WO2020261557A1 - Drone charging system, drone charging method, and drone charging program - Google Patents

Drone charging system, drone charging method, and drone charging program Download PDF

Info

Publication number
WO2020261557A1
WO2020261557A1 PCT/JP2019/025909 JP2019025909W WO2020261557A1 WO 2020261557 A1 WO2020261557 A1 WO 2020261557A1 JP 2019025909 W JP2019025909 W JP 2019025909W WO 2020261557 A1 WO2020261557 A1 WO 2020261557A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
charging station
charging
departure
arrival
Prior art date
Application number
PCT/JP2019/025909
Other languages
French (fr)
Japanese (ja)
Inventor
貴都 戸田
木村 修治
木村 伸宏
太一 長田
崇 安永
山下 康治
可織 飯盛
諒 長岡
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/025909 priority Critical patent/WO2020261557A1/en
Publication of WO2020261557A1 publication Critical patent/WO2020261557A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/12Ground or aircraft-carrier-deck installations for anchoring aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/83Electronic components structurally integrated with aircraft elements, e.g. circuit boards carrying loads

Definitions

  • the present invention relates to a drone charging system, a drone charging method, and a drone charging program.
  • drones wireless aerial vehicles
  • a large rechargeable drone can operate for about 30 minutes at the longest. Ingenuity is required to operate the drone continuously for a long time.
  • Non-Patent Document 1 A charging station that charges a drone and enables continuous operation for a long time is disclosed in, for example, Non-Patent Document 1. By arranging this charging station in advance within the operating range of the drone, continuous operation of the drone becomes possible. Similar charging stations are described in Non-Patent Documents 2-4.
  • Non-Patent Documents 1 to 4 may not be arranged within the operating range (within the flight range) of the drone. For example, in the case of a disaster such as a volcanic eruption, no one can enter the affected area. Therefore, it is difficult to arrange the charging station within the flight range of the drone. Therefore, there is a problem that the observation time becomes shorter as the flight distance of the drone becomes longer.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide a drone charging system, a drone charging method, and a drone charging program that enable long-term operation of a drone and enable continuous observation. And.
  • the gist of the drone charging system is to include a drone and a charging station that is dropped within the flight range of the drone to charge the drone.
  • the drone charging method is a drone charging method in which a drone and a charging station cooperate to charge the drone, and the charging station for charging the drone is dropped within the flight range of the drone.
  • the drop step to be performed the drone detects whether or not its power supply is lower than a predetermined voltage, and when the voltage of the power supply is low, the station indicating its own drone position information and the position where the charging station has landed.
  • the gist is that the drone includes a landing step of flying itself so as to continue to receive the beam light and landing on the departure / arrival port.
  • the drone charging program according to one aspect of the present invention is a drone charging program for causing a computer to execute the above drone charging method.
  • the drone it is possible to enable the drone to operate for a long time and to enable continuous observation.
  • FIG. 1 is a diagram schematically showing a schematic procedure of a drone charging method executed by the drone charging system according to the present invention.
  • the drone charging system 100 shown in FIG. 1 includes a drone 30 and a charging station 10.
  • FIG. 2 is a flowchart showing a processing procedure of the drone charging method executed by the drone charging system 100 according to the present invention. The drone charging method will be described in detail with reference to FIGS. 1 and 2.
  • the drone 30 and the charging station 10 cooperate to charge the drone 30.
  • the charging station 10 is dropped within the flight range 2 of the drone 30 (step S1).
  • the drone 30 is dropped into the flight range 2 from, for example, the helicopter 1.
  • the flight range 2 of the drone 30 is a range that no one can enter due to, for example, the eruption of a volcano.
  • the drone 30 is flown from the outside of the flight range 2 and the inside of the flight range 2 is observed with the drone (step S2).
  • the drone 30 flies to the flight range 2 by remote control operated by the drone pilot and makes observations (FIG. 1 (b)).
  • the battery mark shown in FIG. 1 indicates the state of charge of the power supply of the drone 30.
  • the drone 30 As shown in FIG. 1B, the drone 30 is in a fully charged state immediately after it starts flying. After that, the charge amount of the power supply gradually decreases due to the flight including the movement toward the flight range 2.
  • the drone 30 detects whether or not the voltage of its power supply is lower than a predetermined voltage, and when the voltage is low, the drone position information and the station position information indicating the position where the charging station has landed match. (Step S3).
  • the voltage and capacity of the power supply are generally correlated, and the capacity can be estimated based on the voltage value.
  • the drone position information is coordinate information measured by the GPS receiver of the drone 30.
  • the station position information is coordinate information measured by a GPS receiver included in the charging station 10. The movement to the charging station 10 is performed automatically, but it may be performed by remote control of the drone pilot.
  • the charging station 10 irradiates a beam light from the departure / arrival port to guide the drone (step S4).
  • the drone 30 and the charging station 10 can wirelessly communicate with each other in both directions, and both can detect that they are approaching each other.
  • For bidirectional radio for example, short-range wireless technology compliant with the IEEE 802.11 standard is used. The departure and arrival ports will be described in detail later.
  • the drone 30 flies itself so as to continue receiving the beam light emitted by the charging station 10 and lands on the departure / arrival port (step S5 and FIG. 1 (c)).
  • the beam light is, for example, infrared light. Since the drone 30 is guided by the beam light, it can land on the departure / arrival port with high position accuracy.
  • the drone 30 that has landed on the departure / arrival port is charged by the charging station 10 (step S6).
  • Charging may be carried out by directly connecting the charging terminals or by using electromagnetic induction in a non-contact manner.
  • the power source for charging is, for example, a large-capacity lithium secondary battery.
  • the charging station 10 may be provided with a generator instead of the secondary battery.
  • the drone 30 that has finished charging takes off from the departure / arrival port and continues observing within the flight range 2 again (step S7 and FIG. 1 (d)).
  • the drone charging method described above is a drone charging method in which the drone 30 and the charging station 10 cooperate to charge the drone 30, and the charging station 10 for charging the drone 30 is dropped within the flight range 2 of the drone 30.
  • the drop step S1 and the drone 30 detect whether or not the voltage of their own power supply is lower than a predetermined voltage, and when the voltage is low, the station position indicating their own drone position information and the position where the charging station 10 has landed.
  • the drone includes a landing step S5 in which the drone flies itself so as to continue receiving beam light and lands on the departure / arrival port, and the charging station 10 includes a charging step S6 in which the drone 30 on the departure / arrival port is charged. .. According to this, it is possible to enable the drone 30 to operate for a long time and to enable continuous observation.
  • FIG. 3 is a diagram schematically showing the appearance of the charging station 10 according to the first embodiment of the present invention.
  • FIG. 3A is a side view of the charging station 10
  • FIG. 3B is a plan view thereof.
  • the charging station 10 includes a housing 11 having a lower outer diameter larger than the upper outer diameter, and a departure / arrival port 12 at the upper end where the drone 30 lands.
  • the side surface shape of the housing 11 is approximately trapezoidal, and the center of gravity thereof is provided on the lower side.
  • Locking portions 15 for suspending the housing 11 are provided at, for example, three places on the upper bottom side of the trapezoid. A parachute that reduces the falling speed when the charging station 10 is dropped may be locked to the locking portion 15.
  • the cross section of the housing 11 shown in FIG. 3 cut in the left-right direction is circular. Its cross section may be quadrangular. That is, the lower outer diameter and the upper outer diameter may be expressed as an outer diameter.
