WO2020235150A1 - Power consumption prediction device - Google Patents

Power consumption prediction device Download PDF

Info

Publication number
WO2020235150A1
WO2020235150A1 PCT/JP2020/005099 JP2020005099W WO2020235150A1 WO 2020235150 A1 WO2020235150 A1 WO 2020235150A1 JP 2020005099 W JP2020005099 W JP 2020005099W WO 2020235150 A1 WO2020235150 A1 WO 2020235150A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
occurrence
period
group
unit
Prior art date
Application number
PCT/JP2020/005099
Other languages
French (fr)
Japanese (ja)
Inventor
玄太 吉村
裕希 川野
浩之 安田
利宏 妻鹿
智祐 成井
修一 村山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2020235150A1 publication Critical patent/WO2020235150A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate

Definitions

  • the present invention relates to a power consumption prediction device.
  • EMS Energy Management System
  • the power consumption forecast is also called a power demand forecast on the supply side of a power plant or the like.
  • the transition (time change) of the power consumption of the entire facility is predicted the next day or several days later.
  • the charging / discharging timing of the storage battery can be appropriately set. For example, the storage battery is discharged at a time when the power consumption of the entire facility is predicted to exceed the contract power. In addition, the storage battery will be charged during the time when the power consumption of the entire facility is predicted to be much lower than the contracted power.
  • a consumption pattern determined for each electric device is used in predicting the power consumption of the entire building.
  • the consumption pattern is obtained by clustering the operation results showing the transition of the power consumption of each electric device.
  • Patent Document 2 discloses a load prediction device that predicts the load of a device.
  • a load pattern indicating a transition of a load for a predetermined period acquired by measuring a load to be managed at a predetermined time is obtained, and a degree of similarity between a plurality of load patterns is obtained.
  • the degree of similarity is obtained based on the actual load in the load pattern, that is, the transition of power consumption of each electric device.
  • Patent Document 3 discloses a demand forecasting system for an electric power plant or the like. This system is provided with a function to extract a pattern that seems appropriate from the past actual values saved in the database and the demand pattern registered in advance by the user, and set this as the demand forecast value. ..
  • the number of input points for prediction calculation is reduced by predicting power consumption by grouping a plurality of electric devices into one group. That is, it is possible to reduce the calculation load in the prediction calculation.
  • the power consumption changes depending on, for example, the number of years of operation of the electric device (in other words, depending on the degree of deterioration).
  • the power consumption differs between the air conditioner installed on the south side and the air conditioner installed on the north side. In this way, if grouping is performed based on power consumption, it may be difficult to include many electric devices in one group.
  • an object of the present invention is to provide a power consumption prediction device capable of reducing the calculation load at the time of power consumption prediction as compared with the conventional one while suppressing a decrease in the accuracy of power consumption prediction.
  • the present invention relates to a power consumption prediction device that predicts the power consumption of a facility in which a plurality of electric devices are installed.
  • the device includes a typical pattern extraction unit, a co-occurrence group extraction unit, a co-occurrence group generation prediction unit, and a power consumption prediction unit.
  • the typical pattern extraction unit extracts a typical pattern for an on-period based on the past on-time and off-time of each electric device for each electric device.
  • the co-occurrence group extraction unit extracts an on-period typical pattern having co-occurrence that occurs together with a predetermined on-period typical pattern of a predetermined electric device, and combines the above-mentioned predetermined on-period typical pattern into one co-occurrence group. Summarize.
  • the co-occurrence group occurrence prediction unit predicts the occurrence of each co-occurrence group.
  • the power consumption prediction unit obtains the power consumption of each co-occurrence group and predicts the power consumption of the facility based on the power consumption of the co-occurrence group predicted to
  • the typical pattern of the on-period is grouped based on the on-time and the off-time of the electric device, and a plurality of co-occurrence typical patterns of the on-period are grouped into the co-occurrence group.
  • each electric device is grouped only by the on / off information of the electric device, filtering based on the power consumption is eliminated as compared with the case where the power consumption change is added to the on / off information. Therefore, it is possible to increase the number of electrical devices that can be put together as one group.
  • by grouping a plurality of electric devices so that they can be regarded as a single electric device co-occurring it is possible to suppress a decrease in the accuracy of power consumption prediction.
  • the power consumption prediction device may include a display unit.
  • the display unit displays the on period from the on time to the off time of each co-occurrence group predicted to occur and the facility power consumption which is the sum of the power consumption of each co-occurrence group in the on period. Will be done. Further, the display unit may be able to display the names of the electric devices grouped together as the co-occurrence group for each co-occurrence group.
  • the display unit may be able to display the distribution of the on time and the off time summarized as a single on-period typical pattern.
  • the typical pattern extraction unit may extract the typical pattern of the on-period of each electric device from the past on-time and off-time by unsupervised learning.
  • the co-occurrence group extraction unit may extract a plurality of on-period typical patterns having co-occurrence by unsupervised learning and combine them into a single co-occurrence group.
  • the power consumption prediction unit may predict the co-occurrence group that occurs on a predetermined day from the past electrical equipment operation history by supervised learning.
  • an input unit that can input a correction instruction for the on period of each on period typical pattern displayed on the display unit may be provided.
  • the input unit may be able to input the integration instruction for a plurality of co-occurrence groups displayed on the display unit.
  • a prediction result correction unit may be provided to correct the occurrence prediction for each co-occurrence group based on the control plan set for each electric device.
  • the present invention it is possible to reduce the calculation load at the time of power consumption prediction as compared with the conventional case, while suppressing the decrease in the accuracy of power consumption prediction.
  • FIG. 1 It is a figure which illustrates the electric power system diagram of the facility including the power consumption prediction apparatus which concerns on this embodiment. It is a figure which illustrates the functional block of the power consumption prediction apparatus. It is a figure which illustrates the power consumption prediction flow. It is a time chart which exemplifies the on-time / off-time of a predetermined electric device by day. It is a figure which illustrates the extraction process of a typical pattern in an on-period. It is a figure which illustrates the extraction process of the co-occurrence group. It is a figure which exemplifies the on-period typical pattern classified by the co-occurrence group, and the power consumption forecast of a facility, which are displayed on the display part.
  • FIG. 1 illustrates an electric power system of a facility including the power consumption prediction device 100 according to the present embodiment.
  • This facility is a multi-story building such as a building, and a plurality of electric devices are installed in the facility. It should be noted that these electric devices may be referred to as electric facilities as if they were installed in the facility. As will be described later, the power consumption prediction device 100 predicts the power consumption of the entire facility.
  • BEMS Building and Energy Management System
  • the power management system includes a power consumption prediction device 100, a power management device 10 (B-OWS), sub-controllers 14A to 14C (B-BC), digital controllers 16A and 16B (DDC), and a remote station 18 (RS). These are connected to the bus.
  • the digital controllers 16A and 16B and the remote station 18 are connected to the electric devices 20A to 20D and various sensors 22A to 22F.
  • FIG. 1 illustrates a part of devices such as the sub controller 14 connected to the lower level of the power management device 10 due to space limitations, and various devices are connected in addition to the illustrated configuration. You may be.
  • Electrical equipment 20A to 20D are various equipment installed in a building, and include, for example, lighting equipment, air conditioning equipment, elevators, sanitary equipment, disaster prevention equipment, crime prevention equipment, and the like.
  • the electric device 20A is a lighting device
  • the electric device 20B is a lighting operation panel
  • the electric device 20C is an air conditioner
  • the electric device 20D is an elevator control panel.
  • an illuminance sensor 22A As sensors placed under the power management device 10, an illuminance sensor 22A, an illumination power meter 22B, an air conditioner sensor 22C, an air conditioner power meter 22D, an elevator power meter 22E, and a high pressure power meter 22F are provided.
  • the high-voltage watt-hour meter 22F is provided in, for example, a high-voltage power receiving facility supplied from an electric power company to a facility (building), and the power consumption of the entire facility is measured.
  • the power management device 10 receives each measured value from various sensors 22A to 22E under its control. Further, in the power management device 10, for example, on / off signals of various electric devices 20A to 20D are transmitted from the sub-controllers 14A to 14C. As will be described later, on / off signals of the various electric devices 20A to 20D are used in predicting the power consumption.
  • the power management device 10 is composed of, for example, a so-called B-OWS (BACnet Operator Workstation), and has a function as a client PC whose operation is monitored by an administrator or the like and a function as a server which performs data storage, application processing, and the like. I have. In the power management device 10, for example, screen display and setting operations are performed.
  • B-OWS BACnet Operator Workstation
  • the sub controller 14 mainly plays a control function.
  • the sub controller 14 is composed of, for example, a so-called B-BC (Building Controller), communicates with a terminal transmission device such as a digital controller 16 or a remote station 18, and manages point data, schedule control, and the like.
  • B-BC Building Controller
  • one sub-controller 14 is provided for each functional system (subsystem) such as an air-conditioning equipment system, a lighting equipment system, an elevator system, a sanitary equipment system, and a crime prevention equipment system.
  • the digital controller 16 may be a so-called DDC (Digital Digital Controller), and has a function as a controller for realizing distributed control in BEMS.
  • DDC Digital Digital Controller
  • the digital controller 16 controls the connected electric devices 20C and 20D by program control based on the schedule setting sent from the sub controller 14 and feedback control based on the target value also sent from the sub controller 14. Further, the digital controller 16 transmits the measured values of the sensors 22C to 22E, warnings of the electric devices 20C and 20D, and the like to the above system and other digital controllers 16.
  • the remote station 18 is also called an out station or a local station, and monitors and controls the sensors 22A and 22B and the electrical devices 20A and 20B to be connected. Since it functionally overlaps with the digital controller 16, one of the digital controller 16 and the remote station 18 is appropriately selected according to the connected electric devices 20A to 20D and the sensors 22A to 22E.
  • the power consumption prediction device 100, the power management device 10, the sub controller 14, the digital controller 16, and the remote station 18 are composed of computers.
  • each of them is provided with a CPU 26, a memory 28, a hard disk drive (HDD) 30, an input unit 32, a display unit 34, and an input / output interface 36.
  • FIG. 1 A functional block diagram of the power consumption prediction device 100 is illustrated in FIG.
  • the power consumption prediction device 100 is communicated with the power management device 10, and utilizes various data stored in the power management device 10 to obtain a power consumption prediction for the entire facility.
  • the computer by executing a program stored in a non-transient storage medium such as a DVD or a hard disk of a computer, the computer functions as a power consumption prediction device 100 including various functional blocks illustrated in FIG. To do.
  • a non-transient storage medium such as a DVD or a hard disk of a computer
  • the power consumption prediction device 100 includes an input unit 32, a display unit 34, a typical pattern extraction unit 102, a co-occurrence group extraction unit 104, a co-occurrence group generation prediction unit 106, a power consumption prediction unit 108, and an extraction result correction.
  • a unit 112 and a prediction result correction unit 114 are provided.
  • the power management device 10 from which various data are extracted from the power consumption prediction device 100 includes a device control plan storage unit 12A, a device operation history storage unit 12B, and a power consumption history storage unit 12C as its functional blocks. ..
  • FIG. 3 illustrates a flowchart of the power consumption prediction process by the power consumption prediction device 100 according to the present embodiment.
  • the time change of the power consumption of the entire facility such as a building is predicted.
  • the typical pattern extraction unit 102 extracts an on-period typical pattern compiled based on the past on-time and off-time of each electric device for each electric device. For example, the typical pattern extraction unit 102 acquires the operation history of the electric equipment under the control of the power management device 10 (under monitoring and control control) from the device operation history storage unit 12B of the power management device 10, and also records the operation history in the operation history. Based on this, a typical on-period pattern for each electrical device is extracted.
  • the device operation history storage unit 12B stores on / off information of each electric device under the power management device 10.
  • FIG. 4 illustrates on / off information of a predetermined electric device (for example, an indoor unit of an air conditioner) under the power management device 10.
  • the device operation history storage unit 12B has an on time of the electric device, that is, a time when the off state is switched to the on state, and an off time, that is, a time when the on state is switched to the off state. It is memorized for multiple days.
  • the typical pattern extraction unit 102 extracts a typical (or typical) on / off pattern for each electric device based on the device operation history, and sets this as a typical pattern during the on period (FIG. 3S10). ..
  • the on time and the off time illustrated in FIG. 4 are plotted on a Cartesian coordinate plane as illustrated in FIG.
  • This coordinate plane may be called a typical pattern extraction plane, and the horizontal axis indicates the on time and the vertical axis indicates the off time.
  • the on time is 3:00 and the off time is 18:00
  • the typical pattern extraction unit 102 is a typical pattern extraction plane (FIG. 5). (See) Plot the coordinate points at the coordinates corresponding to the above on time and off time. In this way, the coordinate points are sequentially plotted on the plane of FIG. 5 along the coordinates represented by the set of the on time and the off time from 0:00 to 24:00 on each date.
  • the broken line drawn diagonally upward from the origin indicates the boundary line. That is, the lower right region from the boundary line (broken line) is an region in which the off time appears earlier than the on time (for example, the off time is 10:00 with respect to the on time of 12:00), and cannot occur realistically. Therefore, the area lower right than the boundary line is excluded from the extraction area of the typical pattern during the on-period.
  • the typical pattern extraction unit 102 Extract (group) these point clouds.
  • the extraction of the typical pattern during the on-period of the electric device may be performed by, for example, clustering based on unsupervised learning or frequent pattern mining. For example, in the case of clustering, clustering using a mixed Gaussian distribution may be performed, and a single Gaussian distribution corresponds to one cluster.
  • the typical pattern extraction unit 102 represents the on-time and off-time representative values of the on-period typical patterns TP1 to TP5, respectively.
  • the average value and the mode of each of the plurality of on-time and off-time included in one on-period typical pattern are defined as the on-time and off-time of the respective on-period typical patterns TP1 to TP5.
  • Such an on-period typical pattern required for one electric device is extracted for a plurality of electric devices under the power management device 10.
  • the co-occurrence group extraction unit 104 extracts the co-occurrence group from the on-period typical pattern for each electric device (FIG. 3S12).
  • Co-occurrence means that a certain on-period typical pattern and another on-period typical pattern occur together. This co-occurrence does not have to have strict simultaneity, for example, it is sufficient that one on-period typical pattern and another on-period typical pattern occur frequently in one day.
  • one co-occurrence group may include a predetermined on-period typical pattern of a predetermined electric device and another on-period typical pattern of the same electric device.
  • a predetermined on-period typical pattern of a predetermined electric device and an on-period typical pattern of another electric device may be included in one co-occurrence group.
  • the indoor unit and outdoor unit of the air conditioner are included in one co-occurrence group because when one is turned on, the other is also turned on.
  • lighting equipment and air conditioning equipment (indoor unit, outdoor unit) installed in the tenant are also included in one co-occurrence group in summer and winter, for example.
  • multiple electrical devices By grouping multiple electrical devices into a co-occurrence group based on a typical pattern during the on-period, multiple electrical devices can be regarded as a single electrical facility that co-occurs with each other, and calculations related to power consumption prediction. The load can be reduced.
  • the co-occurrence group extraction unit 104 extracts an on-period typical pattern (having co-occurrence) that occurs together with a predetermined on-period typical pattern of a predetermined electric device, and performs one co-occurrence group together with the predetermined on-period typical pattern. Summarize in the Ki group.
  • FIG. 7 exemplifies the power consumption forecast on a predetermined date.
  • typical patterns of the on-periods of the electric devices A to Z are shown, and each co-occurrence group is shown by hatching.
  • the on-period typical patterns TP3 and TP4 of the electric device A and the on-period typical pattern TP1 of the electric device C are included.
  • the co-occurrence pattern changes according to the building, season, region, etc., in the same manner as the above-mentioned on-period typical pattern, and is true. Proper selection of co-occurrence groups becomes difficult. Therefore, in extracting the co-occurrence group, operations such as matrix factorization and frequent pattern mining may be performed by unsupervised learning.
  • the co-occurrence group extraction unit 104 executes matrix factorization as shown in FIG. 6, for example.
  • This matrix factorization may be, for example, a non-negative matrix factorization.
  • a matrix in which dates are arranged and typical patterns (TP1, TP2, 7) Of the on-period of each electric device are arranged as columns is generated by the co-occurrence group extraction unit 104. Will be created.
  • This matrix is also called the observation data matrix Y, the number of rows is the number of days, and the number of columns is the product of the number of typical patterns during the on-period of each electrical device and the number of electrical devices.
  • the observation data matrix Y is approximately decomposed into the product (Y ⁇ AB) of the basis matrix A and the coefficient matrix B.
  • the observation data matrix Y, the components y ij basis matrix A, and the coefficient matrix B, a ij, b ij is expressed as follows in Equation (11) below (1).
  • the basis matrix A is a matrix representing which co-occurrence group occurred every day
  • the coefficient matrix B is which on-period typical pattern is grouped as a co-occurrence group. It becomes a matrix representing.
  • the co-occurrence group extraction unit 104 summarizes a plurality of on-period typical data co-occurring with each other as a co-occurrence group, and the collected data of each co-occurrence group is a co-occurrence group. It is transmitted to the occurrence prediction unit 106.
  • the co-occurrence group occurrence prediction unit 106 predicts the occurrence of each co-occurrence group. For example, the co-occurrence group occurrence prediction unit 106 obtains a co-occurrence group predicted to occur by supervised learning from information such as the day of the week, weather, season, month, and scheduler of the prediction target day. Here, regarding the occurrence of the co-occurrence group, it may be possible to obtain a teacher signal from past performance data. By performing supervised learning, prediction accuracy can be improved as compared with unsupervised learning.
  • supervised learning for example, one of a generalized linear model, a neural network model, and an SVM (Support vector machine) is used.
  • a neural network for example, in the learning phase, information such as the day of the week, weather, season, month, and scheduler of any date in the past is given to the input layer as training data. Further, the output layer is given a co-occurrence group generated on the date as correct answer data. By inputting such training data and correct answer data from actual past data, appropriate weighting and hidden layers are generated.
  • the co-occurrence group occurrence prediction unit 106 learns a model for predicting the presence or absence of occurrence of each co-occurrence group from information such as the day of the week and the weather (FIG. 3S14).
  • the prediction phase is started.
  • the co-occurrence group occurrence prediction unit 106 predicts the occurrence of each future co-occurrence group using the model after learning (FIG. 3S16).
  • information such as the day of the week, weather, season, month, scheduler, etc. of the power consumption prediction target day is input to the above model.
  • a co-occurrence group that is predicted to occur on the prediction target date is output to the output layer.
  • FIG. 7 shows an example of a co-occurrence group predicted to occur on a predetermined prediction target date.
  • typical patterns TP1, TP2, (7)
  • CO-Gr2 co-occurrence group
  • the prediction data is sent to the power consumption prediction unit 108 (see FIG. 2).
  • the power consumption prediction unit 108 obtains the power consumption of each co-occurrence group and predicts the power consumption of the facility based on the power consumption of the co-occurrence group predicted to occur (FIG. 3S18).
  • power consumption prediction using a simulator is performed. For example, when extracting a typical pattern during the on-period, past actual data, that is, on-time and off-time, as illustrated in FIG. 5, are grouped. By tracing the past actual data that is the basis of this grouping, it is possible to obtain the actual value of the past power consumption corresponding to the grouped on time and off time.
  • the actual power consumption corresponding to the four coordinate points grouped in the typical pattern TP2 during the on-period can be obtained from the power consumption history storage unit 12C (see FIG. 2).
  • the average value or the median value of the actual power consumption can be used as the power consumption of the typical pattern TP2 during the on-period.
  • the power sensor When the power sensor is not provided in each electric device, that is, the actual power consumption of each electric device is unknown, for example, the power consumption detected by the high-voltage power meter 22F (see FIG. 1) is used. By apportioning according to the rated power of each electric device that is on at the time, the actual power consumption of each electric device can be obtained.
  • the power consumption prediction unit 108 adds (integrates) the power consumption corresponding to each on-period typical pattern predicted to occur, thereby adding (accumulating) the power consumption of the entire facility in which the electrical equipment is installed. Predict power consumption (facility power consumption).
  • the prediction result as described above is displayed on the display unit 34, for example, as illustrated in the upper and lower rows of FIG. 7 (FIG. 3S20).
  • the display unit 34 is composed of, for example, a display.
  • the upper part of FIG. 7 is a time chart showing the on period from the on time to the off time of the co-occurrence group predicted to occur. As described above, the names of the electric devices grouped as the co-occurrence group are displayed for each co-occurrence group. By displaying such a time chart on the display unit 34, the breakdown of the co-occurrence group can be confirmed. Further, in the lower part of FIG. 7, the facility power consumption, which is the sum of the power consumption of each co-occurrence group during the on period, is displayed.
  • the display content of the display unit 34 can be changed by an operation from the input unit 32.
  • the input unit 32 is, for example, a mouse or a keyboard, and the pointer 120 can be moved on the display screen by operating the input unit 32, for example, as illustrated in FIG.
  • the on-period typical pattern TP4 is selected by the pointer 120, the distribution of past actual data grouped (grouped) as the on-period typical pattern TP4 is shown at the bottom.
  • the electric device A is an indoor unit of an air conditioner
  • its past actual data includes on-time, off-time, set temperature distribution, and air volume distribution.
  • the forecast data on a daily basis was displayed, but the display format can be changed.
  • the power consumption prediction device 100 can output a switching command to the display unit 34 in response to the operation of the input unit 32, for example, to switch from the daily unit to the display of the forecast data for several weeks as illustrated in FIG. It has become.
  • the vertical axis shows the co-occurrence group number and the horizontal axis shows the date.
  • the vertical axis shows the power consumption
  • the horizontal axis shows the date synchronized with the upper row.
  • the co-occurrence group and the on-period typical pattern that are the basis of the power prediction are shown on the display unit.
  • the administrator or the like who browses the display unit can examine the validity of the prediction. Further, as will be described later, it is possible to revise the power prediction for each co-occurrence group and for each on-period typical pattern.
  • FIG. 10 illustrates a flowchart of the first alternative example of the power consumption prediction process according to the present embodiment.
  • the same steps as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • step S20 when the occurrence prediction and the power consumption prediction of the co-occurrence group as illustrated in FIG. 8 are displayed in step S20, it is possible to correct these prediction results.
  • the pointer 120 is superimposed on the on-period typical pattern TP4 for the time chart of the co-occurrence group displayed by the display unit 34.
  • the distribution of past actual data grouped as the on-period typical pattern TP4 is shown.
  • the pointer 120 is aligned with this past actual data, and corrections are made.
  • the pointer 120 is aligned with the distribution graph of the off time, the off time of the on-period typical pattern TP4 is set as a specified value, and the mode is the mode from 17:00 to 18 of the graph. It is corrected at: 00.
  • the extraction result correction unit 112 selects the selected electricity as illustrated in the upper part of FIG.
  • the off time of the typical pattern TP4 during the on period of the device A is changed from 17:00 to 18:00 (FIG. 10S22). Further, in the flowchart of FIG. 10, the process returns to step S12, and the extraction of the co-occurrence group is executed again.
  • the power consumption forecast will also be revised. Specifically, as shown in the lower part of FIG. 11, the end point of the power consumption of the co-occurrence group CO-Gr2 is extended as shown by the broken line.
  • the power consumption prediction device 100 can input, for example, a correction instruction of the co-occurrence group from the input unit 32.
  • a correction instruction of the co-occurrence group For example, as illustrated in the upper part of FIG. 12, the on-period typical pattern TP4 of the electrical equipment A grouped in the co-occurrence group CO-Gr2 is erased by the operation of the pointer 120.
  • the extraction result correction unit 112 (see FIG. 2) erases the selected on-period typical pattern. Further, the process returns to step S14, and the occurrence prediction of the co-occurrence group is executed again.
  • the power consumption forecast will be revised by executing the occurrence forecast again. Specifically, as shown in the lower part of FIG. 12, the power consumption corresponding to the on-period typical pattern TP4 of the electric device A is deleted as shown by the broken line.
  • FIG. 13 illustrates a correction operation of a co-occurrence group different from that of FIG.
  • a plurality of on-period typical patterns once set as different co-occurrence groups are integrated into a single co-occurrence group.
  • the co-occurrence group CO-Gr3 selected by the pointer 120 is integrated into another co-occurrence group CO-Gr2.
  • the extraction result correction unit 112 executes the integration process as described above. Further, the flow illustrated in FIG. 13 returns to step S14, and the occurrence prediction of the co-occurrence group is executed again. When the occurrence prediction is executed again, the power consumption prediction is also corrected. Specifically, as shown in the lower part of FIG. 13, the power consumption grouped in the co-occurrence group CO-Gr3 is changed to the co-occurrence group CO-Gr2.
  • FIG. 14 illustrates a flowchart of a second alternative example of the power consumption prediction process according to the present embodiment.
  • the same steps as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the power management device 10 is provided with a device control plan storage unit 12A.
  • the device control plan storage unit 12A stores the control plans of the electric devices installed in the facility and under the control of the power management device 10. For example, the date and time zone in which the on operation is prohibited are stored.
  • the prediction result correction unit 114 of the power consumption prediction device 100 predicts by the co-occurrence group generation prediction unit 106 based on the control plan of each electric device stored in the device control plan storage unit 12A. Correct the occurrence predictions made. Based on the revised occurrence prediction, the power consumption prediction (S18) and the display of the prediction result (S20) are performed.
  • FIG. 15 illustrates a flowchart of another third example of the power consumption prediction process according to the present embodiment.
  • the same steps as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the power consumption prediction (S18) is executed through the step (S28) of learning the model for predicting the power consumption.
  • learning a model for predicting power consumption for example, supervised learning is performed using the past power consumption history (actual results) as a teacher.
  • the power consumption history storage unit 12C of the power management device 10 stores the power consumption history of each of the electric devices installed in the facility and under the control of the power management device 10.
  • the power consumption detected by the high-voltage power meter 22F is apportioned according to the rated power of each electrical device that is on at that time. By doing so, the power consumption history of each electric device can be obtained.
  • the power consumption prediction unit 108 acquires the power consumption history of each electric device from the power consumption history storage unit 12C, and executes supervised learning using this as a teacher.
  • the period from the on time to the off time of each electric device in the past is input to the input layer as training data.
  • the output layer is given power consumption corresponding to the period as correct answer data.
  • the power consumption prediction unit 108 inputs the co-occurrence group predicted to occur in step S16. As a result, the output layer is required to predict the power consumption corresponding to the co-occurrence group.
  • the power consumption prediction device includes a typical pattern extraction unit, a co-occurrence group extraction unit, a co-occurrence group generation prediction unit, and a power consumption prediction unit, and power consumption prediction while suppressing a decrease in accuracy of power consumption prediction. It is possible to reduce the calculation load at that time, which is suitable for predicting power consumption.
  • Power management device 12A device control plan storage unit, 12B device operation history storage unit, 12C power consumption history storage unit, 20A to 20D electrical equipment, 22A to 22F sensor, 100 power consumption prediction device, 102 typical pattern extraction unit, 104 Co-occurrence group extraction unit, 106 co-occurrence group generation prediction unit, 108 power consumption prediction unit, 112 extraction result correction unit, 114 prediction result correction unit, 120 pointer.

Abstract

A typical pattern extraction unit (102) extracts, on a per electrical device basis, on period typical patterns compiled on the basis of past on times and off times for each of the electrical devices. A co-occurrence group extraction unit (104) extracts an on period typical pattern which is co-occurrent with a prescribed on period typical pattern of a prescribed electrical device and groups that on period typical pattern with the prescribed on period typical pattern into one co-occurrence group. A co-occurrence group occurrence prediction unit (106) carries out an occurrence prediction for each of the co-occurrence groups. A power consumption prediction unit (108) derives the power consumption for each of the co-occurrence groups and predicts the power consumption of a facility on the basis of the power consumption of the co-occurrence group which is predicted to occur.

Description

消費電力予測装置Power consumption predictor
 本発明は、消費電力予測装置に関する。 The present invention relates to a power consumption prediction device.
 例えばビル等の施設では、当該施設に設置された電気機器の消費電力を監視、制御する、電力管理システム(EMS、Energy Management System)が用いられる。 For example, in a facility such as a building, a power management system (EMS, Energy Management System) that monitors and controls the power consumption of electrical equipment installed in the facility is used.
 例えば電力管理システムが備える機能の一つとして、消費電力予測が挙げられる。消費電力予測は、発電所等の供給サイドでは電力需要予測とも呼ばれ、例えば翌日や数日後の、施設全体の消費電力の推移(時間変化)が予測される。 For example, one of the functions of the power management system is power consumption prediction. The power consumption forecast is also called a power demand forecast on the supply side of a power plant or the like. For example, the transition (time change) of the power consumption of the entire facility is predicted the next day or several days later.
 例えば所定の施設において事前に消費電力予測が立てられれば、当該施設に蓄電池が設置されている場合には、当該蓄電池の充放電のタイミングを適切に設定できる。例えば施設全体の消費電力が契約電力を上回ると予測された時間帯に蓄電池を放電させる。また施設全体の消費電力が契約電力を大きく下回ると予測された時間帯に蓄電池を充電させる。 For example, if a power consumption forecast is made in advance at a predetermined facility, if a storage battery is installed in the facility, the charging / discharging timing of the storage battery can be appropriately set. For example, the storage battery is discharged at a time when the power consumption of the entire facility is predicted to exceed the contract power. In addition, the storage battery will be charged during the time when the power consumption of the entire facility is predicted to be much lower than the contracted power.
 また例えばいわゆるデマンドレスポンス(DR)においては、デマンドレスポンスに参加する(Opt-In)か否(Opt-Out)かの意思決定を事前に行う必要がある。
この場合においても、消費電力予測が事前に立てられれば、Opt-In及びOpt-Outのいずれを選択するかといった意思決定を合理的に行うことができる。
Further, for example, in the so-called demand response (DR), it is necessary to make a decision in advance whether to participate in the demand response (Opt-In) or not (Opt-Out).
Even in this case, if the power consumption forecast is made in advance, it is possible to make a rational decision as to which of Opt-In and Opt-Out should be selected.
 例えば特許文献1では、ビル全体の消費電力予測に当たり、電気機器ごとに定められた消費パターンが用いられる。消費パターンは、各電気機器の消費電力推移を示す稼動実績をクラスタリングすることで求められる。 For example, in Patent Document 1, a consumption pattern determined for each electric device is used in predicting the power consumption of the entire building. The consumption pattern is obtained by clustering the operation results showing the transition of the power consumption of each electric device.
 また例えば特許文献2では、機器の負荷を予測する負荷予測装置が開示される。この装置では、所定時間毎に管理対象の負荷を計測することによって取得された所定期間の負荷の推移を示す負荷パターンが求められるとともに、複数の負荷パターン間の類似度が求められる。類似度は、負荷パターンにおける負荷実績、つまり、各電気機器の消費電力推移に基づいて求められる。 Further, for example, Patent Document 2 discloses a load prediction device that predicts the load of a device. In this device, a load pattern indicating a transition of a load for a predetermined period acquired by measuring a load to be managed at a predetermined time is obtained, and a degree of similarity between a plurality of load patterns is obtained. The degree of similarity is obtained based on the actual load in the load pattern, that is, the transition of power consumption of each electric device.
 また例えば特許文献3では、電力プラント等の需要予測システムが開示される。このシステムでは、データベース上に保存されている過去の実績値やユーザがあらかじめ登録しておいた需要パターンの中から適当と思われるパターンを抽出し、これを需要予測値として設定する機能が設けられる。 Further, for example, Patent Document 3 discloses a demand forecasting system for an electric power plant or the like. This system is provided with a function to extract a pattern that seems appropriate from the past actual values saved in the database and the demand pattern registered in advance by the user, and set this as the demand forecast value. ..
特開2011-176984号公報Japanese Unexamined Patent Publication No. 2011-176984 特開2017-21497号公報Japanese Unexamined Patent Publication No. 2017-21497 特開2004-164388号公報Japanese Unexamined Patent Publication No. 2004-164388
 ところで、消費電力予測に際して、複数の電気機器を一つのグループとしてまとめて消費電力の予測を行うことで、予測演算の入力点数が低減される。つまり予測演算に当たりその演算負荷を軽減可能となる。ここで、電気機器ごとの消費電力推移に基づいて、複数の電器機器をグルーピングする場合、例えば電気機器の稼動年数により(言い換えると劣化の程度に応じて)消費電力が変化する。また、例えば空調機器では、南側に設置された空調機器と北側に設置された空調機器とで消費電力が異なる。このように、消費電力に基づいてグルーピングを行おうとすると、多くの電気機器を一つのグループに含めることが困難となるおそれがある。 By the way, when predicting power consumption, the number of input points for prediction calculation is reduced by predicting power consumption by grouping a plurality of electric devices into one group. That is, it is possible to reduce the calculation load in the prediction calculation. Here, when a plurality of electric devices are grouped based on the transition of power consumption for each electric device, the power consumption changes depending on, for example, the number of years of operation of the electric device (in other words, depending on the degree of deterioration). Further, for example, in an air conditioner, the power consumption differs between the air conditioner installed on the south side and the air conditioner installed on the north side. In this way, if grouping is performed based on power consumption, it may be difficult to include many electric devices in one group.
 そこで本発明は、消費電力予測の精度低下を抑制しつつ、消費電力予測に際しての演算負荷を従来よりも軽減可能な、消費電力予測装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a power consumption prediction device capable of reducing the calculation load at the time of power consumption prediction as compared with the conventional one while suppressing a decrease in the accuracy of power consumption prediction.
 本発明は、複数の電気機器が設置された施設の消費電力を予測する、消費電力予測装置に関する。当該装置は、典型パターン抽出部、共起グループ抽出部、共起グループ発生予測部、及び消費電力予測部を備える。典型パターン抽出部は、それぞれの電気機器の過去のオン時刻及びオフ時刻に基づいて纏められたオン期間典型パターンを電気機器ごとに抽出する。共起グループ抽出部は、所定の電気機器の所定のオン期間典型パターンと共に生起する共起性を備えたオン期間典型パターンを抽出して、上記所定のオン期間典型パターンとともに一つの共起グループに纏める。共起グループ発生予測部は、それぞれの共起グループに対する生起予測を行う。消費電力予測部は、共起グループごとの消費電力を求めるとともに、生起すると予測された共起グループの消費電力に基づいて、施設の消費電力を予測する。 The present invention relates to a power consumption prediction device that predicts the power consumption of a facility in which a plurality of electric devices are installed. The device includes a typical pattern extraction unit, a co-occurrence group extraction unit, a co-occurrence group generation prediction unit, and a power consumption prediction unit. The typical pattern extraction unit extracts a typical pattern for an on-period based on the past on-time and off-time of each electric device for each electric device. The co-occurrence group extraction unit extracts an on-period typical pattern having co-occurrence that occurs together with a predetermined on-period typical pattern of a predetermined electric device, and combines the above-mentioned predetermined on-period typical pattern into one co-occurrence group. Summarize. The co-occurrence group occurrence prediction unit predicts the occurrence of each co-occurrence group. The power consumption prediction unit obtains the power consumption of each co-occurrence group and predicts the power consumption of the facility based on the power consumption of the co-occurrence group predicted to occur.
 上記構成によれば、オン期間典型パターンが電気機器のオン時刻及びオフ時刻に基づいて纏められ、さらに共起する複数のオン期間典型パターンが共起グループに纏められる。
このように、電気機器のオン/オフ情報のみによって各電気機器がグルーピングされることから、オン/オフ情報に加えて消費電力変化が加味される場合と比較して、消費電力に基づくフィルタリングが無くなることから、一つのグループとして纏められる電気機器を増やすことができる。また、複数の電気機器を、それぞれ共起する、単一の電気設備として捉えられるようなグルーピングを行うことで、消費電力予測の精度低下を抑制可能となる。
According to the above configuration, the typical pattern of the on-period is grouped based on the on-time and the off-time of the electric device, and a plurality of co-occurrence typical patterns of the on-period are grouped into the co-occurrence group.
In this way, since each electric device is grouped only by the on / off information of the electric device, filtering based on the power consumption is eliminated as compared with the case where the power consumption change is added to the on / off information. Therefore, it is possible to increase the number of electrical devices that can be put together as one group. In addition, by grouping a plurality of electric devices so that they can be regarded as a single electric device co-occurring, it is possible to suppress a decrease in the accuracy of power consumption prediction.
 また上記発明において、消費電力予測装置は表示部を備えてもよい。当該表示部は、生起すると予測されたそれぞれの共起グループのオン時刻からオフ時刻までのオン期間と、当該オン期間におけるそれぞれの共起グループの消費電力が足し合わせられた施設消費電力とが表示される。さらに表示部は、共起グループとして纏められた電気機器の名称を、共起グループ別に表示可能であってよい。 Further, in the above invention, the power consumption prediction device may include a display unit. The display unit displays the on period from the on time to the off time of each co-occurrence group predicted to occur and the facility power consumption which is the sum of the power consumption of each co-occurrence group in the on period. Will be done. Further, the display unit may be able to display the names of the electric devices grouped together as the co-occurrence group for each co-occurrence group.
 また上記発明において、表示部は、単一のオン期間典型パターンとして纏められたオン時刻及びオフ時刻の分布を表示可能であってよい。 Further, in the above invention, the display unit may be able to display the distribution of the on time and the off time summarized as a single on-period typical pattern.
 また上記発明において、典型パターン抽出部は、それぞれの電気機器のオン期間典型パターンを、教師なし学習により、過去のオン時刻及びオフ時刻から抽出してもよい。 Further, in the above invention, the typical pattern extraction unit may extract the typical pattern of the on-period of each electric device from the past on-time and off-time by unsupervised learning.
 また上記発明において、共起グループ抽出部は、共起性を有する複数のオン期間典型パターンを教師なし学習により抽出して単一の共起グループに纏めてもよい。 Further, in the above invention, the co-occurrence group extraction unit may extract a plurality of on-period typical patterns having co-occurrence by unsupervised learning and combine them into a single co-occurrence group.
 また上記発明において、消費電力予測部は、教師有り学習により、過去の電気機器稼動履歴から、所定日において生起する共起グループを予測してもよい。 Further, in the above invention, the power consumption prediction unit may predict the co-occurrence group that occurs on a predetermined day from the past electrical equipment operation history by supervised learning.
 また上記発明において、表示部に表示された、それぞれのオン期間典型パターンのオン期間に対する修正指示を入力可能な入力部を備えてもよい。 Further, in the above invention, an input unit that can input a correction instruction for the on period of each on period typical pattern displayed on the display unit may be provided.
 また上記発明において、入力部は、表示部に表示された、複数の共起グループに対する統合指示を入力可能であってよい。 Further, in the above invention, the input unit may be able to input the integration instruction for a plurality of co-occurrence groups displayed on the display unit.
 また上記発明において、それぞれの電気機器に対して設定された制御計画に基づいて、それぞれの共起グループに対する生起予測を修正する予測結果修正部を備えてもよい。 Further, in the above invention, a prediction result correction unit may be provided to correct the occurrence prediction for each co-occurrence group based on the control plan set for each electric device.
 本発明によれば、消費電力予測の精度低下を抑制しつつ、消費電力予測に際しての演算負荷を従来よりも軽減可能となる。 According to the present invention, it is possible to reduce the calculation load at the time of power consumption prediction as compared with the conventional case, while suppressing the decrease in the accuracy of power consumption prediction.
本実施形態に係る消費電力予測装置を含む、施設の電力系統図を例示する図である。It is a figure which illustrates the electric power system diagram of the facility including the power consumption prediction apparatus which concerns on this embodiment. 消費電力予測装置の機能ブロックを例示する図である。It is a figure which illustrates the functional block of the power consumption prediction apparatus. 消費電力予測フローを例示する図である。It is a figure which illustrates the power consumption prediction flow. 所定の電気機器の日別のオン時刻/オフ時刻を例示するタイムチャートである。It is a time chart which exemplifies the on-time / off-time of a predetermined electric device by day. オン期間典型パターンの抽出プロセスを例示する図である。It is a figure which illustrates the extraction process of a typical pattern in an on-period. 共起グループの抽出プロセスを例示する図である。It is a figure which illustrates the extraction process of the co-occurrence group. 表示部にて表示される、共起グループ別に分類されたオン期間典型パターン、及び、施設の消費電力予想が例示される図である。It is a figure which exemplifies the on-period typical pattern classified by the co-occurrence group, and the power consumption forecast of a facility, which are displayed on the display part. オン期間典型パターン及び施設の消費電力予想に加えて、所定のオン期間典型パターンにおける、電気機器の運転状況の分布が表示された表示部の表示例を示す図である。It is a figure which shows the display example of the display part which displayed the distribution of the operation state of an electric device in a predetermined on-period typical pattern in addition to the on-period typical pattern and the power consumption forecast of a facility. 共起グループ分布及び施設の消費電力予想が示される日単位チャートである。It is a daily chart showing the distribution of co-occurrence groups and the power consumption forecast of facilities. 消費電力予測フローの第一別例を示す図である。It is a figure which shows the 1st example of the power consumption prediction flow. オン期間典型パターンの修正作業(時間調整)を例示する図である。It is a figure which illustrates the correction work (time adjustment) of a typical pattern of an on-period. オン期間典型パターンの修正作業(パターン削除)を例示する図である。It is a figure which illustrates the correction work (pattern deletion) of a typical pattern in an on-period. 共起グループの修正作業(グループ統合)を例示する図である。It is a figure which exemplifies the correction work (group integration) of a co-occurrence group. 消費電力予測フローの第二別例を示す図である。It is a figure which shows the 2nd example of the power consumption prediction flow. 消費電力予測フローの第三別例を示す図である。It is a figure which shows the 3rd alternative example of the power consumption prediction flow.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
 図1には、本実施形態に係る消費電力予測装置100を含む、施設の電力系統が例示される。この施設は例えばビル等の複数階建築物であって、当該施設には複数の電気機器が設置される。なおこれらの電気機器を、施設に設置されたものとして、電気設備と呼んでもよい。後述するように、消費電力予測装置100は、この施設全体の消費電力を予測する。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 illustrates an electric power system of a facility including the power consumption prediction device 100 according to the present embodiment. This facility is a multi-story building such as a building, and a plurality of electric devices are installed in the facility. It should be noted that these electric devices may be referred to as electric facilities as if they were installed in the facility. As will be described later, the power consumption prediction device 100 predicts the power consumption of the entire facility.
 これらの電気機器(電気設備)は、電力管理システムであるBEMS(Building and Energy Manegement System)によって監視、制御される。 These electrical devices (electrical equipment) are monitored and controlled by the BEMS (Building and Energy Management System), which is a power management system.
 電力管理システムは、消費電力予測装置100、電力管理装置10(B-OWS)、サブコントローラ14A~14C(B-BC)、デジタルコントローラ16A,16B(DDC)、リモートステーション18(RS)を備え、これらがバスに接続される。デジタルコントローラ16A,16B及びリモートステーション18は各電気機器20A~20Dや各種センサ22A~22Fに接続される。 The power management system includes a power consumption prediction device 100, a power management device 10 (B-OWS), sub-controllers 14A to 14C (B-BC), digital controllers 16A and 16B (DDC), and a remote station 18 (RS). These are connected to the bus. The digital controllers 16A and 16B and the remote station 18 are connected to the electric devices 20A to 20D and various sensors 22A to 22F.
 なお図1では、電力管理装置10及び消費電力予測装置100が、ともに独立した装置として示されているが、両者を一台の装置(例えばコンピュータ)に統合させてもよい。
また、図1は紙面の都合上、電力管理装置10の下位に接続されるサブコントローラ14等の機器の一部を例示するものであって、図示した構成の他にも種々の機器が接続されていてよい。
Although the power management device 10 and the power consumption prediction device 100 are both shown as independent devices in FIG. 1, they may be integrated into one device (for example, a computer).
Further, FIG. 1 illustrates a part of devices such as the sub controller 14 connected to the lower level of the power management device 10 due to space limitations, and various devices are connected in addition to the illustrated configuration. You may be.
 電気機器20A~20Dは、ビル内に設置される種々の設備機器であり、例えば照明機器、空調機器、昇降機、衛生機器、防災機器、及び防犯機器等が含まれる。図1の例では、電気機器20Aは照明機器であり、電気機器20Bは照明操作盤であり、電気機器20Cは空調機であり、電気機器20Dはエレベーター制御盤である。 Electrical equipment 20A to 20D are various equipment installed in a building, and include, for example, lighting equipment, air conditioning equipment, elevators, sanitary equipment, disaster prevention equipment, crime prevention equipment, and the like. In the example of FIG. 1, the electric device 20A is a lighting device, the electric device 20B is a lighting operation panel, the electric device 20C is an air conditioner, and the electric device 20D is an elevator control panel.
 また、電力管理装置10の配下に置かれるセンサとして、照度センサ22A、照明電力メータ22B、空調機センサ22C、空調電力メータ22D、エレベーター電力メータ22E、及び高圧電力メータ22Fが設けられる。高圧電力メータ22Fは、例えば電力会社から施設(ビル)に供給される高圧受電設備に設けられ、施設全体の消費電力が測定される。 Further, as sensors placed under the power management device 10, an illuminance sensor 22A, an illumination power meter 22B, an air conditioner sensor 22C, an air conditioner power meter 22D, an elevator power meter 22E, and a high pressure power meter 22F are provided. The high-voltage watt-hour meter 22F is provided in, for example, a high-voltage power receiving facility supplied from an electric power company to a facility (building), and the power consumption of the entire facility is measured.
 電力管理装置10は、その配下の各種センサ22A~22Eからそれぞれの計測値を受信する。また電力管理装置10は、例えばサブコントローラ14A~14Cから、各種電気機器20A~20Dのオン/オフ信号が送信される。後述するように、消費電力の予測に当たり、この各種電気機器20A~20Dのオン/オフ信号が利用される。 The power management device 10 receives each measured value from various sensors 22A to 22E under its control. Further, in the power management device 10, for example, on / off signals of various electric devices 20A to 20D are transmitted from the sub-controllers 14A to 14C. As will be described later, on / off signals of the various electric devices 20A to 20D are used in predicting the power consumption.
 電力管理装置10は、例えばいわゆるB-OWS(BACnet Operator Workstation)から構成されており、管理者等により操作監視されるクライアントPCとしての機能と、データ保存やアプリケーション処理等を行うサーバとしての機能を備えている。電力管理装置10では、例えば画面表示や設定操作が行われる。 The power management device 10 is composed of, for example, a so-called B-OWS (BACnet Operator Workstation), and has a function as a client PC whose operation is monitored by an administrator or the like and a function as a server which performs data storage, application processing, and the like. I have. In the power management device 10, for example, screen display and setting operations are performed.
 サブコントローラ14は主に制御機能を担う。サブコントローラ14は、例えばいわゆるB-BC(Building Controller)から構成されており、デジタルコントローラ16やリモートステーション18等の端末伝送機器と通信し、ポイントデータやスケジュール制御等を管理する。例えばサブコントローラ14は、空調設備系統、照明設備系統、昇降機系統、衛生設備系統、防犯設備系統等、各機能別系統(サブシステム)ごとに一つずつ設けられる。 The sub controller 14 mainly plays a control function. The sub controller 14 is composed of, for example, a so-called B-BC (Building Controller), communicates with a terminal transmission device such as a digital controller 16 or a remote station 18, and manages point data, schedule control, and the like. For example, one sub-controller 14 is provided for each functional system (subsystem) such as an air-conditioning equipment system, a lighting equipment system, an elevator system, a sanitary equipment system, and a crime prevention equipment system.
 デジタルコントローラ16はいわゆるDDC(Direct Digital Controller)であってよく、BEMSにおける分散制御を実現するための調節器としての機能を備える。例えばデジタルコントローラ16はサブコントローラ14から送られたスケジュール設定に基づくプログラム制御や、同じくサブコントローラ14から送られた目標値に基づくフィードバック制御等により、接続先の電気機器20C,20Dを制御する。また、デジタルコントローラ16はセンサ22C~22Eの計測値や電気機器20C,20Dの警告等を上記システムや他のデジタルコントローラ16に送信する。 The digital controller 16 may be a so-called DDC (Digital Digital Controller), and has a function as a controller for realizing distributed control in BEMS. For example, the digital controller 16 controls the connected electric devices 20C and 20D by program control based on the schedule setting sent from the sub controller 14 and feedback control based on the target value also sent from the sub controller 14. Further, the digital controller 16 transmits the measured values of the sensors 22C to 22E, warnings of the electric devices 20C and 20D, and the like to the above system and other digital controllers 16.
 リモートステーション18はアウトステーション、ローカルステーションとも呼ばれ、接続先のセンサ22A,22Bや電気機器20A,20Bの監視や制御を行う。機能的にはデジタルコントローラ16と重複するため、デジタルコントローラ16及びリモートステーション18は接続先の電気機器20A~20Dやセンサ22A~22Eに応じて適宜どちらか一方が選択される。 The remote station 18 is also called an out station or a local station, and monitors and controls the sensors 22A and 22B and the electrical devices 20A and 20B to be connected. Since it functionally overlaps with the digital controller 16, one of the digital controller 16 and the remote station 18 is appropriately selected according to the connected electric devices 20A to 20D and the sensors 22A to 22E.
 消費電力予測装置100、電力管理装置10、サブコントローラ14、デジタルコントローラ16、及びリモートステーション18はコンピュータから構成される。例えば代表的に電力管理装置10に示すように、そのいずれにも、CPU26、メモリ28、ハードディスクドライブ(HDD)30、入力部32、表示部34、及び入出力インターフェース36が設けられる。 The power consumption prediction device 100, the power management device 10, the sub controller 14, the digital controller 16, and the remote station 18 are composed of computers. For example, as typically shown in the power management device 10, each of them is provided with a CPU 26, a memory 28, a hard disk drive (HDD) 30, an input unit 32, a display unit 34, and an input / output interface 36.
 消費電力予測装置100の機能ブロック図が図2に例示される。消費電力予測装置100は電力管理装置10と通信接続されており、電力管理装置10に蓄積された種々のデータを活用して、施設全体の消費電力予測を求める。 A functional block diagram of the power consumption prediction device 100 is illustrated in FIG. The power consumption prediction device 100 is communicated with the power management device 10, and utilizes various data stored in the power management device 10 to obtain a power consumption prediction for the entire facility.
 例えば、DVDやコンピュータのハードディスク等の、非一過性の記憶媒体に記憶されたプログラムを実行することにより、当該コンピュータは図2に例示される種々の機能ブロックを備える消費電力予測装置100として機能する。 For example, by executing a program stored in a non-transient storage medium such as a DVD or a hard disk of a computer, the computer functions as a power consumption prediction device 100 including various functional blocks illustrated in FIG. To do.
 具体的には、消費電力予測装置100は、入力部32、表示部34、典型パターン抽出部102、共起グループ抽出部104、共起グループ発生予測部106、消費電力予測部108、抽出結果修正部112、及び、予測結果修正部114を備える。また、消費電力予測装置100から種々のデータが抽出される電力管理装置10は、その機能ブロックとして、機器制御計画記憶部12A、機器稼動履歴記憶部12B、及び、消費電力履歴記憶部12Cを備える。 Specifically, the power consumption prediction device 100 includes an input unit 32, a display unit 34, a typical pattern extraction unit 102, a co-occurrence group extraction unit 104, a co-occurrence group generation prediction unit 106, a power consumption prediction unit 108, and an extraction result correction. A unit 112 and a prediction result correction unit 114 are provided. Further, the power management device 10 from which various data are extracted from the power consumption prediction device 100 includes a device control plan storage unit 12A, a device operation history storage unit 12B, and a power consumption history storage unit 12C as its functional blocks. ..
 図3には、本実施形態に係る消費電力予測装置100による、消費電力予測プロセスのフローチャートが例示される。このプロセスでは、ビル等の、施設全体の消費電力の時間変化が予測される。 FIG. 3 illustrates a flowchart of the power consumption prediction process by the power consumption prediction device 100 according to the present embodiment. In this process, the time change of the power consumption of the entire facility such as a building is predicted.
 図2を参照して、典型パターン抽出部102は、それぞれの電気機器の過去のオン時刻及びオフ時刻に基づいて纏められたオン期間典型パターンを、電気機器ごとに抽出する。
例えば典型パターン抽出部102は、電力管理装置10の機器稼動履歴記憶部12Bから、電力管理装置10の配下(監視、制御管理下)にある電気機器の稼動履歴を取得するとともに、当該稼動履歴に基づいて、電気機器ごとのオン期間典型パターンを抽出する。
With reference to FIG. 2, the typical pattern extraction unit 102 extracts an on-period typical pattern compiled based on the past on-time and off-time of each electric device for each electric device.
For example, the typical pattern extraction unit 102 acquires the operation history of the electric equipment under the control of the power management device 10 (under monitoring and control control) from the device operation history storage unit 12B of the power management device 10, and also records the operation history in the operation history. Based on this, a typical on-period pattern for each electrical device is extracted.
 機器稼動履歴記憶部12Bには、電力管理装置10の配下にある、それぞれの電気機器のオン/オフ情報が記憶される。図4には、電力管理装置10の配下にある所定の電気機器(例えば空調設備の室内機)のオン/オフ情報が例示される。 The device operation history storage unit 12B stores on / off information of each electric device under the power management device 10. FIG. 4 illustrates on / off information of a predetermined electric device (for example, an indoor unit of an air conditioner) under the power management device 10.
 図4を参照して、機器稼動履歴記憶部12Bには、電気機器のオン時刻、つまりオフ状態からオン状態に切り替わった時刻と、オフ時刻、つまりオン状態からオフ状態に切り替わった時刻とが、複数日に亘って記憶される。 With reference to FIG. 4, the device operation history storage unit 12B has an on time of the electric device, that is, a time when the off state is switched to the on state, and an off time, that is, a time when the on state is switched to the off state. It is memorized for multiple days.
 典型パターン抽出部102は、この機器稼動履歴に基づいて、それぞれの電気機器に対する、典型的な(または代表的な)オン/オフパターンを抽出してこれをオン期間典型パターンとする(図3S10)。 The typical pattern extraction unit 102 extracts a typical (or typical) on / off pattern for each electric device based on the device operation history, and sets this as a typical pattern during the on period (FIG. 3S10). ..
 例えば図4に例示されたオン時刻及びオフ時刻が、図5に例示されるような直交座標平面上にプロットされる。この座標平面は典型パターン抽出平面と呼んでもよく、横軸はオン時刻を示し、縦軸はオフ時刻を示す。 For example, the on time and the off time illustrated in FIG. 4 are plotted on a Cartesian coordinate plane as illustrated in FIG. This coordinate plane may be called a typical pattern extraction plane, and the horizontal axis indicates the on time and the vertical axis indicates the off time.
 例えば図4を参照して、12/1のオン/オフ状況を参照すると、オン時刻3:00、オフ時刻18:00となっており、典型パターン抽出部102は、典型パターン抽出平面(図5参照)上の、上記オン時刻及びオフ時刻に相当する座標に、座標点をプロットする。このようにして、各日付の0:00から24:00までのオン時刻とオフ時刻との組で表される座標に沿って、図5の平面上に座標点が順次プロットされる。 For example, referring to FIG. 4 and referring to the on / off status of 12/1, the on time is 3:00 and the off time is 18:00, and the typical pattern extraction unit 102 is a typical pattern extraction plane (FIG. 5). (See) Plot the coordinate points at the coordinates corresponding to the above on time and off time. In this way, the coordinate points are sequentially plotted on the plane of FIG. 5 along the coordinates represented by the set of the on time and the off time from 0:00 to 24:00 on each date.
 なお、原点から斜め上に引かれた破線は境界線を示す。すなわち境界線(破線)から右下領域は、オン時刻よりも早くにオフ時刻が表れる領域(例えばオン時刻12:00に対してオフ時刻10:00)であって、現実的に生じ得ない。したがって境界線よりも右下領域は、オン期間典型パターンの抽出領域から除外される。 The broken line drawn diagonally upward from the origin indicates the boundary line. That is, the lower right region from the boundary line (broken line) is an region in which the off time appears earlier than the on time (for example, the off time is 10:00 with respect to the on time of 12:00), and cannot occur realistically. Therefore, the area lower right than the boundary line is excluded from the extraction area of the typical pattern during the on-period.
 図4に示されるような、所定の電気機器についての稼動履歴(オン/オフ履歴)が、全日程に亘って図5の典型パターン抽出平面上にプロットされると、典型パターン抽出部102は、これらの点群を抽出(グループ分け)する。 When the operation history (on / off history) of a predetermined electric device as shown in FIG. 4 is plotted on the typical pattern extraction plane of FIG. 5 over the entire schedule, the typical pattern extraction unit 102 Extract (group) these point clouds.
 この、電気機器のオン期間典型パターンの抽出に当たり、例えば教師あり学習を用いると、真のオン期間典型パターンが教師信号となる。しかしながら、オン期間典型パターンはビル、季節、地域等に応じて変化するものであり、真のオン期間典型パターンを適切に選択することが困難となる。そこで電気機器のオン期間典型パターンの抽出は、例えば教師なし学習に基づく、クラスタリング、または、頻出パターンマイニングによって行ってもよい。例えばクラスタリングである場合には、混合ガウス分布を用いたクラスタリングが実行されてよく、単一のガウス分布が一つのクラスタに対応する。 In extracting the typical pattern of the on-period of the electric device, for example, when supervised learning is used, the true pattern of the on-period is the teacher signal. However, the typical on-period pattern changes according to the building, season, region, etc., and it becomes difficult to appropriately select the true on-period typical pattern. Therefore, the extraction of the typical pattern during the on-period of the electric device may be performed by, for example, clustering based on unsupervised learning or frequent pattern mining. For example, in the case of clustering, clustering using a mixed Gaussian distribution may be performed, and a single Gaussian distribution corresponds to one cluster.
 典型パターン抽出平面上の点群がオン期間典型パターンTP1~TP5のいずれかにグルーピングされると、典型パターン抽出部102は、オン期間典型パターンTP1~TP5のそれぞれのオン時刻及びオフ時刻の代表値を求める。例えば一つのオン期間典型パターンに含まれる複数のオン時刻及びオフ時刻の各平均値や最頻値が、それぞれのオン期間典型パターンTP1~TP5のオン時刻及びオフ時刻として定められる。 When the point cloud on the typical pattern extraction plane is grouped into any of the on-period typical patterns TP1 to TP5, the typical pattern extraction unit 102 represents the on-time and off-time representative values of the on-period typical patterns TP1 to TP5, respectively. Ask for. For example, the average value and the mode of each of the plurality of on-time and off-time included in one on-period typical pattern are defined as the on-time and off-time of the respective on-period typical patterns TP1 to TP5.
 このような、一つの電気機器に対して求められるオン期間典型パターンが、電力管理装置10の配下にある複数の電気機器に対して抽出される。 Such an on-period typical pattern required for one electric device is extracted for a plurality of electric devices under the power management device 10.
 電気機器毎にオン期間典型パターンが抽出されると、共起グループ抽出部104(図2参照)は、電気機器毎のオン期間典型パターンから共起グループを抽出する(図3S12)。 When the on-period typical pattern is extracted for each electric device, the co-occurrence group extraction unit 104 (see FIG. 2) extracts the co-occurrence group from the on-period typical pattern for each electric device (FIG. 3S12).
 共起とは、あるオン期間典型パターンと他のオン期間典型パターンとが共に生起することを指す。この共起性は厳密な同時性を持たなくてもよく、例えば一日において、あるオン期間典型パターンと他のオン期間典型パターンとが共に生起する頻度が高ければよい。 Co-occurrence means that a certain on-period typical pattern and another on-period typical pattern occur together. This co-occurrence does not have to have strict simultaneity, for example, it is sufficient that one on-period typical pattern and another on-period typical pattern occur frequently in one day.
 また、一つの共起グループに、所定の電気機器の、所定のオン期間典型パターンと、同一の電気機器の、他のオン期間典型パターンとが含まれていてもよい。また同様にして、所定の電気機器の、所定のオン期間典型パターンと、他の電気機器のオン期間典型パターンとが一つの共起グループに含まれていてよい。 Further, one co-occurrence group may include a predetermined on-period typical pattern of a predetermined electric device and another on-period typical pattern of the same electric device. Similarly, a predetermined on-period typical pattern of a predetermined electric device and an on-period typical pattern of another electric device may be included in one co-occurrence group.
 典型的には、空調設備の室内機と室外機は、一方がオンになると他方もオンになるので、ともに一つの共起グループに含まれる。また、ビル内の所定のテナントにおいて、当該テナントに設置された照明機器と空調設備(室内機、室外機)も、例えば夏季や冬季には、ともに一つの共起グループに含まれる。 Typically, the indoor unit and outdoor unit of the air conditioner are included in one co-occurrence group because when one is turned on, the other is also turned on. In addition, in a predetermined tenant in a building, lighting equipment and air conditioning equipment (indoor unit, outdoor unit) installed in the tenant are also included in one co-occurrence group in summer and winter, for example.
 複数の電気機器を、オン期間典型パターンをもとに共起グループに纏めることで、複数の電気機器を、それぞれ共起する、単一の電気設備として捉えることができ、消費電力予測に係る演算負荷を軽減可能となる。 By grouping multiple electrical devices into a co-occurrence group based on a typical pattern during the on-period, multiple electrical devices can be regarded as a single electrical facility that co-occurs with each other, and calculations related to power consumption prediction. The load can be reduced.
 また、共起グループの抽出に当たり、オン期間典型パターンが電気機器のオン時刻及びオフ時刻に基づいて纏められる。言い換えると電気機器のオン/オフ情報のみによって各電気機器がグルーピングされる。したがって、オン/オフ情報に消費電力変化が加味される場合と比較して、消費電力に基づくフィルタリングが無くなることから、一つのグループとして纏められる電気機器を増やすことができる。 In addition, when extracting co-occurrence groups, typical patterns of on-periods are summarized based on the on-time and off-time of electrical equipment. In other words, each electric device is grouped only by the on / off information of the electric device. Therefore, as compared with the case where the power consumption change is added to the on / off information, the filtering based on the power consumption is eliminated, so that the number of electric devices that can be grouped together can be increased.
 共起グループ抽出部104は、所定の電気機器の所定のオン期間典型パターンと共に生起する(共起性を備えた)オン期間典型パターンを抽出して、上記所定のオン期間典型パターンとともに一つの共起グループに纏める。 The co-occurrence group extraction unit 104 extracts an on-period typical pattern (having co-occurrence) that occurs together with a predetermined on-period typical pattern of a predetermined electric device, and performs one co-occurrence group together with the predetermined on-period typical pattern. Summarize in the Ki group.
 図7には、所定の日付における消費電力予測が例示される。上段のタイムチャートには、電気機器A~電気機器Zのそれぞれのオン期間典型パターンが示され、ハッチングにてそれぞれの共起グループが示される。 FIG. 7 exemplifies the power consumption forecast on a predetermined date. In the upper time chart, typical patterns of the on-periods of the electric devices A to Z are shown, and each co-occurrence group is shown by hatching.
 例えば共起グループCO-Gr2に含まれるオン期間典型パターンとして、電気機器Aのオン期間典型パターンTP3、TP4、及び電気機器Cのオン期間典型パターンTP1が含まれる。 For example, as the on-period typical pattern included in the co-occurrence group CO-Gr2, the on-period typical patterns TP3 and TP4 of the electric device A and the on-period typical pattern TP1 of the electric device C are included.
 このような共起グループの抽出に当たり、教師あり学習が用いられる場合、上述したオン期間典型パターンと同様にして、共起パターンはビル、季節、地域等に応じて変化するものであり、真の共起グループの適切な選択は困難となる。そこで、共起グループの抽出に当たり、例えば行列分解や頻出パターンマイニング等の演算が教師なし学習にて行われてもよい。 When supervised learning is used to extract such co-occurrence groups, the co-occurrence pattern changes according to the building, season, region, etc., in the same manner as the above-mentioned on-period typical pattern, and is true. Proper selection of co-occurrence groups becomes difficult. Therefore, in extracting the co-occurrence group, operations such as matrix factorization and frequent pattern mining may be performed by unsupervised learning.
 共起グループ抽出部104(図2参照)は、例えば図6に示されるような行列分解を実行する。この行列分解は、例えば非負値行列分解であってよい。 The co-occurrence group extraction unit 104 (see FIG. 2) executes matrix factorization as shown in FIG. 6, for example. This matrix factorization may be, for example, a non-negative matrix factorization.
 まず、図6の左上の表に示されるように、日付を行、各電気機器のオン期間典型パターン(TP1、TP2、・・・)を列として配列させた行列が共起グループ抽出部104によって作成される。この行列は観測データ行列Yとも呼ばれ、その行数は日数であり、列数はそれぞれの電気機器のオン期間典型パターンの数と、電気機器の数の積となる。 First, as shown in the table on the upper left of FIG. 6, a matrix in which dates are arranged and typical patterns (TP1, TP2, ...) Of the on-period of each electric device are arranged as columns is generated by the co-occurrence group extraction unit 104. Will be created. This matrix is also called the observation data matrix Y, the number of rows is the number of days, and the number of columns is the product of the number of typical patterns during the on-period of each electrical device and the number of electrical devices.
 例えば非負値行列分解では、観測データ行列Yが、基底行列Aと係数行列Bとの積(Y≒AB)に近似的に分解される。ここで、観測データ行列Y、基底行列A、及び係数行列Bの各成分yij,aij,bijは以下の下記数式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 
 
For example, in the non-negative matrix factorization, the observation data matrix Y is approximately decomposed into the product (Y≈AB) of the basis matrix A and the coefficient matrix B. Here, the observation data matrix Y, the components y ij basis matrix A, and the coefficient matrix B, a ij, b ij is expressed as follows in Equation (11) below (1).
Figure JPOXMLDOC01-appb-M000001

 数式(1)について、本実施形態に照らすと、基底行列Aは日毎にどの共起グループが生起したかを表す行列となり、係数行列Bは、どのオン期間典型パターンが共起グループとして纏められたかを表す行列となる。 Regarding the mathematical formula (1), in light of the present embodiment, the basis matrix A is a matrix representing which co-occurrence group occurred every day, and the coefficient matrix B is which on-period typical pattern is grouped as a co-occurrence group. It becomes a matrix representing.
 共起グループ抽出部104(図2参照)は、このようにして、互いに共起する複数のオン期間典型データを共起グループとして纏めると、纏められた各共起グループのデータは、共起グループ発生予測部106に送信される。 In this way, the co-occurrence group extraction unit 104 (see FIG. 2) summarizes a plurality of on-period typical data co-occurring with each other as a co-occurrence group, and the collected data of each co-occurrence group is a co-occurrence group. It is transmitted to the occurrence prediction unit 106.
 共起グループ発生予測部106は、それぞれの共起グループに対する生起予測を行う。
例えば共起グループ発生予測部106は、予測対象日の曜日、天気、季節、月、スケジューラ等の情報から、教師あり学習により、生起すると予測される共起グループを求める。
ここで、共起グループの生起については、過去の実績データから教師信号を取得できる場合がある。教師あり学習が行われることで、教師なし学習と比較して予測精度を向上できる。
The co-occurrence group occurrence prediction unit 106 predicts the occurrence of each co-occurrence group.
For example, the co-occurrence group occurrence prediction unit 106 obtains a co-occurrence group predicted to occur by supervised learning from information such as the day of the week, weather, season, month, and scheduler of the prediction target day.
Here, regarding the occurrence of the co-occurrence group, it may be possible to obtain a teacher signal from past performance data. By performing supervised learning, prediction accuracy can be improved as compared with unsupervised learning.
 教師あり学習では、例えば一般化線形モデル、ニューラルネットワークモデル、及びSVM(Support vector machine)のいずれかが用いられる。例えばニューラルネットワークを用いた教師あり学習に当たり、例えば学習フェーズでは、入力層には、訓練用データとして、過去の任意の日付の曜日、天気、季節、月、スケジューラ等の情報が与えられる。また、出力層には、正解データとして、当該日付において生起された共起グループが与えられる。このような訓練用データと正解データとを実際の過去データから入力することで、適切な重み付けや隠れ層が生成される。共起グループ発生予測部106は、このような学習フェーズを踏まえて、曜日、天気などの情報から各共起グループの発生有無などを予測するモデルを学習する(図3S14)。 In supervised learning, for example, one of a generalized linear model, a neural network model, and an SVM (Support vector machine) is used. For example, in supervised learning using a neural network, for example, in the learning phase, information such as the day of the week, weather, season, month, and scheduler of any date in the past is given to the input layer as training data. Further, the output layer is given a co-occurrence group generated on the date as correct answer data. By inputting such training data and correct answer data from actual past data, appropriate weighting and hidden layers are generated. Based on such a learning phase, the co-occurrence group occurrence prediction unit 106 learns a model for predicting the presence or absence of occurrence of each co-occurrence group from information such as the day of the week and the weather (FIG. 3S14).
 学習フェーズが終了する、例えば施設のすべての過去データが入力されると、予測フェーズに移る。予測フェーズにおいて、共起グループ発生予測部106は、学習後のモデルを用いて、未来の各共起グループの生起予測を行う(図3S16)。 When the learning phase is completed, for example, all the past data of the facility is input, the prediction phase is started. In the prediction phase, the co-occurrence group occurrence prediction unit 106 predicts the occurrence of each future co-occurrence group using the model after learning (FIG. 3S16).
 具体的には、上記モデルに、消費電力の予測対象日の曜日、天気、季節、月、スケジューラ等の情報が入力される。出力層には、当該予測対象日に生起すると予測される共起グループが出力される。 Specifically, information such as the day of the week, weather, season, month, scheduler, etc. of the power consumption prediction target day is input to the above model. A co-occurrence group that is predicted to occur on the prediction target date is output to the output layer.
 図7上段には、所定の予測対象日に生起されると予測された共起グループの例が示される。この例では、機器A、機器B、機器C、機器Zについてそれぞれオン期間典型パターン(TP1,TP2,・・・)が表示される。それぞれのオン期間典型パターンには、共起グループ(CO-Gr1,CO-Gr2,・・・)別に異なるハッチングが付されている。 The upper part of FIG. 7 shows an example of a co-occurrence group predicted to occur on a predetermined prediction target date. In this example, typical patterns (TP1, TP2, ...) During the on-period are displayed for each of the device A, the device B, the device C, and the device Z. Each on-period typical pattern has different hatching for each co-occurrence group (CO-Gr1, CO-Gr2, ...).
 共起グループの生起予測が済むと、当該予測データは消費電力予測部108(図2参照)に送られる。消費電力予測部108は、共起グループごとの消費電力を求めるとともに、生起すると予測された共起グループの消費電力に基づいて、施設の消費電力を予測する(図3S18)。 When the occurrence prediction of the co-occurrence group is completed, the prediction data is sent to the power consumption prediction unit 108 (see FIG. 2). The power consumption prediction unit 108 obtains the power consumption of each co-occurrence group and predicts the power consumption of the facility based on the power consumption of the co-occurrence group predicted to occur (FIG. 3S18).
 このステップでは、例えばシミュレータを用いた消費電力予測が行われる。例えば、オン期間典型パターンの抽出時に、図5に例示されるような、過去の実績データ、つまりオン時刻及びオフ時刻がグルーピングされる。このグルーピングの元になった過去の実績データを辿ると、グルーピングされたオン時刻及びオフ時刻に対応する、過去の消費電力の実績値を得ることができる。 In this step, for example, power consumption prediction using a simulator is performed. For example, when extracting a typical pattern during the on-period, past actual data, that is, on-time and off-time, as illustrated in FIG. 5, are grouped. By tracing the past actual data that is the basis of this grouping, it is possible to obtain the actual value of the past power consumption corresponding to the grouped on time and off time.
 例えば図5を参照して、オン期間典型パターンTP2にグルーピングされた4点の座標点に対応する消費電力実績が、消費電力履歴記憶部12C(図2参照)から得られる。この消費電力実績の例えば平均値や中央値を、オン期間典型パターンTP2の消費電力として用いることができる。 For example, with reference to FIG. 5, the actual power consumption corresponding to the four coordinate points grouped in the typical pattern TP2 during the on-period can be obtained from the power consumption history storage unit 12C (see FIG. 2). For example, the average value or the median value of the actual power consumption can be used as the power consumption of the typical pattern TP2 during the on-period.
 なお、個々の電気機器に電力センサが設けられていない、つまり個々の電気機器の消費電力実績が不明である場合は、例えば、高圧電力メータ22F(図1参照)が検出した消費電力を、その時点においてオン状態である各電気機器の定格電力に応じて按分することで、各電気機器の消費電力実績を求めることができる。 When the power sensor is not provided in each electric device, that is, the actual power consumption of each electric device is unknown, for example, the power consumption detected by the high-voltage power meter 22F (see FIG. 1) is used. By apportioning according to the rated power of each electric device that is on at the time, the actual power consumption of each electric device can be obtained.
 図7下段に例示されるように、消費電力予測部108は、生起予測された各オン期間典型パターンに対応する消費電力を足し合わせる(積算させる)ことで、電気機器が設置された施設全体の消費電力(施設消費電力)を予測する。 As illustrated in the lower part of FIG. 7, the power consumption prediction unit 108 adds (integrates) the power consumption corresponding to each on-period typical pattern predicted to occur, thereby adding (accumulating) the power consumption of the entire facility in which the electrical equipment is installed. Predict power consumption (facility power consumption).
 上記のような予測結果は、例えば図7上段及び下段に例示されるように、表示部34に表示される(図3S20)。表示部34は例えばディスプレイから構成される。 The prediction result as described above is displayed on the display unit 34, for example, as illustrated in the upper and lower rows of FIG. 7 (FIG. 3S20). The display unit 34 is composed of, for example, a display.
 図7上段は、生起すると予測された共起グループのオン時刻からオフ時刻までのオン期間を示すタイムチャートである。上述したように、共起グループとして纏められた電気機器の名称が、共起グループ別に表示される。このようなタイムチャートが表示部34に表示されることで、共起グループの内訳を確認可能となる。また図7下段には、オン期間におけるそれぞれの共起グループの消費電力が足し合わせられた施設消費電力が表示される。 The upper part of FIG. 7 is a time chart showing the on period from the on time to the off time of the co-occurrence group predicted to occur. As described above, the names of the electric devices grouped as the co-occurrence group are displayed for each co-occurrence group. By displaying such a time chart on the display unit 34, the breakdown of the co-occurrence group can be confirmed. Further, in the lower part of FIG. 7, the facility power consumption, which is the sum of the power consumption of each co-occurrence group during the on period, is displayed.
 表示部34の表示内容は、入力部32からの操作で変更可能となっている。入力部32は例えばマウスやキーボードであって、例えば図8に例示されるように入力部32の操作でポインタ120が表示画面上で移動可能となる。ポインタ120によりオン期間典型パターンTP4が選択されると、最下段にオン期間典型パターンTP4として纏められた(グルーピングされた)過去の実績データの分布が示される。例えば電気機器Aが空調設備の室内機である場合、その過去の実績データには、オン時刻、オフ時刻、設定温度の分布、及び風量の分布が含まれる。 The display content of the display unit 34 can be changed by an operation from the input unit 32. The input unit 32 is, for example, a mouse or a keyboard, and the pointer 120 can be moved on the display screen by operating the input unit 32, for example, as illustrated in FIG. When the on-period typical pattern TP4 is selected by the pointer 120, the distribution of past actual data grouped (grouped) as the on-period typical pattern TP4 is shown at the bottom. For example, when the electric device A is an indoor unit of an air conditioner, its past actual data includes on-time, off-time, set temperature distribution, and air volume distribution.
 また、図7、図8では、一日単位の予測データが表示されていたが、表示形式を変更することも可能である。例えば消費電力予測装置100は、入力部32の操作に応じて、表示部34に対して、例えば一日単位から図9に例示される数週間単位の予測データの表示に切り替える切り替え指令を出力可能となっている。 Further, in FIGS. 7 and 8, the forecast data on a daily basis was displayed, but the display format can be changed. For example, the power consumption prediction device 100 can output a switching command to the display unit 34 in response to the operation of the input unit 32, for example, to switch from the daily unit to the display of the forecast data for several weeks as illustrated in FIG. It has become.
 図9を参照して、上段には縦軸に共起グループ番号が示され、横軸には日付が示される。下段には縦軸に消費電力が示され、横軸には上段と同期された日付が示される。 With reference to FIG. 9, the vertical axis shows the co-occurrence group number and the horizontal axis shows the date. In the lower row, the vertical axis shows the power consumption, and in the horizontal axis, the date synchronized with the upper row is shown.
 このように、本実施形態に係る電力予測装置では、電力予測の根拠となった共起グループ及びオン期間典型パターンが表示部に示される。このように予測根拠が示されることで、表示部を閲覧する管理者等が、予測の妥当性を検討することができる。また後述するような、共起グループ単位、及びオン期間典型パターン単位の電力予測の修正も可能となる。 As described above, in the power prediction device according to the present embodiment, the co-occurrence group and the on-period typical pattern that are the basis of the power prediction are shown on the display unit. By showing the prediction basis in this way, the administrator or the like who browses the display unit can examine the validity of the prediction. Further, as will be described later, it is possible to revise the power prediction for each co-occurrence group and for each on-period typical pattern.
<消費電力予測プロセスの第一別例>
 図10には、本実施形態に係る消費電力予測プロセスの第一別例のフローチャートが例示される。この図について、図3と同一のステップについては同一の符号が付され、説明は適宜省略される。
<First example of power consumption prediction process>
FIG. 10 illustrates a flowchart of the first alternative example of the power consumption prediction process according to the present embodiment. In this figure, the same steps as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 図10の例では、ステップS20にて図8に例示されるような共起グループの生起予測や消費電力予測が表示されると、これらの予測結果に対して修正が可能となっている。 In the example of FIG. 10, when the occurrence prediction and the power consumption prediction of the co-occurrence group as illustrated in FIG. 8 are displayed in step S20, it is possible to correct these prediction results.
 例えば図8上段に例示されるように、表示部34により表示された共起グループのタイムチャートについて、オン期間典型パターンTP4にポインタ120が重ねられる。これに応じてオン期間典型パターンTP4としてグルーピングされた過去の実績データの分布が示される。 For example, as illustrated in the upper part of FIG. 8, the pointer 120 is superimposed on the on-period typical pattern TP4 for the time chart of the co-occurrence group displayed by the display unit 34. Correspondingly, the distribution of past actual data grouped as the on-period typical pattern TP4 is shown.
 さらにこの過去の実績データにポインタ120が合わせられ、修正が加えられる。例えば図11に例示されるように、オフ時刻の分布グラフにポインタ120が合わせられ、オン期間典型パターンTP4のオフ時刻が、規定値として設定されまたグラフの最頻値である17:00から18:00に修正させられる。 Furthermore, the pointer 120 is aligned with this past actual data, and corrections are made. For example, as illustrated in FIG. 11, the pointer 120 is aligned with the distribution graph of the off time, the off time of the on-period typical pattern TP4 is set as a specified value, and the mode is the mode from 17:00 to 18 of the graph. It is corrected at: 00.
 このように、入力部32からオン期間典型パターンのオン期間に対する修正指示が入力されると、抽出結果修正部112(図2参照)は、図11上段に例示されるように、選択された電気機器Aのオン期間典型パターンTP4のオフ時刻を17:00から18:00に変更する(図10S22)。さらに図10のフローチャートではステップS12まで戻り、共起グループの抽出が再度実行される。 In this way, when a correction instruction for the on period of the typical pattern of the on period is input from the input unit 32, the extraction result correction unit 112 (see FIG. 2) selects the selected electricity as illustrated in the upper part of FIG. The off time of the typical pattern TP4 during the on period of the device A is changed from 17:00 to 18:00 (FIG. 10S22). Further, in the flowchart of FIG. 10, the process returns to step S12, and the extraction of the co-occurrence group is executed again.
 共起グループの抽出が再度実行されることで、消費電力予想も修正される。具体的には図11下段に示されるように、共起グループCO-Gr2の消費電力の終点が破線で示されるように延長される。 By re-extracting the co-occurrence group, the power consumption forecast will also be revised. Specifically, as shown in the lower part of FIG. 11, the end point of the power consumption of the co-occurrence group CO-Gr2 is extended as shown by the broken line.
 また、消費電力予測装置100は、例えば共起グループの修正指示を入力部32から入力可能となっている。例えば図12上段に例示されるように、共起グループCO-Gr2にグルーピングされた電気機器Aのオン期間典型パターンTP4が、ポインタ120の操作によって消去される。例えば共起グループの修正指示が入力部32から入力される(図10S24)と、抽出結果修正部112(図2参照)は、選択されたオン期間典型パターンを消去する。さらにステップS14まで戻り、共起グループの生起予測が再度実行される。 Further, the power consumption prediction device 100 can input, for example, a correction instruction of the co-occurrence group from the input unit 32. For example, as illustrated in the upper part of FIG. 12, the on-period typical pattern TP4 of the electrical equipment A grouped in the co-occurrence group CO-Gr2 is erased by the operation of the pointer 120. For example, when the correction instruction of the co-occurrence group is input from the input unit 32 (FIG. 10S24), the extraction result correction unit 112 (see FIG. 2) erases the selected on-period typical pattern. Further, the process returns to step S14, and the occurrence prediction of the co-occurrence group is executed again.
 生起予測が再度実行されることで、消費電力予想も修正される。具体的には図12下段に示されるように、電気機器Aのオン期間典型パターンTP4に対応する消費電力が破線で示されるように削除される。 The power consumption forecast will be revised by executing the occurrence forecast again. Specifically, as shown in the lower part of FIG. 12, the power consumption corresponding to the on-period typical pattern TP4 of the electric device A is deleted as shown by the broken line.
 図13には、図12とは異なる共起グループの修正操作が例示される。図13では、一旦異なる共起グループと設定された複数のオン期間典型パターンが単一の共起グループに統合される。例えばポインタ120に選択された共起グループCO-Gr3が別の共起グループCO-Gr2に統合される。 FIG. 13 illustrates a correction operation of a co-occurrence group different from that of FIG. In FIG. 13, a plurality of on-period typical patterns once set as different co-occurrence groups are integrated into a single co-occurrence group. For example, the co-occurrence group CO-Gr3 selected by the pointer 120 is integrated into another co-occurrence group CO-Gr2.
 このような統合指示が消費電力予測装置100の入力部32から入力されると、抽出結果修正部112(図2参照)は、上記のような統合処理を実行する。さらに図13に例示されるフローはステップS14まで戻り、共起グループの生起予測が再度実行される。生起予測が再度実行されることで、消費電力予想も修正される。具体的には図13下段に示されるように、共起グループCO-Gr3にグルーピングされていた消費電力が、共起グループCO-Gr2に変更される。 When such an integration instruction is input from the input unit 32 of the power consumption prediction device 100, the extraction result correction unit 112 (see FIG. 2) executes the integration process as described above. Further, the flow illustrated in FIG. 13 returns to step S14, and the occurrence prediction of the co-occurrence group is executed again. When the occurrence prediction is executed again, the power consumption prediction is also corrected. Specifically, as shown in the lower part of FIG. 13, the power consumption grouped in the co-occurrence group CO-Gr3 is changed to the co-occurrence group CO-Gr2.
<消費電力予測プロセスの第二別例>
 図14には本実施形態に係る消費電力予測プロセスの第二別例のフローチャートが例示される。この図について、図3と同一のステップについては同一の符号が付され、説明は適宜省略される。
<Second example of power consumption prediction process>
FIG. 14 illustrates a flowchart of a second alternative example of the power consumption prediction process according to the present embodiment. In this figure, the same steps as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 この例では、共起グループの生起予測が行われた後(S16)、電気機器の制御計画を用いて、生起予測が修正される(S26)。図2を参照して、電力管理装置10には、機器制御計画記憶部12Aが設けられる。機器制御計画記憶部12Aには、施設に設置され電力管理装置10の配下にある電気機器の制御計画が記憶される。例えばオン操作が禁止される日付及び時間帯等が記憶される。 In this example, after the occurrence prediction of the co-occurrence group is performed (S16), the occurrence prediction is corrected by using the control plan of the electric device (S26). With reference to FIG. 2, the power management device 10 is provided with a device control plan storage unit 12A. The device control plan storage unit 12A stores the control plans of the electric devices installed in the facility and under the control of the power management device 10. For example, the date and time zone in which the on operation is prohibited are stored.
 図2を参照して、消費電力予測装置100の予測結果修正部114は、機器制御計画記憶部12Aに記憶された各電気機器の制御計画をもとに、共起グループ発生予測部106によって予測された生起予測を修正する。修正された生起予測に基づいて、消費電力予測(S18)及びその予測結果の表示(S20)が行われる。 With reference to FIG. 2, the prediction result correction unit 114 of the power consumption prediction device 100 predicts by the co-occurrence group generation prediction unit 106 based on the control plan of each electric device stored in the device control plan storage unit 12A. Correct the occurrence predictions made. Based on the revised occurrence prediction, the power consumption prediction (S18) and the display of the prediction result (S20) are performed.
<消費電力予測プロセスの第三別例>
 図15には本実施形態に係る消費電力予測プロセスの第三別例のフローチャートが例示される。この図について、図3と同一のステップについては同一の符号が付され、説明は適宜省略される。
<Third example of power consumption prediction process>
FIG. 15 illustrates a flowchart of another third example of the power consumption prediction process according to the present embodiment. In this figure, the same steps as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
 この例では、共起グループの生起予測(S16)の後、消費電力を予測するモデルを学習するステップ(S28)を経て、消費電力予測(S18)が実行される。消費電力を予測するモデルの学習に当たり、例えば、過去の消費電力履歴(実績)を教師とする教師あり学習が行われる。 In this example, after the occurrence prediction (S16) of the co-occurrence group, the power consumption prediction (S18) is executed through the step (S28) of learning the model for predicting the power consumption. In learning a model for predicting power consumption, for example, supervised learning is performed using the past power consumption history (actual results) as a teacher.
 図2を参照して、電力管理装置10の消費電力履歴記憶部12Cには、施設に設置され電力管理装置10の配下にある電気機器のそれぞれの消費電力履歴が記憶されている。または、個々の電気機器に電力センサが設けられていない場合は、高圧電力メータ22F(図1参照)が検出した消費電力を、その時点においてオン状態である各電気機器の定格電力に応じて按分することで、各電気機器の消費電力履歴が求められる。消費電力予測部108は、消費電力履歴記憶部12Cから各電気機器の消費電力履歴を取得しこれを教師とする教師あり学習を実行する。 With reference to FIG. 2, the power consumption history storage unit 12C of the power management device 10 stores the power consumption history of each of the electric devices installed in the facility and under the control of the power management device 10. Alternatively, if each electrical device is not provided with a power sensor, the power consumption detected by the high-voltage power meter 22F (see FIG. 1) is apportioned according to the rated power of each electrical device that is on at that time. By doing so, the power consumption history of each electric device can be obtained. The power consumption prediction unit 108 acquires the power consumption history of each electric device from the power consumption history storage unit 12C, and executes supervised learning using this as a teacher.
 例えばニューラルネットワークを用いた教師あり学習に当たり、例えば学習フェーズでは、入力層には、訓練用データとして、過去の各電気機器のオン時刻からオフ時刻までの期間が入力される。出力層には、正解データとして、当該期間に対応する消費電力が与えられる。このような訓練用データと正解データとを実際の過去データから入力することで、適切な重み付けや隠れ層が生成される。 For example, in supervised learning using a neural network, for example, in the learning phase, the period from the on time to the off time of each electric device in the past is input to the input layer as training data. The output layer is given power consumption corresponding to the period as correct answer data. By inputting such training data and correct answer data from actual past data, appropriate weighting and hidden layers are generated.
 このような学習フェーズを経て得られたモデルに対して、消費電力予測部108は、ステップS16にて生起予測された共起グループを入力する。これにより、出力層に、共起グループに対応する消費電力予測が求められる。 For the model obtained through such a learning phase, the power consumption prediction unit 108 inputs the co-occurrence group predicted to occur in step S16. As a result, the output layer is required to predict the power consumption corresponding to the co-occurrence group.
 この発明に係る消費電力予測装置は、典型パターン抽出部、共起グループ抽出部、共起グループ発生予測部、及び消費電力予測部を備え、消費電力予測の精度低下を抑制しつつ、消費電力予測に際しての演算負荷を従来よりも軽減可能となり、消費電力の予測に適している。 The power consumption prediction device according to the present invention includes a typical pattern extraction unit, a co-occurrence group extraction unit, a co-occurrence group generation prediction unit, and a power consumption prediction unit, and power consumption prediction while suppressing a decrease in accuracy of power consumption prediction. It is possible to reduce the calculation load at that time, which is suitable for predicting power consumption.
 10 電力管理装置、12A 機器制御計画記憶部、12B 機器稼動履歴記憶部、12C 消費電力履歴記憶部、20A~20D 電気機器、22A~22F センサ、100 消費電力予測装置、102 典型パターン抽出部、104 共起グループ抽出部、106 共起グループ発生予測部、108 消費電力予測部、112 抽出結果修正部、114 予測結果修正部、120 ポインタ。 10 Power management device, 12A device control plan storage unit, 12B device operation history storage unit, 12C power consumption history storage unit, 20A to 20D electrical equipment, 22A to 22F sensor, 100 power consumption prediction device, 102 typical pattern extraction unit, 104 Co-occurrence group extraction unit, 106 co-occurrence group generation prediction unit, 108 power consumption prediction unit, 112 extraction result correction unit, 114 prediction result correction unit, 120 pointer.

Claims (9)

  1.  複数の電気機器が設置された施設の消費電力を予測する、消費電力予測装置であって、 それぞれの前記電気機器の過去のオン時刻及びオフ時刻に基づいて纏められたオン期間典型パターンを前記電気機器ごとに抽出する、典型パターン抽出部と、
     所定の前記電気機器の所定の前記オン期間典型パターンと共に生起する共起性を備えた前記オン期間典型パターンを抽出して、前記所定の前記オン期間典型パターンとともに一つの共起グループに纏める、共起グループ抽出部と、
     それぞれの前記共起グループに対する生起予測を行う共起グループ発生予測部と、
     前記共起グループごとの消費電力を求めるとともに、生起すると予測された前記共起グループの消費電力に基づいて、前記施設の消費電力を予測する、消費電力予測部と、
    を備える、消費電力予測装置。
    It is a power consumption prediction device that predicts the power consumption of a facility in which a plurality of electric devices are installed, and the electricity is a typical pattern of an on-period that is summarized based on the past on-time and off-time of each of the electric devices. A typical pattern extraction unit that extracts each device,
    The co-occurrence pattern having the co-occurrence that occurs together with the predetermined on-period typical pattern of the predetermined electric device is extracted and combined with the predetermined on-period typical pattern into one co-occurrence group. Ki group extraction department and
    A co-occurrence group occurrence prediction unit that predicts the occurrence of each of the co-occurrence groups,
    A power consumption prediction unit that obtains the power consumption of each co-occurrence group and predicts the power consumption of the facility based on the power consumption of the co-occurrence group predicted to occur.
    A power consumption forecasting device.
  2.  請求項1に記載の消費電力予測装置であって、
     生起すると予測されたそれぞれの前記共起グループの前記オン時刻から前記オフ時刻までのオン期間と、当該オン期間におけるそれぞれの前記共起グループの消費電力が足し合わせられた施設消費電力とが表示される表示部を備え、
     前記表示部は、前記共起グループとして纏められた前記電気機器の名称を、前記共起グループ別に表示可能である、
    消費電力予測装置。
    The power consumption prediction device according to claim 1.
    The on-period from the on-time to the off-time of each of the co-occurrence groups predicted to occur and the facility power consumption of the sum of the power consumption of each of the co-occurrence groups in the on-period are displayed. Equipped with a display unit
    The display unit can display the names of the electric devices grouped as the co-occurrence group for each co-occurrence group.
    Power consumption forecaster.
  3.  請求項2に記載の消費電力予測装置であって、
     前記表示部は、単一の前記オン期間典型パターンとして纏められた前記オン時刻及び前記オフ時刻の分布を表示可能である、
    消費電力予測装置。
    The power consumption prediction device according to claim 2.
    The display unit can display the distribution of the on-time and the off-time summarized as a single typical pattern of the on-period.
    Power consumption forecaster.
  4.  請求項3に記載の消費電力予測装置であって、
     前記典型パターン抽出部は、それぞれの前記電気機器の前記オン期間典型パターンを、教師なし学習により、前記過去のオン時刻及びオフ時刻から抽出する、
    消費電力予測装置。
    The power consumption prediction device according to claim 3.
    The typical pattern extraction unit extracts the on-period typical pattern of each of the electric devices from the past on-time and off-time by unsupervised learning.
    Power consumption forecaster.
  5.  請求項4に記載の消費電力予測装置であって、
     前記共起グループ抽出部は、前記共起性を有する複数の前記オン期間典型パターンを教師なし学習により抽出して単一の前記共起グループに纏める、
    消費電力予測装置。
    The power consumption prediction device according to claim 4.
    The co-occurrence group extraction unit extracts a plurality of the co-occurrence typical patterns of the on-period by unsupervised learning and puts them together in a single co-occurrence group.
    Power consumption forecaster.
  6.  請求項5に記載の消費電力予測装置であって、
     前記消費電力予測部は、教師有り学習により、過去の電気機器稼動履歴から、所定日において生起する前記共起グループを予測する、消費電力予測装置。
    The power consumption prediction device according to claim 5.
    The power consumption prediction unit is a power consumption prediction device that predicts the co-occurrence group that occurs on a predetermined day from the past electrical equipment operation history by supervised learning.
  7.  請求項2から6のいずれか一項に記載の消費電力予測装置であって、
     前記表示部に表示された、それぞれの前記オン期間典型パターンの前記オン期間に対する修正指示を入力可能な入力部を備える、
    消費電力予測装置。
    The power consumption prediction device according to any one of claims 2 to 6.
    The display unit includes an input unit capable of inputting a correction instruction for the on-period of each of the on-period typical patterns displayed on the display unit.
    Power consumption forecaster.
  8.  請求項7に記載の消費電力予測装置であって、
     前記入力部は、前記表示部に表示された、複数の前記共起グループに対する統合指示を入力可能である、
    消費電力予測装置。
    The power consumption prediction device according to claim 7.
    The input unit can input integration instructions for a plurality of the co-occurrence groups displayed on the display unit.
    Power consumption forecaster.
  9.  請求項1に記載の消費電力予測装置であって、
     それぞれの前記電気機器に対して設定された制御計画に基づいて、それぞれの前記共起グループに対する前記生起予測を修正する予測結果修正部を備える、消費電力予測装置。
    The power consumption prediction device according to claim 1.
    A power consumption prediction device including a prediction result correction unit that corrects the occurrence prediction for each co-occurrence group based on a control plan set for each of the electric devices.
PCT/JP2020/005099 2019-05-21 2020-02-10 Power consumption prediction device WO2020235150A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-095294 2019-05-21
JP2019095294A JP7277254B2 (en) 2019-05-21 2019-05-21 Power consumption prediction device

Publications (1)

Publication Number Publication Date
WO2020235150A1 true WO2020235150A1 (en) 2020-11-26

Family

ID=73454680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005099 WO2020235150A1 (en) 2019-05-21 2020-02-10 Power consumption prediction device

Country Status (2)

Country Link
JP (1) JP7277254B2 (en)
WO (1) WO2020235150A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344946B2 (en) 2021-09-27 2023-09-14 本田技研工業株式会社 Chain slider retention mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270476A (en) * 1999-03-15 2000-09-29 Fuji Electric Co Ltd Power demand forecast method
WO2009151078A1 (en) * 2008-06-10 2009-12-17 パナソニック電工株式会社 Energy management system and computer program
JP2018169819A (en) * 2017-03-30 2018-11-01 トーマステクノロジー株式会社 Power consumption predicting device and power consumption predicting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908444B2 (en) 2017-06-07 2021-07-28 株式会社Nttファシリティーズ Power Demand Forecasting Device, Power Demand Forecasting Method and Program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270476A (en) * 1999-03-15 2000-09-29 Fuji Electric Co Ltd Power demand forecast method
WO2009151078A1 (en) * 2008-06-10 2009-12-17 パナソニック電工株式会社 Energy management system and computer program
JP2018169819A (en) * 2017-03-30 2018-11-01 トーマステクノロジー株式会社 Power consumption predicting device and power consumption predicting method

Also Published As

Publication number Publication date
JP2020190876A (en) 2020-11-26
JP7277254B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
Zhang et al. A systematic feature selection procedure for short-term data-driven building energy forecasting model development
JP6942790B2 (en) Information processing device and information processing method
CN106447107B (en) Maintenance method based on aircraft structure health monitoring
US11416951B2 (en) Equipment management system and equipment management method
AU2017422574B2 (en) Operation control device, air conditioning system, operation control method, and operation control program
JP2020154785A (en) Prediction method, prediction program, and model learning method
US10333306B2 (en) Data-driven demand charge management solution
WO2020235150A1 (en) Power consumption prediction device
US9000943B2 (en) Utility network management system
Rotib et al. Electric load forecasting for Internet of Things smart home using hybrid PCA and ARIMA algorithm
CN111008727A (en) Power distribution station load prediction method and device
CN111105050B (en) Fan maintenance plan generation method, device, equipment and storage medium
JP7231504B2 (en) Meteorological Numerical Analysis System, Prediction Target Data Generation System, and Meteorological Numerical Analysis Method
WO2020241305A1 (en) Energy equipment planning device and energy equipment planning method
JP6104116B2 (en) Energy reduction prediction method and apparatus
WO2022162798A1 (en) Power demand prediction device, power demand prediction method, and program
Carlos et al. Model to study the effect of workforce on a safety equipment and its optimization
US20210073451A1 (en) Equipment selection assistance apparatus and computer readable medium
CN112821456A (en) Distributed source-storage-load matching method and device based on transfer learning
WO2020148813A1 (en) Anomalous factor diagnostic device, method for same, and anomalous factor diagnostic system
JP2017103862A (en) Power estimating apparatus, power estimating method, and power estimating program
WO2023074308A1 (en) Information processing device and method
KR102562277B1 (en) Cloud based building energy integrated management system for zero energy building
WO2023223650A1 (en) Maintenance planning system and maintenance planning method
WO2021192011A1 (en) Determination assistance device, determination assistance method, and computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808813

Country of ref document: EP

Kind code of ref document: A1