WO2020261317A1 - Air conditioner and air conditioning system - Google Patents

Air conditioner and air conditioning system Download PDF

Info

Publication number
WO2020261317A1
WO2020261317A1 PCT/JP2019/024892 JP2019024892W WO2020261317A1 WO 2020261317 A1 WO2020261317 A1 WO 2020261317A1 JP 2019024892 W JP2019024892 W JP 2019024892W WO 2020261317 A1 WO2020261317 A1 WO 2020261317A1
Authority
WO
WIPO (PCT)
Prior art keywords
prevention control
compressor
unit
sleep
heating means
Prior art date
Application number
PCT/JP2019/024892
Other languages
French (fr)
Japanese (ja)
Inventor
勇希 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021528647A priority Critical patent/JP7112037B2/en
Priority to US17/604,796 priority patent/US20220214068A1/en
Priority to PCT/JP2019/024892 priority patent/WO2020261317A1/en
Publication of WO2020261317A1 publication Critical patent/WO2020261317A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to an air conditioner and an air conditioner for air conditioning in a room.
  • Patent Document 1 describes a method of suppressing power consumption when heating a compressor to evaporate an internal refrigerant by adjusting the energization amount of a heater or the voltage of restraint energization control according to the outside air temperature. It is disclosed.
  • the present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide an air conditioner and an air conditioner system capable of suppressing power consumption while the compressor is stopped. ..
  • the air conditioner according to the present invention is an air conditioner including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit, which is provided in the compressor and is inside the compressor.
  • a heating means for heating the refrigerant and a control device for controlling the heating means are provided, and the control device includes a heat load learning unit that learns a heat load based on temperature data and air conditioning data, and the above-mentioned obtained by learning.
  • the control device includes a heat load learning unit that learns a heat load based on temperature data and air conditioning data, and the above-mentioned obtained by learning.
  • the heating means is used at the sleep prevention control start timing estimation unit that estimates the sleep prevention control start timing that starts the sleep prevention control that heats the compressor based on the heat load, and the estimated sleep prevention control start timing. It has a device control unit that controls the heating means so as to control the prevention of falling asleep.
  • the air conditioner according to the present invention is an air conditioner including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit, which is provided in the compressor and of the compressor.
  • a heating means for heating the internal refrigerant and a control device for controlling the heating means are provided, and the control device has an outside air temperature learning unit that learns the outside air temperature at a set time interval based on the current outside air temperature, and learning.
  • the sleep prevention control required time calculation unit that calculates the sleep prevention control required time indicating the time required for the sleep prevention control for heating the compressor, the set time, and the sleep prevention control required Based on the time, the fall prevention control start timing for starting the fall prevention control is derived, and at the derived fall prevention control start timing, the fall prevention control is performed by the heating means for the calculated required time for the fall prevention control. As described above, it has an equipment control unit that controls the heating means.
  • the air-conditioning system manages one or more air-conditioning devices including an outdoor unit having a compressor, an indoor unit connected to the outdoor unit, and the one or more air-conditioning devices.
  • the air conditioner includes a management device, the air conditioner is provided in the compressor, and has a heating means for heating the refrigerant inside the compressor, and the management device has a control device for controlling the heating means. Then, the control device starts a sleep prevention control that heats the compressor based on the heat load learning unit that learns the heat load based on the temperature data and the air conditioning data and the heat load obtained by the learning.
  • a fall prevention control start timing estimation unit that estimates the prevention control start timing, and an equipment control unit that controls the heating means so that the heating means performs the fall prevention control at the estimated fall prevention control start timing. It has.
  • the air conditioning system includes one or a plurality of air conditioning devices including an outdoor unit having a compressor, an indoor unit connected to the outdoor unit, and the one or a plurality of air conditioning devices.
  • the air conditioner includes a management device for management, the air conditioner is provided in the compressor, and has a heating means for heating the refrigerant inside the compressor, and the management device is a control device for controlling the heating means.
  • the control device has an outside air temperature learning unit that learns the outside air temperature at a set time interval based on the current outside air temperature, and a sleep prevention device that heats the compressor based on the outside air temperature obtained by the learning.
  • the sleep prevention control start timing for starting the fall prevention control is derived. It has a device control unit that controls the heating means so that the heating means performs the falling prevention control for the calculated required time for the falling prevention control at the derived timing of starting the falling prevention control. ..
  • the fall prevention control by starting the fall prevention control at the estimated start timing of the fall prevention control, the fall prevention control is appropriately performed, so that the power consumption during the operation stop of the compressor can be suppressed.
  • FIG. It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows an example of the structure of the control device of FIG.
  • It is a hardware block diagram which shows an example of the structure of the control device of FIG.
  • It is a hardware block diagram which shows another example of the structure of the control device of FIG.
  • It is a schematic diagram which shows an example of the model of the machine learning performed by the heat load learning part of FIG.
  • It is a flowchart which shows an example of the learning flow by the heat load learning part of FIG.
  • FIG. 1 shows an example of the sleep prevention control by the air conditioner which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows an example of the structure of the control device which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows an example of the learning flow by the outside air temperature learning part of FIG. It is a flowchart which shows an example of the flow of the sleep prevention control by the air conditioner which concerns on Embodiment 2.
  • Embodiment 1 The air conditioner according to the first embodiment will be described.
  • the air conditioner performs air conditioning in the target space by circulating the refrigerant in the refrigerant circuit.
  • FIG. 1 is a circuit diagram showing an example of the configuration of the air conditioner according to the first embodiment.
  • the air conditioner 1 is composed of an outdoor unit 10, an indoor unit 20, and a control device 30.
  • the outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe.
  • the outdoor unit 10 includes a compressor 11, a refrigerant flow path switching device 12, an outdoor heat exchanger 13, an expansion valve 14, and an outside air temperature sensor 15.
  • the indoor unit 20 includes an indoor heat exchanger 21 and an indoor temperature sensor 22.
  • the compressor 11, the refrigerant flow path switching device 12, the outdoor heat exchanger 13, the expansion valve 14, and the indoor heat exchanger 21 are sequentially connected by a refrigerant pipe, so that a refrigerant circuit in which the refrigerant circulates is formed. It is formed.
  • the compressor 11 sucks in the low-temperature and low-pressure refrigerant, compresses the sucked refrigerant into a high-temperature and high-pressure state, and discharges the refrigerant.
  • the compressor 11 is composed of an inverter compressor whose capacity, which is the amount of transmission per unit time, is controlled by changing the operating frequency.
  • the operating frequency of the compressor 11 is controlled by the control device 30.
  • the refrigerant flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the refrigerant flow path switching device 12 switches to the state shown by the solid line in FIG. 1, that is, the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected to each other.
  • the refrigerant flow path switching device 12 switches during the heating operation so that the state shown by the broken line in FIG. 1, that is, the suction side of the compressor 11 and the outdoor heat exchanger 13 are connected.
  • the switching of the flow path in the refrigerant flow path switching device 12 is controlled by the control device 30.
  • the outdoor heat exchanger 13 is, for example, a fin-and-tube type heat exchanger that exchanges heat between the outdoor air supplied by a fan or the like (not shown) and the refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • the expansion valve 14 decompresses the refrigerant and expands it.
  • the expansion valve 14 is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree.
  • the opening degree of the expansion valve 14 is controlled by the control device 30.
  • the outside air temperature sensor 15 is provided in the vicinity of the outdoor heat exchanger 13 and detects the outside air temperature. The outside air temperature detected by the outside air temperature sensor 15 is supplied to the control device 30.
  • the compressor 11 is provided with the heating means 16.
  • the heating means 16 heats and evaporates the refrigerant accumulated inside while the compressor 11 is stopped under the control of the control device 30.
  • the heating means 16 for example, a heater attached around the compressor 11 such as a belt heater is used.
  • the compressor 11 is heated by energizing the heater under the control of the control device 30.
  • the heating means 16 may be, for example, an energization control device that controls energization of the compressor 11 so as to perform restraint energization control. In the restraint energization control, the compressor 11 is heated without driving the motor inside the compressor 11 by intermittently energizing any two of the three phases of the electric power supplied to the compressor 11. It is a control to do.
  • the indoor heat exchanger 21 exchanges heat between the indoor air supplied by a fan or the like (not shown) and the refrigerant. As a result, cooling air or heating air supplied to the indoor space is generated.
  • the indoor heat exchanger 21 functions as an evaporator during the cooling operation, and cools the air in the air-conditioned space to cool the air. Further, the indoor heat exchanger 21 functions as a condenser during the heating operation, and heats the air in the air-conditioned space to heat the room.
  • the indoor temperature sensor 22 is provided in the vicinity of the indoor heat exchanger 21 and detects the temperature of the indoor air.
  • the room temperature detected by the room temperature sensor 22 is supplied to the control device 30.
  • Control device 30 The control device 30 controls each part provided in the outdoor unit 10 and the indoor unit 20.
  • the control device 30 controls the heating means 16 for the compressor 11 based on the data including the outside air temperature and the room temperature detected by the outside air temperature sensor 15 and the room temperature sensor 22, respectively. Then, control to prevent falling asleep.
  • the sneak prevention control is a control in which the refrigerant accumulated in the compressor 11 is evaporated by the heating means 16 provided in the compressor 11.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the control device of FIG.
  • the control device 30 includes a data acquisition unit 31, a heat load learning unit 32, a fall prevention control start timing estimation unit 33, an equipment control unit 34, and a data holding unit 35.
  • the control device 30 is composed of an arithmetic unit such as a microcomputer that realizes various functions by executing software, or hardware such as a circuit device corresponding to various functions. Note that, in FIG. 2, only the configuration for the function related to the first embodiment is shown, and the other configurations are not shown.
  • the data acquisition unit 31 acquires various types of data. Specifically, the data acquisition unit 31 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data, respectively. Further, the data acquisition unit 31 acquires the set temperature set by the user or the like for the indoor unit 20 and the operating frequency of the compressor 11 as air conditioning data. The data acquisition unit 31 supplies the acquired temperature data and air conditioning data to the data holding unit 35.
  • the heat load learning unit 32 learns the heat load of the air conditioner 1 by machine learning using various data such as temperature data and air conditioning data held in the data holding unit 35. Specifically, the heat load learning unit 32 learns the amount of heat processed by the air conditioner 1 from, for example, the current time, the outside air temperature, the room temperature, the set temperature, and the operating frequency of the compressor 11.
  • the air conditioner 1 has only the amount of heat processed by its own device as data on the heat load, but considering that this amount of heat is equal to the heat load in the air-conditioned space, the air conditioner 1 has. , It is possible to grasp the heat load of the air-conditioned space. Therefore, the heat load learning unit 32 learns the heat load of the air-conditioned space relatively by learning the amount of heat processed by the air conditioning device 1. The learning of heat load will be described later. Further, the heat load learning unit 32 derives the heat load based on the temperature data and the air conditioning data, using the learning results obtained as described above.
  • the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing using an estimation means such as a preset timing estimation formula based on the heat load obtained by learning by the heat load learning unit 32.
  • the fall prevention control start timing is the time when the fall prevention control is started, and is from the start time when the air conditioner 1 is started so that the room temperature becomes the set temperature at the set time such as the operation start time set by the user. Is also the previous time.
  • the device control unit 34 generates and outputs a fall prevention command signal for controlling the heating means 16 at the estimated fall prevention control start timing based on the estimation result by the fall prevention control start timing estimation unit 33.
  • the data holding unit 35 holds various information used in each part of the control device 30.
  • the data holding unit 35 holds various data including the temperature data and the air conditioning data acquired by the data acquisition unit 31 used when learning by the heat load learning unit 32.
  • FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device of FIG.
  • the control device 30 of FIG. 2 is composed of a processing circuit 41 as shown in FIG.
  • each function of the data acquisition unit 31, the heat load learning unit 32, the fall prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 is realized by the processing circuit 41.
  • the processing circuit 41 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array), or a combination of these.
  • the control device 30 may realize the functions of the data acquisition unit 31, the heat load learning unit 32, the sleep prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 by the processing circuit 41. , The functions of each part may be realized by one processing circuit 41.
  • FIG. 4 is a hardware configuration diagram showing another example of the configuration of the control device of FIG.
  • the control device 30 of FIG. 2 is composed of a processor 51 and a memory 52 as shown in FIG.
  • each function of the data acquisition unit 31, the heat load learning unit 32, the sleep prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 is realized by the processor 51 and the memory 52.
  • the functions of the data acquisition unit 31, the heat load learning unit 32, the fall prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 are software. It is realized by firmware or a combination of software and firmware.
  • the software and firmware are written as a program and stored in the memory 52.
  • the processor 51 realizes the functions of each part by reading and executing the program stored in the memory 52.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable and Programmable ROM), EEPROM (Electrically Erasable, volatile ROM, etc.)
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), or a DVD (Digital Versaille Disc) may be used.
  • FIG. 1 the state of the refrigerant flow path switching device 12 when the air conditioning device 1 executes the heating operation is shown by a solid line. Further, the air conditioner 1 can perform both a cooling operation and a heating operation, but here, the operation during the heating operation will be described, and the description of the operation during the cooling operation will be omitted.
  • the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 21 expands at the expansion valve 14 and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed.
  • the two-phase refrigerant flows into the outdoor heat exchanger 13 that functions as an evaporator.
  • heat exchange is performed between the flowing two-phase refrigerant and the outdoor air supplied by a blower (not shown).
  • the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the compressor 11 via the refrigerant flow path switching device 12, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again.
  • this cycle is repeated.
  • the air conditioner 1 starts the sleep prevention control so that the air conditioner 1 is started in a state where the sleep is eliminated at the start time before the set time set by the user. Estimate the control start timing. Then, the air conditioner 1 starts the sleep prevention control at the estimated sleep prevention control start timing.
  • the heat load processed by the air conditioner 1 is used.
  • the heat load learning unit 32 of the control device 30 learns the heat load.
  • the heat load learning by the heat load learning unit 32 will be described.
  • the heat load learning unit 32 learns the heat load processed by the air conditioner 1 in order to acquire the heat load used when the sleep prevention control start timing estimation unit 33 estimates the start timing of the sleep prevention control.
  • Machine learning is used for learning the heat load.
  • FIG. 5 is a schematic diagram showing an example of a machine learning model performed by the heat load learning unit of FIG.
  • preprocessing is performed on the input data. Then, using the learning model, the heat load is estimated and output from the preprocessed data.
  • the outside air temperature, the room temperature, the set temperature, the operating ability, etc. are used.
  • the outside air temperature the temperature data detected by the outside air temperature sensor 15 is used.
  • the room temperature the temperature data detected by the room temperature sensor 22 is used.
  • the set temperature is the temperature set in the indoor unit 20, and the air conditioning data held in the data holding unit 35 is used.