  • the departure / arrival port 12 has a first frame 13 in which both ends of one center line ⁇ are rotatably locked around the center line, and a first center line ⁇ in a direction orthogonal to the center line ⁇ . It is supported by a second frame 14 that rotatably locks the frame 13. Therefore, the departure / arrival port 12 can be inclined in each of the left-right direction and the back-front direction.
  • FIG. 4 is a diagram schematically showing a cross section of the charging station 10.
  • the departure / arrival port 12 shows the appearance.
  • the second frame 14 is fixed to the inner wall of the housing 11 with a bracket (support member) 16.
  • the departure / arrival port 12 includes a shaft 12a extending downward from the center of the lower surface thereof and a weight 12b attached to the tip of the shaft 12a.
  • the shaft 12a and the weight 12b move like a pendulum. Therefore, the departure / arrival port 12 can maintain a horizontal posture.
  • the charging station 10 includes a housing 11 having a lower outer shape larger than the upper outer shape, and a departure / arrival port 12 at the upper end where the drone 30 lands.
  • Reference numeral 12 denotes a first frame 13 in which both ends of one center line ⁇ are rotatably locked about the center line ⁇ , and a first frame 13 about the other center line ⁇ orthogonal to the center line ⁇ .
  • a shaft 12a supported by a second frame 14 that is rotatably locked and extends downward from the center of the lower surface, and a weight 12b at the tip of the shaft 12a are provided. According to this, even when the charging station 10 is dropped on rough terrain, the attitude of the departure / arrival port 12 can be kept horizontal.
  • the departure / arrival port 12 may be projected above the horizontal plane of the first frame 13 and the second frame 14. By projecting it, it is possible to prevent the upper vertical and horizontal end portions of the housing 11 from being higher than the flat surface of the departure / arrival port 12. That is, it is possible to prevent the area of the horizontal plane of the departure / arrival port 12 from being reduced even if the upper bottom and the lower bottom of the housing 11 are greatly tilted.
  • a brake (not shown) that brakes the central axis ⁇ and the central ⁇ so as not to rotate is provided so that the charging station 10 operates the brake after landing to maintain a horizontal posture. May be good.
  • the charging station 10 includes a light emitting unit 12c that irradiates the light beam 40 upward from the upper surface of the departure / arrival port 12.
  • the light emitting unit 12c irradiates the light beam 40 after landing until the drone 30 lands at the departure / arrival port 12.
  • the drone 30 can be landed on the departure / arrival port 12 with high position accuracy.
  • FIG. 6 is a diagram schematically showing the appearance of the charging station according to the second embodiment of the present invention.
  • the charging station 20 shown in FIG. 6 is different from the charging station 10 in the configuration of supporting the departure / arrival port.
  • the charging station 20 includes a housing 11 having a lower outer shape larger than the upper outer shape, and a departure / arrival port 22 at the upper end where the drone lands.
  • the departure / arrival port 22 is a plane obtained by horizontally cutting the upper part of the sphere 23, and a plurality of balls having outer ends projecting rotatably in any direction on the surface of the sphere 23 below the plane. 24 and a drive wheel 25 provided at the bottom of the sphere 23 are provided.
  • the drive wheels 25 are driven by the drive unit 26.
  • the drive wheel 25 rotates the sphere 23 so that the bottom of the sphere 23 is located at the bottom after the charging station 20 lands. By doing so, the attitude of the departure / arrival port 22 can be made horizontal.
  • departure / arrival port 22 may protrude above the flat surface formed by the upper bottom of the housing 11, as in the first embodiment. By projecting, it is possible to prevent the upper vertical and horizontal end portions of the housing 11 from being higher than the plane of the departure / arrival port 22.
  • locking portions 15 for suspending the housing 11 are provided at, for example, three places on the upper side surface of the housing 11.
  • a wire may be hung on the locking portion 15 to suspend the charging station 10 from the helicopter, and the helicopter may descend to land the charging station 10.
  • the parachute may be locked to the locking portion 15 and the charging station 10 with the parachute may be dropped from the helicopter.
  • the charging station 10 By attaching a parachute to the charging station 10, the charging station 10 can be landed with the departure / arrival port 12 facing upward. However, the parachute may cover the landing charging station 10. If the parachute covers the charging station 10, the drone 30 cannot be charged.
  • FIG. 7 is a diagram schematically showing a state of the charging station 10 (20) after being dropped from a helicopter, for example.
  • FIG. 7A shows the state of the charging station 10 in the air.
  • FIG. 7B is a diagram schematically showing a state immediately after the charging station 10 has landed.
  • the parachute 50 allows the charging station 10 in the air to maintain its posture with the departure / arrival port 12 facing up. Therefore, the charging station 10 lands in that posture.
  • the charging station 10 includes an injection port (not shown) that injects compressed air 60 upward from the upper end thereof so that the parachute 50 does not cover the arrival / departure port 12.
  • the injection port continues to inject compressed air for a predetermined time after landing. By doing so, it is possible to prevent the parachute 50 from covering the charging station 10.
  • the locking portion 15 may disconnect the parachute 50 immediately before the charging station 10 lands.
  • the locking portion 15 can be opened and closed by using, for example, an electromagnetic switch.
  • the parachute 50 may be separated based on the altitude measured by the GPS receiver. By disconnecting the parachute 50 immediately before landing, it is possible to prevent the parachute 50 from covering the charging station 10.
  • the drone charging system 100 of the present embodiment it is possible to enable the drone to operate for a long time and to enable continuous observation.
  • the number of drones 30 has been described by one example, but the present invention is not limited to this example.
  • the drone charging system 100 according to the present invention can also operate a plurality of drones 30 at the same time.
  • the drone charging system 100 makes it possible to drop the charging station 10 for charging the drone 30, and charges the drone 30 with reduced power supply at the charging station 10. Therefore, it is possible to make continuous observation for a long time by the drone 30 even in a place where people cannot enter.
  • Each control unit of the charging station 10 and the drone 30 constituting the drone charging system 100 can be realized by the general-purpose computer system shown in FIG.
  • a general-purpose computer system including a CPU 70, a memory 71, a storage 72, a communication unit 73, an input unit 74, and an output unit 75
  • the CPU 70 executes a predetermined program loaded on the memory 71 to perform a charging station.
  • 10 and the drone 30 are controlled, and the above-mentioned drone charging system and drone charging method are realized.
  • the predetermined program can be recorded on a computer-readable recording medium such as HDD, SSD, USB memory, CD-ROM, DVD-ROM, MO, or distributed via a network.
  • a computer-readable recording medium such as HDD, SSD, USB memory, CD-ROM, DVD-ROM, MO, or distributed via a network.
  • the present invention is not limited to the above embodiment, and can be modified within the scope of the gist thereof.
  • the light emitting unit 12c that irradiates the light beam 40 that guides the drone 30 is arranged at the center of the departure / arrival port 12, but the position of the light emitting unit 12c is not limited to this example.
  • the position of the light emitting portion 12c may be arranged anywhere as long as it is on the surface of the departure / arrival port 12.
  • the plane shape of the departure / arrival port 12 may be a polygon such as a quadrangle or a hexagon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This drone charging system is provided with: a drone 30; and a charging station 10 that is dropped within the flight range of the drone 30 so as to charge the drone 30, wherein the charging station 10 is provided with a casing 11 which has a lower outer shape larger than an upper outer shape, and an arrival/departure port 12, at the upper end of which the drone lands. The arrival/departure port 12 is supported by a first frame 13 for locking one center axis line α so as to allow both ends of said one center axis line α to be rotatable about the center axis and by a second frame 14 for locking a center β outside the first frames 13 in the direction orthogonal to the center axis α so as to be rotatable about the center β, and the arrival/departure port is provided with a shaft 12a extending downward from the center of a lower surface and a weight 12b at the leading end of the shaft 12a.

Description

ドローン充電システム、ドローン充電方法、及びドローン充電プログラムDrone charging system, drone charging method, and drone charging program
 本発明は、ドローン充電システム、ドローン充電方法、及びドローン充電プログラムに関する。 The present invention relates to a drone charging system, a drone charging method, and a drone charging program.
 近年、無線飛行体(以降、ドローンと称する)は、災害状況の把握、インフラ点検、配送、及び農業等の様々な場面で利用されている。ただし、ドローンの稼働時間は短い。充電式の大型のドローンであれば長くても30分程度の稼働時間である。ドローンを長時間連続的に稼働させるためには工夫が必要である。 In recent years, wireless aerial vehicles (hereinafter referred to as drones) have been used in various situations such as grasping disaster situations, infrastructure inspections, delivery, and agriculture. However, the operating time of the drone is short. A large rechargeable drone can operate for about 30 minutes at the longest. Ingenuity is required to operate the drone continuously for a long time.
 ドローンを充電して長時間の連続稼働を可能にする充電ステーションは、例えば非特許文献1に開示されている。この充電ステーションをドローンの稼働範囲内に予め配置して置くことでドローンの連続稼働が可能になる。同様な充電ステーションは、非特許文献2~4に記載されている。 A charging station that charges a drone and enables continuous operation for a long time is disclosed in, for example, Non-Patent Document 1. By arranging this charging station in advance within the operating range of the drone, continuous operation of the drone becomes possible. Similar charging stations are described in Non-Patent Documents 2-4.
 しかしながら、非特許文献1~4に記載された充電ステーションは、ドローンの稼働範囲内(飛行範囲内)に配置できない場合がある。例えば、火山の噴火のような災害の場合は、被災した範囲に人が入ることができない。よって、ドローンの飛行範囲内に充電ステーションを配置することが困難である。したがって、ドローンの飛行距離が長くなるほど観測時間が短くなるといった課題がある。 However, the charging stations described in Non-Patent Documents 1 to 4 may not be arranged within the operating range (within the flight range) of the drone. For example, in the case of a disaster such as a volcanic eruption, no one can enter the affected area. Therefore, it is difficult to arrange the charging station within the flight range of the drone. Therefore, there is a problem that the observation time becomes shorter as the flight distance of the drone becomes longer.
 本発明は、この課題に鑑みてなされたものであり、ドローンの長時間稼働を可能にし、継続的な観測を可能にするドローン充電システム、ドローン充電方法、及びドローン充電プログラムを提供することを目的とする。 The present invention has been made in view of this problem, and an object of the present invention is to provide a drone charging system, a drone charging method, and a drone charging program that enable long-term operation of a drone and enable continuous observation. And.
 本発明の一態様に係るドローン充電システムは、ドローンと、前記ドローンの飛行範囲内に投下され前記ドロ-ンを充電する充電ステーションとを備えることを要旨とする。 The gist of the drone charging system according to one aspect of the present invention is to include a drone and a charging station that is dropped within the flight range of the drone to charge the drone.
 また、本発明の一態様に係るドローン充電方法は、ドローンと充電ステーションが連携して前記ドローンを充電するドローン充電方法であって、ドローンを充電する充電ステーションを、前記ドローンの飛行範囲内に投下する投下ステップと、前記ドローンは、自らの電源が所定の電圧よりも低いか否かを検出し、前記電源の電圧が低い場合に自らのドローン位置情報と前記充電ステーションが着地した位置を表すステーション位置情報とが一致するように移動させる移動ステップと、前記充電ステーションは、前記移動ステップの後に、上側の端部に設けられた発着ポートからビーム光を照射して前記ドローンを誘導する誘導ステップと、前記ドローンは、前記ビーム光を受光し続けるように自らを飛行させ前記発着ポートの上に着陸させる着陸ステップとを含むことを要旨とする。 Further, the drone charging method according to one aspect of the present invention is a drone charging method in which a drone and a charging station cooperate to charge the drone, and the charging station for charging the drone is dropped within the flight range of the drone. The drop step to be performed, the drone detects whether or not its power supply is lower than a predetermined voltage, and when the voltage of the power supply is low, the station indicating its own drone position information and the position where the charging station has landed. A moving step of moving the drone so as to match the position information, and a guiding step of guiding the drone by irradiating a beam light from a departure / arrival port provided at the upper end of the charging station after the moving step. The gist is that the drone includes a landing step of flying itself so as to continue to receive the beam light and landing on the departure / arrival port.
 また、本発明の一態様に係るドローン充電プログラムは、上記のドローン充電方法をコンピュータに実行させるためのドローン充電プログラムであることを要旨とする。 Further, it is a gist that the drone charging program according to one aspect of the present invention is a drone charging program for causing a computer to execute the above drone charging method.
 本発明によれば、ドローンの長時間稼働を可能にし、継続的な観測を可能にすることができる。 According to the present invention, it is possible to enable the drone to operate for a long time and to enable continuous observation.
本発明に係るドローン充電方法の概略の手順を模式的に示す図である。It is a figure which shows typically the schematic procedure of the drone charging method which concerns on this invention. 図1に示すドローン充電方法の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the drone charging method shown in FIG. 本発明の第1実施形態に係る充電ステーションの外観を模式的に示す図である。It is a figure which shows typically the appearance of the charging station which concerns on 1st Embodiment of this invention. 図3に示す充電ステーションの断面を模式的に示す図である。It is a figure which shows typically the cross section of the charging station shown in FIG. 図3に示す発着ポートに備えられた発光部と、該発光部から照射される光ビームを模式的に示す図である。It is a figure which shows typically the light emitting part provided in the departure / arrival port shown in FIG. 3, and the light beam emitted from the light emitting part. 本発明の第2実施形態に係る充電ステーションの構成を模式的に示す図である。It is a figure which shows typically the structure of the charging station which concerns on 2nd Embodiment of this invention. 図3に示す係止め部に係止されたパラシュートを模式的に示す図である。It is a figure which shows typically the parachute locked to the locking part shown in FIG. 汎用的なコンピュータシステムの構成例を示すブロック図である。It is a block diagram which shows the configuration example of a general-purpose computer system.
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、構成及び手順等を下記のものに特定するものでない。図面は原理を例示するものである。各構成部の形状及び大きさは、図面から読み取れる寸法等に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same objects in a plurality of drawings, and the description is not repeated. The embodiments shown below exemplify devices and methods for embodying the technical idea, and do not specify the configuration, procedure, and the like to the following. The drawings exemplify the principle. The shape and size of each component are not limited to the dimensions that can be read from the drawings.
 (ドローン充電システムとその方法)
 図1は、本発明に係るドローン充電システムが実行するドローン充電方法の概略の手順を模式的に示す図である。図1に示すドローン充電システム100は、ドローン30と充電ステーション10を備える。
(Drone charging system and its method)
FIG. 1 is a diagram schematically showing a schematic procedure of a drone charging method executed by the drone charging system according to the present invention. The drone charging system 100 shown in FIG. 1 includes a drone 30 and a charging station 10.
 図2は、本発明に係るドローン充電システム100が実行するドローン充電方法の処理手順を示すフローチャートである。図1と図2を参照してそのドローン充電方法について詳しく説明する。 FIG. 2 is a flowchart showing a processing procedure of the drone charging method executed by the drone charging system 100 according to the present invention. The drone charging method will be described in detail with reference to FIGS. 1 and 2.
 本発明に係るドローン充電方法は、ドローン30と充電ステーション10が連携してドローン30を充電する。まず初めに、図1(a)に示すようにドローン30の飛行範囲2内に充電ステーション10を投下する(ステップS1)。ドローン30は、例えばヘリコプター1から飛行範囲2内に投下される。ドローン30の飛行範囲2は、例えば火山の噴火によって人が入れない範囲である。 In the drone charging method according to the present invention, the drone 30 and the charging station 10 cooperate to charge the drone 30. First, as shown in FIG. 1A, the charging station 10 is dropped within the flight range 2 of the drone 30 (step S1). The drone 30 is dropped into the flight range 2 from, for example, the helicopter 1. The flight range 2 of the drone 30 is a range that no one can enter due to, for example, the eruption of a volcano.
 次に、飛行範囲2の外側からドローン30を飛行させ、飛行範囲2の内側をドローンで観測する(ステップS2)。ドローン30は、ドローンパイロットの操作による遠隔操作で飛行範囲2まで飛行し、観測を行う(図1(b))。 Next, the drone 30 is flown from the outside of the flight range 2 and the inside of the flight range 2 is observed with the drone (step S2). The drone 30 flies to the flight range 2 by remote control operated by the drone pilot and makes observations (FIG. 1 (b)).
 図1中に示す電池マークは、ドローン30の電源の充電状態を表す。図1(b)に示すようにドローン30が飛行を開始した直後はフル充電状態である。その後、飛行範囲2に向けての移動を含む飛行によって電源の充電量は次第に低下する。 The battery mark shown in FIG. 1 indicates the state of charge of the power supply of the drone 30. As shown in FIG. 1B, the drone 30 is in a fully charged state immediately after it starts flying. After that, the charge amount of the power supply gradually decreases due to the flight including the movement toward the flight range 2.
 ドローン30は、自らの電源の電圧が所定の電圧よりも低いか否かを検出し、電圧が低い場合に自らのドローン位置情報と充電ステーションが着地した位置を表すステーション位置情報とが一致するように移動させる(ステップS3)。電源の電圧と容量は、一般的に相関関係があり、電圧値に基づいて容量を推測することができる。 The drone 30 detects whether or not the voltage of its power supply is lower than a predetermined voltage, and when the voltage is low, the drone position information and the station position information indicating the position where the charging station has landed match. (Step S3). The voltage and capacity of the power supply are generally correlated, and the capacity can be estimated based on the voltage value.
 ドローン位置情報は、ドローン30が備えるGPS受信機で測位した座標情報である。ステーション位置情報は、充電ステーション10が備えるGPS受信機で測位した座標情報である。この充電ステーション10への移動は自動的に行われるが、ドローンパイロットの遠隔操作で行ってもよい。 The drone position information is coordinate information measured by the GPS receiver of the drone 30. The station position information is coordinate information measured by a GPS receiver included in the charging station 10. The movement to the charging station 10 is performed automatically, but it may be performed by remote control of the drone pilot.
 ドローン位置情報とステーション位置情報が一致した後、充電ステーション10は、発着ポートからビーム光を照射してドローンを誘導する(ステップS4)。ドローン30と充電ステーション10とは、無線で双方向に通信が可能であり、両者は近づいたことをそれぞれ検知することができる。双方向の無線は、例えばIEEE802.11規格に準拠した近距離無線技術を用いる。発着ポートについて詳しくは後述する。 After the drone position information and the station position information match, the charging station 10 irradiates a beam light from the departure / arrival port to guide the drone (step S4). The drone 30 and the charging station 10 can wirelessly communicate with each other in both directions, and both can detect that they are approaching each other. For bidirectional radio, for example, short-range wireless technology compliant with the IEEE 802.11 standard is used. The departure and arrival ports will be described in detail later.
 次にドローン30は、充電ステーション10が照射するビーム光を受光し続けるように自らを飛行させ発着ポートの上に着陸する(ステップS5及び図1(c))。ビーム光は例えば赤外光である。ドローン30は、ビーム光で誘導されるので高い位置精度で発着ポート上に着陸することができる。 Next, the drone 30 flies itself so as to continue receiving the beam light emitted by the charging station 10 and lands on the departure / arrival port (step S5 and FIG. 1 (c)). The beam light is, for example, infrared light. Since the drone 30 is guided by the beam light, it can land on the departure / arrival port with high position accuracy.
 発着ポートの上に着陸したドローン30は、充電ステーション10によって充電される(ステップS6)。充電は、充電端子を直接接続させて行ってもよいし、電磁誘導を用いて非接触で行ってもよい。充電用の電源は、例えば大容量のリチウム二次電池である。また、充電ステーション10は、二次電池に代えて発電機を備えてもよい。 The drone 30 that has landed on the departure / arrival port is charged by the charging station 10 (step S6). Charging may be carried out by directly connecting the charging terminals or by using electromagnetic induction in a non-contact manner. The power source for charging is, for example, a large-capacity lithium secondary battery. Further, the charging station 10 may be provided with a generator instead of the secondary battery.
 充電を終えたドローン30は、発着ポートから離陸し再び飛行範囲2内の観測を継続する(ステップS7及び図1(d))。 The drone 30 that has finished charging takes off from the departure / arrival port and continues observing within the flight range 2 again (step S7 and FIG. 1 (d)).
 以上説明したドローン充電方法は、ドローン30と充電ステーション10が連携してドローン30を充電するドローン充電方法であって、ドローン30を充電する充電ステーション10を、ドローン30の飛行範囲2内に投下する投下ステップS1と、ドローン30は、自らの電源の電圧が所定の電圧よりも低いか否かを検出し、電圧が低い場合に自らのドローン位置情報と充電ステーション10が着地した位置を表すステーション位置情報とが一致するように移動させる移動ステップS3と、充電ステーション10は、移動ステップS3の後に、上側の端部に設けられた発着ポートからビーム光を照射してドローン30を誘導する誘導ステップS4と、ドローンは、ビーム光を受光し続けるように自らを飛行させ発着ポートの上に着陸する着陸ステップS5と、充電ステーション10は、発着ポートの上のドローン30を充電する充電ステップS6とを含む。これによれば、ドローン30の長時間稼働を可能にし、継続的な観測を可能にすることができる。 The drone charging method described above is a drone charging method in which the drone 30 and the charging station 10 cooperate to charge the drone 30, and the charging station 10 for charging the drone 30 is dropped within the flight range 2 of the drone 30. The drop step S1 and the drone 30 detect whether or not the voltage of their own power supply is lower than a predetermined voltage, and when the voltage is low, the station position indicating their own drone position information and the position where the charging station 10 has landed. The moving step S3 for moving the drone so that the information matches, and the guiding step S4 for guiding the drone 30 by irradiating the beam light from the departure / arrival port provided at the upper end of the charging station 10 after the moving step S3. The drone includes a landing step S5 in which the drone flies itself so as to continue receiving beam light and lands on the departure / arrival port, and the charging station 10 includes a charging step S6 in which the drone 30 on the departure / arrival port is charged. .. According to this, it is possible to enable the drone 30 to operate for a long time and to enable continuous observation.
 (充電ステーション)
 〔第1実施形態〕
 図3は、本発明の第1実施形態に係る充電ステーション10の外観を模式的に示す図である。図3(a)は充電ステーション10の側面図、図3(b)はその平面図である。
(charging station)
[First Embodiment]
FIG. 3 is a diagram schematically showing the appearance of the charging station 10 according to the first embodiment of the present invention. FIG. 3A is a side view of the charging station 10, and FIG. 3B is a plan view thereof.
 図3に示すように、充電ステーション10は、下側の外径が上側の外径よりも大きな筐体11と、上側の端部にドローン30が着陸する発着ポート12を備える。筐体11の側面形状は、凡そ台形であり、その重心は下側に設けられている。台形の上底側の例えば3か所に筐体11を吊り下げる係止め部15が設けられている。係止め部15には、充電ステーション10を投下する際に落下速度を減速させるパラシュートを係止させてもよい。 As shown in FIG. 3, the charging station 10 includes a housing 11 having a lower outer diameter larger than the upper outer diameter, and a departure / arrival port 12 at the upper end where the drone 30 lands. The side surface shape of the housing 11 is approximately trapezoidal, and the center of gravity thereof is provided on the lower side. Locking portions 15 for suspending the housing 11 are provided at, for example, three places on the upper bottom side of the trapezoid. A parachute that reduces the falling speed when the charging station 10 is dropped may be locked to the locking portion 15.
 なお、図3に示す筐体11を左右方向に切った断面は円形である。その断面は四角形で有ってもよい。つまり、下側の外径及び上側の外径は、外形と表記してもよい。 The cross section of the housing 11 shown in FIG. 3 cut in the left-right direction is circular. Its cross section may be quadrangular. That is, the lower outer diameter and the upper outer diameter may be expressed as an outer diameter.
 発着ポート12は、一方の中心線αの両端部が該中心線を軸に回転可能に係止する第1枠13と、中心線αと直交する向きの他方の中心線βを軸に第1枠13を回転可能に係止する第2枠14とで支持される。よって、発着ポート12は、左右方向と奥前方向のそれぞれの方向に傾斜が可能である。 The departure / arrival port 12 has a first frame 13 in which both ends of one center line α are rotatably locked around the center line, and a first center line β in a direction orthogonal to the center line α. It is supported by a second frame 14 that rotatably locks the frame 13. Therefore, the departure / arrival port 12 can be inclined in each of the left-right direction and the back-front direction.
 図4は、充電ステーション10の断面を模式的に示す図である。なお、図4において発着ポート12は外観を示している。 FIG. 4 is a diagram schematically showing a cross section of the charging station 10. In FIG. 4, the departure / arrival port 12 shows the appearance.
 図4に示すように第2枠14は、ブラケット(支持部材)16で筐体11の内壁に固定されている。また、発着ポート12は、その下側の表面の中心から下方向に延びる軸12aと該軸12aの先端に取り付けられた錘12bとを備える。 As shown in FIG. 4, the second frame 14 is fixed to the inner wall of the housing 11 with a bracket (support member) 16. Further, the departure / arrival port 12 includes a shaft 12a extending downward from the center of the lower surface thereof and a weight 12b attached to the tip of the shaft 12a.
 発着ポート12の下側の中心は、錘12bによって鉛直方向に常に引っ張られるので、軸12aと錘12bは振り子のように運動する。よって、発着ポート12は、水平な姿勢を保つことができる。 Since the lower center of the departure / arrival port 12 is always pulled in the vertical direction by the weight 12b, the shaft 12a and the weight 12b move like a pendulum. Therefore, the departure / arrival port 12 can maintain a horizontal posture.
 以上説明したように本実施形態に係る充電ステーション10は、下側の外形が上側の外形よりも大きいな筐体11と、上側の端部にドローン30が着陸する発着ポート12を備え、発着ポート12は、一方の中心線αの両端部が該中心線αを軸に回転可能に係止する第1枠13と、中心線αと直交する他方の中心線βを軸に第1枠13を回転可能に係止する第2枠14とで支持され、下側の表面の中心から下方向に延びる軸12aと該軸12aの先端に錘12bとを備える。これによれば、充電ステーション10が不整地に投下された場合でも発着ポート12の姿勢を水平に保つことができる。 As described above, the charging station 10 according to the present embodiment includes a housing 11 having a lower outer shape larger than the upper outer shape, and a departure / arrival port 12 at the upper end where the drone 30 lands. Reference numeral 12 denotes a first frame 13 in which both ends of one center line α are rotatably locked about the center line α, and a first frame 13 about the other center line β orthogonal to the center line α. A shaft 12a supported by a second frame 14 that is rotatably locked and extends downward from the center of the lower surface, and a weight 12b at the tip of the shaft 12a are provided. According to this, even when the charging station 10 is dropped on rough terrain, the attitude of the departure / arrival port 12 can be kept horizontal.
 なお、発着ポート12は、図4に示すように第1枠13及び第2枠14の水平面よりも上に突出させてもよい。突出させることで筐体11の上側の上下左右方向の端部が発着ポート12の平面よりも高くなることを防止することができる。つまり、筐体11の上底及び下底が大きく傾いても発着ポート12の水平面の面積が減少することを防止できる。 As shown in FIG. 4, the departure / arrival port 12 may be projected above the horizontal plane of the first frame 13 and the second frame 14. By projecting it, it is possible to prevent the upper vertical and horizontal end portions of the housing 11 from being higher than the flat surface of the departure / arrival port 12. That is, it is possible to prevent the area of the horizontal plane of the departure / arrival port 12 from being reduced even if the upper bottom and the lower bottom of the housing 11 are greatly tilted.
 なお、錘12bの質量をドローン30よりも十分大きくしておくことでドローン30の着陸位置のずれによって生じる傾斜を抑制できる。また、中心軸α及び中心βのそれぞれの軸を回転しないように制動するブレーキ(図示せず)を設け、充電ステーション10が着地後にそのブレーキを作動させて、水平な姿勢を維持させるようにしてもよい。 By making the mass of the weight 12b sufficiently larger than that of the drone 30, it is possible to suppress the inclination caused by the deviation of the landing position of the drone 30. In addition, a brake (not shown) that brakes the central axis α and the central β so as not to rotate is provided so that the charging station 10 operates the brake after landing to maintain a horizontal posture. May be good.
 また、充電ステーション10は、図5に示すように発着ポート12の上側の表面から上方向に光ビーム40を照射する発光部12cを備える。発光部12cは、着地後からドローン30が発着ポート12に着陸するまでの間に光ビーム40を照射する。これにより上述したように、ドローン30を高い位置精度で発着ポート12の上に着陸させることができる。 Further, as shown in FIG. 5, the charging station 10 includes a light emitting unit 12c that irradiates the light beam 40 upward from the upper surface of the departure / arrival port 12. The light emitting unit 12c irradiates the light beam 40 after landing until the drone 30 lands at the departure / arrival port 12. As a result, as described above, the drone 30 can be landed on the departure / arrival port 12 with high position accuracy.
 (第2実施形態)
 図6は、本発明の第2実施形態に係る充電ステーションの外観を模式的に示す図である。図6に示す充電ステーション20は、発着ポートを支持する構成が充電ステーション10と異なる。
(Second Embodiment)
FIG. 6 is a diagram schematically showing the appearance of the charging station according to the second embodiment of the present invention. The charging station 20 shown in FIG. 6 is different from the charging station 10 in the configuration of supporting the departure / arrival port.
 図6に示すように充電ステーション20は、下側の外形が上側の外形よりも大きな筐体11と、上側の端部にドローンが着陸する発着ポート22とを備える。発着ポート22は、球体23の上部を水平に切り取った平面であり、該平面よりも下側の球体23の表面には何れの方向にも回転可能に外側の端部を突出させた複数のボール24と、球体23の最下部に設けられた駆動輪25とを備える。駆動輪25は駆動部26によって駆動される。 As shown in FIG. 6, the charging station 20 includes a housing 11 having a lower outer shape larger than the upper outer shape, and a departure / arrival port 22 at the upper end where the drone lands. The departure / arrival port 22 is a plane obtained by horizontally cutting the upper part of the sphere 23, and a plurality of balls having outer ends projecting rotatably in any direction on the surface of the sphere 23 below the plane. 24 and a drive wheel 25 provided at the bottom of the sphere 23 are provided. The drive wheels 25 are driven by the drive unit 26.
 駆動輪25は、充電ステーション20が着地後に球体23の最下部が最も下に位置するように球体23を回転させる。そうすることで、発着ポート22の姿勢を水平にすることができる。 The drive wheel 25 rotates the sphere 23 so that the bottom of the sphere 23 is located at the bottom after the charging station 20 lands. By doing so, the attitude of the departure / arrival port 22 can be made horizontal.
 なお、発着ポート22は、第1実施形態と同様に、筐体11の上底が成す平面よりも上に突出させてもよい。突出させることで筐体11の上側の上下左右方向の端部が発着ポート22の平面よりも高くなることを防止することができる。 Note that the departure / arrival port 22 may protrude above the flat surface formed by the upper bottom of the housing 11, as in the first embodiment. By projecting, it is possible to prevent the upper vertical and horizontal end portions of the housing 11 from being higher than the plane of the departure / arrival port 22.
 (充電ステーションの降下時の姿勢)
 充電ステーション10(20)は、発着ポート12を上に向けて着地させる必要がある。そのために、筐体11の上側の側面の例えば3か所に筐体11を吊り下げる係止め部15が設けられる。
(Posture when the charging station descends)
The charging station 10 (20) needs to land with the departure / arrival port 12 facing up. Therefore, locking portions 15 for suspending the housing 11 are provided at, for example, three places on the upper side surface of the housing 11.
 係止め部15にワイヤーを掛けてヘリコプターから充電ステーション10を吊り下げて、ヘリコプターが降下して充電ステーション10を着地させてもよい。また、係止め部15にパラシュートを係止め、ヘリコプターからパラシュートの付いた充電ステーション10を投下してもよい。 A wire may be hung on the locking portion 15 to suspend the charging station 10 from the helicopter, and the helicopter may descend to land the charging station 10. Alternatively, the parachute may be locked to the locking portion 15 and the charging station 10 with the parachute may be dropped from the helicopter.
 充電ステーション10にパラシュートを付けることで、発着ポート12を上に向けた姿勢で充電ステーション10を着地させることができる。ただし、パラシュートは、着地した充電ステーション10に覆い被さってしまう場合が有る。パラシュートが充電ステーション10を覆ってしまうと、ドローン30を充電できなくなる。 By attaching a parachute to the charging station 10, the charging station 10 can be landed with the departure / arrival port 12 facing upward. However, the parachute may cover the landing charging station 10. If the parachute covers the charging station 10, the drone 30 cannot be charged.
 そこで、パラシュートが充電ステーション10を覆わないようにする工夫について説明する。図7は、例えばヘリコプターから投下された後の充電ステーション10(20)の様子を模式的に示す図である。図7(a)は、充電ステーション10の空中における様子を示す。図7(b)は、充電ステーション10が着地した直後の様子を模式的に示す図である。 Therefore, we will explain how to prevent the parachute from covering the charging station 10. FIG. 7 is a diagram schematically showing a state of the charging station 10 (20) after being dropped from a helicopter, for example. FIG. 7A shows the state of the charging station 10 in the air. FIG. 7B is a diagram schematically showing a state immediately after the charging station 10 has landed.
 図7(a)に示すようにパラシュート50によって、空中における充電ステーション10は、発着ポート12を上にした姿勢を維持することができる。よって、充電ステーション10は、その姿勢のまま着地する。 As shown in FIG. 7A, the parachute 50 allows the charging station 10 in the air to maintain its posture with the departure / arrival port 12 facing up. Therefore, the charging station 10 lands in that posture.
 着地した後のパラシュート50は、無風であると充電ステーション10に覆いかぶさる可能性が高くなる。そこで充電ステーション10は、パラシュート50が発着ポート12の上に被さらないようにその上部の端部から上方向に圧縮空気60を噴射する噴射口(図示せず)を備える。噴射口は、着地後の所定時間の間、圧縮空気を噴射し続ける。そうすることで、パラシュート50が充電ステーション10に覆い被さることを防ぐことができる。 If the parachute 50 after landing is windless, there is a high possibility that it will cover the charging station 10. Therefore, the charging station 10 includes an injection port (not shown) that injects compressed air 60 upward from the upper end thereof so that the parachute 50 does not cover the arrival / departure port 12. The injection port continues to inject compressed air for a predetermined time after landing. By doing so, it is possible to prevent the parachute 50 from covering the charging station 10.
 また、係止め部15は、充電ステーション10が着地する直前にパラシュート50を切り離すようにしてもよい。係止め部15は、例えば電磁開閉器を用いて構成することで開閉させることが可能である。 Further, the locking portion 15 may disconnect the parachute 50 immediately before the charging station 10 lands. The locking portion 15 can be opened and closed by using, for example, an electromagnetic switch.
 着地する直前とは、充電ステーション10と地表面との距離が例えば1mに近づいた場合である。地表面との距離は、例えば超音波を用いた近接センサー等で検出することが可能である。また、GPS受信機で測位した標高に基づいてパラシュート50を切り離すようにしてもよい。着地する直前にパラシュート50を切り離すことで、パラシュート50が充電ステーション10に覆い被さることを防止することができる。 Immediately before landing is when the distance between the charging station 10 and the ground surface approaches, for example, 1 m. The distance to the ground surface can be detected by, for example, a proximity sensor using ultrasonic waves. Further, the parachute 50 may be separated based on the altitude measured by the GPS receiver. By disconnecting the parachute 50 immediately before landing, it is possible to prevent the parachute 50 from covering the charging station 10.
 以上説明したように本実施形態のドローン充電システム100によれば、ドローンの長時間稼働を可能にし、継続的な観測を可能にすることができる。なお、上記の説明ではドローン30の数を1つの例で説明したが本発明はこの例に限られない。本発明に係るドローン充電システム100は、同時に複数のドローン30を運用することも可能である。 As described above, according to the drone charging system 100 of the present embodiment, it is possible to enable the drone to operate for a long time and to enable continuous observation. In the above description, the number of drones 30 has been described by one example, but the present invention is not limited to this example. The drone charging system 100 according to the present invention can also operate a plurality of drones 30 at the same time.
 ドローン充電システム100は、ドローン30を充電する充電ステーション10を投下可能にし、電源が減ったドローン30を充電ステーション10で充電する。したがって、人が入れないような場所であっても、ドローン30による長時間におよぶ継続的な観測を可能にすることができる。 The drone charging system 100 makes it possible to drop the charging station 10 for charging the drone 30, and charges the drone 30 with reduced power supply at the charging station 10. Therefore, it is possible to make continuous observation for a long time by the drone 30 even in a place where people cannot enter.
 ドローン充電システム100を構成する充電ステーション10とドローン30のそれぞれの制御部は、図8に示す汎用的なコンピュータシステムで実現することができる。例えば、CPU70、メモリ71、ストレージ72、通信部73、入力部74、及び出力部75を備える汎用的なコンピュータシテムにおいて、CPU70がメモリ71上にロードされた所定のプログラムを実行することにより充電ステーション10とドローン30が制御され、上記のドローン充電システム及びドローン充電方法が実現される。 Each control unit of the charging station 10 and the drone 30 constituting the drone charging system 100 can be realized by the general-purpose computer system shown in FIG. For example, in a general-purpose computer system including a CPU 70, a memory 71, a storage 72, a communication unit 73, an input unit 74, and an output unit 75, the CPU 70 executes a predetermined program loaded on the memory 71 to perform a charging station. 10 and the drone 30 are controlled, and the above-mentioned drone charging system and drone charging method are realized.
 所定のプログラムは、HDD、SSD、USBメモリ、CD-ROM、DVD-ROM、MOなどのコンピュータ読取り可能な記録媒体に記録することも、ネットワークを介して配信することもできる。 The predetermined program can be recorded on a computer-readable recording medium such as HDD, SSD, USB memory, CD-ROM, DVD-ROM, MO, or distributed via a network.
 本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。例えば、ドローン30を誘導する光ビーム40を照射する発光部12cを発着ポート12の中心に配置した例を示したが、発光部12cの位置はこの例に限られない。発光部12cの位置は発着ポート12の表面であればどこに配置しても構わない。また、発着ポート12の平面形状は、四角形、六角形等の多角形でも構わない。 The present invention is not limited to the above embodiment, and can be modified within the scope of the gist thereof. For example, an example is shown in which the light emitting unit 12c that irradiates the light beam 40 that guides the drone 30 is arranged at the center of the departure / arrival port 12, but the position of the light emitting unit 12c is not limited to this example. The position of the light emitting portion 12c may be arranged anywhere as long as it is on the surface of the departure / arrival port 12. Further, the plane shape of the departure / arrival port 12 may be a polygon such as a quadrangle or a hexagon.
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, it goes without saying that the present invention includes various embodiments not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention relating to the reasonable claims from the above description.
1:ヘリコプター
2:飛行範囲
10:充電ステーション
11,21:筐体
12,22:発着ポート
12a:軸
12b:錘
12c:発光部
13:第1枠
14:第2枠
15:係止め部
23:球体
24:ボール
25:駆動輪
26:駆動部
30:ドローン
40:光ビーム
50:パラシュート
60:圧縮空気
100:ドローン充電システム
1: Helicopter 2: Flight range 10: Charging station 11,21: Housing 12, 22: Departure / arrival port 12a: Shaft 12b: Weight 12c: Light emitting part 13: First frame 14: Second frame 15: Locking part 23: Sphere 24: Ball 25: Drive wheel 26: Drive unit 30: Drone 40: Light beam 50: Parachute 60: Compressed air 100: Drone charging system

Claims (8)

  1.  ドローンと、
     前記ドローンの飛行範囲内に投下され前記ドロ-ンを充電する充電ステーションと
     を備えるドローン充電システム。
    With a drone
    A drone charging system comprising a charging station that is dropped within the flight range of the drone and charges the drone.
  2.  前記充電ステーションは、
     下側の外形が上側の外形よりも大きいな筐体と、前記上側の端部に前記ドローンが着陸する発着ポートを備え、
     前記発着ポートは、一方の中心線の両端部が該中心線を軸に回転可能に係止する第1枠と、前記中心線と直交する向きの他方の中心線を軸に回転可能に第1枠を係止する第2枠とで支持され、下側の表面の中心から下方向に延びる軸と該軸の先端に取り付けられた錘とを備えることを特徴とする請求項1に記載のドローン充電システム。
    The charging station
    It has a housing whose lower outer shape is larger than the upper outer shape, and a departure / arrival port at the upper end where the drone lands.
    The departure / arrival port has a first frame in which both ends of one center line are rotatably locked around the center line, and a first frame that is rotatable around the other center line in an direction orthogonal to the center line. The drone according to claim 1, further comprising a shaft supported by a second frame for locking the frame and extending downward from the center of the lower surface, and a weight attached to the tip of the shaft. Charging system.
  3.  前記充電ステーションは、
     下側の外形が上側の外形よりも大きいな筐体と、前記上側の端部に前記ドローンが着陸する発着ポートとを備え、
     前記発着ポートは、球体の上部を水平に切り取った平面であり、該平面よりも下側の前記球体の表面には何れの方向にも回転可能に外側の端部を突出させた複数のボールと、前記球体の最下部に設けられた駆動輪とを備えることを特徴とする請求項1に記載のドローン充電システム。
    The charging station
    It has a housing whose lower outer shape is larger than the upper outer shape, and a departure / arrival port at the upper end where the drone lands.
    The departure / arrival port is a plane obtained by cutting out the upper part of the sphere horizontally, and a plurality of balls having outer ends protruding rotatably in any direction on the surface of the sphere below the plane. The drone charging system according to claim 1, further comprising a drive wheel provided at the lowermost portion of the sphere.
  4.  前記充電ステーションは、
     筐体の上側の側面にパラシュートを係止する係止め部を備え、
     該係止め部は、着地する直前に前記パラシュートを切り離すことを特徴とする請求項1乃至3の何れかに記載のドローン充電システム。
    The charging station
    With a locking part on the upper side of the housing to lock the parachute,
    The drone charging system according to any one of claims 1 to 3, wherein the locking portion disconnects the parachute immediately before landing.
  5.  前記充電ステーションは、
     前記パラシュートが前記発着ポートの上に被さらないように筐体の上部の端部から上方向に圧縮空気を噴射する噴射口を備えることを特徴とする請求項1乃至3の何れかに記載のドローン充電システム。
    The charging station
    The invention according to any one of claims 1 to 3, further comprising an injection port for injecting compressed air upward from an upper end portion of the housing so that the parachute does not cover the arrival / departure port. Drone charging system.
  6.  前記充電ステーションは、
     前記発着ポートの上側の表面から上方向に光ビームを照射する発光部を備え、
     着地後から前記ドローンが着陸するまでの間に前記光ビームを照射することを特徴とする請求項2乃至5の何れかに記載のドローン充電システム。
    The charging station
    A light emitting unit that irradiates a light beam upward from the upper surface of the departure / arrival port is provided.
    The drone charging system according to any one of claims 2 to 5, wherein the light beam is irradiated from the time of landing to the time the drone lands.
  7.  ドローンと充電ステーションが連携して前記ドローンを充電するドローン充電方法であって、
     ドローンを充電する充電ステーションを、前記ドローンの飛行範囲内に投下する投下ステップと、
     前記ドローンは、自らの電源の電圧が所定の電圧よりも低いか否かを検出し、電圧が低い場合に自らのドローン位置情報と前記充電ステーションが着地した位置を表すステーション位置情報とが一致するように移動させる移動ステップと、
     前記充電ステーションは、前記移動ステップの後に、上側の端部に設けられた発着ポートからビーム光を照射して前記ドローンを誘導する誘導ステップと、
     前記ドローンは、前記ビーム光を受光し続けるように自らを飛行させ前記発着ポートの上に着陸する着陸ステップと、
     前記充電ステーションは、前記発着ポートの上のドローンを充電する充電ステップと
     を含むドローン充電方法。
    It is a drone charging method in which the drone and the charging station cooperate to charge the drone.
    A dropping step of dropping a charging station to charge the drone within the flight range of the drone,
    The drone detects whether or not the voltage of its own power supply is lower than a predetermined voltage, and when the voltage is low, its own drone position information and the station position information indicating the position where the charging station has landed match. With the move step to move like
    After the movement step, the charging station irradiates a beam light from a departure / arrival port provided at an upper end to guide the drone, and a guidance step.
    The drone has a landing step of flying itself so as to continue to receive the beam light and landing on the landing port.
    The charging station is a drone charging method that includes a charging step that charges the drone above the departure and arrival ports.
  8.  請求項7に記載のドローン充電方法をコンピュータに実行させるためのドローン充電プログラム。 A drone charging program for causing a computer to execute the drone charging method according to claim 7.
PCT/JP2019/025909 2019-06-28 2019-06-28 Drone charging system, drone charging method, and drone charging program WO2020261557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025909 WO2020261557A1 (en) 2019-06-28 2019-06-28 Drone charging system, drone charging method, and drone charging program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025909 WO2020261557A1 (en) 2019-06-28 2019-06-28 Drone charging system, drone charging method, and drone charging program

Publications (1)

Publication Number Publication Date
WO2020261557A1 true WO2020261557A1 (en) 2020-12-30

Family

ID=74060508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025909 WO2020261557A1 (en) 2019-06-28 2019-06-28 Drone charging system, drone charging method, and drone charging program

Country Status (1)

Country Link
WO (1) WO2020261557A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333488A (en) * 2001-05-09 2002-11-22 Nec Corp Observation device for observing meteorology and oceanographic phenomena
US20170158326A1 (en) * 2015-08-07 2017-06-08 Korea Aerospace Research Institute Apparatus for remote sensing using drone
JP2019053765A (en) * 2018-11-29 2019-04-04 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd System and method for UAV docking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333488A (en) * 2001-05-09 2002-11-22 Nec Corp Observation device for observing meteorology and oceanographic phenomena
US20170158326A1 (en) * 2015-08-07 2017-06-08 Korea Aerospace Research Institute Apparatus for remote sensing using drone
JP2019053765A (en) * 2018-11-29 2019-04-04 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd System and method for UAV docking

Similar Documents

Publication Publication Date Title
US11820507B2 (en) Methods and systems for transportation using unmanned aerial vehicles
US11091043B2 (en) Multi-zone battery exchange system
US11214371B2 (en) Payload delivery system with spool braking device
US10195952B2 (en) System and method for managing unmanned aerial vehicles
EP3253654B1 (en) Landing and charging system for drones
US9305280B1 (en) Airborne fulfillment center utilizing unmanned aerial vehicles for item delivery
CN104583078B (en) The Apparatus for () and method therefor of vertical take-off and landing unmanned flying machine is carried for charging and appearance
US9527588B1 (en) Unmanned aircraft system (UAS) with active energy harvesting and power management
CN106068592A (en) Unmanned vehicle battery change system and method
US20160039300A1 (en) Systems and methods for uav battery power backup
WO2016210432A1 (en) Robotic apparatus, systems, and related methods
EP3080642A1 (en) System and method for coupling a seismic sensor to the ground
US10056001B1 (en) Three-dimensional representations of objects detected by an unmanned aerial vehicle
CN107933897A (en) A kind of unmanned plane based on infrared ray sensor
JP7002863B2 (en) Guidance system and guidance method
WO2020261557A1 (en) Drone charging system, drone charging method, and drone charging program
CN204409382U (en) One drives bird unmanned vehicle system
JP7148567B2 (en) System, management device, program, and management method
CN205861063U (en) A kind of model plane fly automatically with seeking track navigation system
WO2022137461A1 (en) Storage device, unmanned aircraft and system
WO2023244766A1 (en) Curbside uav loading
Streiffert et al. Project Customer
Brock et al. Development of an Autonomous Aerial Reconnaissance System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP