WO2020262374A1 - Exosome measurement method and exosome measurement kit - Google Patents

Exosome measurement method and exosome measurement kit Download PDF

Info

Publication number
WO2020262374A1
WO2020262374A1 PCT/JP2020/024585 JP2020024585W WO2020262374A1 WO 2020262374 A1 WO2020262374 A1 WO 2020262374A1 JP 2020024585 W JP2020024585 W JP 2020024585W WO 2020262374 A1 WO2020262374 A1 WO 2020262374A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosome
binding
exosomes
substance
metal film
Prior art date
Application number
PCT/JP2020/024585
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 青木
高敏 彼谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021527640A priority Critical patent/JPWO2020262374A1/ja
Publication of WO2020262374A1 publication Critical patent/WO2020262374A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to an exosome measuring method and an exosome measuring kit.
  • Exosomes are membrane vesicles with a diameter of about 40 nm to 150 nm that are produced by cells and released extracellularly. Exosomes are covered with a phospholipid bilayer and contain a variety of cellular components such as membrane proteins and microRNAs (miRNAs). Exosomes are thought to mediate communication between cells and organs, because different exosomes are released from cells depending on the type and state of the cells.
  • miRNAs microRNAs
  • Patent Document 1 discloses an analysis method, an analysis reagent, and an analysis device for detecting an exosome as a tumor marker.
  • an antibody against an antigen possessed by an exosome and an antibody against an antigen possessed by a cell secreting the exosome are used to detect the exosome based on an avidin-biotin interaction.
  • Patent Document 2 discloses an exosome analysis device and a method for capturing exosomes, in which an antibody against exosomes is fixed in a recess of a base portion made of a compatible resin having an uneven structure and the exosome is captured in the recess. There is.
  • An object of the present invention is to provide a method for measuring exosomes and a kit for measuring exosomes, which can measure the concentration of exosomes in a sample more sensitively and easily than the conventional measuring methods.
  • the method for measuring an exosome includes a step of preparing a measuring chip containing a metal film and a first binding substance that binds to the exosome, which is immobilized on the metal film, and the metal film.
  • An exosome measurement kit comprises a metal membrane, a measurement chip immobilized on the metal membrane, and a first binding substance that binds to the exosome, and the exosome is labeled with a fluorescent substance.
  • the labeling reagent comprises a second binding substance that binds to the exosome.
  • the concentration of exosomes in a sample can be measured more sensitively and easily than the conventional measuring method.
  • FIG. 1A is a flowchart showing an example of a method for measuring exosomes according to the present embodiment.
  • FIG. 1B is a flowchart showing another example of the method for measuring exosomes according to the present embodiment.
  • FIG. 2A is a schematic cross-sectional view for explaining the configuration of the measuring chip for PC-SPFS
  • FIG. 2B is a schematic cross-sectional view for explaining the configuration of the measuring chip for GC-SPFS.
  • FIG. 3A is a schematic cross-sectional view showing an example of a measuring chip for PC-SPFS.
  • FIG. 3B is a schematic perspective view showing another example of the measuring chip for PC-SPFS.
  • FIG. 3C is a schematic cross-sectional view showing another example of the measuring chip for PC-SPFS.
  • FIG. 1A is a flowchart showing an example of a method for measuring exosomes according to the present embodiment.
  • FIG. 1B is a flowchart showing another example of the method for measuring exosomes
  • FIG. 4 is a calibration curve showing the relationship between the number of exosomes and the concentration.
  • FIG. 5 is a CD9-positive CD63-positive exosome calibration curve.
  • FIG. 6 is a graph showing the relationship between irradiation energy, signal-to-noise ratio (S / N), and detection limit for CD9-positive and CD63-positive exosomes.
  • FIG. 7 is a calibration curve of CD9-positive PSMA-positive exosomes.
  • FIG. 8 is a graph showing the relationship between irradiation energy, signal-to-noise ratio (S / N), and detection limit for CD9-positive PSMA-positive exosomes.
  • FIG. 9 is a calibration curve of CD9-positive and CD63-positive exosomes derived from LNCaP cells.
  • FIG. 10 is a graph showing the relationship between irradiation energy, signal-to-noise ratio (S / N), and detection limit for CD9-positive and CD63-positive exosomes derived from LNCaP cells.
  • FIG. 11 is a calibration curve of a CD9-positive sugar chain-carrying exosome derived from LNCaP cells using a lectin that recognizes sugar chains on exosomes.
  • FIG. 12 is a calibration curve of a CD9-positive sugar chain-carrying exosome derived from prostate cancer cells using a lectin that recognizes sugar chains on exosomes.
  • Exosomes are secreted by normal cells as well as by disease-related cells such as cancer cells. Therefore, in order to use exosomes as disease markers, it is possible to distinguish between a large amount of normal cell-derived exosomes present in a sample (for example, blood) and a smaller amount of disease-related cell-derived exosomes. Method is required. Generally, the concentration of exosomes present in serum is said to be about 1.0 ⁇ 10 11 (1.0 ⁇ 10 8 / ⁇ l), and among them, exosomes related to diseases (for example, cancer). To detect exosomes, a method capable of detecting exosomes of 1.0 ⁇ 10 6 / ml (1.0 ⁇ 10 3 / ⁇ l) or less is required.
  • exosomes are measured using surface plasmon-field enhanced Fluorescence Spectroscopy (hereinafter, also referred to as “SPFS”).
  • SPFS surface plasmon-field enhanced Fluorescence Spectroscopy
  • SPR surface plasmon resonance
  • exosomes can be measured with high sensitivity by SPFS as a result of repeated diligent studies, and completed the method for measuring exosomes according to the present embodiment.
  • FIG. 1A is a flowchart showing a measurement method using a primary reaction and a secondary reaction, which is an example of a method for measuring exosomes according to the present embodiment
  • FIG. 1B is a method for measuring exosomes according to the present embodiment. It is a flowchart which shows the measurement method using the primary reaction, the secondary reaction and the tertiary reaction which are an example.
  • a measuring chip containing a metal film and a first binding substance that binds to an exosome is prepared (step S10).
  • SPR is generated by combining an evanescent wave generated when a metal film is irradiated with light (excitation light in the present embodiment) and a surface plasmon.
  • a method for generating SPR a method of arranging a prism on one surface of a metal film (Kretschmann arrangement), a method of forming a diffraction grating on the metal film, and the like are known.
  • the SPFS adopting the former method is referred to as prism coupling (PC) -SPFS, and the SPFS adopting the latter method is referred to as lattice coupling (GC) -SPFS.
  • PC prism coupling
  • GC lattice coupling
  • PC-SPFS prism coupling
  • GC-SPFS lattice coupling
  • the metal film causes SPR when irradiated with excitation light.
  • the type of metal constituting the metal film is not particularly limited as long as it is a metal capable of causing SPR.
  • metals constituting the metal film include gold, silver, copper, aluminum and alloys thereof.
  • the first binding substance can bind to exosomes and is immobilized on a metal membrane to capture exosomes in a sample.
  • the first binding substance is uniformly immobilized on a predetermined region (reaction field) on the metal film.
  • the type of the first binding substance immobilized on the metal membrane is not particularly limited as long as it can bind to the exosome, that is, it binds to the first binding determinant of the exosome.
  • binding agents include antibodies that can bind to exosomes, nucleic acids that can bind to exosomes, lipids that can bind to exosomes, and proteins other than antibodies that can bind to exosomes, such as lectins that can bind to sugar chains on exosomes.
  • the binding determinant possessed by an exosome is a part of the exosome that the binding substance recognizes when it binds to the exosome.
  • the binding determinant is the antigenic determinant (epitope) of the antigen
  • the binding determinant is the binding site of the corresponding receptor.
  • the first binding determinant of the exosome to which the first binding substance binds is not particularly limited, but a binding determinant known as an exosome marker or a binding determinant known as a marker of a cell secreting an exosome is used. included. Binding determinants known as exosome markers include CD9, CD63, CD81, CD37, CD53, CD82, CD13, CD11, CD86, ICAM-1, Rab5, Annexin V, LAMP1 and the like. Antibodies to these binding determinants are commercially available, and the antibodies can be used as the first binding substance.
  • the first binding substance that binds to a binding determinant known as an exosome marker binds only to the exosome, so that the exosome in the sample can be detected. It is valid.
  • Binding determinants known as markers for cells that secrete exosomes include caveolin-1, PSMA, EpCAM, Glypican-1, Survivin, CD91, Tspan8, CD147, and EGFR. , HER2, CD44, Galactin, Integrin and the like. Antibodies to these binding determinants are also commercially available, and the antibodies can be used as the first binding substance.
  • a binding substance eg, an antibody
  • a binding determinant binds to a binding determinant known as a cell marker that secretes exosomes
  • it binds only to a specific cell and the exosome secreted from the cell, so that the sample It is effective in detecting exosomes derived from specific cells inside.
  • the antibody When the first binding substance is an antibody, the antibody may be a monoclonal antibody, a polyclonal antibody, or a fragment of the antibody. Further, the type of the first binding substance immobilized on the metal film may be one type or two or more types. For example, when the first binding substance immobilized on the metal membrane is an antibody, the antibody is one type or two or more types of monoclonal antibody or polyclonal antibody.
  • first binding substance is preferably selected in consideration of the combination with the second binding substance described in relation to the fluorescent label.
  • the preferred combination of the first binding substance and the second binding substance will be described later.
  • the method for immobilizing the binding substance is not particularly limited.
  • a self-assembled monolayer hereinafter referred to as “SAM”
  • a polymer film to which a binding substance for example, an antibody
  • SAMs include membranes formed with substituted aliphatic thiols such as HOOC- (CH 2 ) 11- SH.
  • materials constituting the polymer membrane include polyethylene glycol and MPC polymer.
  • a polymer having a reactive group (or a functional group that can be converted into a reactive group) capable of binding to a binding substance for example, an anti-exosome antibody
  • a binding substance for example, an anti-exosome antibody
  • the measuring chip is preferably a structure in which each piece has a length of several mm to several cm, but may be a smaller structure or a larger structure that is not included in the category of “chip”.
  • FIG. 2A is a schematic cross-sectional view for explaining the configuration of the measuring chip for PC-SPFS
  • FIG. 2B is a schematic cross-sectional view for explaining the configuration of the measuring chip for GC-SPFS.
  • the size and shape of each component in these figures is not accurate.
  • these figures show an example of using an anti-exosome antibody that recognizes an antigen on an exosome as a first binding substance.
  • the measuring chip 100 for PC-SPFS has a prism 110, a metal film 120, and an anti-exosome antibody (first binding substance) 130 (layer) that recognizes an antigen on an exosome.
  • the prism 110 is made of a dielectric material transparent to the excitation light L1, and includes an incident surface 111 on which the excitation light L1 is incident, a film forming surface 112 on which the excitation light L1 is reflected, and an exit surface 113 on which the reflected light L2 is emitted.
  • the shape of the prism 110 is not particularly limited. In the example shown in FIG. 2A, the shape of the prism 110 is a pillar body having a trapezoidal bottom surface.
  • the surface corresponding to one base of the trapezoid is the film forming surface 112, the surface corresponding to one leg is the incident surface 111, and the surface corresponding to the other leg is the exit surface 113.
  • materials for prism 110 include resin and glass.
  • the material of the prism 110 is preferably a resin having a refractive index of 1.4 to 1.6 with respect to excitation light and a small birefringence.
  • the metal film 120 is arranged on the film forming surface 112 of the prism 110.
  • the method for forming the metal film 120 is not particularly limited. Examples of methods for forming the metal film 120 include sputtering, vapor deposition, and plating.
  • the thickness of the metal film 120 is not particularly limited, but is preferably in the range of 30 to 70 nm.
  • the measuring chip 200 for GC-SPFS is a layer of a metal film 210 on which a diffraction grating 211 is formed and an anti-exosome antibody (first binding substance) 130 (which recognizes an antigen on an exosome). ).
  • the method for forming the metal film 210 is not particularly limited. Examples of methods for forming the metal film 210 include sputtering, vapor deposition, and plating.
  • the thickness of the metal film 210 is not particularly limited, but is preferably in the range of 30 to 500 nm.
  • the shape of the diffraction grating 211 is not particularly limited as long as it can generate an evanescent wave.
  • the diffraction grating 211 may be a one-dimensional diffraction grating or a two-dimensional diffraction grating.
  • a one-dimensional diffraction grating a plurality of convex portions parallel to each other are formed at predetermined intervals on the surface of the metal film 210.
  • convex portions having a predetermined shape are periodically arranged on the surface of the metal film 210. Examples of the arrangement of convex parts include a square grid, a triangular (hexagonal) grid, and the like.
  • Examples of the cross-sectional shape of the diffraction grating 211 include a rectangular wave shape, a sinusoidal shape, and a sawtooth shape.
  • the method of forming the diffraction grating 211 is not particularly limited. For example, after forming the metal film 210 on a flat substrate (not shown), the metal film 210 may be given an uneven shape. Further, the metal film 210 may be formed on a substrate (not shown) to which a concave-convex shape is previously provided. With either method, the metal film 210 including the diffraction grating 211 can be formed.
  • the electric field enhanced by the SPR is generated by the metal film 210 (diffraction grating 211). It occurs in the vicinity of the grating 211).
  • the measuring chip 300 includes a prism 110 having an incident surface 111, a film forming surface 112, and an emitting surface 113, a metal film 120 formed on the film forming surface 112 of the prism 110, and the prism 110. It has a flow path lid 310 arranged on the film forming surface 112 or the metal film 120.
  • the entrance surface 111 and the exit surface 113 are present in front of and behind the paper surface, respectively.
  • the measuring tip 300 also has a flow path 320, a liquid injection unit 330 connected to one end of the flow path 320, and a storage unit 340 connected to the other end of the flow path 320.
  • the flow path lid 310 is adhered to the metal film 120 (or prism 110) via an adhesive layer 350 such as double-sided tape, and the adhesive layer 350 serves to define the side surface shape of the flow path 320. Also responsible. Although omitted in FIG. 3, an anti-exosome antibody (first binding substance) that recognizes an antigen on an exosome is present in a part of the metal film 120 (reaction field) exposed in the flow path 320. 130 is fixed.
  • the liquid injection section 330 is closed by the liquid injection section covering film 331, and the storage section 340 is closed by the storage section covering film 341.
  • the storage portion covering film 341 is provided with a ventilation hole 342.
  • the flow path lid 310 is made of a material transparent to fluorescent L3. However, a part of the flow path lid 310 may be made of a material opaque to the fluorescent L3 as long as it does not interfere with the removal of the fluorescent L3. Examples of materials that are transparent to fluorescent L3 include resins.
  • the flow path lid 310 may be joined to the metal film 120 (or prism 110) by laser welding, ultrasonic welding, crimping using a clamp member, or the like without using the adhesive layer 350. In this case, the side surface shape of the flow path 320 is defined by the flow path lid 310.
  • a pipette tip is inserted into the liquid injection unit 330.
  • the opening of the liquid injection portion 330 comes into contact with the outer periphery of the pipette tip without a gap. Therefore, the liquid can be introduced into the flow path 320 by injecting the liquid into the liquid injection section 330 from the pipette tip, and the liquid in the liquid injection section 330 is sucked into the pipette tip to enter the flow path 320. Liquid can be removed. Further, by alternately injecting and sucking the liquid, the liquid can be reciprocated in the flow path 320.
  • FIG. 3B and 3C are schematic views showing an example of a well-shaped measuring chip, respectively.
  • FIG. 3B is a schematic view of a well-shaped measuring chip 400 having a reaction detection unit on the bottom surface (see, for example, International Publication No. 2012/157403).
  • the dielectric member 412 is a hexahedron having a substantially trapezoidal cross section (a quadrangular pyramid shape), and the well member 418 is formed in a square shape according to the shape of the dielectric member 412. Then, in a state where the first binding substance that binds to the exosome to be detected is fixed in the ligand fixing region 416 on the metal thin film 414 of the sensor structure 22, the sample solution containing the exosome is supplied into the through hole 420.
  • the sensor structure 422 is agitated.
  • FIG. 3C shows a well in which the reaction detection unit is on the side wall surface (see, for example, International Publication No. 2018/021238).
  • the detection tip 500 has a well body 510 and a side wall member 520.
  • the well body 510 has an accommodating portion (well) 511 inside the well body 510.
  • the accommodating portion 511 is a bottomed recess configured to accommodate the liquid, and is opened to the outside by a first opening 512 provided at the upper part and a second opening 513 provided at the side portion.
  • the side wall member 520 has a prism 521 as an optical element, a metal film 525, and a reaction field 526.
  • the prism 521 is an optical element made of a dielectric material transparent to excitation light, and has an incident surface (not shown), a reflecting surface 523, and an emitting surface (not shown).
  • the prism 521 also functions as a side wall constituting the accommodating portion 511.
  • sample is not particularly limited as long as it contains exosomes.
  • samples include blood (serum, plasma, whole blood), urine, sweat, saliva, breast milk, semen, lymph, cerebrospinal fluid, tears, and other body fluids, as well as saline and buffers. Contains diluted diluent.
  • whole blood can also be used as a sample. Therefore, from the viewpoint of availability and the like, serum, plasma, whole blood or a diluted solution thereof is preferable as a sample.
  • these samples may also contain microvesicles, impurities, and the like.
  • the sample can be used for measurement as it is without centrifugation or removal by filtering, but purification is performed after centrifugation or filtering is performed to remove or precipitate microvesicles and contaminants. There is no problem even if the liquid is used for measurement. Further, the method for removing icrovesicles and impurities is not limited to these.
  • the sample may be an exosome extract prepared from a body fluid.
  • exosome extract prepared from a body fluid.
  • the method for extracting exosomes is not particularly limited, and conventionally known methods for extracting exosomes can be adopted.
  • exosomes can be extracted from body fluids by ultracentrifugation, immunoprecipitation or polymer precipitation.
  • a surfactant may be further added to the sample.
  • a surfactant By adding a surfactant, it is possible to prevent exosome aggregation and reduce background noise and variation in measured values.
  • the surfactant is preferably a surfactant widely used in the field of biomedicine, and includes, for example, Tween 20, sodium deoxycholate, and Triton-X100.
  • Surfactants do not destroy exosomes, but may be used in concentrations that prevent their aggregation.
  • Tween 20 it can be used at a concentration of 0.001% to 5% or less, preferably 0.005% to 1% or less, and more preferably 0.010% to 0.05% or less.
  • sodium deoxycholate it is used at a concentration of 0.001% to 0.025% or less, preferably 0.002% to 0.020% or less, and more preferably 0.003% to 0.010% or less. can do.
  • Triton-X100 it is used at a concentration of 0.001% to 0.010% or less, preferably 0.002% to 0.007% or less, and more preferably 0.003% to 0.005% or less. be able to.
  • the sample is provided on the metal film of the measurement chip, and the exosome contained in the sample is bound to the first binding substance immobilized on the metal film (primary reaction; step S20).
  • the method of providing the sample is not particularly limited.
  • a sample may be provided on a metal membrane using a pipette with a pipette tip attached to the tip.
  • the reaction time of the primary reaction is not particularly limited, but from the viewpoint of increasing the reaction efficiency between the exosome and the first binding substance, a longer reaction time is preferable, and usually 5 minutes or more and 180 minutes or less, preferably. It is 60 minutes or more and 150 minutes or less, more preferably 100 minutes or more and 120 minutes or less.
  • the surface of the metal film is washed with a buffer solution or the like to remove components that are not bound to the first binding substance (washing; step S21). Further, after cleaning, the optical blank can be measured (measure the optical blank; step S2).
  • a labeling reagent is provided on the metal membrane of the measurement chip, and the exosome bound to the binding substance is labeled with the fluorescent substance via the second binding substance that binds to the exosome.
  • the type of labeling reagent is not particularly limited as long as the exosome bound to the first binding substance can react with the second binding substance labeled with the fluorescent substance.
  • the labeling reagent is a fluorescent substance-labeled second binding substance that binds to the second binding determinant of the exosome (secondary reaction of FIG. 1A + fluorescent labeling; step S30).
  • the labeling reagent is a fluorescent substance-labeled third binding substance that binds to a second binding substance that binds to the second binding determinant of the exosome and a second binding substance that binds to the exosome. Both are included [secondary reaction of FIG. 1B; step S30 and fluorescent labeling (third reaction); step S35].
  • the method of providing the labeling reagent is not particularly limited.
  • a pipette with a pipette tip attached to the tip may be used to provide the labeling reagent on the metal membrane.
  • the surface of the metal membrane is washed with a buffer solution or the like to remove a second binding substance (or a third binding substance) that is not bound to exosomes. Remove (cleaning; steps S31 and S36).
  • the type of the second binding substance contained in the labeling reagent is not particularly limited as long as it can bind to the exosome.
  • second binding agents include antibodies that can bind to exosomes, nucleic acids that can bind to exosomes, lipids that can bind to exosomes, and proteins other than antibodies that can bind to exosomes, such as lectins that can bind to sugar chains on exosomes. Is included.
  • the second binding determinant possessed by the exosome to which the second binding substance binds is not particularly limited, but a binding determinant known as an exosome marker or a binding determinant known as a marker for cells secreting exosomes is used. included. Binding determinants known as exosome markers include CD9, CD63, CD81, CD37, CD53, CD82, CD13, CD11, CD86, ICAM-1, Rab5, Annexin V, LAMP1 and the like. Antibodies to these binding determinants are commercially available, and the antibodies can be used as a second binding substance.
  • a substance that reacts with the above substances for example, an antibody
  • a binding determinant known as an exosome marker
  • it binds only to the exosome, so that even if it is not an exosome on a metal membrane. Even if (cells, etc.) are bound, it is effective in detecting only exosomes.
  • Binding determinants known as markers for cells that secrete exosomes include caveolin-1, PSMA, EpCAM, Glypican-1, Survivin, CD91, Tspan8, CD147, and EGFR. , HER2, CD44, Galactin, Integrin and the like. Antibodies to these binding determinants are also commercially available, and the antibodies can be used as a second binding substance.
  • a binding substance eg, an antibody
  • a binding determinant binds to a binding determinant known as a marker for cells secreting exosomes
  • it binds only to a specific cell and the exosome secreted from the cell. It is effective in detecting only exosomes derived from specific cells from various exosomes bound on a metal membrane.
  • the antibody When the second binding substance is an antibody, the antibody may be a monoclonal antibody, a polyclonal antibody, or a fragment of the antibody.
  • the type of the second binding substance contained in the labeling reagent may be one type or two or more types.
  • a fluorescently labeled anti-exosome antibody is one or more anti-exosome monoclonal antibodies or anti-exosome polyclonal antibodies.
  • the fluorescent substance-labeled anti-exosome monoclonal antibody and anti-exosome polyclonal antibody may be different from one or more anti-exosome monoclonal antibodies immobilized on the metal membrane. preferable.
  • the type of the second binding substance contained in the labeling reagent may be the same as or different from the type of the first binding substance immobilized on the metal film.
  • both the first binding substance and the second binding substance may be antibodies, one may be an antibody, and the other may be a protein other than an antibody.
  • the first binding substance immobilized on the metal membrane and the second binding substance contained in the labeling reagent each bind to the binding determinant possessed by the exosome, and the binding of the first binding substance It is preferable that the first binding determinant and the second binding determinant to which the second binding substance binds are different. Rather than competing for the same binding determinant, the first binding substance and the second binding substance bind to different binding determinants, thereby more reliably fixing the exosome to the metal membrane and labeling with the labeling substance. It becomes possible to do. Further, since the first binding determinant to which the first binding substance binds and the second binding determinant to which the second binding substance binds are different, it is detected from the sample based on the binding of the first binding substance. The exosomes to be measured can be further narrowed down based on the binding of the second binding substance.
  • the first binding substance and the second binding substance it is preferable that at least one of the first binding determinant and the second binding determinant is a binding determinant known as an exosome marker. Only exosomes can be detected from substances in a sample by using a binding substance that binds to a binding determinant known as an exosome marker. In addition, it is preferable that at least one of the first binding determinant and the second binding determinant is a binding determinant known as a marker for cells secreting exosomes. Exosomes derived from specific cells can be detected by using a binding substance that binds to a binding determinant known as a marker for cells that secrete exosomes.
  • one of the first binding substance and the second binding substance is bound to a binding determinant known as an exosome marker, and the other is bound to a binding determinant known as a marker for cells secreting exosomes. It is more preferable to combine them.
  • exosomes secreted by a specific cell can be specifically detected.
  • cancer cells are known to secrete exosomes different from normal cells, and by detecting exosomes derived from cancer cells in body fluids, exosomes can be used as cancer markers.
  • the third binding substance contained in the labeling reagent is not particularly limited as long as it can be labeled with a fluorescent substance and can bind to the second binding substance.
  • the third binding substance include antibodies, nucleic acids, lipids, and proteins other than antibodies (eg, lectins) that can bind to antibodies, nucleic acids, lipids, proteins other than antibodies, etc. used as the second binding substance. Is done.
  • the second binding substance is directly fluorescently labeled. It is possible to improve the measurement sensitivity by binding more fluorescent substances to exosomes than if they were present.
  • the third binding substance is also used. Can be used to label exosomes.
  • the type of fluorescent substance for labeling the second or third binding substance is not particularly limited as long as it can be used in SPFS.
  • fluorescent materials include cyanine dyes, Thermo Scientific's Alexa Fluor® dyes, and Biotium's CF dyes.
  • Alexa Fluor dye and CF dye have high quantum efficiency with respect to the wavelength of the excitation light used in SPFS. Further, since the CF dye does not cause much fading at the time of fluorescence detection, it is possible to stably perform fluorescence detection.
  • the method for labeling the binding substance with a fluorescent substance is not particularly limited, and can be appropriately selected from known methods.
  • a fluorescent substance may be bound to an amino group or a sulfhydryl group of a binding substance (for example, an anti-exosome antibody).
  • the exosome was bound to the first binding substance immobilized on the metal film, and then the exosome was labeled with a fluorescent substance using a labeling reagent, but the first binding substance immobilized on the metal film was used.
  • the exosome may be labeled with a fluorescent substance using a labeling reagent before binding the exosome to the binding substance.
  • the sample and the labeling reagent may be mixed before the sample is provided on the metal film.
  • a fluorescently labeled third binding substance can be added to the mixture of the sample and the labeling reagent (second binding substance).
  • the step of binding the exosome to the binding substance immobilized on the metal film and the step of labeling the exosome with a fluorescent substance may be performed at the same time.
  • the sample and the labeling reagent second binding substance, or second and third binding substances
  • fluorescence indicating the amount of exosomes is measured by SPFS (step S40). Specifically, in a state where an exosome labeled with a fluorescent substance is bound to a binding substance immobilized on the metal film, the metal film is irradiated with excitation light so that SPR occurs on the metal film, thereby fluorescing. Measure the fluorescence emitted by the substance. Usually, a pre-measured optical blank value is subtracted from the measured fluorescence value to calculate a signal value that correlates with the amount of exosomes. If necessary, the signal value may be converted into the amount (number / ml) or concentration ( ⁇ g / ml) of exosomes by using a calibration curve prepared in advance.
  • the calibration curve samples having different dilution rates are prepared using commercially available exosomes, the number and concentration of exosomes in each sample are obtained, and the signal value is obtained by the method of the present invention, and the signal value is the number of exosomes.
  • the calibration curve of exosomes can be obtained by plotting against or concentration. It is also possible to measure the number and concentration of exosomes in the sample, respectively, and obtain a calibration curve (FIG. 4) in which the number of exosomes is plotted against the concentration of exosomes.
  • FOG. 4 a calibration curve in which the number of exosomes is plotted against the concentration of exosomes.
  • the method for measuring the number of exosomes is not particularly limited, but for example, a qNano / nanoparticle multianalyzer (manufactured by Meiwaforsis Co., Ltd.) can be used.
  • the method for measuring the concentration of exosomes is also not particularly limited, and for example, it can be measured by protein quantification (BCA method, manufactured by Thermo Fisher).
  • the excitation light L1 is applied to the metal film 120 via the prism 110.
  • SPR occurs in the metal film 120, and the fluorescent substance 150 existing in the vicinity of the metal film 120 is excited by the enhanced electric field to emit fluorescent L3.
  • the angle of incidence of the excitation light L1 on the metal film 120 is set so that SPR occurs in the metal film 120, but is preferably a resonance angle or an enhancement angle.
  • the "resonance angle” means an incident angle when the amount of reflected light L2 is minimized when the incident angle of the excitation light L1 with respect to the metal film 120 is scanned.
  • the "enhanced angle” is scattered light having the same wavelength as the excitation light L1 emitted above the metal film 120 (opposite the prism 110) when the incident angle of the excitation light L1 with respect to the metal film 120 is scanned. It means the incident angle when the amount of light (Prismon scattered light) is maximized.
  • the excitation light L1 is directly applied to the metal film 210 (diffraction grating 211).
  • SPR occurs in the metal film 210 (diffraction grating 211), and the fluorescent substance 150 existing in the vicinity of the metal film 210 (diffraction grating 211) is excited by the enhanced electric field to emit fluorescent L3.
  • the angle of incidence of the excitation light L1 on the metal film 210 is set so that SPR is generated in the metal film 210, but the angle at which the intensity of the enhanced electric field formed by the SPR is the strongest is preferable.
  • the optimum incident angle of the excitation light L1 is appropriately set according to the pitch of the diffraction grating 211, the wavelength of the excitation light L1, the type of metal constituting the metal film 210, and the like.
  • the type of excitation light is not particularly limited, but is usually laser light.
  • the excitation light is a laser light emitted from a laser light source having an output of 10 ⁇ W to 30 mW.
  • the irradiation energy of the excitation light 7.5 ⁇ W / mm 2 or more 30 mW / mm 2 or less, preferably 8.5 ⁇ W / mm 2 or more 10 mW / mm 2 or less, 9.5 ⁇ W / mm 2 or more 5 mW / mm 2 or less Is more preferable.
  • the irradiation energy of the excitation light By setting the irradiation energy of the excitation light to 30 mW / mm 2 or less, the fluorescence intensity is increased, the signal-to-noise ratio (S / N) is increased, and a smaller amount of exosomes can be detected. Can be improved.
  • the wavelength of the excitation light is appropriately set according to the excitation wavelength of the fluorescent substance used. Further, when the amount of light exceeds 30 mW / mm 2 , the dissociation of the antigen-antibody reaction due to the heat of irradiation proceeds, so that the signal-to-noise ratio deteriorates.
  • the fluorescence detector is installed in the direction in which the fluorescence intensity is highest with respect to the measuring chip.
  • the direction in which the intensity of the fluorescence L3 is highest is the normal direction of the metal film 120, so that the detector is a measuring chip. It will be installed directly above.
  • the measuring chip 200 for GC-SPFS when the measuring chip 200 for GC-SPFS is used, the direction in which the intensity of the fluorescence L3 is highest is a direction inclined to some extent with respect to the normal of the metal film 120, so that it can be detected.
  • the vessel is installed at a position not directly above the measuring chip.
  • the detector is, for example, a photomultiplier tube (PMT) or an avalanche photodiode (APD).
  • the concentration of exosomes contained in the sample can be measured.
  • the exosome measurement kit contains the above-mentioned measurement chip and the above-mentioned labeling reagent (containing a fluorescent substance and a second binding substance, and optionally further containing a third binding substance). It is a set. By setting the above-mentioned measuring chip and labeling reagent in advance in this way, a user (medical worker or the like) can more easily perform the above-mentioned exosome measuring method.
  • the measurement kit may further contain a surfactant. By further using a surfactant, it is possible to reduce background noise and variation in measured values.
  • exosomes in a sample can be measured with high sensitivity and easily by using SPFS.
  • Experiment 1 Measurement of exosomes from healthy subject blood using antibodies against two types of exosomes
  • a measurement chip 300 having the configuration shown in FIG. 3 was prepared.
  • An anti-CD9 monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
  • Standard exosomes derived from healthy individuals purchased from Cosmo Bio Co., Ltd. were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution.
  • the sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
  • the number of exosomes in the sample was measured for each of the samples with different dilution rates.
  • a qNano / nanoparticle multi-analyzer manufactured by Meiwaforsis Co., Ltd. was used for the measurement.
  • the signal value that correlates with the amount of exosomes was measured.
  • a sample one of the diluted blood
  • the liquid was reciprocally sent (primary reaction).
  • the reaction time of the primary reaction was 100 minutes.
  • a labeling reagent an anti-CD63 monoclonal antibody labeled with Alexa Fluor dye was introduced into the flow path 320 from the liquid injection section 330 and reciprocally sent (secondary reaction).
  • the reaction time of the secondary reaction was 10 minutes.
  • the inside of the flow path 320 was washed once with a cleaning liquid. Then, the measurement liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS. That is, the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the incident angle of the excitation light on the metal film 120 became the enhancement angle. The output of the excitation light used for the detection was 5 mW, and the irradiation energy amount was 3.8 mW / mm 2. The optical blank value measured in advance from the obtained fluorescence value was obtained. The signal value that correlates with the amount of exosomes was calculated. The same measurement was performed 6 times for each sample.
  • the measured signal value was plotted against the number of exosomes (pieces / ⁇ l) in the sample to obtain a calibration curve (FIG. 5) of CD9-positive and CD63-positive exosomes.
  • the signal value that correlates with the amount of exosomes was calculated in the same manner as above except that the output of the excitation light used for detection was changed.
  • the output of the excitation light used for the detection was 5 mW, 15 mW or 30 mW, and the irradiation energy amounts were 3.8 mW / mm 2 , 11.3 mW / mm 2 or 22.6 mW / mm 2 , respectively.
  • the detection limit when measuring exosomes from a sample was determined in the same manner as described above.
  • the signal-to-noise ratio (S / N) was calculated as follows.
  • S the signal value obtained by subtracting the optical blank from the measurement signal in the presence of the exosome was obtained
  • N the noise value obtained by subtracting the optical blank from the measurement signal in the absence of the exosome was obtained.
  • S / N ratio was calculated.
  • the calculated S / N and detection limit are plotted against the amount of irradiation energy, respectively, and a graph showing the relationship between the irradiation energy, S / N and the detection limit for the CD9-positive CD63-positive exosome derived from a healthy subject (FIG. 6) was obtained.
  • Experiment 2 Measurement of prostate cancer-related exosomes using antibodies against exosome-secreting cells and antibodies against exosomes
  • a measuring chip 300 having the configuration shown in FIG. 3 was prepared.
  • An anti-PSMA monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
  • Standard exosomes derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution. The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
  • the number of LNCaP cell-derived exosomes in the sample was measured.
  • a qNano / nanoparticle multi-analyzer manufactured by Meiwaforsis Co., Ltd. was used for the measurement.
  • an anti-CD9 monoclonal antibody labeled with a labeling reagent Alexa Fluor dye
  • the reaction time of the secondary reaction was 10 minutes.
  • the inside of the flow path 320 was washed once with a washing liquid.
  • the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS.
  • the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected.
  • the output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 .
  • the optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
  • the measured signal value was plotted against the number of exosomes (pieces / ⁇ l) in the sample to obtain a calibration curve (FIG. 7) of CD9-positive PSMA-positive exosomes.
  • exosomes (CD9-positive PSMA-positive exosomes) derived from specific cells (prostate cancer cells) could be detected by the above method.
  • the detection limit was as low as 1.7 ⁇ 10 2 // ⁇ l.
  • a signal value correlating with the amount of CD9-positive PSMA-positive exosomes was calculated in the same manner as above except that the output of the excitation light used for detection was changed.
  • the output of the excitation light used for the detection was 5 mW, 15 mW or 30 mW, and the irradiation energy amounts were 3.8 mW / mm 2 , 11.3 mW / mm 2 or 22.6 mW / mm 2 , respectively.
  • the detection limit when measuring exosomes from a sample was determined in the same manner as described above.
  • the calculated S / N and detection limit were plotted against the amount of irradiation energy, respectively, and a graph (FIG. 8) showing the relationship between the irradiation energy, S / N and the detection limit for CD9-positive PSMA-positive exosomes was obtained.
  • Experiment 3 Measurement of exosomes derived from prostate cancer cells using antibodies against two types of exosomes
  • a measuring chip 300 having the configuration shown in FIG. 3 was prepared.
  • An anti-anti-CD9 monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
  • Standard exosomes derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution. The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
  • a labeling reagent (anti-CD63 monoclonal antibody labeled with Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally sent to the liquid (secondary reaction).
  • the reaction time of the secondary reaction was 10 minutes.
  • the inside of the flow path 320 was washed once with a washing liquid.
  • the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS.
  • the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected.
  • the output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 .
  • the optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
  • the number of LNCaP cell-derived exosomes in the sample was measured.
  • the number of extracted exosomes was measured using a qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.). Weight was determined by protein quantification (BCA method, manufactured by Thermo Fisher).
  • the measured signal value was plotted against the number of exosomes (pieces / ⁇ l) in the sample to obtain a calibration curve (FIG. 9) of CD9-positive and CD63-positive exosomes.
  • CD9-positive and CD63-positive exosomes could be detected even in a sample derived from a specific cell (prostate cancer cell) by the above method. Also, a correlation exists between the number and the signal value of the CD9 positive CD63 positive exosomes, the detection limit was as low as 3.2 ⁇ 10 0 cells / [mu] l.
  • a signal value correlating with the amount of CD9-positive and CD63-positive exosomes was calculated in the same manner as above except that the output of the excitation light used for detection was changed.
  • the output of the excitation light used for the detection was 5 mW, 15 mW or 30 mW, and the irradiation energy amounts were 3.8 mW / mm 2 , 11.3 mW / mm 2 or 22.6 mW / mm 2 , respectively.
  • the detection limit when measuring exosomes from a sample was determined in the same manner as described above.
  • the calculated S / N and detection limit were plotted against the amount of irradiation energy, respectively, and a graph (FIG. 10) showing the relationship between the irradiation energy, S / N and the detection limit for CD9-positive and CD63-positive exosomes was obtained.
  • a measuring chip 300 having the configuration shown in FIG. 3 was prepared.
  • An anti-CD9 monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
  • Standard exosomes derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution. The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
  • a labeling reagent (WFA lectin labeled with Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally fed (secondary reaction).
  • the reaction time of the secondary reaction was 10 minutes.
  • the inside of the flow path 320 was washed once with a washing liquid.
  • the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS.
  • the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected.
  • the output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 .
  • the optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
  • the number of LNCaP cell-derived exosomes in the sample was measured.
  • the number of extracted exosomes was measured using a qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.).
  • the measured signal value was plotted against the number of exosomes (pieces / ⁇ l) in the sample to obtain a calibration curve (FIG. 11) of CD9-positive sugar chain-carrying exosomes.
  • CD9-positive sugar chain-carrying exosomes could be detected even in a sample derived from a specific cell (prostate cancer cell) by the above method.
  • the detection limit was as low as 9.9 ⁇ 10 1 / ⁇ l.
  • Experiment 5 Measurement of exosomes derived from prostate cancer cells using antibodies against exosome-secreting cells and lectins that recognize sugar chains on exosomes
  • a measuring chip 300 having the configuration shown in FIG. 3 was prepared.
  • An anti-PSMA monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
  • Standard exosomes derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution. The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
  • the number of LNCaP cell-derived exosomes in the sample was measured.
  • a qNano / nanoparticle multi-analyzer manufactured by Meiwaforsis Co., Ltd. was used for the measurement.
  • the WFA lectin labeled with the labeling reagent (Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally fed (secondary reaction).
  • the reaction time of the secondary reaction was 10 minutes.
  • the inside of the flow path 320 was washed once with a washing liquid.
  • the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS.
  • the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected.
  • the output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 .
  • the optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
  • the measured signal value was plotted against the number of exosomes (pieces / ⁇ l) in the sample to obtain a calibration curve (FIG. 12) of PSMA-positive sugar chain-carrying exosomes.
  • exosomes (PSMA-positive sugar chain-carrying exosomes) derived from specific cells (prostate cancer cells) could be detected by the above method.
  • the detection limit was as low as 2.5 ⁇ 10 2 / ⁇ l.
  • exosomes can be measured with high sensitivity and easily. Therefore, the exosome detection method and measurement kit according to the present invention are useful for, for example, clinical examinations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention provides an exosome measurement method that makes it possible to measure the exosome concentration in a sample with higher sensitivity and more easily compared with existing measurement methods. In the measurement method according to the present invention, a measurement chip including a metallic film and a first binding substance that is immobilized on the metallic film and that binds to exosomes is prepared. A sample containing exosomes is provided on the metallic film, causing the exosomes contained in the sample to bind to the first binding substance. The exosomes are labelled with a fluorescent substance via a second binding substance that binds to the exosomes. In a state where the exosomes labelled with the fluorescent substance are bound to the first binding substance, the metallic film is irradiated with excitation light so as to cause surface plasmon resonance on the metallic film, and fluorescence radiated from the fluorescent substance is detected.

Description

エクソソームの測定方法およびエクソソームの測定キットExosome measurement method and exosome measurement kit
 本発明は、エクソソームの測定方法およびエクソソームの測定キットに関する。 The present invention relates to an exosome measuring method and an exosome measuring kit.
 エクソソームは、細胞により産生されて細胞外に放出される、直径40nm~150nm程度の膜小胞である。エクソソームは、リン脂質二重膜で覆われており、膜タンパク質やマイクロRNA(miRNA)といった多様な細胞成分を含む。細胞の種類や状態によって異なるエクソソームが細胞から放出されることから、エクソソームは細胞間や臓器間のコミュニケーションを仲介すると考えられている。 Exosomes are membrane vesicles with a diameter of about 40 nm to 150 nm that are produced by cells and released extracellularly. Exosomes are covered with a phospholipid bilayer and contain a variety of cellular components such as membrane proteins and microRNAs (miRNAs). Exosomes are thought to mediate communication between cells and organs, because different exosomes are released from cells depending on the type and state of the cells.
 近年、癌や感染症といった様々な疾患の診断マーカーとして、血液や唾液といった体液中に分泌されたエクソソームが着目されている。例えば、特許文献1には、腫瘍マーカーとなるエクソソームを検出するための分析方法、分析試薬および分析装置が開示されている。この方法では、エクソソームが有する抗原に対する抗体と、エクソソームを分泌する細胞が有する抗原に対する抗体とを使用し、アビジン-ビオチン相互作用に基づき、エクソソームを検出している。また、特許文献2には、凹凸構造を有する合性樹脂などからなるベース部の凹部にエクソソームに対する抗体を固定し、凹部にエクソソームを捕捉する、エクソソーム分析用デバイスおよびエクソソームの捕捉方法が開示されている。 In recent years, exosomes secreted into body fluids such as blood and saliva have been attracting attention as diagnostic markers for various diseases such as cancer and infectious diseases. For example, Patent Document 1 discloses an analysis method, an analysis reagent, and an analysis device for detecting an exosome as a tumor marker. In this method, an antibody against an antigen possessed by an exosome and an antibody against an antigen possessed by a cell secreting the exosome are used to detect the exosome based on an avidin-biotin interaction. Further, Patent Document 2 discloses an exosome analysis device and a method for capturing exosomes, in which an antibody against exosomes is fixed in a recess of a base portion made of a compatible resin having an uneven structure and the exosome is captured in the recess. There is.
国際公開第2013/094307号International Publication No. 2013/094307 特開2014-219384号公報Japanese Unexamined Patent Publication No. 2014-219384
 上記のとおり、これまでに様々なエクソソームの分析方法が開発されてきたが、より高感度かつより高い再現性でエクソソームを測定できる方法が求められている。 As mentioned above, various methods for analyzing exosomes have been developed so far, but there is a demand for a method capable of measuring exosomes with higher sensitivity and higher reproducibility.
 本発明は、従来の測定方法よりも高感度かつ簡便に検体中のエクソソームの濃度を測定できる、エクソソームの測定方法およびエクソソームの測定キットを提供することを目的とする。 An object of the present invention is to provide a method for measuring exosomes and a kit for measuring exosomes, which can measure the concentration of exosomes in a sample more sensitively and easily than the conventional measuring methods.
 本発明の一実施形態に係るエクソソームの測定方法は、金属膜と、前記金属膜に固定化された、エクソソームに結合する第1の結合物質とを含む測定チップを準備する工程と、前記金属膜上にエクソソームを含む検体を提供して、前記検体に含まれる前記エクソソームを前記第1の結合物質に結合させる工程と、前記第1の結合物質に結合する前または結合した後の前記エクソソームを、前記エクソソームに結合する第2の結合物質を介して蛍光物質で標識する工程と、前記蛍光物質で標識された前記エクソソームが前記第1の結合物質に結合している状態で、前記金属膜で表面プラズモン共鳴が生じるように前記金属膜に励起光を照射し、前記蛍光物質から放出される蛍光を検出する工程と、を含む。 The method for measuring an exosome according to an embodiment of the present invention includes a step of preparing a measuring chip containing a metal film and a first binding substance that binds to the exosome, which is immobilized on the metal film, and the metal film. A step of providing a sample containing an exosome on the sample and binding the exosome contained in the sample to the first binding substance, and the exosome before or after binding to the first binding substance. A step of labeling with a fluorescent substance via a second binding substance that binds to the exosome, and a surface with the metal film in a state where the exosome labeled with the fluorescent substance is bound to the first binding substance. It includes a step of irradiating the metal film with excitation light so as to cause plasmon resonance and detecting the fluorescence emitted from the fluorescent substance.
 本発明の一実施形態に係るエクソソームの測定キットは、金属膜と、前記金属膜に固定化された、エクソソームに結合する第1の結合物質とを含む測定チップと、エクソソームを蛍光物質で標識するための標識試薬と、を含み、前記標識試薬が、前記エクソソームに結合する第2の結合物質を含む。 An exosome measurement kit according to an embodiment of the present invention comprises a metal membrane, a measurement chip immobilized on the metal membrane, and a first binding substance that binds to the exosome, and the exosome is labeled with a fluorescent substance. The labeling reagent comprises a second binding substance that binds to the exosome.
 本発明によれば、従来の測定方法よりも高感度かつ簡便に検体中のエクソソームの濃度を測定することができる。 According to the present invention, the concentration of exosomes in a sample can be measured more sensitively and easily than the conventional measuring method.
図1Aは、本実施の形態に係るエクソソームの測定方法の一例を示すフローチャートである。FIG. 1A is a flowchart showing an example of a method for measuring exosomes according to the present embodiment. 図1Bは、本実施の形態に係るエクソソームの測定方法の他の一例を示すフローチャートである。FIG. 1B is a flowchart showing another example of the method for measuring exosomes according to the present embodiment. 図2Aは、PC-SPFS用の測定チップの構成を説明するための断面模式図であり、図2Bは、GC-SPFS用の測定チップの構成を説明するための断面模式図である。FIG. 2A is a schematic cross-sectional view for explaining the configuration of the measuring chip for PC-SPFS, and FIG. 2B is a schematic cross-sectional view for explaining the configuration of the measuring chip for GC-SPFS. 図3Aは、PC-SPFS用の測定チップの一例を示す断面模式図である。FIG. 3A is a schematic cross-sectional view showing an example of a measuring chip for PC-SPFS. 図3Bは、PC-SPFS用の測定チップの他の一例を示す斜視模式図である。FIG. 3B is a schematic perspective view showing another example of the measuring chip for PC-SPFS. 図3Cは、PC-SPFS用の測定チップの他の一例を示す断面模式図である。FIG. 3C is a schematic cross-sectional view showing another example of the measuring chip for PC-SPFS. 図4は、エクソソームの個数と濃度との関係を示す検量線である。FIG. 4 is a calibration curve showing the relationship between the number of exosomes and the concentration. 図5は、CD9陽性CD63陽性エクソソーム検量線である。FIG. 5 is a CD9-positive CD63-positive exosome calibration curve. 図6は、CD9陽性CD63陽性エクソソームに関する、照射エネルギー、シグナル対ノイズ比(S/N)および検出限界の関係を示すグラフである。FIG. 6 is a graph showing the relationship between irradiation energy, signal-to-noise ratio (S / N), and detection limit for CD9-positive and CD63-positive exosomes. 図7は、CD9陽性PSMA陽性エクソソームの検量線である。FIG. 7 is a calibration curve of CD9-positive PSMA-positive exosomes. 図8は、CD9陽性PSMA陽性エクソソームに関する、照射エネルギー、シグナル対ノイズ比(S/N)および検出限界の関係を示すグラフである。FIG. 8 is a graph showing the relationship between irradiation energy, signal-to-noise ratio (S / N), and detection limit for CD9-positive PSMA-positive exosomes. 図9は、LNCap細胞由来のCD9陽性CD63陽性エクソソームの検量線である。FIG. 9 is a calibration curve of CD9-positive and CD63-positive exosomes derived from LNCaP cells. 図10は、LNCap細胞由来のCD9陽性CD63陽性エクソソームに関する、照射エネルギー、シグナル対ノイズ比(S/N)および検出限界の関係を示すグラフである。FIG. 10 is a graph showing the relationship between irradiation energy, signal-to-noise ratio (S / N), and detection limit for CD9-positive and CD63-positive exosomes derived from LNCaP cells. 図11は、エクソソーム上の糖鎖を認識するレクチンを用いた、LNCap細胞由来のCD9陽性糖鎖保有エクソソームの検量線である。FIG. 11 is a calibration curve of a CD9-positive sugar chain-carrying exosome derived from LNCaP cells using a lectin that recognizes sugar chains on exosomes. 図12は、エクソソーム上の糖鎖を認識するレクチンを用いた、前立腺癌細胞に由来するCD9陽性糖鎖保有エクソソームの検量線である。FIG. 12 is a calibration curve of a CD9-positive sugar chain-carrying exosome derived from prostate cancer cells using a lectin that recognizes sugar chains on exosomes.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [エクソソームの測定方法]
 エクソソームは、正常な細胞によっても、癌細胞などの疾患関連細胞によっても分泌されるものである。よって、エクソソームを疾患のマーカーとして利用するためには、検体(例えば血液)中に存在する大量の正常細胞由来のエクソソームと、より少量の疾患関連細胞由来のエクソソームとを区別して検出することが可能な方法が必要となる。一般的に血清中に存在するエクソソームの濃度は1.0×1011個/ml(1.0×10個/μl)程度といわれており、その中から疾患(例えば癌)に関連するエクソソームを検出するには、1.0×10個/ml(1.0×10個/μl)以下のエクソソームを検出可能な方法が必要である。
[Measurement method of exosomes]
Exosomes are secreted by normal cells as well as by disease-related cells such as cancer cells. Therefore, in order to use exosomes as disease markers, it is possible to distinguish between a large amount of normal cell-derived exosomes present in a sample (for example, blood) and a smaller amount of disease-related cell-derived exosomes. Method is required. Generally, the concentration of exosomes present in serum is said to be about 1.0 × 10 11 (1.0 × 10 8 / μl), and among them, exosomes related to diseases (for example, cancer). To detect exosomes, a method capable of detecting exosomes of 1.0 × 10 6 / ml (1.0 × 10 3 / μl) or less is required.
 本実施の形態に係るエクソソームの測定方法では、測定感度を向上させるために、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy、以下「SPFS」ともいう)を利用してエクソソームを測定する。SPFSは、表面プラズモン共鳴(以下「SPR」ともいう)により増強された電場により蛍光物質を励起して蛍光を放出させるため、一般的な蛍光免疫測定法よりもターゲット(本実施の形態ではエクソソーム)を高感度に検出することができる。 In the method for measuring exosomes according to the present embodiment, in order to improve the measurement sensitivity, exosomes are measured using surface plasmon-field enhanced Fluorescence Spectroscopy (hereinafter, also referred to as “SPFS”). To do. SPFS is a target (exosome in this embodiment) rather than a general fluorescence immunoassay because it excites a fluorescent substance by an electric field enhanced by surface plasmon resonance (hereinafter, also referred to as “SPR”) to emit fluorescence. Can be detected with high sensitivity.
 また、SPFSは、検体として全血も使用することができるため、血液中のエクソソームを精製することなく、少ない手順で簡便に疾患関連エクソソームを検出することができる。 In addition, since whole blood can be used as a sample for SPFS, disease-related exosomes can be easily detected with a small number of procedures without purifying exosomes in blood.
 本発明者らは上記の考えのもとに、鋭意検討を重ねた結果、SPFSで高感度にエクソソームを測定できることを見出し、本実施の形態に係るエクソソームの測定方法を完成させた。 Based on the above idea, the present inventors have found that exosomes can be measured with high sensitivity by SPFS as a result of repeated diligent studies, and completed the method for measuring exosomes according to the present embodiment.
 以下、本実施の形態に係るエクソソームの測定方法について、具体的に説明する。図1Aは、本実施の形態に係るエクソソームの測定方法の一例である、1次反応および2次反応を用いる測定方法を示すフローチャートであり、図1Bは、本実施の形態に係るエクソソームの測定方法の一例である、1次反応、2次反応および3次反応を用いる測定方法を示すフローチャートである。 Hereinafter, the method for measuring exosomes according to the present embodiment will be specifically described. FIG. 1A is a flowchart showing a measurement method using a primary reaction and a secondary reaction, which is an example of a method for measuring exosomes according to the present embodiment, and FIG. 1B is a method for measuring exosomes according to the present embodiment. It is a flowchart which shows the measurement method using the primary reaction, the secondary reaction and the tertiary reaction which are an example.
 (測定チップの準備)
 まず、金属膜と、エクソソームに結合する第1の結合物質とを含む測定チップを準備する(工程S10)。SPFSでは、金属膜に光(本実施の形態では励起光)を照射したときに生じるエバネッセント波と表面プラズモンとを結合させてSPRを生じさせる。SPRを生じさせる手法としては、金属膜の一方の面上にプリズムを配置する手法(Kretschmann配置)や、金属膜に回折格子を形成する手法などが知られている。前者の手法を採用したSPFSは、プリズムカップリング(PC)-SPFSと称され、後者の手法を採用したSPFSは、格子カップリング(GC)-SPFSと称される。本実施の形態に係るエクソソームの測定方法は、PC-SPFSおよびGC-SPFSのどちらを採用してもよい。
(Preparation of measuring tip)
First, a measuring chip containing a metal film and a first binding substance that binds to an exosome is prepared (step S10). In SPFS, SPR is generated by combining an evanescent wave generated when a metal film is irradiated with light (excitation light in the present embodiment) and a surface plasmon. As a method for generating SPR, a method of arranging a prism on one surface of a metal film (Kretschmann arrangement), a method of forming a diffraction grating on the metal film, and the like are known. The SPFS adopting the former method is referred to as prism coupling (PC) -SPFS, and the SPFS adopting the latter method is referred to as lattice coupling (GC) -SPFS. As the method for measuring exosomes according to the present embodiment, either PC-SPFS or GC-SPFS may be adopted.
 上述のとおり、金属膜は、励起光を照射されたときにSPRを生じさせる。金属膜を構成する金属の種類は、SPRを生じさせうる金属であれば特に限定されない。金属膜を構成する金属の例には、金、銀、銅、アルミニウムおよびこれらの合金が含まれる。 As described above, the metal film causes SPR when irradiated with excitation light. The type of metal constituting the metal film is not particularly limited as long as it is a metal capable of causing SPR. Examples of metals constituting the metal film include gold, silver, copper, aluminum and alloys thereof.
 第1の結合物質は、エクソソームに結合することができ、検体中のエクソソームを捕捉するために金属膜上に固定化されている。通常、第1の結合物質は、金属膜上の所定の領域(反応場)に均一に固定化されている。金属膜に固定化される第1の結合物質の種類は、エクソソームに結合することができるもの、即ち、エクソソームが有する第1の結合決定基に結合するものであれば特に限定されない。結合物質の例には、エクソソームに結合できる抗体、エクソソームに結合できる核酸、エクソソームに結合できる脂質、およびエクソソームに結合できる抗体以外のタンパク質、例えば、エクソソーム上の糖鎖に結合できるレクチン、が含まれる。ここで、エクソソームが有する結合決定基とは、結合物質がエクソソームに結合する際に認識するエクソソームの一部分である。例えば、結合物質が抗体の場合、結合決定基は抗原の抗原決定基(エピトープ)であり、結合物質がリガンドの場合、結合決定基は対応する受容体の結合部位である。 The first binding substance can bind to exosomes and is immobilized on a metal membrane to capture exosomes in a sample. Usually, the first binding substance is uniformly immobilized on a predetermined region (reaction field) on the metal film. The type of the first binding substance immobilized on the metal membrane is not particularly limited as long as it can bind to the exosome, that is, it binds to the first binding determinant of the exosome. Examples of binding agents include antibodies that can bind to exosomes, nucleic acids that can bind to exosomes, lipids that can bind to exosomes, and proteins other than antibodies that can bind to exosomes, such as lectins that can bind to sugar chains on exosomes. .. Here, the binding determinant possessed by an exosome is a part of the exosome that the binding substance recognizes when it binds to the exosome. For example, when the binding substance is an antibody, the binding determinant is the antigenic determinant (epitope) of the antigen, and when the binding substance is a ligand, the binding determinant is the binding site of the corresponding receptor.
 第1の結合物質が結合する、エクソソームが有する第1の結合決定基に特に限定はないが、エクソソームのマーカーとして知られる結合決定基や、エクソソームを分泌する細胞のマーカーとして知られる結合決定基が含まれる。エクソソームのマーカーとして知られる結合決定基としては、CD9、CD63、CD81、CD37、CD53、CD82、CD13、CD11、CD86、ICAM-1、Rab5、アネキシン V(Annexin V)、LAMP1等が挙げられる。これら結合決定基に対する抗体は市販されており、当該抗体を第1の結合物質として使用することができる。エクソソームのマーカーとして知られる結合決定基に結合する第1の結合物質に上記の物質と反応する物質(例えば抗体)を使用する場合、エクソソームにのみ結合するため、検体中のエクソソームを検出するのに有効である。 The first binding determinant of the exosome to which the first binding substance binds is not particularly limited, but a binding determinant known as an exosome marker or a binding determinant known as a marker of a cell secreting an exosome is used. included. Binding determinants known as exosome markers include CD9, CD63, CD81, CD37, CD53, CD82, CD13, CD11, CD86, ICAM-1, Rab5, Annexin V, LAMP1 and the like. Antibodies to these binding determinants are commercially available, and the antibodies can be used as the first binding substance. When a substance that reacts with the above substances (for example, an antibody) is used as the first binding substance that binds to a binding determinant known as an exosome marker, it binds only to the exosome, so that the exosome in the sample can be detected. It is valid.
 エクソソームを分泌する細胞のマーカーとして知られる結合決定基としては、カベオリン-1(Caveolin-1)、PSMA、EpCAM、グリピカン-1(Grypican-1)、サバイビン(Survivin)、CD91、Tspan8、CD147、EGFR、HER2、CD44、ガラクチン(Galactin)、インテグリン(Integrin)等が挙げられる。これら結合決定基に対する抗体も市販されており、当該抗体を第1の結合物質として使用することができる。第1の結合物質としてエクソソームを分泌する細胞マーカーとして知られる結合決定基に結合する結合物質(例えば抗体)を使用する場合は、特定の細胞およびそこから分泌されたエクソソームにのみ結合するため、検体中の特定の細胞由来のエクソソームを検出するのに有効である。 Binding determinants known as markers for cells that secrete exosomes include caveolin-1, PSMA, EpCAM, Glypican-1, Survivin, CD91, Tspan8, CD147, and EGFR. , HER2, CD44, Galactin, Integrin and the like. Antibodies to these binding determinants are also commercially available, and the antibodies can be used as the first binding substance. When a binding substance (eg, an antibody) that binds to a binding determinant known as a cell marker that secretes exosomes is used as the first binding substance, it binds only to a specific cell and the exosome secreted from the cell, so that the sample It is effective in detecting exosomes derived from specific cells inside.
 第1の結合物質が抗体である場合、当該抗体は、モノクローナル抗体であってもよいし、ポリクローナル抗体であってもよいし、抗体の断片であってもよい。また、金属膜に固定化される第1の結合物質の種類は、1種類であってもよいし、2種類以上であってもよい。たとえば、金属膜に固定化される第1の結合物質が抗体の場合、当該抗体は、1種類または2種類以上のモノクローナル抗体またはポリクローナル抗体である。 When the first binding substance is an antibody, the antibody may be a monoclonal antibody, a polyclonal antibody, or a fragment of the antibody. Further, the type of the first binding substance immobilized on the metal film may be one type or two or more types. For example, when the first binding substance immobilized on the metal membrane is an antibody, the antibody is one type or two or more types of monoclonal antibody or polyclonal antibody.
 なお、第1の結合物質は、蛍光標識と関連して説明する第2の結合物質との組み合わせを考慮して選択することが好ましい。第1の結合物質と第2の結合物質との好ましい組み合わせについては後述する。 It should be noted that the first binding substance is preferably selected in consideration of the combination with the second binding substance described in relation to the fluorescent label. The preferred combination of the first binding substance and the second binding substance will be described later.
 結合物質の固定化方法は、特に限定されない。たとえば、金属膜上に、結合物質(例えば抗体)を結合させた自己組織化単分子膜(以下「SAM」という)または高分子膜を形成すればよい。SAMの例には、HOOC-(CH11-SHなどの置換脂肪族チオールで形成された膜が含まれる。高分子膜を構成する材料の例には、ポリエチレングリコールおよびMPCポリマーが含まれる。また、結合物質(例えば抗エクソソーム抗体)に結合可能な反応性基(または反応性基に変換可能な官能基)を有する高分子を金属膜に固定化し、この高分子に結合物質(例えば抗体)を結合させてもよい。 The method for immobilizing the binding substance is not particularly limited. For example, a self-assembled monolayer (hereinafter referred to as “SAM”) or a polymer film to which a binding substance (for example, an antibody) is bound may be formed on the metal film. Examples of SAMs include membranes formed with substituted aliphatic thiols such as HOOC- (CH 2 ) 11- SH. Examples of materials constituting the polymer membrane include polyethylene glycol and MPC polymer. Further, a polymer having a reactive group (or a functional group that can be converted into a reactive group) capable of binding to a binding substance (for example, an anti-exosome antibody) is immobilized on a metal membrane, and the binding substance (for example, an antibody) is attached to this polymer. May be combined.
 測定チップは、好ましくは各片の長さが数mm~数cmの構造物であるが、「チップ」の範疇に含まれないより小型の構造物またはより大型の構造物であってもよい。 The measuring chip is preferably a structure in which each piece has a length of several mm to several cm, but may be a smaller structure or a larger structure that is not included in the category of “chip”.
 図2Aは、PC-SPFS用の測定チップの構成を説明するための断面模式図であり、図2Bは、GC-SPFS用の測定チップの構成を説明するための断面模式図である。説明の便宜上、これらの図において、各構成要素の大きさおよび形状は、正確ではない。また、これらの図では、第1の結合物質としてエクソソーム上の抗原を認識する抗エクソソーム抗体を使用する例を示している。 FIG. 2A is a schematic cross-sectional view for explaining the configuration of the measuring chip for PC-SPFS, and FIG. 2B is a schematic cross-sectional view for explaining the configuration of the measuring chip for GC-SPFS. For convenience of explanation, the size and shape of each component in these figures is not accurate. In addition, these figures show an example of using an anti-exosome antibody that recognizes an antigen on an exosome as a first binding substance.
 図2Aに示されるように、PC-SPFS用の測定チップ100は、プリズム110、金属膜120およびエクソソーム上の抗原を認識する抗エクソソーム抗体(第1の結合物質)130(の層)を有する。プリズム110は、励起光L1に対して透明な誘電体からなり、励起光L1が入射する入射面111と、励起光L1が反射する成膜面112と、反射光L2が出射する出射面113とを有する。プリズム110の形状は、特に限定されない。図2Aに示される例では、プリズム110の形状は、台形を底面とする柱体である。台形の一方の底辺に対応する面が成膜面112であり、一方の脚に対応する面が入射面111であり、他方の脚に対応する面が出射面113である。プリズム110の材料の例には、樹脂およびガラスが含まれる。プリズム110の材料は、好ましくは、励起光に対する屈折率が1.4~1.6であり、かつ複屈折が小さい樹脂である。金属膜120は、プリズム110の成膜面112上に配置されている。金属膜120の形成方法は、特に限定されない。金属膜120の形成方法の例には、スパッタリング、蒸着、めっきが含まれる。金属膜120の厚みは、特に限定されないが、30~70nmの範囲内であることが好ましい。 As shown in FIG. 2A, the measuring chip 100 for PC-SPFS has a prism 110, a metal film 120, and an anti-exosome antibody (first binding substance) 130 (layer) that recognizes an antigen on an exosome. The prism 110 is made of a dielectric material transparent to the excitation light L1, and includes an incident surface 111 on which the excitation light L1 is incident, a film forming surface 112 on which the excitation light L1 is reflected, and an exit surface 113 on which the reflected light L2 is emitted. Has. The shape of the prism 110 is not particularly limited. In the example shown in FIG. 2A, the shape of the prism 110 is a pillar body having a trapezoidal bottom surface. The surface corresponding to one base of the trapezoid is the film forming surface 112, the surface corresponding to one leg is the incident surface 111, and the surface corresponding to the other leg is the exit surface 113. Examples of materials for prism 110 include resin and glass. The material of the prism 110 is preferably a resin having a refractive index of 1.4 to 1.6 with respect to excitation light and a small birefringence. The metal film 120 is arranged on the film forming surface 112 of the prism 110. The method for forming the metal film 120 is not particularly limited. Examples of methods for forming the metal film 120 include sputtering, vapor deposition, and plating. The thickness of the metal film 120 is not particularly limited, but is preferably in the range of 30 to 70 nm.
 図2Aに示されるように、金属膜120においてSPRが生じるようにプリズム110を介して金属膜120に励起光L1を照射すると、SPRにより増強された電場が金属膜120近傍に生じる。このとき、金属膜120上のエクソソーム上の抗原を認識する抗エクソソーム抗体(第1の結合物質)130に蛍光物質150で標識された第2の結合物質131と反応したエクソソーム140が結合していると、蛍光物質150が増強電場により励起され、蛍光L3を放出する。 As shown in FIG. 2A, when the metal film 120 is irradiated with the excitation light L1 via the prism 110 so that the SPR is generated in the metal film 120, an electric field enhanced by the SPR is generated in the vicinity of the metal film 120. At this time, the anti-exosome antibody (first binding substance) 130 that recognizes the antigen on the exosome on the metal film 120 is bound to the exosome 140 that has reacted with the second binding substance 131 labeled with the fluorescent substance 150. Then, the fluorescent substance 150 is excited by the enhanced electric field and emits fluorescent L3.
 図2Bに示されるように、GC-SPFS用の測定チップ200は、回折格子211を形成された金属膜210およびエクソソーム上の抗原を認識する抗エクソソーム抗体(第1の結合物質)130(の層)を有する。金属膜210の形成方法は、特に限定されない。金属膜210の形成方法の例には、スパッタリング、蒸着、めっきが含まれる。金属膜210の厚みは、特に限定されないが、30~500nmの範囲内であることが好ましい。回折格子211の形状は、エバネッセント波を生じさせることができれば特に限定されない。たとえば、回折格子211は、1次元回折格子であってもよいし、2次元回折格子であってもよい。たとえば、1次元回折格子では、金属膜210の表面に、互いに平行な複数の凸部が所定の間隔で形成されている。2次元回折格子では、金属膜210の表面に、所定形状の凸部が周期的に配置されている。凸部の配列の例には、正方格子、三角(六方)格子などが含まれる。回折格子211の断面形状の例には、矩形波形状、正弦波形状、鋸歯形状などが含まれる。回折格子211の形成方法は、特に限定されない。たとえば、平板状の基板(不図示)の上に金属膜210を形成した後、金属膜210に凹凸形状を付与してもよい。また、予め凹凸形状を付与された基板(不図示)の上に、金属膜210を形成してもよい。いずれの方法であっても、回折格子211を含む金属膜210を形成することができる。 As shown in FIG. 2B, the measuring chip 200 for GC-SPFS is a layer of a metal film 210 on which a diffraction grating 211 is formed and an anti-exosome antibody (first binding substance) 130 (which recognizes an antigen on an exosome). ). The method for forming the metal film 210 is not particularly limited. Examples of methods for forming the metal film 210 include sputtering, vapor deposition, and plating. The thickness of the metal film 210 is not particularly limited, but is preferably in the range of 30 to 500 nm. The shape of the diffraction grating 211 is not particularly limited as long as it can generate an evanescent wave. For example, the diffraction grating 211 may be a one-dimensional diffraction grating or a two-dimensional diffraction grating. For example, in a one-dimensional diffraction grating, a plurality of convex portions parallel to each other are formed at predetermined intervals on the surface of the metal film 210. In the two-dimensional diffraction grating, convex portions having a predetermined shape are periodically arranged on the surface of the metal film 210. Examples of the arrangement of convex parts include a square grid, a triangular (hexagonal) grid, and the like. Examples of the cross-sectional shape of the diffraction grating 211 include a rectangular wave shape, a sinusoidal shape, and a sawtooth shape. The method of forming the diffraction grating 211 is not particularly limited. For example, after forming the metal film 210 on a flat substrate (not shown), the metal film 210 may be given an uneven shape. Further, the metal film 210 may be formed on a substrate (not shown) to which a concave-convex shape is previously provided. With either method, the metal film 210 including the diffraction grating 211 can be formed.
 図2Bに示されるように、金属膜210(回折格子211)においてSPRが生じるように金属膜210(回折格子211)に励起光L1を照射すると、SPRにより増強された電場が金属膜210(回折格子211)近傍に生じる。このとき、金属膜210(回折格子211)上のエクソソーム上の抗原を認識する抗エクソソーム抗体(第1の結合物質)130に蛍光物質150で標識された第2の結合物質131と反応したエクソソーム140が結合していると、蛍光物質150が増強電場により励起され、蛍光L3を放出する。 As shown in FIG. 2B, when the metal film 210 (diffraction grating 211) is irradiated with the excitation light L1 so that SPR is generated in the metal film 210 (diffraction grating 211), the electric field enhanced by the SPR is generated by the metal film 210 (diffraction grating 211). It occurs in the vicinity of the grating 211). At this time, the exosome 140 that reacted with the second binding substance 131 labeled with the fluorescent substance 150 on the anti-exosome antibody (first binding substance) 130 that recognizes the antigen on the exosome on the metal film 210 (diffraction lattice 211). Is bound, the fluorescent substance 150 is excited by the enhanced electric field and emits fluorescent L3.
 図3A~3Cは、PC-SPFS用の測定チップの一例を示す断面模式図である。図3Aに示されるように、測定チップ300は、入射面111、成膜面112および出射面113を有するプリズム110と、プリズム110の成膜面112に形成された金属膜120と、プリズム110の成膜面112または金属膜120上に配置された流路蓋310とを有する。図3において、入射面111および出射面113は、紙面の手前および奥にそれぞれ存在している。測定チップ300は、さらに、流路320と、流路320の一端に接続された液体注入部330と、流路320の他端に接続された貯留部340も有する。本実施の形態では、流路蓋310は、両面テープなどの接着層350を介して金属膜120(またはプリズム110)に接着されており、接着層350は流路320の側面形状を規定する役割も担っている。図3では省略しているが、流路320内に露出している金属膜120の一部の領域(反応場)には、エクソソーム上の抗原を認識する抗エクソソーム抗体(第1の結合物質)130が固定化されている。液体注入部330は、液体注入部被覆フィルム331により塞がれ、貯留部340は、貯留部被覆フィルム341により塞がれている。貯留部被覆フィルム341には、通気孔342が設けられている。 3A to 3C are schematic cross-sectional views showing an example of a measuring chip for PC-SPFS. As shown in FIG. 3A, the measuring chip 300 includes a prism 110 having an incident surface 111, a film forming surface 112, and an emitting surface 113, a metal film 120 formed on the film forming surface 112 of the prism 110, and the prism 110. It has a flow path lid 310 arranged on the film forming surface 112 or the metal film 120. In FIG. 3, the entrance surface 111 and the exit surface 113 are present in front of and behind the paper surface, respectively. The measuring tip 300 also has a flow path 320, a liquid injection unit 330 connected to one end of the flow path 320, and a storage unit 340 connected to the other end of the flow path 320. In the present embodiment, the flow path lid 310 is adhered to the metal film 120 (or prism 110) via an adhesive layer 350 such as double-sided tape, and the adhesive layer 350 serves to define the side surface shape of the flow path 320. Also responsible. Although omitted in FIG. 3, an anti-exosome antibody (first binding substance) that recognizes an antigen on an exosome is present in a part of the metal film 120 (reaction field) exposed in the flow path 320. 130 is fixed. The liquid injection section 330 is closed by the liquid injection section covering film 331, and the storage section 340 is closed by the storage section covering film 341. The storage portion covering film 341 is provided with a ventilation hole 342.
 流路蓋310は、蛍光L3に対して透明な材料で形成されている。ただし、蛍光L3の取り出しの妨げにならない限り、流路蓋310の一部は蛍光L3に対して不透明な材料で形成されていてもよい。蛍光L3に対して透明な材料の例には、樹脂が含まれる。流路蓋310は、接着層350を用いずに、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより、金属膜120(またはプリズム110)に接合されていてもよい。この場合は、流路320の側面形状は、流路蓋310により規定される。 The flow path lid 310 is made of a material transparent to fluorescent L3. However, a part of the flow path lid 310 may be made of a material opaque to the fluorescent L3 as long as it does not interfere with the removal of the fluorescent L3. Examples of materials that are transparent to fluorescent L3 include resins. The flow path lid 310 may be joined to the metal film 120 (or prism 110) by laser welding, ultrasonic welding, crimping using a clamp member, or the like without using the adhesive layer 350. In this case, the side surface shape of the flow path 320 is defined by the flow path lid 310.
 液体注入部330には、ピペットチップが挿入される。このとき、液体注入部330の開口部(液体注入部被覆フィルム331に設けられた貫通孔)はピペットチップの外周に隙間なく接触する。このため、ピペットチップから液体注入部330内に液体を注入することで流路320内に液体を導入することができ、液体注入部330内の液体をピペットチップに吸引することで流路320内の液体を除去することができる。また、液体の注入および吸引を交互に行うことで、流路320内において液体を往復送液することもできる。 A pipette tip is inserted into the liquid injection unit 330. At this time, the opening of the liquid injection portion 330 (the through hole provided in the liquid injection portion covering film 331) comes into contact with the outer periphery of the pipette tip without a gap. Therefore, the liquid can be introduced into the flow path 320 by injecting the liquid into the liquid injection section 330 from the pipette tip, and the liquid in the liquid injection section 330 is sucked into the pipette tip to enter the flow path 320. Liquid can be removed. Further, by alternately injecting and sucking the liquid, the liquid can be reciprocated in the flow path 320.
 液体注入部330から流路320内に流路320の容積を超える量の液体が導入された場合、貯留部340には流路320から液体が流入する。また、流路320内において液体を往復送液するときにも、貯留部340には液体が流入する。貯留部340に流入した液体は、貯留部340内で攪拌される。貯留部340内で液体が攪拌されると、流路320を通過する液体(検体や洗浄液など)の成分(例えばエクソソームや洗浄成分など)の濃度が均一になり、流路320内で各種反応が生じやすくなったり、洗浄効果が高まったりする。 When an amount of liquid exceeding the volume of the flow path 320 is introduced into the flow path 320 from the liquid injection unit 330, the liquid flows into the storage unit 340 from the flow path 320. Further, when the liquid is reciprocated in the flow path 320, the liquid flows into the storage unit 340. The liquid that has flowed into the storage unit 340 is agitated in the storage unit 340. When the liquid is agitated in the reservoir 340, the concentration of the liquid (sample, cleaning liquid, etc.) component (for example, exosome, cleaning component, etc.) passing through the flow path 320 becomes uniform, and various reactions occur in the flow path 320. It is more likely to occur and the cleaning effect is enhanced.
 図3Bおよび図3Cは、それぞれ、ウェル形状の測定チップの一例を示す模式図である。図3Bは、反応検出部が底面にあるウェル形状の測定チップ400の模式図である(例えば、国際公開第2012/157403号を参照)。このチップにおいては、誘電体部材412が断面略台形形状の六面体(截頭四角錐形状)であり、ウェル部材418が誘電体部材412の形状に合わせて方形に構成されている。そしてセンサ構造体22の金属薄膜414上のリガンド固定領域416に検出対象となるエクソソームと結合する第1の結合物質を固定した状態で、エクソソームを含んだ試料溶液を貫通穴420内に供給し、センサ構造体422を撹拌する。 3B and 3C are schematic views showing an example of a well-shaped measuring chip, respectively. FIG. 3B is a schematic view of a well-shaped measuring chip 400 having a reaction detection unit on the bottom surface (see, for example, International Publication No. 2012/157403). In this chip, the dielectric member 412 is a hexahedron having a substantially trapezoidal cross section (a quadrangular pyramid shape), and the well member 418 is formed in a square shape according to the shape of the dielectric member 412. Then, in a state where the first binding substance that binds to the exosome to be detected is fixed in the ligand fixing region 416 on the metal thin film 414 of the sensor structure 22, the sample solution containing the exosome is supplied into the through hole 420. The sensor structure 422 is agitated.
 また、図3Cは、反応検出部が側壁面にあるウェルである(例えば、国際公開第2018/021238号を参照)。検出チップ500は、ウェル本体510および側壁部材520を有する。ウェル本体510は、その内部に収容部(ウェル)511を有している。収容部511は、液体を収容できるように構成された有底の凹部であり、上部に設けられた第1開口512および側部に設けられた第2開口513により外部に開放されている。側壁部材520は、光学素子としてのプリズム521、金属膜525および反応場526を有している。プリズム521は、励起光に対して透明な誘電体からなる光学素子であり、入射面(図示せず)、反射面523および出射面(図示せず)を有する。プリズム521は、収容部511を構成する側壁としても機能する。金属膜525上には捕捉領域があり、捕捉領域は、検体中のエクソソームを捕捉するための第1の結合物質が固定化される領域である。 Further, FIG. 3C shows a well in which the reaction detection unit is on the side wall surface (see, for example, International Publication No. 2018/021238). The detection tip 500 has a well body 510 and a side wall member 520. The well body 510 has an accommodating portion (well) 511 inside the well body 510. The accommodating portion 511 is a bottomed recess configured to accommodate the liquid, and is opened to the outside by a first opening 512 provided at the upper part and a second opening 513 provided at the side portion. The side wall member 520 has a prism 521 as an optical element, a metal film 525, and a reaction field 526. The prism 521 is an optical element made of a dielectric material transparent to excitation light, and has an incident surface (not shown), a reflecting surface 523, and an emitting surface (not shown). The prism 521 also functions as a side wall constituting the accommodating portion 511. There is a capture region on the metal membrane 525, and the capture region is a region where a first binding substance for capturing exosomes in a sample is immobilized.
 検体の種類は、エクソソームを含むものである限り、特に限定されない。検体の例には、血液(血清、血漿、全血)、尿、汗、唾液、母乳、精液、リンパ液、脳脊髄液、涙液等の体液、ならびにこれら体液を生理食塩水や緩衝液などで希釈した希釈液が含まれる。本実施の形態に係るエクソソームの検出方法では、SPFSを利用してエクソソームを検出するため、検体として全血も使用することができる。よって、入手の容易性等の観点から、血清、血漿、全血またはこれらの希釈液が、検体として好ましい。これらの検体にはエクソソーム以外にマイクロベシクルや夾雑物等も含まれている場合もある。本発明においては、遠心処理やフィルタリングによる除去などをせずに検体をそのまま測定に使用することが可能であるが、遠心処理やフィルタリングを行い、マイクロベシクルや夾雑物を除去または沈降させてから精製した液を測定に使用しても問題はない。また、イクロベシクルや夾雑物等の除去の方法についてはこれらに限定されない。 The type of sample is not particularly limited as long as it contains exosomes. Examples of samples include blood (serum, plasma, whole blood), urine, sweat, saliva, breast milk, semen, lymph, cerebrospinal fluid, tears, and other body fluids, as well as saline and buffers. Contains diluted diluent. In the method for detecting exosomes according to the present embodiment, since exosomes are detected using SPFS, whole blood can also be used as a sample. Therefore, from the viewpoint of availability and the like, serum, plasma, whole blood or a diluted solution thereof is preferable as a sample. In addition to exosomes, these samples may also contain microvesicles, impurities, and the like. In the present invention, the sample can be used for measurement as it is without centrifugation or removal by filtering, but purification is performed after centrifugation or filtering is performed to remove or precipitate microvesicles and contaminants. There is no problem even if the liquid is used for measurement. Further, the method for removing icrovesicles and impurities is not limited to these.
 また、検体は、体液から調製したエクソソーム抽出物であってもよい。体液からエクソソームを抽出して検体とすることで、体液そのものでは検出の難しかった極微量のエクソソームも検出して定量することが可能となる。エクソソームの抽出方法に特に限定はなく、従来から知られているエクソソームの抽出方法を採用することができる。例えば、超遠心分離法、免疫沈降法やポリマー沈殿法で、体液からエクソソームを抽出することができる。 Further, the sample may be an exosome extract prepared from a body fluid. By extracting exosomes from body fluids and using them as samples, it is possible to detect and quantify even trace amounts of exosomes that were difficult to detect with body fluids themselves. The method for extracting exosomes is not particularly limited, and conventionally known methods for extracting exosomes can be adopted. For example, exosomes can be extracted from body fluids by ultracentrifugation, immunoprecipitation or polymer precipitation.
 検体には、界面活性剤をさらに添加してもよい。界面活性剤を添加することでエクソソームの凝集を防止し、バックグラウンドノイズや測定値のバラツキを低減することが可能となる。界面活性剤は、生物・医学の分野で広く使用されている界面活性剤が好ましく、例えば、Tween20、デオキシコール酸ナトリウム、およびTriton-X100が含まれる。界面活性剤は、エクソソームを破壊することはないが、その凝集を防止する程度の濃度で使用すればよい。例えば、Tween20の場合、0.001%~5%以下、好ましくは0.005%~1%以下、より好ましくは0.010%~0.05%以下の濃度で使用することができる。また、デオキシコール酸ナトリウムの場合、0.001%~0.025%以下、好ましくは0.002%~0.020%以下、より好ましくは0.003%~0.010%以下の濃度で使用することができる。また、Triton-X100の場合、0.001%~0.010%以下、好ましくは0.002%~0.007%以下、より好ましくは0.003%~0.005%以下の濃度で使用することができる。 A surfactant may be further added to the sample. By adding a surfactant, it is possible to prevent exosome aggregation and reduce background noise and variation in measured values. The surfactant is preferably a surfactant widely used in the field of biomedicine, and includes, for example, Tween 20, sodium deoxycholate, and Triton-X100. Surfactants do not destroy exosomes, but may be used in concentrations that prevent their aggregation. For example, in the case of Tween 20, it can be used at a concentration of 0.001% to 5% or less, preferably 0.005% to 1% or less, and more preferably 0.010% to 0.05% or less. In the case of sodium deoxycholate, it is used at a concentration of 0.001% to 0.025% or less, preferably 0.002% to 0.020% or less, and more preferably 0.003% to 0.010% or less. can do. Further, in the case of Triton-X100, it is used at a concentration of 0.001% to 0.010% or less, preferably 0.002% to 0.007% or less, and more preferably 0.003% to 0.005% or less. be able to.
 (1次反応)
 次に、測定チップの金属膜上に検体を提供して、金属膜に固定化された第1の結合物質に、検体に含まれるエクソソームを結合させる(1次反応;工程S20)。検体を提供する方法は、特に限定されない。たとえば、ピペットチップを先端に装着したピペットを用いて金属膜上に検体を提供すればよい。1次反応の反応時間に特に限定はないが、エクソソームと第1の結合物質との反応効率を上げるという観点からは、反応時間は長い方が好ましく、通常、5分以上180分以下、好ましくは60分以上150分以下、より好ましくは100分以上120以下である。通常は、1次反応を終えた後、金属膜の表面を緩衝液などで洗浄して、第1の結合物質に結合していない成分を除去する(洗浄;工程S21)。
 又、洗浄後には、光学ブランクを測定することができる(光学ブランクを測定;工程S2)。
(Primary reaction)
Next, the sample is provided on the metal film of the measurement chip, and the exosome contained in the sample is bound to the first binding substance immobilized on the metal film (primary reaction; step S20). The method of providing the sample is not particularly limited. For example, a sample may be provided on a metal membrane using a pipette with a pipette tip attached to the tip. The reaction time of the primary reaction is not particularly limited, but from the viewpoint of increasing the reaction efficiency between the exosome and the first binding substance, a longer reaction time is preferable, and usually 5 minutes or more and 180 minutes or less, preferably. It is 60 minutes or more and 150 minutes or less, more preferably 100 minutes or more and 120 minutes or less. Usually, after the primary reaction is completed, the surface of the metal film is washed with a buffer solution or the like to remove components that are not bound to the first binding substance (washing; step S21).
Further, after cleaning, the optical blank can be measured (measure the optical blank; step S2).
 (2次反応)
 次に、測定チップの金属膜上に標識試薬を提供して、結合物質に結合したエクソソームを、エクソソームに結合する第2の結合物質を介して蛍光物質で標識する。標識試薬の種類は、第1の結合物質に結合したエクソソームに蛍光物質で標識された第2の結合物質が反応できれば特に限定されない。たとえば、標識試薬は、蛍光物質で標識された、エクソソームが有する第2の結合決定基に結合する第2の結合物質である(図1Aの2次反応+蛍光標識;工程S30)。あるいは、標識試薬は、エクソソームが有する第2の結合決定基に結合する第2の結合物質、およびエクソソームに結合した第2の結合物質に結合する、蛍光物質で標識された第3の結合物質の両方を含む[図1Bの2次反応;工程S30および蛍光標識(3次反応);工程S35]。
(Secondary reaction)
Next, a labeling reagent is provided on the metal membrane of the measurement chip, and the exosome bound to the binding substance is labeled with the fluorescent substance via the second binding substance that binds to the exosome. The type of labeling reagent is not particularly limited as long as the exosome bound to the first binding substance can react with the second binding substance labeled with the fluorescent substance. For example, the labeling reagent is a fluorescent substance-labeled second binding substance that binds to the second binding determinant of the exosome (secondary reaction of FIG. 1A + fluorescent labeling; step S30). Alternatively, the labeling reagent is a fluorescent substance-labeled third binding substance that binds to a second binding substance that binds to the second binding determinant of the exosome and a second binding substance that binds to the exosome. Both are included [secondary reaction of FIG. 1B; step S30 and fluorescent labeling (third reaction); step S35].
 標識試薬を提供する方法は、特に限定されない。たとえば、ピペットチップを先端に装着したピペットを用いて金属膜上に標識試薬を提供すればよい。通常は、2次反応および/または3次反応を終えた後、金属膜の表面を緩衝液などで洗浄して、エクソソームに結合していない第2の結合物質(または第3の結合物質)を除去する(洗浄;工程S31および工程S36)。 The method of providing the labeling reagent is not particularly limited. For example, a pipette with a pipette tip attached to the tip may be used to provide the labeling reagent on the metal membrane. Usually, after the secondary reaction and / or the tertiary reaction is completed, the surface of the metal membrane is washed with a buffer solution or the like to remove a second binding substance (or a third binding substance) that is not bound to exosomes. Remove (cleaning; steps S31 and S36).
 標識試薬に含まれる第2の結合物質の種類は、エクソソームに結合することができれば特に限定されない。第2の結合物質の例には、エクソソームに結合できる抗体、エクソソームに結合できる核酸、エクソソームに結合できる脂質、およびエクソソームに結合できる抗体以外のタンパク質、例えば、エクソソーム上の糖鎖に結合できるレクチン、が含まれる。 The type of the second binding substance contained in the labeling reagent is not particularly limited as long as it can bind to the exosome. Examples of second binding agents include antibodies that can bind to exosomes, nucleic acids that can bind to exosomes, lipids that can bind to exosomes, and proteins other than antibodies that can bind to exosomes, such as lectins that can bind to sugar chains on exosomes. Is included.
 第2の結合物質が結合する、エクソソームが有する第2の結合決定基に特に限定はないが、エクソソームのマーカーとして知られる結合決定基や、エクソソームを分泌する細胞のマーカーとして知られる結合決定基が含まれる。エクソソームのマーカーとして知られる結合決定基としては、CD9、CD63、CD81、CD37、CD53、CD82、CD13、CD11、CD86、ICAM-1、Rab5、アネキシン V(Annexin V)、LAMP1等が挙げられる。これら結合決定基に対する抗体は市販されており、当該抗体を第2の結合物質として使用することができる。エクソソームのマーカーとして知られる結合決定基に結合する第2の結合物質に上記の物質と反応する物質(例えば抗体)を使用する場合、エクソソームにのみ結合するため、たとえ金属膜上にエクソソーム以外のもの(細胞など)が結合していても、エクソソームのみを検出するのに有効である。 The second binding determinant possessed by the exosome to which the second binding substance binds is not particularly limited, but a binding determinant known as an exosome marker or a binding determinant known as a marker for cells secreting exosomes is used. included. Binding determinants known as exosome markers include CD9, CD63, CD81, CD37, CD53, CD82, CD13, CD11, CD86, ICAM-1, Rab5, Annexin V, LAMP1 and the like. Antibodies to these binding determinants are commercially available, and the antibodies can be used as a second binding substance. When a substance that reacts with the above substances (for example, an antibody) is used as a second binding substance that binds to a binding determinant known as an exosome marker, it binds only to the exosome, so that even if it is not an exosome on a metal membrane. Even if (cells, etc.) are bound, it is effective in detecting only exosomes.
 エクソソームを分泌する細胞のマーカーとして知られる結合決定基としては、カベオリン-1(Caveolin-1)、PSMA、EpCAM、グリピカン-1(Grypican-1)、サバイビン(Survivin)、CD91、Tspan8、CD147、EGFR、HER2、CD44、ガラクチン(Galactin)、インテグリン(Integrin)等が挙げられる。これら結合決定基に対する抗体も市販されており、当該抗体を第2の結合物質として使用することができる。第2の結合物質としてエクソソームを分泌する細胞のマーカーとして知られる結合決定基に結合する結合物質(例えば抗体)を使用する場合は、特定の細胞およびそこから分泌されたエクソソームにのみ結合するため、金属膜上に結合した種々のエクソソームの中から特定の細胞由来のエクソソームのみを検出するのに有効である。 Binding determinants known as markers for cells that secrete exosomes include caveolin-1, PSMA, EpCAM, Glypican-1, Survivin, CD91, Tspan8, CD147, and EGFR. , HER2, CD44, Galactin, Integrin and the like. Antibodies to these binding determinants are also commercially available, and the antibodies can be used as a second binding substance. When a binding substance (eg, an antibody) that binds to a binding determinant known as a marker for cells secreting exosomes is used as the second binding substance, it binds only to a specific cell and the exosome secreted from the cell. It is effective in detecting only exosomes derived from specific cells from various exosomes bound on a metal membrane.
 第2の結合物質が抗体である場合、当該抗体は、モノクローナル抗体であってもよいし、ポリクローナル抗体であってもよいし、抗体の断片であってもよい。また、標識試薬に含まれる第2の結合物質の種類は、1種類であってもよいし、2種類以上であってもよい。たとえば、蛍光物質で標識された抗エクソソーム抗体は、1種類または2種類以上の抗エクソソームモノクローナル抗体または抗エクソソームポリクローナル抗体である。この場合、蛍光物質で標識された抗エクソソームモノクローナル抗体および抗エクソソームポリクローナル抗体は、金属膜に固定化されている1種類または2種類以上の抗エクソソームモノクローナル抗体とは異なるものであることが好ましい。 When the second binding substance is an antibody, the antibody may be a monoclonal antibody, a polyclonal antibody, or a fragment of the antibody. In addition, the type of the second binding substance contained in the labeling reagent may be one type or two or more types. For example, a fluorescently labeled anti-exosome antibody is one or more anti-exosome monoclonal antibodies or anti-exosome polyclonal antibodies. In this case, the fluorescent substance-labeled anti-exosome monoclonal antibody and anti-exosome polyclonal antibody may be different from one or more anti-exosome monoclonal antibodies immobilized on the metal membrane. preferable.
 標識試薬に含まれる第2の結合物質の種類は、金属膜に固定化される第1の結合物質の種類と同一であってもよいし、異なっていてもよい。例えば、第1の結合物質および第2の結合物質が共に抗体であってもよいし、一方が抗体で、他方が抗体以外のタンパク質でもよい。 The type of the second binding substance contained in the labeling reagent may be the same as or different from the type of the first binding substance immobilized on the metal film. For example, both the first binding substance and the second binding substance may be antibodies, one may be an antibody, and the other may be a protein other than an antibody.
 金属膜に固定化されている第1の結合物質と、標識試薬に含まれる第2の結合物質は、それぞれがエクソソームが有する結合決定基に結合するものであるが、第1の結合物質の結合する第1の結合決定基と、第2の結合物質の結合する第2の結合決定基とは異なることが好ましい。第1の結合物質と第2の結合物質とが同じ結合決定基を奪い合うのではなく、異なる結合決定基に結合することで、エクソソームの金属膜への固定および標識物質による標識をより確実に実施することが可能となる。また、第1の結合物質の結合する第1の結合決定基と、第2の結合物質の結合する第2の結合決定基とが異なることによって、第1の結合物質の結合に基づき検体から検出したエクソソームの中から、第2の結合物質の結合に基づきさらに測定すべきエクソソームを絞り込むことができる。 The first binding substance immobilized on the metal membrane and the second binding substance contained in the labeling reagent each bind to the binding determinant possessed by the exosome, and the binding of the first binding substance It is preferable that the first binding determinant and the second binding determinant to which the second binding substance binds are different. Rather than competing for the same binding determinant, the first binding substance and the second binding substance bind to different binding determinants, thereby more reliably fixing the exosome to the metal membrane and labeling with the labeling substance. It becomes possible to do. Further, since the first binding determinant to which the first binding substance binds and the second binding determinant to which the second binding substance binds are different, it is detected from the sample based on the binding of the first binding substance. The exosomes to be measured can be further narrowed down based on the binding of the second binding substance.
 第1の結合物質および第2の結合物質について、第1の結合決定基および第2の結合決定基の少なくとも一方が、エクソソームのマーカーとして知られる結合決定基であることが好ましい。エクソソームのマーカーとして知られる結合決定基に結合する結合物質を使用することによって、検体中の物質からエクソソームのみを検出することができる。また、第1の結合決定基および第2の結合決定基の少なくとも一方が、エクソソームを分泌する細胞のマーカーとして知られる結合決定基であることが好ましい。エクソソームを分泌する細胞のマーカーとして知られる結合決定基に結合する結合物質を使用することによって、特定の細胞由来のエクソソームを検出することができる。本発明においては、第1の結合物質および第2の結合物質の一方をエクソソームのマーカーとして知られる結合決定基に結合するものとし、他方をエクソソームを分泌する細胞のマーカーとして知られる結合決定基に結合するものとすることがより好ましい。このような2種の結合物質を組み合わせて使用することによって、特定の細胞の分泌するエクソソームを特異的に検出することができる。例えば、癌細胞は正常細胞とは異なるエクソソームを分泌することが知られており、体液中の癌細胞由来のエクソソームを検出することで、エクソソームを癌マーカーとして使用することが可能となる。 For the first binding substance and the second binding substance, it is preferable that at least one of the first binding determinant and the second binding determinant is a binding determinant known as an exosome marker. Only exosomes can be detected from substances in a sample by using a binding substance that binds to a binding determinant known as an exosome marker. In addition, it is preferable that at least one of the first binding determinant and the second binding determinant is a binding determinant known as a marker for cells secreting exosomes. Exosomes derived from specific cells can be detected by using a binding substance that binds to a binding determinant known as a marker for cells that secrete exosomes. In the present invention, one of the first binding substance and the second binding substance is bound to a binding determinant known as an exosome marker, and the other is bound to a binding determinant known as a marker for cells secreting exosomes. It is more preferable to combine them. By using such two kinds of binding substances in combination, exosomes secreted by a specific cell can be specifically detected. For example, cancer cells are known to secrete exosomes different from normal cells, and by detecting exosomes derived from cancer cells in body fluids, exosomes can be used as cancer markers.
 標識試薬に含まれる第3の結合物質は、蛍光物質で標識することができ、且つ第2の結合物質に結合できるものであれば特に限定されない。第3の結合物質の例には、第2の結合物質として使用する抗体、核酸、脂質、抗体以外のタンパク質等に結合できる抗体、核酸、脂質、および抗体以外のタンパク質(例えば、レクチン)が含まれる。たとえば、1つの第2の結合物質に対して複数の第3の結合物質が結合するような第2および第3の結合物質の組み合わせを使用すると、第2の結合物質を直接蛍光標識して用いた場合よりも多くの蛍光物質をエクソソームに結合させて、測定感度を向上させることが可能となる。また、第2の結合物質を蛍光物質で直接標識するのが難しい場合や、蛍光標識によって第2の結合物質のエクソソームに対する結合性が変化、低下または失われる場合等にも、第3の結合物質を用いてエクソソームを標識することができる。 The third binding substance contained in the labeling reagent is not particularly limited as long as it can be labeled with a fluorescent substance and can bind to the second binding substance. Examples of the third binding substance include antibodies, nucleic acids, lipids, and proteins other than antibodies (eg, lectins) that can bind to antibodies, nucleic acids, lipids, proteins other than antibodies, etc. used as the second binding substance. Is done. For example, when a combination of second and third binding substances is used in which a plurality of third binding substances are bound to one second binding substance, the second binding substance is directly fluorescently labeled. It is possible to improve the measurement sensitivity by binding more fluorescent substances to exosomes than if they were present. In addition, when it is difficult to directly label the second binding substance with a fluorescent substance, or when the binding property of the second binding substance to the exosome is changed, decreased or lost due to the fluorescent labeling, the third binding substance is also used. Can be used to label exosomes.
 第2または第3の結合物質を標識するための蛍光物質の種類は、SPFSで使用可能なものであれば特に限定されない。蛍光物質の例には、シアニン系色素、Thermo Scientific社のAlexa Fluor(登録商標)色素、およびBiotium社のCF色素が含まれる。Alexa Fluor色素およびCF色素は、市販されている蛍光色素の中では、SPFSで使用する励起光の波長についての量子効率が高い。また、CF色素は、蛍光検出時における退色があまり生じないため、安定して蛍光検出を行うことができる。結合物質を蛍光物質で標識する方法は、特に限定されず、公知の方法から適宜選択されうる。たとえば、結合物質(例えば抗エクソソーム抗体)のアミノ基またはスルフヒドリル基に蛍光物質を結合させればよい。 The type of fluorescent substance for labeling the second or third binding substance is not particularly limited as long as it can be used in SPFS. Examples of fluorescent materials include cyanine dyes, Thermo Scientific's Alexa Fluor® dyes, and Biotium's CF dyes. Among the commercially available fluorescent dyes, Alexa Fluor dye and CF dye have high quantum efficiency with respect to the wavelength of the excitation light used in SPFS. Further, since the CF dye does not cause much fading at the time of fluorescence detection, it is possible to stably perform fluorescence detection. The method for labeling the binding substance with a fluorescent substance is not particularly limited, and can be appropriately selected from known methods. For example, a fluorescent substance may be bound to an amino group or a sulfhydryl group of a binding substance (for example, an anti-exosome antibody).
 なお、上記の説明では、金属膜に固定化された第1の結合物質にエクソソームを結合させてからエクソソームを標識試薬を用いて蛍光物質で標識したが、金属膜に固定化された第1の結合物質にエクソソームを結合させる前にエクソソームを標識試薬を用いて蛍光物質で標識してもよい。この場合は、検体を金属膜上に提供する前に、検体と標識試薬(第2の結合物質)とを混合すればよい。また、検体と標識試薬(第2の結合物質)との混合物に、さらに蛍光標識した第3の結合物質を加えることもできる。さらに、金属膜に固定化された結合物質にエクソソームを結合させる工程とエクソソームを蛍光物質で標識する工程を同時に行ってもよい。この場合は、検体と標識試薬(第2の結合物質、または第2および第3の結合物質)を金属膜上に同時に提供すればよい。 In the above description, the exosome was bound to the first binding substance immobilized on the metal film, and then the exosome was labeled with a fluorescent substance using a labeling reagent, but the first binding substance immobilized on the metal film was used. The exosome may be labeled with a fluorescent substance using a labeling reagent before binding the exosome to the binding substance. In this case, the sample and the labeling reagent (second binding substance) may be mixed before the sample is provided on the metal film. Further, a fluorescently labeled third binding substance can be added to the mixture of the sample and the labeling reagent (second binding substance). Further, the step of binding the exosome to the binding substance immobilized on the metal film and the step of labeling the exosome with a fluorescent substance may be performed at the same time. In this case, the sample and the labeling reagent (second binding substance, or second and third binding substances) may be provided simultaneously on the metal film.
 (蛍光測定)
 次に、SPFSによりエクソソームの量を示す蛍光を測定する(工程S40)。具体的には、蛍光物質で標識されたエクソソームが金属膜に固定化された結合物質に結合している状態で、金属膜でSPRが生じるように金属膜に励起光を照射し、これにより蛍光物質から放出される蛍光を測定する。通常は、測定された蛍光値から、予め測定された光学ブランク値を引いて、エクソソームの量に相関するシグナル値を算出する。必要に応じて、予め作成しておいた検量線などにより、シグナル値をエクソソームの量(個数/ml)や濃度(μg/ml)などに換算してもよい。
(Fluorescence measurement)
Next, fluorescence indicating the amount of exosomes is measured by SPFS (step S40). Specifically, in a state where an exosome labeled with a fluorescent substance is bound to a binding substance immobilized on the metal film, the metal film is irradiated with excitation light so that SPR occurs on the metal film, thereby fluorescing. Measure the fluorescence emitted by the substance. Usually, a pre-measured optical blank value is subtracted from the measured fluorescence value to calculate a signal value that correlates with the amount of exosomes. If necessary, the signal value may be converted into the amount (number / ml) or concentration (μg / ml) of exosomes by using a calibration curve prepared in advance.
 例えば、検量線は、市販のエクソソームを用いて希釈率の異なる検体を調製し、各検体中のエクソソームの個数や濃度を求めると共に、本発明の方法でシグナル値を求め、シグナル値をエクソソームの個数や濃度に対してプロットすることで、エクソソームの検量線を得ることができる。また、検体中のエクソソームの個数と濃度とをそれぞれ測定し、エクソソームの濃度に対してエクソソームの個数をプロットした検量線(図4)を得ることもできる。このような検量線を用いることによって、個数として計数したエクソソーム量を濃度(μg/ml)に換算することができる。このような換算を行うことで、エクソソーム量を濃度(μg/ml)として検出する他社装置などとの比較も可能となる。 For example, for the calibration curve, samples having different dilution rates are prepared using commercially available exosomes, the number and concentration of exosomes in each sample are obtained, and the signal value is obtained by the method of the present invention, and the signal value is the number of exosomes. The calibration curve of exosomes can be obtained by plotting against or concentration. It is also possible to measure the number and concentration of exosomes in the sample, respectively, and obtain a calibration curve (FIG. 4) in which the number of exosomes is plotted against the concentration of exosomes. By using such a calibration curve, the amount of exosomes counted as a number can be converted into a concentration (μg / ml). By performing such conversion, it is possible to compare with other companies' devices that detect the amount of exosomes as a concentration (μg / ml).
 なお、エクソソームの個数を測定する方法に特に限定はないが、例えば、qNano/ナノ粒子マルチアナライザー(メイワフォーシス株式会社製)を使用することができる。エクソソームの濃度を測定する方法にも特に限定はないが、例えば、タンパク質定量(BCA法、ThermoFischer社製)によって測定することができる。 The method for measuring the number of exosomes is not particularly limited, but for example, a qNano / nanoparticle multianalyzer (manufactured by Meiwaforsis Co., Ltd.) can be used. The method for measuring the concentration of exosomes is also not particularly limited, and for example, it can be measured by protein quantification (BCA method, manufactured by Thermo Fisher).
 図2Aに示されるように、PC-SPFS用の測定チップ100を用いる場合は、励起光L1は、プリズム110を介して金属膜120に照射される。これにより、金属膜120においてSPRが生じ、金属膜120近傍に存在する蛍光物質150は、増強電場により励起され、蛍光L3を放出する。金属膜120に対する励起光L1の入射角は、金属膜120でSPRが生じるように設定されるが、共鳴角または増強角であることが好ましい。ここで「共鳴角」とは、金属膜120に対する励起光L1の入射角を走査した場合に、反射光L2の光量が最小となるときの入射角を意味する。また、「増強角」とは、金属膜120に対する励起光L1の入射角を走査した場合に、金属膜120の上方(プリズム110の反対側)に放出される励起光L1と同一波長の散乱光(プラズモン散乱光)の光量が最大となるときの入射角を意味する。 As shown in FIG. 2A, when the measuring chip 100 for PC-SPFS is used, the excitation light L1 is applied to the metal film 120 via the prism 110. As a result, SPR occurs in the metal film 120, and the fluorescent substance 150 existing in the vicinity of the metal film 120 is excited by the enhanced electric field to emit fluorescent L3. The angle of incidence of the excitation light L1 on the metal film 120 is set so that SPR occurs in the metal film 120, but is preferably a resonance angle or an enhancement angle. Here, the "resonance angle" means an incident angle when the amount of reflected light L2 is minimized when the incident angle of the excitation light L1 with respect to the metal film 120 is scanned. Further, the "enhanced angle" is scattered light having the same wavelength as the excitation light L1 emitted above the metal film 120 (opposite the prism 110) when the incident angle of the excitation light L1 with respect to the metal film 120 is scanned. It means the incident angle when the amount of light (Prismon scattered light) is maximized.
 図2Bに示されるように、GC-SPFS用の測定チップ200を用いる場合は、励起光L1は、金属膜210(回折格子211)に直接照射される。これにより、金属膜210(回折格子211)においてSPRが生じ、金属膜210(回折格子211)近傍に存在する蛍光物質150は、増強電場により励起され、蛍光L3を放出する。金属膜210に対する励起光L1の入射角は、金属膜210でSPRが生じるように設定されるが、SPRにより形成される増強電場の強度が最も強くなる角度が好ましい。励起光L1の最適な入射角は、回折格子211のピッチや励起光L1の波長、金属膜210を構成する金属の種類などに応じて適宜設定される。 As shown in FIG. 2B, when the measuring chip 200 for GC-SPFS is used, the excitation light L1 is directly applied to the metal film 210 (diffraction grating 211). As a result, SPR occurs in the metal film 210 (diffraction grating 211), and the fluorescent substance 150 existing in the vicinity of the metal film 210 (diffraction grating 211) is excited by the enhanced electric field to emit fluorescent L3. The angle of incidence of the excitation light L1 on the metal film 210 is set so that SPR is generated in the metal film 210, but the angle at which the intensity of the enhanced electric field formed by the SPR is the strongest is preferable. The optimum incident angle of the excitation light L1 is appropriately set according to the pitch of the diffraction grating 211, the wavelength of the excitation light L1, the type of metal constituting the metal film 210, and the like.
 励起光の種類は、特に限定されないが、通常はレーザー光である。たとえば、励起光は、出力が10μW~30mWのレーザー光源から出射されたレーザー光である。励起光の照射エネルギーとしては、7.5μW/mm以上30mW/mm以下であり、8.5μW/mm以上10mW/mm以下が好ましく、9.5μW/mm以上5mW/mm以下がより好ましい。励起光の照射エネルギーを30mW/mm以下とすることで、蛍光強度を高めてシグナル対ノイズ比(S/N)を大きくし、より少量のエクソソームを検出することが可能となるため、検出限界を向上させることができる。励起光の波長は、使用する蛍光物質の励起波長に応じて適宜設定される。また、光量が30mW/mmを超えると、照射熱による抗原抗体反応の解離が進むため、シグナル対ノイズ比が悪くなる。 The type of excitation light is not particularly limited, but is usually laser light. For example, the excitation light is a laser light emitted from a laser light source having an output of 10 μW to 30 mW. The irradiation energy of the excitation light, 7.5μW / mm 2 or more 30 mW / mm 2 or less, preferably 8.5μW / mm 2 or more 10 mW / mm 2 or less, 9.5μW / mm 2 or more 5 mW / mm 2 or less Is more preferable. By setting the irradiation energy of the excitation light to 30 mW / mm 2 or less, the fluorescence intensity is increased, the signal-to-noise ratio (S / N) is increased, and a smaller amount of exosomes can be detected. Can be improved. The wavelength of the excitation light is appropriately set according to the excitation wavelength of the fluorescent substance used. Further, when the amount of light exceeds 30 mW / mm 2 , the dissociation of the antigen-antibody reaction due to the heat of irradiation proceeds, so that the signal-to-noise ratio deteriorates.
 蛍光の検出器は、測定チップに対して蛍光の強度が最も高い方向に設置されることが好ましい。たとえば、図2Aに示されるように、PC-SPFS用の測定チップ100を用いる場合は、蛍光L3の強度が最も高い方向は金属膜120の法線方向であるので、検出器は、測定チップの直上に設置される。一方、図2Bに示されるように、GC-SPFS用の測定チップ200を用いる場合は、蛍光L3の強度が最も高い方向は金属膜120の法線に対してある程度傾斜した方向であるので、検出器は、測定チップの直上ではない位置に設置される。検出器は、例えば、光電子増倍管(PMT)やアバランシェフォトダイオード(APD)などである。 It is preferable that the fluorescence detector is installed in the direction in which the fluorescence intensity is highest with respect to the measuring chip. For example, as shown in FIG. 2A, when the measuring chip 100 for PC-SPFS is used, the direction in which the intensity of the fluorescence L3 is highest is the normal direction of the metal film 120, so that the detector is a measuring chip. It will be installed directly above. On the other hand, as shown in FIG. 2B, when the measuring chip 200 for GC-SPFS is used, the direction in which the intensity of the fluorescence L3 is highest is a direction inclined to some extent with respect to the normal of the metal film 120, so that it can be detected. The vessel is installed at a position not directly above the measuring chip. The detector is, for example, a photomultiplier tube (PMT) or an avalanche photodiode (APD).
 以上の手順により、検体に含まれるエクソソームの濃度を測定することができる。 By the above procedure, the concentration of exosomes contained in the sample can be measured.
 [エクソソームの測定キット]
 本実施の形態に係るエクソソームの測定キットは、上記の測定チップと、上記標識試薬(蛍光物質と、第2の結合物質とを含み、所望により第3の結合物質をさらに含むもの)と、をセットにしたものである。このように上記の測定チップおよび標識試薬を予めセットとしておくことで、ユーザー(医療従事者など)が上記のエクソソームの測定方法をより簡便に行うことが可能となる。また、測定キットは、界面活性剤をさらに含んでもよい。界面活性剤をさらに使用することで、バックグラウンドノイズや測定値のバラツキを低減することが可能となる。
[Exosome measurement kit]
The exosome measurement kit according to the present embodiment contains the above-mentioned measurement chip and the above-mentioned labeling reagent (containing a fluorescent substance and a second binding substance, and optionally further containing a third binding substance). It is a set. By setting the above-mentioned measuring chip and labeling reagent in advance in this way, a user (medical worker or the like) can more easily perform the above-mentioned exosome measuring method. In addition, the measurement kit may further contain a surfactant. By further using a surfactant, it is possible to reduce background noise and variation in measured values.
 [効果]
 以上のように、本実施の形態に係るエクソソームの測定方法または測定キットによれば、SPFSを利用して検体中のエクソソームを高感度かつ簡便に測定することができる。
[effect]
As described above, according to the exosome measurement method or measurement kit according to the present embodiment, exosomes in a sample can be measured with high sensitivity and easily by using SPFS.
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.
 実験1: 2種のエクソソームに対する抗体を用いた、健常者血液からのエクソソームの測定
 図3に示される構成の測定チップ300を準備した。流路320内に露出している金属膜120(金薄膜)の特定の領域(反応部)に、第1の結合物質として抗CD9モノクローナル抗体を固定化した。
Experiment 1: Measurement of exosomes from healthy subject blood using antibodies against two types of exosomes A measurement chip 300 having the configuration shown in FIG. 3 was prepared. An anti-CD9 monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
 コスモバイオ社から購入した健常人由来のスタンダードエクソソーム(凍結乾燥品)を水和し、検体サンプルとして使用した。希釈は10倍希釈系列とし、希釈には1%BSAを含むPBSを使用した。
 なお、装置内での検体希釈液には界面活性剤を含み、界面活性剤の濃度は0.05%であった。
Standard exosomes (lyophilized) derived from healthy individuals purchased from Cosmo Bio Co., Ltd. were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution.
The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
 希釈率の異なる検体のそれぞれについて、検体中のエクソソームの個数を測定した。測定にはqNano/ナノ粒子マルチアナライザー(メイワフォーシス株式会社製)を使用した。 The number of exosomes in the sample was measured for each of the samples with different dilution rates. A qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.) was used for the measurement.
 さらに上記と同じ検体について、エクソソームの量に相関するシグナル値を測定した。ピペットチップにより、液体注入部330から流路320内に検体(希釈した血液のいずれか)を導入し、往復送液させた(1次反応)。1次反応の反応時間は100分とした。液体注入部330から流路320内の検体を除去した後、流路320内を洗浄液で1回洗浄した。次いで、標識試薬(Alexa Fluor色素で標識された抗CD63モノクローナル抗体を液体注入部330から流路320内に導入し、往復送液させた(2次反応)。2次反応の反応時間は10分とした。液体注入部330から流路320内の標識試薬を除去した後、流路320内を洗浄液で1回洗浄した。次いで、液体注入部330から流路320内に測定液を導入した。この状態で、SPFSにより蛍光値を測定した。すなわち、金属膜120に対する励起光の入射角が増強角となるようにプリズム110側から金属膜120に励起光(レーザー光)を照射し、そのときに放出される蛍光を検出した。検出に用いた励起光の出力は5mWであり、照射エネルギー量は、3.8mW/mmとなった。得られた蛍光値から予め測定した光学ブランク値を引き、エクソソームの量に相関するシグナル値を算出した。各検体について、同じ測定を6回行った。 Furthermore, for the same sample as above, the signal value that correlates with the amount of exosomes was measured. A sample (one of the diluted blood) was introduced into the flow path 320 from the liquid injection section 330 by a pipette tip, and the liquid was reciprocally sent (primary reaction). The reaction time of the primary reaction was 100 minutes. After removing the sample in the flow path 320 from the liquid injection unit 330, the inside of the flow path 320 was washed once with a washing liquid. Next, a labeling reagent (an anti-CD63 monoclonal antibody labeled with Alexa Fluor dye was introduced into the flow path 320 from the liquid injection section 330 and reciprocally sent (secondary reaction). The reaction time of the secondary reaction was 10 minutes. After removing the labeling reagent in the flow path 320 from the liquid injection unit 330, the inside of the flow path 320 was washed once with a cleaning liquid. Then, the measurement liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS. That is, the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the incident angle of the excitation light on the metal film 120 became the enhancement angle. The output of the excitation light used for the detection was 5 mW, and the irradiation energy amount was 3.8 mW / mm 2. The optical blank value measured in advance from the obtained fluorescence value was obtained. The signal value that correlates with the amount of exosomes was calculated. The same measurement was performed 6 times for each sample.
 測定したシグナル値を、検体中のエクソソームの個数(個/μl)に対してプロットし、CD9陽性CD63陽性エクソソームの検量線(図5)を得た。 The measured signal value was plotted against the number of exosomes (pieces / μl) in the sample to obtain a calibration curve (FIG. 5) of CD9-positive and CD63-positive exosomes.
 図5のプロットから明らかなように、検体中のエクソソームの個数とシグナル値との間には相関関係が存在し、検出限界は2.1×10個/μlと低かった。 As is clear from the plot of FIG. 5, there was a correlation between the number of exosomes in the sample and the signal value, and the detection limit was as low as 2.1 × 10 2 / μl.
 次に、検出に用いた励起光の出力を変える以外は上記と同様にして、エクソソームの量に相関するシグナル値を算出した。検出に用いた励起光の出力は5mW、15mWまたは30mWとし、それぞれの照射エネルギー量は、3.8mW/mm、11.3mW/mmまたは22.6mW/mmとなった。各照射エネルギー量について、上記と同様にして検体からエクソソームを測定する際の検出限界を求めた。 Next, the signal value that correlates with the amount of exosomes was calculated in the same manner as above except that the output of the excitation light used for detection was changed. The output of the excitation light used for the detection was 5 mW, 15 mW or 30 mW, and the irradiation energy amounts were 3.8 mW / mm 2 , 11.3 mW / mm 2 or 22.6 mW / mm 2 , respectively. For each irradiation energy amount, the detection limit when measuring exosomes from a sample was determined in the same manner as described above.
 また、上記測定について、シグナル対ノイズ比(S/N)を次のようにして算出した。シグナル値(S)として、エクソソーム存在下における測定シグナルから光学ブランクを引いた値を求め、ノイズ値(N)として、エクソソーム非存在下における測定シグナルから光学ブランクを引いた値を求めた。次に、S/Nの比を計算した。 For the above measurement, the signal-to-noise ratio (S / N) was calculated as follows. As the signal value (S), the value obtained by subtracting the optical blank from the measurement signal in the presence of the exosome was obtained, and as the noise value (N), the value obtained by subtracting the optical blank from the measurement signal in the absence of the exosome was obtained. Next, the S / N ratio was calculated.
 照射エネルギー量に対して、算出したS/Nおよび検出限界をそれぞれプロットし、健常者由来のCD9陽性CD63陽性エクソソームエクソソームに関する、照射エネルギー、S/Nおよび検出限界の関係を示すグラフ(図6)を得た。 The calculated S / N and detection limit are plotted against the amount of irradiation energy, respectively, and a graph showing the relationship between the irradiation energy, S / N and the detection limit for the CD9-positive CD63-positive exosome derived from a healthy subject (FIG. 6) was obtained.
 図6のプロットにおいては、検体からエクソソームを測定する際に使用する励起光の照射エネルギーが低い場合は、S/Nは大きくなり(即ち、シグナルに対するノイズが減少し)、検出限界も向上した。 In the plot of FIG. 6, when the irradiation energy of the excitation light used when measuring the exosome from the sample is low, the S / N becomes large (that is, the noise to the signal is reduced) and the detection limit is also improved.
 実験2: エクソソーム分泌細胞に対する抗体およびエクソソームに対する抗体を用いた、前立腺癌に関連するエクソソームの測定 Experiment 2: Measurement of prostate cancer-related exosomes using antibodies against exosome-secreting cells and antibodies against exosomes
 図3に示される構成の測定チップ300を準備した。流路320内に露出している金属膜120(金薄膜)の特定の領域(反応部)に、第1の結合物質として抗PSMAモノクローナル抗体を固定化した。 A measuring chip 300 having the configuration shown in FIG. 3 was prepared. An anti-PSMA monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
 コスモバイオ社から購入した前立腺がん細胞であるLNCap細胞由来のスタンダードエクソソーム(凍結乾燥品)を水和し、検体サンプルとして使用した。希釈は10倍希釈系列とし、希釈には1%BSAを含むPBSを使用した。
 なお、装置内での検体希釈液には界面活性剤を含み、界面活性剤の濃度は0.05%であった。
Standard exosomes (lyophilized) derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution.
The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
 検体中のLNCap細胞由来エクソソームの個数を測定した。測定にはqNano/ナノ粒子マルチアナライザー(メイワフォーシス株式会社製)を使用した。 The number of LNCaP cell-derived exosomes in the sample was measured. A qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.) was used for the measurement.
 さらに上記と同じ検体について、LNCap細胞由来のCD9陽性PSMA陽性エクソソームの検量線を作成するために、希釈率の異なる検体のそれぞれについて、エクソソームの量に相関するシグナル値を測定した。ピペットチップにより、液体注入部330から流路320内に検体(希釈した培養上清のいずれか)を導入し、往復送液させた(1次反応)。1次反応の反応時間は100分とした。液体注入部330から流路320内の検体を除去した後、流路320内を洗浄液で1回洗浄した。次いで、標識試薬(Alexa Fluor色素)で標識された抗CD9モノクローナル抗体を液体注入部330から流路320内に導入し、往復送液させた(2次反応)。2次反応の反応時間は10分とした。液体注入部330から流路320内の標識試薬を除去した後、流路320内を洗浄液で1回洗浄した。次いで、液体注入部330から流路320内に測定液を導入した。この状態で、SPFSにより蛍光値を測定した。すなわち、金属膜120に対する励起光の入射角が増強角となるようにプリズム110側から金属膜120に励起光(レーザー光)を照射し、そのときに放出される蛍光を検出した。検出に用いた励起光の出力は5mWであり、照射エネルギー量は、3.8mW/mmとなった。得られた蛍光値から予め測定した光学ブランク値を引き、エクソソームの量に相関するシグナル値を算出した。各検体について、同じ測定を6回行った。 Furthermore, for the same samples as above, in order to prepare a calibration curve for CD9-positive PSMA-positive exosomes derived from LNCaP cells, signal values correlating with the amount of exosomes were measured for each of the samples having different dilution ratios. A sample (one of the diluted culture supernatants) was introduced into the flow path 320 from the liquid injection section 330 by a pipette tip, and the liquid was reciprocally sent (primary reaction). The reaction time of the primary reaction was 100 minutes. After removing the sample in the flow path 320 from the liquid injection unit 330, the inside of the flow path 320 was washed once with a washing liquid. Next, an anti-CD9 monoclonal antibody labeled with a labeling reagent (Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally sent to the liquid (secondary reaction). The reaction time of the secondary reaction was 10 minutes. After removing the labeling reagent in the flow path 320 from the liquid injection section 330, the inside of the flow path 320 was washed once with a washing liquid. Next, the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS. That is, the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected. The output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 . The optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
 測定したシグナル値を、検体中のエクソソームの個数(個/μl)に対してプロットし、CD9陽性PSMA陽性エクソソームの検量線(図7)を得た。 The measured signal value was plotted against the number of exosomes (pieces / μl) in the sample to obtain a calibration curve (FIG. 7) of CD9-positive PSMA-positive exosomes.
 図7のプロットから明らかなように、上記方法によって特定の細胞(前立腺癌細胞)由来のエクソソーム(CD9陽性PSMA陽性エクソソーム)を検出することができた。また、CD9陽性PSMA陽性エクソソームの個数とシグナル値との間には相関関係が存在し、検出限界は1.7×10個//μlと低かった。 As is clear from the plot of FIG. 7, exosomes (CD9-positive PSMA-positive exosomes) derived from specific cells (prostate cancer cells) could be detected by the above method. In addition, there was a correlation between the number of CD9-positive PSMA-positive exosomes and the signal value, and the detection limit was as low as 1.7 × 10 2 // μl.
 次に、検出に用いた励起光の出力を変える以外は上記と同様にして、CD9陽性PSMA陽性エクソソームの量に相関するシグナル値を算出した。検出に用いた励起光の出力は5mW、15mWまたは30mWとし、それぞれの照射エネルギー量は、3.8mW/mm、11.3mW/mmまたは22.6mW/mmとなった。各照射エネルギー量について、上記と同様にして検体からエクソソームを測定する際の検出限界を求めた。 Next, a signal value correlating with the amount of CD9-positive PSMA-positive exosomes was calculated in the same manner as above except that the output of the excitation light used for detection was changed. The output of the excitation light used for the detection was 5 mW, 15 mW or 30 mW, and the irradiation energy amounts were 3.8 mW / mm 2 , 11.3 mW / mm 2 or 22.6 mW / mm 2 , respectively. For each irradiation energy amount, the detection limit when measuring exosomes from a sample was determined in the same manner as described above.
 また、上記測定について、実験1と同様に、シグナル対ノイズ比(S/N)を算出した。 For the above measurement, the signal-to-noise ratio (S / N) was calculated in the same manner as in Experiment 1.
 照射エネルギー量に対して、算出したS/Nおよび検出限界をそれぞれプロットし、CD9陽性PSMA陽性エクソソームに関する、照射エネルギー、S/Nおよび検出限界の関係を示すグラフ(図8)を得た。 The calculated S / N and detection limit were plotted against the amount of irradiation energy, respectively, and a graph (FIG. 8) showing the relationship between the irradiation energy, S / N and the detection limit for CD9-positive PSMA-positive exosomes was obtained.
 図8のプロットにおいては、CD9陽性PSMA陽性エクソソームを測定する際に使用する励起光の照射エネルギーが低い場合は、S/Nは大きくなり(即ち、シグナルに対するノイズが減少し)、検出限界も向上した。 In the plot of FIG. 8, when the irradiation energy of the excitation light used when measuring the CD9-positive PSMA-positive exosome is low, the S / N becomes large (that is, the noise to the signal is reduced) and the detection limit is also improved. did.
 実験3: 2種のエクソソームに対する抗体を用いた、前立腺癌細胞に由来するエクソソームの測定 Experiment 3: Measurement of exosomes derived from prostate cancer cells using antibodies against two types of exosomes
 図3に示される構成の測定チップ300を準備した。流路320内に露出している金属膜120(金薄膜)の特定の領域(反応部)に、第1の結合物質として抗抗CD9モノクローナル抗体を固定化した。 A measuring chip 300 having the configuration shown in FIG. 3 was prepared. An anti-anti-CD9 monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
 コスモバイオ社から購入した前立腺がん細胞であるLNCap細胞由来のスタンダードエクソソーム(凍結乾燥品)を水和し、検体サンプルとして使用した。希釈は10倍希釈系列とし、希釈には1%BSAを含むPBSを使用した。
 なお、装置内での検体希釈液には界面活性剤を含み、界面活性剤の濃度は0.05%であった。
Standard exosomes (lyophilized) derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution.
The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
 LNCap細胞由来のCD9陽性CD63陽性エクソソームの検量線を作成するために、希釈率の異なる検体のそれぞれについて、エクソソームの量に相関するシグナル値を測定した。ピペットチップにより、液体注入部330から流路320内に検体(希釈した培養上清のいずれか)を導入し、往復送液させた(1次反応)。1次反応の反応時間は100分とした。液体注入部330から流路320内の検体を除去した後、流路320内を洗浄液で1回洗浄した。次いで、標識試薬(Alexa Fluor色素で標識された抗CD63モノクローナル抗体)を液体注入部330から流路320内に導入し、往復送液させた(2次反応)。2次反応の反応時間は10分とした。液体注入部330から流路320内の標識試薬を除去した後、流路320内を洗浄液で1回洗浄した。次いで、液体注入部330から流路320内に測定液を導入した。この状態で、SPFSにより蛍光値を測定した。すなわち、金属膜120に対する励起光の入射角が増強角となるようにプリズム110側から金属膜120に励起光(レーザー光)を照射し、そのときに放出される蛍光を検出した。検出に用いた励起光の出力は5mWであり、照射エネルギー量は、3.8mW/mmとなった。得られた蛍光値から予め測定した光学ブランク値を引き、エクソソームの量に相関するシグナル値を算出した。各検体について、同じ測定を6回行った。 In order to prepare a calibration curve of CD9-positive and CD63-positive exosomes derived from LNCaP cells, signal values correlating with the amount of exosomes were measured for each of the samples having different dilution ratios. A sample (one of the diluted culture supernatants) was introduced into the flow path 320 from the liquid injection section 330 by a pipette tip, and the liquid was reciprocally sent (primary reaction). The reaction time of the primary reaction was 100 minutes. After removing the sample in the flow path 320 from the liquid injection unit 330, the inside of the flow path 320 was washed once with a washing liquid. Next, a labeling reagent (anti-CD63 monoclonal antibody labeled with Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally sent to the liquid (secondary reaction). The reaction time of the secondary reaction was 10 minutes. After removing the labeling reagent in the flow path 320 from the liquid injection section 330, the inside of the flow path 320 was washed once with a washing liquid. Next, the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS. That is, the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected. The output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 . The optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
 上記と同じ検体について、検体中のLNCap細胞由来エクソソームの個数を測定した。qNano/ナノ粒子マルチアナライザー(メイワフォーシス株式会社製)を使用して、抽出したエクソソームの個数を測定した。重量はタンパク質定量(BCA法、ThermoFischer社製)によって実施した。 For the same sample as above, the number of LNCaP cell-derived exosomes in the sample was measured. The number of extracted exosomes was measured using a qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.). Weight was determined by protein quantification (BCA method, manufactured by Thermo Fisher).
 測定したシグナル値を、検体中のエクソソームの個数(個/μl)に対してプロットし、CD9陽性CD63陽性エクソソームの検量線(図9)を得た。 The measured signal value was plotted against the number of exosomes (pieces / μl) in the sample to obtain a calibration curve (FIG. 9) of CD9-positive and CD63-positive exosomes.
 図9のプロットから明らかなように、上記方法によって特定の細胞(前立腺癌細胞)由来のサンプルにおいてもCD9陽性CD63陽性エクソソームを検出することができた。また、CD9陽性CD63陽性エクソソームの個数とシグナル値との間には相関関係が存在し、検出限界は3.2×10個/μlと低かった。 As is clear from the plot of FIG. 9, CD9-positive and CD63-positive exosomes could be detected even in a sample derived from a specific cell (prostate cancer cell) by the above method. Also, a correlation exists between the number and the signal value of the CD9 positive CD63 positive exosomes, the detection limit was as low as 3.2 × 10 0 cells / [mu] l.
 次に、検出に用いた励起光の出力を変える以外は上記と同様にして、CD9陽性CD63陽性エクソソームの量に相関するシグナル値を算出した。検出に用いた励起光の出力は5mW、15mWまたは30mWとし、それぞれの照射エネルギー量は、3.8mW/mm、11.3mW/mmまたは22.6mW/mmとなった。各照射エネルギー量について、上記と同様にして検体からエクソソームを測定する際の検出限界を求めた。 Next, a signal value correlating with the amount of CD9-positive and CD63-positive exosomes was calculated in the same manner as above except that the output of the excitation light used for detection was changed. The output of the excitation light used for the detection was 5 mW, 15 mW or 30 mW, and the irradiation energy amounts were 3.8 mW / mm 2 , 11.3 mW / mm 2 or 22.6 mW / mm 2 , respectively. For each irradiation energy amount, the detection limit when measuring exosomes from a sample was determined in the same manner as described above.
 また、上記測定について、実験1と同様に、シグナル対ノイズ比(S/N)を算出した。 For the above measurement, the signal-to-noise ratio (S / N) was calculated in the same manner as in Experiment 1.
 照射エネルギー量に対して、算出したS/Nおよび検出限界をそれぞれプロットし、CD9陽性CD63陽性エクソソームに関する、照射エネルギー、S/Nおよび検出限界の関係を示すグラフ(図10)を得た。 The calculated S / N and detection limit were plotted against the amount of irradiation energy, respectively, and a graph (FIG. 10) showing the relationship between the irradiation energy, S / N and the detection limit for CD9-positive and CD63-positive exosomes was obtained.
 図10のプロットにおいては、CD9陽性CD63陽性エクソソームを測定する際に使用する励起光の照射エネルギーが低い場合は、S/Nは大きくなり(即ち、シグナルに対するノイズが減少し)、検出限界も向上した。 In the plot of FIG. 10, when the irradiation energy of the excitation light used when measuring the CD9-positive and CD63-positive exosomes is low, the S / N becomes large (that is, the noise to the signal is reduced) and the detection limit is also improved. did.
 実験4: エクソソームに対する抗体とエクソソーム上の糖鎖を認識するWFAレクチンを用いた、CD9陽性糖鎖保有エクソソームの測定 Experiment 4: Measurement of CD9-positive sugar chain-carrying exosomes using antibodies against exosomes and WFA lectins that recognize sugar chains on exosomes
 図3に示される構成の測定チップ300を準備した。流路320内に露出している金属膜120(金薄膜)の特定の領域(反応部)に、第1の結合物質として抗CD9モノクローナル抗体を固定化した。 A measuring chip 300 having the configuration shown in FIG. 3 was prepared. An anti-CD9 monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
 コスモバイオ社から購入した前立腺がん細胞であるLNCap細胞由来のスタンダードエクソソーム(凍結乾燥品)を水和し、検体サンプルとして使用した。希釈は10倍希釈系列とし、希釈には1%BSAを含むPBSを使用した。
 なお、装置内での検体希釈液には界面活性剤を含み、界面活性剤の濃度は0.05%であった。
Standard exosomes (lyophilized) derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution.
The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
 LNCap細胞由来のCD9陽性糖鎖保有エクソソームの検量線を作成するために、希釈率の異なる検体のそれぞれについて、エクソソームの量に相関するシグナル値を測定した。ピペットチップにより、液体注入部330から流路320内に検体(希釈した培養上清のいずれか)を導入し、往復送液させた(1次反応)。1次反応の反応時間は100分とした。液体注入部330から流路320内の検体を除去した後、流路320内を洗浄液で1回洗浄した。次いで、標識試薬(Alexa Fluor色素で標識されたWFAレクチン)を液体注入部330から流路320内に導入し、往復送液させた(2次反応)。2次反応の反応時間は10分とした。液体注入部330から流路320内の標識試薬を除去した後、流路320内を洗浄液で1回洗浄した。次いで、液体注入部330から流路320内に測定液を導入した。この状態で、SPFSにより蛍光値を測定した。すなわち、金属膜120に対する励起光の入射角が増強角となるようにプリズム110側から金属膜120に励起光(レーザー光)を照射し、そのときに放出される蛍光を検出した。検出に用いた励起光の出力は5mWであり、照射エネルギー量は、3.8mW/mmとなった。得られた蛍光値から予め測定した光学ブランク値を引き、エクソソームの量に相関するシグナル値を算出した。各検体について、同じ測定を6回行った。  In order to prepare a calibration curve of CD9-positive sugar chain-bearing exosomes derived from LNCaP cells, signal values correlating with the amount of exosomes were measured for each of the samples having different dilution ratios. A sample (one of the diluted culture supernatants) was introduced into the flow path 320 from the liquid injection section 330 by a pipette tip, and the liquid was reciprocally sent (primary reaction). The reaction time of the primary reaction was 100 minutes. After removing the sample in the flow path 320 from the liquid injection unit 330, the inside of the flow path 320 was washed once with a washing liquid. Next, a labeling reagent (WFA lectin labeled with Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally fed (secondary reaction). The reaction time of the secondary reaction was 10 minutes. After removing the labeling reagent in the flow path 320 from the liquid injection section 330, the inside of the flow path 320 was washed once with a washing liquid. Next, the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS. That is, the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected. The output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 . The optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
 上記と同じ検体について、検体中のLNCap細胞由来エクソソームの個数を測定した。qNano/ナノ粒子マルチアナライザー(メイワフォーシス株式会社製)を使用して、抽出したエクソソームの個数を測定した。 For the same sample as above, the number of LNCaP cell-derived exosomes in the sample was measured. The number of extracted exosomes was measured using a qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.).
 測定したシグナル値を、検体中のエクソソームの個数(個/μl)に対してプロットし、CD9陽性糖鎖保有エクソソームの検量線(図11)を得た。 The measured signal value was plotted against the number of exosomes (pieces / μl) in the sample to obtain a calibration curve (FIG. 11) of CD9-positive sugar chain-carrying exosomes.
 図11のプロットから明らかなように、上記方法によって特定の細胞(前立腺癌細胞)由来のサンプルにおいてもCD9陽性糖鎖保有エクソソームを検出することができた。また、CD9陽性糖鎖保有エクソソームの個数とシグナル値との間には相関関係が存在し、検出限界は9.9×10個/μlと低かった。 As is clear from the plot of FIG. 11, CD9-positive sugar chain-carrying exosomes could be detected even in a sample derived from a specific cell (prostate cancer cell) by the above method. In addition, there was a correlation between the number of CD9-positive sugar chain-carrying exosomes and the signal value, and the detection limit was as low as 9.9 × 10 1 / μl.
 実験5: エクソソーム分泌細胞に対する抗体とエクソソーム上の糖鎖を認識するレクチンを用いた、前立腺癌細胞に由来するエクソソームの測定 Experiment 5: Measurement of exosomes derived from prostate cancer cells using antibodies against exosome-secreting cells and lectins that recognize sugar chains on exosomes
 図3に示される構成の測定チップ300を準備した。流路320内に露出している金属膜120(金薄膜)の特定の領域(反応部)に、第1の結合物質として抗PSMAモノクローナル抗体を固定化した。 A measuring chip 300 having the configuration shown in FIG. 3 was prepared. An anti-PSMA monoclonal antibody was immobilized as a first binding substance in a specific region (reaction part) of the metal film 120 (gold thin film) exposed in the flow path 320.
 コスモバイオ社から購入した前立腺がん細胞であるLNCap細胞由来のスタンダードエクソソーム(凍結乾燥品)を水和し、検体サンプルとして使用した。希釈は10倍希釈系列とし、希釈には1%BSAを含むPBSを使用した。
 なお、装置内での検体希釈液には界面活性剤を含み、界面活性剤の濃度は0.05%であった。
Standard exosomes (lyophilized) derived from LNCaP cells, which are prostate cancer cells purchased from Cosmo Bio, were hydrated and used as sample samples. The dilution was a 10-fold dilution series, and PBS containing 1% BSA was used for dilution.
The sample diluent in the apparatus contained a surfactant, and the concentration of the surfactant was 0.05%.
 検体中のLNCap細胞由来エクソソームの個数を測定した。測定にはqNano/ナノ粒子マルチアナライザー(メイワフォーシス株式会社製)を使用した。 The number of LNCaP cell-derived exosomes in the sample was measured. A qNano / nanoparticle multi-analyzer (manufactured by Meiwaforsis Co., Ltd.) was used for the measurement.
 さらに上記と同じ検体について、LNCap細胞由来のPSMA陽性糖鎖保有エクソソームの検量線を作成するために、希釈率の異なる検体のそれぞれについて、エクソソームの量に相関するシグナル値を測定した。ピペットチップにより、液体注入部330から流路320内に検体(希釈した培養上清のいずれか)を導入し、往復送液させた(1次反応)。1次反応の反応時間は100分とした。液体注入部330から流路320内の検体を除去した後、流路320内を洗浄液で1回洗浄した。次いで、標識試薬(Alexa Fluor色素)で標識されたWFAレクチンを液体注入部330から流路320内に導入し、往復送液させた(2次反応)。2次反応の反応時間は10分とした。液体注入部330から流路320内の標識試薬を除去した後、流路320内を洗浄液で1回洗浄した。次いで、液体注入部330から流路320内に測定液を導入した。この状態で、SPFSにより蛍光値を測定した。すなわち、金属膜120に対する励起光の入射角が増強角となるようにプリズム110側から金属膜120に励起光(レーザー光)を照射し、そのときに放出される蛍光を検出した。検出に用いた励起光の出力は5mWであり、照射エネルギー量は、3.8mW/mmとなった。得られた蛍光値から予め測定した光学ブランク値を引き、エクソソームの量に相関するシグナル値を算出した。各検体について、同じ測定を6回行った。 Furthermore, for the same samples as above, in order to prepare a calibration curve for PSMA-positive sugar chain-bearing exosomes derived from LNCap cells, signal values correlating with the amount of exosomes were measured for each of the samples having different dilution ratios. A sample (one of the diluted culture supernatants) was introduced into the flow path 320 from the liquid injection section 330 by a pipette tip, and the liquid was reciprocally sent (primary reaction). The reaction time of the primary reaction was 100 minutes. After removing the sample in the flow path 320 from the liquid injection unit 330, the inside of the flow path 320 was washed once with a washing liquid. Next, the WFA lectin labeled with the labeling reagent (Alexa Fluor dye) was introduced into the flow path 320 from the liquid injection section 330 and reciprocally fed (secondary reaction). The reaction time of the secondary reaction was 10 minutes. After removing the labeling reagent in the flow path 320 from the liquid injection section 330, the inside of the flow path 320 was washed once with a washing liquid. Next, the measuring liquid was introduced into the flow path 320 from the liquid injection unit 330. In this state, the fluorescence value was measured by SPFS. That is, the metal film 120 was irradiated with the excitation light (laser light) from the prism 110 side so that the angle of incidence of the excitation light on the metal film 120 became the enhancement angle, and the fluorescence emitted at that time was detected. The output of the excitation light used for the detection was 5 mW, and the amount of irradiation energy was 3.8 mW / mm 2 . The optical blank value measured in advance was subtracted from the obtained fluorescence value to calculate the signal value that correlates with the amount of exosomes. The same measurement was performed 6 times for each sample.
 測定したシグナル値を、検体中のエクソソームの個数(個/μl)に対してプロットし、PSMA陽性糖鎖保有エクソソームの検量線(図12)を得た。 The measured signal value was plotted against the number of exosomes (pieces / μl) in the sample to obtain a calibration curve (FIG. 12) of PSMA-positive sugar chain-carrying exosomes.
 図12のプロットから明らかなように、上記方法によって特定の細胞(前立腺癌細胞)由来のエクソソーム(PSMA陽性糖鎖保有エクソソーム)を検出することができた。また、PSMA陽性糖鎖保有エクソソームの個数とシグナル値との間には相関関係が存在し、検出限界は2.5×10個/μlと低かった。 As is clear from the plot of FIG. 12, exosomes (PSMA-positive sugar chain-carrying exosomes) derived from specific cells (prostate cancer cells) could be detected by the above method. In addition, there was a correlation between the number of PSMA-positive sugar chain-carrying exosomes and the signal value, and the detection limit was as low as 2.5 × 10 2 / μl.
 本出願は、2019年6月27日出願の特願2019-119824に基づく優先権を主張する。当該出願明細書に記載された内容は、全て本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-11824 filed on June 27, 2019. All the contents described in the application specification are incorporated in the application specification.
 本実施の形態に係るエクソソームの測定方法または測定キットを用いることで、エクソソームを高感度かつ簡便に測定することができる。したがって、本発明に係るエクソソームの検出方法および測定キットは、例えば臨床検査などに有用である。 By using the exosome measurement method or measurement kit according to the present embodiment, exosomes can be measured with high sensitivity and easily. Therefore, the exosome detection method and measurement kit according to the present invention are useful for, for example, clinical examinations.
 100、200、300,400,500 測定チップ
 110 プリズム
 111 入射面
 112 成膜面
 113 出射面
 120 金属膜
 130 抗エクソソーム抗体(第1の結合物質)
 131 抗エクソソーム抗体(第2の結合物質)
 140 エクソソーム
 150 蛍光物質
 210 金属膜
 211 回折格子
 310 流路蓋
 320 流路
 330 液体注入部
 331 液体注入部被覆フィルム
 340 貯留部
 341 貯留部被覆フィルム
 342 通気孔
 350 接着層
 412 誘電体部材
 414 金属薄膜
 416 リガンド固定領域
 418 ウェル部材
 420 貫通穴
 422 センサ構造体
 510 ウェル本体 
 511 収容部 
 520 側壁部材 
 521 プリズム 
 523 反射面 
 525 金属膜 
 526 反応場 
 L1 励起光
 L2 反射光
 L3 蛍光
 
100, 200, 300, 400, 500 Measuring chip 110 Prism 111 Incident surface 112 Film formation surface 113 Exit surface 120 Metal film 130 Anti-exosome antibody (first binding substance)
131 Anti-exosome antibody (second binding substance)
140 Exosome 150 Fluorescent material 210 Metal film 211 Diffraction grating 310 Flow path lid 320 Flow path 330 Liquid injection part 331 Liquid injection part coating film 340 Storage part 341 Storage part coating film 342 Ventilation hole 350 Adhesive layer 421 Dielectric member 414 Metal thin film 416 Grating fixation region 418 Well member 420 Through hole 422 Sensor structure 510 Well body
511 containment
520 Side wall member
521 prism
523 Reflective surface
525 metal film
526 Reaction field
L1 excitation light L2 reflected light L3 fluorescence

Claims (19)

  1.  金属膜と、前記金属膜に固定化された、エクソソームに結合する第1の結合物質とを含む測定チップを準備する工程と、
     前記金属膜上にエクソソームを含む検体を提供して、前記検体に含まれる前記エクソソームを前記第1の結合物質に結合させる工程と、
     前記第1の結合物質に結合する前または結合した後の前記エクソソームを、前記エクソソームに結合する第2の結合物質を介して蛍光物質で標識する工程と、
     前記蛍光物質で標識された前記エクソソームが前記第1の結合物質に結合している状態で、前記金属膜で表面プラズモン共鳴が生じるように前記金属膜に励起光を照射し、前記蛍光物質から放出される蛍光を検出する工程と、
     を含む、エクソソームの測定方法。
    A step of preparing a measuring chip containing a metal film and a first binding substance that binds to an exosome, which is immobilized on the metal film.
    A step of providing a sample containing an exosome on the metal film and binding the exosome contained in the sample to the first binding substance.
    A step of labeling the exosome before or after binding to the first binding substance with a fluorescent substance via a second binding substance that binds to the exosome.
    In a state where the exosome labeled with the fluorescent substance is bound to the first binding substance, the metal film is irradiated with excitation light so that surface plasmon resonance occurs on the metal film, and the metal film is emitted from the fluorescent substance. The process of detecting the fluorescence to be generated and
    A method for measuring exosomes, including.
  2.  前記第1の結合物質は前記エクソソームが有する第1の結合決定基に結合するものであり、前記第2の結合物質は前記エクソソームが有する第2の結合決定基に結合するものであり、前記第1の結合決定基と前記第2の結合決定基とは異なる、請求項1に記載のエクソソームの測定方法。 The first binding substance binds to the first binding determinant of the exosome, and the second binding substance binds to the second binding determinant of the exosome. The method for measuring an exosome according to claim 1, wherein the binding determinant of 1 is different from the second binding determinant.
  3.  前記第1の結合決定基および前記第2の結合決定基の少なくとも一方が、前記エクソソームのマーカーとして知られる結合決定基である、請求項2に記載のエクソソームの測定方法。 The method for measuring an exosome according to claim 2, wherein at least one of the first binding determinant and the second binding determinant is a binding determinant known as a marker for the exosome.
  4.  前記第1の結合決定基および前記第2の結合決定基の少なくとも一方が、前記エクソソームを分泌する細胞のマーカーとして知られる結合決定基である、請求項2または3に記載のエクソソームの測定方法。 The method for measuring an exosome according to claim 2 or 3, wherein at least one of the first binding determinant and the second binding determinant is a binding determinant known as a marker for cells secreting the exosome.
  5.  前記標識する工程において、前記第2の結合物質に対して結合する第3の結合物質を用いて前記エクソソームを蛍光物質で標識する、請求項1~4のいずれか一項に記載のエクソソームの測定方法。 The measurement of an exosome according to any one of claims 1 to 4, wherein in the labeling step, the exosome is labeled with a fluorescent substance using a third binding substance that binds to the second binding substance. Method.
  6.  前記励起光の照射エネルギーは、7.5μW/mm以上10mW/mm以下である、請求項1~5のいずれか一項に記載のエクソソームの測定方法。 The method for measuring an exosome according to any one of claims 1 to 5, wherein the irradiation energy of the excitation light is 7.5 μW / mm 2 or more and 10 mW / mm 2 or less.
  7.  前記金属膜上にエクソソームを含む検体を提供する前に、前記検体に界面活性剤を添加する、請求項1~6のいずれか一項に記載のエクソソームの測定方法。 The method for measuring exosomes according to any one of claims 1 to 6, wherein a surfactant is added to the sample before the sample containing the exosome on the metal film is provided.
  8.  前記界面活性剤が、Tween20、デオキシコール酸ナトリウム、およびTriton-X100からなる群より選ばれる少なくとも1種である、請求項7に記載のエクソソームの測定方法。 The method for measuring exosomes according to claim 7, wherein the surfactant is at least one selected from the group consisting of Tween 20, sodium deoxycholate, and Triton-X100.
  9.  前記検体が、血清、血漿、全血またはこれらの希釈物である、請求項1~8のいずれか一項に記載のエクソソームの測定方法。 The method for measuring exosomes according to any one of claims 1 to 8, wherein the sample is serum, plasma, whole blood or a dilution thereof.
  10.  前記検体が、エクソソーム抽出物である、請求項1~8のいずれか一項に記載のエクソソームの測定方法。 The method for measuring exosomes according to any one of claims 1 to 8, wherein the sample is an exosome extract.
  11.  前記金属膜は、プリズムの上に配置されており、
     前記励起光は、プリズムを介して前記金属膜に照射される、
     請求項1~10のいずれか一項に記載のエクソソームの測定方法。
    The metal film is arranged on the prism and
    The excitation light is applied to the metal film via a prism.
    The method for measuring an exosome according to any one of claims 1 to 10.
  12.  前記金属膜は、回折格子を含み、
     前記第1の結合物質は、前記回折格子の上に固定化されており、
     前記励起光は、前記回折格子に照射される、
     請求項1~10のいずれか一項に記載のエクソソームの測定方法。
    The metal film includes a diffraction grating and
    The first binding substance is immobilized on the diffraction grating and is immobilized on the diffraction grating.
    The excitation light irradiates the diffraction grating.
    The method for measuring an exosome according to any one of claims 1 to 10.
  13.  金属膜と、前記金属膜に固定化された、エクソソームに結合する第1の結合物質とを含む測定チップと、
     エクソソームを蛍光物質で標識するための標識試薬と、
     を含み、
     前記標識試薬が、前記エクソソームに結合する第2の結合物質を含む、エクソソームの測定キット。
    A measuring chip containing a metal membrane and a first binding substance that binds to an exosome, which is immobilized on the metal membrane.
    Labeling reagents for labeling exosomes with fluorescent substances,
    Including
    An exosome measurement kit comprising the labeling reagent with a second binding substance that binds to the exosome.
  14.  前記第1の結合物質は前記エクソソームが有する第1の結合決定基に結合するものであり、前記第2の結合物質は前記エクソソームが有する第2の結合決定基に結合するものであり、前記第1の結合決定基と前記第2の結合決定基とは異なる、請求項13に記載のエクソソームの測定キット。 The first binding substance binds to the first binding determinant of the exosome, and the second binding substance binds to the second binding determinant of the exosome. The exosome measurement kit according to claim 13, wherein the binding determinant of 1 is different from the second binding determinant.
  15.  前記第1の結合決定基および前記第2の結合決定基の少なくとも一方が、前記エクソソームのマーカーとして知られる結合決定基である、請求項14に記載のエクソソームの測定キット。 The exosome measurement kit according to claim 14, wherein at least one of the first binding determinant and the second binding determinant is a binding determinant known as a marker for the exosome.
  16.  前記第1の結合決定基および前記第2の結合決定基の少なくとも一方が、前記エクソソームを分泌する細胞のマーカーとして知られる結合決定基である、請求項14または15に記載のエクソソームの測定キット。 The exosome measurement kit according to claim 14 or 15, wherein at least one of the first binding determinant and the second binding determinant is a binding determinant known as a marker for cells secreting the exosome.
  17.  前記標識試薬が、前記第2の結合物質に対して結合する第3の結合物質をさらに含む、請求項13~16のいずれか一項に記載のエクソソームの測定キット。 The exosome measurement kit according to any one of claims 13 to 16, wherein the labeling reagent further comprises a third binding substance that binds to the second binding substance.
  18.  検体に添加するための界面活性剤をさらに含む、請求項13~17のいずれか一項に記載のエクソソームの測定キット。 The exosome measurement kit according to any one of claims 13 to 17, further comprising a surfactant to be added to the sample.
  19.  前記界面活性剤が、Tween20、デオキシコール酸ナトリウム、およびTriton-X100からなる群より選ばれる少なくとも1種である、請求項18に記載のエクソソームの測定キット。
     
    The exosome measurement kit according to claim 18, wherein the surfactant is at least one selected from the group consisting of Tween 20, sodium deoxycholate, and Triton-X100.
PCT/JP2020/024585 2019-06-27 2020-06-23 Exosome measurement method and exosome measurement kit WO2020262374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527640A JPWO2020262374A1 (en) 2019-06-27 2020-06-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119824 2019-06-27
JP2019119824 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262374A1 true WO2020262374A1 (en) 2020-12-30

Family

ID=74061414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024585 WO2020262374A1 (en) 2019-06-27 2020-06-23 Exosome measurement method and exosome measurement kit

Country Status (2)

Country Link
JP (1) JPWO2020262374A1 (en)
WO (1) WO2020262374A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163446A1 (en) * 2021-01-28 2022-08-04 国立大学法人東海国立大学機構 Compound, cellular vesicle stain, and method for fluorescent staining of cellular vesicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522993A (en) * 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. Biomarker compositions and methods
JP2015230280A (en) * 2014-06-06 2015-12-21 凸版印刷株式会社 Detection method of analysis object and test strip for lateral flow
JP2016125937A (en) * 2015-01-06 2016-07-11 コニカミノルタ株式会社 Detection method and detection kit
US20160334398A1 (en) * 2013-12-02 2016-11-17 The General Hospital Corporation Nano-plasmonic sensor for exosome detection
JP2019050737A (en) * 2017-09-12 2019-04-04 国立研究開発法人国立がん研究センター Cd44 positive tmem-180 positive cancer cell-derived particulate, method for selecting cancer patient that can be effectively treated by anti-tmem-180 antibody therapy using the same, anticancer agent containing anti-tmem-180 antibody for selected patient, and kit for use in the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522993A (en) * 2011-08-08 2014-09-08 カリス ライフ サイエンシズ ルクセンブルク ホールディングス エス.アー.エール.エル. Biomarker compositions and methods
US20160334398A1 (en) * 2013-12-02 2016-11-17 The General Hospital Corporation Nano-plasmonic sensor for exosome detection
JP2015230280A (en) * 2014-06-06 2015-12-21 凸版印刷株式会社 Detection method of analysis object and test strip for lateral flow
JP2016125937A (en) * 2015-01-06 2016-07-11 コニカミノルタ株式会社 Detection method and detection kit
JP2019050737A (en) * 2017-09-12 2019-04-04 国立研究開発法人国立がん研究センター Cd44 positive tmem-180 positive cancer cell-derived particulate, method for selecting cancer patient that can be effectively treated by anti-tmem-180 antibody therapy using the same, anticancer agent containing anti-tmem-180 antibody for selected patient, and kit for use in the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, LING ET AL.: "Label-Free Quantitative Detection of Tumor-Derived Exosomes through Surface Plasmon Resonance Imaging", ANALYTICAL CHEMISTRY, vol. 86, no. 17, 2014, pages 8857 - 8864, XP055368046, DOI: 10.1021/ac5023056 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163446A1 (en) * 2021-01-28 2022-08-04 国立大学法人東海国立大学機構 Compound, cellular vesicle stain, and method for fluorescent staining of cellular vesicles

Also Published As

Publication number Publication date
JPWO2020262374A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
JP7008334B2 (en) Optical detection method and optical detection device
US7652768B2 (en) Chemical sensing apparatus and chemical sensing method
US20120088230A1 (en) System And Method For Cell Analysis
JP2010071693A (en) Sensing method, sensing device, inspection chip, and inspection kit
JPH0627741B2 (en) Immunoassay device and method
US10690596B2 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
EP2389289A1 (en) Apparatus and methods for detecting inflammation using quantum dots
US20190025210A1 (en) Optical detection of a substance in fluid
US20150268237A1 (en) Bioassay system and method for detecting analytes in body fluids
US8106368B2 (en) Fluorescence detecting method
JPH03502604A (en) Analysis method
Lee et al. Optical immunosensors for the efficient detection of target biomolecules
JP2010145272A (en) Assay method using plasmon exciting sensor
JP6738070B2 (en) Optical detection device and optical detection method
JP5563789B2 (en) Detection method
WO2020262374A1 (en) Exosome measurement method and exosome measurement kit
JP5315381B2 (en) Fluorescence detection apparatus, sample cell for fluorescence detection, and fluorescence detection method
JP2009175095A (en) Measuring instrument and measuring method
JP6631538B2 (en) Detection chip and detection method
JP2008157923A (en) Chemically sensing device and method
EP4083610A1 (en) Biomolecular inspection chip for fluorescence detection
WO2021144939A1 (en) Method for collecting exosome, method for analyzing exosome, and method for analyzing specimen
JP2022067460A (en) Measuring method for inclusion of extracellular vesicle, and measuring kit
JP5459143B2 (en) Method for correcting fluorescence signal measured by SPFS (surface plasmon excitation enhanced fluorescence spectroscopy), assay method using the same, structure used in these methods, and surface plasmon resonance sensor
EP3677912A1 (en) Method and kit for detecting hepatitis b surface antigen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831001

Country of ref document: EP

Kind code of ref document: A1