WO2020230779A1 - Particle dispensing apparatus, particle dispensing method, and computer program - Google Patents

Particle dispensing apparatus, particle dispensing method, and computer program Download PDF

Info

Publication number
WO2020230779A1
WO2020230779A1 PCT/JP2020/018955 JP2020018955W WO2020230779A1 WO 2020230779 A1 WO2020230779 A1 WO 2020230779A1 JP 2020018955 W JP2020018955 W JP 2020018955W WO 2020230779 A1 WO2020230779 A1 WO 2020230779A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
laser
light
fluorescence
deep ultraviolet
Prior art date
Application number
PCT/JP2020/018955
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 諸野
俊光 櫻井
史生 稲垣
Original Assignee
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構 filed Critical 国立研究開発法人海洋研究開発機構
Publication of WO2020230779A1 publication Critical patent/WO2020230779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a particle detection technique.
  • the present application claims priority based on Japanese Patent Application No. 2019-090838 filed in Japan on May 13, 2019, the contents of which are incorporated herein by reference.
  • flow cytometry is known, which can discriminate various characteristics at high speed by irradiating fine particles flowing in an ultrafine water stream with a laser.
  • Flow cytometry can analyze not only biological cells but also various fine particles.
  • flow cytometry can acquire forward scattered light that reflects the size of particles, side scattered light that reflects the internal structure of particles, and fluorescence generated by shining a laser on the fine particles to be measured at high speed for each particle.
  • a cell sorter is a device that performs feedback control based on the acquired data and has a mechanism for separating specific particles.
  • This dye includes a dye for transmission observation and a fluorescent dye.
  • a dye for transmission observation is a dye that literally appears to be colored and its presence can be identified by a general microscope.
  • a fluorescent dye is a dye that excites a dye molecule by irradiating it with light of a specific wavelength, emits light shifted to a long wavelength side, and its existence can be identified by a fluorescence microscope or the like. In order to obtain higher detection sensitivity, it is common to stain using a fluorescent dye, and cell staining using a fluorescent dye has also been often performed in the staining of microorganisms.
  • the dye for staining it is necessary for the dye for staining to permeate into the cells, and there are the following technical problems.
  • the dye for dyeing is composed of the same elements as those constituting biological cells such as carbon, hydrogen, and oxygen. Therefore, the introduction of the dye into the cell changes the elemental composition of the cell itself, which hinders precise elemental analysis.
  • Patent Document 1 describes a method and an apparatus for measuring fluorescence or Raman light by using a laser or an illumination apparatus in a deep ultraviolet light region of 200 nm to 300 nm.
  • the laser beam is intermittent (pulse oscillation), and oscillation and stop are repeated about 1 to 20 times per second.
  • Patent Document 1 when the laser described in Patent Document 1 is used in a cell sorter capable of high-speed processing, particles cannot be detected during the time when the laser oscillation is stopped. Therefore, there is a problem that the detection accuracy of particles is lowered.
  • an object of the present invention is to provide a technique capable of improving the detection accuracy of particles.
  • One aspect of the present invention is a laser device that continuously outputs a laser beam in a deep ultraviolet light region, and the particles obtained by irradiating a particle with a laser beam in the deep ultraviolet light region output from the laser device. It is a particle sorting device including a detection unit for detecting the fluorescence of the above, and a control circuit for sorting the particles based on the detected fluorescence.
  • One aspect of the present invention is the above-mentioned particle sorting device, which is a region in the deep ultraviolet light region where autofluorescence due to an inorganic mineral is not observed.
  • One aspect of the present invention is the above-mentioned particle sorting device, and the deep ultraviolet light region is a region in the vicinity of 230 nm.
  • One aspect of the present invention is the above-mentioned particle sorting device, in which the particles are discharged by a jet-in-air method.
  • One aspect of the present invention detects the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device that continuously outputs the laser light in the deep ultraviolet light region. It is a particle sorting method including a detection step and a sorting step of sorting the particles based on the detected fluorescence.
  • One aspect of the present invention detects the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device that continuously outputs the laser light in the deep ultraviolet light region. It is a computer program for causing a computer to perform a detection step and a preparative step of preparating the particles based on the detected fluorescence.
  • FIG. 1 is a configuration diagram of a particle sorting device 100 according to the present embodiment.
  • the particle sorting device 100 detects the fluorescence of the particles obtained by irradiating the particles with laser light in the deep ultraviolet light region (hereinafter, simply referred to as “deep ultraviolet light”), and the particles are based on the detected fluorescence of the particles. It is a device that sorts the particles.
  • the target particles in this embodiment are biological cells and spores having DNA, RNA, amino acids and the like.
  • the particles in this embodiment are undyed or unstained particles.
  • the size of the particles is, for example, 0.5 to 20 microns.
  • the particle sorting device 100 includes a nozzle 10, a plurality of laser devices 11 (11-1 to 11-3), a plurality of focus lenses 12, a detection unit 13, a control circuit 14, a display unit 15, a polarizing plate 16, and a waste liquid tank 17. , A well plate 18 and a photographing device 19.
  • the plurality of laser devices 11 will be described as the first laser device 11-1, the second laser device 11-2, and the third laser device 11-3.
  • the nozzle 10 discharges the sheath liquid 1 and the sample liquid by a jet-in-air method.
  • the sample solution contains particles 2.
  • the particles 2 are aligned in a row at the center of the flow of the sheath liquid 1.
  • the nozzle 10 is provided with an oscillator, and the oscillator vibrates up and down in a predetermined cycle according to the control of the control circuit 14. As a result, the droplet 3 is formed.
  • the vibration cycle of the vibrator and the pressure in the nozzle 10 are controlled by the control circuit 14.
  • the first laser device 11-1 is a laser device that continuously outputs laser light in the visible light region (hereinafter, simply referred to as "visible light”). For example, the first laser device 11-1 continuously outputs a laser beam of 488 nm as visible light.
  • the second laser device 11-2 is a laser device that continuously outputs deep ultraviolet light. For example, the second laser device 11-2 continuously outputs a laser beam of 230 nm as deep ultraviolet light.
  • the third laser device 11-3 is a laser device that continuously outputs laser light in the ultraviolet light region (hereinafter, simply referred to as "ultraviolet light”). For example, the third laser device 11-3 continuously outputs a laser beam of 355 nm as ultraviolet light.
  • the second laser device 11-2 is configured by using a laser unit and a wavelength conversion unit.
  • the laser unit is, for example, a laser device that continuously outputs a laser beam of 460 nm.
  • the wavelength conversion unit is a device that outputs double harmonics.
  • the wavelength conversion unit generates a second harmonic by interacting the laser light output from the laser unit with a nonlinear optical crystal and generating a laser light having a frequency twice that of the laser light output from the laser unit. ..
  • the 460 nm laser light output from the laser unit is converted into light having twice the frequency.
  • the 460 nm laser light output from the laser unit is converted into the 230 nm laser light having a wavelength of 1/2.
  • the laser light after conversion is a laser light in the vicinity of 230 nm ( ⁇ several nm of 230 nm) in consideration of conversion efficiency and the like.
  • the focus lenses 12-1 to 12-3 adjust the optical axis of the laser light output from the laser device 11 associated with each other.
  • the detection unit 13 detects the fluorescence of the particles based on the scattered light obtained by irradiating the particles with the laser light output from the laser device 11 and the fluorescence of the particles (hereinafter referred to as “acquired light”). A specific description will be described later.
  • the control circuit 14 is based on the fluorescence of particles obtained by the laser light output from the laser device 11 of any of the first laser device 11-1, the second laser device 11-2, and the third laser device 11-3. And separate the particles.
  • the user may decide whether to target the laser light output from the laser device 11 of any of the first laser device 11-1, the second laser device 11-2, and the third laser device 11-3. ..
  • the control circuit 14 applies a positive or negative charge to the droplet 3 containing the particles to be sorted.
  • a method of applying an electric charge a method generally used in a cell sorter can be applied.
  • the control circuit 14 will be described as separating particles based on the fluorescence of the particles obtained by the laser light output from the second laser device 11-2 that continuously outputs deep ultraviolet light. ..
  • the number of target laser devices 11 may be plural.
  • the control circuit 14 causes the display unit 15 to display the detection result of the detection unit 13.
  • the control circuit 14 controls the nozzle 10 based on an image captured by the photographing device 19 (hereinafter referred to as “photographed image”). For example, the control circuit 14 changes the pressure in the nozzle 10 when a change of the droplet 3 or more occurs in the captured image. Further, the control circuit 14 changes the vibration cycle of the vibrator when the droplet 3 changes by a threshold value or more.
  • the display unit 15 is an image display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display unit 15 displays the detection result and the captured image.
  • the display unit 15 may be an interface for connecting the image display device to the particle sorting device 100.
  • the display unit 15 generates a video signal for displaying the detection result and the captured video, and outputs the video signal to the image display device connected to the display unit 15.
  • the polarizing plate 16 is composed of a first plate having a positive voltage and a second plate having a negative voltage. The first plate and the second plate are installed so as to face each other. A predetermined potential difference (for example, ⁇ 4000 V) is generated between the first plate and the second plate.
  • the charged droplet 3 is separated by the polarizing plate 16.
  • the waste liquid tank 17 is a tank for discarding the unseparated droplets 3.
  • the well plate 18 is a flat plate having a plurality of recesses.
  • the well plate 18 collects the separated droplets 3.
  • the well plate 18 can be moved up, down, left and right according to the control of the control circuit 14.
  • the photographing device 19 is a photographing device such as a camera.
  • the photographing device 19 is fixedly installed at a position where the droplet 3 is formed, and photographs the droplet 3.
  • the photographing device 19 outputs the photographed image of the droplet 3 to the control circuit 14.
  • FIG. 2 is an internal configuration diagram of the detection unit 13.
  • the detection unit 13 includes an objective lens 131, a tube lens 132, a pinhole plate 133, a prism 134, a plurality of collimation lenses 135-1 to 135-3, a first POD 136-1, a second POD 136-2, and the like.
  • a third POD 136-3 is provided.
  • the objective lens 131 collects the incident light. Laser light and acquired light are incident on the objective lens 131.
  • the tube lens 132 refocuses the light output from the objective lens 131.
  • the pinhole plate 133 is a plate in which pinholes are opened for several minutes of the laser device 11.
  • the pinhole plate 133 blocks unnecessary light from the light obtained from each laser device 11.
  • the prism 134 is a polyhedron that reflects the light output through the pinhole plate 133.
  • the prism 134 reflects the laser light and the acquired light corresponding to the first laser device 11-1 to the first POD 136-1.
  • the prism 134 reflects the laser light and the acquired light corresponding to the second laser device 11-2 to the second POD 136-2.
  • the prism 134 reflects the laser light and the acquired light corresponding to the third laser device 11-3 to the third POD 136-3.
  • the collimation lenses 135-1 to 135-3 convert the incoming light into parallel light.
  • the first POD 136-1 inputs the laser light and the acquired light corresponding to the first laser device 11-1.
  • the first POD136-1 detects the fluorescence of the particles from the input acquired light.
  • the laser light (visible light) corresponding to the first laser device 11-1 is blocked at the first POD 136-1.
  • the second POD 136-2 inputs the laser light and the acquired light corresponding to the second laser device 11-2.
  • the second POD 136-2 detects the fluorescence of the particles from the input acquired light.
  • the laser light (deep ultraviolet light) corresponding to the second laser apparatus 11-2 is blocked at the second POD 136-2.
  • the third POD 136-3 inputs the laser light and the acquired light corresponding to the third laser device 11-3.
  • the third POD 136-3 detects the fluorescence of the particles from the input acquired light.
  • the laser light (ultraviolet light) corresponding to the third laser apparatus 11-3 is blocked at the third POD 136-3.
  • FIG. 3 is a diagram showing the internal configuration of the first POD 136-1 (488 nm).
  • the first POD 136-1 includes a plurality of dichroic mirrors 137 to 142 and a plurality of absorption filters 143 to 149.
  • a photomultiplier tube (PMT) is provided at the output destination of each absorption filter 143 to 149.
  • the dichroic mirrors 137 to 142 reflect light having a specific wavelength and transmit light other than the specific wavelength.
  • the absorption filters 143 to 149 allow light of a specific wavelength to pass through and absorb light other than the specific wavelength.
  • the absorption filter 143 transmits light having a half width of 62 nm centered on 785 nm.
  • the photomultiplier tube detects the light that has passed through the absorption filters 143 to 149. The photomultiplier tube then amplifies the detected light. Then, the photomultiplier tube converts the amplified optical signal into an electric signal. The photomultiplier tube outputs an electric signal to the control circuit 14.
  • FIG. 4 is a diagram showing the internal configuration of the second POD 136-2 (230 nm).
  • the second POD 136-2 includes a plurality of dichroic mirrors 150 to 152 and a plurality of absorption filters 153 to 156.
  • a photomultiplier tube is provided at the output destination of each absorption filter 153 to 156.
  • the dichroic mirrors 150 to 152 reflect light having a specific wavelength and transmit light other than the specific wavelength.
  • the absorption filters 153 to 156 allow light of a specific wavelength to pass through and absorb light other than the specific wavelength. For example, the absorption filter 153 transmits light having a half width of 36 nm centered on 272 nm.
  • the photomultiplier tube detects the light that has passed through the absorption filters 153 to 156.
  • the photomultiplier tube then amplifies the detected light.
  • the photomultiplier tube converts the amplified optical signal into an electric signal.
  • the photomultiplier tube outputs an electric signal to the control circuit 14.
  • FIG. 5 is a diagram showing the internal configuration of the third POD 136-3 (355 nm).
  • the third POD 136-3 includes a plurality of dichroic mirrors 157 to 159 and a plurality of absorption filters 160 to 163.
  • a photomultiplier tube is provided at the output destination of each absorption filter 160 to 163.
  • the dichroic mirrors 157 to 159 reflect light having a specific wavelength and transmit light other than the specific wavelength.
  • the absorption filters 160 to 163 allow light of a specific wavelength to pass through and absorb light other than the specific wavelength.
  • the absorption filter 160 transmits light having a half width of 50 nm centered on 457 nm.
  • the photomultiplier tube detects the light that has passed through the absorption filters 160-163. The photomultiplier tube then amplifies the detected light. Then, the photomultiplier tube converts the amplified optical signal into an electric signal. The photomultiplier tube outputs an electric signal to the control circuit 14.
  • FIG. 6 is a flowchart showing a processing flow of the particle sorting device 100.
  • the second laser device 11-2 irradiates the laser light (deep ultraviolet light) (step S101).
  • the laser light deep ultraviolet light
  • the laser light is input to the detection unit 13.
  • the input light is input to the second POD 136-2 in the detection unit 13.
  • the second POD 136-2 classifies the input light into each wavelength (step S102). Specifically, the second POD 136-2 classifies the input light into each wavelength by the dichroic mirrors 150 to 152 and the absorption filters 153 to 156.
  • the classified light is input to the photomultiplier tube.
  • the control circuit 14 determines whether or not fluorescence has been detected (step S103). The determination as to whether or not fluorescence is detected is performed based on whether or not an electric signal exceeding the Thrashold value set in the control circuit 14 is input. That is, whether or not fluorescence is detected is determined by whether or not the intensity of the light input to the photomultiplier tube exceeds a certain value. When light having a light intensity exceeding a certain value is input to the photomultiplier tube, an electric signal exceeding the Thrashold value is input to the control circuit 14. On the other hand, when the light whose intensity exceeds a certain value is not input to the photomultiplier tube, the electric signal exceeding the Thrashold value is not input to the control circuit 14.
  • the Treshold value depends on the voltage applied to the photomultiplier tube.
  • the control circuit 14 determines whether or not the source of fluorescence is particles to be selected (for example, vegetative cells, spores) based on the input electrical signal (step S103-YES). Step S104). Specifically, the control circuit 14 determines that the source of fluorescence is the particles to be selected when the characteristics based on the electric signal indicate the characteristics of the particles to be selected. On the other hand, the control circuit 14 determines that the source of fluorescence is not the particles to be selected when the characteristics based on the electric signal do not show the characteristics of the particles to be selected.
  • the source of fluorescence is particles to be selected (for example, vegetative cells, spores) based on the input electrical signal (step S103-YES). Step S104). Specifically, the control circuit 14 determines that the source of fluorescence is the particles to be selected when the characteristics based on the electric signal indicate the characteristics of the particles to be selected. On the other hand, the control circuit 14 determines that the source of fluorescence is not the particles to be selected when the characteristics
  • Spectral characteristics can be mentioned as characteristics based on electrical signals.
  • the control circuit 14 determines that the source of fluorescence is the particle to be selected when the characteristic based on the electric signal matches any of the characteristics of the above particles.
  • the control circuit 14 determines that the source of fluorescence is not the particle to be selected.
  • the control circuit 14 applies an electric charge to the particles to be sorted (step S105). Specifically, the control circuit 14 applies an electric charge to the target particles at the timing when the droplet 3 containing the particles to be sorted is formed.
  • the control circuit 14 may apply a positive charge in the case of vegetative cells and a negative charge in the case of spores. As a result, the charged droplet 3 is deflected by the polarizing plate 16 and collected by the well plate 18.
  • step S106 determines whether or not the processing is completed.
  • step S106-YES the particle sorting device 100 ends the process of FIG.
  • step S106-NO the particle sorting device 100 executes the processing after step S102.
  • step S103-NO fluorescence is not detected in the process of step S103
  • step S104-NO the particle sorting device 100 Executes the process of step S106.
  • FIGS. 7A and 7B the fluorescence detected by the photomultiplier tube provided at the output destination of the absorption filter 155 and the fluorescence detected by the photomultiplier tube provided at the output destination of the absorption filter 156 are plotted in two dimensions. It is shown how it was done.
  • FIG. 7A is a diagram showing the detection result of fluorescence obtained by irradiating spores with deep ultraviolet light.
  • fluorescence of spores is detected in the region indicated by F.
  • FIG. 7B is a diagram showing the detection result of fluorescence obtained by irradiating vegetative cells with deep ultraviolet light.
  • fluorescence of vegetative cells is detected in the region indicated by E.
  • FIG. 8A is a diagram showing a micrograph containing only vegetative cells 170.
  • FIG. 8B is a diagram showing the result of analyzing the state of FIG. 8A by a fluorescence spectrophotometer.
  • FIG. 8C is a diagram showing a micrograph containing vegetative cells 170 and spores 171.
  • FIG. 8D is a diagram showing the result of analyzing the state of FIG. 8C by a fluorescence spectrophotometer.
  • FIG. 8E is a diagram showing a micrograph containing only spores 171.
  • FIG. 8F is a diagram showing the result of analyzing the state of FIG. 8E by a fluorescence spectrophotometer. Comparing FIG. 8B and FIG. 8F, the feature of spore 171 alone appears in the vicinity of 300 nm as compared with that of vegetative cell 170 alone.
  • the particle sorting device 100 sorts particles based on the fluorescence of the particles obtained by irradiating the particles with the laser light output from the laser device 11 that continuously outputs deep ultraviolet light.
  • the particle sorting device 100 in the present embodiment uses deep ultraviolet light in which autofluorescence due to minerals is not observed and the particles naturally fluoresce. This makes it possible to detect cells that could not be detected in the past (for example, spores that cannot be found by staining and cells that cannot be stained). Therefore, it is possible to improve the particle detection accuracy.
  • the particle sorting device 100 of the present invention a laser device 11 that continuously outputs laser light is used. Therefore, the number of particles can be reduced as compared with the conventional case. Therefore, it is possible to improve the particle detection accuracy.
  • the particle sorting device 100 detects the fluorescence of the particles obtained by irradiating the particles with laser light, and sorts the particles based on the detected fluorescence. As a result, it becomes possible to improve the accuracy of particle sorting.
  • the particle sorting apparatus 100 In the particle sorting apparatus 100, undyed particles are used as the sorting target. Therefore, the elemental composition of the cell itself is not changed. Therefore, more accurate elemental analysis becomes possible.
  • Examples of the emission method of the particles to be sorted include a jet-in-air method and a flow cell method. Among these emission methods, in the flow cell method, the laser light in the deep ultraviolet light region cannot be used because the laser light in the deep ultraviolet light region may not pass depending on the material used. On the other hand, in the jet-in-air method, laser light in the deep ultraviolet region can be used. Therefore, the particle sorting device 100 in the present embodiment discharges the particles to be sorted by the jet-in-air method. Therefore, analysis can be performed using laser light in the deep ultraviolet light region.
  • ⁇ Preparation of sample solution Culture of Bacillus megaterium (vegetative cells) -Overnight culture (30 ° C, 100 rpm) by adding glycerol stock (strain) to NBRC702 liquid medium. -The next day, it will start to become cloudy in about 30 ⁇ l in about 3 hours with respect to about 7 mL of medium to be subplanted in a new medium. -Stop the culture at the stage of turbidity and place it on ice.-When sorting, flow the culture solution directly. Culture of Bacillus megaterium (spores) -Culturing for 52 hours (37 ° C, 300 rpm) by adding glycerol stock (strain) to DSM liquid medium. -When sorting, the solution diluted with DSM liquid medium is poured directly. ⁇ Dyeing conditions> It is unstained and flows directly through the particle sorting device 100 for sorting.
  • FIGS. 9 to 15 are diagrams showing specific examples of experimental results.
  • FIG. 9 shows the results of sorting of vegetative cells.
  • FIG. 10 shows the results of sorting spores.
  • the sorting region of the vegetative cell is region B.
  • the sorting region of spore is region A.
  • FIG. 9 shows that the density of the region B is high
  • FIG. 10 shows that the density of the region A is high.
  • FIG. 11 is a view taken through a 40-magnification objective lens. After sorting Vegitative cells, incubate overnight. The culture solution having the number of sorted cells “1” was stained with SYBR Green I, and the results of microscopic observation are shown in FIG. FIG. 12 is a view taken through a 40-magnification objective lens.
  • FIG. 13 is a view taken through a 40-magnification objective lens. After sorting Spore, incubate overnight.
  • FIG. 14 shows the results of staining the culture medium having the number of sorted cells “1” with SYBR Green I and observing under a microscope.
  • FIG. 14 is a view taken through a 40-magnification objective lens.
  • FIG. 15 The measurement result of the ratio of living cells (result of sorting into a liquid medium) is shown in FIG. As shown in FIG. 15, it can be seen that not all of the cells in the sorting spore solution could be cultured.
  • -Total bacterial count of spore solution for sorting counting by microscope: 1.34 x 10 ⁇ 6 cells / mL -Number of cells that can grow on agar medium (NBRC702 composition) (colony count): 9.10 x 10 ⁇ 5 cells / mL ⁇ Percentage of culturable cells in sorting spore solution: 64.6%
  • the three third laser devices 11-3 that continuously output the laser beam in the optical region are shown, the present invention is not limited to these.
  • the laser device 11 only one laser device 11 (for example, a second laser device 11-2) that continuously outputs a laser beam in a deep ultraviolet light region may be used.
  • the combination of the laser light regions output by the other laser device 11 may be any combination of regions.
  • the well plate has been described as an example as a mechanism for collecting the charged droplets 3, but the mechanism for collecting the droplets 3 may be a tube or a plastic container.
  • the particles have been described as an example of particles that have not been dyed or cannot be dyed.
  • the particles used in the particle sorter 100 may be dyed particles.
  • the present invention can be applied to particle detection technology.

Abstract

A particle dispensing apparatus (100) is provided with: a laser device (11) for continuously outputting laser light in a deep ultraviolet light region; a detection unit (13) for detecting fluorescence of particles obtained by irradiating the particles with the laser light, in the deep ultraviolet light region, outputted from the laser device (11); and a control circuit (14) for dispensing the particles on the basis of the detected fluorescence.

Description

粒子分取装置、粒子分取方法及びコンピュータプログラムParticle sorting device, particle sorting method and computer program
 本発明は、粒子の検出技術に関する。
 本願は、2019年5月13日に、日本に出願された特願2019-090838号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a particle detection technique.
The present application claims priority based on Japanese Patent Application No. 2019-090838 filed in Japan on May 13, 2019, the contents of which are incorporated herein by reference.
 従来、極細の水流中を流れる微粒子にレーザーを照射することによって、様々な特性を高速に判別可能なフローサイトメトリーが知られている。フローサイトメトリーは、生物細胞に限らず、様々な微粒子を解析可能である。例えば、フローサイトメトリーは、粒子のサイズを反映する前方散乱光、粒子の内部構造を反映する側方散乱光、及び測定対象の微粒子にレーザーを当てることで生じる蛍光を粒子毎に高速で取得可能である。取得したデータを基にフィードバック制御を行い、特定の粒子を分取する機構を持つものをセルソーターと呼ぶ。 Conventionally, flow cytometry is known, which can discriminate various characteristics at high speed by irradiating fine particles flowing in an ultrafine water stream with a laser. Flow cytometry can analyze not only biological cells but also various fine particles. For example, flow cytometry can acquire forward scattered light that reflects the size of particles, side scattered light that reflects the internal structure of particles, and fluorescence generated by shining a laser on the fine particles to be measured at high speed for each particle. Is. A cell sorter is a device that performs feedback control based on the acquired data and has a mechanism for separating specific particles.
 これまで、生物細胞を特異的に検出するためには、細胞内に存在するDNA(Deoxyribonucleic acid)、RNA(Ribonucleic acid)及びアミノ酸等に特異的に吸着する色素を用いた操作(一般的には、染色と呼ばれる)が行われてきた。この色素には、透過観察用の色素と、蛍光色素とが存在する。透過観察用の色素は、文字通り色がついたように見え、一般的な顕微鏡によってその存在が特定できる色素である。蛍光色素は、特定の波長の光を当てることによって色素分子を励起し、長波長側にシフトした光を発し、蛍光顕微鏡などによってその存在を特定できる色素である。より高い検出感度を得ようとする場合には、一般的に蛍光色素を利用して染色することが多く、微生物の染色においても蛍光色素を用いた細胞染色が多々行われてきた。 Until now, in order to specifically detect biological cells, an operation using a dye that specifically adsorbs DNA (Deoxyribonucleic acid), RNA (Ribonucleic acid), amino acids, etc. existing in the cells (generally). , Called dyeing) has been performed. This dye includes a dye for transmission observation and a fluorescent dye. A dye for transmission observation is a dye that literally appears to be colored and its presence can be identified by a general microscope. A fluorescent dye is a dye that excites a dye molecule by irradiating it with light of a specific wavelength, emits light shifted to a long wavelength side, and its existence can be identified by a fluorescence microscope or the like. In order to obtain higher detection sensitivity, it is common to stain using a fluorescent dye, and cell staining using a fluorescent dye has also been often performed in the staining of microorganisms.
 しかしながら、この染色においては、細胞の中に染色用の色素が浸透する必要があり、次のような技術的課題がある。例えば、胞子等、外界との物質移動を著しく制限しているような生命の場合、例え細胞内に染色対象の生体分子を内包していても染色できないという問題が存在する。染色用の色素は、炭素、水素、酸素等の生物細胞を構成する元素と同じ元素で構成されている。そのため、色素を細胞内に導入することによって細胞自体の元素組成が変化してしまい、精密な元素分析の妨げとなっていた。 However, in this staining, it is necessary for the dye for staining to permeate into the cells, and there are the following technical problems. For example, in the case of life such as spores, which significantly restricts mass transfer to the outside world, there is a problem that even if biomolecules to be stained are contained in cells, they cannot be stained. The dye for dyeing is composed of the same elements as those constituting biological cells such as carbon, hydrogen, and oxygen. Therefore, the introduction of the dye into the cell changes the elemental composition of the cell itself, which hinders precise elemental analysis.
 染色による問題を解決するための手法として、染色を行うことなく無機基板(石膏)上の粒子を可視化する技術が提案されている(例えば、特許文献1参照)。特許文献1には、200nm-300nmの深紫外光領域のレーザー又は照明装置を利用して、蛍光又はラマン光の測定を行う方法及び装置が記載されている。特許文献1の技術では、レーザー光が間欠的(パルス発振)であり、1秒間に1-20回程度の発振、停止が繰り返される。 As a method for solving the problem caused by dyeing, a technique for visualizing particles on an inorganic substrate (gypsum) without dyeing has been proposed (see, for example, Patent Document 1). Patent Document 1 describes a method and an apparatus for measuring fluorescence or Raman light by using a laser or an illumination apparatus in a deep ultraviolet light region of 200 nm to 300 nm. In the technique of Patent Document 1, the laser beam is intermittent (pulse oscillation), and oscillation and stop are repeated about 1 to 20 times per second.
米国特許第7525653号明細書U.S. Pat. No. 7525653
 しかしながら、高速な処理が可能なセルソーターにおいて、特許文献1に記載のレーザーを用いた場合、レーザー発振が停止している時間には粒子を検出することができない。そのため、粒子の検出精度が低下してしまうという問題があった。 However, when the laser described in Patent Document 1 is used in a cell sorter capable of high-speed processing, particles cannot be detected during the time when the laser oscillation is stopped. Therefore, there is a problem that the detection accuracy of particles is lowered.
 上記事情に鑑み、本発明は、粒子の検出精度を向上させることができる技術の提供を目的としている。 In view of the above circumstances, an object of the present invention is to provide a technique capable of improving the detection accuracy of particles.
 本発明の一態様は、深紫外光領域のレーザー光を連続で出力するレーザー装置と、前記レーザー装置から出力された前記深紫外光領域のレーザー光が粒子に照射されることによって得られる前記粒子の蛍光を検出する検出部と、検出された前記蛍光に基づいて、前記粒子を分取する制御回路と、を備える粒子分取装置である。 One aspect of the present invention is a laser device that continuously outputs a laser beam in a deep ultraviolet light region, and the particles obtained by irradiating a particle with a laser beam in the deep ultraviolet light region output from the laser device. It is a particle sorting device including a detection unit for detecting the fluorescence of the above, and a control circuit for sorting the particles based on the detected fluorescence.
 本発明の一態様は、上記の粒子分取装置であって、前記深紫外光領域のうち無機鉱物による自家蛍光が見られない領域である。 One aspect of the present invention is the above-mentioned particle sorting device, which is a region in the deep ultraviolet light region where autofluorescence due to an inorganic mineral is not observed.
 本発明の一態様は、上記の粒子分取装置であって、前記深紫外光領域は、230nm近傍の領域である。 One aspect of the present invention is the above-mentioned particle sorting device, and the deep ultraviolet light region is a region in the vicinity of 230 nm.
 本発明の一態様は、上記の粒子分取装置であって、前記粒子は、ジェットインエアー方式で放出される。 One aspect of the present invention is the above-mentioned particle sorting device, in which the particles are discharged by a jet-in-air method.
 本発明の一態様は、深紫外光領域のレーザー光を連続で出力するレーザー装置から出力された前記深紫外光領域のレーザー光が粒子に照射されることによって得られる前記粒子の蛍光を検出する検出ステップと、検出された前記蛍光に基づいて、前記粒子を分取する分取ステップと、を有する粒子分取方法である。 One aspect of the present invention detects the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device that continuously outputs the laser light in the deep ultraviolet light region. It is a particle sorting method including a detection step and a sorting step of sorting the particles based on the detected fluorescence.
 本発明の一態様は、深紫外光領域のレーザー光を連続で出力するレーザー装置から出力された前記深紫外光領域のレーザー光が粒子に照射されることによって得られる前記粒子の蛍光を検出する検出ステップと、検出された前記蛍光に基づいて、前記粒子を分取する分取ステップと、をコンピュータに実行させるためのコンピュータプログラムである。 One aspect of the present invention detects the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device that continuously outputs the laser light in the deep ultraviolet light region. It is a computer program for causing a computer to perform a detection step and a preparative step of preparating the particles based on the detected fluorescence.
 本発明により、粒子の検出精度を向上させることが可能となる。 According to the present invention, it is possible to improve the particle detection accuracy.
本実施形態における粒子分取装置100の構成図である。It is a block diagram of the particle sorting apparatus 100 in this embodiment. 検出部13の内部構成図である。It is an internal block diagram of the detection unit 13. 第1POD136-1(488nm)の内部構成を表す図である。It is a figure which shows the internal structure of the 1st POD 136-1 (488 nm). 第2POD136-2(230nm)の内部構成を表す図である。It is a figure which shows the internal structure of the 2nd POD 136-2 (230 nm). 第3POD136-3(355nm)の内部構成を表す図である。It is a figure which shows the internal structure of the 3rd POD 136-3 (355 nm). 粒子分取装置100の処理の流れを示すフローチャートである。It is a flowchart which shows the process flow of the particle sorting apparatus 100. 深紫外光を胞子に照射することによって得られた蛍光の検出結果を示す図である。It is a figure which shows the detection result of fluorescence obtained by irradiating a spore with deep ultraviolet light. 深紫外光を栄養細胞に照射することによって得られた蛍光の検出結果を示す図である。It is a figure which shows the detection result of fluorescence obtained by irradiating a vegetative cell with deep ultraviolet light. 栄養細胞のみが含まれる顕微鏡写真を表す図である。It is a figure which shows the micrograph which contains only a vegetative cell. 図8Aの状態を蛍光分光光度計によって分析した結果を表す図である。It is a figure which shows the result of having analyzed the state of FIG. 8A by a fluorescence spectrophotometer. 栄養細胞と胞子が含まれる顕微鏡写真を表す図である。It is a figure which shows the micrograph which contains a vegetative cell and a spore. 図8Cの状態を蛍光分光光度計によって分析した結果を表す図である。It is a figure which shows the result of having analyzed the state of FIG. 8C by a fluorescence spectrophotometer. 胞子のみが含まれる顕微鏡写真を表す図である。It is a figure which shows the micrograph which contains only a spore. 図8Eの状態を蛍光分光光度計によって分析した結果を表す図である。It is a figure which shows the result of having analyzed the state of FIG. 8E by a fluorescence spectrophotometer. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result. 実験結果の具体例を示す図である。It is a figure which shows the specific example of the experimental result.
 以下、本発明の一実施形態を、図面を参照しながら説明する。
 図1は、本実施形態における粒子分取装置100の構成図である。粒子分取装置100は、深紫外光領域のレーザー光(以下単に「深紫外光」という。)を粒子に照射することによって得られる粒子の蛍光を検出し、検出した粒子の蛍光に基づいて粒子を分取する装置である。本実施形態において対象となる粒子は、DNA、RNA及びアミノ酸等を有する生物細胞及び胞子等である。本実施形態における粒子は、染色がなされていない、又は、染色ができない粒子である。粒子のサイズは、例えば0.5~20ミクロンである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a particle sorting device 100 according to the present embodiment. The particle sorting device 100 detects the fluorescence of the particles obtained by irradiating the particles with laser light in the deep ultraviolet light region (hereinafter, simply referred to as “deep ultraviolet light”), and the particles are based on the detected fluorescence of the particles. It is a device that sorts the particles. The target particles in this embodiment are biological cells and spores having DNA, RNA, amino acids and the like. The particles in this embodiment are undyed or unstained particles. The size of the particles is, for example, 0.5 to 20 microns.
 粒子分取装置100は、ノズル10、複数のレーザー装置11(11-1~11-3)、複数のフォーカスレンズ12、検出部13、制御回路14、表示部15、偏向板16、廃液タンク17、ウェルプレート18及び撮影装置19を備える。以下の説明では、複数のレーザー装置11を、第1レーザー装置11-1、第2レーザー装置11-2及び第3レーザー装置11-3として説明する。 The particle sorting device 100 includes a nozzle 10, a plurality of laser devices 11 (11-1 to 11-3), a plurality of focus lenses 12, a detection unit 13, a control circuit 14, a display unit 15, a polarizing plate 16, and a waste liquid tank 17. , A well plate 18 and a photographing device 19. In the following description, the plurality of laser devices 11 will be described as the first laser device 11-1, the second laser device 11-2, and the third laser device 11-3.
 ノズル10は、シース液1と、サンプル液とをジェットインエアー方式で放出する。サンプル液には、粒子2が含まれる。ジェットインエアー方式により、シース液1の流れの中心に粒子2が一列に整列する。ノズル10には、振動子が備えられ、制御回路14の制御に応じて振動子が所定の周期で上下に振動する。これにより、液滴3が形成される。振動子の振動周期及びノズル10内の圧力は、制御回路14によって制御される。 The nozzle 10 discharges the sheath liquid 1 and the sample liquid by a jet-in-air method. The sample solution contains particles 2. By the jet-in-air method, the particles 2 are aligned in a row at the center of the flow of the sheath liquid 1. The nozzle 10 is provided with an oscillator, and the oscillator vibrates up and down in a predetermined cycle according to the control of the control circuit 14. As a result, the droplet 3 is formed. The vibration cycle of the vibrator and the pressure in the nozzle 10 are controlled by the control circuit 14.
 第1レーザー装置11-1は、可視光領域のレーザー光(以下単に「可視光」という。)を連続で出力するレーザー装置である。例えば、第1レーザー装置11-1は、可視光として488nmのレーザー光を連続で出力する。
 第2レーザー装置11-2は、深紫外光を連続で出力するレーザー装置である。例えば、第2レーザー装置11-2は、深紫外光として230nmのレーザー光を連続で出力する。
 第3レーザー装置11-3は、紫外光領域のレーザー光(以下単に「紫外光」という。)を連続で出力するレーザー装置である。例えば、第3レーザー装置11-3は、紫外光として355nmのレーザー光を連続で出力する。
The first laser device 11-1 is a laser device that continuously outputs laser light in the visible light region (hereinafter, simply referred to as "visible light"). For example, the first laser device 11-1 continuously outputs a laser beam of 488 nm as visible light.
The second laser device 11-2 is a laser device that continuously outputs deep ultraviolet light. For example, the second laser device 11-2 continuously outputs a laser beam of 230 nm as deep ultraviolet light.
The third laser device 11-3 is a laser device that continuously outputs laser light in the ultraviolet light region (hereinafter, simply referred to as "ultraviolet light"). For example, the third laser device 11-3 continuously outputs a laser beam of 355 nm as ultraviolet light.
 ここで、230nmのレーザー光の生成方法について説明する。本実施形態において、第2レーザー装置11-2は、レーザーユニットと、波長変換ユニットとを用いて構成される。レーザーユニットは、例えば460nmのレーザー光を連続で出力するレーザー装置である。波長変換ユニットは、2倍高調波を出力する装置である。波長変換ユニットは、レーザーユニットから出力されたレーザー光を非線形光学結晶と相互作用させ、レーザーユニットから出力されたレーザー光の2倍の周波数のレーザー光を発生させることによって2倍高調波を生成する。これにより、レーザーユニットから出力された460nmのレーザー光が2倍の周波数の光に変換される。すなわち、レーザーユニットから出力された460nmのレーザー光が、波長が1/2の230nmのレーザー光に変換される。厳密には、変換効率等も踏まえて、変換後のレーザー光は、230nm近傍(230nmの±数nm)のレーザー光となる。 Here, a method for generating 230 nm laser light will be described. In the present embodiment, the second laser device 11-2 is configured by using a laser unit and a wavelength conversion unit. The laser unit is, for example, a laser device that continuously outputs a laser beam of 460 nm. The wavelength conversion unit is a device that outputs double harmonics. The wavelength conversion unit generates a second harmonic by interacting the laser light output from the laser unit with a nonlinear optical crystal and generating a laser light having a frequency twice that of the laser light output from the laser unit. .. As a result, the 460 nm laser light output from the laser unit is converted into light having twice the frequency. That is, the 460 nm laser light output from the laser unit is converted into the 230 nm laser light having a wavelength of 1/2. Strictly speaking, the laser light after conversion is a laser light in the vicinity of 230 nm (± several nm of 230 nm) in consideration of conversion efficiency and the like.
 フォーカスレンズ12-1~12-3は、それぞれ対応付けられているレーザー装置11から出力されるレーザー光の光軸を調節する。
 検出部13は、レーザー装置11から出力されたレーザー光が粒子に照射されることによって得られる散乱光及び粒子の蛍光(以下「取得光」という。)に基づいて粒子の蛍光を検出する。具体的な説明は後述する。
The focus lenses 12-1 to 12-3 adjust the optical axis of the laser light output from the laser device 11 associated with each other.
The detection unit 13 detects the fluorescence of the particles based on the scattered light obtained by irradiating the particles with the laser light output from the laser device 11 and the fluorescence of the particles (hereinafter referred to as “acquired light”). A specific description will be described later.
 制御回路14は、第1レーザー装置11-1、第2レーザー装置11-2及び第3レーザー装置11-3のいずれかのレーザー装置11から出力されたレーザー光によって得られた粒子の蛍光に基づいて粒子を分取する。第1レーザー装置11-1、第2レーザー装置11-2及び第3レーザー装置11-3のいずれかのレーザー装置11から出力されたレーザー光を対象とするかは、ユーザが決定してもよい。制御回路14は、分取する対象となる粒子を含む液滴3に対して、プラス又はマイナスの電荷を印加する。電荷の印加方法としては、セルソーターで一般的に使用されている手法が適用できる。以下の説明では、制御回路14は、深紫外光を連続で出力する第2レーザー装置11-2から出力されたレーザー光によって得られた粒子の蛍光に基づいて粒子を分取するものとして説明する。 The control circuit 14 is based on the fluorescence of particles obtained by the laser light output from the laser device 11 of any of the first laser device 11-1, the second laser device 11-2, and the third laser device 11-3. And separate the particles. The user may decide whether to target the laser light output from the laser device 11 of any of the first laser device 11-1, the second laser device 11-2, and the third laser device 11-3. .. The control circuit 14 applies a positive or negative charge to the droplet 3 containing the particles to be sorted. As a method of applying an electric charge, a method generally used in a cell sorter can be applied. In the following description, the control circuit 14 will be described as separating particles based on the fluorescence of the particles obtained by the laser light output from the second laser device 11-2 that continuously outputs deep ultraviolet light. ..
 対象となるレーザー装置11は、複数であってもよい。制御回路14は、検出部13による検出結果を表示部15に表示させる。制御回路14は、撮影装置19において撮影された映像(以下「撮影映像」という。)に基づいてノズル10を制御する。例えば、制御回路14は、撮影映像において液滴3に閾値以上の変化が生じた場合にノズル10内の圧力を変更する。さらに、制御回路14は、液滴3に閾値以上の変化が生じた場合に振動子の振動周期を変更する。 The number of target laser devices 11 may be plural. The control circuit 14 causes the display unit 15 to display the detection result of the detection unit 13. The control circuit 14 controls the nozzle 10 based on an image captured by the photographing device 19 (hereinafter referred to as “photographed image”). For example, the control circuit 14 changes the pressure in the nozzle 10 when a change of the droplet 3 or more occurs in the captured image. Further, the control circuit 14 changes the vibration cycle of the vibrator when the droplet 3 changes by a threshold value or more.
 表示部15は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の画像表示装置である。表示部15は、検出結果及び撮影映像を表示する。表示部15は、画像表示装置を粒子分取装置100に接続するためのインタフェースであってもよい。この場合、表示部15は、検出結果及び撮影映像を表示するための映像信号を生成し、自身に接続されている画像表示装置に映像信号を出力する。
 偏向板16は、プラスの電圧を有する第1の板と、マイナスの電圧を有する第2の板とで構成される。第1の板及び第2の板は、向かい合うように設置されている。第1の板と第2の板との間には、所定の電位差(例えば、±4000V)が生じる。偏向板16によって電荷が印加された液滴3が分取される。
The display unit 15 is an image display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The display unit 15 displays the detection result and the captured image. The display unit 15 may be an interface for connecting the image display device to the particle sorting device 100. In this case, the display unit 15 generates a video signal for displaying the detection result and the captured video, and outputs the video signal to the image display device connected to the display unit 15.
The polarizing plate 16 is composed of a first plate having a positive voltage and a second plate having a negative voltage. The first plate and the second plate are installed so as to face each other. A predetermined potential difference (for example, ± 4000 V) is generated between the first plate and the second plate. The charged droplet 3 is separated by the polarizing plate 16.
 廃液タンク17は、分取されなかった液滴3を廃棄するタンクである。
 ウェルプレート18は、複数のくぼみを有する平板である。ウェルプレート18は、分取された液滴3を回収する。ウェルプレート18は、制御回路14の制御に応じて上下左右に移動可能である。
 撮影装置19は、カメラ等の撮影装置である。撮影装置19は、液滴3が形成される位置に固定して設置され、液滴3を撮影する。撮影装置19は、液滴3の撮影映像を制御回路14に出力する。
The waste liquid tank 17 is a tank for discarding the unseparated droplets 3.
The well plate 18 is a flat plate having a plurality of recesses. The well plate 18 collects the separated droplets 3. The well plate 18 can be moved up, down, left and right according to the control of the control circuit 14.
The photographing device 19 is a photographing device such as a camera. The photographing device 19 is fixedly installed at a position where the droplet 3 is formed, and photographs the droplet 3. The photographing device 19 outputs the photographed image of the droplet 3 to the control circuit 14.
 図2は、検出部13の内部構成図である。
 図2に示すように、検出部13は、対物レンズ131、チューブレンズ132、ピンホール板133、プリズム134、複数のコリメーションレンズ135-1~135-3、第1POD136-1、第2POD136-2及び第3POD136-3を備える。
 対物レンズ131は、入射された光を集光する。対物レンズ131には、レーザー光及び取得光が入射される。
 チューブレンズ132は、対物レンズ131から出力された光を再度集光する。
 ピンホール板133は、レーザー装置11の数分のピンホールが開いた板である。ピンホール板133は、各レーザー装置11から得られる光から不要な光をブロックする。
FIG. 2 is an internal configuration diagram of the detection unit 13.
As shown in FIG. 2, the detection unit 13 includes an objective lens 131, a tube lens 132, a pinhole plate 133, a prism 134, a plurality of collimation lenses 135-1 to 135-3, a first POD 136-1, a second POD 136-2, and the like. A third POD 136-3 is provided.
The objective lens 131 collects the incident light. Laser light and acquired light are incident on the objective lens 131.
The tube lens 132 refocuses the light output from the objective lens 131.
The pinhole plate 133 is a plate in which pinholes are opened for several minutes of the laser device 11. The pinhole plate 133 blocks unnecessary light from the light obtained from each laser device 11.
 プリズム134は、ピンホール板133を介して出力された光を反射する多面体である。例えば、プリズム134は、第1レーザー装置11-1に対応するレーザー光及び取得光を第1POD136-1に反射する。例えば、プリズム134は、第2レーザー装置11-2に対応するレーザー光及び取得光を第2POD136-2に反射する。例えば、プリズム134は、第3レーザー装置11-3に対応するレーザー光及び取得光を第3POD136-3に反射する。
 コリメーションレンズ135-1~135-3は、入光した光を平行光にする。
The prism 134 is a polyhedron that reflects the light output through the pinhole plate 133. For example, the prism 134 reflects the laser light and the acquired light corresponding to the first laser device 11-1 to the first POD 136-1. For example, the prism 134 reflects the laser light and the acquired light corresponding to the second laser device 11-2 to the second POD 136-2. For example, the prism 134 reflects the laser light and the acquired light corresponding to the third laser device 11-3 to the third POD 136-3.
The collimation lenses 135-1 to 135-3 convert the incoming light into parallel light.
 第1POD136-1は、第1レーザー装置11-1に対応するレーザー光及び取得光を入力する。第1POD136-1は、入力された取得光から粒子の蛍光を検出する。第1レーザー装置11-1に対応するレーザー光(可視光)は、第1POD136-1において遮断される。
 第2POD136-2は、第2レーザー装置11-2に対応するレーザー光及び取得光を入力する。第2POD136-2は、入力された取得光から粒子の蛍光を検出する。第2レーザー装置11-2に対応するレーザー光(深紫外光)は、第2POD136-2において遮断される。
 第3POD136-3は、第3レーザー装置11-3に対応するレーザー光及び取得光を入力する。第3POD136-3は、入力された取得光から粒子の蛍光を検出する。第3レーザー装置11-3に対応するレーザー光(紫外光)は、第3POD136-3において遮断される。
The first POD 136-1 inputs the laser light and the acquired light corresponding to the first laser device 11-1. The first POD136-1 detects the fluorescence of the particles from the input acquired light. The laser light (visible light) corresponding to the first laser device 11-1 is blocked at the first POD 136-1.
The second POD 136-2 inputs the laser light and the acquired light corresponding to the second laser device 11-2. The second POD 136-2 detects the fluorescence of the particles from the input acquired light. The laser light (deep ultraviolet light) corresponding to the second laser apparatus 11-2 is blocked at the second POD 136-2.
The third POD 136-3 inputs the laser light and the acquired light corresponding to the third laser device 11-3. The third POD 136-3 detects the fluorescence of the particles from the input acquired light. The laser light (ultraviolet light) corresponding to the third laser apparatus 11-3 is blocked at the third POD 136-3.
 次に、図3~図5を用いて、各PODの構成について説明する。
 図3は、第1POD136-1(488nm)の内部構成を表す図である。
 図3に示すように、第1POD136-1は、複数のダイクロイックミラー137~142及び複数の吸収フィルタ143~149を備える。図示していないが、各吸収フィルタ143~149の出力先には、光電子増倍管(PMT:Photomultiplier Tube)が備えられる。
Next, the configuration of each POD will be described with reference to FIGS. 3 to 5.
FIG. 3 is a diagram showing the internal configuration of the first POD 136-1 (488 nm).
As shown in FIG. 3, the first POD 136-1 includes a plurality of dichroic mirrors 137 to 142 and a plurality of absorption filters 143 to 149. Although not shown, a photomultiplier tube (PMT) is provided at the output destination of each absorption filter 143 to 149.
 ダイクロイックミラー137~142は、特定の波長の光を反射し、特定の波長以外の光を透過する。
 吸収フィルタ143~149は、特定の波長の光を通過させ、特定の波長以外の光を吸収する。例えば、吸収フィルタ143は、785nmを中心とした半値幅62nmの光を透過させる。
 光電子増倍管は、吸収フィルタ143~149を通過した光を検出する。次に、光電子増倍管は、検出した光を増幅する。そして、光電子増倍管は、増幅した光信号を電気信号に変換する。光電子増倍管は、電気信号を制御回路14に出力する。
The dichroic mirrors 137 to 142 reflect light having a specific wavelength and transmit light other than the specific wavelength.
The absorption filters 143 to 149 allow light of a specific wavelength to pass through and absorb light other than the specific wavelength. For example, the absorption filter 143 transmits light having a half width of 62 nm centered on 785 nm.
The photomultiplier tube detects the light that has passed through the absorption filters 143 to 149. The photomultiplier tube then amplifies the detected light. Then, the photomultiplier tube converts the amplified optical signal into an electric signal. The photomultiplier tube outputs an electric signal to the control circuit 14.
 図4は、第2POD136-2(230nm)の内部構成を表す図である。
 図4に示すように、第2POD136-2は、複数のダイクロイックミラー150~152及び複数の吸収フィルタ153~156を備える。図示していないが、各吸収フィルタ153~156の出力先には、光電子増倍管が備えられる。
 ダイクロイックミラー150~152は、特定の波長の光を反射し、特定の波長以外の光を透過する。
 吸収フィルタ153~156は、特定の波長の光を通過させ、特定の波長以外の光を吸収する。例えば、吸収フィルタ153は、272nmを中心とした半値幅36nmの光を透過させる。
 光電子増倍管は、吸収フィルタ153~156を通過した光を検出する。次に、光電子増倍管は、検出した光を増幅する。そして、次に、光電子増倍管は、増幅した光信号を電気信号に変換する。光電子増倍管は、電気信号を制御回路14に出力する。
FIG. 4 is a diagram showing the internal configuration of the second POD 136-2 (230 nm).
As shown in FIG. 4, the second POD 136-2 includes a plurality of dichroic mirrors 150 to 152 and a plurality of absorption filters 153 to 156. Although not shown, a photomultiplier tube is provided at the output destination of each absorption filter 153 to 156.
The dichroic mirrors 150 to 152 reflect light having a specific wavelength and transmit light other than the specific wavelength.
The absorption filters 153 to 156 allow light of a specific wavelength to pass through and absorb light other than the specific wavelength. For example, the absorption filter 153 transmits light having a half width of 36 nm centered on 272 nm.
The photomultiplier tube detects the light that has passed through the absorption filters 153 to 156. The photomultiplier tube then amplifies the detected light. Then, the photomultiplier tube converts the amplified optical signal into an electric signal. The photomultiplier tube outputs an electric signal to the control circuit 14.
 図5は、第3POD136-3(355nm)の内部構成を表す図である。
 図5に示すように、第3POD136-3は、複数のダイクロイックミラー157~159及び複数の吸収フィルタ160~163を備える。図示していないが、各吸収フィルタ160~163の出力先には、光電子増倍管が備えられる。
 ダイクロイックミラー157~159は、特定の波長の光を反射し、特定の波長以外の光を透過する。
 吸収フィルタ160~163は、特定の波長の光を通過させ、特定の波長以外の光を吸収する。例えば、吸収フィルタ160は、457nmを中心とした半値幅50nmの光を透過させる。
 光電子増倍管は、吸収フィルタ160~163を通過した光を検出する。次に、光電子増倍管は、検出した光を増幅する。そして、光電子増倍管は、増幅した光信号を電気信号に変換する。光電子増倍管は、電気信号を制御回路14に出力する。
FIG. 5 is a diagram showing the internal configuration of the third POD 136-3 (355 nm).
As shown in FIG. 5, the third POD 136-3 includes a plurality of dichroic mirrors 157 to 159 and a plurality of absorption filters 160 to 163. Although not shown, a photomultiplier tube is provided at the output destination of each absorption filter 160 to 163.
The dichroic mirrors 157 to 159 reflect light having a specific wavelength and transmit light other than the specific wavelength.
The absorption filters 160 to 163 allow light of a specific wavelength to pass through and absorb light other than the specific wavelength. For example, the absorption filter 160 transmits light having a half width of 50 nm centered on 457 nm.
The photomultiplier tube detects the light that has passed through the absorption filters 160-163. The photomultiplier tube then amplifies the detected light. Then, the photomultiplier tube converts the amplified optical signal into an electric signal. The photomultiplier tube outputs an electric signal to the control circuit 14.
 図6は、粒子分取装置100の処理の流れを示すフローチャートである。図6の処理開始時には、粒子がジェットインエアー方式により放出されているものとする。図6では、第2レーザー装置11-2に焦点を当てて処理の流れを説明する。
 第2レーザー装置11-2は、レーザー光(深紫外光)を照射する(ステップS101)。レーザー光が粒子に照射された場合、取得光が検出部13に入力される。一方、レーザー光が粒子に照射されなかった場合、レーザー光が検出部13に入力される。入力された光は、検出部13内の第2POD136-2に入力される。第2POD136-2は、入力された光を各波長に分類する(ステップS102)。具体的には、第2POD136-2は、ダイクロイックミラー150~152及び吸収フィルタ153~156によって、入力された光を各波長に分類する。分類された光は、光電子増倍管に入力される。
FIG. 6 is a flowchart showing a processing flow of the particle sorting device 100. At the start of the process of FIG. 6, it is assumed that the particles are discharged by the jet-in-air method. In FIG. 6, the processing flow will be described with a focus on the second laser apparatus 11-2.
The second laser device 11-2 irradiates the laser light (deep ultraviolet light) (step S101). When the particles are irradiated with the laser light, the acquired light is input to the detection unit 13. On the other hand, when the laser light is not applied to the particles, the laser light is input to the detection unit 13. The input light is input to the second POD 136-2 in the detection unit 13. The second POD 136-2 classifies the input light into each wavelength (step S102). Specifically, the second POD 136-2 classifies the input light into each wavelength by the dichroic mirrors 150 to 152 and the absorption filters 153 to 156. The classified light is input to the photomultiplier tube.
 制御回路14は、蛍光を検出したか否か判定する(ステップS103)。蛍光を検出したか否かの判定は、制御回路14に設定されたThreshold値を超える電気信号が入力されたか否かで行われる。すなわち、蛍光を検出したか否かの判定は、光電子増倍管に入力された光の強さが一定値を超えたか否かで行われる。光の強さが一定値を超える光が光電子増倍管に入力された場合、制御回路14にはThreshold値を超える電気信号が入力される。一方、光の強さが一定値を超える光が光電子増倍管に入力されなかった場合、制御回路14にはThreshold値を超える電気信号が入力されない。 The control circuit 14 determines whether or not fluorescence has been detected (step S103). The determination as to whether or not fluorescence is detected is performed based on whether or not an electric signal exceeding the Thrashold value set in the control circuit 14 is input. That is, whether or not fluorescence is detected is determined by whether or not the intensity of the light input to the photomultiplier tube exceeds a certain value. When light having a light intensity exceeding a certain value is input to the photomultiplier tube, an electric signal exceeding the Thrashold value is input to the control circuit 14. On the other hand, when the light whose intensity exceeds a certain value is not input to the photomultiplier tube, the electric signal exceeding the Thrashold value is not input to the control circuit 14.
 制御回路14にThreshold値を超える電気信号が入力された場合、制御回路14は蛍光を検出したと判定する。一方、制御回路14にThreshold値を超える電気信号が入力されなかった場合、制御回路14は蛍光を検出していないと判定する。Threshold値は、光電子増倍管に印可する電圧によって異なる。 When an electric signal exceeding the Throld value is input to the control circuit 14, it is determined that the control circuit 14 has detected fluorescence. On the other hand, when no electric signal exceeding the Throld value is input to the control circuit 14, it is determined that the control circuit 14 has not detected fluorescence. The Treshold value depends on the voltage applied to the photomultiplier tube.
 蛍光を検出した場合(ステップS103-YES)、制御回路14は入力された電気信号に基づいて、蛍光の発生元が選別対象の粒子(例えば、栄養細胞、胞子)であるか否か判定する(ステップS104)。具体的には、制御回路14は、電気信号に基づく特性が選別対象の粒子の特性を示す場合には蛍光の発生元が選別対象の粒子であると判定する。一方、制御回路14は、電気信号に基づく特性が選別対象の粒子の特性を示さない場合には蛍光の発生元が選別対象の粒子ではないと判定する。 When fluorescence is detected (step S103-YES), the control circuit 14 determines whether or not the source of fluorescence is particles to be selected (for example, vegetative cells, spores) based on the input electrical signal (step S103-YES). Step S104). Specifically, the control circuit 14 determines that the source of fluorescence is the particles to be selected when the characteristics based on the electric signal indicate the characteristics of the particles to be selected. On the other hand, the control circuit 14 determines that the source of fluorescence is not the particles to be selected when the characteristics based on the electric signal do not show the characteristics of the particles to be selected.
 電気信号に基づく特性としては、スペクトル特性が挙げられる。ここで、230nm近傍の深紫外光では、栄養細胞の蛍光スペクトルのピークが350nm近傍に現れ、胞子の蛍光スペクトルのピークが300nm近傍に現れる。そこで、制御回路14は、電気信号に基づく特性が、上記の粒子のいずれかの特性に一致する場合には、蛍光の発生元が選別対象の粒子であると判定する。一方、制御回路14は、電気信号に基づく特性が、上記の粒子のいずれの特性にも一致しない場合には、蛍光の発生元が選別対象の粒子ではないと判定する。 Spectral characteristics can be mentioned as characteristics based on electrical signals. Here, in deep ultraviolet light near 230 nm, the peak of the fluorescence spectrum of the vegetative cell appears near 350 nm, and the peak of the fluorescence spectrum of the spore appears near 300 nm. Therefore, the control circuit 14 determines that the source of fluorescence is the particle to be selected when the characteristic based on the electric signal matches any of the characteristics of the above particles. On the other hand, when the characteristic based on the electric signal does not match any of the characteristics of the above particles, the control circuit 14 determines that the source of fluorescence is not the particle to be selected.
 蛍光の発生元が選別対象の粒子である場合(ステップS104-YES)、制御回路14は選別対象の粒子に対して電荷を印加する(ステップS105)。具体的には、制御回路14は、選別対象の粒子を含む液滴3ができるタイミングで、対象となる粒子に電荷を印加する。制御回路14は、栄養細胞の場合にはプラスの電荷を印加し、胞子の場合にはマイナスの電荷を印加してもよい。これにより、電荷が印加された液滴3は、偏向板16によって偏向され、ウェルプレート18にて回収される。 When the source of fluorescence is the particles to be sorted (step S104-YES), the control circuit 14 applies an electric charge to the particles to be sorted (step S105). Specifically, the control circuit 14 applies an electric charge to the target particles at the timing when the droplet 3 containing the particles to be sorted is formed. The control circuit 14 may apply a positive charge in the case of vegetative cells and a negative charge in the case of spores. As a result, the charged droplet 3 is deflected by the polarizing plate 16 and collected by the well plate 18.
 その後、制御回路14は、処理が終了したか否か判定する(ステップS106)。処理が終了した場合(ステップS106-YES)、粒子分取装置100は図6の処理を終了する。
 一方、処理が終了していない場合(ステップS106-NO)、粒子分取装置100はステップS102以降の処理を実行する。
 ステップS103の処理において蛍光を検出していない場合(ステップS103-NO)、又は、ステップS104の処理において蛍光の発生元が選別対象の粒子ではない場合(ステップS104-NO)、粒子分取装置100はステップS106の処理を実行する。
After that, the control circuit 14 determines whether or not the processing is completed (step S106). When the process is completed (step S106-YES), the particle sorting device 100 ends the process of FIG.
On the other hand, when the processing is not completed (step S106-NO), the particle sorting device 100 executes the processing after step S102.
When fluorescence is not detected in the process of step S103 (step S103-NO), or when the source of fluorescence is not the particles to be sorted in the process of step S104 (step S104-NO), the particle sorting device 100 Executes the process of step S106.
 次に、図7A及び図7Bを用いて、深紫外光を照射することによって得られた蛍光の検出結果について説明する。図7A及び図7Bでは、吸収フィルタ155の出力先に備えられた光電子増倍管で検出された蛍光及び吸収フィルタ156の出力先に備えられた光電子増倍管で検出された蛍光を2次元プロットした様子が示されている。
 図7Aは、深紫外光を胞子に照射することによって得られた蛍光の検出結果を示す図である。図7Aでは、Fで示される領域において胞子の蛍光が検出されている。図7Bは、深紫外光を栄養細胞に照射することによって得られた蛍光の検出結果を示す図である。図7Bでは、Eで示される領域において栄養細胞の蛍光が検出されている。
Next, the detection result of fluorescence obtained by irradiating deep ultraviolet light will be described with reference to FIGS. 7A and 7B. In FIGS. 7A and 7B, the fluorescence detected by the photomultiplier tube provided at the output destination of the absorption filter 155 and the fluorescence detected by the photomultiplier tube provided at the output destination of the absorption filter 156 are plotted in two dimensions. It is shown how it was done.
FIG. 7A is a diagram showing the detection result of fluorescence obtained by irradiating spores with deep ultraviolet light. In FIG. 7A, fluorescence of spores is detected in the region indicated by F. FIG. 7B is a diagram showing the detection result of fluorescence obtained by irradiating vegetative cells with deep ultraviolet light. In FIG. 7B, fluorescence of vegetative cells is detected in the region indicated by E.
 次に、図8A~図8Fを用いて、顕微鏡写真と、蛍光分光光度計による分析結果について説明する。
 図8Aは、栄養細胞170のみが含まれる顕微鏡写真を表す図である。図8Bは、図8Aの状態を蛍光分光光度計によって分析した結果を表す図である。図8Cは、栄養細胞170と胞子171が含まれる顕微鏡写真を表す図である。図8Dは、図8Cの状態を蛍光分光光度計によって分析した結果を表す図である。図8Eは、胞子171のみが含まれる顕微鏡写真を表す図である。図8Fは、図8Eの状態を蛍光分光光度計によって分析した結果を表す図である。
 図8Bと、図8Fとを比較すると、胞子171のみの方が栄養細胞170のみと比べて300nm近傍に特徴が現れている。
Next, the photomicrograph and the analysis result by the fluorescence spectrophotometer will be described with reference to FIGS. 8A to 8F.
FIG. 8A is a diagram showing a micrograph containing only vegetative cells 170. FIG. 8B is a diagram showing the result of analyzing the state of FIG. 8A by a fluorescence spectrophotometer. FIG. 8C is a diagram showing a micrograph containing vegetative cells 170 and spores 171. FIG. 8D is a diagram showing the result of analyzing the state of FIG. 8C by a fluorescence spectrophotometer. FIG. 8E is a diagram showing a micrograph containing only spores 171. FIG. 8F is a diagram showing the result of analyzing the state of FIG. 8E by a fluorescence spectrophotometer.
Comparing FIG. 8B and FIG. 8F, the feature of spore 171 alone appears in the vicinity of 300 nm as compared with that of vegetative cell 170 alone.
 以上のように構成された粒子分取装置100によれば、粒子の検出精度を向上させることが可能になる。以下、この効果について詳細に説明する。
 粒子分取装置100は、深紫外光を連続で出力するレーザー装置11から出力されたレーザー光が粒子に照射されることによって得られる粒子の蛍光に基づいて粒子を分取する。ここで、本実施形態における粒子分取装置100は、鉱物による自家蛍光が見られず、粒子が自然に蛍光を発する深紫外光を使用している。これにより、従来では検出することができなかった細胞(例えば、染色で見つけることができない胞子及び染色できない細胞等)を検出することができる。そのため、粒子の検出精度を向上させることが可能になる。
According to the particle sorting device 100 configured as described above, it is possible to improve the particle detection accuracy. Hereinafter, this effect will be described in detail.
The particle sorting device 100 sorts particles based on the fluorescence of the particles obtained by irradiating the particles with the laser light output from the laser device 11 that continuously outputs deep ultraviolet light. Here, the particle sorting device 100 in the present embodiment uses deep ultraviolet light in which autofluorescence due to minerals is not observed and the particles naturally fluoresce. This makes it possible to detect cells that could not be detected in the past (for example, spores that cannot be found by staining and cells that cannot be stained). Therefore, it is possible to improve the particle detection accuracy.
 従来では、レーザー発振が停止している時間には粒子を検出することができない。そのため、粒子の数え落としが多く発生してしまう場合がある。それに対して、本発明における粒子分取装置100では、レーザー光を連続で出力するレーザー装置11を用いる。したがって、粒子の数え落としを従来よりも減らすことができる。そのため、粒子の検出精度を向上させることが可能になる。粒子分取装置100は、レーザー光が粒子に照射されることによって得られる粒子の蛍光を検出し、検出した蛍光に基づいて粒子を分取する。その結果、粒子の分取精度を向上させることが可能になる。 Conventionally, particles cannot be detected while the laser oscillation is stopped. Therefore, a large number of particles may be dropped. On the other hand, in the particle sorting device 100 of the present invention, a laser device 11 that continuously outputs laser light is used. Therefore, the number of particles can be reduced as compared with the conventional case. Therefore, it is possible to improve the particle detection accuracy. The particle sorting device 100 detects the fluorescence of the particles obtained by irradiating the particles with laser light, and sorts the particles based on the detected fluorescence. As a result, it becomes possible to improve the accuracy of particle sorting.
 粒子分取装置100では、分取対象として、染色がなされていない粒子を用いる。したがって、細胞自体の元素組成を変化させてしまうことが無い。そのため、より精度の高い元素分析が可能になる。
 分取対象となる粒子の放出方式としては、ジェットインエアー方式と、フローセル方式が挙げられる。これらの放出方式のうち、フローセル方式では、用いられている材料によって深紫外光領域のレーザー光が通過できない場合があるため深紫外光領域のレーザー光を使用することができない。これに対して、ジェットインエアー方式では、深紫外光領域のレーザー光を使用することができる。そこで、本実施形態における粒子分取装置100は、分取対象となる粒子をジェットインエアー方式で放出する。そのため、深紫外光領域のレーザー光を用いて解析が可能になる。
In the particle sorting apparatus 100, undyed particles are used as the sorting target. Therefore, the elemental composition of the cell itself is not changed. Therefore, more accurate elemental analysis becomes possible.
Examples of the emission method of the particles to be sorted include a jet-in-air method and a flow cell method. Among these emission methods, in the flow cell method, the laser light in the deep ultraviolet light region cannot be used because the laser light in the deep ultraviolet light region may not pass depending on the material used. On the other hand, in the jet-in-air method, laser light in the deep ultraviolet region can be used. Therefore, the particle sorting device 100 in the present embodiment discharges the particles to be sorted by the jet-in-air method. Therefore, analysis can be performed using laser light in the deep ultraviolet light region.
 以下、粒子分取装置100を用いた実験結果について説明する。
 まず実験の概要として、実験方法について説明する。
<実験試料>
 枯草菌 Bacillus megateriumの培養液二種類(vegetative, spore)
<使用した液体培地>
 vegetative:NBRC No.702、spore:DSM(Difco Sporulation Medium)
<レーザー条件>
 Deep UV(深紫外光)、488nm(可視光:青レーザー)使用
 分取時はレーザー装置11をON状態のままとした。
<ソート細胞数(イベント数)>
 1、2、5、10
<ソーティング条件(total)>
 レーザー(1条件)×ソート細胞数(4条件)=4条件(96ウェルプレート:1条件48ウェル使用)
<ソート後の培養条件>
 vegetative:30℃, over night、spore:37℃, over night
Hereinafter, the experimental results using the particle sorting device 100 will be described.
First, as an outline of the experiment, the experimental method will be described.
<Experimental sample>
Two types of culture medium of Bacillus megaterium (vegetative, spore)
<Liquid medium used>
vegetative: NBRC No.702, spore: DSM (Difco Sporulation Medium)
<Laser conditions>
Deep UV (deep ultraviolet light), 488 nm (visible light: blue laser) was used. The laser device 11 was left ON during sorting.
<Number of sorted cells (number of events)>
1, 2, 5, 10
<Sorting conditions (total)>
Laser (1 condition) x number of sorted cells (4 conditions) = 4 conditions (96-well plate: 1 condition, 48 wells used)
<Culture conditions after sorting>
vegetative: 30 ° C, over night, spore: 37 ° C, over night
 <サンプル溶液の準備>
Bacillus megaterium(栄養細胞、vegetative cell)の培養
 -NBRC702液体培地にグリセロールストック(菌株)を添加して一晩培養(30℃、100rpm)
 -翌日、新しい培地に植え継ぐ
 7mL程度の培地に対して30μl程度、3時間くらいで濁り始める。
 -薄濁りの段階で培養を止め、氷上に置く
 -ソーティングの際は培養液を直接流す。
Bacillus megaterium(胞子、spore)の培養
 -DSM液体培地にグリセロールストック(菌株)を添加して52時間培養(37℃、300rpm)
 -ソーティングの際はDSM液体培地で希釈した溶液を直接流す。
<染色条件>
 未染色でそのまま粒子分取装置100に流してソーティングする。
<Preparation of sample solution>
Culture of Bacillus megaterium (vegetative cells) -Overnight culture (30 ° C, 100 rpm) by adding glycerol stock (strain) to NBRC702 liquid medium.
-The next day, it will start to become cloudy in about 30 μl in about 3 hours with respect to about 7 mL of medium to be subplanted in a new medium.
-Stop the culture at the stage of turbidity and place it on ice.-When sorting, flow the culture solution directly.
Culture of Bacillus megaterium (spores) -Culturing for 52 hours (37 ° C, 300 rpm) by adding glycerol stock (strain) to DSM liquid medium.
-When sorting, the solution diluted with DSM liquid medium is poured directly.
<Dyeing conditions>
It is unstained and flows directly through the particle sorting device 100 for sorting.
 次に、図9~図15を用いて実験結果について説明する。
 図9~図15は、実験結果の具体例を示す図である。図9は、vegetative cell(栄養細胞)の分取結果を表す。図10は、spore(胞子)の分取結果を表す。図9及び図10において、vegetative cellのソーティング領域は領域Bである。図9及び図10において、sporeのソーティング領域は領域Aである。図9において領域Bの密度が高いことが表されており、図10において領域Aの密度が高いことが表されている。
Next, the experimental results will be described with reference to FIGS. 9 to 15.
9 to 15 are diagrams showing specific examples of experimental results. FIG. 9 shows the results of sorting of vegetative cells. FIG. 10 shows the results of sorting spores. In FIGS. 9 and 10, the sorting region of the vegetative cell is region B. In FIGS. 9 and 10, the sorting region of spore is region A. FIG. 9 shows that the density of the region B is high, and FIG. 10 shows that the density of the region A is high.
 vegetative cellを0.2μm孔径のポリカーボネートメンブレンにソーティング後、SYBR Green Iで染色し、顕微鏡観察を行った結果を図11に示す。図11は、40倍率の対物レンズを介して撮影した図である。
 Vegitative cellをソーティング後、一晩培養。ソート細胞数「1」の培養液をSYBR Green Iで染色し、顕微鏡観察を行った結果を図12に示す。図12は、40倍率の対物レンズを介して撮影した図である。
The vegetative cells were sorted on a polycarbonate membrane having a pore size of 0.2 μm, stained with SYBR Green I, and observed under a microscope. The results are shown in FIG. FIG. 11 is a view taken through a 40-magnification objective lens.
After sorting Vegitative cells, incubate overnight. The culture solution having the number of sorted cells “1” was stained with SYBR Green I, and the results of microscopic observation are shown in FIG. FIG. 12 is a view taken through a 40-magnification objective lens.
 Sporeをメンブレンにソーティング後、SYBR Green Iで染色し、顕微鏡観察を行った結果を図13に示す。図13は、40倍率の対物レンズを介して撮影した図である。
 Sporeをソーティング後、一晩培養。ソート細胞数「1」の培養液をSYBR Green Iで染色し、顕微鏡観察を行った結果を図14に示す。図14は、40倍率の対物レンズを介して撮影した図である。
After sorting Spore on the membrane, it was stained with SYBR Green I, and the results of microscopic observation are shown in FIG. FIG. 13 is a view taken through a 40-magnification objective lens.
After sorting Spore, incubate overnight. FIG. 14 shows the results of staining the culture medium having the number of sorted cells “1” with SYBR Green I and observing under a microscope. FIG. 14 is a view taken through a 40-magnification objective lens.
 生細胞割合の測定結果(液体培地へのソーティング結果)を図15に示す。図15に示すように、ソーティング用胞子液中の細胞は、全てが培養可能ではなかったことが分かる。
・ソーティング用胞子液の全菌数(顕微鏡による計数):1.34×10^6cells/mL
・寒天培地(NBRC702組成)で増殖可能な細胞の数(コロニーカウント):9.10×10^5cells/mL
→ソーティング用胞子液中の培養可能な細胞の割合:64.6%
The measurement result of the ratio of living cells (result of sorting into a liquid medium) is shown in FIG. As shown in FIG. 15, it can be seen that not all of the cells in the sorting spore solution could be cultured.
-Total bacterial count of spore solution for sorting (counting by microscope): 1.34 x 10 ^ 6 cells / mL
-Number of cells that can grow on agar medium (NBRC702 composition) (colony count): 9.10 x 10 ^ 5 cells / mL
→ Percentage of culturable cells in sorting spore solution: 64.6%
 上記から、胞子液中には元々64.6%の生細胞が含まれていて、その胞子液を用いて行ったソーティングの結果として60.4%の細胞が生存していた。すなわち、ソーティングの操作を行った前後の生細胞比率を比較すると93.5%であり、大部分の胞子がソーティングによる影響を受けないことが分かる。栄養細胞においては、ソーティングの結果として100%の細胞が生存していた。すなわち、ソーティング後の生細胞比率は100%であり、栄養細胞がソーティングによる影響を受けないことが分かる。 From the above, 64.6% of living cells were originally contained in the spore solution, and 60.4% of the cells were alive as a result of sorting using the spore solution. That is, when the ratio of living cells before and after the sorting operation was compared, it was 93.5%, and it can be seen that most of the spores were not affected by the sorting. In vegetative cells, 100% of the cells were alive as a result of sorting. That is, the ratio of viable cells after sorting is 100%, and it can be seen that vegetative cells are not affected by sorting.
 <変形例>
 本実施形態では、レーザー装置11として、可視光領域のレーザー光を連続で出力する第1レーザー装置11-1、深紫外光領域のレーザー光を連続で出力する第2レーザー装置11-2、紫外光領域のレーザー光を連続で出力する第3レーザー装置11-3の3つを示したが、これに限定される必要はない。例えば、レーザー装置11として、1台の深紫外光領域のレーザー光を連続で出力するレーザー装置11(例えば、第2レーザー装置11-2)のみが用いられてもよい。深紫外光領域のレーザー光を連続で出力するレーザー装置11が含まれていれば、他のレーザー装置11が出力するレーザー光の領域の組み合わせはどの領域の組み合わせであってもよい。
<Modification example>
In the present embodiment, as the laser device 11, the first laser device 11-1 that continuously outputs the laser light in the visible light region, the second laser device 11-2 that continuously outputs the laser light in the deep ultraviolet light region, and the ultraviolet light. Although the three third laser devices 11-3 that continuously output the laser beam in the optical region are shown, the present invention is not limited to these. For example, as the laser device 11, only one laser device 11 (for example, a second laser device 11-2) that continuously outputs a laser beam in a deep ultraviolet light region may be used. As long as the laser device 11 that continuously outputs the laser light in the deep ultraviolet light region is included, the combination of the laser light regions output by the other laser device 11 may be any combination of regions.
 本実施形態では、電荷が印加された液滴3を回収する機構としてウェルプレートを例に説明したが、液滴3を回収する機構はチューブまたはプラスチック容器であってもよい。
 本実施形態では、粒子が、染色がなされていない、又は、染色ができない粒子を例に説明した。しかしながら、粒子分取装置100に用いられる粒子は、染色された粒子であってもよい。
In the present embodiment, the well plate has been described as an example as a mechanism for collecting the charged droplets 3, but the mechanism for collecting the droplets 3 may be a tube or a plastic container.
In the present embodiment, the particles have been described as an example of particles that have not been dyed or cannot be dyed. However, the particles used in the particle sorter 100 may be dyed particles.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention.
 本発明は、粒子の検出技術に適用できる。 The present invention can be applied to particle detection technology.
10…ノズル, 11…レーザー装置, 11-1…第1レーザー装置, 11-2…第2レーザー装置, 11-3…第3レーザー装置, 12-1、12-2、12-3…フォーカスレンズ, 13…検出部, 14…制御回路, 15…表示部, 16…偏向板, 17…廃液タンク, 18…ウェルプレート, 19…撮影装置, 131…対物レンズ, 132…チューブレンズ, 133…ピンホール板, 134…プリズム, 135-1、135-2、135-3…コリメーションレンズ, 136-1…第1POD, 136-2…第2POD, 136-3…第3POD, 137~142、150~152、157~159…ダイクロイックミラー, 143~149、153~156、160~163…吸収フィルタ 10 ... Nozzle, 11 ... Laser device, 11-1 ... 1st laser device, 11-2 ... 2nd laser device, 11-3 ... 3rd laser device, 12-1, 12-2, 12-3 ... Focus lens , 13 ... Detection unit, 14 ... Control circuit, 15 ... Display unit, 16 ... Deflection plate, 17 ... Waste liquid tank, 18 ... Well plate, 19 ... Imaging device, 131 ... Objective lens, 132 ... Tube lens, 133 ... Pinhole Plate, 134 ... Prism, 135-1, 135-2, 135-3 ... Collimation lens, 136-1 ... 1st POD, 136-2 ... 2nd POD, 136-3 ... 3rd POD, 137-142, 150-152, 157-159 ... Dycroic mirror, 143-149, 153-156, 160-163 ... Absorption filter

Claims (6)

  1.  深紫外光領域のレーザー光を連続で出力するレーザー装置と、
     前記レーザー装置から出力された前記深紫外光領域のレーザー光が粒子に照射されることによって得られる前記粒子の蛍光を検出する検出部と、
     検出された前記蛍光に基づいて、前記粒子を分取する制御回路と、
     を備える粒子分取装置。
    A laser device that continuously outputs laser light in the deep ultraviolet region, and
    A detection unit that detects the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device.
    A control circuit that separates the particles based on the detected fluorescence, and
    A particle sorter comprising.
  2.  前記深紫外光領域は、前記深紫外光領域のうち無機鉱物による自家蛍光が見られない領域である、請求項1に記載の粒子分取装置。 The particle sorting device according to claim 1, wherein the deep ultraviolet light region is a region in the deep ultraviolet light region where autofluorescence due to an inorganic mineral is not observed.
  3.  前記深紫外光領域は、230nm近傍の領域である、請求項1又は2に記載の粒子分取装置。 The particle sorting device according to claim 1 or 2, wherein the deep ultraviolet light region is a region near 230 nm.
  4.  前記粒子は、ジェットインエアー方式で放出される、請求項1から3のいずれか一項に記載の粒子分取装置。 The particle sorting device according to any one of claims 1 to 3, wherein the particles are discharged by a jet-in-air method.
  5.  深紫外光領域のレーザー光を連続で出力するレーザー装置から出力された前記深紫外光領域のレーザー光が粒子に照射されることによって得られる前記粒子の蛍光を検出する検出ステップと、
     検出された前記蛍光に基づいて、前記粒子を分取する分取ステップと、
     を有する粒子分取方法。
    A detection step for detecting the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device that continuously outputs the laser light in the deep ultraviolet light region.
    A preparative step of preparating the particles based on the detected fluorescence, and
    Particle sorting method having.
  6.  深紫外光領域のレーザー光を連続で出力するレーザー装置から出力された前記深紫外光領域のレーザー光が粒子に照射されることによって得られる前記粒子の蛍光を検出する検出ステップと、
     検出された前記蛍光に基づいて、前記粒子を分取する分取ステップと、
     をコンピュータに実行させるためのコンピュータプログラム。
    A detection step for detecting the fluorescence of the particles obtained by irradiating the particles with the laser light in the deep ultraviolet light region output from the laser device that continuously outputs the laser light in the deep ultraviolet light region.
    A preparative step of preparating the particles based on the detected fluorescence, and
    A computer program that lets a computer run.
PCT/JP2020/018955 2019-05-13 2020-05-12 Particle dispensing apparatus, particle dispensing method, and computer program WO2020230779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-090838 2019-05-13
JP2019090838A JP2022107070A (en) 2019-05-13 2019-05-13 Particle sorting device, particle sorting method, and computer program

Publications (1)

Publication Number Publication Date
WO2020230779A1 true WO2020230779A1 (en) 2020-11-19

Family

ID=73289419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018955 WO2020230779A1 (en) 2019-05-13 2020-05-12 Particle dispensing apparatus, particle dispensing method, and computer program

Country Status (2)

Country Link
JP (1) JP2022107070A (en)
WO (1) WO2020230779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239457A1 (en) * 2021-05-10 2022-11-17 ソニーグループ株式会社 Information processing device, information processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135331A (en) * 1984-07-28 1986-02-19 Japan Spectroscopic Co Fine particle separating device
JP2007525648A (en) * 2003-04-29 2007-09-06 エス3アイ, エル エル シィ Multispectral optical method and system for detecting and classifying biological and non-biological microparticles
US7525653B1 (en) * 2004-10-05 2009-04-28 Photon Systems Spectroscopic chemical analysis methods and apparatus
JP2013015357A (en) * 2011-07-01 2013-01-24 Shimadzu Corp Flow cytometer
JP2013019894A (en) * 2011-07-12 2013-01-31 Sharp Corp Fluid purification and fluid purity measurement system and method
WO2018096920A1 (en) * 2016-11-22 2018-05-31 リオン株式会社 Biological particle counting system and biological particle counting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135331A (en) * 1984-07-28 1986-02-19 Japan Spectroscopic Co Fine particle separating device
JP2007525648A (en) * 2003-04-29 2007-09-06 エス3アイ, エル エル シィ Multispectral optical method and system for detecting and classifying biological and non-biological microparticles
US7525653B1 (en) * 2004-10-05 2009-04-28 Photon Systems Spectroscopic chemical analysis methods and apparatus
JP2013015357A (en) * 2011-07-01 2013-01-24 Shimadzu Corp Flow cytometer
JP2013019894A (en) * 2011-07-12 2013-01-31 Sharp Corp Fluid purification and fluid purity measurement system and method
WO2018096920A1 (en) * 2016-11-22 2018-05-31 リオン株式会社 Biological particle counting system and biological particle counting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239457A1 (en) * 2021-05-10 2022-11-17 ソニーグループ株式会社 Information processing device, information processing method, and program

Also Published As

Publication number Publication date
JP2022107070A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US8618510B2 (en) Optically integrated microfluidic cytometers for high throughput screening of photophysical properties of cells or particles
US4745285A (en) Multi-color fluorescence analysis with single wavelength excitation
AU2010326180B2 (en) Apparatuses, systems, methods, and computer readable media for acoustic flow cytometry
EP2258168B1 (en) Apparatus to isolate X-chromosome bearing and Y-chromosome bearing populations of spermatozoa
JP4304195B2 (en) Apparatus and method for sorting biological particles
US20130314526A1 (en) Cell analysis device
CN102212457A (en) Method and apparatus for sorting cells
JP2013513109A5 (en)
US20120135410A1 (en) Method for imaging on thin solid-state interface between two fluids
JP2005315799A (en) Apparatus and method for sorting biological particle
JP2013190435A (en) Single photon spectrometer
JP2009270990A (en) Optical measurement method using passage and device therefor
WO2020149042A1 (en) Microparticle isolation device, microparticle isolation system, droplet isolation device, droplet control device, and droplet control program
Petersen et al. Flow cytometric characterization of marine microbes
WO2020230779A1 (en) Particle dispensing apparatus, particle dispensing method, and computer program
Sugino et al. On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation
Kraus et al. Linear fluorescence unmixing in cell biological research
JP2008116422A (en) Particulate detection apparatus
US10670512B1 (en) Apparatus to perform intrinsic hyper-spectral flow cytometry
Cronin et al. Lucky imaging: Improved localization accuracy for single molecule imaging
EP2111539A2 (en) Images acquisition system in 2d and reconstructed tomographically in 3d of single cell/particles in flow carrier (laminar and non).
US20230333020A1 (en) A diagnostic device suitable for detection of pathogens, and detection methods using such a device
JP5081012B2 (en) Microbiological testing device
Talbot et al. High Speed, Optically Sectioned Fluorescence Lifetime Imaging utilizing Time-gated Nipkow Disk or Multifocal Multiphoton Time Correlated Single Photon Counting Microscopy
Koberling et al. Time-resolved confocal fluorescence microscopy: novel technical features and applications for FLIM, FRET and FCS using a sophisticated data acquisition concept in TCSPC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP