate the current area.
When the first condition that the current area calculated by the area calculation unit for the specific range is larger than the area of the reference is satisfied, it is determined that the object exists in the close range. It is a feature.
 この開示の存在判定方法では、上記送受信部から予め定められた至近範囲に対象物が存在しないとき、予め、上記反射パワー算出部によって、上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求め、上記面積算出部によって上記反射パワーを積分して基準の面積を算出しておく。次に、上記反射パワー算出部によって、上記特定範囲について現在の反射パワーを求め、上記面積算出部によって上記現在の反射パワーを積分して現在の面積を算出する。次に、上記基準の面積に対して、上記面積算出部によって上記特定範囲について算出される現在の面積が大きい、という第1条件が満たされているとき、上記至近範囲に対象物が存在すると判定する。これにより、この存在判定方法によれば、至近範囲に対象物が存在するか否かを判定することが可能となる。 In the existence determination method of this disclosure, when an object does not exist in a predetermined close range from the transmission / reception unit, the minimum resolution regarding the distance from the transmission / reception unit is determined in advance by the reflection power calculation unit based on the reflected wave. The reflected power is obtained for a specific range from the first distance separated by a minute to the second distance larger than the first distance, and the reflected power is integrated by the area calculation unit to calculate the reference area. Keep it. Next, the reflection power calculation unit obtains the current reflection power for the specific range, and the area calculation unit integrates the current reflection power to calculate the current area. Next, when the first condition that the current area calculated by the area calculation unit for the specific range is larger than the reference area is satisfied, it is determined that the object exists in the close range. To do. As a result, according to this existence determination method, it is possible to determine whether or not an object exists in a close range.
 さらに別の局面では、この開示のプログラムは、上記存在判定方法をコンピュータに実行させるためのプログラムである。 In yet another aspect, the program of this disclosure is a program for causing a computer to execute the above-mentioned existence determination method.
 この開示のプログラムをコンピュータに実行させることによって、上記存在判定方法を実施することができる。 The above existence determination method can be implemented by causing a computer to execute the program of this disclosure.
 以上より明らかなように、この開示のレーダ装置および存在判定方法は、至近範囲に対象物が存在するか否かを判定することが可能となる。また、この開示のプログラムをコンピュータに実行させることによって、上記存在判定方法を実施することが可能となる。 As is clear from the above, the radar device and the existence determination method of this disclosure can determine whether or not an object exists in a close range. Further, by causing the computer to execute the program of this disclosure, it is possible to carry out the above-mentioned existence determination method.
この発明の一実施形態のレーダ装置のブロック構成を示す図である。It is a figure which shows the block structure of the radar apparatus of one Embodiment of this invention. 図2(A)、図2(B)は、上記レーダ装置がレーダ送受信部から対象物までの距離を測定する原理を説明する図である。図2(C)は、上記レーダ装置がレーダ送受信部に対する対象物の方向を測定する原理を説明する図である。2 (A) and 2 (B) are diagrams for explaining the principle that the radar device measures the distance from the radar transmission / reception unit to the object. FIG. 2C is a diagram illustrating a principle that the radar device measures the direction of an object with respect to a radar transmission / reception unit. 上記レーダ装置によって対象物の存在を判定する、実験的な測定環境を示す図である。It is a figure which shows the experimental measurement environment which determines the existence of an object by the said radar apparatus. 図3の対象物が存在しない場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。FIG. 3 is a diagram showing reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object of FIG. 3 does not exist. 図5(A)は、対象物が金属棒であり、距離0cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。図5(B)は、対象物が金属棒であり、距離10cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。FIG. 5A is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmitter / receiver when the object is a metal rod and exists at a distance of 0 cm. is there. FIG. 5B is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a metal rod and exists at a distance of 10 cm. is there. 図6(A)は、対象物が人体モデルであり、距離0cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。図6(B)は、対象物が人体モデルであり、距離10cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。FIG. 6A is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a human body model and exists at a distance of 0 cm. is there. FIG. 6B is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmitter / receiver when the object is a human body model and exists at a distance of 10 cm. is there. 図7(A)は、対象物がリフレクタであり、距離0cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。図7(B)は、対象物がリフレクタであり、距離10cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す図である。FIG. 7A is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a reflector and exists at a distance of 0 cm. .. FIG. 7B is a diagram showing the reflected power (total power in the angular direction) observed according to the distance from the radar transmission / reception unit when the object is a reflector and exists at a distance of 10 cm. .. 上記レーダ装置の存在処理部によって実行される存在判定方法のフローを示す図である。It is a figure which shows the flow of the existence determination method executed by the existence processing part of the radar apparatus. 図9(A)は、対象物が存在しない場合の、レーダ送受信部からの距離に応じて観測された反射パワーを示す図である。図9(B)は、対象物が金属棒であり、距離0cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー示す図である。FIG. 9A is a diagram showing the reflected power observed according to the distance from the radar transmission / reception unit when the object does not exist. FIG. 9B is a diagram showing the reflected power observed according to the distance from the radar transmission / reception unit when the object is a metal rod and exists at a distance of 0 cm. 対象物が存在しない場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す拡大図である。It is an enlarged view which shows the reflected power (total power in the angular direction) observed according to the distance from a radar transmission / reception part when an object does not exist. 対象物が金属棒であり、距離0cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す拡大図である。It is an enlarged view which shows the reflected power (the total power in the angular direction) observed according to the distance from a radar transmission / reception part when an object is a metal rod and exists at a distance of 0 cm. 対象物が金属棒であり、距離10cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す拡大図である。It is an enlarged view which shows the reflected power (the total power in the angular direction) observed according to the distance from a radar transmission / reception part when the object is a metal rod and exists at a distance of 10 cm. 対象物が人腕モデルであり、距離0cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す拡大図である。It is an enlarged view which shows the reflected power (the total power in the angular direction) observed according to the distance from a radar transmission / reception part when an object is a human arm model and exists at a distance of 0 cm. 対象物が人腕モデルであり、距離10cmに存在する場合の、レーダ送受信部からの距離に応じて観測された反射パワー(角度方向に合算されたパワー)を示す拡大図である。It is an enlarged view which shows the reflected power (the total power in the angular direction) observed according to the distance from a radar transmission / reception part when an object is a human arm model and exists at a distance of 10 cm.
 以下、この発明の実施の形態を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (レーダ装置の構成)
 図1は、この発明の一実施形態のレーダ装置(符号1で示す。)のブロック構成を示している。このレーダ装置1は、送受信部としてのレーダ送受信部10と、反射パワー算出部としてのレーダデータ処理部20と、面積算出部および存在判定部としての存在処理部30と、後段処理部40と、データ出力部50とを備えている。
(Structure of radar device)
FIG. 1 shows a block configuration of a radar device (indicated by reference numeral 1) according to an embodiment of the present invention. The radar device 1 includes a radar transmission / reception unit 10 as a transmission / reception unit, a radar data processing unit 20 as a reflection power calculation unit, an existence processing unit 30 as an area calculation unit and an existence determination unit, and a subsequent processing unit 40. It includes a data output unit 50.
 レーダ送受信部10は、チャープ信号(後述する)を生成するシンセサイザ11と、シンセサイザ11によって生成されたチャープ信号を電磁波EM1として対象物90へ向けて発射(送信)する送信アンテナ12と、対象物90による反射波EM2を受信する受信アンテナ13と、送信アンテナ12によって送信された送信信号EM1(理解の容易のため、送信される電磁波と同じ符号で表す。)と受信アンテナ13によって受信された受信信号EM2(理解の容易のため、反射波と同じ符号で表す。)とを混合して中間周波数の信号IFSを生成するミキサ14とを含んでいる。 The radar transmitter / receiver 10 has a synthesizer 11 that generates a chirp signal (described later), a transmitting antenna 12 that emits (transmits) the chirp signal generated by the synthesizer 11 as an electromagnetic wave EM1 toward the object 90, and the object 90. The receiving antenna 13 that receives the reflected wave EM2, the transmitting signal EM1 transmitted by the transmitting antenna 12 (represented by the same code as the transmitted electromagnetic wave for ease of understanding), and the receiving signal received by the receiving antenna 13. It includes a mixer 14 that is mixed with EM2 (represented by the same code as the reflected wave for ease of understanding) to generate an intermediate frequency signal IFS.
 図2(A)に示すように、この例では、送信信号(チャープ信号)EM1は、或る持続時間Tc(この例では、Tc=40μs)の間、周波数fが単調に増加する信号である。受信信号EM2は、この例では、送信信号EM1の送信開始から遅延時間τだけ遅れて立ち上がっている。この遅延時間τは、レーダ送受信部10と対象物90との間の距離(dとする。)によって、τ=2d/cと表される。ここで、cは光の速さである。つまり、レーダ送受信部10と対象物90との間の距離dは、
d=τc/2               …(Eq.1)
として求められる。受信信号EM2の周波数fは、送信信号EM1の周波数fと同様に、増加する。送信信号EM1と受信信号EM2との間の周波数差Sτは、遅延時間τに比例した値となる。
As shown in FIG. 2A, in this example, the transmitted signal (chirp signal) EM1 is a signal in which the frequency f monotonically increases for a certain duration Tc (Tc = 40 μs in this example). .. In this example, the reception signal EM2 starts up with a delay time τ from the start of transmission of the transmission signal EM1. This delay time τ is expressed as τ = 2d / c depending on the distance (referred to as d) between the radar transmission / reception unit 10 and the object 90. Here, c is the speed of light. That is, the distance d between the radar transmitter / receiver 10 and the object 90 is
d = τc / 2 ... (Eq.1)
Is required as. The frequency f of the received signal EM2 increases in the same manner as the frequency f of the transmitted signal EM1. The frequency difference Sτ between the transmission signal EM1 and the reception signal EM2 is a value proportional to the delay time τ.
 図2(B)に示すように、ミキサ14は、送信信号EM1と受信信号EM2とを混合して、中間周波数の信号IFSを生成する。信号IFSの周波数(中間周波数)は、送信信号EM1と受信信号EM2との間の周波数差Sτに相当し、したがって、遅延時間τに比例した値となっている。なお、信号IFSが得られる期間は、送信信号EM1と受信信号EM2とが重畳している期間(図2(B)では、2本の垂直破線の間にある期間)である。 As shown in FIG. 2B, the mixer 14 mixes the transmission signal EM1 and the reception signal EM2 to generate an intermediate frequency signal IFS. The frequency (intermediate frequency) of the signal IFS corresponds to the frequency difference Sτ between the transmission signal EM1 and the reception signal EM2, and is therefore a value proportional to the delay time τ. The period during which the signal IFS is obtained is the period during which the transmission signal EM1 and the reception signal EM2 are superimposed (in FIG. 2B, the period between the two vertical broken lines).
 図1中に示す送信アンテナ12と受信アンテナ13は、レーダ送受信部10に対する対象物90の水平面内での方向を検出するために、この例では、それぞれ複数設けられている。簡単な例で説明すると、例えば図2(C)に示すように、1個の送信アンテナ12と、2個の受信アンテナ13(それぞれ符号13-1、13-2で示す。)とが、共通の基板2上に水平方向に関して互いに離間して配置されているものとする。2個の受信アンテナ13-1、13-2は、水平方向に関して距離Lだけ互いに離間している。対象物90と受信アンテナ13-1との距離はd、対象物90と受信アンテナ13-2との距離は(d+Δd)として、それぞれ表される。この距離の差Δdによって、受信アンテナ13-1によって得られる受信信号EM2-1と、受信アンテナ13-2によって得られる受信信号EM2-2との間に、位相差ΔΦが生ずる。受信信号EM2として平面の波面(波長λ)を想定すると、位相差ΔΦ=2πΔd/λと表される。レーダ送受信部10に対する対象物90の水平面内での方向(レーダ送受信部10の正面に対する角度)をθとすると、Δd=Lsin(θ)であることから、方向θは、
θ=sin-1(λΔΦ/2πL)      …(Eq.2)
として求められる。
In this example, a plurality of transmitting antennas 12 and receiving antennas 13 shown in FIG. 1 are provided in order to detect the direction of the object 90 with respect to the radar transmitting / receiving unit 10 in the horizontal plane. Explaining by a simple example, for example, as shown in FIG. 2C, one transmitting antenna 12 and two receiving antennas 13 (indicated by reference numerals 13-1 and 13-2, respectively) are common. It is assumed that they are arranged apart from each other in the horizontal direction on the substrate 2. The two receiving antennas 13-1 and 13-2 are separated from each other by a distance L in the horizontal direction. The distance between the object 90 and the receiving antenna 13-1 is expressed as d, and the distance between the object 90 and the receiving antenna 13-2 is expressed as (d + Δd). Due to this distance difference Δd, a phase difference ΔΦ is generated between the received signal EM2-1 obtained by the receiving antenna 13-1 and the received signal EM2-2 obtained by the receiving antenna 13-2. Assuming a flat wave surface (wavelength λ) as the received signal EM2, the phase difference is expressed as ΔΦ = 2πΔd / λ. Assuming that the direction of the object 90 with respect to the radar transmission / reception unit 10 in the horizontal plane (angle with respect to the front surface of the radar transmission / reception unit 10) is θ, Δd = Lsin (θ), so that the direction θ is
θ = sin -1 (λΔΦ / 2πL)… (Eq.2)
Is required as.
