WO2020250301A1 - Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method - Google Patents

Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method Download PDF

Info

Publication number
WO2020250301A1
WO2020250301A1 PCT/JP2019/023087 JP2019023087W WO2020250301A1 WO 2020250301 A1 WO2020250301 A1 WO 2020250301A1 JP 2019023087 W JP2019023087 W JP 2019023087W WO 2020250301 A1 WO2020250301 A1 WO 2020250301A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antennas
base station
terminal
distance
Prior art date
Application number
PCT/JP2019/023087
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 井浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/023087 priority Critical patent/WO2020250301A1/en
Publication of WO2020250301A1 publication Critical patent/WO2020250301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to a transmitting device including a plurality of antennas, a receiving device, a wireless communication system, a transmitting antenna adjusting method, and a receiving antenna adjusting method.
  • MIMO Multiple Input Multiple Output
  • a transmitting device and a receiving device use a plurality of antennas
  • a method for realizing high-speed transmission As a feature of transmission by MIMO, by multiplexing a plurality of transmission data in space, the communication speed can be increased by the amount of the multiple transmission data without expanding the band of the frequency to be used.
  • the performance of MIMO transmission differs depending on the characteristics of the channel matrix consisting of the transmission coefficients between the plurality of antennas included in the transmitting device and the plurality of antennas provided in the receiving device.
  • the eigenvalues of the channel matrix are the same power, the reception quality of the plurality of multiplex transmission data is the same, and the maximum transmission efficiency of MIMO transmission in Shannon theory is obtained.
  • a specific eigenvalue is extremely large in the channel matrix, it becomes impossible to multiplex a plurality of transmission data in space, and the transmission efficiency is lowered. Such a technique is disclosed in Non-Patent Document 1.
  • Non-Patent Document 1 states that in a so-called line-of-sight environment in which the transmitter and receiver are not shielded, an ideal between the transmitter and the receiver is provided as a condition that the eigenvalues of the channel matrices have the same power. Positional relationship, that is, distance is shown. However, the ideal distance is limited. Therefore, there is a problem that the transmission efficiency is lowered when the distance between the transmitting device and the receiving device deviates from the ideal distance.
  • the present invention has been made in view of the above, and obtains a transmitting device capable of suppressing a decrease in transmission efficiency between a transmitting device and a receiving device when the line-of-sight environment is between the transmitting device and the receiving device. With the goal.
  • the present invention is a transmission device in a wireless communication system including a transmission device capable of transmitting a plurality of signals and a reception device capable of receiving a plurality of signals.
  • the transmitting device uses information acquired in communication with the receiving device to estimate the distance between the transmitting device and the receiving device, and a plurality of antennas based on the distance estimated by the distance estimating unit.
  • An antenna control unit that generates control information for each antenna to control the transmission position of the signal from, and an adjacent antenna that controls the transmission position of the signal to be transmitted to the receiving device based on the control information for each antenna. It is characterized by including a plurality of antennas for adjusting the interval between transmission positions.
  • the transmitting device has an effect that a decrease in transmission efficiency between the transmitting device and the receiving device can be suppressed when there is a line-of-sight environment between the transmitting device and the receiving device.
  • Block diagram showing a configuration example of a base station according to the first embodiment The figure which shows the configuration example of the antenna of the base station which concerns on Embodiment 1.
  • Block diagram showing a configuration example of a terminal according to the first embodiment The figure which shows the configuration example of the antenna of the terminal which concerns on Embodiment 1.
  • the figure which shows the example of the case where the processing circuit provided in the base station which concerns on Embodiment 1 is configured by a processor and a memory
  • the figure which shows the example of the case where the processing circuit provided in the base station which concerns on Embodiment 1 is configured by the dedicated hardware.
  • the figure which shows the example which the base station which concerns on Embodiment 2 adjusts the transmission position of an antenna.
  • the transmitting device, the receiving device, the wireless communication system, the transmitting antenna adjusting method, and the receiving antenna adjusting method according to the embodiment of the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • Embodiment 1 a wireless communication system including a base station capable of transmitting a plurality of signals and a terminal capable of receiving a plurality of signals, that is, a wireless communication system in which the base station and the terminal perform wireless communication by MIMO transmission is specified. The case where a signal is transmitted from the base station to the terminal will be described.
  • FIG. 1 is a block diagram showing a configuration example of the base station 10 according to the first embodiment of the present invention.
  • the base station 10 is a transmission device that transmits a signal to a terminal (not shown).
  • the base station 10 includes signal generation units 11-1 to 11-M, modulation units 12-1 to 12-M, a precoder 13, and OFDM (Orthogonal Frequency Division Multiplexing) modulation units 14-1 to 14-Ntx.
  • DA Digital to Analog conversion units 15-1 to 15-Ntx, frequency conversion units 16-1 to 16-Ntx, antennas 17-1 to 17-Ntx, distance estimation unit 18, and antenna control unit 19. , Equipped with.
  • M is an integer of 2 or more
  • Ntx is an integer of 2 or more.
  • the signal generation units 11-1 to 11-M generate a transmission data bit string from the user data by error correction.
  • the signal generation unit is described as "SIG".
  • the modulation units 12-1 to 12-M modulate the transmission data bit string generated by the signal generation units 11-1 to 11-M to generate transmission symbols s.
  • the transmission symbol s is represented by the equation (1).
  • the modulation unit is described as "MOD".
  • the precoder 13 performs a matrix operation on the transmission symbols s generated by the modulation units 12-1 to 12-M, and generates Ntx transmission symbols x.
  • the transmission symbol x is represented by the equation (2).
  • W represented by the equation (3)
  • the transmission symbol x after the matrix operation is expressed by the equation (4).
  • the precoder is described as "Precoder".
  • the OFDM modulation units 14-1 to 14-Ntx OFDM-modulate the transmission symbol x generated by the precoder 13 and convert the frequency domain signal into a time domain signal.
  • the OFDM modulation unit is described as "OFDMMOD”.
  • the DA conversion units 15-1 to 15-Ntx convert the transmission symbol x converted into a time domain signal by the OFDM modulation units 14-1 to 14-Ntx from a digital signal to an analog signal.
  • the DA conversion unit is described as "DA".
  • the frequency conversion units 16-1 to 16-Ntx convert the frequency of the transmission symbol converted into an analog signal by the DA conversion units 15-1 to 15-Ntx into the carrier frequency of the wireless communication system.
  • the frequency conversion unit is described as "TX”.
  • Antennas 17-1 to 17-Ntx transmit a transmission symbol converted to a carrier frequency by the frequency conversion unit 16-1 to 16-Ntx, that is, a signal to a terminal.
  • the antennas 17-1 to 17-Ntx radiate radio waves based on the signal transmitted to the terminal into space.
  • the antennas 17-1 to 17-Ntx control the transmission position of the signal to be transmitted to the terminal based on the control information for each of the antennas 17-1 to 17-Ntx generated by the antenna control unit 19 described later. , Adjust the transmission position spacing between adjacent antennas.
  • the signal transmitted by the antennas 17-1 to 17-Ntx may be referred to as a transmission signal.
  • antennas 17-1 to 17-Ntx are not distinguished, they may be referred to as antenna 17.
  • the distance estimation unit 18 estimates the distance between the base station 10 and the terminal which is the receiving device by using the information acquired by the communication with the terminal. The method of estimating the distance between the base station 10 and the terminal in the distance estimation unit 18 will be described later.
  • the antenna control unit 19 is an antenna for controlling the transmission position of signals from the plurality of antennas 17-1 to 17-Ntx based on the distance between the base station 10 and the terminal estimated by the distance estimation unit 18.
  • the control information for each 17 is generated.
  • the distance between the antennas 17-1 to 17-Ntx provided in the base station 10 and the distance between the antennas 17-1 to 17-Ntx provided in the terminal will be described later.
  • the values of the plurality of eigenvalues of the channel matrix can be equal to each other.
  • the antenna control unit 19 controls the operation of the antennas 17-1 to 17-Ntx according to the control information, and changes the transmission position of the transmission signal from the antennas 17-1 to 17-Ntx.
  • FIG. 2 is a diagram showing a configuration example of the antenna 17 of the base station 10 according to the first embodiment.
  • the antenna 17 includes an antenna element 170 and a drive unit 171.
  • the antenna element 170 transmits a transmission signal toward the terminal.
  • the drive unit 171 can move the position of the antenna element 170 based on the control information generated by the antenna control unit 19. That is, the drive unit 171 adjusts the transmission position of the antenna 17, which is the position of the antenna element 170, based on the control information generated by the antenna control unit 19.
  • FIG. 3 is a diagram showing an image of adjustment of the transmission position of the antennas 17-1 to 17-Ntx performed by the base station 10 according to the first embodiment.
  • FIG. 3A shows the state before adjusting the transmission position of the antennas 17-1 to 17-Ntx
  • FIG. 3B shows the state after adjusting the transmission position of the antennas 17-1 to 17-Ntx. Indicates the state.
  • the base station 10 can adjust the distance d between the antennas 17-1 to 17-Ntx based on the distance between the base station 10 and the terminal to obtain the distance d + ⁇ L.
  • the antenna control unit 19 is described in Non-Patent Document 1 when the center of the antenna array by the antennas 17-1 to 17-Ntx included in the base station 10 and the center of the antenna array by the plurality of antennas included in the terminal face each other. Assuming an evenly spaced linear array using the above equations, control information for each antenna 17 can be generated based on the equation represented by the equation (5).
  • d t is the element spacing of antennas 17-1 ⁇ 17-Ntx the base station 10 is provided
  • d r is the element spacing of a plurality of antennas provided in the terminal
  • V is the base station 10 and the antenna elements of the terminal
  • is the wavelength
  • R is the distance between the base station 10 and the terminal.
  • the antennas 17-1 to 17-Ntx can control the operation of the drive unit 171 and adjust the transmission position of the antenna 17, which is the position of the antenna element 170, based on the control information.
  • FIG. 4 is a block diagram showing a configuration example of the terminal 20 according to the first embodiment.
  • the terminal 20 is a receiving device that receives a transmission signal from the base station 10.
  • the terminal 20 includes antennas 21-1 to 21-Nrx, frequency conversion units 22-1 to 22-Nrx, AD (Analog to Digital) conversion units 23-1 to 23-Nrx, and OFDM demodulation units 24-1-1. It includes 24-Nrx, a postcoder 25, demodulation units 26-1 to 26-M, decoding units 27-1 to 27-M, a distance estimation unit 28, and an antenna control unit 29.
  • Nrx is an integer of 2 or more.
  • Antennas 21-1 to 21-Nrx receive the signal transmitted from the base station 10. Specifically, the antennas 21-1 to 21-Nrx receive radio waves radiated into space. At this time, the antennas 21-1 to 21-Nrx are receiving positions for receiving the signal from the base station 10 based on the control information for each of the antennas 21-1 to 21-Nrx generated by the antenna control unit 29 described later. To adjust the distance between the receiving position and the adjacent antenna. When the antennas 21-1 to 21-Nrx are not distinguished, they may be referred to as an antenna 21. Here, the configuration of the antenna 21 will be described.
  • FIG. 5 is a diagram showing a configuration example of the antenna 21 of the terminal 20 according to the first embodiment.
  • the antenna 21 includes an antenna element 172 and a drive unit 173.
  • the antenna element 172 receives the signal from the base station 10 and outputs the received signal.
  • the drive unit 173 can move the position of the antenna element 172 based on the control information generated by the antenna control unit 29. That is, the drive unit 173 adjusts the reception position of the antenna 21, which is the position of the antenna element 172, based on the control information generated by the antenna control unit 29.
  • the frequency conversion units 22-1 to 22-Nrx convert the received signal of the carrier frequency, that is, the radio wave received by the antennas 21-1 to 21-Nrx, into a baseband signal.
  • the frequency conversion unit is described as "RX".
  • the AD conversion units 23-1 to 23-Nrx convert the baseband signal converted by the frequency conversion units 22-1 to 22-Nrx from an analog signal to a digital signal.
  • the AD conversion unit is described as "AD”.
  • the received signal y is represented by the equation (6).
  • the OFDM demodulation unit is described as "OFDMDEM".
  • the post coder 25 performs a matrix operation on the received signal y converted by the OFDM demodulation units 24-1 to 24-Nrx, and generates M symbols r.
  • the symbol r is represented by the equation (7).
  • the matrix used in the matrix operation is V represented by the equation (8)
  • the symbol r after the matrix operation is expressed by the equation (9).
  • the post coder is described as "Postcoder".
  • the demodulation units 26-1 to 26-M convert the symbol r generated by the post coder 25 into a bit string.
  • the demodulation unit is described as "DEM”.
  • the decoding units 27-1 to 27-M decode the bit strings converted by the demodulation units 26-1 to 26-M by error correction.
  • the decoding unit is described as "DEC".
  • the distance estimation unit 28 estimates the distance between the base station 10 and the terminal 20 by using the information acquired in the communication with the base station 10. The method of estimating the distance between the base station 10 and the terminal 20 in the distance estimation unit 28 will be described later.
  • the antenna control unit 29 is an antenna for controlling the signal reception positions of the plurality of antennas 21-1 to 21-Nrx based on the distance between the base station 10 and the terminal 20 estimated by the distance estimation unit 28. 21 Control information is generated for each. As described above, when the line-of-sight environment is between the base station 10 and the terminal 20, the distance between the antennas 17-1 to 17-Ntx provided by the base station 10 and the antennas 21-1 to 21-Nrx provided by the terminal 20. By adjusting the interval and the ratio of the distance between the base station 10 and the terminal 20, the values of the plurality of eigenvalues of the channel matrix can be equal to each other.
  • the antenna control unit 29 controls the operation of the antennas 21-1 to 21-Nrx according to the control information, and changes the reception position of the reception signal of the antennas 21-1 to 21-Nrx.
  • the adjustment of the receiving position of the antennas 21-1 to 21-Nrx by the terminal 20 is not shown, but is the same as the case of the antennas 17-1 to 17-Ntx of the base station 10 which is the transmitting device shown in FIG. Is.
  • the antennas 21-1 to 21-Nrx can control the operation of the drive unit 173 based on the control information and adjust the reception position of the antenna 21 which is the position of the antenna element 172.
  • the matrix H is represented by the equation (10).
  • the operation of estimating the distance between the base station 10 and the terminal 20 will be described in the distance estimation unit 18 of the base station 10 and the distance estimation unit 28 of the terminal 20.
  • the main body of the base station 10 is the distance estimation unit 18, and the main body of the terminal 20 is the distance estimation unit 28.
  • the base station 10 and the terminal 20 will be mainly described. To do.
  • FIG. 6 is a diagram showing a first example of an operation in which the base station 10 estimates the distance between the base station 10 and the terminal 20 in the wireless communication system 30 according to the first embodiment.
  • the base station 10 transmits a reference signal to the terminal 20, and the terminal 20 determines the distance between the base station 10 and the terminal 20 or the distance between the base station 10 and the terminal 20 according to the analysis result of the reference signal.
  • the method of sending back the information corresponding to the distance to the base station 10 as the position-related information is shown. Specifically, there are methods such as the following estimation method # 1 to estimation method # 3.
  • the base station 10 transmits a reference signal to the terminal 20.
  • the terminal 20 receives the reference signal transmitted from the base station 10, measures the received power of the reference signal, and notifies the base station 10 of the received power information as position-related information. Since the base station 10 knows the transmission power of the reference signal, the distance between the base station 10 and the terminal 20 is estimated from the amount of attenuation of the received power with respect to the transmission power by knowing the reception power at the terminal 20. can do.
  • the base station 10 may notify the terminal 20 of the information on the transmission power of the reference signal in advance. In this case, the terminal 20 can estimate the distance between the base station 10 and the terminal 20 by comparing the notified transmission power with the received power of the measured reference signal.
  • the terminal 20 notifies the base station 10 of the information on the estimated distance between the base station 10 and the terminal 20 as position-related information.
  • Estimating method # 2 The base station 10 transmits a reference signal to the terminal 20. After receiving the reference signal, the terminal 20 transmits a response signal to the base station 10 within a specified time.
  • the base station 10 can measure the signal propagation delay time between the base station 10 and the terminal 20 and between the terminal 20 and the base station 10 from the transmission time of the reference signal and the reception time of the response signal.
  • the base station 10 can estimate the distance between the base station 10 and the terminal 20 from the measured signal propagation delay time.
  • Estimating method # 3 When the base station 10 or the terminal 20 moves at a constant speed in a moving body and the moving direction axis and the axis connecting the base station 10 and the terminal 20 are at a constant angle, the terminal 20 is referred to as a reference signal. By measuring the Doppler frequency of, the distance between the base station 10 and the terminal 20 can be estimated. The terminal 20 notifies the base station 10 of the information on the estimated distance between the base station 10 and the terminal 20 as position-related information.
  • both the base station 10 and the terminal 20 can estimate the distance between the base station 10 and the terminal 20.
  • the base station 10 estimates the distance
  • the base station 10 notifies the terminal 20 of the distance information
  • the terminal 20 does not have to estimate the distance
  • the terminal 20 notifies the base station 10 of the distance information
  • the base station 10 does not have to estimate the distance.
  • each of the base station 10 and the terminal 20 may perform the same operation, and each of the base station 10 and the terminal 20 may estimate the distance.
  • the position-related information notified from the terminal 20 to the base station 10 does not need to be notified on the wireless communication system 30, and may be notified via another communication system.
  • FIG. 7 is a diagram showing a second example of an operation in which the base station 10 estimates the distance between the base station 10 and the terminal 20 in the wireless communication system 30 according to the first embodiment.
  • the base station 10 analyzes the reference signal from the terminal 20 to obtain the base station 10 without the position-related information from the terminal 20. It is also possible to estimate the distance to the terminal 20.
  • FIG. 8 is a diagram showing a third example of an operation in which the base station 10 estimates the distance between the base station 10 and the terminal 20 in the wireless communication system 30 according to the first embodiment.
  • FIG. 8 shows a method of notifying the base station 10 of the position-related information measured by the terminal 20. Specifically, there are methods such as the following estimation method # 4 to estimation method # 6.
  • Estimating method # 4 The base station 10 and the terminal 20 are equipped with a GPS (Global Positioning System) receiver (not shown).
  • the terminal 20 notifies the base station 10 of the GPS position information of the terminal 20 measured by the GPS receiver as position-related information.
  • the base station 10 uses the GPS position information of the base station 10 measured by the GPS receiver of the base station 10 and the acquired GPS position information of the terminal 20 to determine the distance between the base station 10 and the terminal 20. Can be estimated.
  • Estimating method # 5 A sensor capable of detecting the terminal 20 is installed in the moving area of the terminal 20, and the information detected by the sensor is notified from the sensor or the terminal 20 to the base station 10 as position-related information. May be good.
  • the base station 10 estimates the distance between the base station 10 and the terminal 20 from the information detected by the sensor. can do.
  • the terminal 20 is equipped with a camera (not shown).
  • the terminal 20 may estimate the position of the terminal 20 from the image captured by the camera and notify the base station 10 of the estimated position of the terminal 20 as position-related information.
  • the position-related information notified from the terminal 20 to the base station 10 does not need to be notified on the wireless communication system 30, and may be notified via another communication system.
  • FIG. 9 is a diagram showing a control flow for adjusting the transmission positions of the antennas 17-1 to 17-Ntx in the base station 10 according to the first embodiment.
  • the distance estimation unit 18 estimates the distance between the base station 10 and the terminal 20 from the position-related information. The operation of estimating the distance between the base station 10 and the terminal 20 in the distance estimation unit 18 differs depending on the type of position-related information. For example, when GPS position information is input as position-related information, the distance estimation unit 18 uses the GPS position information of the base station 10 and the GPS position information of the terminal 20 to determine the distance between the base station 10 and the terminal 20. To calculate. The distance estimation unit 18 outputs the calculated distance information to the antenna control unit 19.
  • the antenna control unit 19 generates control information for the antennas 17-1 to 17-Ntx based on the acquired distance information between the base station 10 and the terminal 20, and outputs the control information to the antennas 17-1 to 17-Ntx. To do.
  • the drive unit 171 controls the position of the antenna element 170 based on the control information.
  • the base station 10 can adjust the distance between the antennas 17-1 to 17-Ntx, that is, the transmission position, based on the distance between the base station 10 and the terminal 20.
  • the operation of the terminal 20 is the same as the operation of the base station 10.
  • the distance estimation unit 28 and the antenna control unit 29 perform the same control as the distance estimation unit 18 and the antenna control unit 19 of the base station 10, based on the distance between the base station 10 and the terminal 20.
  • the distance between the antennas 21-1 to 21-Nrx, that is, the receiving position can be adjusted.
  • FIG. 10 is a flowchart showing the operation of the base station 10 according to the first embodiment.
  • the distance estimation unit 18 estimates the distance between the base station 10 and the terminal 20 by using the position-related information or the reference signal acquired from the terminal 20 (step S11).
  • the antenna control unit 19 controls the transmission position of the signal from the antennas 17-1 to 17-Ntx based on the distance between the base station 10 and the terminal 20 estimated by the distance estimation unit 18. Control information for each is generated (step S12).
  • the antennas 17-1 to 17-Ntx control the transmission position of the signal transmitted to the terminal 20 based on the control information for each antenna 17 generated by the antenna control unit 19, and transmit the signal to and from the adjacent antenna 17.
  • the position interval is adjusted (step S13).
  • FIG. 11 is a flowchart showing the operation of the terminal 20 according to the first embodiment.
  • the terminal 20 may acquire the distance between the base station 10 and the terminal 20 from the base station 10 without estimating it by the terminal 20.
  • the distance estimation unit 28 acquires the distance between the base station 10 and the terminal 20 from the base station 10 (step S21).
  • the antenna control unit 29 controls each antenna 21 for controlling the reception position of the signals of the antennas 21-1 to 21-Nrx based on the distance between the base station 10 and the terminal 20 acquired by the distance estimation unit 28. Control information is generated (step S22).
  • the antennas 21-1 to 21-Nrx control the reception position of the signal received from the terminal 20 based on the control information for each antenna 21 generated by the antenna control unit 29, and receive between the antennas 21 and the adjacent antennas 21.
  • the position interval is adjusted (step S23).
  • the operation when the distance estimation unit 28 estimates the distance between the base station 10 and the terminal 20 is the same as the operation of the flowchart of the base station 10 shown in FIG.
  • the base station 10 adjusts the distance between the transmission positions of the antennas 17-1 to 17-Ntx, and the terminal 20 adjusts the distance between the transmission positions of the antennas 21-1 to 21-Nrx. As explained, but not limited to this. In the wireless communication system 30, only the base station 10 may adjust the interval between the transmission positions of the antennas 17-1 to 17-Ntx, and only the terminal 20 may adjust the interval between the transmission positions of the antennas 21-1 to 21-Nrx. You may adjust. Also in this case, in the wireless communication system 30, the base station 10 adjusts the distance between the transmission positions of the antennas 17-1 to 17-Ntx, and the terminal 20 adjusts the distance between the transmission positions of the antennas 21-1 to 21-Nrx. Although the effect is small as compared with the case of the above, it is possible to suppress a decrease in transmission efficiency between the base station 10 and the terminal 20.
  • the configurations other than the drive unit 171 of the antennas 17-1 to 17-Ntx, the distance estimation unit 18, and the antenna control unit 19 are general transmission devices that perform MIMO transmission.
  • the drive unit 171 of the antennas 17-1 to 17-Ntx is a drive device equipped with a motor or the like.
  • the distance estimation unit 18 and the antenna control unit 19 are realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • FIG. 12 is a diagram showing an example in which the processing circuit included in the base station 10 according to the first embodiment is configured by a processor and a memory.
  • the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the base station 10 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 92.
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the base station 10 is eventually executed. It can also be said that these programs cause a computer to execute the procedures and methods of the base station 10.
  • the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 92 includes, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory e.g., EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM).
  • Semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
  • FIG. 13 is a diagram showing an example in which the processing circuit included in the base station 10 according to the first embodiment is configured by dedicated hardware.
  • the processing circuit 93 shown in FIG. 13 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and the like. FPGA (Field Programmable Gate Array) or a combination of these is applicable.
  • Each function of the base station 10 may be realized by the processing circuit 93 for each function, or each function may be collectively realized by the processing circuit 93.
  • the functions of the base station 10 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
  • the hardware configuration of the base station 10 has been described, the hardware configuration of the terminal 20 is also the same.
  • the configurations other than the drive unit 173, the distance estimation unit 28, and the antenna control unit 29 of the antennas 21-1 to 21-Nrx are general receiving devices that perform MIMO transmission.
  • the drive unit 173 of the antennas 21-1 to 21-Nrx is a drive device equipped with a motor or the like.
  • the distance estimation unit 28 and the antenna control unit 29 are realized by a processing circuit.
  • the processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
  • the wireless communication system 30 at least one of the base station 10 and the terminal 20 estimates the distance between the base station 10 and the terminal 20, and the base station 10 and the terminal 20 in the present embodiment. It was decided that at least one of the 20 would transmit and receive signals by adjusting the antenna spacing. As a result, the wireless communication system 30 can realize highly efficient wireless transmission by spatially multiplexing a plurality of signals at the same frequency at the same time.
  • the wireless communication system 30 has a transmission efficiency between the base station 10 and the terminal 20 regardless of the distance between the base station 10 and the terminal 20 when the line-of-sight environment is between the base station 10 and the terminal 20. Can be suppressed.
  • the terminal 20 has a configuration as shown in FIG. 1
  • the base station 10 has a configuration as shown in FIG.
  • the antennas 17-1 to 17-Ntx of the base station 10 and the antennas 21-1 to 21-Nrx of the terminal 20 each include one antenna element.
  • the antennas 17-1 to 17-Ntx of the base station 10 and the antennas 21-1 to 21-Nrx of the terminal 20 include a plurality of antenna elements will be described.
  • digital chains such as DA conversion units 15-1 to 15-Ntx and frequency conversion units 16-1 to 16-Ntx are connected to a single antenna element 170 of the base station 10, and the terminal 20 is simply connected. It was assumed that digital chains such as frequency conversion units 22-1 to 22-Nrx and AD conversion units 23-1 to 23-Nrx would be connected to one antenna element 172.
  • one digital chain in wireless communication using a carrier frequency of several tens of GHz class, one digital chain is connected to a sub-array by APAA (Active Phased Array Antenna) that forms an analog beam by analog-synthesizing a plurality of antenna elements. It is assumed that it will be done.
  • the base station 10 and the terminal 20 perform MIMO transmission using a plurality of subarrays.
  • the configuration of the base station 10 is the same as the configuration of the base station 10 in the first embodiment shown in FIG. 1, but the configuration of the antennas 17-1 to 17-Ntx is the configuration of the first embodiment. It is different from the configuration at the time of.
  • FIG. 14 is a diagram showing a configuration example of the antenna 17 of the base station 10 according to the second embodiment.
  • the antenna 17 includes a sub-array 177.
  • the sub-array 177 includes variable phase shifters 174-1 to 174-n, variable amplifiers 175-1 to 175-n, and antenna elements 176-1 to 176-n. Note that n is an integer of 2 or more.
  • variable phase shifters 174-1 to 174-n adjust the phase of the transmission signal based on the control information generated by the antenna control unit 19.
  • variable phase shifters 174 When the variable phase shifters 174-1 to 174-n are not distinguished, they may be referred to as variable phase shifters 174.
  • the variable amplifiers 175-1 to 175-n amplify the transmission signal based on the control information generated by the antenna control unit 19.
  • variable amplifiers 175-1 to 175-n are not distinguished, they may be referred to as variable amplifiers 175.
  • the antenna elements 176-1 to 176-n transmit a signal toward the terminal 20. When the antenna elements 176-1 to 176-n are not distinguished, they may be referred to as antenna elements 176.
  • One variable phase shifter 174 and one variable amplifier 175 are connected to one antenna element 176. That is, the sub-array 177 includes a plurality of antenna elements 176, a variable amplifier 175 for each antenna element 176, and a variable phase shifter 174 for each antenna element 176.
  • the base station 10 forms a beam by synthesizing a plurality of signals transmitted from the antenna elements 176-1 to 176-n, that is, a plurality of radiated radio waves.
  • the base station 10 can control the shape of the formed beam by controlling the settings of the individual variable phase shifters 174 and the variable amplifier 175.
  • the antennas 17-1 to 17-Ntx control the operation of the plurality of variable amplifiers 175 and the plurality of variable phase shifters 174 based on the control information, and the beam formed by the plurality of antenna elements 176.
  • the transmission position of the antenna 17, which is the center position, is adjusted.
  • the base station 10 is a transmission device that performs MIMO transmission using a plurality of sub-arrays 177.
  • each antenna element 176 in the antennas 17-1 to 17-Ntx may be in the vertical direction, in the horizontal direction, or in a rectangular shape.
  • FIG. 15 is a diagram showing an example when the antenna element 176 is arranged in the vertical direction in the antenna 17 according to the second embodiment.
  • FIG. 16 is a diagram showing an example when the antenna element 176 is arranged in the lateral direction in the antenna 17 according to the second embodiment.
  • FIG. 17 is a diagram showing an example when the antenna element 176 is arranged in a rectangular shape in the antenna 17 according to the second embodiment. In FIGS. 15 to 17, only one circle is assigned the symbol “176” of the antenna element, but it is assumed that all the circles are the antenna element 176.
  • the configuration of the terminal 20 is the same as the configuration of the terminal 20 in the first embodiment shown in FIG. 4, but the configuration of the antennas 21-1 to 21-Nrx is different from the configuration in the first embodiment.
  • FIG. 18 is a diagram showing a configuration example of the antenna 21 of the terminal 20 according to the second embodiment.
  • the antenna 21 includes a sub array 181.
  • the sub-array 181 includes antenna elements 178-1 to 178-n, variable amplifiers 179-1 to 179-n, and variable phase shifters 180-1 to 180-n.
  • the antenna elements 178-1 to 178-n receive the signal from the base station 10. When the antenna elements 178-1 to 178-n are not distinguished, they may be referred to as antenna elements 178.
  • the variable amplifiers 179-1 to 179-n amplify the received signal based on the control information generated by the antenna control unit 29. When the variable amplifiers 179-1 to 179-n are not distinguished, they may be referred to as variable amplifiers 179.
  • the variable phase shifters 180-1 to 180-n adjust the phase of the received signal based on the control information generated by the antenna control unit 29. When the variable phase shifters 180-1 to 180-n are not distinguished, they may be referred to as variable phase shifters 180.
  • One variable amplifier 179 and one variable phase shifter 180 are connected to one antenna element 178.
  • the sub-array 181 includes a plurality of antenna elements 178, a variable amplifier 179 for each antenna element 178, and a variable phase shifter 180 for each antenna element 178.
  • the terminal 20 forms a beam by synthesizing a plurality of signals received by the antenna elements 178-1 to 178-n, that is, a plurality of radio waves.
  • the terminal 20 can control the shape of the formed beam by controlling the settings of the individual variable amplifier 179 and the variable phase shifter 180.
  • the antennas 21-1 to 21-Nrx control the operation of the plurality of variable amplifiers 179 and the plurality of variable phase shifters 180 based on the control information, and the beams formed by the plurality of antenna elements 178.
  • the reception position of the antenna 21, which is the central position is adjusted.
  • the terminal 20 is a receiving device that performs MIMO transmission using a plurality of sub-arrays 181.
  • the arrangement of the antenna elements 178 in the antennas 21-1 to 21-Nrx may be in the vertical direction or in the horizontal direction as in the arrangement of the antenna elements 176 in the antennas 17-1 to 17-Ntx described above. It may be directional or rectangular.
  • one sub-array 177 includes a plurality of antenna elements 176-1 to 176-n, a plurality of variable amplifiers 175-1 to 175-n, and a plurality of variable phase shifters 174-1 to 174-. It is composed of n.
  • the sub-array 177 can invalidate some of the antenna elements 176 by setting the power amplification factor of the variable amplifier 175 connected to some of the antenna elements 176 to be small and increasing the pass loss to the antenna element 176. it can.
  • FIG. 19 is a diagram showing an example in which the base station 10 according to the second embodiment adjusts the transmission position of the antennas 17-1 to 17-Ntx. It is assumed that the control information generated by the antenna control unit 19 in the base station 10 includes the number of the antenna element 176 to be invalidated for each sub-array 177.
  • the sub array 177 can change the phase center of each sub array 177, that is, the transmission position of the electrical antenna 17, by disabling the antenna element 176 having the number indicated by the control information. This is equivalent to changing the spacing of the sub-array 177, that is, the antenna 17.
  • FIG. 19 is a diagram showing an example in which the base station 10 according to the second embodiment adjusts the transmission position of the antennas 17-1 to 17-Ntx. It is assumed that the control information generated by the antenna control unit 19 in the base station 10 includes the number of the antenna element 176 to be invalidated for each sub-array 177.
  • the sub array 177 can change the phase center of each sub array 177, that is,
  • the base station 10 can adjust the interval of the sub-array 177.
  • the antenna element 176 is invalidated by adjusting the power amplification factor of the variable amplifier 175, but the method is not limited to this.
  • the sub-array 177 includes a switch (not shown) for each antenna element 176, and the antenna element 176 can be disabled by switching the switch on and off.
  • the antennas 17-1 to 17-Ntx may further include a drive unit 171.
  • the drive unit 171 controls the position of the sub array 177 based on the control information.
  • the base station 10 can adjust the distance between the antennas 17-1 to 17-Ntx, that is, the transmission position, based on the distance between the base station 10 and the terminal 20.
  • the operation of the terminal 20 is the same as the operation of the base station 10.
  • the distance estimation unit 28 and the antenna control unit 29 perform the same control as the distance estimation unit 18 and the antenna control unit 19 of the base station 10, based on the distance between the base station 10 and the terminal 20.
  • the distance between the antennas 21-1 to 21-Nrx, that is, the receiving position can be adjusted.
  • the hardware configurations of the base station 10 and the terminal 20 are the same as in the first embodiment.
  • the base station 10 and the terminal 20 are provided with a plurality of sub-arrays in the present embodiment. Even in this case, the wireless communication system 30 can obtain the same effect as that of the first embodiment.
  • the wireless communication system 30 may be composed of the base station 10 of the first embodiment and the terminal 20 of the second embodiment, or the base station 10 of the second embodiment and the terminal 20 of the first embodiment. It may be configured.
  • Embodiment 3 In the first and second embodiments, the case where the base station 10 as the transmitting device transmits a signal to the terminal 20 as the receiving device has been described, but it is also applied to a wireless communication system that transmits and receives signals in both directions. It is possible.
  • FIG. 20 is a diagram showing a configuration example of the wireless communication system 30a according to the third embodiment.
  • the wireless communication system 30a is a system in which the base station 10a and the terminal 20a can transmit and receive signals in both directions.
  • Each of the base station 10a and the terminal 20a includes a transmitting device 41 and a receiving device 42.
  • the transmission device 41 has the same configuration as the base station 10 described in the first embodiment or the second embodiment.
  • the receiving device 42 has the same configuration as the terminal 20 described in the first embodiment or the second embodiment.
  • the operation of the transmitting device 41 is the same as that of the base station 10 of the first or second embodiment, and the operation of the receiving device 42 is the same as that of the terminal 20 of the first or second embodiment. Is.
  • the base station 10a and the terminal 20a include a distance estimation unit 18, an antenna control unit 19, and antennas 17-1 to 17-Ntx included in the transmission device 41, and a distance estimation unit 28 and an antenna control unit included in the reception device 42. 29 and antennas 21-1 to 21-Nrx may be provided with only one of them.
  • the base station 10a and the terminal 20a communicate in both directions, that is, transmit and receive signals. Even in this case, the wireless communication system 30a can obtain the same effect as that of the first embodiment.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A base station (10) in a wireless communication system comprising the base station (10) capable of transmitting a plurality of signals and a terminal capable of receiving a plurality of signals, the base station (10) being provided with: a distance estimation unit (18) that estimates a distance between the base station (10) and the terminal by use of information acquired in communication with the terminal; an antenna control unit (19) that, on the basis of the distance estimated by the distance estimation unit (18), generates, for each of a plurality of antennas (17-1 to 17-Ntx), control information for controlling the transmission position of signals from the antenna; and the plurality of antennas (17-1 to 17-Ntx) for which, on the basis of the control information for the respective antennas, the transmission positions of the signals to be transmitted to the terminal are controlled and the intervals of the transmission positions between respective adjacent antennas are adjusted.

Description

送信装置、受信装置、無線通信システム、送信アンテナ調整方法および受信アンテナ調整方法Transmitter, receiver, wireless communication system, transmit antenna adjustment method and receive antenna adjustment method
 本発明は、複数のアンテナを備える送信装置、受信装置、無線通信システム、送信アンテナ調整方法および受信アンテナ調整方法に関する。 The present invention relates to a transmitting device including a plurality of antennas, a receiving device, a wireless communication system, a transmitting antenna adjusting method, and a receiving antenna adjusting method.
 無線通信分野において高速伝送を実現する方法として、送信装置および受信装置が複数のアンテナを使用するMIMO(Multiple Input Multiple Output)の伝送技術が知られている。MIMOによる伝送の特徴として、複数の送信データを空間上に多重することで、利用する周波数の帯域を広げることなく、多重する送信データ分だけ通信速度を高速化できる。 In the field of wireless communication, MIMO (Multiple Input Multiple Output) transmission technology in which a transmitting device and a receiving device use a plurality of antennas is known as a method for realizing high-speed transmission. As a feature of transmission by MIMO, by multiplexing a plurality of transmission data in space, the communication speed can be increased by the amount of the multiple transmission data without expanding the band of the frequency to be used.
 MIMO伝送の性能は、送信装置が備える複数のアンテナと受信装置が備える複数のアンテナとの間の伝達係数から成るチャネル行列の特性によって異なる。チャネル行列の固有値が同電力である場合、多重する複数の送信データの受信品質が同等となり、シャノン理論上のMIMO伝送の最大伝送効率となる。一方、チャネル行列において特定の固有値が極端に大きい場合、複数の送信データを空間上に多重できなくなり、伝送効率が低下してしまう。このような技術が、非特許文献1において開示されている。 The performance of MIMO transmission differs depending on the characteristics of the channel matrix consisting of the transmission coefficients between the plurality of antennas included in the transmitting device and the plurality of antennas provided in the receiving device. When the eigenvalues of the channel matrix are the same power, the reception quality of the plurality of multiplex transmission data is the same, and the maximum transmission efficiency of MIMO transmission in Shannon theory is obtained. On the other hand, when a specific eigenvalue is extremely large in the channel matrix, it becomes impossible to multiplex a plurality of transmission data in space, and the transmission efficiency is lowered. Such a technique is disclosed in Non-Patent Document 1.
 非特許文献1には、送信装置と受信装置との間が遮蔽されていない、いわゆる見通し環境である場合、チャネル行列の固有値が同電力となる条件として、送信装置と受信装置との間の理想的な位置関係すなわち距離が示されている。しかしながら、理想的とされる距離は限定的である。そのため、送信装置と受信装置との間の距離が理想的な距離から外れてしまうと伝送効率が低下する、という問題があった。 Non-Patent Document 1 states that in a so-called line-of-sight environment in which the transmitter and receiver are not shielded, an ideal between the transmitter and the receiver is provided as a condition that the eigenvalues of the channel matrices have the same power. Positional relationship, that is, distance is shown. However, the ideal distance is limited. Therefore, there is a problem that the transmission efficiency is lowered when the distance between the transmitting device and the receiving device deviates from the ideal distance.
 本発明は、上記に鑑みてなされたものであって、送信装置と受信装置との間が見通し環境である場合において、受信装置との間の伝送効率の低下を抑制可能な送信装置を得ることを目的とする。 The present invention has been made in view of the above, and obtains a transmitting device capable of suppressing a decrease in transmission efficiency between a transmitting device and a receiving device when the line-of-sight environment is between the transmitting device and the receiving device. With the goal.
 上述した課題を解決し、目的を達成するために、本発明は、複数の信号を送信可能な送信装置および複数の信号を受信可能な受信装置を備える無線通信システムにおける送信装置である。送信装置は、受信装置との通信で取得した情報を用いて、送信装置および受信装置との間の距離を推定する距離推定部と、距離推定部で推定された距離に基づいて、複数のアンテナからの信号の送信位置を制御するためのアンテナ毎の制御情報を生成するアンテナ制御部と、アンテナ毎の制御情報に基づいて受信装置に送信する信号の送信位置を制御し、隣接するアンテナとの間の送信位置の間隔を調整する複数のアンテナと、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention is a transmission device in a wireless communication system including a transmission device capable of transmitting a plurality of signals and a reception device capable of receiving a plurality of signals. The transmitting device uses information acquired in communication with the receiving device to estimate the distance between the transmitting device and the receiving device, and a plurality of antennas based on the distance estimated by the distance estimating unit. An antenna control unit that generates control information for each antenna to control the transmission position of the signal from, and an adjacent antenna that controls the transmission position of the signal to be transmitted to the receiving device based on the control information for each antenna. It is characterized by including a plurality of antennas for adjusting the interval between transmission positions.
 本発明に係る送信装置は、送信装置と受信装置との間が見通し環境である場合において、受信装置との間の伝送効率の低下を抑制できる、という効果を奏する。 The transmitting device according to the present invention has an effect that a decrease in transmission efficiency between the transmitting device and the receiving device can be suppressed when there is a line-of-sight environment between the transmitting device and the receiving device.
実施の形態1に係る基地局の構成例を示すブロック図Block diagram showing a configuration example of a base station according to the first embodiment 実施の形態1に係る基地局のアンテナの構成例を示す図The figure which shows the configuration example of the antenna of the base station which concerns on Embodiment 1. 実施の形態1に係る基地局が行うアンテナの送信位置の調整のイメージを示す図The figure which shows the image of the adjustment of the transmission position of the antenna performed by the base station which concerns on Embodiment 1. 実施の形態1に係る端末の構成例を示すブロック図Block diagram showing a configuration example of a terminal according to the first embodiment 実施の形態1に係る端末のアンテナの構成例を示す図The figure which shows the configuration example of the antenna of the terminal which concerns on Embodiment 1. 実施の形態1に係る無線通信システムにおいて、基地局が基地局と端末との間の距離を推定する動作の第1の例を示す図The figure which shows the 1st example of the operation which estimates the distance between a base station and a terminal in the wireless communication system which concerns on Embodiment 1. 実施の形態1に係る無線通信システムにおいて、基地局が基地局と端末との間の距離を推定する動作の第2の例を示す図The figure which shows the 2nd example of the operation which the base station estimates the distance between a base station and a terminal in the wireless communication system which concerns on Embodiment 1. 実施の形態1に係る無線通信システムにおいて、基地局が基地局と端末との間の距離を推定する動作の第3の例を示す図The figure which shows the 3rd example of the operation which estimates the distance between a base station and a terminal in the wireless communication system which concerns on Embodiment 1. 実施の形態1に係る基地局においてアンテナの送信位置を調整する制御の流れを示す図The figure which shows the flow of the control which adjusts the transmission position of an antenna in the base station which concerns on Embodiment 1. 実施の形態1に係る基地局の動作を示すフローチャートA flowchart showing the operation of the base station according to the first embodiment. 実施の形態1に係る端末の動作を示すフローチャートA flowchart showing the operation of the terminal according to the first embodiment. 実施の形態1に係る基地局が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit provided in the base station which concerns on Embodiment 1 is configured by a processor and a memory 実施の形態1に係る基地局が備える処理回路を専用のハードウェアで構成する場合の例を示す図The figure which shows the example of the case where the processing circuit provided in the base station which concerns on Embodiment 1 is configured by the dedicated hardware. 実施の形態2に係る基地局のアンテナの構成例を示す図The figure which shows the configuration example of the antenna of the base station which concerns on Embodiment 2. 実施の形態2に係るアンテナにおいてアンテナ素子を縦方向に配置したときの例を示す図The figure which shows the example when the antenna element is arranged in the vertical direction in the antenna which concerns on Embodiment 2. 実施の形態2に係るアンテナにおいてアンテナ素子を横方向に配置したときの例を示す図The figure which shows the example when the antenna element is arranged in the lateral direction in the antenna which concerns on Embodiment 2. 実施の形態2に係るアンテナにおいてアンテナ素子を矩形に配置したときの例を示す図The figure which shows the example when the antenna element is arranged in a rectangle in the antenna which concerns on Embodiment 2. 実施の形態2に係る端末のアンテナの構成例を示す図The figure which shows the configuration example of the antenna of the terminal which concerns on Embodiment 2. 実施の形態2に係る基地局がアンテナの送信位置を調整する例を示す図The figure which shows the example which the base station which concerns on Embodiment 2 adjusts the transmission position of an antenna. 実施の形態3に係る無線通信システムの構成例を示す図The figure which shows the configuration example of the wireless communication system which concerns on Embodiment 3.
 以下に、本発明の実施の形態に係る送信装置、受信装置、無線通信システム、送信アンテナ調整方法および受信アンテナ調整方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, the transmitting device, the receiving device, the wireless communication system, the transmitting antenna adjusting method, and the receiving antenna adjusting method according to the embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 本実施の形態では、複数の信号を送信可能な基地局および複数の信号を受信可能な端末を備える無線通信システム、すなわち基地局および端末がMIMO伝送による無線通信を行う無線通信システムにおいて、具体的に、基地局から端末に信号を送信する場合について説明する。
Embodiment 1.
In the present embodiment, a wireless communication system including a base station capable of transmitting a plurality of signals and a terminal capable of receiving a plurality of signals, that is, a wireless communication system in which the base station and the terminal perform wireless communication by MIMO transmission is specified. The case where a signal is transmitted from the base station to the terminal will be described.
 図1は、本発明の実施の形態1に係る基地局10の構成例を示すブロック図である。基地局10は、図示しない端末に信号を送信する送信装置である。基地局10は、信号生成部11-1~11-Mと、変調部12-1~12-Mと、プリコーダ13と、OFDM(Orthogonal Frequency Division Multiplexing)変調部14-1~14-Ntxと、DA(Digital to Analog)変換部15-1~15-Ntxと、周波数変換部16-1~16-Ntxと、アンテナ17-1~17-Ntxと、距離推定部18と、アンテナ制御部19と、を備える。なお、Mは2以上の整数であり、Ntxは2以上の整数である。 FIG. 1 is a block diagram showing a configuration example of the base station 10 according to the first embodiment of the present invention. The base station 10 is a transmission device that transmits a signal to a terminal (not shown). The base station 10 includes signal generation units 11-1 to 11-M, modulation units 12-1 to 12-M, a precoder 13, and OFDM (Orthogonal Frequency Division Multiplexing) modulation units 14-1 to 14-Ntx. DA (Digital to Analog) conversion units 15-1 to 15-Ntx, frequency conversion units 16-1 to 16-Ntx, antennas 17-1 to 17-Ntx, distance estimation unit 18, and antenna control unit 19. , Equipped with. Note that M is an integer of 2 or more, and Ntx is an integer of 2 or more.
 信号生成部11-1~11-Mは、ユーザデータから誤り訂正により送信データビット列を生成する。なお、図1では信号生成部を「SIG」と記載している。 The signal generation units 11-1 to 11-M generate a transmission data bit string from the user data by error correction. In FIG. 1, the signal generation unit is described as "SIG".
 変調部12-1~12-Mは、信号生成部11-1~11-Mで生成された送信データビット列を変調し、送信シンボルsを生成する。送信シンボルsは、式(1)によって表される。なお、図1では変調部を「MOD」と記載している。 The modulation units 12-1 to 12-M modulate the transmission data bit string generated by the signal generation units 11-1 to 11-M to generate transmission symbols s. The transmission symbol s is represented by the equation (1). In FIG. 1, the modulation unit is described as "MOD".
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 プリコーダ13は、変調部12-1~12-Mで生成された送信シンボルsに対して行列演算し、Ntx個の送信シンボルxを生成する。送信シンボルxは、式(2)によって表される。行列演算で使用される行列が式(3)で表されるWとすると、行列演算後の送信シンボルxは式(4)で表される。なお、図1ではプリコーダを「Precoder」と記載している。 The precoder 13 performs a matrix operation on the transmission symbols s generated by the modulation units 12-1 to 12-M, and generates Ntx transmission symbols x. The transmission symbol x is represented by the equation (2). Assuming that the matrix used in the matrix operation is W represented by the equation (3), the transmission symbol x after the matrix operation is expressed by the equation (4). In FIG. 1, the precoder is described as "Precoder".
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 OFDM変調部14-1~14-Ntxは、プリコーダ13で生成された送信シンボルxをOFDM変調し、周波数領域信号を時間領域信号に変換する。なお、図1では、OFDM変調部を「OFDMMOD」と記載している。 The OFDM modulation units 14-1 to 14-Ntx OFDM-modulate the transmission symbol x generated by the precoder 13 and convert the frequency domain signal into a time domain signal. In FIG. 1, the OFDM modulation unit is described as "OFDMMOD".
 DA変換部15-1~15-Ntxは、OFDM変調部14-1~14-Ntxで時間領域信号に変換された送信シンボルxを、デジタル信号からアナログ信号に変換する。なお、図1では、DA変換部を「DA」と記載している。 The DA conversion units 15-1 to 15-Ntx convert the transmission symbol x converted into a time domain signal by the OFDM modulation units 14-1 to 14-Ntx from a digital signal to an analog signal. In FIG. 1, the DA conversion unit is described as "DA".
 周波数変換部16-1~16-Ntxは、DA変換部15-1~15-Ntxでアナログ信号に変換された送信シンボルの周波数を、無線通信システムの搬送波周波数に変換する。なお、図1では、周波数変換部を「TX」と記載している。 The frequency conversion units 16-1 to 16-Ntx convert the frequency of the transmission symbol converted into an analog signal by the DA conversion units 15-1 to 15-Ntx into the carrier frequency of the wireless communication system. In FIG. 1, the frequency conversion unit is described as "TX".
 アンテナ17-1~17-Ntxは、周波数変換部16-1~16-Ntxで搬送波周波数に変換された送信シンボル、すなわち信号を端末に送信する。具体的には、アンテナ17-1~17-Ntxは、端末に送信する信号に基づく電波を空間に放射する。このとき、アンテナ17-1~17-Ntxは、後述するアンテナ制御部19で生成されたアンテナ17-1~17-Ntx毎の制御情報に基づいて、端末に送信する信号の送信位置を制御し、隣接するアンテナとの間の送信位置の間隔を調整する。なお、アンテナ17-1~17-Ntxが送信する信号を、送信信号と称することがある。また、アンテナ17-1~17-Ntxを区別しない場合、アンテナ17と称することがある。 Antennas 17-1 to 17-Ntx transmit a transmission symbol converted to a carrier frequency by the frequency conversion unit 16-1 to 16-Ntx, that is, a signal to a terminal. Specifically, the antennas 17-1 to 17-Ntx radiate radio waves based on the signal transmitted to the terminal into space. At this time, the antennas 17-1 to 17-Ntx control the transmission position of the signal to be transmitted to the terminal based on the control information for each of the antennas 17-1 to 17-Ntx generated by the antenna control unit 19 described later. , Adjust the transmission position spacing between adjacent antennas. The signal transmitted by the antennas 17-1 to 17-Ntx may be referred to as a transmission signal. When antennas 17-1 to 17-Ntx are not distinguished, they may be referred to as antenna 17.
 距離推定部18は、端末との通信で取得した情報を用いて、基地局10と受信装置である端末との間の距離を推定する。距離推定部18における基地局10と端末との間の距離の推定方法については後述する。 The distance estimation unit 18 estimates the distance between the base station 10 and the terminal which is the receiving device by using the information acquired by the communication with the terminal. The method of estimating the distance between the base station 10 and the terminal in the distance estimation unit 18 will be described later.
 アンテナ制御部19は、距離推定部18で推定された基地局10と端末との間の距離に基づいて、複数のアンテナ17-1~17-Ntxからの信号の送信位置を制御するためのアンテナ17毎の制御情報を生成する。前述の非特許文献1に記載されているように、基地局10と端末との間が見通し環境である場合、基地局10が備えるアンテナ17-1~17-Ntxの間隔、端末が備える後述する複数のアンテナの間隔、および基地局10と端末との間の距離の比を調整することで、チャネル行列の複数の固有値の値を互いに等しい電力とすることができる。アンテナ制御部19は、制御情報によって、アンテナ17-1~17-Ntxの動作を制御して、アンテナ17-1~17-Ntxからの送信信号の送信位置を変更させる。 The antenna control unit 19 is an antenna for controlling the transmission position of signals from the plurality of antennas 17-1 to 17-Ntx based on the distance between the base station 10 and the terminal estimated by the distance estimation unit 18. The control information for each 17 is generated. As described in Non-Patent Document 1 described above, when the line-of-sight environment is between the base station 10 and the terminal, the distance between the antennas 17-1 to 17-Ntx provided in the base station 10 and the distance between the antennas 17-1 to 17-Ntx provided in the terminal will be described later. By adjusting the distance between the plurality of antennas and the ratio of the distances between the base station 10 and the terminal, the values of the plurality of eigenvalues of the channel matrix can be equal to each other. The antenna control unit 19 controls the operation of the antennas 17-1 to 17-Ntx according to the control information, and changes the transmission position of the transmission signal from the antennas 17-1 to 17-Ntx.
 ここで、アンテナ17の構成について説明する。図2は、実施の形態1に係る基地局10のアンテナ17の構成例を示す図である。アンテナ17は、アンテナ素子170と、駆動部171と、を備える。アンテナ素子170は、端末に向けて送信信号を送信する。駆動部171は、アンテナ制御部19で生成された制御情報に基づいて、アンテナ素子170の位置を移動することができる。すなわち、駆動部171は、アンテナ制御部19で生成された制御情報に基づいて、アンテナ素子170の位置であるアンテナ17の送信位置を調整する。 Here, the configuration of the antenna 17 will be described. FIG. 2 is a diagram showing a configuration example of the antenna 17 of the base station 10 according to the first embodiment. The antenna 17 includes an antenna element 170 and a drive unit 171. The antenna element 170 transmits a transmission signal toward the terminal. The drive unit 171 can move the position of the antenna element 170 based on the control information generated by the antenna control unit 19. That is, the drive unit 171 adjusts the transmission position of the antenna 17, which is the position of the antenna element 170, based on the control information generated by the antenna control unit 19.