  • the operating capacity is, for example, the operating frequency of the compressor 11, and the air conditioning data held in the data holding unit 35 is used.
  • data for the outside air temperature or the room temperature for example, data such as a weather forecast may be used.
  • preset processing such as optimization of input data and reduction of input dimension is performed. More specifically, in the preprocessing, when the temperature data is input as the input data, the processing preset for the input data such as the derivation and normalization of the difference value between the set temperature and the room temperature, for example. Is carried out.
  • the learning model is, for example, a heat load calculation formula that derives the heat load as output data corresponding to the input data.
  • the learning model is generated using, for example, supervised learning.
  • the learning model is not limited to this example, and a neural network, deep learning, or the like may be used depending on the required accuracy and calculation performance.
  • the parameters included in the heat load calculation formula are updated each time a plurality of data are input.
  • the learning model when the learning model is generated by supervised learning, the learning model outputs output data using a heat load calculation formula based on the input data.
  • the output data is input to the evaluation function together with the teacher data.
  • the evaluation function evaluates the validity of the heat load calculation formula, which is a learning model, based on the output data and the teacher data.
  • the heat load learning unit 32 updates the parameters of the heat load calculation formula so that the output data calculated from the heat load calculation formula approaches the teacher data.
  • FIG. 6 is a flowchart showing an example of the learning flow by the heat load learning unit of FIG.
  • the data acquisition unit 31 of the control device 30 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data.
  • the acquired temperature data is held in the data holding unit 35.
  • the data acquisition unit 31 acquires the set temperature set in the indoor unit 20 and the operating frequency of the compressor 11 as air conditioning data.
  • the acquired air conditioning data is held in the data holding unit 35.
  • step S3 the heat load learning unit 32 determines whether or not it is the learning timing. It is assumed that the learning timing at this time is set to an arbitrary timing set in advance.
  • the heat load learning unit 32 learns the heat load of the air conditioner 1 by using the temperature data and the air conditioning data held in the data holding unit 35.
  • step S3: No the process returns to step S1.
  • the processes of steps S1 to S4 are cyclically repeated at regular intervals.
  • the sleep prevention control start timing estimation unit 33 estimates the timing to start the sleep prevention control performed before the start time by using the heat load derived by the heat load learning unit 32. For example, the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing so that the fall prevention control is started earlier as the derived heat load is higher.
  • FIG. 7 is a flowchart showing an example of a flow of sleep prevention control by the air conditioner according to the first embodiment.
  • the data acquisition unit 31 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data.
  • the acquired temperature data is supplied to the heat load learning unit 32 and is held in the data holding unit 35.
  • the data acquisition unit 31 acquires the set temperature and operation start time set in the indoor unit 20 and the operating ability such as the operating frequency of the compressor 11 as air conditioning data.
  • the acquired air conditioning data is supplied to the heat load learning unit 32 and is held in the data holding unit 35.
  • the processing of steps S11 and S12 is performed, for example, before an arbitrary time of a set time such as an operation start time.
  • step S13 the heat load learning unit 32 derives the heat load when the temperature data and the air conditioning data are input.
  • step S14 the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing by using an estimation means such as a timing estimation formula based on the heat load derived in step S13. At this time, the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing so that the fall prevention control is started earlier as the heat load is higher.
  • step S15 the device control unit 34 determines whether or not it is the time indicated by the fall prevention control start timing.
  • step S15: Yes the device control unit 34 generates a fall prevention command signal in step S16 and outputs it to the heating means 16.
  • the heating means 16 controls the prevention of falling asleep.
  • the sleep prevention control is performed only for a fixedly set fixed time.
  • step S15 when it is not the fall prevention control start timing (step S15: No), the process returns to step S15, and the process of step S15 is repeated until the fall prevention control start timing is reached.
  • the air conditioner 1 learns the heat load based on the temperature data and the air conditioning data, and estimates the sleep prevention control start timing based on the heat load obtained by the learning. Then, the air conditioner 1 performs the sleep prevention control for heating the compressor 11 at the estimated sleep prevention control start timing.
  • control device 30 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data. Further, the control device 30 acquires the operating frequency of the compressor 11 as air conditioning data. Further, the control device 30 may acquire the set temperature set for the indoor unit 20 as air conditioning data.
  • a heater attached around the compressor 11 may be used as the heating means 16. As a result, when the sleep prevention control is performed, the heater can be energized to heat the compressor 11.
  • an energization control device for controlling energization of the compressor 11 may be used. As a result, when the sleep prevention control is performed, the compressor 11 is energized so that the restraint energization control is performed, and the compressor 11 can be heated.
  • Embodiment 2 Next, the second embodiment will be described.
  • the second embodiment is different from the first embodiment in that the time required for the sleep prevention control is calculated.
  • the same reference numerals are given to the parts common to the first embodiment, and detailed description thereof will be omitted.
  • the air conditioner 1 according to the second embodiment is the same as the air conditioner 1 according to the first embodiment shown in FIG. 1 except for the configuration of the control device 30, detailed description thereof will be omitted.
  • control device 30 controls each part provided in the outdoor unit 10 and the indoor unit 20 as in the first embodiment.
  • the control device 30 has an outside air temperature at a preset time interval based on the outside air temperature detected by the outside air temperature sensor 15. Is estimated, and the time required for falling asleep prevention control is calculated based on the estimation result.
  • FIG. 8 is a functional block diagram showing an example of the configuration of the control device according to the second embodiment.
  • the control device 30 includes a data acquisition unit 31, a device control unit 34, a data holding unit 35, an outside air temperature learning unit 36, and a fall prevention control required time calculation unit 37.
  • the control device 30 is composed of an arithmetic unit such as a microcomputer that realizes various functions by executing software, or hardware such as a circuit device corresponding to various functions. Note that, in FIG. 8, only the configuration of the function related to the second embodiment is shown, and the other configurations are not shown.
  • the outside air temperature learning unit 36 learns the outside air temperature at a set time interval by machine learning using the outside air temperature included in the temperature data held in the data holding unit 35. Details of learning the outside air temperature will be described later. Further, the outside air temperature learning unit 36 derives the outside air temperature at the set time interval using the above-mentioned learning result based on the current outside air temperature detected by the outside air temperature sensor 15.
  • the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time based on the outside air temperature obtained by learning in the outside air temperature learning unit 36.
  • the sneak prevention control required time is the minimum time required for the refrigerant in the compressor 11 to evaporate by the sneak prevention control.
  • the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time using a predetermined calculation formula based on the current outside air temperature and the outside air temperature at the set time interval obtained by learning.
  • the device control unit 34 determines the sleep prevention control from the set time and the sleep prevention control required time so that the sleep prevention control is performed only for the sleep prevention control required time.
  • the start timing is derived, and a sleep prevention command signal is generated and output.
  • the sleep prevention command signal includes information indicating the start timing of the sleep prevention control and information indicating the execution time of the sleep prevention control.
  • the data holding unit 35 holds various information used in each part of the control device 30, as in the first embodiment.
  • the data holding unit 35 obtains the temperature data and the air conditioning data acquired by the data acquisition unit 31 used when learning by the heat load learning unit 32 and the outside air temperature learning unit 36, respectively. Holds various data including.
  • the sleep prevention control may not be performed for an appropriate time depending on the degree of sleep. For example, when the amount of the condensed refrigerant is relatively large, the sneaking prevention control time needs to be long, and when the amount of the condensed refrigerant is relatively small, the sneaking prevention control time may be short.
  • the sleep prevention control required time required for the sleep prevention control is calculated so that the sleep prevention control time when the sleep prevention control is performed becomes an appropriate time according to the state of falling asleep. Then, the air conditioner 1 performs the sleep prevention control only for the calculated sleep prevention control required time.
  • the outside air temperature at the set time interval is used.
  • the outside air temperature is learned by the outside air temperature learning unit 36 of the control device 30.
  • the learning of the outside air temperature by the outside air temperature learning unit 36 will be described.
  • the outside air temperature learning unit 36 learns the outside air temperature at a set time interval in order to acquire the outside air temperature used when the sleep prevention control required time calculation unit 37 estimates the required time for the sleep prevention control.
  • Machine learning is used for learning the outside air temperature, as in the heat load learning unit 32 in the first embodiment.
  • the machine learning model shown in FIG. 5 is used as the machine learning model performed by the outside air temperature learning unit 36.
  • the outside air temperature is used.
  • data of the outside air temperature for example, data such as a weather forecast may be used.
  • FIG. 9 is a flowchart showing an example of the learning flow by the outside air temperature learning unit of FIG.
  • the data acquisition unit 31 of the control device 30 acquires the outside air temperature detected by the outside air temperature sensor 15 as temperature data.
  • the acquired temperature data is held in the data holding unit 35.
  • step S22 the outside air temperature learning unit 36 determines whether or not it is the learning timing. It is assumed that the learning timing at this time is set to an arbitrary timing set in advance. When it is the learning timing (step S22: Yes), the outside air temperature learning unit 36 learns the outside air temperature at the set time interval using the temperature data held by the data holding unit 35. On the other hand, when it is not the learning timing (step S22: No), the process returns to step S21.
  • the processes of steps S21 to S23 are cyclically repeated at regular intervals.
  • the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time using the outside air temperature derived by the outside air temperature learning unit 36. For example, the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time so that the higher the derived outside air temperature is, the shorter the execution time of the sleep prevention control is.
  • FIG. 10 is a flowchart showing an example of a flow of sleep prevention control by the air conditioner according to the second embodiment.
  • the same reference numerals are given to the processes common to the sleep prevention control according to the first embodiment shown in FIG. 7, and the description thereof will be omitted.
  • step S11 and step S12 the data acquisition unit 31 acquires the temperature data and the air conditioning data, respectively.
  • the acquired temperature data and air conditioning data are supplied to the outside air temperature learning unit 36 and are held in the data holding unit 35.
  • step S31 when the temperature data is input, the outside air temperature learning unit 36 derives the outside air temperature at the set time interval. Then, the outside air temperature learning unit 36 extracts the outside air temperature at which the temperature becomes the lowest from the outside air temperature at the derived set time interval. In step S32, the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time based on the outside air temperature extracted in step S31 and the outside air temperature held in the data holding unit 35.
  • step S15 the device control unit 34 determines whether or not it is the time indicated by the sleep prevention control start timing.
  • the fall prevention control start timing is derived by tracing back the fall prevention control required time calculated from the start time.
  • step S15: Yes the device control unit 34 generates a fall prevention command signal in step S33 and outputs it to the heating means 16.
  • the sleep prevention control by the heating means 16 is performed only for the time required for the sleep prevention control.
  • step S15 when it is not the fall prevention control start timing (step S15: No), the process returns to step S15, and the process of step S15 is repeated until the fall prevention control start timing is reached.
  • the control device 30 learns the outside air temperature at the set time interval based on the outside air temperature, and prevents falling asleep based on the outside air temperature obtained by the learning. Calculate the control time required. Further, the control device 30 derives the fall prevention control start timing based on the set time and the fall prevention control required time. Then, the control device 30 controls the heating means 16 so as to perform the fall prevention control for the calculated time required for the fall prevention control at the derived sleep prevention control start timing.
  • the time required for the sleep prevention control is calculated, so that the sleep prevention control is performed for an appropriate time according to the amount of the refrigerant condensed in the compressor 11. Therefore, it is possible to suppress unnecessary sleep prevention control and more appropriately suppress the power consumption of the compressor 11 while the operation is stopped.
  • Embodiment 3 Next, the third embodiment will be described.
  • the third embodiment describes an air conditioning system in which the function of the control device 30 for controlling falling asleep is different from that of the air conditioning device.
  • the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 11 is a circuit diagram showing an example of the configuration of the air conditioning system according to the third embodiment.
  • the air conditioning system 100 is composed of one or more air conditioning devices 110 and a management device 120 connected to each of the air conditioning devices 110.
  • the air conditioner 110 includes an outdoor unit 10 having a compressor 11 provided with a heating means 16 and an indoor unit 20. ..
  • the air conditioner 110 has a configuration in which the function of performing the sleep prevention control is removed from the control device 30 in the air conditioner 1 of FIG.
  • the management device 120 manages one or a plurality of air conditioner 110s connected to the management device 120.
  • the management device 120 receives temperature data and air conditioning data from each air conditioning device 110, and performs sleep prevention control for each air conditioning device 110 based on the received temperature data and air conditioning data. ..
  • the management device 120 includes a control device 130.
  • the control device 130 has a function for preventing falling asleep in the control device 30 shown in FIG. That is, the control device 130 has the same configuration as the control device 30 according to the first or second embodiment.
  • the control device 130 has a data acquisition unit 31, a heat load learning unit 32, and a fall prevention control start timing estimation, as shown in FIG. It has a unit 33, an equipment control unit 34, and a data holding unit 35. Further, when the control device 130 has the same configuration as the control device 30 according to the second embodiment, the control device 130 starts the data acquisition unit 31, the heat load learning unit 32, and the sleep prevention control as shown in FIG. It has a timing estimation unit 33, an equipment control unit 34, a data holding unit 35, an outside air temperature learning unit 36, and a sleep prevention control required time calculation unit 37.
  • the function of performing the sleep prevention control of the air conditioning device 1 described in the first and second embodiments is different from that of the air conditioning device 110 in the management device 120. It has a provided configuration.
  • the management device 120 that manages one or a plurality of air conditioning devices 110 is provided with a control device 130 that controls falling asleep.
  • a control device 130 that controls falling asleep.
  • 1,110 air conditioner 10 outdoor unit, 11 compressor, 12 refrigerant flow path switching device, 13 outdoor heat exchanger, 14 expansion valve, 15 outdoor air temperature sensor, 16 heating means, 20 indoor unit, 21 indoor heat exchanger , 22 Indoor temperature sensor, 30, 130 Control device, 31 Data acquisition unit, 32 Heat load learning unit, 33 Sleep prevention control start timing estimation unit, 34 Equipment control unit, 35 Data holding unit, 36 Outside air temperature learning unit, 37 Sleeping Prevention control required time calculation unit, 41 processing circuit, 51 processor, 52 memory, 100 air conditioning system, 120 management device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner provided with an outdoor unit having a compressor and an indoor unit connected to the outdoor unit includes: a heating means provided in the compressor to heat a refrigerant within the compressor; and a control device for controlling the heating means. The control device has: a heat load learning unit for learning heat load on the basis of temperature data and air conditioning data; a stagnation prevention control start timing estimation unit for estimating, on the basis of the heat load obtained by the learning, stagnation prevention control start timing to start stagnation prevention control in which the compressor is heated; and an equipment control unit for controlling the heating means so that the stagnation prevention control is performed by the heating means at the estimated stagnation prevention control start timing.

Description

空気調和装置および空気調和システムAir conditioner and air conditioner
 本発明は、室内の空気調和を行う空気調和装置および空気調和システムに関する。 The present invention relates to an air conditioner and an air conditioner for air conditioning in a room.
 従来、冷媒回路を備えた空気調和装置では、圧縮機が室外機に設けられることが多い。このような場合において、外気温度が低い環境で空気調和装置が停止すると、室外機に設けられた圧縮機および熱交換器に冷媒が凝縮して溜まり込む、所謂「寝込み」と呼ばれる現象が発生することがある。特に、圧縮機に冷媒が溜まった場合、圧縮機内の冷凍機油が希釈され、圧縮機の軸の焼き付きなどの不具合が発生する虞がある。 Conventionally, in an air conditioner equipped with a refrigerant circuit, a compressor is often provided in the outdoor unit. In such a case, if the air conditioner is stopped in an environment where the outside air temperature is low, a phenomenon called "sleeping" occurs in which the refrigerant condenses and accumulates in the compressor and heat exchanger provided in the outdoor unit. Sometimes. In particular, when the refrigerant is accumulated in the compressor, the refrigerating machine oil in the compressor is diluted, and there is a possibility that problems such as seizure of the shaft of the compressor may occur.
 一般的に、圧縮機内の冷媒の寝込みを抑制する方法として、圧縮機の運転が停止している間に、ヒータによる圧縮機の加熱、あるいは拘束通電制御と呼ばれる寝込み防止制御を行い、圧縮機内の冷媒を蒸発させることが知られている。ここで、拘束通電制御とは、圧縮機内部のモータを駆動することなくモータ巻線に通電し、圧縮機を加熱する制御である。また、特許文献1には、ヒータの通電量または拘束通電制御の電圧を外気温度に応じて調整することにより、圧縮機を加熱して内部の冷媒を蒸発させる際の消費電力を抑制する方法が開示されている。 Generally, as a method of suppressing the stagnation of the refrigerant in the compressor, while the operation of the compressor is stopped, the compressor is heated by a heater or a stagnation prevention control called restraint energization control is performed in the compressor. It is known to evaporate the refrigerant. Here, the restraint energization control is a control in which the motor winding is energized without driving the motor inside the compressor to heat the compressor. Further, Patent Document 1 describes a method of suppressing power consumption when heating a compressor to evaporate an internal refrigerant by adjusting the energization amount of a heater or the voltage of restraint energization control according to the outside air temperature. It is disclosed.
特開平7-167504号公報Japanese Unexamined Patent Publication No. 7-167504
 しかしながら、従来の空気調和装置では、圧縮機の運転停止中は、いつ運転が開始されるか判断できないため、常に寝込み防止制御が行われている。したがって、圧縮機の運転停止中の消費電力が増大するという課題があった。 However, with the conventional air conditioner, it is not possible to determine when the operation will start while the compressor is stopped, so sleep prevention control is always performed. Therefore, there is a problem that the power consumption while the compressor is stopped is increased.
 本発明は、上記従来の技術における課題に鑑みてなされたものであって、圧縮機の運転停止中の消費電力を抑制することができる空気調和装置および空気調和システムを提供することを目的とする。 The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide an air conditioner and an air conditioner system capable of suppressing power consumption while the compressor is stopped. ..
 本発明に係る空気調和装置は、圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた空気調和装置であって、前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段と、前記加熱手段を制御する制御装置とを備え、前記制御装置は、温度データおよび空調データに基づき、熱負荷を学習する熱負荷学習部と、学習によって得られた前記熱負荷に基づき、前記圧縮機を加熱する寝込み防止制御を開始する寝込み防止制御開始タイミングを推定する寝込み防止制御開始タイミング推定部と、推定された前記寝込み防止制御開始タイミングで、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部とを有するものである。 The air conditioner according to the present invention is an air conditioner including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit, which is provided in the compressor and is inside the compressor. A heating means for heating the refrigerant and a control device for controlling the heating means are provided, and the control device includes a heat load learning unit that learns a heat load based on temperature data and air conditioning data, and the above-mentioned obtained by learning. At the sleep prevention control start timing estimation unit that estimates the sleep prevention control start timing that starts the sleep prevention control that heats the compressor based on the heat load, and the estimated sleep prevention control start timing, the heating means is used. It has a device control unit that controls the heating means so as to control the prevention of falling asleep.
 また、本発明に係る空気調和装置は、圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた空気調和装置であって、前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段と、前記加熱手段を制御する制御装置とを備え、前記制御装置は、現在の外気温度に基づき、設定時間間隔における外気温度を学習する外気温度学習部と、学習によって得られた前記外気温度に基づき、前記圧縮機を加熱する寝込み防止制御に必要な時間を示す寝込み防止制御必要時間を算出する寝込み防止制御必要時間算出部と、設定時刻および前記寝込み防止制御必要時間に基づき、前記寝込み防止制御を開始する寝込み防止制御開始タイミング導出し、導出した前記寝込み防止制御開始タイミングで、算出された前記寝込み防止制御必要時間だけ、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部とを有するものである。 Further, the air conditioner according to the present invention is an air conditioner including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit, which is provided in the compressor and of the compressor. A heating means for heating the internal refrigerant and a control device for controlling the heating means are provided, and the control device has an outside air temperature learning unit that learns the outside air temperature at a set time interval based on the current outside air temperature, and learning. Based on the outside air temperature obtained by, the sleep prevention control required time calculation unit that calculates the sleep prevention control required time indicating the time required for the sleep prevention control for heating the compressor, the set time, and the sleep prevention control required Based on the time, the fall prevention control start timing for starting the fall prevention control is derived, and at the derived fall prevention control start timing, the fall prevention control is performed by the heating means for the calculated required time for the fall prevention control. As described above, it has an equipment control unit that controls the heating means.
 本発明に係る空気調和システムは、圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた1または複数の空気調和装置と、前記1または複数の空気調和装置を管理する管理装置とを備え、前記空気調和装置は、前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段を有し、前記管理装置は、前記加熱手段を制御する制御装置を有し、前記制御装置は、温度データおよび空調データに基づき、熱負荷を学習する熱負荷学習部と、学習によって得られた前記熱負荷に基づき、前記圧縮機を加熱する寝込み防止制御を開始する寝込み防止制御開始タイミングを推定する寝込み防止制御開始タイミング推定部と、推定された前記寝込み防止制御開始タイミングで、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部とを有するものである。 The air-conditioning system according to the present invention manages one or more air-conditioning devices including an outdoor unit having a compressor, an indoor unit connected to the outdoor unit, and the one or more air-conditioning devices. The air conditioner includes a management device, the air conditioner is provided in the compressor, and has a heating means for heating the refrigerant inside the compressor, and the management device has a control device for controlling the heating means. Then, the control device starts a sleep prevention control that heats the compressor based on the heat load learning unit that learns the heat load based on the temperature data and the air conditioning data and the heat load obtained by the learning. A fall prevention control start timing estimation unit that estimates the prevention control start timing, and an equipment control unit that controls the heating means so that the heating means performs the fall prevention control at the estimated fall prevention control start timing. It has.
 また、本発明に係る空気調和システムは、圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた1または複数の空気調和装置と、前記1または複数の空気調和装置を管理する管理装置とを備え、前記空気調和装置は、前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段を有し、前記管理装置は、前記加熱手段を制御する制御装置を有し、前記制御装置は、現在の外気温度に基づき、設定時間間隔における外気温度を学習する外気温度学習部と、学習によって得られた前記外気温度に基づき、前記圧縮機を加熱する寝込み防止制御に必要な時間を示す寝込み防止制御必要時間を算出する寝込み防止制御必要時間算出部と、設定時刻および前記寝込み防止制御必要時間に基づき、前記寝込み防止制御を開始する寝込み防止制御開始タイミング導出し、導出した前記寝込み防止制御開始タイミングで、算出された前記寝込み防止制御必要時間だけ、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部とを有するものである。 Further, the air conditioning system according to the present invention includes one or a plurality of air conditioning devices including an outdoor unit having a compressor, an indoor unit connected to the outdoor unit, and the one or a plurality of air conditioning devices. The air conditioner includes a management device for management, the air conditioner is provided in the compressor, and has a heating means for heating the refrigerant inside the compressor, and the management device is a control device for controlling the heating means. The control device has an outside air temperature learning unit that learns the outside air temperature at a set time interval based on the current outside air temperature, and a sleep prevention device that heats the compressor based on the outside air temperature obtained by the learning. Based on the sleep prevention control required time calculation unit that calculates the fall prevention control required time, which indicates the time required for control, and the set time and the fall prevention control required time, the sleep prevention control start timing for starting the fall prevention control is derived. It has a device control unit that controls the heating means so that the heating means performs the falling prevention control for the calculated required time for the falling prevention control at the derived timing of starting the falling prevention control. ..
 本発明によれば、推定された寝込み防止制御開始タイミングで寝込み防止制御を開始することにより、寝込み防止制御が適切に行われるため、圧縮機の運転停止中の消費電力を抑制することができる。 According to the present invention, by starting the fall prevention control at the estimated start timing of the fall prevention control, the fall prevention control is appropriately performed, so that the power consumption during the operation stop of the compressor can be suppressed.
実施の形態1に係る空気調和装置の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the air conditioner which concerns on Embodiment 1. FIG. 図1の制御装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the structure of the control device of FIG. 図2の制御装置の構成の一例を示すハードウェア構成図である。It is a hardware block diagram which shows an example of the structure of the control device of FIG. 図2の制御装置の構成の他の例を示すハードウェア構成図である。It is a hardware block diagram which shows another example of the structure of the control device of FIG. 図2の熱負荷学習部で行われる機械学習のモデルの一例を示す概略図である。It is a schematic diagram which shows an example of the model of the machine learning performed by the heat load learning part of FIG. 図2の熱負荷学習部による学習の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the learning flow by the heat load learning part of FIG. 実施の形態1に係る空気調和装置による寝込み防止制御の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the sleep prevention control by the air conditioner which concerns on Embodiment 1. FIG. 実施の形態2に係る制御装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the structure of the control device which concerns on Embodiment 2. FIG. 図8の外気温度学習部による学習の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the learning flow by the outside air temperature learning part of FIG. 実施の形態2に係る空気調和装置による寝込み防止制御の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the sleep prevention control by the air conditioner which concerns on Embodiment 2. 実施の形態3に係る空気調和システムの構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the air conditioning system which concerns on Embodiment 3.
 以下、本発明の実施の形態について、図面を参照して説明する。本発明は、以下の実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々に変形することが可能である。また、本発明は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention. In addition, the present invention includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification.
実施の形態1.
 本実施の形態1に係る空気調和装置について説明する。本実施の形態1に係る空気調和装置は、空気調和装置は、冷媒回路に冷媒を循環させることにより、対象空間の空気調和を行うものである。
Embodiment 1.
The air conditioner according to the first embodiment will be described. In the air conditioner according to the first embodiment, the air conditioner performs air conditioning in the target space by circulating the refrigerant in the refrigerant circuit.
[空気調和装置1の構成]
 図1は、本実施の形態1に係る空気調和装置の構成の一例を示す回路図である。図1に示すように、空気調和装置1は、室外機10、室内機20および制御装置30で構成されている。室外機10および室内機20は、冷媒配管で接続されている。
[Configuration of air conditioner 1]
FIG. 1 is a circuit diagram showing an example of the configuration of the air conditioner according to the first embodiment. As shown in FIG. 1, the air conditioner 1 is composed of an outdoor unit 10, an indoor unit 20, and a control device 30. The outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe.
 室外機10は、圧縮機11、冷媒流路切替装置12、室外熱交換器13、膨張弁14および外気温度センサ15を備えている。室内機20は、室内熱交換器21および室内温度センサ22を備えている。空気調和装置1では、圧縮機11、冷媒流路切替装置12、室外熱交換器13、膨張弁14および室内熱交換器21が冷媒配管によって順次接続されることにより、冷媒が循環する冷媒回路が形成される。 The outdoor unit 10 includes a compressor 11, a refrigerant flow path switching device 12, an outdoor heat exchanger 13, an expansion valve 14, and an outside air temperature sensor 15. The indoor unit 20 includes an indoor heat exchanger 21 and an indoor temperature sensor 22. In the air conditioner 1, the compressor 11, the refrigerant flow path switching device 12, the outdoor heat exchanger 13, the expansion valve 14, and the indoor heat exchanger 21 are sequentially connected by a refrigerant pipe, so that a refrigerant circuit in which the refrigerant circulates is formed. It is formed.
(室外機10)
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態にして吐出する。圧縮機11は、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機からなる。圧縮機11の運転周波数は、制御装置30によって制御される。
(Outdoor unit 10)
The compressor 11 sucks in the low-temperature and low-pressure refrigerant, compresses the sucked refrigerant into a high-temperature and high-pressure state, and discharges the refrigerant. The compressor 11 is composed of an inverter compressor whose capacity, which is the amount of transmission per unit time, is controlled by changing the operating frequency. The operating frequency of the compressor 11 is controlled by the control device 30.
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12は、冷房運転時に、図1の実線で示す状態、すなわち圧縮機11の吐出側と室外熱交換器13とが接続されるように切り替わる。また、冷媒流路切替装置12は、暖房運転時に、図1の破線で示す状態、すなわち圧縮機11の吸入側と室外熱交換器13とが接続されるように切り替わる。冷媒流路切替装置12における流路の切替は、制御装置30によって制御される。 The refrigerant flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant. During the cooling operation, the refrigerant flow path switching device 12 switches to the state shown by the solid line in FIG. 1, that is, the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected to each other. Further, the refrigerant flow path switching device 12 switches during the heating operation so that the state shown by the broken line in FIG. 1, that is, the suction side of the compressor 11 and the outdoor heat exchanger 13 are connected. The switching of the flow path in the refrigerant flow path switching device 12 is controlled by the control device 30.
 室外熱交換器13は、例えば、フィンアンドチューブ型の熱交換器であり、図示しないファン等によって供給される室外空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。 The outdoor heat exchanger 13 is, for example, a fin-and-tube type heat exchanger that exchanges heat between the outdoor air supplied by a fan or the like (not shown) and the refrigerant. The outdoor heat exchanger 13 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
 膨張弁14は、冷媒を減圧して膨張させる。膨張弁14は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。膨張弁14の開度は、制御装置30によって制御される。外気温度センサ15は、室外熱交換器13の近傍に設けられ、外気温度を検出する。外気温度センサ15で検出された外気温度は、制御装置30に供給される。 The expansion valve 14 decompresses the refrigerant and expands it. The expansion valve 14 is composed of, for example, an electronic expansion valve or a valve capable of controlling the opening degree. The opening degree of the expansion valve 14 is controlled by the control device 30. The outside air temperature sensor 15 is provided in the vicinity of the outdoor heat exchanger 13 and detects the outside air temperature. The outside air temperature detected by the outside air temperature sensor 15 is supplied to the control device 30.
 また、本実施の形態1において、圧縮機11には、加熱手段16が設けられている。加熱手段16は、制御装置30の制御により、圧縮機11の停止中に内部に溜まり込んだ冷媒を加熱して蒸発させる。 Further, in the first embodiment, the compressor 11 is provided with the heating means 16. The heating means 16 heats and evaporates the refrigerant accumulated inside while the compressor 11 is stopped under the control of the control device 30.
 具体的には、加熱手段16として、例えば、ベルトヒータ等の圧縮機11の周囲に取り付けられるヒータが用いられる。制御装置30の制御によってヒータに通電されることにより、圧縮機11が加熱される。また、加熱手段16として、例えば、拘束通電制御を行うように、圧縮機11に対する通電を制御する通電制御装置であってもよい。拘束通電制御は、圧縮機11に供給される電力の三相のうち、いずれか二相に通電を断続的に行うことにより、圧縮機11内部のモータを駆動することなく、圧縮機11を加熱する制御である。 Specifically, as the heating means 16, for example, a heater attached around the compressor 11 such as a belt heater is used. The compressor 11 is heated by energizing the heater under the control of the control device 30. Further, the heating means 16 may be, for example, an energization control device that controls energization of the compressor 11 so as to perform restraint energization control. In the restraint energization control, the compressor 11 is heated without driving the motor inside the compressor 11 by intermittently energizing any two of the three phases of the electric power supplied to the compressor 11. It is a control to do.
(室内機20)
 室内熱交換器21は、図示しないファン等によって供給される室内空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される冷房用空気または暖房用空気が生成される。室内熱交換器21は、冷房運転の際に蒸発器として機能し、空調対象空間の空気を冷却して冷房を行う。また、室内熱交換器21は、暖房運転の際に凝縮器として機能し、空調対象空間の空気を加熱して暖房を行う。
(Indoor unit 20)
The indoor heat exchanger 21 exchanges heat between the indoor air supplied by a fan or the like (not shown) and the refrigerant. As a result, cooling air or heating air supplied to the indoor space is generated. The indoor heat exchanger 21 functions as an evaporator during the cooling operation, and cools the air in the air-conditioned space to cool the air. Further, the indoor heat exchanger 21 functions as a condenser during the heating operation, and heats the air in the air-conditioned space to heat the room.
 室内温度センサ22は、室内熱交換器21の近傍に設けられ、室内空気の温度を検出する。室内温度センサ22で検出された室内温度は、制御装置30に供給される。 The indoor temperature sensor 22 is provided in the vicinity of the indoor heat exchanger 21 and detects the temperature of the indoor air. The room temperature detected by the room temperature sensor 22 is supplied to the control device 30.
(制御装置30)
 制御装置30は、室外機10および室内機20に設けられた各部を制御する。特に、本実施の形態1において、制御装置30は、外気温度センサ15および室内温度センサ22のそれぞれで検出された外気温度および室内温度等を含むデータに基づき、圧縮機11に対する加熱手段16を制御し、寝込み防止制御を行う。寝込み防止制御は、圧縮機11に設けられた加熱手段16によって圧縮機11内に溜まった冷媒を蒸発させる制御である。
(Control device 30)
The control device 30 controls each part provided in the outdoor unit 10 and the indoor unit 20. In particular, in the first embodiment, the control device 30 controls the heating means 16 for the compressor 11 based on the data including the outside air temperature and the room temperature detected by the outside air temperature sensor 15 and the room temperature sensor 22, respectively. Then, control to prevent falling asleep. The sneak prevention control is a control in which the refrigerant accumulated in the compressor 11 is evaporated by the heating means 16 provided in the compressor 11.
 図2は、図1の制御装置の構成の一例を示す機能ブロック図である。図2に示すように、制御装置30は、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34およびデータ保持部35を備えている。制御装置30は、ソフトウェアを実行することにより各種機能を実現するマイクロコンピュータなどの演算装置、もしくは各種機能に対応する回路デバイスなどのハードウェア等で構成されている。なお、図2では、本実施の形態1に関連する機能についての構成のみを図示し、それ以外の構成については図示を省略する。 FIG. 2 is a functional block diagram showing an example of the configuration of the control device of FIG. As shown in FIG. 2, the control device 30 includes a data acquisition unit 31, a heat load learning unit 32, a fall prevention control start timing estimation unit 33, an equipment control unit 34, and a data holding unit 35. The control device 30 is composed of an arithmetic unit such as a microcomputer that realizes various functions by executing software, or hardware such as a circuit device corresponding to various functions. Note that, in FIG. 2, only the configuration for the function related to the first embodiment is shown, and the other configurations are not shown.
 データ取得部31は、各種のデータを取得する。具体的には、データ取得部31は、外気温度センサ15で検出された外気温度と、室内温度センサ22で検出された室内温度とを、それぞれ温度データとして取得する。また、データ取得部31は、室内機20に対してユーザ等によって設定された設定温度と、圧縮機11の運転周波数とを空調データとして取得する。データ取得部31は、取得した温度データおよび空調データをデータ保持部35に供給する。 The data acquisition unit 31 acquires various types of data. Specifically, the data acquisition unit 31 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data, respectively. Further, the data acquisition unit 31 acquires the set temperature set by the user or the like for the indoor unit 20 and the operating frequency of the compressor 11 as air conditioning data. The data acquisition unit 31 supplies the acquired temperature data and air conditioning data to the data holding unit 35.
 熱負荷学習部32は、データ保持部35に保持された温度データおよび空調データ等の各種データを用い、機械学習による空気調和装置1の熱負荷を学習する。具体的には、熱負荷学習部32は、例えば、現在時刻、外気温度、室内温度、設定温度および圧縮機11の運転周波数などから、空気調和装置1が処理している熱量を学習する。ここで、空気調和装置1は、熱負荷に関するデータとして、自装置が処理した熱量のみを有しているが、この熱量が空調対象空間内の熱負荷と等しいと考えると、空気調和装置1は、空調対象空間の熱負荷を把握することができる。したがって、熱負荷学習部32は、空気調和装置1が処理している熱量を学習することで、相対的に空調対象空間の熱負荷を学習する。熱負荷の学習については、後述する。また、熱負荷学習部32は、温度データおよび空調データに基づき、上述したようにして得られた学習結果を用いて、熱負荷を導出する。 The heat load learning unit 32 learns the heat load of the air conditioner 1 by machine learning using various data such as temperature data and air conditioning data held in the data holding unit 35. Specifically, the heat load learning unit 32 learns the amount of heat processed by the air conditioner 1 from, for example, the current time, the outside air temperature, the room temperature, the set temperature, and the operating frequency of the compressor 11. Here, the air conditioner 1 has only the amount of heat processed by its own device as data on the heat load, but considering that this amount of heat is equal to the heat load in the air-conditioned space, the air conditioner 1 has. , It is possible to grasp the heat load of the air-conditioned space. Therefore, the heat load learning unit 32 learns the heat load of the air-conditioned space relatively by learning the amount of heat processed by the air conditioning device 1. The learning of heat load will be described later. Further, the heat load learning unit 32 derives the heat load based on the temperature data and the air conditioning data, using the learning results obtained as described above.
 寝込み防止制御開始タイミング推定部33は、熱負荷学習部32での学習によって得られた熱負荷に基づき、予め設定されたタイミング推定式等の推定手段を用いて寝込み防止制御開始タイミングを推定する。寝込み防止制御開始タイミングは、寝込み防止制御を開始する時刻であり、ユーザによって設定された運転開始時間などの設定時刻に室内温度が設定温度となるように、空気調和装置1を起動させる起動時刻よりも前の時刻となる。 The fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing using an estimation means such as a preset timing estimation formula based on the heat load obtained by learning by the heat load learning unit 32. The fall prevention control start timing is the time when the fall prevention control is started, and is from the start time when the air conditioner 1 is started so that the room temperature becomes the set temperature at the set time such as the operation start time set by the user. Is also the previous time.
 機器制御部34は、寝込み防止制御開始タイミング推定部33による推定結果に基づき、推定された寝込み防止制御開始タイミングで、加熱手段16を制御するための寝込み防止指令信号を生成して出力する。 The device control unit 34 generates and outputs a fall prevention command signal for controlling the heating means 16 at the estimated fall prevention control start timing based on the estimation result by the fall prevention control start timing estimation unit 33.
 データ保持部35は、制御装置30の各部で用いられる各種の情報を保持する。本実施の形態1では、例えば、データ保持部35は、熱負荷学習部32で学習する際に用いられる、データ取得部31で取得された温度データおよび空調データを含む各種のデータを保持する。 The data holding unit 35 holds various information used in each part of the control device 30. In the first embodiment, for example, the data holding unit 35 holds various data including the temperature data and the air conditioning data acquired by the data acquisition unit 31 used when learning by the heat load learning unit 32.
 図3は、図2の制御装置の構成の一例を示すハードウェア構成図である。制御装置30の各種機能がハードウェアで実行される場合、図2の制御装置30は、図3に示すように、処理回路41で構成される。図2の制御装置30において、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34およびデータ保持部35の各機能は、処理回路41により実現される。 FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device of FIG. When various functions of the control device 30 are executed by hardware, the control device 30 of FIG. 2 is composed of a processing circuit 41 as shown in FIG. In the control device 30 of FIG. 2, each function of the data acquisition unit 31, the heat load learning unit 32, the fall prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 is realized by the processing circuit 41.
 各機能がハードウェアで実行される場合、処理回路41は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置30は、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34およびデータ保持部35の各部の機能それぞれを処理回路41で実現してもよいし、各部の機能を1つの処理回路41で実現してもよい。 When each function is executed by hardware, the processing circuit 41 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array), or a combination of these. The control device 30 may realize the functions of the data acquisition unit 31, the heat load learning unit 32, the sleep prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 by the processing circuit 41. , The functions of each part may be realized by one processing circuit 41.
 図4は、図2の制御装置の構成の他の例を示すハードウェア構成図である。制御装置30の各種機能がソフトウェアで実行される場合、図2の制御装置30は、図4に示すように、プロセッサ51およびメモリ52で構成される。制御装置30において、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34およびデータ保持部35の各機能は、プロセッサ51およびメモリ52により実現される。 FIG. 4 is a hardware configuration diagram showing another example of the configuration of the control device of FIG. When various functions of the control device 30 are executed by software, the control device 30 of FIG. 2 is composed of a processor 51 and a memory 52 as shown in FIG. In the control device 30, each function of the data acquisition unit 31, the heat load learning unit 32, the sleep prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 is realized by the processor 51 and the memory 52.
 各機能がソフトウェアで実行される場合、制御装置30において、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34およびデータ保持部35の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。 When each function is executed by software, in the control device 30, the functions of the data acquisition unit 31, the heat load learning unit 32, the fall prevention control start timing estimation unit 33, the device control unit 34, and the data holding unit 35 are software. It is realized by firmware or a combination of software and firmware. The software and firmware are written as a program and stored in the memory 52. The processor 51 realizes the functions of each part by reading and executing the program stored in the memory 52.
 メモリ52として、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性または揮発性の半導体メモリ等が用いられる。また、メモリ52として、例えば、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 52, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), EEPROM (Electrically Erasable, volatile ROM, etc.) Is used. Further, as the memory 52, for example, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), or a DVD (Digital Versaille Disc) may be used.
[空気調和装置1の動作]
 次に、このように構成された空気調和装置1の動作について、図1を参照して冷媒の流れとともに説明する。なお、図1では、空気調和装置1が暖房運転を実行する場合の冷媒流路切替装置12の状態を実線で示している。また、この空気調和装置1は、冷房運転および暖房運転の双方を行うことができるが、ここでは、暖房運転時の動作について説明し、冷房運転時の動作については、説明を省略する。
[Operation of air conditioner 1]
Next, the operation of the air conditioner 1 configured in this way will be described together with the flow of the refrigerant with reference to FIG. In FIG. 1, the state of the refrigerant flow path switching device 12 when the air conditioning device 1 executes the heating operation is shown by a solid line. Further, the air conditioner 1 can perform both a cooling operation and a heating operation, but here, the operation during the heating operation will be described, and the description of the operation during the cooling operation will be omitted.
(暖房運転時)
 空気調和装置1が暖房運転を実行する場合について説明する。圧縮機11が駆動すると、圧縮機11から高温高圧のガス状態の冷媒が吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して、凝縮器として機能する室内熱交換器21に流れ込む。室内熱交換器21では、流れ込んだ高温高圧のガス冷媒と、図示しない送風機によって供給される室内空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
(During heating operation)
A case where the air conditioner 1 executes the heating operation will be described. When the compressor 11 is driven, the refrigerant in a high-temperature and high-pressure gas state is discharged from the compressor 11. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 21 that functions as a condenser via the refrigerant flow path switching device 12. In the indoor heat exchanger 21, heat exchange is performed between the high-temperature and high-pressure gas refrigerant that has flowed in and the indoor air supplied by a blower (not shown). As a result, the high-temperature and high-pressure gas refrigerant condenses into a high-pressure liquid refrigerant.
 室内熱交換器21から流出した高圧の液冷媒は、膨張弁14で膨張し、低圧のガス冷媒と低圧の液冷媒とが混合した二相状態の冷媒になる。二相状態の冷媒は、蒸発器として機能する室外熱交換器13に流れ込む。室外熱交換器13では、流れ込んだ二相状態の冷媒と、図示しない送風機によって供給される室外空気との間で熱交換が行われる。これにより、二相状態の冷媒のうちの液冷媒が蒸発して、低圧のガス冷媒になる。室外熱交換器13から流出した低圧のガス冷媒は、冷媒流路切替装置12を介して圧縮機11に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機11から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant flowing out of the indoor heat exchanger 21 expands at the expansion valve 14 and becomes a two-phase state refrigerant in which a low-pressure gas refrigerant and a low-pressure liquid refrigerant are mixed. The two-phase refrigerant flows into the outdoor heat exchanger 13 that functions as an evaporator. In the outdoor heat exchanger 13, heat exchange is performed between the flowing two-phase refrigerant and the outdoor air supplied by a blower (not shown). As a result, the liquid refrigerant of the two-phase refrigerant evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the compressor 11 via the refrigerant flow path switching device 12, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 11 again. Hereinafter, this cycle is repeated.
[寝込み防止制御]
 次に、本実施の形態1に係る空気調和装置1による寝込み防止制御について説明する。一般的な空気調和装置は、運転開始時間および運転停止時間等の運転スケジュールをユーザが予め設定することができる。この場合において、予め設定された設定時刻に、室内温度が設定温度となるようにするためには、空気調和装置は、設定時刻よりも前の起動時刻に起動する必要がある。
[Sleeping prevention control]
Next, the sleep prevention control by the air conditioner 1 according to the first embodiment will be described. In a general air conditioner, a user can preset an operation schedule such as an operation start time and an operation stop time. In this case, in order for the room temperature to reach the set temperature at the preset time, the air conditioner needs to be started at the start time before the set time.
 一方、空気調和装置の運転が停止している間には、背景技術の項でも説明したように、圧縮機内に冷媒が凝縮して溜まり込む「寝込み」が発生することがある。そのため、寝込みが発生した状態で、起動時刻に空気調和装置が起動しても、圧縮機が正常に動作せず、設定時刻に室内温度を設定温度とすることが困難である。 On the other hand, while the operation of the air conditioner is stopped, as explained in the background technology section, "sleeping" may occur in which the refrigerant condenses and accumulates in the compressor. Therefore, even if the air conditioner is started at the start time in the state where the sleep occurs, the compressor does not operate normally, and it is difficult to set the room temperature at the set time.
 そこで、本実施の形態1に係る空気調和装置1は、ユーザによって設定された設定時刻よりも前の起動時刻に、寝込みが解消された状態で起動するように、寝込み防止制御を開始する寝込み防止制御開始タイミングを推定する。そして、空気調和装置1は、推定した寝込み防止制御開始タイミングで寝込み防止制御を開始する。 Therefore, the air conditioner 1 according to the first embodiment starts the sleep prevention control so that the air conditioner 1 is started in a state where the sleep is eliminated at the start time before the set time set by the user. Estimate the control start timing. Then, the air conditioner 1 starts the sleep prevention control at the estimated sleep prevention control start timing.
 ここで、寝込み防止制御開始タイミングを推定する場合には、空気調和装置1が処理する熱負荷が用いられる。この熱負荷を得るために、本実施の形態1では、制御装置30の熱負荷学習部32によって熱負荷の学習が行われる。 Here, when estimating the sleep prevention control start timing, the heat load processed by the air conditioner 1 is used. In order to obtain this heat load, in the first embodiment, the heat load learning unit 32 of the control device 30 learns the heat load.
(熱負荷の学習)
 熱負荷学習部32による熱負荷の学習について説明する。熱負荷学習部32は、寝込み防止制御開始タイミング推定部33で寝込み防止制御の開始タイミングを推定する際に用いられる熱負荷を取得するため、空気調和装置1が処理する熱負荷の学習を行う。熱負荷の学習には、機械学習が用いられる。
(Learning of heat load)
The heat load learning by the heat load learning unit 32 will be described. The heat load learning unit 32 learns the heat load processed by the air conditioner 1 in order to acquire the heat load used when the sleep prevention control start timing estimation unit 33 estimates the start timing of the sleep prevention control. Machine learning is used for learning the heat load.
 図5は、図2の熱負荷学習部で行われる機械学習のモデルの一例を示す概略図である。図5に示す機械学習モデルでは、入力データに対して前処理が行われる。そして、学習モデルを用いて、前処理が行われたデータから熱負荷が推定されて出力される。 FIG. 5 is a schematic diagram showing an example of a machine learning model performed by the heat load learning unit of FIG. In the machine learning model shown in FIG. 5, preprocessing is performed on the input data. Then, using the learning model, the heat load is estimated and output from the preprocessed data.