 この例では、実際には、基板2上に、水平方向に関して互いに離間して、送信アンテナ12が3個、受信アンテナ13が4個配置されている。これにより、レーダ送受信部10に対する対象物90の水平面内での方向θを、広い範囲(この例では、±90°の視野)で精度良く求めるようになっている。 In this example, actually, three transmitting antennas 12 and four receiving antennas 13 are arranged on the substrate 2 so as to be separated from each other in the horizontal direction. As a result, the direction θ of the object 90 with respect to the radar transmission / reception unit 10 in the horizontal plane can be accurately obtained in a wide range (in this example, a field of view of ± 90 °).
 図1中に示すレーダデータ処理部20は、ミキサ14の出力から中間周波数の信号IFSを取り出すローパスフィルタ(図示せず)と、取り出された信号IFSをアナログ信号からデジタル信号へ変換するAD(アナログ・ツー・デジタル)変換部21と、フーリエ変換処理を行うFFT(高速フーリエ変換)処理部22とを含んでいる。レーダデータ処理部20は、レーダ送受信部10に対する対象物90の距離d、方向θ、および反射パワーPW、を求める。 The radar data processing unit 20 shown in FIG. 1 has a low-pass filter (not shown) that extracts an intermediate frequency signal IFS from the output of the mixer 14, and an AD (analog) that converts the extracted signal IFS from an analog signal to a digital signal. A two-digital) conversion unit 21 and an FFT (fast Fourier transform) processing unit 22 that performs a Fourier transform process are included. The radar data processing unit 20 obtains the distance d, the direction θ, and the reflection power PW of the object 90 with respect to the radar transmission / reception unit 10.
 具体的には、ミキサ14の出力から取り出された信号IFSは、レーダ送受信部10の視野に複数の対象物90が存在すれば、レーダ送受信部10とそれらの対象物90との間の距離d毎に、互いに異なる周波数(周波数差Sτ。これを「トーン」と呼ぶ。)を示す。FFT処理部22は、それらの信号IFSをフーリエ変換して、異なるトーン毎に個別のピーク(反射パワー)をもつ周波数スペクトルを求める。各ピークは、そのピークが示す周波数に応じた距離dに対象物90が存在することを示す。したがって、レーダ送受信部10に対する対象物90の距離dが求められる。 Specifically, the signal IFS extracted from the output of the mixer 14 is the distance d between the radar transmission / reception unit 10 and those objects 90 if a plurality of objects 90 are present in the field of view of the radar transmission / reception unit 10. Each shows a different frequency (frequency difference Sτ. This is called a "tone"). The FFT processing unit 22 Fourier transforms those signal IFSs to obtain a frequency spectrum having an individual peak (reflection power) for each different tone. Each peak indicates that the object 90 is present at a distance d corresponding to the frequency indicated by the peak. Therefore, the distance d of the object 90 with respect to the radar transmission / reception unit 10 is obtained.
 なお、上述のように、レーダデータ処理部20は、距離d、方向θおよび反射パワーPWを求めることができるが、距離dおよび方向θの検出可能範囲には仕様上下限が設けられている。この例では、10cmである。このため、検出可能範囲下限以下の範囲、すなわち、至近範囲に対象物が存在するか否かを検出する目的では、距離dおよび方向θの検出は用いられない。したがって、至近範囲に対象物が存在するか否かを検出するために、レーダ送受信部10に対する対象物90の反射パワーPWが用いられる。 As described above, the radar data processing unit 20 can obtain the distance d, the direction θ, and the reflected power PW, but the detectable range of the distance d and the direction θ is provided with upper and lower limits in the specifications. In this example, it is 10 cm. Therefore, the detection of the distance d and the direction θ is not used for the purpose of detecting whether or not the object exists in the range below the lower limit of the detectable range, that is, in the close range. Therefore, the reflected power PW of the object 90 with respect to the radar transmission / reception unit 10 is used to detect whether or not the object exists in the close range.
 図1中に示す存在処理部30は、レーザデータ処理部20によって求められた反射パワーPWを積分して面積を算出し、算出された面積に基づいて、至近範囲に対象物が存在するか否かを判定する処理を行う。この存在処理部30の動作については、後に詳述する。 The existence processing unit 30 shown in FIG. 1 integrates the reflected power PW obtained by the laser data processing unit 20 to calculate an area, and based on the calculated area, whether or not an object exists in a close range. Performs the process of determining whether or not. The operation of the existence processing unit 30 will be described in detail later.
 図1中に示す後段処理部は、存在処理部30による処理後のデータを、後段に必要な情報へ変換する公知の処理を行う。例えば、後段処理部40は、対象物90を塊(クラスタ)としてまとめるクラスタリング処理、対象物90を追跡するトラッキング処理などを行う。 The post-stage processing unit shown in FIG. 1 performs a known process of converting the data after processing by the existence processing unit 30 into information necessary for the post-stage. For example, the post-stage processing unit 40 performs a clustering process for grouping the objects 90 as a cluster, a tracking process for tracking the objects 90, and the like.
 データ出力部50は、後段処理部40による処理後のデータを外部の装置(例えば、表示装置、ロボット制御装置、AGV(無人搬送車)、警告装置など)へ出力する。 The data output unit 50 outputs the data processed by the post-stage processing unit 40 to an external device (for example, a display device, a robot control device, an AGV (automated guided vehicle), a warning device, etc.).
 なお、このレーダ装置1における、存在処理部30以外の要素、すなわち、レーダ送受信部10、レーダデータ処理部20、後段処理部40、およびデータ出力部50は、既知のミリ波センサデバイスにおいて実現されている。ミリ波センサデバイスの例では、レーダ送受信部10、レーダデータ処理部20、後段処理部40、およびデータ出力部50は、共通の基板2上に搭載されている。この例では、このレーダ装置1における、存在処理部30以外の要素については、ミリ波センサデバイスを用いている。存在処理部30は、この例では、ソフトウェア(コンピュータプログラム)に従って動作するマイクロプロセッサによって構成されている。 The elements other than the existence processing unit 30, that is, the radar transmission / reception unit 10, the radar data processing unit 20, the post-stage processing unit 40, and the data output unit 50 in the radar device 1 are realized in a known millimeter wave sensor device. ing. In the example of the millimeter wave sensor device, the radar transmission / reception unit 10, the radar data processing unit 20, the post-stage processing unit 40, and the data output unit 50 are mounted on a common substrate 2. In this example, the millimeter wave sensor device is used for the elements other than the existence processing unit 30 in the radar device 1. In this example, the existence processing unit 30 is composed of a microprocessor that operates according to software (computer program).
 (存在判定処理)
 存在処理部30によって実行される存在判定処理方法を説明するために、図3は、レーダ装置1によって対象物90が存在すると判定する場合の、実験的な測定環境を示している。
(Existence judgment processing)
In order to explain the existence determination processing method executed by the existence processing unit 30, FIG. 3 shows an experimental measurement environment when the radar device 1 determines that the object 90 exists.
 図3の例では、床面99上で、レーダ送受信部10を搭載した基板2が、手前に配置されている。基板2上のレーダ送受信部10から見て水平面内で奥行き方向をY方向、左右方向をX方向、鉛直方向をZ方向として、XYZ直交座標系が設定されている。レーダ送受信部10はXYZ直交座標系の原点Oに、+Y方向を正面として配置されている。また、基板2(レーダ送受信部10)の略正面(+Y方向)で距離dに相当する位置に、対象物90としての金属棒90Aが置かれている。なお、この例では、金属棒90Aは、発砲スチロール80上に置かれている。簡単のため、基板2(レーダ送受信部10)、金属棒90Aは、鉛直方向に関して略同一の高さレベルにあるものとする。 In the example of FIG. 3, the substrate 2 on which the radar transmission / reception unit 10 is mounted is arranged on the floor surface 99 in front of the floor surface 99. The XYZ Cartesian coordinate system is set with the depth direction as the Y direction, the left and right direction as the X direction, and the vertical direction as the Z direction in the horizontal plane when viewed from the radar transmission / reception unit 10 on the substrate 2. The radar transmission / reception unit 10 is arranged at the origin O of the XYZ Cartesian coordinate system with the + Y direction as the front. Further, a metal rod 90A as an object 90 is placed at a position corresponding to a distance d on the substantially front surface (+ Y direction) of the substrate 2 (radar transmission / reception unit 10). In this example, the metal rod 90A is placed on the styrofoam 80. For the sake of simplicity, it is assumed that the substrate 2 (radar transmission / reception unit 10) and the metal rod 90A are at substantially the same height level in the vertical direction.
 この図3の測定環境では、金属棒90Aは、レーダ送受信部10から送信された電磁波EM1を反射して、レーダ送受信部10へ向かう反射波EM2を生ずる。 In the measurement environment of FIG. 3, the metal rod 90A reflects the electromagnetic wave EM1 transmitted from the radar transmission / reception unit 10 to generate a reflected wave EM2 toward the radar transmission / reception unit 10.
 図5(A)および図5(B)は、図3の測定環境の場合に、レーダデータ処理部20のFFT処理部22によって求められた周波数スペクトル、すなわち、レーダ送受信部10からの距離dに応じて観測された反射パワーPWのデータ(相対値で単位dB)を示している。図4は、レーダ送受信部10の前方で至近範囲に対象物90が存在しない場合の、FFT処理部22によって求められた周波数スペクトル、すなわち、レーダ送受信部10からの距離dに応じて観測された反射パワーPWのデータ(相対値で単位dB)を示している。より詳しくは、図5(A)は、金属棒90Aが、レーダ送受信部10からの距離d=0cmに存在する場合を示している。図5(B)は、金属棒90Aが、レーダ送受信部10からの距離d=10cmに存在する場合を示している。図5(A)および図5(B)によって分かるように、金属棒90Aが、レーダ送受信部10からの距離d=0cmに存在する場合、距離d=10cmに存在する場合のいずれも、対象物90が存在しない場合(図4)に比して、至近範囲での反射パワーPWが大きく上昇している。 5 (A) and 5 (B) show the frequency spectrum obtained by the FFT processing unit 22 of the radar data processing unit 20, that is, the distance d from the radar transmission / reception unit 10 in the case of the measurement environment of FIG. The data of the reflected power PW (relative value, unit dB) observed accordingly is shown. FIG. 4 is observed according to the frequency spectrum obtained by the FFT processing unit 22, that is, the distance d from the radar transmission / reception unit 10 when the object 90 does not exist in the close range in front of the radar transmission / reception unit 10. The reflected power PW data (relative value, unit dB) is shown. More specifically, FIG. 5A shows a case where the metal rod 90A exists at a distance d = 0 cm from the radar transmission / reception unit 10. FIG. 5B shows a case where the metal rod 90A exists at a distance d = 10 cm from the radar transmission / reception unit 10. As can be seen from FIGS. 5A and 5B, the metal rod 90A is an object in both cases where the metal rod 90A is present at a distance d = 0 cm from the radar transmitter / receiver 10 and at a distance d = 10 cm. Compared with the case where 90 does not exist (FIG. 4), the reflected power PW in the close range is greatly increased.
 図6(A)および図6(B)は、金属棒90Aに換え、人体モデル90Bを用いて測定した場合を示している。この例では、人体モデル90Bは、水入りのPET(ポリエチレンテレフタレート)ボトルからなっている。図6(A)は、人体モデル90Bが、レーダ送受信部10からの距離d=0cmに存在する場合を示している。図6(B)は、人体モデル90Bが、レーダ送受信部10からの距離d=10cmに存在する場合を示している。図6(A)および図6(B)によって分かるように、いずれも、対象物90が存在しない場合(図4)に比して、至近範囲での反射パワーPWが大きく上昇している。 FIGS. 6 (A) and 6 (B) show the case where the measurement is performed using the human body model 90B instead of the metal rod 90A. In this example, the human body model 90B consists of a PET (polyethylene terephthalate) bottle containing water. FIG. 6A shows a case where the human body model 90B exists at a distance d = 0 cm from the radar transmission / reception unit 10. FIG. 6B shows a case where the human body model 90B exists at a distance d = 10 cm from the radar transmission / reception unit 10. As can be seen from FIGS. 6A and 6B, the reflected power PW in the close range is greatly increased as compared with the case where the object 90 is not present (FIG. 4).
 図7(A)および図7(B)は、金属棒90Aに換え、リフレクタ90Cを用いて測定した場合を示している。この例では、リフレクタ90Cは、正四面体の3面をなす金属板からなり、残りの1面(レーダ送受信部10に対向する前面)が省略されて凹状に形成された標準品である。リフレクタ90Cの凹部がレーダ送受信部10に向けられている。図7(A)は、リフレクタ90Cが、レーダ送受信部10からの距離d=0cmに存在する場合を示している。図7(B)は、リフレクタ90Cが、レーダ送受信部10からの距離d=10cmに存在する場合を示している。図7(A)および図7(B)によって分かるように、いずれも、対象物90が存在しない場合(図4)に比して、至近範囲での反射パワーPWが大きく上昇している。 FIGS. 7 (A) and 7 (B) show the case where the measurement is performed using the reflector 90C instead of the metal rod 90A. In this example, the reflector 90C is a standard product made of a metal plate forming three surfaces of a regular tetrahedron, and the remaining one surface (front surface facing the radar transmission / reception unit 10) is omitted to form a concave shape. The recess of the reflector 90C is directed toward the radar transmitter / receiver 10. FIG. 7A shows a case where the reflector 90C exists at a distance d = 0 cm from the radar transmission / reception unit 10. FIG. 7B shows a case where the reflector 90C exists at a distance d = 10 cm from the radar transmission / reception unit 10. As can be seen from FIGS. 7 (A) and 7 (B), the reflected power PW in the close range is greatly increased as compared with the case where the object 90 is not present (FIG. 4).
 図9(A)は、レーダ送受信部10の前方で至近範囲に対象物90が存在しない場合の反射パワーPWを示している。図9(B)は、金属棒90Aが、レーダ送受信部10からの距離d=0cmに存在する場合を示している。図9(A)および図9(B)によって分かるように、至近範囲に対象物が存在しない場合の基準(初期値)の反射パワーPWと、金属棒90Aが存在する場合に検出される反射パワーPWとの間に差Dが存在することが分かる。この例では、差Dを予め定められた閾値Thと比較することにより、対象物が存在するか否かを高精度で判定することが可能となる。 FIG. 9A shows the reflected power PW when the object 90 does not exist in the close range in front of the radar transmission / reception unit 10. FIG. 9B shows a case where the metal rod 90A exists at a distance d = 0 cm from the radar transmission / reception unit 10. As can be seen from FIGS. 9 (A) and 9 (B), the reference (initial value) reflection power PW when there is no object in the close range and the reflection power detected when the metal rod 90A is present. It can be seen that there is a difference D between the PW and the PW. In this example, by comparing the difference D with a predetermined threshold value Th, it is possible to determine with high accuracy whether or not an object exists.
 このような状況を踏まえて、一実施形態の存在判定方法では、図8に示す存在判定処理方法のフローに示すように、レーダ送受信部10の前方で至近範囲に対象物90が存在しない場合の、反射パワーPW、および、その反射パワーPWを特定範囲にわたって積分して得られた面積に対して、現在の反射パワーPW、および、その反射パワーPWを特定範囲にわたって積分して得られた面積を比較することによって、現在、レーダ送受信部10の前方で至近範囲に対象物90が存在しているか否かを判定することとする。この例では、特定範囲は、レーダ送受信部10から10cmまでの範囲とする(すなわち、この例では、特定範囲は至近範囲と一致している。)。 Based on such a situation, in the existence determination method of one embodiment, as shown in the flow of the existence determination processing method shown in FIG. 8, when the object 90 does not exist in the close range in front of the radar transmission / reception unit 10. , The area obtained by integrating the reflected power PW and its reflected power PW over a specific range, and the area obtained by integrating the current reflected power PW and its reflected power PW over a specific range. By comparing, it is determined whether or not the object 90 currently exists in a close range in front of the radar transmission / reception unit 10. In this example, the specific range is the range from the radar transmitter / receiver 10 to 10 cm (that is, in this example, the specific range coincides with the close range).
 図8のステップS1に示すように、存在判定方法は、送受信部10から予め定められた至近範囲に対象物が存在しない場合について、予め、基準の反射パワーPWを算出する。この例では、図10は、レーダ送受信部10の前方に対象物90が存在しない場合の反射パワーPWを示している。図10中の個々のデータ点P1…P4(●印で示す)は、送受信部10から距離に関する最小分解能分だけ離れたP1の距離から、P1の距離よりも大きいP4までの特定範囲を示している。FFT処理部22は、予め、データ点P1…P4わたって反射パワーPWを算出する。 As shown in step S1 of FIG. 8, the existence determination method calculates the reference reflection power PW in advance from the transmission / reception unit 10 when the object does not exist in a predetermined close range. In this example, FIG. 10 shows the reflected power PW when the object 90 does not exist in front of the radar transmission / reception unit 10. The individual data points P1 ... P4 (indicated by ●) in FIG. 10 indicate a specific range from the distance of P1 which is separated from the transmission / reception unit 10 by the minimum resolution regarding the distance to P4 which is larger than the distance of P1. There is. The FFT processing unit 22 calculates the reflected power PW in advance across the data points P1 ... P4.
 さらに、存在処理部30は面積算出部として働いて、反射パワーPWを特定範囲にわたって積分して得られた基準の面積SRとして、データ点P1…P4の反射パワーPWの合計を算出する。図10の例では、基準の面積SRは、P1…P4の合計SR=233dBであった。 Further, the existence processing unit 30 works as an area calculation unit, and calculates the total of the reflected power PWs of the data points P1 ... P4 as the reference area SR obtained by integrating the reflected power PW over a specific range. In the example of FIG. 10, the reference area SR was the total SR of P1 ... P4 = 233 dB.
 次に、図8のステップS2で、存在処理部30は面積算出部として働いて、反射パワーPWを特定範囲わたって積分して現在の面積SCを算出した上、さらに、第1判定部として働いて、至近範囲に対象物が存在しないとき面積算出部によって特定範囲わたって算出された基準の面積SRに対して、面積算出部によって特定範囲わたって算出される現在の面積SCが大きい、という第1条件が満たされているか否かを判定する。 Next, in step S2 of FIG. 8, the existence processing unit 30 acts as an area calculation unit, integrates the reflected power PW over a specific range to calculate the current area SC, and further acts as a first determination unit. Therefore, the current area SC calculated by the area calculation unit over the specific range is larger than the standard area SR calculated by the area calculation unit over the specific range when there is no object in the close range. 1 Determine whether or not the condition is satisfied.
 この例では、図11Aは、対象物が金属棒90Aであり、距離d=0cmに存在する場合の反射パワーPWを至近範囲で拡大して示している。図11Aの例では、現在の面積SCとしての現在のデータ点PA01…PA04の合計SCA0=252dBであった。図11Aの例では、現在の面積SCA0=252dBは、基準の面積SR=233dBより大きい。したがって、第1条件が満たされていると判定される(図8のステップS2でYES)。 In this example, FIG. 11A shows the reflected power PW when the object is a metal rod 90A and exists at a distance d = 0 cm in an enlarged range. In the example of FIG. 11A, it was running total SC A0 = 252dB of data points P A0 1 ... P A0 4 as the current area SC. In the example of FIG. 11A, the current area SC A0 = 252 dB is larger than the reference area SR = 233 dB. Therefore, it is determined that the first condition is satisfied (YES in step S2 of FIG. 8).
 上記第1条件が満たされているとき、図8のステップS3で、存在判定部は第2判定部として働いて、至近距離内に対象物が存在しないときFFT処理部22によって第1の距離で検出された基準の反射パワーPWに対して、FFT処理部22によって第1の距離で検出される現在の反射パワーPWとの差が、予め定められた閾値Thよりも大きい、という第2条件(後掲の表1参照)が満たされているか否かを判定する。この例では、レーダ送受信部10から距離10cmの位置での反射パワーPW同士を比較するものとする。 When the first condition is satisfied, in step S3 of FIG. 8, the existence determination unit acts as the second determination unit, and when the object does not exist within a close distance, the FFT processing unit 22 performs the first distance at the first distance. The second condition that the difference between the detected reference reflected power PW and the current reflected power PW detected by the FFT processing unit 22 at the first distance is larger than the predetermined threshold value Th (). Determine whether or not (see Table 1 below) is satisfied. In this example, it is assumed that the reflected power PWs at a position 10 cm away from the radar transmission / reception unit 10 are compared with each other.
 この例では、図10中、FFT処理部22によって距離10cmの位置でのデータ点P4で検出された基準の反射パワーPW=61dBに対して、図11A中、FFT処理部22によって距離10cmの位置でのデータ点PA04で検出される現在の反射パワーPW=70dBとの差が、予め定められた閾値Th=5dBよりも大きい。したがって、第2条件が満たされていると判定される(図8のステップS3でYES)。なお、予め、閾値Th=5dBに設定されているものとする。 In this example, with respect to the reference reflection power PW = 61 dB detected at the data point P4 at a distance of 10 cm by the FFT processing unit 22 in FIG. 10, the position at a distance of 10 cm by the FFT processing unit 22 in FIG. 11A. the difference between the current reflected power PW = 70 dB, which is detected by the data point P A0 4 in is greater than the threshold Th = 5 dB predetermined. Therefore, it is determined that the second condition is satisfied (YES in step S3 of FIG. 8). It is assumed that the threshold value Th = 5 dB is set in advance.
 上記第1および第2条件が満たされているときに限り、図8のステップS4に示すように、存在処理部30は存在判定部として働いて、対象物が存在すると判定する。一方、上記第1および第2条件のいずれかが満たされていなければ、図8のステップS5に示すように、存在処理部30は、対象物が存在しないと判定する。 Only when the first and second conditions are satisfied, as shown in step S4 of FIG. 8, the existence processing unit 30 acts as an existence determination unit and determines that the object exists. On the other hand, if either of the first and second conditions is not satisfied, the existence processing unit 30 determines that the object does not exist, as shown in step S5 of FIG.
 図11Bは、図11Aの例に代えて、対象物が金属棒90Aであり、距離d=10cmに存在する例を示している。この場合、現在のデータ点PA101…PA104の合計SCA10=234dBは、基準の面積SR=233dBより大きい。よって、第1条件が満たされていると判定される。また、基準の反射パワーPW=61dBに対して、データ点PA104で検出される現在の反射パワーPW=70dBとの差が、予め定められた閾値Th=5dBよりも大きい、という第2条件が満たされていると判断される。したがって、対象物が存在すると判定される。 FIG. 11B shows an example in which the object is a metal rod 90A and exists at a distance d = 10 cm instead of the example of FIG. 11A. In this case, the total SC A10 = 234dB of the current data point P A10 1 ... P A10 4, the reference is greater than the area SR = 233dB of. Therefore, it is determined that the first condition is satisfied. Further, with respect to the reference reflected power PW = 61 dB, the difference between the current reflected power PW = 70 dB, which is detected by the data point P A10 4 is greater than a predetermined threshold value Th = 5 dB, that the second condition Is determined to be satisfied. Therefore, it is determined that the object exists.
 図12Aは、図11A、図11Bの例に代えて、対象物が人腕モデル90Hであり、距離d=0cmに存在する例を示している。人腕モデル90Hは、人体モデル90Bと同様に、水入りのPETボトルからなっている。この場合、現在のデータ点PH01…PH04の合計SCH0=272dBは、基準の面積SR=233dBより大きい。よって、第1条件が満たされていると判定される。また、基準の反射パワーPW=61dBに対して、データ点PH04で検出される現在の反射パワーPW=70dBとの差が、予め定められた閾値Th=5dBよりも大きい、という第2条件が満たされていると判断される。したがって、対象物が存在すると判定される。 FIG. 12A shows an example in which the object is a human arm model 90H and exists at a distance d = 0 cm instead of the examples of FIGS. 11A and 11B. The human arm model 90H, like the human body model 90B, is made of a PET bottle containing water. In this case, the total SC H0 = 272dB of the current data point P H0 1 ... P H0 4, the reference is greater than the area SR = 233dB of. Therefore, it is determined that the first condition is satisfied. The second condition is that the difference between the reference reflection power PW = 61 dB and the current reflection power PW = 70 dB detected at the data point PH 04 is larger than the predetermined threshold value Th = 5 dB. Is determined to be satisfied. Therefore, it is determined that the object exists.
 図12Bは、図11A、図11B、図12Aの例に代えて、対象物が人腕モデル90Hであり、距離d=10cmに存在する例を示している。この場合、現在のデータ点PH101…PH104の合計SCH10=244dBは、基準の面積SR=233dBより大きい。よって、第1条件が満たされていると判定される。また、基準の反射パワーPW=61dBに対して、データ点PH104で検出される現在の反射パワーPW=77dBとの差が、予め定められた閾値Th=5dBよりも大きい、という第2条件が満たされていると判断される。したがって、対象物が存在すると判定される。 FIG. 12B shows an example in which the object is a human arm model 90H and exists at a distance d = 10 cm instead of the examples of FIGS. 11A, 11B, and 12A. In this case, the total SC H10 = 244dB of the current data point P H10 1 ... P H10 4, the reference is greater than the area SR = 233dB of. Therefore, it is determined that the first condition is satisfied. Further, with respect to the reference reflected power PW = 61 dB, the difference between the current reflected power PW = 77dB which is detected by the data point P H10 4 is greater than a predetermined threshold value Th = 5 dB, that the second condition Is determined to be satisfied. Therefore, it is determined that the object exists.
 (表1)判定条件テーブル
Figure JPOXMLDOC01-appb-I000001

(Table 1) Judgment condition table
Figure JPOXMLDOC01-appb-I000001

 このようにして、このレーダ装置1によれば、至近範囲に対象物が存在するか否かを判定することが可能となる。 In this way, according to this radar device 1, it is possible to determine whether or not an object exists in a close range.
 なお、データ点の合計は、1回の検出結果に限られるものではない。複数回の検出結果に基づいて合計してもよい。この例では、面積はデータ点の合計により算出したが、これに限られるものではない。反射パワーPWの距離に対する関数式から積分の計算により算出してもよい。 Note that the total number of data points is not limited to one detection result. It may be summed based on the results of multiple detections. In this example, the area is calculated from the sum of the data points, but is not limited to this. It may be calculated by the integral calculation from the function formula for the distance of the reflected power PW.
 上の例では、存在処理部30が面積算出部として反射パワーPWを積分すべき特定範囲は至近範囲(レーダ送受信部10から距離d=10cmまでの範囲)と一致しているものとした。しかしながら、これに限られるものではなく、特定範囲は至近範囲よりも広くてもよいし、狭くてもよい。 In the above example, it is assumed that the specific range in which the existence processing unit 30 should integrate the reflected power PW as the area calculation unit coincides with the close range (the range from the radar transmission / reception unit 10 to the distance d = 10 cm). However, the specific range is not limited to this, and the specific range may be wider or narrower than the close range.
 また、上の例では、存在判定部は第2判定部として働いて、レーダ送受信部10から距離10cmの位置での反射パワーPW同士を比較するものとした。しかしながら、これに限られるものではなく、他の位置、例えばレーダ送受信部10から距離5cmの位置での反射パワーPW同士を比較してもよい。 Further, in the above example, the existence determination unit functions as a second determination unit to compare the reflected power PWs at a position 10 cm away from the radar transmission / reception unit 10. However, the present invention is not limited to this, and the reflected power PWs at other positions, for example, at a position 5 cm away from the radar transmission / reception unit 10, may be compared with each other.
 上述の存在処理部30は、ソフトウェア(コンピュータプログラム)に従って動作するマイクロプロセッサによって構成された。しかしながら、これに限るものではなく、存在処理部30は、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などの、論理回路(集積回路)によって構成されてもよい。また、存在処理部30は、例えば市販のミリ波センサデバイスに組み込まれてもよい。 The above-mentioned existence processing unit 30 is composed of a microprocessor that operates according to software (computer program). However, the present invention is not limited to this, and the existence processing unit 30 may be configured by a logic circuit (integrated circuit) such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array). Further, the existence processing unit 30 may be incorporated in, for example, a commercially available millimeter wave sensor device.
 上述の存在判定方法(または存在処理方法)を、ソフトウェア(コンピュータプログラム)として、CD(コンパクトディスク)、DVD(デジタル万能ディスク)、フラッシュメモリなどの非一時的(non-transitory)にデータを記憶可能な記録媒体に記録してもよい。このような記録媒体に記録されたソフトウェアを、パーソナルコンピュータ、PDA(パーソナル・デジタル・アシスタンツ)、スマートフォンなどの実質的なコンピュータ装置にインストールすることによって、それらのコンピュータ装置に、上述の存在判定方法(または存在処理方法)を実行させることができる。 Data can be stored non-transitory on CDs (compact discs), DVDs (digital universal discs), flash memories, etc. using the above-mentioned existence determination method (or existence processing method) as software (computer programs). It may be recorded on various recording media. By installing the software recorded on such a recording medium on a substantial computer device such as a personal computer, a PDA (Personal Digital Assistance), or a smartphone, the above-mentioned existence determination method ( Or the existence processing method) can be executed.
 以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。 The above embodiment is an example, and various modifications can be made without departing from the scope of the present invention. Each of the plurality of embodiments described above can be established independently, but combinations of the embodiments are also possible. Further, although various features in different embodiments can be established independently, it is also possible to combine features in different embodiments.
  1 レーダ装置
  10 レーダ送受信部
  20 レーダデータ処理部
  30 存在処理部
  40 後段処理部
  50 データ出力部
  90 対象物
1 Radar device 10 Radar transmission / reception unit 20 Radar data processing unit 30 Existence processing unit 40 Post-stage processing unit 50 Data output unit 90 Object

Claims (4)

  1.  送受信部から電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物についての情報を得るレーダ装置であって、
     上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求める反射パワー算出部と、
     上記反射パワーを積分して面積を算出する面積算出部と、
     上記送受信部から予め定められた至近範囲に対象物が存在するか否かを判定する存在判定部とを備え、
     上記存在判定部は、
     上記至近範囲に対象物が存在しないとき上記面積算出部によって上記特定範囲について算出された基準の面積に対して、上記面積算出部によって上記特定範囲について算出される現在の面積が大きい、という第1条件が満たされているとき、上記至近範囲に対象物が存在すると判定する第1判定部を含む
    ことを特徴とするレーダ装置。
    It is a radar device that obtains information about the object by emitting electromagnetic waves from the transmitter / receiver toward the object and observing the reflected wave by the object.
    Based on the reflected wave, the reflected power calculation unit that obtains the reflected power for a specific range from the first distance separated by the minimum resolution of the distance from the transmitting / receiving unit to the second distance larger than the first distance. When,
    An area calculation unit that integrates the above reflected power to calculate the area,
    It is provided with an existence determination unit that determines whether or not an object exists in a predetermined close range from the transmission / reception unit.
    The existence determination unit is
    The first that the current area calculated for the specific range by the area calculation unit is larger than the standard area calculated for the specific range by the area calculation unit when there is no object in the close range. A radar device including a first determination unit that determines that an object exists in the close range when the conditions are satisfied.
  2.  請求項1に記載のレーダ装置において、
     上記存在判定部は、
     上記至近距離内に対象物が存在しないとき上記反射パワー算出部によって上記第1の距離で検出された基準の反射パワーに対して、上記反射パワー算出部によって上記第1の距離で検出される現在の反射パワーとの差が、予め定められた閾値よりも大きい、という第2条件が満たされているか否かを判定する第2判定部を含み、
     上記第1条件に加えて、上記第2条件が満たされているときに限り、上記対象物が存在すると判定する
    ことを特徴とするレーダ装置。
    In the radar device according to claim 1,
    The existence determination unit is
    When there is no object within the close distance, the current reflection power is detected by the reflection power calculation unit at the first distance with respect to the reference reflection power detected at the first distance by the reflection power calculation unit. Includes a second determination unit that determines whether or not the second condition that the difference from the reflected power of is larger than a predetermined threshold value is satisfied.
    A radar device characterized in that it determines that an object exists only when the second condition is satisfied in addition to the first condition.
  3.  送受信部から電磁波を対象物へ向けて発射し、上記対象物による反射波を観測することにより、上記対象物についての情報を得るレーダ装置のための存在判定方法であって、
     上記レーダ装置は、
     上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求める反射パワー算出部と、
     上記反射パワーを積分して面積を算出する面積算出部と、を含み、
     上記存在判定方法は、
     上記送受信部から予め定められた至近範囲に対象物が存在しないとき、予め、上記反射パワー算出部によって、上記反射波に基づいて、上記送受信部から距離に関する最小分解能分だけ離れた第1の距離から、上記第1の距離よりも大きい第2の距離までの特定範囲について反射パワーを求め、上記面積算出部によって上記反射パワーを積分して基準の面積を算出しておき、
     上記反射パワー算出部によって、上記特定範囲について現在の反射パワーを求め、上記面積算出部によって上記現在の反射パワーを積分して現在の面積を算出し、
     上記基準の面積に対して、上記面積算出部によって上記特定範囲について算出される現在の面積が大きい、という第1条件が満たされているとき、上記至近範囲に対象物が存在すると判定する
    ことを特徴とする存在判定方法。
    It is an existence determination method for a radar device that obtains information about an object by emitting an electromagnetic wave toward the object from a transmission / reception unit and observing a reflected wave by the object.
    The above radar device
    Based on the reflected wave, the reflected power calculation unit that obtains the reflected power for a specific range from the first distance separated by the minimum resolution of the distance from the transmitting / receiving unit to the second distance larger than the first distance. When,
    Including an area calculation unit that integrates the above reflected power to calculate the area,
    The above existence determination method is
    When an object does not exist in a predetermined close range from the transmission / reception unit, the first distance is separated from the transmission / reception unit by the minimum resolution regarding the distance based on the reflected wave in advance by the reflection power calculation unit. Therefore, the reflected power is obtained for a specific range up to the second distance larger than the first distance, and the reflected power is integrated by the area calculation unit to calculate the reference area.
    The current reflection power is obtained for the specific range by the reflection power calculation unit, and the current reflection power is integrated by the area calculation unit to calculate the current area.
    When the first condition that the current area calculated by the area calculation unit for the specific range is larger than the area of the reference is satisfied, it is determined that the object exists in the close range. Characteristic existence determination method.
  4.  請求項3に記載の存在判定方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the existence determination method according to claim 3.
PCT/JP2020/009157 2019-07-05 2020-03-04 Radar device, presence determination method, and program WO2021005830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019126449A JP7484094B2 (en) 2019-07-05 Radar device, presence determination method, and program
JP2019-126449 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021005830A1 true WO2021005830A1 (en) 2021-01-14

Family

ID=74114502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009157 WO2021005830A1 (en) 2019-07-05 2020-03-04 Radar device, presence determination method, and program

Country Status (1)

Country Link
WO (1) WO2021005830A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153841A (en) * 1974-11-06 1976-05-12 Nippon Electric Co
JP2003248053A (en) * 2002-02-27 2003-09-05 Tech Res & Dev Inst Of Japan Def Agency Radar signal processing apparatus
JP2011191195A (en) * 2010-03-15 2011-09-29 Honda Elesys Co Ltd Radar apparatus and computer program
JP2014219298A (en) * 2013-05-09 2014-11-20 富士通株式会社 Radar device and target detecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153841A (en) * 1974-11-06 1976-05-12 Nippon Electric Co
JP2003248053A (en) * 2002-02-27 2003-09-05 Tech Res & Dev Inst Of Japan Def Agency Radar signal processing apparatus
JP2011191195A (en) * 2010-03-15 2011-09-29 Honda Elesys Co Ltd Radar apparatus and computer program
JP2014219298A (en) * 2013-05-09 2014-11-20 富士通株式会社 Radar device and target detecting method

Also Published As

Publication number Publication date
JP2021012105A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP2651054B2 (en) Polystatic correlation radar
JP5930590B2 (en) Radar equipment
US10768276B2 (en) Decentralised radar system
JP4368852B2 (en) Radar equipment
KR102437345B1 (en) Method and radar apparatus for determining radial relative acceleration of one or more targets
KR102144668B1 (en) Vechicle radar for discriminating false target using variable wave and method for discriminating false target using it
JPH1164497A (en) Laser device
US20230079979A1 (en) Determining relevant signals using multi-dimensional radar signals
JP2016206011A (en) Object detection device
US10101435B1 (en) Radio frequency (RF) ranging in RF-opaque environments
KR102158740B1 (en) SYSTEM AND METHOD FOR ESTIMATING RADAR DoA
US11275181B2 (en) Radio frequency (RF) ranging in propagation limited RF environments utilizing aerial vehicles
KR20210136629A (en) Radar Apparatus for Vehicle and Controlling Method thereof
WO2021005830A1 (en) Radar device, presence determination method, and program
KR20190016254A (en) Method and apparatus for measurment of distance
JP7484094B2 (en) Radar device, presence determination method, and program
WO2020133223A1 (en) Target detection method, radar, vehicle and computer-readable storage medium
JP7381970B2 (en) Radar device, object detection method, and object detection program
KR102192761B1 (en) Method and apparatus for detecting target
JP2021012104A (en) Radar device, ghost determination method, and program
KR20210109857A (en) Apparatus and Method for Detecting Performance Degradation of Radar Apparatus for Vehicle, and Radar Apparatus of Vehicle with the same
KR100493727B1 (en) Method for detecting target in multi-function radar
US20230140503A1 (en) Radar device and radar method
JP2002156450A (en) Obstacle discriminating method
US20230003518A1 (en) Vehicle radar apparatus and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836108

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836108

Country of ref document: EP

Kind code of ref document: A1