 図3は、実施の形態1に係る基地局10が行うアンテナ17-1~17-Ntxの送信位置の調整のイメージを示す図である。図3において、図3(a)はアンテナ17-1~17-Ntxの送信位置の調整前の状態を示し、図3(b)はアンテナ17-1~17-Ntxの送信位置の調整後の状態を示す。基地局10は、図3に示すように、アンテナ17-1~17-Ntxの間隔dを、基地局10と端末との間の距離に基づいて調整し、間隔d+ΔLにすることができる。アンテナ制御部19は、基地局10が備えるアンテナ17-1~17-Ntxによるアンテナアレーの中心と端末が備える複数のアンテナによるアンテナアレーの中心とが正対する場合、非特許文献1に記載されている式を用いて等間隔リニアアレーを想定すると、式(5)で表される式に基づいて、アンテナ17毎の制御情報を生成することができる。 FIG. 3 is a diagram showing an image of adjustment of the transmission position of the antennas 17-1 to 17-Ntx performed by the base station 10 according to the first embodiment. In FIG. 3, FIG. 3A shows the state before adjusting the transmission position of the antennas 17-1 to 17-Ntx, and FIG. 3B shows the state after adjusting the transmission position of the antennas 17-1 to 17-Ntx. Indicates the state. As shown in FIG. 3, the base station 10 can adjust the distance d between the antennas 17-1 to 17-Ntx based on the distance between the base station 10 and the terminal to obtain the distance d + ΔL. The antenna control unit 19 is described in Non-Patent Document 1 when the center of the antenna array by the antennas 17-1 to 17-Ntx included in the base station 10 and the center of the antenna array by the plurality of antennas included in the terminal face each other. Assuming an evenly spaced linear array using the above equations, control information for each antenna 17 can be generated based on the equation represented by the equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)において、dは基地局10が備えるアンテナ17-1~17-Ntxの素子間隔、dは端末が備える複数のアンテナの素子間隔、Vは基地局10および端末のうちアンテナ素子数の多い方の数、λは波長、Rは基地局10と端末との間の距離である。アンテナ17-1~17-Ntxは、制御情報に基づいて、駆動部171の動作を制御し、アンテナ素子170の位置であるアンテナ17の送信位置を調整することができる。 In the formula (5), d t is the element spacing of antennas 17-1 ~ 17-Ntx the base station 10 is provided, d r is the element spacing of a plurality of antennas provided in the terminal, V is the base station 10 and the antenna elements of the terminal The larger number, λ is the wavelength, and R is the distance between the base station 10 and the terminal. The antennas 17-1 to 17-Ntx can control the operation of the drive unit 171 and adjust the transmission position of the antenna 17, which is the position of the antenna element 170, based on the control information.
 つぎに、端末の構成について説明する。図4は、実施の形態1に係る端末20の構成例を示すブロック図である。端末20は、基地局10からの送信信号を受信する受信装置である。端末20は、アンテナ21-1~21-Nrxと、周波数変換部22-1~22-Nrxと、AD(Analog to Digital)変換部23-1~23-Nrxと、OFDM復調部24-1~24-Nrxと、ポストコーダ25と、復調部26-1~26-Mと、復号部27-1~27-Mと、距離推定部28と、アンテナ制御部29と、を備える。なお、Nrxは2以上の整数である。 Next, the configuration of the terminal will be described. FIG. 4 is a block diagram showing a configuration example of the terminal 20 according to the first embodiment. The terminal 20 is a receiving device that receives a transmission signal from the base station 10. The terminal 20 includes antennas 21-1 to 21-Nrx, frequency conversion units 22-1 to 22-Nrx, AD (Analog to Digital) conversion units 23-1 to 23-Nrx, and OFDM demodulation units 24-1-1. It includes 24-Nrx, a postcoder 25, demodulation units 26-1 to 26-M, decoding units 27-1 to 27-M, a distance estimation unit 28, and an antenna control unit 29. Nrx is an integer of 2 or more.
 アンテナ21-1~21-Nrxは、基地局10から送信される信号を受信する。具体的には、アンテナ21-1~21-Nrxは、空間に放射された電波を受信する。このとき、アンテナ21-1~21-Nrxは、後述するアンテナ制御部29で生成されたアンテナ21-1~21-Nrx毎の制御情報に基づいて、基地局10からの信号を受信する受信位置を制御し、隣接するアンテナとの間の受信位置の間隔を調整する。なお、アンテナ21-1~21-Nrxを区別しない場合、アンテナ21と称することがある。ここで、アンテナ21の構成について説明する。図5は、実施の形態1に係る端末20のアンテナ21の構成例を示す図である。アンテナ21は、アンテナ素子172と、駆動部173と、を備える。アンテナ素子172は、基地局10からの信号を受信し、受信信号を出力する。駆動部173は、アンテナ制御部29で生成された制御情報に基づいて、アンテナ素子172の位置を移動することができる。すなわち、駆動部173は、アンテナ制御部29で生成された制御情報に基づいて、アンテナ素子172の位置であるアンテナ21の受信位置を調整する。 Antennas 21-1 to 21-Nrx receive the signal transmitted from the base station 10. Specifically, the antennas 21-1 to 21-Nrx receive radio waves radiated into space. At this time, the antennas 21-1 to 21-Nrx are receiving positions for receiving the signal from the base station 10 based on the control information for each of the antennas 21-1 to 21-Nrx generated by the antenna control unit 29 described later. To adjust the distance between the receiving position and the adjacent antenna. When the antennas 21-1 to 21-Nrx are not distinguished, they may be referred to as an antenna 21. Here, the configuration of the antenna 21 will be described. FIG. 5 is a diagram showing a configuration example of the antenna 21 of the terminal 20 according to the first embodiment. The antenna 21 includes an antenna element 172 and a drive unit 173. The antenna element 172 receives the signal from the base station 10 and outputs the received signal. The drive unit 173 can move the position of the antenna element 172 based on the control information generated by the antenna control unit 29. That is, the drive unit 173 adjusts the reception position of the antenna 21, which is the position of the antenna element 172, based on the control information generated by the antenna control unit 29.
 周波数変換部22-1~22-Nrxは、アンテナ21-1~21-Nrxで受信された搬送波周波数の受信信号すなわち電波を、ベースバンド信号に変換する。なお、図4では、周波数変換部を「RX」と記載している。 The frequency conversion units 22-1 to 22-Nrx convert the received signal of the carrier frequency, that is, the radio wave received by the antennas 21-1 to 21-Nrx, into a baseband signal. In FIG. 4, the frequency conversion unit is described as "RX".
 AD変換部23-1~23-Nrxは、周波数変換部22-1~22-Nrxで変換されたベースバンド信号を、アナログ信号からデジタル信号に変換する。なお、図4では、AD変換部を「AD」と記載している。 The AD conversion units 23-1 to 23-Nrx convert the baseband signal converted by the frequency conversion units 22-1 to 22-Nrx from an analog signal to a digital signal. In FIG. 4, the AD conversion unit is described as "AD".
 OFDM復調部24-1~24-Nrxは、AD変換部23-1~23-Nrxでデジタル信号に変換されたベースバンド信号をOFDM復調し、時間領域信号を周波数領域信号の受信信号yに変換する。受信信号yは、式(6)で表される。なお、図4では、OFDM復調部を「OFDMDEM」と記載している。 The OFDM demodulation units 24-1 to 24-Nrx OFDM demodulate the baseband signal converted into a digital signal by the AD conversion units 23-1 to 23-Nrx, and convert the time domain signal into the reception signal y of the frequency domain signal. To do. The received signal y is represented by the equation (6). In FIG. 4, the OFDM demodulation unit is described as "OFDMDEM".
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ポストコーダ25は、OFDM復調部24-1~24-Nrxで変換された受信信号yに対して行列演算し、M個のシンボルrを生成する。シンボルrは式(7)によって表される。行列演算で使用される行列が式(8)で表されるVとすると、行列演算後のシンボルrは式(9)で表される。なお、図4ではポストコーダを「Postcoder」と記載している。 The post coder 25 performs a matrix operation on the received signal y converted by the OFDM demodulation units 24-1 to 24-Nrx, and generates M symbols r. The symbol r is represented by the equation (7). Assuming that the matrix used in the matrix operation is V represented by the equation (8), the symbol r after the matrix operation is expressed by the equation (9). In FIG. 4, the post coder is described as "Postcoder".
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 復調部26-1~26-Mは、ポストコーダ25で生成されたシンボルrをビット列に変換する。なお、図4では復調部を「DEM」と記載している。 The demodulation units 26-1 to 26-M convert the symbol r generated by the post coder 25 into a bit string. In FIG. 4, the demodulation unit is described as "DEM".
 復号部27-1~27-Mは、復調部26-1~26-Mで変換されたビット列を誤り訂正により復号する。なお、図4では復号部を「DEC」と記載している。 The decoding units 27-1 to 27-M decode the bit strings converted by the demodulation units 26-1 to 26-M by error correction. In FIG. 4, the decoding unit is described as "DEC".
 距離推定部28は、基地局10との通信において取得した情報を用いて、基地局10と端末20との間の距離を推定する。距離推定部28における基地局10と端末20との間の距離の推定方法については後述する。 The distance estimation unit 28 estimates the distance between the base station 10 and the terminal 20 by using the information acquired in the communication with the base station 10. The method of estimating the distance between the base station 10 and the terminal 20 in the distance estimation unit 28 will be described later.
 アンテナ制御部29は、距離推定部28で推定された基地局10と端末20との間の距離に基づいて、複数のアンテナ21-1~21-Nrxの信号の受信位置を制御するためのアンテナ21毎の制御情報を生成する。前述のように、基地局10と端末20との間が見通し環境である場合、基地局10が備えるアンテナ17-1~17-Ntxの間隔、端末20が備えるアンテナ21-1~21-Nrxの間隔、および基地局10と端末20との間の距離の比を調整することで、チャネル行列の複数の固有値の値を互いに等しい電力とすることができる。アンテナ制御部29は、制御情報によって、アンテナ21-1~21-Nrxの動作を制御して、アンテナ21-1~21-Nrxの受信信号の受信位置を変更させる。 The antenna control unit 29 is an antenna for controlling the signal reception positions of the plurality of antennas 21-1 to 21-Nrx based on the distance between the base station 10 and the terminal 20 estimated by the distance estimation unit 28. 21 Control information is generated for each. As described above, when the line-of-sight environment is between the base station 10 and the terminal 20, the distance between the antennas 17-1 to 17-Ntx provided by the base station 10 and the antennas 21-1 to 21-Nrx provided by the terminal 20. By adjusting the interval and the ratio of the distance between the base station 10 and the terminal 20, the values of the plurality of eigenvalues of the channel matrix can be equal to each other. The antenna control unit 29 controls the operation of the antennas 21-1 to 21-Nrx according to the control information, and changes the reception position of the reception signal of the antennas 21-1 to 21-Nrx.
 端末20によるアンテナ21-1~21-Nrxの受信位置の調整については、図示を省略するが、図3で示される送信装置である基地局10のアンテナ17-1~17-Ntxの場合と同様である。アンテナ21-1~21-Nrxは、制御情報に基づいて、駆動部173の動作を制御し、アンテナ素子172の位置であるアンテナ21の受信位置を調整することができる。 The adjustment of the receiving position of the antennas 21-1 to 21-Nrx by the terminal 20 is not shown, but is the same as the case of the antennas 17-1 to 17-Ntx of the base station 10 which is the transmitting device shown in FIG. Is. The antennas 21-1 to 21-Nrx can control the operation of the drive unit 173 based on the control information and adjust the reception position of the antenna 21 which is the position of the antenna element 172.
 基地局10のアンテナ17-1~17-Ntxの数がNtx個、端末20のアンテナ21-1~21-Nrxの数がNrx個であることから、本実施の形態の無線通信システムにおいて、チャネル行列Hは、式(10)で表される。 Since the number of antennas 17-1 to 17-Ntx of the base station 10 is Ntx and the number of antennas 21-1 to 21-Nrx of the terminal 20 is Nrx, the channels in the wireless communication system of the present embodiment are used. The matrix H is represented by the equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 つぎに、基地局10の距離推定部18および端末20の距離推定部28において、基地局10と端末20との間の距離を推定する動作について説明する。以降の動作については、基地局10の主体は距離推定部18であり、端末20の主体は距離推定部28であるが、記載を簡潔にするため、基地局10および端末20を主体にして説明する。 Next, the operation of estimating the distance between the base station 10 and the terminal 20 will be described in the distance estimation unit 18 of the base station 10 and the distance estimation unit 28 of the terminal 20. Regarding the subsequent operations, the main body of the base station 10 is the distance estimation unit 18, and the main body of the terminal 20 is the distance estimation unit 28. However, for the sake of brevity, the base station 10 and the terminal 20 will be mainly described. To do.
 図6は、実施の形態1に係る無線通信システム30において、基地局10が基地局10と端末20との間の距離を推定する動作の第1の例を示す図である。図6は、基地局10が端末20に参照信号を送信し、端末20が参照信号の解析結果に応じて、基地局10と端末20との間の距離または基地局10と端末20との間の距離に相当する情報を位置関連情報として基地局10に送り返す方法を示している。具体的には、以下の推定方法#1から推定方法#3のような方法がある。 FIG. 6 is a diagram showing a first example of an operation in which the base station 10 estimates the distance between the base station 10 and the terminal 20 in the wireless communication system 30 according to the first embodiment. In FIG. 6, the base station 10 transmits a reference signal to the terminal 20, and the terminal 20 determines the distance between the base station 10 and the terminal 20 or the distance between the base station 10 and the terminal 20 according to the analysis result of the reference signal. The method of sending back the information corresponding to the distance to the base station 10 as the position-related information is shown. Specifically, there are methods such as the following estimation method # 1 to estimation method # 3.
 推定方法#1:基地局10は、端末20に参照信号を送信する。端末20は、基地局10から送信された参照信号を受信し、参照信号の受信電力を測定し、受信電力の情報を位置関連情報として基地局10に通知する。基地局10は、参照信号の送信電力が既知であるため、端末20での受信電力を知ることで、送信電力に対する受信電力の減衰量から、基地局10と端末20との間の距離を推定することができる。なお、基地局10は、事前に参照信号の送信電力の情報を端末20へ通知しておいてもよい。この場合、端末20は、通知された送信電力と測定した参照信号の受信電力とを比較することで、基地局10と端末20との間の距離を推定することができる。端末20は、推定した基地局10と端末20との間の距離の情報を位置関連情報として基地局10に通知する。 Estimating method # 1: The base station 10 transmits a reference signal to the terminal 20. The terminal 20 receives the reference signal transmitted from the base station 10, measures the received power of the reference signal, and notifies the base station 10 of the received power information as position-related information. Since the base station 10 knows the transmission power of the reference signal, the distance between the base station 10 and the terminal 20 is estimated from the amount of attenuation of the received power with respect to the transmission power by knowing the reception power at the terminal 20. can do. The base station 10 may notify the terminal 20 of the information on the transmission power of the reference signal in advance. In this case, the terminal 20 can estimate the distance between the base station 10 and the terminal 20 by comparing the notified transmission power with the received power of the measured reference signal. The terminal 20 notifies the base station 10 of the information on the estimated distance between the base station 10 and the terminal 20 as position-related information.
 推定方法#2:基地局10は、端末20に参照信号を送信する。端末20は、参照信号受信後、規定された時間内で基地局10に対して応答信号を送信する。基地局10は、参照信号の送信時刻および応答信号の受信時刻から、基地局10と端末20との間および端末20と基地局10との間の信号伝搬遅延時間を測定できる。基地局10は、測定した信号伝搬遅延時間から、基地局10と端末20との間の距離を推定することができる。 Estimating method # 2: The base station 10 transmits a reference signal to the terminal 20. After receiving the reference signal, the terminal 20 transmits a response signal to the base station 10 within a specified time. The base station 10 can measure the signal propagation delay time between the base station 10 and the terminal 20 and between the terminal 20 and the base station 10 from the transmission time of the reference signal and the reception time of the response signal. The base station 10 can estimate the distance between the base station 10 and the terminal 20 from the measured signal propagation delay time.
 推定方法#3:基地局10または端末20が移動体で一定の速度で移動し、移動方向軸および基地局10と端末20とを結ぶ軸が一定の角度である場合、端末20は、参照信号のドップラー周波数を測定することで、基地局10と端末20との間の距離を推定することができる。端末20は、推定した基地局10と端末20との間の距離の情報を位置関連情報として基地局10に通知する。 Estimating method # 3: When the base station 10 or the terminal 20 moves at a constant speed in a moving body and the moving direction axis and the axis connecting the base station 10 and the terminal 20 are at a constant angle, the terminal 20 is referred to as a reference signal. By measuring the Doppler frequency of, the distance between the base station 10 and the terminal 20 can be estimated. The terminal 20 notifies the base station 10 of the information on the estimated distance between the base station 10 and the terminal 20 as position-related information.
 このように、無線通信システム30では、基地局10および端末20のどちらも、基地局10と端末20との間の距離を推定することができる。無線通信システム30では、基地局10が距離を推定した場合は基地局10が距離の情報を端末20に通知して、端末20は距離を推定しなくてもよいし、端末20が距離を推定した場合は端末20が距離の情報を基地局10に通知して、基地局10は距離を推定しなくてもよい。無線通信システム30では、基地局10および端末20の各々が同様の動作を行って、基地局10および端末20の各々が距離を推定してもよい。なお、図6において、端末20から基地局10に通知される位置関連情報については、無線通信システム30上で通知される必要はなく、他の通信システムを介して通知されてもよい。 In this way, in the wireless communication system 30, both the base station 10 and the terminal 20 can estimate the distance between the base station 10 and the terminal 20. In the wireless communication system 30, when the base station 10 estimates the distance, the base station 10 notifies the terminal 20 of the distance information, the terminal 20 does not have to estimate the distance, and the terminal 20 estimates the distance. In this case, the terminal 20 notifies the base station 10 of the distance information, and the base station 10 does not have to estimate the distance. In the wireless communication system 30, each of the base station 10 and the terminal 20 may perform the same operation, and each of the base station 10 and the terminal 20 may estimate the distance. In FIG. 6, the position-related information notified from the terminal 20 to the base station 10 does not need to be notified on the wireless communication system 30, and may be notified via another communication system.
 図7は、実施の形態1に係る無線通信システム30において、基地局10が基地局10と端末20との間の距離を推定する動作の第2の例を示す図である。上記の推定方法#1から推定方法#3について、図7に示すように、基地局10は、端末20からの参照信号を解析することで、端末20からの位置関連情報無しに基地局10と端末20との間の距離を推定することもできる。 FIG. 7 is a diagram showing a second example of an operation in which the base station 10 estimates the distance between the base station 10 and the terminal 20 in the wireless communication system 30 according to the first embodiment. Regarding the estimation method # 1 to the estimation method # 3 described above, as shown in FIG. 7, the base station 10 analyzes the reference signal from the terminal 20 to obtain the base station 10 without the position-related information from the terminal 20. It is also possible to estimate the distance to the terminal 20.
 図8は、実施の形態1に係る無線通信システム30において、基地局10が基地局10と端末20との間の距離を推定する動作の第3の例を示す図である。図8は、端末20で測定した位置関連情報を基地局10に通知する方法を示している。具体的には、以下の推定方法#4から推定方法#6のような方法がある。 FIG. 8 is a diagram showing a third example of an operation in which the base station 10 estimates the distance between the base station 10 and the terminal 20 in the wireless communication system 30 according to the first embodiment. FIG. 8 shows a method of notifying the base station 10 of the position-related information measured by the terminal 20. Specifically, there are methods such as the following estimation method # 4 to estimation method # 6.
 推定方法#4:基地局10および端末20は、図示しないGPS(Global Positioning System)受信機を搭載している。端末20は、GPS受信機で測定された端末20のGPS位置情報を位置関連情報として基地局10に通知する。基地局10は、基地局10のGPS受信機で測定された基地局10のGPS位置情報と、取得した端末20のGPS位置情報とを用いて、基地局10と端末20との間の距離を推定することができる。 Estimating method # 4: The base station 10 and the terminal 20 are equipped with a GPS (Global Positioning System) receiver (not shown). The terminal 20 notifies the base station 10 of the GPS position information of the terminal 20 measured by the GPS receiver as position-related information. The base station 10 uses the GPS position information of the base station 10 measured by the GPS receiver of the base station 10 and the acquired GPS position information of the terminal 20 to determine the distance between the base station 10 and the terminal 20. Can be estimated.
 推定方法#5:端末20の移動エリア内に端末20を検出可能なセンサーが取り付けられており、センサーで検出された情報を、センサーまたは端末20から、位置関連情報として基地局10に通知してもよい。センサーで検出された情報が端末20の移動エリア内における固有の位置情報になっている場合、基地局10は、センサーで検出された情報から、基地局10と端末20との間の距離を推定することができる。 Estimating method # 5: A sensor capable of detecting the terminal 20 is installed in the moving area of the terminal 20, and the information detected by the sensor is notified from the sensor or the terminal 20 to the base station 10 as position-related information. May be good. When the information detected by the sensor is unique position information in the moving area of the terminal 20, the base station 10 estimates the distance between the base station 10 and the terminal 20 from the information detected by the sensor. can do.
 推定方法#6:端末20は、図示しないカメラを搭載している。端末20は、カメラで撮影された映像から端末20の位置を推定し、推定した端末20の位置を位置関連情報として基地局10に通知してもよい。なお、図8において、端末20から基地局10に通知される位置関連情報については、無線通信システム30上で通知される必要はなく、他の通信システムを介して通知されてもよい。 Estimating method # 6: The terminal 20 is equipped with a camera (not shown). The terminal 20 may estimate the position of the terminal 20 from the image captured by the camera and notify the base station 10 of the estimated position of the terminal 20 as position-related information. In FIG. 8, the position-related information notified from the terminal 20 to the base station 10 does not need to be notified on the wireless communication system 30, and may be notified via another communication system.
 図9は、実施の形態1に係る基地局10においてアンテナ17-1~17-Ntxの送信位置を調整する制御の流れを示す図である。距離推定部18は、位置関連情報から、基地局10と端末20との間の距離を推定する。距離推定部18において基地局10と端末20との間の距離を推定する動作は、位置関連情報の種類によって異なる。例えば、GPS位置情報が位置関連情報として入力される場合、距離推定部18は、基地局10のGPS位置情報と端末20のGPS位置情報とを用いて基地局10と端末20との間の距離を計算する。距離推定部18は、計算した距離の情報をアンテナ制御部19に出力する。アンテナ制御部19は、取得した基地局10と端末20との間の距離の情報に基づいてアンテナ17-1~17-Ntxへの制御情報を生成し、アンテナ17-1~17-Ntxに出力する。アンテナ17-1~17-Ntxでは、図2に示すように、駆動部171が、制御情報に基づいて、アンテナ素子170の位置を制御する。これにより、基地局10は、基地局10と端末20との間の距離に基づいて、アンテナ17-1~17-Ntxの間隔、すなわち送信位置を調整することができる。 FIG. 9 is a diagram showing a control flow for adjusting the transmission positions of the antennas 17-1 to 17-Ntx in the base station 10 according to the first embodiment. The distance estimation unit 18 estimates the distance between the base station 10 and the terminal 20 from the position-related information. The operation of estimating the distance between the base station 10 and the terminal 20 in the distance estimation unit 18 differs depending on the type of position-related information. For example, when GPS position information is input as position-related information, the distance estimation unit 18 uses the GPS position information of the base station 10 and the GPS position information of the terminal 20 to determine the distance between the base station 10 and the terminal 20. To calculate. The distance estimation unit 18 outputs the calculated distance information to the antenna control unit 19. The antenna control unit 19 generates control information for the antennas 17-1 to 17-Ntx based on the acquired distance information between the base station 10 and the terminal 20, and outputs the control information to the antennas 17-1 to 17-Ntx. To do. In the antennas 17-1 to 17-Ntx, as shown in FIG. 2, the drive unit 171 controls the position of the antenna element 170 based on the control information. Thereby, the base station 10 can adjust the distance between the antennas 17-1 to 17-Ntx, that is, the transmission position, based on the distance between the base station 10 and the terminal 20.
 実施の形態1において、端末20の動作も、基地局10の動作と同様である。端末20は、距離推定部28およびアンテナ制御部29が基地局10の距離推定部18およびアンテナ制御部19と同様の制御を行うことにより、基地局10と端末20との間の距離に基づいて、アンテナ21-1~21-Nrxの間隔、すなわち受信位置を調整することができる。 In the first embodiment, the operation of the terminal 20 is the same as the operation of the base station 10. In the terminal 20, the distance estimation unit 28 and the antenna control unit 29 perform the same control as the distance estimation unit 18 and the antenna control unit 19 of the base station 10, based on the distance between the base station 10 and the terminal 20. , The distance between the antennas 21-1 to 21-Nrx, that is, the receiving position can be adjusted.
 基地局10の動作を、フローチャートを用いて説明する。図10は、実施の形態1に係る基地局10の動作を示すフローチャートである。基地局10において、距離推定部18は、端末20から取得した位置関連情報または参照信号を用いて、基地局10と端末20との間の距離を推定する(ステップS11)。アンテナ制御部19は、距離推定部18で推定された基地局10と端末20との間の距離に基づいて、アンテナ17-1~17-Ntxからの信号の送信位置を制御するためのアンテナ17毎の制御情報を生成する(ステップS12)。アンテナ17-1~17-Ntxは、アンテナ制御部19で生成されたアンテナ17毎の制御情報に基づいて、端末20に送信する信号の送信位置を制御し、隣接するアンテナ17との間の送信位置の間隔を調整する(ステップS13)。 The operation of the base station 10 will be described using a flowchart. FIG. 10 is a flowchart showing the operation of the base station 10 according to the first embodiment. In the base station 10, the distance estimation unit 18 estimates the distance between the base station 10 and the terminal 20 by using the position-related information or the reference signal acquired from the terminal 20 (step S11). The antenna control unit 19 controls the transmission position of the signal from the antennas 17-1 to 17-Ntx based on the distance between the base station 10 and the terminal 20 estimated by the distance estimation unit 18. Control information for each is generated (step S12). The antennas 17-1 to 17-Ntx control the transmission position of the signal transmitted to the terminal 20 based on the control information for each antenna 17 generated by the antenna control unit 19, and transmit the signal to and from the adjacent antenna 17. The position interval is adjusted (step S13).
 端末20の動作を、フローチャートを用いて説明する。図11は、実施の形態1に係る端末20の動作を示すフローチャートである。前述のように、端末20は、基地局10と端末20との間の距離について、端末20で推定せずに基地局10から取得してもよい。この場合、端末20において、距離推定部28は、基地局10から、基地局10と端末20との間の距離を取得する(ステップS21)。アンテナ制御部29は、距離推定部28で取得された基地局10と端末20との間の距離に基づいて、アンテナ21-1~21-Nrxの信号の受信位置を制御するためのアンテナ21毎の制御情報を生成する(ステップS22)。アンテナ21-1~21-Nrxは、アンテナ制御部29で生成されたアンテナ21毎の制御情報に基づいて、端末20から受信する信号の受信位置を制御し、隣接するアンテナ21との間の受信位置の間隔を調整する(ステップS23)。なお、端末20において、距離推定部28が基地局10と端末20との間の距離を推定する場合の動作は、図10に示される基地局10のフローチャートの動作と同様となる。 The operation of the terminal 20 will be described using a flowchart. FIG. 11 is a flowchart showing the operation of the terminal 20 according to the first embodiment. As described above, the terminal 20 may acquire the distance between the base station 10 and the terminal 20 from the base station 10 without estimating it by the terminal 20. In this case, in the terminal 20, the distance estimation unit 28 acquires the distance between the base station 10 and the terminal 20 from the base station 10 (step S21). The antenna control unit 29 controls each antenna 21 for controlling the reception position of the signals of the antennas 21-1 to 21-Nrx based on the distance between the base station 10 and the terminal 20 acquired by the distance estimation unit 28. Control information is generated (step S22). The antennas 21-1 to 21-Nrx control the reception position of the signal received from the terminal 20 based on the control information for each antenna 21 generated by the antenna control unit 29, and receive between the antennas 21 and the adjacent antennas 21. The position interval is adjusted (step S23). In the terminal 20, the operation when the distance estimation unit 28 estimates the distance between the base station 10 and the terminal 20 is the same as the operation of the flowchart of the base station 10 shown in FIG.
 なお、無線通信システム30において、基地局10がアンテナ17-1~17-Ntxの送信位置の間隔を調整し、端末20がアンテナ21-1~21-Nrxの送信位置の間隔を調整する場合について説明したが、これに限定されない。無線通信システム30では、基地局10のみがアンテナ17-1~17-Ntxの送信位置の間隔を調整してもよいし、端末20のみがアンテナ21-1~21-Nrxの送信位置の間隔を調整してもよい。この場合においても、無線通信システム30は、基地局10がアンテナ17-1~17-Ntxの送信位置の間隔を調整し、端末20がアンテナ21-1~21-Nrxの送信位置の間隔を調整する場合と比較すると効果は小さいが、基地局10と端末20との間の伝送効率の低下を抑制することができる。 In the wireless communication system 30, the base station 10 adjusts the distance between the transmission positions of the antennas 17-1 to 17-Ntx, and the terminal 20 adjusts the distance between the transmission positions of the antennas 21-1 to 21-Nrx. As explained, but not limited to this. In the wireless communication system 30, only the base station 10 may adjust the interval between the transmission positions of the antennas 17-1 to 17-Ntx, and only the terminal 20 may adjust the interval between the transmission positions of the antennas 21-1 to 21-Nrx. You may adjust. Also in this case, in the wireless communication system 30, the base station 10 adjusts the distance between the transmission positions of the antennas 17-1 to 17-Ntx, and the terminal 20 adjusts the distance between the transmission positions of the antennas 21-1 to 21-Nrx. Although the effect is small as compared with the case of the above, it is possible to suppress a decrease in transmission efficiency between the base station 10 and the terminal 20.
 つづいて、基地局10のハードウェア構成について説明する。基地局10において、アンテナ17-1~17-Ntxの駆動部171、距離推定部18、およびアンテナ制御部19以外の構成は、MIMO伝送を行う一般的な送信装置である。アンテナ17-1~17-Ntxの駆動部171は、モータなどを搭載した駆動装置である。距離推定部18およびアンテナ制御部19は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。 Next, the hardware configuration of the base station 10 will be described. In the base station 10, the configurations other than the drive unit 171 of the antennas 17-1 to 17-Ntx, the distance estimation unit 18, and the antenna control unit 19 are general transmission devices that perform MIMO transmission. The drive unit 171 of the antennas 17-1 to 17-Ntx is a drive device equipped with a motor or the like. The distance estimation unit 18 and the antenna control unit 19 are realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
 図12は、実施の形態1に係る基地局10が備える処理回路をプロセッサおよびメモリで構成する場合の例を示す図である。処理回路がプロセッサ91およびメモリ92で構成される場合、基地局10の処理回路の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路は、基地局10の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、基地局10の手順および方法をコンピュータに実行させるものであるともいえる。 FIG. 12 is a diagram showing an example in which the processing circuit included in the base station 10 according to the first embodiment is configured by a processor and a memory. When the processing circuit is composed of the processor 91 and the memory 92, each function of the processing circuit of the base station 10 is realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in the memory 92. In the processing circuit, each function is realized by the processor 91 reading and executing the program stored in the memory 92. That is, the processing circuit includes a memory 92 for storing a program in which the processing of the base station 10 is eventually executed. It can also be said that these programs cause a computer to execute the procedures and methods of the base station 10.
 ここで、プロセッサ91は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などであってもよい。また、メモリ92には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 may be a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. Further, the memory 92 includes, for example, non-volatile or volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), and EEPROM (registered trademark) (Electrically EPROM). Semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc. are applicable.
 図13は、実施の形態1に係る基地局10が備える処理回路を専用のハードウェアで構成する場合の例を示す図である。処理回路が専用のハードウェアで構成される場合、図13に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。基地局10の各機能を機能別に処理回路93で実現してもよいし、各機能をまとめて処理回路93で実現してもよい。 FIG. 13 is a diagram showing an example in which the processing circuit included in the base station 10 according to the first embodiment is configured by dedicated hardware. When the processing circuit is composed of dedicated hardware, the processing circuit 93 shown in FIG. 13 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and the like. FPGA (Field Programmable Gate Array) or a combination of these is applicable. Each function of the base station 10 may be realized by the processing circuit 93 for each function, or each function may be collectively realized by the processing circuit 93.
 なお、基地局10の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 Note that some of the functions of the base station 10 may be realized by dedicated hardware, and some may be realized by software or firmware. As described above, the processing circuit can realize each of the above-mentioned functions by the dedicated hardware, software, firmware, or a combination thereof.
 基地局10のハードウェア構成について説明したが、端末20のハードウェア構成も同様である。端末20において、アンテナ21-1~21-Nrxの駆動部173、距離推定部28、およびアンテナ制御部29以外の構成は、MIMO伝送を行う一般的な受信装置である。アンテナ21-1~21-Nrxの駆動部173は、モータなどを搭載した駆動装置である。距離推定部28およびアンテナ制御部29は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。 Although the hardware configuration of the base station 10 has been described, the hardware configuration of the terminal 20 is also the same. In the terminal 20, the configurations other than the drive unit 173, the distance estimation unit 28, and the antenna control unit 29 of the antennas 21-1 to 21-Nrx are general receiving devices that perform MIMO transmission. The drive unit 173 of the antennas 21-1 to 21-Nrx is a drive device equipped with a motor or the like. The distance estimation unit 28 and the antenna control unit 29 are realized by a processing circuit. The processing circuit may be a processor and memory for executing a program stored in the memory, or may be dedicated hardware.
 以上説明したように、本実施の形態において、無線通信システム30では、基地局10および端末20のうち少なくとも1つが、基地局10と端末20との間の距離を推定し、基地局10および端末20のうち少なくとも1つがアンテナ間隔を調整して、信号を送受信することとした。これにより、無線通信システム30は、同時に同じ周波数で複数の信号を空間的多重することで、高効率な無線伝送を実現できる。無線通信システム30は、基地局10と端末20との間が見通し環境である場合において、基地局10と端末20との間の距離によらず、基地局10と端末20との間の伝送効率の低下を抑制することができる。 As described above, in the wireless communication system 30, at least one of the base station 10 and the terminal 20 estimates the distance between the base station 10 and the terminal 20, and the base station 10 and the terminal 20 in the present embodiment. It was decided that at least one of the 20 would transmit and receive signals by adjusting the antenna spacing. As a result, the wireless communication system 30 can realize highly efficient wireless transmission by spatially multiplexing a plurality of signals at the same frequency at the same time. The wireless communication system 30 has a transmission efficiency between the base station 10 and the terminal 20 regardless of the distance between the base station 10 and the terminal 20 when the line-of-sight environment is between the base station 10 and the terminal 20. Can be suppressed.
 なお、基地局10から端末20に信号を送信する場合について説明したが、一例であり、端末20から基地局10に信号を送信してもよい。この場合、端末20は図1に示すような構成になり、基地局10は図4に示すような構成になる。 Although the case where the signal is transmitted from the base station 10 to the terminal 20 has been described, this is just an example, and the signal may be transmitted from the terminal 20 to the base station 10. In this case, the terminal 20 has a configuration as shown in FIG. 1, and the base station 10 has a configuration as shown in FIG.
実施の形態2.
 実施の形態1では、基地局10のアンテナ17-1~17-Ntxおよび端末20のアンテナ21-1~21-Nrxは、各々1つのアンテナ素子を備えていた。実施の形態2では、基地局10のアンテナ17-1~17-Ntxおよび端末20のアンテナ21-1~21-Nrxが、複数のアンテナ素子を備える場合について説明する。
Embodiment 2.
In the first embodiment, the antennas 17-1 to 17-Ntx of the base station 10 and the antennas 21-1 to 21-Nrx of the terminal 20 each include one antenna element. In the second embodiment, a case where the antennas 17-1 to 17-Ntx of the base station 10 and the antennas 21-1 to 21-Nrx of the terminal 20 include a plurality of antenna elements will be described.
 実施の形態1では、基地局10の単一のアンテナ素子170にDA変換部15-1~15-Ntx、周波数変換部16-1~16-Ntxなどのデジタルチェーンが接続され、端末20の単一のアンテナ素子172に周波数変換部22-1~22-Nrx、AD変換部23-1~23-Nrxなどのデジタルチェーンが接続されることを想定していた。実施の形態2では、数十GHz級の搬送波周波数を用いた無線通信において、複数のアンテナ素子をアナログ合成し、アナログビームを形成するAPAA(Active Phased Array Antenna)によるサブアレーに1つのデジタルチェーンが接続される場合を想定する。実施の形態2において、基地局10および端末20は、複数のサブアレーを用いてMIMO伝送を行う。 In the first embodiment, digital chains such as DA conversion units 15-1 to 15-Ntx and frequency conversion units 16-1 to 16-Ntx are connected to a single antenna element 170 of the base station 10, and the terminal 20 is simply connected. It was assumed that digital chains such as frequency conversion units 22-1 to 22-Nrx and AD conversion units 23-1 to 23-Nrx would be connected to one antenna element 172. In the second embodiment, in wireless communication using a carrier frequency of several tens of GHz class, one digital chain is connected to a sub-array by APAA (Active Phased Array Antenna) that forms an analog beam by analog-synthesizing a plurality of antenna elements. It is assumed that it will be done. In the second embodiment, the base station 10 and the terminal 20 perform MIMO transmission using a plurality of subarrays.
 実施の形態2において、基地局10の構成は、図1に示す実施の形態1のときの基地局10の構成と同様であるが、アンテナ17-1~17-Ntxの構成が実施の形態1のときの構成と異なる。図14は、実施の形態2に係る基地局10のアンテナ17の構成例を示す図である。アンテナ17は、サブアレー177を備える。サブアレー177は、可変移相器174-1~174-nと、可変増幅器175-1~175-nと、アンテナ素子176-1~176-nと、を備える。なお、nは2以上の整数である。 In the second embodiment, the configuration of the base station 10 is the same as the configuration of the base station 10 in the first embodiment shown in FIG. 1, but the configuration of the antennas 17-1 to 17-Ntx is the configuration of the first embodiment. It is different from the configuration at the time of. FIG. 14 is a diagram showing a configuration example of the antenna 17 of the base station 10 according to the second embodiment. The antenna 17 includes a sub-array 177. The sub-array 177 includes variable phase shifters 174-1 to 174-n, variable amplifiers 175-1 to 175-n, and antenna elements 176-1 to 176-n. Note that n is an integer of 2 or more.
 可変移相器174-1~174-nは、アンテナ制御部19で生成された制御情報に基づいて、送信信号の位相を調整する。可変移相器174-1~174-nを区別しない場合は、可変移相器174と称することがある。可変増幅器175-1~175-nは、アンテナ制御部19で生成された制御情報に基づいて、送信信号を増幅する。可変増幅器175-1~175-nを区別しない場合は、可変増幅器175と称することがある。アンテナ素子176-1~176-nは、端末20に向けて信号を送信する。アンテナ素子176-1~176-nを区別しない場合は、アンテナ素子176と称することがある。1つのアンテナ素子176には、1つの可変移相器174および1つの可変増幅器175が接続されている。すなわち、サブアレー177は、複数のアンテナ素子176と、アンテナ素子176毎に可変増幅器175と、アンテナ素子176毎に可変移相器174と、を備える。基地局10は、アンテナ素子176-1~176-nから送信される複数の信号、すなわち放射される複数の電波を合成することでビームを形成する。基地局10は、個々の可変移相器174および可変増幅器175の設定を制御することにより、形成されるビームの形状を制御することができる。このように、アンテナ17-1~17-Ntxは、制御情報に基づいて、複数の可変増幅器175および複数の可変移相器174の動作を制御し、複数のアンテナ素子176で形成されるビームの中心位置であるアンテナ17の送信位置を調整する。実施の形態2において、基地局10は、複数のサブアレー177を用いてMIMO伝送を行う送信装置である。 The variable phase shifters 174-1 to 174-n adjust the phase of the transmission signal based on the control information generated by the antenna control unit 19. When the variable phase shifters 174-1 to 174-n are not distinguished, they may be referred to as variable phase shifters 174. The variable amplifiers 175-1 to 175-n amplify the transmission signal based on the control information generated by the antenna control unit 19. When the variable amplifiers 175-1 to 175-n are not distinguished, they may be referred to as variable amplifiers 175. The antenna elements 176-1 to 176-n transmit a signal toward the terminal 20. When the antenna elements 176-1 to 176-n are not distinguished, they may be referred to as antenna elements 176. One variable phase shifter 174 and one variable amplifier 175 are connected to one antenna element 176. That is, the sub-array 177 includes a plurality of antenna elements 176, a variable amplifier 175 for each antenna element 176, and a variable phase shifter 174 for each antenna element 176. The base station 10 forms a beam by synthesizing a plurality of signals transmitted from the antenna elements 176-1 to 176-n, that is, a plurality of radiated radio waves. The base station 10 can control the shape of the formed beam by controlling the settings of the individual variable phase shifters 174 and the variable amplifier 175. In this way, the antennas 17-1 to 17-Ntx control the operation of the plurality of variable amplifiers 175 and the plurality of variable phase shifters 174 based on the control information, and the beam formed by the plurality of antenna elements 176. The transmission position of the antenna 17, which is the center position, is adjusted. In the second embodiment, the base station 10 is a transmission device that performs MIMO transmission using a plurality of sub-arrays 177.
 アンテナ17-1~17-Ntx内の各アンテナ素子176の配置については、縦方向であってもよいし、横方向であってもよいし、矩形であってもよい。図15は、実施の形態2に係るアンテナ17においてアンテナ素子176を縦方向に配置したときの例を示す図である。図16は、実施の形態2に係るアンテナ17においてアンテナ素子176を横方向に配置したときの例を示す図である。図17は、実施の形態2に係るアンテナ17においてアンテナ素子176を矩形に配置したときの例を示す図である。図15から図17において、1つの丸のみアンテナ素子の符号「176」を付与しているが、全ての丸がアンテナ素子176であるとする。 The arrangement of each antenna element 176 in the antennas 17-1 to 17-Ntx may be in the vertical direction, in the horizontal direction, or in a rectangular shape. FIG. 15 is a diagram showing an example when the antenna element 176 is arranged in the vertical direction in the antenna 17 according to the second embodiment. FIG. 16 is a diagram showing an example when the antenna element 176 is arranged in the lateral direction in the antenna 17 according to the second embodiment. FIG. 17 is a diagram showing an example when the antenna element 176 is arranged in a rectangular shape in the antenna 17 according to the second embodiment. In FIGS. 15 to 17, only one circle is assigned the symbol “176” of the antenna element, but it is assumed that all the circles are the antenna element 176.
 端末20の構成は、図4に示す実施の形態1のときの端末20の構成と同様であるが、アンテナ21-1~21-Nrxの構成が実施の形態1のときの構成と異なる。図18は、実施の形態2に係る端末20のアンテナ21の構成例を示す図である。アンテナ21は、サブアレー181を備える。サブアレー181は、アンテナ素子178-1~178-nと、可変増幅器179-1~179-nと、可変移相器180-1~180-nと、を備える。 The configuration of the terminal 20 is the same as the configuration of the terminal 20 in the first embodiment shown in FIG. 4, but the configuration of the antennas 21-1 to 21-Nrx is different from the configuration in the first embodiment. FIG. 18 is a diagram showing a configuration example of the antenna 21 of the terminal 20 according to the second embodiment. The antenna 21 includes a sub array 181. The sub-array 181 includes antenna elements 178-1 to 178-n, variable amplifiers 179-1 to 179-n, and variable phase shifters 180-1 to 180-n.
 アンテナ素子178-1~178-nは、基地局10からの信号を受信する。アンテナ素子178-1~178-nを区別しない場合は、アンテナ素子178と称することがある。可変増幅器179-1~179-nは、アンテナ制御部29で生成された制御情報に基づいて、受信信号を増幅する。可変増幅器179-1~179-nを区別しない場合は、可変増幅器179と称することがある。可変移相器180-1~180-nは、アンテナ制御部29で生成された制御情報に基づいて、受信信号の位相を調整する。可変移相器180-1~180-nを区別しない場合は、可変移相器180と称することがある。1つのアンテナ素子178には、1つの可変増幅器179および1つの可変移相器180が接続されている。すなわち、サブアレー181は、複数のアンテナ素子178と、アンテナ素子178毎に可変増幅器179と、アンテナ素子178毎に可変移相器180と、を備える。端末20は、アンテナ素子178-1~178-nで受信される複数の信号、すなわち複数の電波を合成することでビームを形成する。端末20は、個々の可変増幅器179および可変移相器180の設定を制御することにより、形成されるビームの形状を制御することができる。このように、アンテナ21-1~21-Nrxは、制御情報に基づいて、複数の可変増幅器179および複数の可変移相器180の動作を制御し、複数のアンテナ素子178で形成されるビームの中心位置であるアンテナ21の受信位置を調整する。実施の形態2において、端末20は、複数のサブアレー181を用いてMIMO伝送を行う受信装置である。 The antenna elements 178-1 to 178-n receive the signal from the base station 10. When the antenna elements 178-1 to 178-n are not distinguished, they may be referred to as antenna elements 178. The variable amplifiers 179-1 to 179-n amplify the received signal based on the control information generated by the antenna control unit 29. When the variable amplifiers 179-1 to 179-n are not distinguished, they may be referred to as variable amplifiers 179. The variable phase shifters 180-1 to 180-n adjust the phase of the received signal based on the control information generated by the antenna control unit 29. When the variable phase shifters 180-1 to 180-n are not distinguished, they may be referred to as variable phase shifters 180. One variable amplifier 179 and one variable phase shifter 180 are connected to one antenna element 178. That is, the sub-array 181 includes a plurality of antenna elements 178, a variable amplifier 179 for each antenna element 178, and a variable phase shifter 180 for each antenna element 178. The terminal 20 forms a beam by synthesizing a plurality of signals received by the antenna elements 178-1 to 178-n, that is, a plurality of radio waves. The terminal 20 can control the shape of the formed beam by controlling the settings of the individual variable amplifier 179 and the variable phase shifter 180. In this way, the antennas 21-1 to 21-Nrx control the operation of the plurality of variable amplifiers 179 and the plurality of variable phase shifters 180 based on the control information, and the beams formed by the plurality of antenna elements 178. The reception position of the antenna 21, which is the central position, is adjusted. In the second embodiment, the terminal 20 is a receiving device that performs MIMO transmission using a plurality of sub-arrays 181.
 アンテナ21-1~21-Nrx内の各アンテナ素子178の配置については、前述のアンテナ17-1~17-Ntx内の各アンテナ素子176の配置と同様、縦方向であってもよいし、横方向であってもよいし、矩形であってもよい。 The arrangement of the antenna elements 178 in the antennas 21-1 to 21-Nrx may be in the vertical direction or in the horizontal direction as in the arrangement of the antenna elements 176 in the antennas 17-1 to 17-Ntx described above. It may be directional or rectangular.
 実施の形態2において、基地局10がアンテナ17-1~17-Ntxの送信位置を調整する制御の流れについて説明する。基地局10による制御の流れは、図9に示す実施の形態1のときの基地局10による制御の流れと同様である。ここでは、サブアレー177の特徴を用いたアンテナ17-1~17-Ntxの送信間隔の調整方法について説明する。図14に示すように、1つのサブアレー177は、複数のアンテナ素子176-1~176-n、複数の可変増幅器175-1~175-n、および複数の可変移相器174-1~174-nから構成される。サブアレー177は、一部のアンテナ素子176に接続される可変増幅器175の電力増幅率を小さく設定し、アンテナ素子176への通過損失を上げることで、一部のアンテナ素子176を無効化することができる。 In the second embodiment, the control flow in which the base station 10 adjusts the transmission positions of the antennas 17-1 to 17-Ntx will be described. The flow of control by the base station 10 is the same as the flow of control by the base station 10 in the first embodiment shown in FIG. Here, a method of adjusting the transmission interval of the antennas 17-1 to 17-Ntx using the characteristics of the sub-array 177 will be described. As shown in FIG. 14, one sub-array 177 includes a plurality of antenna elements 176-1 to 176-n, a plurality of variable amplifiers 175-1 to 175-n, and a plurality of variable phase shifters 174-1 to 174-. It is composed of n. The sub-array 177 can invalidate some of the antenna elements 176 by setting the power amplification factor of the variable amplifier 175 connected to some of the antenna elements 176 to be small and increasing the pass loss to the antenna element 176. it can.
 図19は、実施の形態2に係る基地局10がアンテナ17-1~17-Ntxの送信位置を調整する例を示す図である。基地局10において、アンテナ制御部19で生成される制御情報には、サブアレー177毎に無効化するアンテナ素子176の番号が含まれているものとする。サブアレー177は、制御情報で示される番号のアンテナ素子176を無効化することにより、各サブアレー177の位相中心、すなわち電気的なアンテナ17の送信位置を変化させることができる。これは、サブアレー177、すなわちアンテナ17の間隔を変更したことと等価である。図19の例では、アンテナ素子176を全て有効化した場合の隣接するサブアレー177間の位相中心の間隔d1を、間隔d1-Δaに変更することができる。これにより、基地局10は、サブアレー177の間隔を調整することができる。なお、サブアレー177が備えるアンテナ素子176を無効化する方法について、上記の例では可変増幅器175の電力増幅率を調整することによりアンテナ素子176を無効化したが一例であり、これに限定されない。サブアレー177は、アンテナ素子176毎に図示しないスイッチを備え、スイッチのオンオフを切り替えることによって、アンテナ素子176を無効化することも可能である。 FIG. 19 is a diagram showing an example in which the base station 10 according to the second embodiment adjusts the transmission position of the antennas 17-1 to 17-Ntx. It is assumed that the control information generated by the antenna control unit 19 in the base station 10 includes the number of the antenna element 176 to be invalidated for each sub-array 177. The sub array 177 can change the phase center of each sub array 177, that is, the transmission position of the electrical antenna 17, by disabling the antenna element 176 having the number indicated by the control information. This is equivalent to changing the spacing of the sub-array 177, that is, the antenna 17. In the example of FIG. 19, the interval d1 of the phase centers between the adjacent sub-arrays 177 when all the antenna elements 176 are enabled can be changed to the interval d1-Δa. As a result, the base station 10 can adjust the interval of the sub-array 177. Regarding the method of disabling the antenna element 176 included in the sub array 177, in the above example, the antenna element 176 is invalidated by adjusting the power amplification factor of the variable amplifier 175, but the method is not limited to this. The sub-array 177 includes a switch (not shown) for each antenna element 176, and the antenna element 176 can be disabled by switching the switch on and off.
 なお、アンテナ17-1~17-Ntxは、さらに駆動部171を備えてもよい。実施の形態1のときと同様、駆動部171が、制御情報に基づいて、サブアレー177の位置を制御する。これにより、基地局10は、基地局10と端末20との間の距離に基づいて、アンテナ17-1~17-Ntxの間隔、すなわち送信位置を調整することができる。 Note that the antennas 17-1 to 17-Ntx may further include a drive unit 171. As in the case of the first embodiment, the drive unit 171 controls the position of the sub array 177 based on the control information. Thereby, the base station 10 can adjust the distance between the antennas 17-1 to 17-Ntx, that is, the transmission position, based on the distance between the base station 10 and the terminal 20.
 実施の形態2において、端末20の動作も、基地局10の動作と同様である。端末20は、距離推定部28およびアンテナ制御部29が基地局10の距離推定部18およびアンテナ制御部19と同様の制御を行うことにより、基地局10と端末20との間の距離に基づいて、アンテナ21-1~21-Nrxの間隔、すなわち受信位置を調整することができる。 In the second embodiment, the operation of the terminal 20 is the same as the operation of the base station 10. In the terminal 20, the distance estimation unit 28 and the antenna control unit 29 perform the same control as the distance estimation unit 18 and the antenna control unit 19 of the base station 10, based on the distance between the base station 10 and the terminal 20. , The distance between the antennas 21-1 to 21-Nrx, that is, the receiving position can be adjusted.
 基地局10および端末20のハードウェア構成については、実施の形態1のときと同様である。 The hardware configurations of the base station 10 and the terminal 20 are the same as in the first embodiment.
 以上説明したように、本実施の形態において、無線通信システム30では、基地局10および端末20が、複数のサブアレーを備えることとした。この場合においても、無線通信システム30は、実施の形態1のときと同様の効果を得ることができる。 As described above, in the wireless communication system 30, the base station 10 and the terminal 20 are provided with a plurality of sub-arrays in the present embodiment. Even in this case, the wireless communication system 30 can obtain the same effect as that of the first embodiment.
 なお、無線通信システム30については、実施の形態1の基地局10および実施の形態2の端末20で構成されてもよいし、実施の形態2の基地局10および実施の形態1の端末20で構成されてもよい。 The wireless communication system 30 may be composed of the base station 10 of the first embodiment and the terminal 20 of the second embodiment, or the base station 10 of the second embodiment and the terminal 20 of the first embodiment. It may be configured.
実施の形態3.
 実施の形態1および実施の形態2では、送信装置である基地局10が、受信装置である端末20に信号を送信する場合について説明したが、双方向で信号を送受信する無線通信システムにも適用可能である。
Embodiment 3.
In the first and second embodiments, the case where the base station 10 as the transmitting device transmits a signal to the terminal 20 as the receiving device has been described, but it is also applied to a wireless communication system that transmits and receives signals in both directions. It is possible.
 図20は、実施の形態3に係る無線通信システム30aの構成例を示す図である。無線通信システム30aは、基地局10aと端末20aとが双方向で信号を送受信可能なシステムである。基地局10aおよび端末20aの各々は、送信装置41と、受信装置42と、を備える。送信装置41は、実施の形態1または実施の形態2で説明した基地局10と同様の構成である。受信装置42は、実施の形態1または実施の形態2で説明した端末20と同様の構成である。送信装置41の動作は、実施の形態1または実施の形態2の基地局10と同様の動作であり、受信装置42の動作は、実施の形態1または実施の形態2の端末20と同様の動作である。なお、基地局10aおよび端末20aは、送信装置41が備える距離推定部18、アンテナ制御部19、およびアンテナ17-1~17-Ntx、および、受信装置42が備える距離推定部28、アンテナ制御部29、およびアンテナ21-1~21-Nrxについては、いずれか一方のみを備えるようにしてもよい。 FIG. 20 is a diagram showing a configuration example of the wireless communication system 30a according to the third embodiment. The wireless communication system 30a is a system in which the base station 10a and the terminal 20a can transmit and receive signals in both directions. Each of the base station 10a and the terminal 20a includes a transmitting device 41 and a receiving device 42. The transmission device 41 has the same configuration as the base station 10 described in the first embodiment or the second embodiment. The receiving device 42 has the same configuration as the terminal 20 described in the first embodiment or the second embodiment. The operation of the transmitting device 41 is the same as that of the base station 10 of the first or second embodiment, and the operation of the receiving device 42 is the same as that of the terminal 20 of the first or second embodiment. Is. The base station 10a and the terminal 20a include a distance estimation unit 18, an antenna control unit 19, and antennas 17-1 to 17-Ntx included in the transmission device 41, and a distance estimation unit 28 and an antenna control unit included in the reception device 42. 29 and antennas 21-1 to 21-Nrx may be provided with only one of them.
 以上説明したように、本実施の形態において、無線通信システム30aでは、基地局10aおよび端末20aが、双方向で通信を行う、すなわち信号を送受信することとした。この場合においても、無線通信システム30aは、実施の形態1のときと同様の効果を得ることができる。 As described above, in the wireless communication system 30a, in the wireless communication system 30a, the base station 10a and the terminal 20a communicate in both directions, that is, transmit and receive signals. Even in this case, the wireless communication system 30a can obtain the same effect as that of the first embodiment.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 10,10a 基地局、11-1~11-M 信号生成部、12-1~12-M 変調部、13 プリコーダ、14-1~14-Ntx OFDM変調部、15-1~15-Ntx DA変換部、16-1~16-Ntx,22-1~22-Nrx 周波数変換部、17,17-1~17-Ntx,21,21-1~21-Nrx アンテナ、18,28 距離推定部、19,29 アンテナ制御部、20,20a 端末、23-1~23-Nrx AD変換部、24-1~24-Nrx OFDM復調部、25 ポストコーダ、26-1~26-M 復調部、27-1~27-M 復号部、30,30a 無線通信システム、41 送信装置、42 受信装置、170,172,176-1~176-n,178-1~178-n アンテナ素子、171,173 駆動部、174-1~174-n,180-1~180-n 可変移相器、175-1~175-n,179-1~179-n 可変増幅器、177,181 サブアレー。 10,10a base station, 11-1 to 11-M signal generator, 12-1 to 12-M modulation unit, 13 precoder, 14-1 to 14-Ntx OFDM modulation unit, 15-1 to 15-Ntx DA conversion Unit, 16-1 to 16-Ntx, 22-1 to 22-Nrx frequency conversion unit, 17,17-1 to 17-Ntx, 21,21 to 21-Nrx antenna, 18,28 distance estimation unit, 19 , 29 Antenna control unit, 20, 20a terminal, 23-1 to 23-Nrx AD conversion unit, 24-1 to 24-Nrx OFDM demodulation unit, 25 postcoder, 26-1 to 26-M demodulation unit, 27-1 ~ 27-M decoding unit, 30, 30a wireless communication system, 41 transmitter, 42 receiver, 170, 172, 176-1 to 176-n, 178-1 to 178-n antenna element, 171, 173 drive unit, 174-1 to 174-n, 180-1 to 180-n variable phase shifter, 175-1 to 175-n, 179-1 to 179-n variable amplifier, 177,181 sub-array.