 この場合の入力データは、例えば、外気温度、室内温度、設定温度および動作能力などが用いられる。外気温度は、外気温度センサ15で検出された温度データが用いられる。室内温度は、室内温度センサ22で検出された温度データが用いられる。設定温度は、室内機20に設定された温度であり、データ保持部35に保持された空調データが用いられる。動作能力は、例えば圧縮機11の運転周波数であり、データ保持部35に保持された空調データが用いられる。なお、外気温度または室内温度の代替データとして、例えば、天気予報などのデータが用いられてもよい。 For the input data in this case, for example, the outside air temperature, the room temperature, the set temperature, the operating ability, etc. are used. As the outside air temperature, the temperature data detected by the outside air temperature sensor 15 is used. As the room temperature, the temperature data detected by the room temperature sensor 22 is used. The set temperature is the temperature set in the indoor unit 20, and the air conditioning data held in the data holding unit 35 is used. The operating capacity is, for example, the operating frequency of the compressor 11, and the air conditioning data held in the data holding unit 35 is used. As alternative data for the outside air temperature or the room temperature, for example, data such as a weather forecast may be used.
 前処理では、入力データの最適化および入力次元の削減といった、予め設定された処理が行われる。より具体的には、前処理では、入力データとして温度データが入力された場合に、例えば、設定温度と室内温度との差分値の導出および正規化などの入力データに対して予め設定された処理が実施される。 In the pre-processing, preset processing such as optimization of input data and reduction of input dimension is performed. More specifically, in the preprocessing, when the temperature data is input as the input data, the processing preset for the input data such as the derivation and normalization of the difference value between the set temperature and the room temperature, for example. Is carried out.
 学習モデルは、例えば、入力されたデータに対応する出力データとしての熱負荷を導出する熱負荷算出式である。学習モデルは、例えば教師あり学習を用いて生成される。なお、学習モデルとしては、この例に限られず、必要な精度および計算性能に応じて、ニューラルネットワークおよびディープラーニング等が用いられてもよい。 The learning model is, for example, a heat load calculation formula that derives the heat load as output data corresponding to the input data. The learning model is generated using, for example, supervised learning. The learning model is not limited to this example, and a neural network, deep learning, or the like may be used depending on the required accuracy and calculation performance.
 学習モデルは、複数のデータが入力される毎に、その熱負荷算出式に含まれるパラメータが更新される。具体的には、例えば、学習モデルが教師あり学習により生成されるものである場合、学習モデルは、入力されたデータに基づき、熱負荷算出式を用いて出力データを出力する。出力データは、教師データとともに評価関数に入力される。評価関数は、出力データおよび教師データに基づき、学習モデルである熱負荷算出式の妥当性を評価する。そして、熱負荷学習部32は、熱負荷算出式から算出された出力データが教師データに近づくように熱負荷算出式のパラメータを更新する。 In the learning model, the parameters included in the heat load calculation formula are updated each time a plurality of data are input. Specifically, for example, when the learning model is generated by supervised learning, the learning model outputs output data using a heat load calculation formula based on the input data. The output data is input to the evaluation function together with the teacher data. The evaluation function evaluates the validity of the heat load calculation formula, which is a learning model, based on the output data and the teacher data. Then, the heat load learning unit 32 updates the parameters of the heat load calculation formula so that the output data calculated from the heat load calculation formula approaches the teacher data.
 図6は、図2の熱負荷学習部による学習の流れの一例を示すフローチャートである。ステップS1において、制御装置30のデータ取得部31は、外気温度センサ15で検出された外気温度と、室内温度センサ22で検出された室内温度とを温度データとして取得する。取得された温度データは、データ保持部35に保持される。また、ステップS2において、データ取得部31は、室内機20に設定された設定温度と、圧縮機11の運転周波数を空調データとして取得する。取得された空調データは、データ保持部35に保持される。 FIG. 6 is a flowchart showing an example of the learning flow by the heat load learning unit of FIG. In step S1, the data acquisition unit 31 of the control device 30 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data. The acquired temperature data is held in the data holding unit 35. Further, in step S2, the data acquisition unit 31 acquires the set temperature set in the indoor unit 20 and the operating frequency of the compressor 11 as air conditioning data. The acquired air conditioning data is held in the data holding unit 35.
 ステップS3において、熱負荷学習部32は、学習タイミングであるか否かを判断する。このときの学習タイミングは、予め設定された任意のタイミングに設定されているものとする。学習タイミングである場合(ステップS3:Yes)、熱負荷学習部32は、データ保持部35に保持された温度データおよび空調データを用い、空気調和装置1の熱負荷の学習を行う。一方、学習タイミングでない場合(ステップS3:No)には、処理がステップS1に戻る。以下、ステップS1~ステップS4の処理が一定の周期で巡回的に繰り返される。 In step S3, the heat load learning unit 32 determines whether or not it is the learning timing. It is assumed that the learning timing at this time is set to an arbitrary timing set in advance. When it is the learning timing (step S3: Yes), the heat load learning unit 32 learns the heat load of the air conditioner 1 by using the temperature data and the air conditioning data held in the data holding unit 35. On the other hand, when it is not the learning timing (step S3: No), the process returns to step S1. Hereinafter, the processes of steps S1 to S4 are cyclically repeated at regular intervals.
(寝込み防止制御の開始タイミングの推定)
 次に、寝込み防止制御開始タイミング推定部33による寝込み防止制御の開始タイミングの推定について説明する。寝込み防止制御開始タイミング推定部33は、熱負荷学習部32で導出された熱負荷を用いて、起動時刻の前に行われる寝込み防止制御を開始するタイミングを推定する。例えば、寝込み防止制御開始タイミング推定部33は、導出された熱負荷が高いほど早く寝込み防止制御が開始されるように、寝込み防止制御開始タイミングを推定する。
(Estimation of the start timing of sleep prevention control)
Next, the estimation of the start timing of the fall prevention control by the fall prevention control start timing estimation unit 33 will be described. The sleep prevention control start timing estimation unit 33 estimates the timing to start the sleep prevention control performed before the start time by using the heat load derived by the heat load learning unit 32. For example, the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing so that the fall prevention control is started earlier as the derived heat load is higher.
(寝込み防止制御)
 図7は、本実施の形態1に係る空気調和装置による寝込み防止制御の流れの一例を示すフローチャートである。ステップS11において、データ取得部31は、外気温度センサ15で検出された外気温度と、室内温度センサ22で検出された室内温度とを温度データとして取得する。取得された温度データは、熱負荷学習部32に供給されるとともに、データ保持部35に保持される。また、ステップS12において、データ取得部31は、室内機20に設定された設定温度および運転開始時間と、圧縮機11の運転周波数などの動作能力を空調データとして取得する。取得された空調データは、熱負荷学習部32に供給されるとともに、データ保持部35に保持される。ステップS11およびステップS12の処理は、例えば、運転開始時間等の設定時刻の任意の時間前に行われる。
(Sleeping prevention control)
FIG. 7 is a flowchart showing an example of a flow of sleep prevention control by the air conditioner according to the first embodiment. In step S11, the data acquisition unit 31 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data. The acquired temperature data is supplied to the heat load learning unit 32 and is held in the data holding unit 35. Further, in step S12, the data acquisition unit 31 acquires the set temperature and operation start time set in the indoor unit 20 and the operating ability such as the operating frequency of the compressor 11 as air conditioning data. The acquired air conditioning data is supplied to the heat load learning unit 32 and is held in the data holding unit 35. The processing of steps S11 and S12 is performed, for example, before an arbitrary time of a set time such as an operation start time.
 ステップS13において、熱負荷学習部32は、温度データおよび空調データが入力されると、熱負荷を導出する。ステップS14において、寝込み防止制御開始タイミング推定部33は、ステップS13で導出された熱負荷に基づき、タイミング推定式等の推定手段を用いて寝込み防止制御開始タイミングを推定する。このとき、寝込み防止制御開始タイミング推定部33は、熱負荷が高いほど早く寝込み防止制御が開始されるように、寝込み防止制御開始タイミングを推定する。 In step S13, the heat load learning unit 32 derives the heat load when the temperature data and the air conditioning data are input. In step S14, the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing by using an estimation means such as a timing estimation formula based on the heat load derived in step S13. At this time, the fall prevention control start timing estimation unit 33 estimates the fall prevention control start timing so that the fall prevention control is started earlier as the heat load is higher.
 ステップS15において、機器制御部34は、寝込み防止制御開始タイミングが示す時刻であるか否かを判断する。寝込み防止制御開始タイミングである場合(ステップS15:Yes)、機器制御部34は、ステップS16において、寝込み防止指令信号を生成し、加熱手段16に対して出力する。これにより、加熱手段16による寝込み防止制御が行われる。なお、この場合の寝込み防止制御は、固定的に設定された一定の時間だけ行われる。 In step S15, the device control unit 34 determines whether or not it is the time indicated by the fall prevention control start timing. When it is the fall prevention control start timing (step S15: Yes), the device control unit 34 generates a fall prevention command signal in step S16 and outputs it to the heating means 16. As a result, the heating means 16 controls the prevention of falling asleep. In this case, the sleep prevention control is performed only for a fixedly set fixed time.
 一方、寝込み防止制御開始タイミングでない場合(ステップS15:No)には、処理がステップS15に戻り、寝込み防止制御開始タイミングとなるまで、ステップS15の処理が繰り返される。 On the other hand, when it is not the fall prevention control start timing (step S15: No), the process returns to step S15, and the process of step S15 is repeated until the fall prevention control start timing is reached.
 以上のように、本実施の形態1に係る空気調和装置1は、温度データおよび空調データに基づき熱負荷を学習し、学習によって得られた熱負荷に基づき、寝込み防止制御開始タイミングを推定する。そして空気調和装置1は、推定された寝込み防止制御開始タイミングで、圧縮機11を加熱する寝込み防止制御を行う。 As described above, the air conditioner 1 according to the first embodiment learns the heat load based on the temperature data and the air conditioning data, and estimates the sleep prevention control start timing based on the heat load obtained by the learning. Then, the air conditioner 1 performs the sleep prevention control for heating the compressor 11 at the estimated sleep prevention control start timing.
 このように、空気調和装置1では、推定された寝込み防止制御開始タイミングで寝込み防止制御を開始するため、従来のように、圧縮機11の運転が停止している間、常に寝込み防止制御が行われることがない。そのため、圧縮機11の運転停止中の消費電力を抑制することができる。 In this way, in the air conditioner 1, since the fall prevention control is started at the estimated fall prevention control start timing, the fall prevention control is always performed while the operation of the compressor 11 is stopped as in the conventional case. I will not be told. Therefore, it is possible to suppress the power consumption of the compressor 11 while the operation is stopped.
 このとき、制御装置30は、外気温度センサ15で検出された外気温度と、室内温度センサ22で検出された室内温度を、温度データとして取得する。また、制御装置30は、圧縮機11の運転周波数を空調データとして取得する。さらに、制御装置30は、室内機20に対して設定された設定温度を空調データとして取得してもよい。 At this time, the control device 30 acquires the outside air temperature detected by the outside air temperature sensor 15 and the room temperature detected by the room temperature sensor 22 as temperature data. Further, the control device 30 acquires the operating frequency of the compressor 11 as air conditioning data. Further, the control device 30 may acquire the set temperature set for the indoor unit 20 as air conditioning data.
 また、本実施の形態1に係る空気調和装置1では、加熱手段16として、圧縮機11の周囲に取り付けられるヒータが用いられてもよい。これにより、寝込み防止制御が行われる際に、ヒータに通電され、圧縮機11を加熱することができる。 Further, in the air conditioner 1 according to the first embodiment, a heater attached around the compressor 11 may be used as the heating means 16. As a result, when the sleep prevention control is performed, the heater can be energized to heat the compressor 11.
 さらに、加熱手段16として、圧縮機11に対する通電を制御する通電制御装置が用いられてもよい。これにより、寝込み防止制御が行われる際に、拘束通電制御が行われるように圧縮機11が通電され、圧縮機11を加熱することができる。 Further, as the heating means 16, an energization control device for controlling energization of the compressor 11 may be used. As a result, when the sleep prevention control is performed, the compressor 11 is energized so that the restraint energization control is performed, and the compressor 11 can be heated.
実施の形態2.
 次に、本実施の形態2について説明する。本実施の形態2は、寝込み防止制御に必要な時間を算出する点で、実施の形態1と相違する。なお、本実施の形態2において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 2.
Next, the second embodiment will be described. The second embodiment is different from the first embodiment in that the time required for the sleep prevention control is calculated. In the second embodiment, the same reference numerals are given to the parts common to the first embodiment, and detailed description thereof will be omitted.
 本実施の形態2に係る空気調和装置1は、図1に示す実施の形態1に係る空気調和装置1と、制御装置30の構成以外は同様であるため、詳細な説明を省略する。 Since the air conditioner 1 according to the second embodiment is the same as the air conditioner 1 according to the first embodiment shown in FIG. 1 except for the configuration of the control device 30, detailed description thereof will be omitted.
[制御装置30の構成]
 制御装置30は、実施の形態1と同様に、室外機10および室内機20に設けられた各部を制御する。本実施の形態2において、制御装置30は、実施の形態1に係る制御装置30の機能に加えて、外気温度センサ15で検出された外気温度に基づき、予め設定された設定時間間隔における外気温度を推定し、推定結果に基づき寝込み防止制御に必要な時間を算出する。
[Configuration of control device 30]
The control device 30 controls each part provided in the outdoor unit 10 and the indoor unit 20 as in the first embodiment. In the second embodiment, in addition to the functions of the control device 30 according to the first embodiment, the control device 30 has an outside air temperature at a preset time interval based on the outside air temperature detected by the outside air temperature sensor 15. Is estimated, and the time required for falling asleep prevention control is calculated based on the estimation result.
 図8は、本実施の形態2に係る制御装置の構成の一例を示す機能ブロック図である。図8に示すように、制御装置30は、データ取得部31、機器制御部34、データ保持部35、外気温度学習部36および寝込み防止制御必要時間算出部37を備えている。制御装置30は、ソフトウェアを実行することにより各種機能を実現するマイクロコンピュータなどの演算装置、もしくは各種機能に対応する回路デバイスなどのハードウェア等で構成されている。なお、図8では、本実施の形態2に関連する機能についての構成のみを図示し、それ以外の構成については図示を省略する。 FIG. 8 is a functional block diagram showing an example of the configuration of the control device according to the second embodiment. As shown in FIG. 8, the control device 30 includes a data acquisition unit 31, a device control unit 34, a data holding unit 35, an outside air temperature learning unit 36, and a fall prevention control required time calculation unit 37. The control device 30 is composed of an arithmetic unit such as a microcomputer that realizes various functions by executing software, or hardware such as a circuit device corresponding to various functions. Note that, in FIG. 8, only the configuration of the function related to the second embodiment is shown, and the other configurations are not shown.
 外気温度学習部36は、データ保持部35に保持された温度データに含まれる外気温度を用い、機械学習により設定時間間隔における外気温度を学習する。外気温度の学習の詳細については、後述する。また、外気温度学習部36は、外気温度センサ15で検出された現在の外気温度に基づき、上述した学習結果を用いて、設定時間間隔における外気温度を導出する。 The outside air temperature learning unit 36 learns the outside air temperature at a set time interval by machine learning using the outside air temperature included in the temperature data held in the data holding unit 35. Details of learning the outside air temperature will be described later. Further, the outside air temperature learning unit 36 derives the outside air temperature at the set time interval using the above-mentioned learning result based on the current outside air temperature detected by the outside air temperature sensor 15.
 寝込み防止制御必要時間算出部37は、外気温度学習部36での学習によって得られた外気温度に基づき、寝込み防止制御必要時間を算出する。寝込み防止制御必要時間は、寝込み防止制御によって圧縮機11内の冷媒が蒸発するのに必要最小限の時間である。寝込み防止制御必要時間算出部37は、現在の外気温度と、学習によって得られた設定時間間隔における外気温度とに基づき、予め決められた算出式を用いて寝込み防止制御必要時間を算出する。 The sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time based on the outside air temperature obtained by learning in the outside air temperature learning unit 36. The sneak prevention control required time is the minimum time required for the refrigerant in the compressor 11 to evaporate by the sneak prevention control. The sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time using a predetermined calculation formula based on the current outside air temperature and the outside air temperature at the set time interval obtained by learning.
 機器制御部34は、寝込み防止制御必要時間算出部37による算出結果に基づき、寝込み防止制御必要時間だけ寝込み防止制御が行われるように、設定時刻と寝込み防止制御必要時間とから、寝込み防止制御の開始タイミング導出し、寝込み防止指令信号を生成して出力する。本実施の形態2において、寝込み防止指令信号には、寝込み防止制御の開始タイミングを示す情報と、寝込み防止制御の実行時間を示す情報とが含まれている。 Based on the calculation result by the sleep prevention control required time calculation unit 37, the device control unit 34 determines the sleep prevention control from the set time and the sleep prevention control required time so that the sleep prevention control is performed only for the sleep prevention control required time. The start timing is derived, and a sleep prevention command signal is generated and output. In the second embodiment, the sleep prevention command signal includes information indicating the start timing of the sleep prevention control and information indicating the execution time of the sleep prevention control.
 データ保持部35は、実施の形態1と同様に、制御装置30の各部で用いられる各種の情報を保持する。本実施の形態2では、例えば、データ保持部35は、熱負荷学習部32および外気温度学習部36のそれぞれで学習する際に用いられる、データ取得部31で取得された温度データおよび空調データを含む各種のデータを保持する。 The data holding unit 35 holds various information used in each part of the control device 30, as in the first embodiment. In the second embodiment, for example, the data holding unit 35 obtains the temperature data and the air conditioning data acquired by the data acquisition unit 31 used when learning by the heat load learning unit 32 and the outside air temperature learning unit 36, respectively. Holds various data including.
[寝込み防止制御]
 次に、本実施の形態2に係る空気調和装置1による寝込み防止制御について説明する。圧縮機11内で冷媒の寝込みが発生する場合、凝縮する冷媒量は、外気温度によって異なる。そのため、圧縮機11内の冷媒を加熱する寝込み防止制御に必要な時間は、外気温度によって異なる。
[Sleeping prevention control]
Next, the sleep prevention control by the air conditioner 1 according to the second embodiment will be described. When the refrigerant falls asleep in the compressor 11, the amount of the refrigerant to be condensed varies depending on the outside air temperature. Therefore, the time required for the sleep prevention control for heating the refrigerant in the compressor 11 differs depending on the outside air temperature.
 この場合に、寝込み防止制御が行われる時間を固定的に決定すると、寝込みの度合いによっては、寝込み防止制御が適切な時間だけ行われない可能性がある。例えば、凝縮した冷媒の量が相対的に多い場合には、寝込み防止制御時間は長くする必要があり、凝縮した冷媒の量が相対的に少ない場合には、寝込み防止制御時間は短くてよい。 In this case, if the time during which the sleep prevention control is performed is fixedly determined, the sleep prevention control may not be performed for an appropriate time depending on the degree of sleep. For example, when the amount of the condensed refrigerant is relatively large, the sneaking prevention control time needs to be long, and when the amount of the condensed refrigerant is relatively small, the sneaking prevention control time may be short.
 そこで、本実施の形態2では、寝込み防止制御を行う場合の寝込み防止制御時間が寝込みの状態に応じて適切な時間となるように、寝込み防止制御に必要な寝込み防止制御必要時間を算出する。そして、空気調和装置1は、算出した寝込み防止制御必要時間だけ寝込み防止制御を行う。 Therefore, in the second embodiment, the sleep prevention control required time required for the sleep prevention control is calculated so that the sleep prevention control time when the sleep prevention control is performed becomes an appropriate time according to the state of falling asleep. Then, the air conditioner 1 performs the sleep prevention control only for the calculated sleep prevention control required time.
 寝込み防止制御必要時間を算出する場合には、設定時間間隔における外気温度が用いられる。この外気温度を得るために、本実施の形態2では、制御装置30の外気温度学習部36によって外気温度の学習が行われる。 When calculating the time required for falling asleep prevention control, the outside air temperature at the set time interval is used. In order to obtain this outside air temperature, in the second embodiment, the outside air temperature is learned by the outside air temperature learning unit 36 of the control device 30.
(外気温度の学習)
 外気温度学習部36による外気温度の学習について説明する。外気温度学習部36は、寝込み防止制御必要時間算出部37で寝込み防止制御の必要時間を推定する際に用いられる外気温度を取得するため、設定時間間隔における外気温度の学習を行う。外気温度の学習には、実施の形態1における熱負荷学習部32と同様に、機械学習が用いられる。
(Learning of outside air temperature)
The learning of the outside air temperature by the outside air temperature learning unit 36 will be described. The outside air temperature learning unit 36 learns the outside air temperature at a set time interval in order to acquire the outside air temperature used when the sleep prevention control required time calculation unit 37 estimates the required time for the sleep prevention control. Machine learning is used for learning the outside air temperature, as in the heat load learning unit 32 in the first embodiment.
 外気温度学習部36で行われる機械学習のモデルは、図5に示す機械学習モデルが用いられる。この場合の入力データは、例えば外気温度が用いられる。なお、外気温度の代替データとして、例えば、天気予報などのデータが用いられてもよい。 The machine learning model shown in FIG. 5 is used as the machine learning model performed by the outside air temperature learning unit 36. For the input data in this case, for example, the outside air temperature is used. As the alternative data of the outside air temperature, for example, data such as a weather forecast may be used.
 図9は、図8の外気温度学習部による学習の流れの一例を示すフローチャートである。ステップS21において、制御装置30のデータ取得部31は、外気温度センサ15で検出された外気温度を温度データとして取得する。取得された温度データは、データ保持部35に保持される。 FIG. 9 is a flowchart showing an example of the learning flow by the outside air temperature learning unit of FIG. In step S21, the data acquisition unit 31 of the control device 30 acquires the outside air temperature detected by the outside air temperature sensor 15 as temperature data. The acquired temperature data is held in the data holding unit 35.
 ステップS22において、外気温度学習部36は、学習タイミングであるか否かを判断する。このときの学習タイミングは、予め設定された任意のタイミングに設定されているものとする。学習タイミングである場合(ステップS22:Yes)、外気温度学習部36は、データ保持部35に保持された温度データを用い、設定時間間隔における外気温度の学習を行う。一方、学習タイミングでない場合(ステップS22:No)には、処理がステップS21に戻る。以下、ステップS21~ステップS23の処理が一定の周期で巡回的に繰り返される。 In step S22, the outside air temperature learning unit 36 determines whether or not it is the learning timing. It is assumed that the learning timing at this time is set to an arbitrary timing set in advance. When it is the learning timing (step S22: Yes), the outside air temperature learning unit 36 learns the outside air temperature at the set time interval using the temperature data held by the data holding unit 35. On the other hand, when it is not the learning timing (step S22: No), the process returns to step S21. Hereinafter, the processes of steps S21 to S23 are cyclically repeated at regular intervals.
(寝込み防止制御の必要時間の算出)
 次に、寝込み防止制御必要時間算出部37による寝込み防止制御の必要時間の算出について説明する。寝込み防止制御必要時間算出部37は、外気温度学習部36で導出された外気温度を用いて、寝込み防止制御の必要時間を算出する。例えば、寝込み防止制御必要時間算出部37は、導出された外気温度が高いほど寝込み防止制御の実行時間が短くなるように、寝込み防止制御必要時間を算出する。
(Calculation of required time for sleep prevention control)
Next, the calculation of the required time for the sleep prevention control by the sleep prevention control required time calculation unit 37 will be described. The sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time using the outside air temperature derived by the outside air temperature learning unit 36. For example, the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time so that the higher the derived outside air temperature is, the shorter the execution time of the sleep prevention control is.
(寝込み防止制御)
 図10は、本実施の形態2に係る空気調和装置による寝込み防止制御の流れの一例を示すフローチャートである。なお、図10において、図7に示す実施の形態1による寝込み防止制御と共通する処理については、同一の符号を付し、説明を省略する。
(Sleeping prevention control)
FIG. 10 is a flowchart showing an example of a flow of sleep prevention control by the air conditioner according to the second embodiment. In FIG. 10, the same reference numerals are given to the processes common to the sleep prevention control according to the first embodiment shown in FIG. 7, and the description thereof will be omitted.
 ステップS11およびステップS12において、データ取得部31は、温度データおよび空調データのそれぞれを取得する。取得された温度データおよび空調データは、外気温度学習部36に供給されるとともに、データ保持部35に保持される。 In step S11 and step S12, the data acquisition unit 31 acquires the temperature data and the air conditioning data, respectively. The acquired temperature data and air conditioning data are supplied to the outside air temperature learning unit 36 and are held in the data holding unit 35.
 ステップS31において、外気温度学習部36は、温度データが入力されると、設定時間間隔における外気温度を導出する。そして、外気温度学習部36は、導出された設定時間間隔における外気温度から温度が最低となる外気温度を抽出する。ステップS32において、寝込み防止制御必要時間算出部37は、ステップS31で抽出された外気温度と、データ保持部35に保持された外気温度とに基づき、寝込み防止制御必要時間を算出する。 In step S31, when the temperature data is input, the outside air temperature learning unit 36 derives the outside air temperature at the set time interval. Then, the outside air temperature learning unit 36 extracts the outside air temperature at which the temperature becomes the lowest from the outside air temperature at the derived set time interval. In step S32, the sleep prevention control required time calculation unit 37 calculates the sleep prevention control required time based on the outside air temperature extracted in step S31 and the outside air temperature held in the data holding unit 35.
 そして、ステップS15において、機器制御部34は、寝込み防止制御開始タイミングが示す時刻であるか否かを判断する。寝込み防止制御開始タイミングは、起動時刻から算出された寝込み防止制御必要時間を遡ることで導出される。寝込み防止制御開始タイミングである場合(ステップS15:Yes)、機器制御部34は、ステップS33において、寝込み防止指令信号を生成し、加熱手段16に対して出力する。これにより、加熱手段16による寝込み防止制御が、寝込み防止制御必要時間だけ行われる。 Then, in step S15, the device control unit 34 determines whether or not it is the time indicated by the sleep prevention control start timing. The fall prevention control start timing is derived by tracing back the fall prevention control required time calculated from the start time. When it is the fall prevention control start timing (step S15: Yes), the device control unit 34 generates a fall prevention command signal in step S33 and outputs it to the heating means 16. As a result, the sleep prevention control by the heating means 16 is performed only for the time required for the sleep prevention control.
 一方、寝込み防止制御開始タイミングでない場合(ステップS15:No)には、処理がステップS15に戻り、寝込み防止制御開始タイミングとなるまで、ステップS15の処理が繰り返される。 On the other hand, when it is not the fall prevention control start timing (step S15: No), the process returns to step S15, and the process of step S15 is repeated until the fall prevention control start timing is reached.
 以上のように、本実施の形態2に係る空気調和装置1において、制御装置30は、外気温度に基づき、設定時間間隔における外気温度を学習し、学習によって得られた外気温度に基づき、寝込み防止制御必要時間を算出する。また、制御装置30は、設定時刻および寝込み防止制御必要時間に基づき、寝込み防止制御開始タイミング導出する。そして、制御装置30は、導出した寝込み防止制御開始タイミングで、算出された寝込み防止制御必要時間だけ寝込み防止制御を行うように、加熱手段16を制御する。 As described above, in the air conditioner 1 according to the second embodiment, the control device 30 learns the outside air temperature at the set time interval based on the outside air temperature, and prevents falling asleep based on the outside air temperature obtained by the learning. Calculate the control time required. Further, the control device 30 derives the fall prevention control start timing based on the set time and the fall prevention control required time. Then, the control device 30 controls the heating means 16 so as to perform the fall prevention control for the calculated time required for the fall prevention control at the derived sleep prevention control start timing.
 これにより、実施の形態1と同様に、圧縮機11の運転停止中の消費電力を抑制することができる。また、本実施の形態2では、寝込み防止制御に必要な時間が算出されることにより、圧縮機11内で凝縮した冷媒の量に応じて適切な時間だけ寝込み防止制御が行われる。そのため、不要な寝込み防止制御を抑制し、より適切に圧縮機11の運転停止中の消費電力を抑制することができる。 As a result, it is possible to suppress the power consumption of the compressor 11 while the operation is stopped, as in the first embodiment. Further, in the second embodiment, the time required for the sleep prevention control is calculated, so that the sleep prevention control is performed for an appropriate time according to the amount of the refrigerant condensed in the compressor 11. Therefore, it is possible to suppress unnecessary sleep prevention control and more appropriately suppress the power consumption of the compressor 11 while the operation is stopped.
実施の形態3.
 次に、本実施の形態3について説明する。本実施の形態3は、寝込み防止制御を行う制御装置30の機能が、空気調和装置とは異なる装置に設けられた空気調和システムについて説明する。なお、本実施の形態3において、実施の形態1および2と共通する部分には同一の符号を付し、詳細な説明を省略する。
Embodiment 3.
Next, the third embodiment will be described. The third embodiment describes an air conditioning system in which the function of the control device 30 for controlling falling asleep is different from that of the air conditioning device. In the third embodiment, the parts common to the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
[空気調和システム100の構成]
 図11は、本実施の形態3に係る空気調和システムの構成の一例を示す回路図である。図11に示すように、空気調和システム100は、1または複数の空気調和装置110と、それぞれの空気調和装置110に接続された管理装置120とで構成されている。
[Configuration of air conditioning system 100]
FIG. 11 is a circuit diagram showing an example of the configuration of the air conditioning system according to the third embodiment. As shown in FIG. 11, the air conditioning system 100 is composed of one or more air conditioning devices 110 and a management device 120 connected to each of the air conditioning devices 110.
 空気調和装置110は、図1に示す実施の形態1および2の空気調和装置1と同様に、加熱手段16が設けられた圧縮機11を有する室外機10と、室内機20とを備えている。一方、空気調和装置110は、図1の空気調和装置1における制御装置30から寝込み防止制御を行う機能を除いた構成となっている。 Similar to the air conditioner 1 of the first and second embodiments shown in FIG. 1, the air conditioner 110 includes an outdoor unit 10 having a compressor 11 provided with a heating means 16 and an indoor unit 20. .. On the other hand, the air conditioner 110 has a configuration in which the function of performing the sleep prevention control is removed from the control device 30 in the air conditioner 1 of FIG.
 管理装置120は、この管理装置120に接続された1または複数の空気調和装置110を管理する。本実施の形態3において、管理装置120は、それぞれの空気調和装置110から温度データおよび空調データを受け取り、受け取った温度データおよび空調データに基づき、各空気調和装置110に対して寝込み防止制御を行う。 The management device 120 manages one or a plurality of air conditioner 110s connected to the management device 120. In the third embodiment, the management device 120 receives temperature data and air conditioning data from each air conditioning device 110, and performs sleep prevention control for each air conditioning device 110 based on the received temperature data and air conditioning data. ..
 管理装置120は、制御装置130を備えている。制御装置130は、図1に示す制御装置30における寝込み防止制御についての機能を有するものである。すなわち、制御装置130は、実施の形態1または2に係る制御装置30と同様の構成を有する。 The management device 120 includes a control device 130. The control device 130 has a function for preventing falling asleep in the control device 30 shown in FIG. That is, the control device 130 has the same configuration as the control device 30 according to the first or second embodiment.
 制御装置130が実施の形態1に係る制御装置30と同様の構成を有する場合、制御装置130は、図2に示すように、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34およびデータ保持部35を有している。また、制御装置130が実施の形態2に係る制御装置30と同様の構成を有する場合、制御装置130は、図8に示すように、データ取得部31、熱負荷学習部32、寝込み防止制御開始タイミング推定部33、機器制御部34、データ保持部35、外気温度学習部36および寝込み防止制御必要時間算出部37を有している。 When the control device 130 has the same configuration as the control device 30 according to the first embodiment, the control device 130 has a data acquisition unit 31, a heat load learning unit 32, and a fall prevention control start timing estimation, as shown in FIG. It has a unit 33, an equipment control unit 34, and a data holding unit 35. Further, when the control device 130 has the same configuration as the control device 30 according to the second embodiment, the control device 130 starts the data acquisition unit 31, the heat load learning unit 32, and the sleep prevention control as shown in FIG. It has a timing estimation unit 33, an equipment control unit 34, a data holding unit 35, an outside air temperature learning unit 36, and a sleep prevention control required time calculation unit 37.
 このように、本実施の形態3に係る空気調和システム100は、実施の形態1および2で説明した空気調和装置1の寝込み防止制御を行う機能が、空気調和装置110とは異なる管理装置120に設けられた構成となっている。 As described above, in the air conditioning system 100 according to the third embodiment, the function of performing the sleep prevention control of the air conditioning device 1 described in the first and second embodiments is different from that of the air conditioning device 110 in the management device 120. It has a provided configuration.
 以上のように、本実施の形態3に係る空気調和システム100では、1または複数の空気調和装置110を管理する管理装置120に、寝込み防止制御を行う制御装置130が設けられている。これにより、実施の形態1および2と同様に、空気調和装置110における圧縮機11の運転停止中の消費電力を抑制することができる。また、本実施の形態3では、制御装置130が空気調和装置110と別体で設けられるため、すでに設置されている空気調和装置に対しても、寝込み防止制御を行うことができる。 As described above, in the air conditioning system 100 according to the third embodiment, the management device 120 that manages one or a plurality of air conditioning devices 110 is provided with a control device 130 that controls falling asleep. As a result, it is possible to suppress the power consumption of the compressor 11 in the air conditioner 110 while the operation is stopped, as in the first and second embodiments. Further, in the third embodiment, since the control device 130 is provided separately from the air conditioner 110, it is possible to perform the sleep prevention control even for the air conditioner already installed.
 1、110 空気調和装置、10 室外機、11 圧縮機、12 冷媒流路切替装置、13 室外熱交換器、14 膨張弁、15 外気温度センサ、16 加熱手段、20 室内機、21 室内熱交換器、22 室内温度センサ、30、130 制御装置、31 データ取得部、32 熱負荷学習部、33 寝込み防止制御開始タイミング推定部、34 機器制御部、35 データ保持部、36 外気温度学習部、37 寝込み防止制御必要時間算出部、41 処理回路、51 プロセッサ、52 メモリ、100 空気調和システム、120 管理装置。 1,110 air conditioner, 10 outdoor unit, 11 compressor, 12 refrigerant flow path switching device, 13 outdoor heat exchanger, 14 expansion valve, 15 outdoor air temperature sensor, 16 heating means, 20 indoor unit, 21 indoor heat exchanger , 22 Indoor temperature sensor, 30, 130 Control device, 31 Data acquisition unit, 32 Heat load learning unit, 33 Sleep prevention control start timing estimation unit, 34 Equipment control unit, 35 Data holding unit, 36 Outside air temperature learning unit, 37 Sleeping Prevention control required time calculation unit, 41 processing circuit, 51 processor, 52 memory, 100 air conditioning system, 120 management device.

Claims (9)

  1.  圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた空気調和装置であって、
     前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段と、
     前記加熱手段を制御する制御装置と
    を備え、
     前記制御装置は、
     温度データおよび空調データに基づき、熱負荷を学習する熱負荷学習部と、
     学習によって得られた前記熱負荷に基づき、前記圧縮機を加熱する寝込み防止制御を開始する寝込み防止制御開始タイミングを推定する寝込み防止制御開始タイミング推定部と、
     推定された前記寝込み防止制御開始タイミングで、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部と
    を有する
    空気調和装置。
    An air conditioner including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit.
    A heating means provided in the compressor to heat the refrigerant inside the compressor, and
    A control device for controlling the heating means is provided.
    The control device is
    A heat load learning unit that learns heat load based on temperature data and air conditioning data,
    Based on the heat load obtained by learning, a sleep prevention control start timing estimation unit that estimates the sleep prevention control start timing for starting the sleep prevention control for heating the compressor, and a sleep prevention control start timing estimation unit,
    An air conditioner having an equipment control unit that controls the heating means so that the heating means controls the falling prevention at the estimated timing of starting the falling prevention control.
  2.  外気温度を検出する外気温度センサと、
     室内温度を検出する室内温度センサと
    をさらに備え、
     前記制御装置は、
     検出された前記外気温度および前記室内温度を前記温度データとして取得する
    請求項1に記載の空気調和装置。
    An outside air temperature sensor that detects the outside air temperature,
    Further equipped with an indoor temperature sensor that detects the indoor temperature,
    The control device is
    The air conditioner according to claim 1, wherein the detected outside air temperature and the room temperature are acquired as the temperature data.
  3.  前記制御装置は、
     前記圧縮機の運転周波数を前記空調データとして取得する
    請求項1または2に記載の空気調和装置。
    The control device is
    The air conditioner according to claim 1 or 2, wherein the operating frequency of the compressor is acquired as the air conditioning data.
  4.  前記制御装置は、
     前記室内機に対して設定された設定温度を前記空調データとして取得する
    請求項1~3のいずれか一項に記載の空気調和装置。
    The control device is
    The air conditioner according to any one of claims 1 to 3, wherein the set temperature set for the indoor unit is acquired as the air conditioning data.
  5.  圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた空気調和装置であって、
     前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段と、
     前記加熱手段を制御する制御装置と
    を備え、
     前記制御装置は、
     現在の外気温度に基づき、設定時間間隔における外気温度を学習する外気温度学習部と、
     学習によって得られた前記外気温度に基づき、前記圧縮機を加熱する寝込み防止制御に必要な時間を示す寝込み防止制御必要時間を算出する寝込み防止制御必要時間算出部と、
     設定時刻および前記寝込み防止制御必要時間に基づき、前記寝込み防止制御を開始する寝込み防止制御開始タイミング導出し、導出した前記寝込み防止制御開始タイミングで、算出された前記寝込み防止制御必要時間だけ、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部と
    を有する
    空気調和装置。
    An air conditioner including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit.
    A heating means provided in the compressor to heat the refrigerant inside the compressor, and
    A control device for controlling the heating means is provided.
    The control device is
    An outside air temperature learning unit that learns the outside air temperature at set time intervals based on the current outside air temperature,
    Based on the outside air temperature obtained by learning, the sleep prevention control required time calculation unit that calculates the sleep prevention control required time indicating the time required for the sleep prevention control to heat the compressor, and the sleep prevention control required time calculation unit.
    Based on the set time and the required time for the sleep prevention control, the sleep prevention control start timing for starting the sleep prevention control is derived, and the heating is performed for the calculated sleep prevention control start time at the derived sleep prevention control start timing. An air conditioner having an equipment control unit that controls the heating means so that the means can control the prevention of falling asleep.
  6.  前記加熱手段は、
     前記圧縮機の周囲に取り付けられるヒータである
    請求項1~5のいずれか一項に記載の空気調和装置。
    The heating means
    The air conditioner according to any one of claims 1 to 5, which is a heater mounted around the compressor.
  7.  前記加熱手段は、
     前記圧縮機に対する通電を制御する通電制御装置である
    請求項1~5のいずれか一項に記載の空気調和装置。
    The heating means
    The air conditioner according to any one of claims 1 to 5, which is an energization control device that controls energization of the compressor.
  8.  圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた1または複数の空気調和装置と、
     前記1または複数の空気調和装置を管理する管理装置と
    を備え、
     前記空気調和装置は、
     前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段を有し、
     前記管理装置は、
     前記加熱手段を制御する制御装置を有し、
     前記制御装置は、
     温度データおよび空調データに基づき、熱負荷を学習する熱負荷学習部と、
     学習によって得られた前記熱負荷に基づき、前記圧縮機を加熱する寝込み防止制御を開始する寝込み防止制御開始タイミングを推定する寝込み防止制御開始タイミング推定部と、
     推定された前記寝込み防止制御開始タイミングで、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部と
    を有する
    空気調和システム。
    One or more air conditioners including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit.
    A management device for managing the one or more air conditioners is provided.
    The air conditioner is
    The compressor is provided with a heating means for heating the refrigerant inside the compressor.
    The management device
    It has a control device that controls the heating means, and has
    The control device is
    A heat load learning unit that learns heat load based on temperature data and air conditioning data,
    Based on the heat load obtained by learning, a sleep prevention control start timing estimation unit that estimates the sleep prevention control start timing for starting the sleep prevention control for heating the compressor, and a sleep prevention control start timing estimation unit,
    An air conditioning system including an equipment control unit that controls the heating means so that the heating means performs the fall prevention control at the estimated sleep prevention control start timing.
  9.  圧縮機を有する室外機と、前記室外機に接続された室内機とを備えた1または複数の空気調和装置と、
     前記1または複数の空気調和装置を管理する管理装置と
    を備え、
     前記空気調和装置は、
     前記圧縮機に設けられ、前記圧縮機の内部の冷媒を加熱する加熱手段を有し、
     前記管理装置は、
     前記加熱手段を制御する制御装置を有し、
     前記制御装置は、
     現在の外気温度に基づき、設定時間間隔における外気温度を学習する外気温度学習部と、
     学習によって得られた前記外気温度に基づき、前記圧縮機を加熱する寝込み防止制御に必要な時間を示す寝込み防止制御必要時間を算出する寝込み防止制御必要時間算出部と、
     設定時刻および前記寝込み防止制御必要時間に基づき、前記寝込み防止制御を開始する寝込み防止制御開始タイミング導出し、導出した前記寝込み防止制御開始タイミングで、算出された前記寝込み防止制御必要時間だけ、前記加熱手段により前記寝込み防止制御を行うように、前記加熱手段を制御する機器制御部と
    を有する
    空気調和システム。
    One or more air conditioners including an outdoor unit having a compressor and an indoor unit connected to the outdoor unit.
    A management device for managing the one or more air conditioners is provided.
    The air conditioner is
    The compressor is provided with a heating means for heating the refrigerant inside the compressor.
    The management device
    It has a control device that controls the heating means, and has
    The control device is
    An outside air temperature learning unit that learns the outside air temperature at set time intervals based on the current outside air temperature,
    Based on the outside air temperature obtained by learning, the sleep prevention control required time calculation unit that calculates the sleep prevention control required time indicating the time required for the sleep prevention control to heat the compressor, and the sleep prevention control required time calculation unit.
    Based on the set time and the required time for the sleep prevention control, the sleep prevention control start timing for starting the sleep prevention control is derived, and the heating is performed for the calculated sleep prevention control start time at the derived sleep prevention control start timing. An air-conditioning system including an equipment control unit that controls the heating means so that the fall prevention control is performed by the means.
PCT/JP2019/024892 2019-06-24 2019-06-24 Air conditioner and air conditioning system WO2020261317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021528647A JP7112037B2 (en) 2019-06-24 2019-06-24 Air conditioners and air conditioning systems
US17/604,796 US20220214068A1 (en) 2019-06-24 2019-06-24 Air-conditioning device and air-conditioning system
PCT/JP2019/024892 WO2020261317A1 (en) 2019-06-24 2019-06-24 Air conditioner and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024892 WO2020261317A1 (en) 2019-06-24 2019-06-24 Air conditioner and air conditioning system

Publications (1)

Publication Number Publication Date
WO2020261317A1 true WO2020261317A1 (en) 2020-12-30

Family

ID=74061555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024892 WO2020261317A1 (en) 2019-06-24 2019-06-24 Air conditioner and air conditioning system

Country Status (3)

Country Link
US (1) US20220214068A1 (en)
JP (1) JP7112037B2 (en)
WO (1) WO2020261317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261477A1 (en) * 2022-04-15 2023-10-18 Toshiba Carrier Corporation Heat source unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629137A (en) * 1985-07-06 1987-01-17 Daikin Ind Ltd Air conditioner
JPH07167504A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Preheat controlling method for three-phase motor driven compressor
JPH08114346A (en) * 1994-10-18 1996-05-07 Daikin Ind Ltd Air-conditioning machine
JPH10170053A (en) * 1996-12-04 1998-06-26 Matsushita Electric Ind Co Ltd Load estimating device for air conditioner
JP2006170570A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Refrigerating apparatus
JP2012026725A (en) * 2011-11-11 2012-02-09 Mitsubishi Electric Corp Air conditioner
JP2014145535A (en) * 2013-01-29 2014-08-14 Mitsubishi Electric Corp Refrigeration cycle device
WO2018033955A1 (en) * 2016-08-16 2018-02-22 三菱電機株式会社 Air conditioning device
EP3470749A1 (en) * 2016-06-13 2019-04-17 Gree Electric Appliances, Inc. of Zhuhai Method and apparatus for controlling electric heating of air conditioner compressor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757745B2 (en) * 2000-03-30 2006-03-22 ダイキン工業株式会社 Preheating power control method and preheating generation mechanism
US6781342B2 (en) * 2002-05-29 2004-08-24 Bristol Compressors, Inc. System and method for soft starting a three phase motor
US8463441B2 (en) * 2002-12-09 2013-06-11 Hudson Technologies, Inc. Method and apparatus for optimizing refrigeration systems
US8422870B2 (en) * 2009-02-13 2013-04-16 General Electric Company Residential heat pump water heater
JP4931970B2 (en) * 2009-08-10 2012-05-16 三菱電機株式会社 Air conditioner
JP2011112351A (en) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd Refrigerating device
US9543887B2 (en) * 2010-10-15 2017-01-10 Mitsubishi Electric Corporation Heat pump device, heat pump system, and method for controlling three-phase inverter
EP2689260A1 (en) * 2011-03-24 2014-01-29 Koninklijke Philips N.V. Reduction of peak electrical power consumption in magnetic resonance imaging systems
US10208991B2 (en) * 2011-12-14 2019-02-19 Mitsubishi Electric Corporation Heat pump device, and air conditioner, heat pump water heater, refrigerator and freezing machine including heat pump device
CN104412049B (en) * 2012-06-29 2017-05-24 三菱电机株式会社 heat pump device, air conditioner, and refrigerator
US10175681B2 (en) * 2014-05-01 2019-01-08 Johnson Controls Technology Company High level central plant optimization
US10031494B2 (en) * 2014-08-15 2018-07-24 Honeywell International Inc. Dashboard and button/tile system for an interface
US10824125B2 (en) * 2017-07-28 2020-11-03 Johnson Controls Technology Company Central plant control system based on load prediction through mass storage model
US10978981B2 (en) * 2017-08-08 2021-04-13 Mitsubishi Electric Corporation Drive apparatus for electric motor and air conditioner
CN113491065B (en) * 2019-03-06 2023-10-20 三菱电机株式会社 Motor driving device and air conditioner
JP7173907B2 (en) * 2019-03-18 2022-11-16 ダイキン工業株式会社 A machine learning device that determines operating conditions for precooling or prewarming of air conditioners
US11193689B2 (en) * 2019-06-14 2021-12-07 Johnson Controls Tyco IP Holdings LLP Building HVAC system with predictive temperature and humidity control
US11823295B2 (en) * 2020-06-19 2023-11-21 Honeywell International, Inc. Systems and methods for reducing risk of pathogen exposure within a space

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629137A (en) * 1985-07-06 1987-01-17 Daikin Ind Ltd Air conditioner
JPH07167504A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Preheat controlling method for three-phase motor driven compressor
JPH08114346A (en) * 1994-10-18 1996-05-07 Daikin Ind Ltd Air-conditioning machine
JPH10170053A (en) * 1996-12-04 1998-06-26 Matsushita Electric Ind Co Ltd Load estimating device for air conditioner
JP2006170570A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Refrigerating apparatus
JP2012026725A (en) * 2011-11-11 2012-02-09 Mitsubishi Electric Corp Air conditioner
JP2014145535A (en) * 2013-01-29 2014-08-14 Mitsubishi Electric Corp Refrigeration cycle device
EP3470749A1 (en) * 2016-06-13 2019-04-17 Gree Electric Appliances, Inc. of Zhuhai Method and apparatus for controlling electric heating of air conditioner compressor
WO2018033955A1 (en) * 2016-08-16 2018-02-22 三菱電機株式会社 Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261477A1 (en) * 2022-04-15 2023-10-18 Toshiba Carrier Corporation Heat source unit

Also Published As

Publication number Publication date
JPWO2020261317A1 (en) 2021-10-28
JP7112037B2 (en) 2022-08-03
US20220214068A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
CN108731224B (en) Control method, device and equipment of fixed-frequency air conditioning system and fixed-frequency air conditioning system
KR0150812B1 (en) Airconditioner with outdoor air temperature calculating function
US9746224B2 (en) Expansion valve setpoint control systems and methods
EP2148147B1 (en) Method of controlling air conditioner
US20140137573A1 (en) Expansion Valve Position Control Systems And Methods
JP6827540B2 (en) Air conditioner
CA2572667A1 (en) Methods for detecting and responding to freezing coils in hvac systems
CN112739965B (en) Air conditioner
WO2020261317A1 (en) Air conditioner and air conditioning system
CN111448434A (en) Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation
JP2017053572A (en) Air conditioner
JP2019148382A (en) Heat pump type heating device
CN109312946B (en) Defrosting judgment device, defrosting control device, and air conditioner
JP6618388B2 (en) Air conditioning system
JP6843941B2 (en) Air conditioning system
JP2007212023A (en) Air conditioning system
CN110715430A (en) Air conditioner, control method and device thereof, electronic equipment and storage medium
KR20040066732A (en) Air Conditioner and Method for Controlling Air Conditioner
KR102558826B1 (en) Air conditioner system and control method
CN112050381A (en) Air conditioner
WO2020240685A1 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JPH08159590A (en) Air conditioner
JP2531332B2 (en) Dehumidifying operation method of air conditioner
JP7392567B2 (en) air conditioner
CN111380151B (en) Air conditioner, air conditioner control method and device and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935078

Country of ref document: EP

Kind code of ref document: A1