Claims (9)

  1.  複数の信号を送信可能な送信装置および複数の信号を受信可能な受信装置を備える無線通信システムにおける前記送信装置であって、
     前記受信装置との通信で取得した情報を用いて、前記送信装置および前記受信装置との間の距離を推定する距離推定部と、
     前記距離推定部で推定された前記距離に基づいて、複数のアンテナからの信号の送信位置を制御するためのアンテナ毎の制御情報を生成するアンテナ制御部と、
     前記アンテナ毎の制御情報に基づいて前記受信装置に送信する信号の送信位置を制御し、隣接するアンテナとの間の前記送信位置の間隔を調整する前記複数のアンテナと、
     を備えることを特徴とする送信装置。
    The transmitting device in a wireless communication system including a transmitting device capable of transmitting a plurality of signals and a receiving device capable of receiving a plurality of signals.
    A distance estimation unit that estimates the distance between the transmitting device and the receiving device using the information acquired in communication with the receiving device, and
    An antenna control unit that generates control information for each antenna for controlling signal transmission positions from a plurality of antennas based on the distance estimated by the distance estimation unit.
    The plurality of antennas that control the transmission position of the signal transmitted to the receiving device based on the control information for each antenna and adjust the interval between the transmitting positions with the adjacent antennas.
    A transmitter characterized by comprising.
  2.  前記複数のアンテナの各々は、
     1つのアンテナ素子と、
     前記アンテナ素子の位置を移動可能な駆動部と、
     を備え、
     前記複数のアンテナは、前記制御情報に基づいて、前記駆動部の動作を制御し、前記アンテナ素子の位置である前記アンテナの送信位置を調整する、
     ことを特徴とする請求項1に記載の送信装置。
    Each of the plurality of antennas
    With one antenna element
    A drive unit that can move the position of the antenna element and
    With
    The plurality of antennas control the operation of the drive unit based on the control information, and adjust the transmission position of the antenna, which is the position of the antenna element.
    The transmitting device according to claim 1.
  3.  前記複数のアンテナの各々はサブアレーであり、前記サブアレーは、
     複数のアンテナ素子と、
     前記アンテナ素子毎に可変増幅器と、
     前記アンテナ素子毎に可変移相器と、
     を備え、
     前記複数のアンテナは、前記制御情報に基づいて、複数の前記可変増幅器および複数の前記可変移相器の動作を制御し、前記複数のアンテナ素子で形成されるビームの中心位置である前記アンテナの送信位置を調整する、
     ことを特徴とする請求項1に記載の送信装置。
    Each of the plurality of antennas is a sub array, and the sub array is
    With multiple antenna elements
    A variable amplifier for each antenna element,
    A variable phase shifter for each antenna element,
    With
    The plurality of antennas control the operation of the plurality of variable amplifiers and the plurality of variable phase shifters based on the control information, and the plurality of antennas are the central positions of the beams formed by the plurality of antenna elements. Adjust the transmission position,
    The transmitting device according to claim 1.
  4.  複数の信号を送信可能な請求項1に記載の送信装置および複数の信号を受信可能な受信装置を備える無線通信システムにおける前記受信装置であって、
     前記送信装置または前記受信装置で推定された前記送信装置と前記受信装置との間の距離に基づいて、複数のアンテナによる信号の受信位置を制御するためのアンテナ毎の制御情報を生成するアンテナ制御部と、
     前記アンテナ毎の制御情報に基づいて前記送信装置からの信号を受信する受信位置を制御し、隣接するアンテナとの間の前記受信位置の間隔を調整する前記複数のアンテナと、
     を備えることを特徴とする受信装置。
    The receiving device in a wireless communication system including the transmitting device according to claim 1 capable of transmitting a plurality of signals and a receiving device capable of receiving a plurality of signals.
    Antenna control that generates control information for each antenna for controlling signal reception positions by a plurality of antennas based on the distance between the transmitter and the receiver estimated by the transmitter or the receiver. Department and
    The plurality of antennas that control the receiving position for receiving the signal from the transmitting device based on the control information for each antenna and adjust the distance between the receiving positions with the adjacent antennas.
    A receiving device characterized by comprising.
  5.  前記複数のアンテナの各々は、
     1つのアンテナ素子と、
     前記アンテナ素子の位置を移動可能な駆動部と、
     を備え、
     前記複数のアンテナは、前記制御情報に基づいて、前記駆動部の動作を制御し、前記アンテナ素子の位置である前記アンテナの受信位置を調整する、
     ことを特徴とする請求項4に記載の受信装置。
    Each of the plurality of antennas
    With one antenna element
    A drive unit that can move the position of the antenna element and
    With
    Based on the control information, the plurality of antennas control the operation of the drive unit and adjust the reception position of the antenna, which is the position of the antenna element.
    The receiving device according to claim 4, wherein the receiving device is characterized by the above.
  6.  前記複数のアンテナの各々はサブアレーであり、前記サブアレーは、
     複数のアンテナ素子と、
     前記アンテナ素子毎に可変増幅器と、
     前記アンテナ素子毎に可変移相器と、
     を備え、
     前記複数のアンテナは、前記制御情報に基づいて、複数の前記可変増幅器および複数の前記可変移相器の動作を制御し、前記複数のアンテナ素子で形成されるビームの中心位置である前記アンテナの受信位置を調整する、
     ことを特徴とする請求項4に記載の受信装置。
    Each of the plurality of antennas is a sub array, and the sub array is
    With multiple antenna elements
    A variable amplifier for each antenna element,
    A variable phase shifter for each antenna element,
    With
    The plurality of antennas control the operation of the plurality of variable amplifiers and the plurality of variable phase shifters based on the control information, and the plurality of antennas are the central positions of the beams formed by the plurality of antenna elements. Adjust the reception position,
    The receiving device according to claim 4, wherein the receiving device is characterized by the above.
  7.  請求項1から3のいずれか1つに記載の送信装置と、
     請求項4から6のいずれか1つに記載の受信装置と、
     を備えることを特徴とする無線通信システム。
    The transmitter according to any one of claims 1 to 3,
    The receiving device according to any one of claims 4 to 6.
    A wireless communication system characterized by comprising.
  8.  複数の信号を送信可能な送信装置および複数の信号を受信可能な受信装置を備える無線通信システムにおける前記送信装置の送信アンテナ調整方法であって、
     距離推定部が、前記受信装置との通信で取得した情報を用いて、前記送信装置および前記受信装置との間の距離を推定する推定ステップと、
     アンテナ制御部が、前記距離推定部で推定された前記距離に基づいて、複数のアンテナからの信号の送信位置を制御するためのアンテナ毎の制御情報を生成する制御ステップと、
     前記複数のアンテナが、前記アンテナ毎の制御情報に基づいて前記受信装置に送信する信号の送信位置を制御し、隣接するアンテナとの間で前記送信位置の間隔を調整する調整ステップと、
     を含むことを特徴とする送信アンテナ調整方法。
    A method for adjusting a transmitting antenna of the transmitting device in a wireless communication system including a transmitting device capable of transmitting a plurality of signals and a receiving device capable of receiving a plurality of signals.
    An estimation step in which the distance estimation unit estimates the distance between the transmission device and the reception device by using the information acquired in communication with the reception device.
    A control step in which the antenna control unit generates control information for each antenna for controlling the transmission position of signals from a plurality of antennas based on the distance estimated by the distance estimation unit.
    An adjustment step in which the plurality of antennas control a transmission position of a signal transmitted to the receiving device based on control information for each antenna, and adjust the interval between the transmitting positions with adjacent antennas.
    A method of adjusting a transmitting antenna, which comprises.
  9.  請求項8に記載の送信アンテナ調整方法を実施する複数の信号を送信可能な送信装置、および複数の信号を受信可能な受信装置を備える無線通信システムにおける前記受信装置の受信アンテナ調整方法であって、
     アンテナ制御部が、前記送信装置または前記受信装置で推定された前記送信装置と前記受信装置との間の距離に基づいて、複数のアンテナによる信号の受信位置を制御するためのアンテナ毎の制御情報を生成する制御ステップと、
     前記複数のアンテナが、前記アンテナ毎の制御情報に基づいて前記送信装置からの信号を受信する受信位置を制御し、隣接するアンテナとの間で前記受信位置の間隔を調整する調整ステップと、
     を含むことを特徴とする受信アンテナ調整方法。
    A method for adjusting a receiving antenna of a receiving device in a wireless communication system including a transmitting device capable of transmitting a plurality of signals and a receiving device capable of receiving a plurality of signals, which implements the transmitting antenna adjusting method according to claim 8. ,
    Control information for each antenna for the antenna control unit to control the signal receiving position by the plurality of antennas based on the distance between the transmitting device or the receiving device estimated by the transmitting device or the receiving device. With control steps to generate
    An adjustment step in which the plurality of antennas control a receiving position for receiving a signal from the transmitting device based on control information for each antenna, and adjust the interval between the receiving positions with adjacent antennas.
    A receiving antenna adjustment method comprising.
PCT/JP2019/023087 2019-06-11 2019-06-11 Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method WO2020250301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023087 WO2020250301A1 (en) 2019-06-11 2019-06-11 Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023087 WO2020250301A1 (en) 2019-06-11 2019-06-11 Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method

Publications (1)

Publication Number Publication Date
WO2020250301A1 true WO2020250301A1 (en) 2020-12-17

Family

ID=73781399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023087 WO2020250301A1 (en) 2019-06-11 2019-06-11 Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method

Country Status (1)

Country Link
WO (1) WO2020250301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230111312A1 (en) * 2021-10-08 2023-04-13 Qualcomm Incorporated Receiver for processing multiple beams at a user equipment (ue) device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205390A (en) * 1996-01-25 1997-08-05 Hitachi Denshi Ltd Space diversity antenna installation system and mobile communication equipment using it
JP2008527950A (en) * 2004-11-30 2008-07-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for adaptive multiple input / output (MIMO) wireless communication system
JP2014132726A (en) * 2013-01-07 2014-07-17 Nippon Telegr & Teleph Corp <Ntt> Radio communication system
JP2016219998A (en) * 2015-05-19 2016-12-22 三菱電機株式会社 Antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205390A (en) * 1996-01-25 1997-08-05 Hitachi Denshi Ltd Space diversity antenna installation system and mobile communication equipment using it
JP2008527950A (en) * 2004-11-30 2008-07-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for adaptive multiple input / output (MIMO) wireless communication system
JP2014132726A (en) * 2013-01-07 2014-07-17 Nippon Telegr & Teleph Corp <Ntt> Radio communication system
JP2016219998A (en) * 2015-05-19 2016-12-22 三菱電機株式会社 Antenna device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARAI, MAKI ET AL.: "A study on misalignment tolerance of LOS-MIMO transmission using spherical arranged antenna array", PROCEEDINGS OF THE 2017 IEICE GENERAL CONFERENCE COMMUNICATION 1, 7 March 2017 (2017-03-07), pages 169 *
BOHAGEN, F. ET AL.: "Design of optimal high-rank line-of-sight MIMO channels", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 6, no. 4, 23 April 2007 (2007-04-23), pages 1420 - 1425, XP011383390, DOI: 10.1109/TWC.2007.348338 *
NISHIMORI, KENTARO ET AL.: "On the transmission method for short-range MIMO communication", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 60, no. 3, 10 February 2011 (2011-02-10), pages 1247 - 1251, XP011350617, DOI: 10.1109/TVT.2011.2113196 *
YAMADA, TOSHIHISA ET AL.: "Consideration on LOS-MIMO system with rectangular array configuration extending LOS-MIMO system with linear/square array configuration", PROCEEDINGS OF 39TH INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, 6 December 2016 (2016-12-06), pages 204 - 209 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230111312A1 (en) * 2021-10-08 2023-04-13 Qualcomm Incorporated Receiver for processing multiple beams at a user equipment (ue) device
US11917601B2 (en) * 2021-10-08 2024-02-27 Qualcomm Incorporated Receiver for processing multiple beams at a user equipment (UE) device

Similar Documents

Publication Publication Date Title
US11444707B2 (en) Angle of arrival estimation in a radio communications network
CN109792278B (en) Communication device and method for RF-based communication and location determination
KR102039535B1 (en) Method and apparatus for allocating radio resource
US10348381B2 (en) Antenna system configuration
JP4478606B2 (en) Calibration apparatus and calibration method for linear array antenna
CN110098856B (en) Antenna device and related equipment
US11843177B2 (en) Antenna apparatus and related device
JP5415456B2 (en) A method for transmitting signals using analog beam steering and a transmitting station, receiving station and preamble structure for the method.
KR20140092951A (en) Method and apparatus for fast beam-link construction scheme in the mobile communication system
JP4648015B2 (en) Transmitting apparatus and transmitting method
US10249961B2 (en) Transmit device and method thereof
JP2015012568A (en) Device and method for directivity control
CN110024303B (en) Method and apparatus for transmitting information
CN110692204A (en) Angle of arrival estimation in a radio communications network
JP2022191402A (en) Device operating in wireless communication system
CN110945717A (en) System and method for beamforming using phased array antennas
JP3899062B2 (en) ANTENNA DEVICE AND ITS CONTROL METHOD
WO2020250301A1 (en) Transmission device, reception device, wireless communication system, transmission antenna adjustment method, and reception antenna adjustment method
KR20120036748A (en) Apparatus for hybrid beam forming in wide band wireless communication system
WO2021073751A1 (en) Massive mimo antenna array
WO2020158103A1 (en) Active antenna control device, control method thereof, and nontransient computer-readable medium on which program has been stored
JP3905055B2 (en) Adaptive antenna transmission apparatus and adaptive antenna transmission method
JP6920058B2 (en) Wireless communication system and beam control method
Bazan et al. Overview of Beamforming Antennas
JP4584346B2 (en) Transmitting apparatus and receiving apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP