WO2020230195A1 - Optical communication system and optical communication device - Google Patents

Optical communication system and optical communication device Download PDF

Info

Publication number
WO2020230195A1
WO2020230195A1 PCT/JP2019/018776 JP2019018776W WO2020230195A1 WO 2020230195 A1 WO2020230195 A1 WO 2020230195A1 JP 2019018776 W JP2019018776 W JP 2019018776W WO 2020230195 A1 WO2020230195 A1 WO 2020230195A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
communication device
signal
optical communication
optical signal
Prior art date
Application number
PCT/JP2019/018776
Other languages
French (fr)
Japanese (ja)
Inventor
芦田 哲郎
和行 石田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/018776 priority Critical patent/WO2020230195A1/en
Priority to JP2019545375A priority patent/JP6735928B1/en
Publication of WO2020230195A1 publication Critical patent/WO2020230195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical communication system including an optical communication device having an OADM (Optical Add Drop Multiplexer) and an optical communication device.
  • OADM Optical Add Drop Multiplexer
  • an optical trunk line network using an optical fiber is expected from the viewpoint of stability and transmission capacity.
  • the optical trunk line network for example, a wavelength division multiplexing optical communication system as shown in Patent Document 1 is adopted.
  • a large number of nodes that is, a large number of optical communication devices are connected via an optical transmission line formed by an optical fiber in a bus type or a ring type.
  • each node is equipped with an OADM that inserts and branches optical signals and a transponder that transmits and receives optical signals.
  • the optical wavelength for transmission and reception used by each node is defined.
  • the transponder when transmitting an optical signal, the transponder generates an optical signal with an optical wavelength corresponding to that node, and the OADM combines this optical signal with an optical signal received from another node, and the node Output to the optical fiber that connects between them.
  • the OADM demultiplexes the optical signal received via the optical fiber for each wavelength, and among the demultiplexed optical signals, the signal having the wavelength corresponding to the node is used. Output to the transponder. Wavelength division optical communication is performed by each node performing such an operation.
  • OADMs use WSS (Wavelength Selective Switch) for wavelength separation control and optical repeaters for signal level ALC (OADM) so that stable communication can be performed even when loss fluctuations and wavelength fluctuations occur.
  • Automatic Level Control) Control etc. are performed.
  • it is necessary to determine the optical modulation method, signal optical wavelength band, etc. allowed for the input / output signal of the OADM at the design stage, and the optical signal not assumed in the design becomes the OADM. If input, it may cause malfunction.
  • an optical trunk line network that employs a wavelength division multiplexing optical communication method, there may be a demand for increasing the transmission capacity only in a part of the section.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an optical communication system capable of increasing the transmission capacity of a part of a section by using an existing OADM.
  • the optical communication system includes a first optical communication device and a second optical communication device.
  • the first optical communication device includes a first existing node.
  • the first existing node is an optical communication device constituting an existing optical communication system that has already been laid, and is a first optical branch insertion device that branches and inserts an optical signal with respect to a received optical signal. And outputs an optical signal that has passed through the first optical branch insertion device.
  • the first optical communication device further comprises an optical transmitter that outputs a first optical signal in a first optical wavelength band different from the optical wavelength band used in the existing optical communication system, and a first existing node.
  • the second optical communication device receives the optical signal output from the first optical communication device via the optical transmission path, and the received optical signal is a second optical signal in the first optical wavelength band.
  • a demultiplexer that demultiplexes the optical signal of the above and a third optical signal which is a signal having an optical wavelength other than the first optical wavelength band.
  • the second optical communication device includes a second existing node and an optical receiver for receiving the second optical signal.
  • the second existing node is an optical communication device constituting an existing optical communication system, and includes a second optical branch insertion device that branches and inserts an optical signal into the third optical signal, and is a second. The optical signal that has passed through the optical branch insertion device is output.
  • the optical communication system according to the present invention has an effect that the transmission capacity of a part of a section can be increased by using an existing OADM.
  • FIG. 1 is a diagram showing a configuration example of an optical communication system according to a first embodiment of the present invention.
  • the optical communication system 20 of the present embodiment can be applied to, for example, an optical trunk line network.
  • the application of the optical communication system 20 of the present embodiment is not limited to the optical trunk line network, and can be applied to any application as long as each node is a system provided with an OADM.
  • the optical communication system 20 of the present embodiment includes optical communication devices 10-1, 10-4, an optical communication device 1-1 which is a first optical communication device, and a second optical communication device. It is provided with an optical communication device 1-2 which is a communication device.
  • the optical communication device 10-1 is connected to the optical communication device 1-1 via the optical fiber 30, and the optical communication device 1-1 is connected to the optical communication device 1-2 via the optical fiber 30. Further, the optical communication device 1-2 is connected to the optical communication device 10-4 via the optical fiber 30.
  • the arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30.
  • FIG. 1 an example in which communication in the direction from the optical communication device 10-1 to the optical communication device 10-4 is performed will be described.
  • the optical communication system 20 of the present embodiment increases the transmission capacity of a part of an existing optical communication system which is an already installed optical communication system. Specifically, among the existing optical communication devices 10-1 to 10-4 constituting the existing optical communication system, the optical communication devices 10-2 and 10-3 are diverted to use new optical communication devices, respectively. A certain optical communication device 1-1, 1-2 is constructed. As a result, the transmission capacity of the section between the optical communication device 10-2 and the optical communication device 10-3 in the existing optical communication system can be increased.
  • the existing optical communication system is an optical communication system that has already been laid before increasing the transmission capacity of some sections.
  • the optical communication devices 10-1 to 10-4 shown in FIG. 1 are existing optical communication devices constituting the existing optical communication system.
  • the optical communication devices 10-1 to 10-4 which are existing optical communication devices, are also referred to as existing nodes, and the optical communication devices 1-1 and 1-2 are also referred to as new nodes.
  • the existing nodes, optical communication devices 10-1, 10-4, and the new nodes, optical communication devices 1-1, 1-2 are used as shown.
  • the number of existing nodes is not limited to the example shown in FIG.
  • the optical communication device 10-1 which is an existing node includes an OADM 11-1 and a transponder (hereinafter, abbreviated as TRPN) 12-1.
  • TRPN transponder
  • the OADM11-1 demultiplexes the optical signal transmitted by the optical fiber 30 used as the optical transmission line, and among the demultiplexed signals, the optical signal having the optical wavelength corresponding to the optical communication device 10-1 is transferred to TRPN12-1. Output. Further, the OADM11-1 combines the optical signal input from TRPN12-1 with a signal having an optical wavelength other than the optical wavelength corresponding to the optical communication device 10-1 among the signals obtained by the above-mentioned demultiplexing. Then, the optical signal after the combined wave is output to the optical fiber 30.
  • the OADM11-1 branches an optical signal having an optical wavelength corresponding to the optical communication device 10-1 from the received optical signal and outputs the optical signal to the TRPN12-1, and outputs the optical signal to be transmitted from the TRPN12-1. Insert the optical signal to be
  • TRPN12-1 converts the optical signal input from OADM11-1 into an electric signal.
  • the electric signal obtained by the conversion is output to a control unit (not shown) in the optical communication device 10-1.
  • the electric signal obtained by the conversion may be transmitted to a client device (not shown) connected to the optical communication device 10-1 or the like.
  • an electric signal generated by a control unit (not shown) or a client device (not shown) is converted into an optical signal having an optical wavelength corresponding to the optical communication device 10-1, and this optical signal is output to the OADM 11-1.
  • the optical communication device 10-4 which is an existing node, includes an OADM and a TRPN, similarly to the optical communication device 10-1.
  • the optical communication devices 1-1 and 1-2 which are new nodes, include optical communication devices 10-2 and 10-3, which are existing nodes, respectively.
  • the existing node optical communication device 10-2 includes OADM11-2 and TRPN12-2
  • the existing node optical communication device 10-3 has OADM11-3 and TRPN12. -3 and. Since the functions of the OADMs included in the OADMs 11-2, 11-3 and the optical communication device 10-4 are the same as those of the OADMs 11-1, the description thereof will be omitted. Since the functions of TRPN included in TRPN12-2, 12-3 and the optical communication device 10-4 are the same as those of TRPN12-1, the description thereof will be omitted.
  • the new node, the optical communication device 1-1 is the first existing node, the optical communication device 10-2, and a WDM (Wavelength Division Multiplexing) filter (abbreviated as WDM in the figure) 2 that performs duplexing and demultiplexing of optical signals.
  • WDM Widelength Division Multiplexing
  • TRPN3-1 are provided.
  • the optical communication device 1-2 which is a new node, includes an optical communication device 10-3, which is a second existing node, WDM2-2, and TRPN3-2.
  • WDM2-1, 2-2 and TRPN3-1, 3-2 are components added to increase the transmission capacity of the section between the optical communication device 1-1 and the optical communication device 1-2. is there.
  • the optical communication device 10-2 constituting the optical communication device 1-1 includes OADM11-2, which is a first optical branch insertion device that branches and inserts an optical signal with respect to the received optical signal, and includes OADM11-. This is the first existing node that outputs an optical signal that has passed through 2.
  • the TRPN3-1 is an optical transmitter that outputs a first optical signal in a first optical wavelength band different from the optical wavelength band used in existing optical communication systems.
  • the optical communication device 1-1 includes TRPN3-1 which is a transmitter / receiver will be described, but in the present embodiment, the optical communication device 1-1 is the first in the first optical wavelength band. It suffices to have an optical transmitter that outputs the optical signal of.
  • TRPN3-1 functions as an optical transmitter.
  • the WDM2-1 combines the optical signal output from the optical communication device 10-2 with the first optical signal, and outputs the combined optical signal to the optical fiber 30 which is an optical transmission line. It is a vessel.
  • the optical communication device 1-1 includes a WDM2-1 that is a demultiplexer will be described, but in the present embodiment, the optical communication device 1-1 includes a demultiplexer. Just do it.
  • WDM2-1 functions as a combiner.
  • the WDM2-2 of the optical communication device 1-2 receives the optical signal output from the optical communication device 1-1 via the optical fiber 30, and receives the received optical signal as an optical signal in the first optical wavelength band. It is a demultiplexer that demultiplexes the second optical signal, which is, and the third optical signal, which is a signal having an optical wavelength other than the first optical wavelength band.
  • the optical communication device 1-2 is provided with the WDM2-2, which is a demultiplexer, will be described.
  • the optical communication device 1-2 is provided with the demultiplexer. Just do it.
  • WDM2-2 functions as a demultiplexer.
  • the optical communication device 10-3 constituting the optical communication device 1-2 includes an OADM 11-3 which is a second optical branch insertion device for branching and inserting an optical signal into a third optical signal, and the OADM 11-3. It is a second existing node that outputs an optical signal that has passed through. Further, TRPN3-2 is an optical receiver that receives a second optical signal.
  • TRPN3-2 is an optical receiver that receives a second optical signal.
  • the optical communication device 1-2 includes TRPN3-2, which is a transmitter / receiver, will be described.
  • the optical communication device 1-2 receives light that receives a second optical signal. It suffices to have a receiver.
  • FIG. 2 is a diagram showing an example of an optical wavelength used in the optical communication system 20.
  • the horizontal axis shows the wavelength and the vertical axis shows the power of the optical signal.
  • FIG. 2 schematically shows each wavelength that can be used in the optical communication system 20, and does not show the shape of the optical signal of each wavelength that is actually transmitted in the wavelength region.
  • the optical wavelengths ⁇ 1 to ⁇ n are optical wavelengths that can be used in existing optical communication systems. In reality, the optical signal corresponding to each optical wavelength has a certain bandwidth of the optical wavelength.
  • the optical communication device 1-1 and the optical communication device 1-2 in addition to these optical wavelengths ⁇ 1 to ⁇ n , the optical wavelength within the first optical wavelength band, which is an additional wavelength band, Optical signals of ⁇ a and ⁇ b can be used.
  • the optical communication device 1-1 and the optical communication device 1-2 can communicate using the optical wavelength ⁇ b , and communicate using both the optical wavelengths ⁇ a and ⁇ b.
  • a case where communication is performed between the optical communication device 1-1 and the optical communication device 1-2 using an optical signal having an optical wavelength ⁇ a will be described as an example.
  • the additional optical wavelength band may be an optical wavelength band shorter than the optical wavelengths ⁇ 1 to ⁇ n , and is used in existing optical communication systems. It may be provided in an unused light wavelength band between the light wavelength ⁇ 1 and the light wavelength ⁇ n .
  • the number of light wavelengths included in the additional light wavelength band is not limited to the above-mentioned example, and may be one or more.
  • the existing nodes, the optical communication devices 10-2 and 10-3 are diverted to realize the addition of the first optical wavelength band.
  • the optical communication devices 10-1, 10-2, and 10-3 have optical wavelengths ⁇ 3 , ⁇ 1 , and ⁇ 2 among the optical wavelengths ⁇ 1 to ⁇ n , respectively.
  • OADM11-1 branches and inserts an optical signal having an optical wavelength of ⁇ 3 .
  • the OADM 11-2 of the optical communication device 1-1 branches and inserts an optical signal having an optical wavelength ⁇ 1 within the first optical wavelength band. Further, in the optical communication device 1-1, the TRPN3-1 converts the electric signal transmitted to the optical communication device 1-2 into an optical signal having an optical wavelength ⁇ a and outputs the electric signal to the WDM 2-1.
  • WDM2-1 is an optical signal multiplexes output from the optical signal and OADM11-2 optical wavelength lambda a output from TRPN3-1, and outputs the optical signal after multiplexing the optical fiber 30.
  • the WDM2-2 of the optical communication device 1-2 receives the optical signal output from the optical communication device 1-1 via the optical fiber 30, and demultiplexes the received optical signal to obtain the demultiplexed optical signal.
  • the optical signal of the first optical wavelength band is output to TRPN3-2, and the other optical signals are output to OADM11-3.
  • TRPN3-2 converts the optical signal input from WDM2-2 into an electric signal.
  • the optical communication device 1-2 can receive the electric signal transmitted from the optical communication device 1-1 as an optical signal having an optical wavelength ⁇ a .
  • the OADM 11-3 branches and inserts an optical signal having an optical wavelength ⁇ 2 with respect to the optical signal input from the WDM 2-2.
  • the optical signal output from OADM 11-3 does not include an optical signal in the first optical wavelength band, which is an additional optical wavelength band. Therefore, the optical signal input to the existing node, the optical communication device 10-4, via the optical fiber 30 is the same as before the first optical wavelength band is added. As a result, the optical communication device 10-4 can perform the same communication as in the case of the existing optical communication system without inducing a malfunction.
  • the optical communication devices 10-1 and 10-4 which are existing nodes that are not subject to the increase in transmission capacity, have been used in the existing optical communication system. Only optical signals of optical wavelength are input. Therefore, the optical communication devices 10-1 and 10-4 can perform communication in the same manner as before the increase in the transmission capacity. Further, in the optical communication system 20 of the present embodiment, the optical communication device 1-1 and the optical communication device 1-2 can perform the same communication as the existing optical communication system, and further, the first wavelength. Communication using optical signals in the band becomes possible. As a result, the transmission capacity between the optical communication device 1-1 and the optical communication device 1-2 can be increased.
  • the optical communication devices 11 and 1-2 corresponding to the section where the transmission capacity is increased are realized by adding WDM and TRPN to the existing node.
  • the transmission capacity of a part of the section can be increased by using the existing OADM. Therefore, since it is not necessary to redesign the OADM in order to increase the transmission capacity, the man-hours can be suppressed, and it is not necessary to introduce a new optical communication device by diverting the existing OADM.
  • the existing node other than the section where the transmission capacity is increased is not affected, it is not necessary to replace the existing node other than the section where the transmission capacity is increased with a new node. As a result, the cost can be suppressed and the transmission capacity of a part of the section can be increased.
  • the existing node and the WDM and TRPN to be added are used as one new node
  • the existing node and the WDM and TRPN to be added are the existing nodes. It may be a separate body.
  • FIG. 3 is a diagram showing a configuration example of the optical communication system of the second embodiment according to the present invention.
  • the first embodiment an example of increasing the transmission capacity between adjacent nodes has been described.
  • this embodiment an example of increasing the transmission capacity between non-adjacent nodes will be described.
  • the optical communication system 20a of the second embodiment includes optical communication devices 1-1 and 1-2 and an optical communication device 4 which is a third optical communication device. Since the optical communication devices 1-1 and 1-2 are the same as those in the first embodiment, the description thereof will be omitted.
  • the optical communication device 1-1 is connected to the optical communication device 4 via an optical fiber 30. Further, the optical communication device 4 is connected to the optical communication device 1-2 via the optical fiber 30.
  • the arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30.
  • the optical communication device 1-1 is connected to the optical communication device 10-1 via an optical fiber 30 on the upstream side as in the first embodiment, and the optical communication device 1-2 is On the downstream side, it is connected to the optical communication device 10-4 via the optical fiber 30 as in the first embodiment.
  • the optical communication device in order to increase the transmission capacity of the section between the optical communication device 10-2 and the optical communication device 1-3 in the existing optical communication system, the optical communication device is similarly to the first embodiment.
  • Optical communication devices 1-1 and 1-2 are constructed by diverting 10-2 and 10-3, respectively.
  • the optical communication device 10- which is an existing node, is located between the optical communication device 10-2 and the optical communication device 10-3. 5 exists.
  • the configuration of the optical communication device 10-5 is the same as that of the optical communication device 10-1 of the first embodiment.
  • the transmission capacity of the section between the optical communication device 1-1 and the optical communication device 1-2 is transmitted by the existing optical communication as in the first embodiment.
  • the optical signal including the added optical wavelength is input to the optical communication device 10-5 by itself.
  • An optical communication device 4 diverted from the optical communication device 10-5 is used.
  • the optical communication device 4 includes a third existing node, an optical communication device 10-5, WDMs 5 and 6, and an optical repeater 7.
  • WDMs 5 and 6 perform combined and demultiplexing of optical signals in the same manner as WDM2-1 and 2-2.
  • the WDM 5 receives an optical signal output from the first optical communication device via the optical fiber 30, and receives the received optical signal as a fourth optical signal in the first wavelength band. It is a demultiplexer that demultiplexes a signal and a fifth optical signal that is a signal having an optical wavelength other than the first optical wavelength band.
  • the WDM 5 outputs an optical signal in the first wavelength band of the demultiplexed optical signals to the optical repeater 7, and outputs other optical signals to the optical communication device 10-5.
  • the optical communication device 10-5 which is a third existing node, includes a third optical branch insertion device (not shown) that branches and inserts the optical signal into the fifth optical signal, and inserts the third optical branch. Outputs an optical signal that has passed through the device.
  • the optical repeater 7 performs an operation for compensating for the input optical signal loss, and outputs an optical signal for which the loss has been compensated. That is, the optical repeater 7 performs loss compensation on the fourth optical signal and outputs the signal.
  • the WDM 6 combines the optical signal output from the optical repeater 7 and the optical signal output from the optical communication device 10-5, and outputs the optical signal after the combined wave to the optical fiber 30.
  • the optical communication device 4 has a function as an optical relay device that relays an optical signal having a passed optical wavelength.
  • the optical communication device 1-2 receives the optical signal output from the optical communication device 1-1 via the optical communication device 4 and the optical fiber 30.
  • the operation of the optical communication device 1-2 that has received the optical signal output from the optical communication device 4 is the same as that of the first embodiment.
  • the optical communication device 10-5 which is an existing node, exists between the optical communication device 1-1 and the optical communication device 1-2 has been described, but the optical communication device 10-5 has been described. If there is an optical relay device that relays an optical signal instead of the above, WDMs 5 and 6 and an optical repeater 7 may be added to the optical relay device in the same manner.
  • WDMs 5 and 6 and optical relay are similarly provided to these existing nodes.
  • the optical repeater 7 is not essential. For example, when the loss of the optical signal is not a problem, WDMs 5 and 6 are added to the existing node between the optical communication device 1-1 and the optical communication device 1-2 without adding the optical repeater 7. You may add it.
  • the optical communication device 10-2, 10-5, 10-3 which is an existing node, is provided with an optical signal having an optical wavelength not assumed in the existing optical communication system, that is, is added. No optical signal with the specified optical wavelength is input. Therefore, no malfunction is caused in the communication between the existing nodes, and the communication equivalent to that of the existing optical communication system becomes possible.
  • the optical signal output from TRPN3-1 of the optical communication device 1-1 is demultiplexed by the WDM5 to bypass the existing node optical communication device 10-5 and arrive at the optical communication device 1-2. Therefore, similarly to the first embodiment, the optical communication device 1-1 and the optical communication device 1-2 can communicate with each other by using the optical signal having the added optical wavelength.
  • the existing OADM can be used at low cost without requiring a design change of the OADM of the existing node. Therefore, it is possible to realize an increase in the transmission capacity between the optical communication device 1-1 and the optical communication device 1-2. Further, by providing the optical repeater 7 in the path bypassing the optical signal of the added optical wavelength, even if the signal loss between the optical communication device 1-1 and the optical communication device 1-2 is large, the loss is lost. Can be compensated.
  • FIG. 4 is a diagram showing a configuration example of the optical communication system according to the third embodiment of the present invention.
  • an example of performing one-way communication that is, one-way communication has been described.
  • an example of realizing two-way communication will be described.
  • the optical communication system 20b includes an optical communication device 10-4, an optical communication device 1a-1 which is a first optical communication device, and an optical communication device 1a- which is a second optical communication device. 2 and.
  • the optical communication system 20b includes an optical communication device 10-1 having the same configuration as the optical communication devices 10-2 to 10-4, but is not shown in FIG.
  • the optical communication devices 10-2 and 10-3 are diverted to each new optical communication device.
  • the optical communication devices 1a-1 and 1a-2 are constructed.
  • the optical communication device 10-1 (not shown) is connected to the optical communication device 1a-1 via the optical fiber 30, and the optical communication device 1a-1 is connected to the optical communication device 1a-2 via the optical fiber 30. Further, the optical communication device 1a-2 is connected to the optical communication device 10-4 via the optical fiber 30.
  • the arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30.
  • the optical communication system 20b is provided with an optical fiber 30 for each signal transmission direction. That is, in the present embodiment, the optical signal in the direction from the optical communication device 1a-1 to the optical communication device 1a-2 is transmitted via the optical fiber 30 which is the first optical transmission line, and the optical communication device 1a-. The optical signal in the direction from 2 to the optical communication device 1a-1 is transmitted via the optical fiber 31 which is the second optical transmission line. Further, the optical communication devices 10-1 to 10-4, which are existing nodes, can realize two inputs and two outputs, whereby bidirectional communication can be performed.
  • the optical communication device 1a-1 includes an existing node, an optical communication device 10-2, WDM2-1, 8-1, and TRPN3-1.
  • TRPN3-1 includes a transmission port 31-1 and a reception port 32-1, and has a function of converting an electric signal to be transmitted into an optical signal and a function of converting the received optical signal into an electric signal.
  • TRPN3-1 is a first optical transmitter / receiver having a function as the optical transmitter of the first embodiment and capable of transmitting / receiving.
  • the WDM2-1 of the optical communication device 1a-1 is the first combiner.
  • the optical communication device 1a-2 includes an optical communication device 10-3, which is an existing node, WDM2-2, 8-2, and TRPN3-2.
  • TRPN3-2 has a transmission port 31-2 and a reception port 32-2, and has a function of converting an electric signal to be transmitted into an optical signal and a function of converting the received optical signal into an electric signal.
  • TRPN3-2 is a second optical transmitter / receiver that has a function as the optical receiver of the first embodiment and is capable of transmitting / receiving.
  • the second optical transmitter / receiver, TRPN3-2 outputs a fifth optical signal having an optical wavelength ⁇ a within the first wavelength band.
  • the WDM2-2 of the optical communication device 1a-2 is the first demultiplexer.
  • the WDM8-2 of the optical communication device 1a-2 of the present embodiment is received by the second existing node via the optical fiber 31 which is the second optical transmission line and is output from the second existing node.
  • This is a second combiner that combines the combined optical signal and the fifth optical signal and outputs the combined optical signal to the second optical transmission line.
  • the WDM8-1 of the optical communication device 1a-1 of the present embodiment receives the optical signal output from the optical communication device 1a-2 via the optical fiber 30, and receives the received optical signal at the first wavelength. It is a second demultiplexer that demultiplexes a sixth optical signal, which is a signal in the band, and a seventh optical signal, which is a signal having an optical wavelength other than the first wavelength band.
  • the operation when the optical communication device 1a-1 transmits an optical signal to the optical communication device 1a-2 is when the optical communication device 1-1 of the first embodiment transmits an optical signal to the optical communication device 1-2. Since it is the same as the operation, the description thereof will be omitted. Hereinafter, the operation when the optical communication device 1a-2 transmits an optical signal to the optical communication device 1a-1 will be described.
  • the OADM 11-3 of the optical communication device 1a-2 branches and inserts an optical signal having an optical wavelength ⁇ 2 .
  • TRPN3-2 outputs after converting an electrical signal to be transmitted to the optical communication apparatus 1a-1 to an optical signal of the optical wavelength lambda a to WDM8-2.
  • WDM8-2 is an optical signal multiplexes output from the optical signal and OADM11-3 optical wavelength lambda a output from TRPN3-2, and outputs the optical signal after multiplexing the optical fiber 31.
  • the WDM8-1 receives the optical signal output from the optical communication device 1a-2 via the optical fiber 31, and the received optical signal is a signal in the first wavelength band. It splits into a sixth optical signal and a seventh optical signal, which is another optical signal. WDM8-1 outputs an optical signal in the first wavelength band to TRPN3-1 and outputs other optical signals to OADM11-2. TRPN3-1 converts the optical signal input from WDM8-1 into an electric signal. As a result, the optical wavelength can be added not only in the direction from the optical communication device 1a-1 to the optical communication device 1a-2 but also in the communication in the direction from the optical communication device 1a-2 to the optical communication device 1a-1. Can be done.
  • the optical wavelength can be added in both directions when bidirectional communication is performed.
  • the same effect as that of the first embodiment can be obtained, and more efficient communication can be performed as compared with the first embodiment.
  • FIG. 4 an example of increasing the transmission capacity between adjacent optical communication devices is shown, but when an existing node exists between the optical communication devices for increasing the transmission capacity, the embodiment Similar to 2, by adding WDM and an optical repeater, it is possible to increase the transmission capacity without changing the optical signal input to the existing node.
  • the WDMs 5 and 6 and the optical repeater 7 described in the second embodiment are added in the direction from the optical communication device 1a-1 to the optical communication device 1a-2.
  • the optical signal of the added optical wavelength is bypassed by adding two WDMs and an optical repeater.
  • the loss can be compensated for bidirectional communication.
  • two WDMs and an optical repeater may be added in each direction as in the second embodiment.
  • FIG. 5 is a diagram showing a configuration example of the optical communication system according to the fourth embodiment of the present invention.
  • the third embodiment bidirectional communication using the optical fiber 30 for each direction has been described.
  • a method capable of improving the transmission capacity per optical fiber as compared with the fourth embodiment by transmitting a bidirectional signal with one optical fiber 30 will be described.
  • the optical communication system 20c includes an optical communication device 1b-1 which is a first optical communication device and 1b-2 which is a second optical communication device.
  • the optical communication system 20c includes optical communication devices 10-1 and 10-4 as in the first embodiment, but is not shown in FIG.
  • the optical communication devices 10-2 and 10-3 are diverted to each new optical communication device.
  • the optical communication devices 1b-1 and 1b-2 are constructed.
  • the optical communication devices 10-1 to 10-4 which are existing nodes, can perform bidirectional communication using one optical fiber 30.
  • the optical communication device 10-1 (not shown) is connected to the optical communication device 1b-1 via the optical fiber 30, and the optical communication device 1b-1 is connected to the optical communication device 1b-2 via the optical fiber 30.
  • the optical communication device 1b-2 is connected to an optical communication device 10-4 (not shown) via an optical fiber 30.
  • the arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30.
  • the optical communication device 1b-1 includes an existing node, an optical communication device 10-2, a WDM2-1, a circulator 9-1, and a TRPN3-1.
  • TRPN3-1 is the same as TRPN3-1 of the fourth embodiment.
  • TRPN3-1 is a first optical transmitter / receiver having a function as the optical transmitter of the first embodiment and capable of transmitting / receiving.
  • the WDM2-1 of the optical communication device 1b-1 is a first combiner / demultiplexer having a function as a combiner of the first embodiment and capable of demultiplexing.
  • the optical communication device 1b-2 includes an existing node optical communication device 10-3, WDM2-2, a circulator 9-2, and TRPN3-2.
  • TRPN3-2 is the same as TRPN3-2 of the fourth embodiment.
  • TRPN3-2 is a second optical transmitter / receiver that has a function as the optical receiver of the first embodiment and is capable of transmitting / receiving.
  • the WDM2-2 of the optical communication device 1b-2 is a second demultiplexer having a function as a demultiplexer of the first embodiment and capable of demultiplexing.
  • the OADM 11-2 of the optical communication device 1b-1 branches and inserts an optical signal having an optical wavelength ⁇ 2 .
  • the optical signal output from TRPN3-1 is input to the circulator 9-1 via the transmission port 31-1.
  • the circulator 9-1 is a first circulator that outputs an optical signal input from TRPN3-1 to WDM2-1.
  • the WDM2-1 combines the optical signal input from the circulator 9-1 and the optical signal output from the OADM 11-2, and outputs the combined optical signal to the optical fiber 30.
  • the optical signal output from WDM2-1 is input to WDM2-2 of the optical communication device 1b-1 via the optical fiber 30. Similar to WDM2-2 of the first embodiment, WDM2-2 demultiplexes the input optical signal, outputs the optical signal of the first wavelength band to the circulator 9-2, and outputs other optical signals to OADM11. Output to -3.
  • the circulator 9-2 is a second circulator that outputs an optical signal input from the WDM2-2 to the receiving port 32-2 of the TRPN3-2. TRPN3-2 converts the optical signal input from the receiving port 32-2 into an electric signal. As described above, communication from the optical communication device 1b-1 to the optical communication device 1b-2 using the optical signal of the optical wavelength ⁇ a , which is the added optical wavelength, becomes possible.
  • the optical communication device 1b-2 When communication is performed from the optical communication device 1b-2 to the optical communication device 1b-1 using an optical signal having an optical wavelength ⁇ a , the optical communication device 1b-2 has an optical wavelength ⁇ a output from TRPN3-2.
  • the fifth optical signal which is the optical signal of the above, is input to the circulator 9-2 via the transmission port 31-2.
  • the circulator 9-2 inputs the optical signal input from TRPN3-2 to WDM2-2.
  • WDM2-2 combines the optical signal input from the circulator 9-2 and the optical signal output from OADM11-3, and outputs the combined optical signal to the optical fiber 30. That is, WDM2-2 combines the optical signal received by the optical communication device 10-3 via the optical fiber 30 and output from the optical communication device 10-3 with the optical signal output from the circulator 9-2.
  • the optical signal output from WDM2-2 is input to WDM2-1 of the optical communication device 1b-1 via the optical fiber 30.
  • WDM2-1 demultiplexes the input optical signal, outputs the optical signal of the first wavelength band to the circulator 9-1, and outputs the other optical signal to OADM11-2. That is, the WDM2-1 receives the optical signal output from the optical communication device 1b-2 via the optical fiber 30, and the received optical signal is the sixth light which is an optical signal in the first wavelength band.
  • WDM2-1 outputs the sixth optical signal to the circulator 9-1, and outputs the seventh optical signal to the optical communication device 10-2.
  • the circulator 9-1 outputs the optical signal input from the WDM2-1 to the reception port 32-1 of the TRPN3-1.
  • TRPN3-1 converts the optical signal input from the receiving port 32-1 into an electric signal.
  • the optical communication apparatus 1b-1 from the optical communication apparatus 1b-2 communication becomes possible using an optical signal of the optical wavelength lambda a in the first wavelength band.
  • the optical signal demultiplexed by the WDM2-1 is different from the transmission port 31-1 by the circulator 9-1. Is entered in. The same operation is performed in the optical communication device 1b-2.
  • the optical communication device 1b-1 and the optical communication device 1b-2 use one single-core optical fiber 30 and are within the added first wavelength band even if both transmission and reception have the same wavelength. Bidirectional communication is possible using an optical signal having an optical wavelength of ⁇ a .
  • the same effect as that of the fourth embodiment can be obtained, and the transmission efficiency of the optical fiber 30 can be improved as compared with the fourth embodiment.
  • the transmission capacity can be increased at a lower cost than in the fourth embodiment.
  • FIG. 5 an example of increasing the transmission capacity between adjacent optical communication devices is shown, but when an existing node exists between the optical communication devices for increasing the transmission capacity, the embodiment Similar to 2, by adding WDM and an optical repeater, it is possible to increase the transmission capacity without changing the optical signal input to the existing node.
  • WDMs 5 and 6 and the optical repeater 7 may be added to the existing nodes as in the second embodiment.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

The optical communication system (20) according to the present invention is provided with an optical communication device (1-1) and an optical communication device (1-2). The optical communication device (1-1) is provided with: an optical communication device (10-2) that is an existing node and outputs an optical signal; a TRPN (3-1) that outputs a first optical signal in a first optical wavelength band which is different from an optical wavelength band used in an existing optical communication system; and a WDM (2-1) that multiplexes the first optical signal with the optical signal outputted from the optical communication device (10-2) and outputs a multiplexed signal. The optical communication device (1-2) is provided with: a WDM (2-2) that demultiplexes the optical signal outputted from the optical communication device (1-1) into a second optical signal which is an optical signal in the first optical wavelength band and a third optical signal which is a signal with an optical wavelength other than the first optical wavelength band; an optical communication device (10-3) that is an existing node to which the third optical signal is inputted; and a TRPN (3-2) that receives the second optical signal.

Description

光通信システムおよび光通信装置Optical communication system and optical communication device
 本発明は、OADM(Optical Add Drop Multiplexer:光分岐挿入装置)を有する光通信装置を備える光通信システム、および光通信装置に関する。 The present invention relates to an optical communication system including an optical communication device having an OADM (Optical Add Drop Multiplexer) and an optical communication device.
 近年、無線通信の伝送容量が増加しており今後もますますの増加が期待されている。特に人口密集地域などでは、将来的に無線通信の伝送容量を急激に増加させる必要が生じると予想される。この課題に対応していくためには、無線基地局とユーザ端末間の通信容量の増大だけでなく、基地局間の通信容量増大が必要となってくる。 In recent years, the transmission capacity of wireless communication has increased, and it is expected that it will continue to increase in the future. Especially in densely populated areas, it is expected that it will be necessary to rapidly increase the transmission capacity of wireless communication in the future. In order to meet this problem, it is necessary not only to increase the communication capacity between the wireless base station and the user terminal, but also to increase the communication capacity between the base stations.
 基地局間の通信で用いられるネットワークとしては、安定性、伝送容量などの観点から、光ファイバを用いる光幹線系ネットワークが期待されている。光幹線系ネットワークは、例えば、特許文献1に示されるような、波長多重光通信方式が採用される。波長多重光通信方式を採用する光幹線系ネットワークでは、バス型もしくはリング型で多数のノードすなわち多数の光通信装置が光ファイバにより形成される光伝送路を介して接続される。 As a network used for communication between base stations, an optical trunk line network using an optical fiber is expected from the viewpoint of stability and transmission capacity. As the optical trunk line network, for example, a wavelength division multiplexing optical communication system as shown in Patent Document 1 is adopted. In an optical trunk line network that employs a wavelength multiplex optical communication system, a large number of nodes, that is, a large number of optical communication devices are connected via an optical transmission line formed by an optical fiber in a bus type or a ring type.
 波長多重光通信方式を採用する光幹線系ネットワークでは、各ノードは、光信号の挿入および分岐を行うOADMと光信号の送受信を行うトランスポンダ(Transponder)を備える。各ノードが使用する送受信のための光波長はそれぞれ定められている。各ノードでは、光信号を送信する場合には、トランスポンダが該ノードに対応する光波長の光信号を生成し、OADMがこの光信号を他のノードから受信した光信号と合波して、ノード間を接続する光ファイバへ出力する。各ノードでは、光信号を受信する場合には、OADMが、光ファイバを介して受信した光信号を波長ごとに分波し、分波された光信号のうち該ノードに対応する波長の信号をトランスポンダへ出力する。各ノードがこのような動作を行うことにより、波長多重光通信が行われる。 In an optical trunk line network that employs a wavelength multiplex optical communication system, each node is equipped with an OADM that inserts and branches optical signals and a transponder that transmits and receives optical signals. The optical wavelength for transmission and reception used by each node is defined. In each node, when transmitting an optical signal, the transponder generates an optical signal with an optical wavelength corresponding to that node, and the OADM combines this optical signal with an optical signal received from another node, and the node Output to the optical fiber that connects between them. When receiving an optical signal at each node, the OADM demultiplexes the optical signal received via the optical fiber for each wavelength, and among the demultiplexed optical signals, the signal having the wavelength corresponding to the node is used. Output to the transponder. Wavelength division optical communication is performed by each node performing such an operation.
特開2018-113556号公報Japanese Unexamined Patent Publication No. 2018-11556
 一般的に、OADMは、損失変動、波長変動などが発生した場合も安定した通信ができるように、WSS(Wavelength Selective Switch:波長選択スイッチ)による波長分離制御、光中継器による信号レベルのALC(Automatic Level Control)制御などを実施する。これらの制御を実現するためには、設計段階でOADMの入出力信号に許容される光変調方式、信号光波長帯域などを決めておく必要があり、設計で想定されてない光信号がOADMに入力されると誤作動を引き起こす可能性がある。一方、波長多重光通信方式を採用する光幹線系ネットワークでは、一部の区間だけ伝送容量を増大する要求があることもある。このような場合、一部の区間だけの変更であっても、一部の区間内のノードのOADMを再設計する必要がある。このとき、一部の区間のノード外の既存のノードで受信された光信号は既存のノードの設計で想定されていたものである必要があり、設計者は既存の設計も把握する必要があり、設計の工数を要するという問題がある。一部の区間だけの伝送容量の変更のために再設計を行うことは非効率的であり、既存のOADMを用いて、一部の区間の伝送容量を増加させることができる光通信装置が望まれる。 In general, OADMs use WSS (Wavelength Selective Switch) for wavelength separation control and optical repeaters for signal level ALC (OADM) so that stable communication can be performed even when loss fluctuations and wavelength fluctuations occur. Automatic Level Control) Control etc. are performed. In order to realize these controls, it is necessary to determine the optical modulation method, signal optical wavelength band, etc. allowed for the input / output signal of the OADM at the design stage, and the optical signal not assumed in the design becomes the OADM. If input, it may cause malfunction. On the other hand, in an optical trunk line network that employs a wavelength division multiplexing optical communication method, there may be a demand for increasing the transmission capacity only in a part of the section. In such a case, it is necessary to redesign the OADM of the node in a part of the section even if only a part of the section is changed. At this time, the optical signal received by the existing node outside the node in a part of the section needs to be the one assumed in the design of the existing node, and the designer needs to understand the existing design as well. , There is a problem that design man-hours are required. It is inefficient to redesign to change the transmission capacity of only a part of the section, and an optical communication device that can increase the transmission capacity of a part of the section using the existing OADM is desired. Is done.
 本発明は、上記に鑑みてなされたものであって、既存のOADMを用いて一部の区間の伝送容量を増加させることができる光通信システムを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an optical communication system capable of increasing the transmission capacity of a part of a section by using an existing OADM.
 上述した課題を解決し、目的を達成するために、本発明にかかる光通信システムは、第1の光通信装置と第2の光通信装置を備える。第1の光通信装置は、第1の既存ノードを備える。第1の既存ノードは、既に敷設されている既存の光通信システムを構成する光通信装置であって、受信した光信号に対して、光信号の分岐および挿入を行う第1の光分岐挿入装置を備え、第1の光分岐挿入装置を通過した光信号を出力する。第1の光通信装置は、さらに、既存の光通信システムで用いられる光波長帯域とは異なる第1の光波長帯域の第1の光信号を出力する光送信器と、第1の既存ノードから出力される光信号と、第1の光信号とを合波し、合波後の光信号を光伝送路へ出力する合波器と、を備える。第2の光通信装置は、第1の光通信装置から出力された光信号を、光伝送路を介して受信し、受信した光信号を、第1の光波長帯域の光信号である第2の光信号と、第1の光波長帯域以外の光波長の信号である第3の光信号とに分波する分波器、を備える。さらに、第2の光通信装置は、第2の既存ノードと、第2の光信号を受信する光受信器と、を備える。第2の既存ノードは、既存の光通信システムを構成する光通信装置であって、第3の光信号に、光信号の分岐および挿入を行う第2の光分岐挿入装置を備え、第2の光分岐挿入装置を通過した光信号を出力する。 In order to solve the above-mentioned problems and achieve the object, the optical communication system according to the present invention includes a first optical communication device and a second optical communication device. The first optical communication device includes a first existing node. The first existing node is an optical communication device constituting an existing optical communication system that has already been laid, and is a first optical branch insertion device that branches and inserts an optical signal with respect to a received optical signal. And outputs an optical signal that has passed through the first optical branch insertion device. The first optical communication device further comprises an optical transmitter that outputs a first optical signal in a first optical wavelength band different from the optical wavelength band used in the existing optical communication system, and a first existing node. It is provided with a combiner that combines the output optical signal and the first optical signal and outputs the combined optical signal to the optical transmission line. The second optical communication device receives the optical signal output from the first optical communication device via the optical transmission path, and the received optical signal is a second optical signal in the first optical wavelength band. A demultiplexer that demultiplexes the optical signal of the above and a third optical signal which is a signal having an optical wavelength other than the first optical wavelength band. Further, the second optical communication device includes a second existing node and an optical receiver for receiving the second optical signal. The second existing node is an optical communication device constituting an existing optical communication system, and includes a second optical branch insertion device that branches and inserts an optical signal into the third optical signal, and is a second. The optical signal that has passed through the optical branch insertion device is output.
 本発明にかかる光通信システムは、既存のOADMを用いて一部の区間の伝送容量を増加させることができるという効果を奏する。 The optical communication system according to the present invention has an effect that the transmission capacity of a part of a section can be increased by using an existing OADM.
実施の形態1にかかる光通信システムの構成例を示す図The figure which shows the configuration example of the optical communication system which concerns on Embodiment 1. 実施の形態1の光通信システムで用いられる光波長の一例を示す図The figure which shows an example of the optical wavelength used in the optical communication system of Embodiment 1. 実施の形態2の光通信システムの構成例を示す図The figure which shows the configuration example of the optical communication system of Embodiment 2. 実施の形態3の光通信システムの構成例を示す図The figure which shows the configuration example of the optical communication system of Embodiment 3. 実施の形態4の光通信システムの構成例を示す図The figure which shows the configuration example of the optical communication system of Embodiment 4.
 以下に、本発明の実施の形態にかかる光通信システムおよび光通信装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The optical communication system and the optical communication device according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる光通信システムの構成例を示す図である。本実施の形態の光通信システム20は、例えば、光幹線系ネットワークに適用可能である。なお、本実施の形態の光通信システム20の用途は光幹線系ネットワークに限定されず、各ノードがOADMを備えるシステムであればどのような用途にも適用可能である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of an optical communication system according to a first embodiment of the present invention. The optical communication system 20 of the present embodiment can be applied to, for example, an optical trunk line network. The application of the optical communication system 20 of the present embodiment is not limited to the optical trunk line network, and can be applied to any application as long as each node is a system provided with an OADM.
 図1に示すように、本実施の形態の光通信システム20は、光通信装置10-1,10-4と、第1の光通信装置である光通信装置1-1と、第2の光通信装置である光通信装置1-2とを備える。光通信装置10-1は光通信装置1-1と光ファイバ30を介して接続され、光通信装置1-1は、光ファイバ30を介して光通信装置1-2と接続される。また、光通信装置1-2は光ファイバ30を介して光通信装置10-4と接続される。光ファイバ30の近傍に示した矢印は該光ファイバ30で伝送される信号の伝送方向を示している。本実施の形態では、図1に示すように、光通信装置10-1から光通信装置10-4へ向かう方向の通信が行われる例について説明する。 As shown in FIG. 1, the optical communication system 20 of the present embodiment includes optical communication devices 10-1, 10-4, an optical communication device 1-1 which is a first optical communication device, and a second optical communication device. It is provided with an optical communication device 1-2 which is a communication device. The optical communication device 10-1 is connected to the optical communication device 1-1 via the optical fiber 30, and the optical communication device 1-1 is connected to the optical communication device 1-2 via the optical fiber 30. Further, the optical communication device 1-2 is connected to the optical communication device 10-4 via the optical fiber 30. The arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30. In the present embodiment, as shown in FIG. 1, an example in which communication in the direction from the optical communication device 10-1 to the optical communication device 10-4 is performed will be described.
 本実施の形態の光通信システム20は、既に敷設されている光通信システムである既存の光通信システムの一部の区間の伝送容量を増加させている。具体的には、既存の光通信システムを構成する既存の光通信装置10-1~10-4のうち、光通信装置10-2,10-3を流用して、それぞれ新規の光通信装置である光通信装置1-1,1-2を構築している。これにより、既存の光通信システムにおける光通信装置10-2と光通信装置10-3との間の区間の伝送容量を増加させることができる。 The optical communication system 20 of the present embodiment increases the transmission capacity of a part of an existing optical communication system which is an already installed optical communication system. Specifically, among the existing optical communication devices 10-1 to 10-4 constituting the existing optical communication system, the optical communication devices 10-2 and 10-3 are diverted to use new optical communication devices, respectively. A certain optical communication device 1-1, 1-2 is constructed. As a result, the transmission capacity of the section between the optical communication device 10-2 and the optical communication device 10-3 in the existing optical communication system can be increased.
 既存の光通信システムとは、一部の区間の伝送容量を増加させる前の既に敷設されている光通信システムである。図1に示した光通信装置10-1~10-4は既存の光通信システムを構成する既存の光通信装置である。以下、既存の光通信装置である光通信装置10-1~10-4を既存ノードとも呼び、光通信装置1-1,1-2を新規ノードとも呼ぶ。なお、図1では、光通信システム20を構成する光通信装置として、既存ノードである光通信装置10-1,10-4と、新規ノードである光通信装置1-1,1-2とを示しているが、既存ノードの数は図1に示した例に限定されない。 The existing optical communication system is an optical communication system that has already been laid before increasing the transmission capacity of some sections. The optical communication devices 10-1 to 10-4 shown in FIG. 1 are existing optical communication devices constituting the existing optical communication system. Hereinafter, the optical communication devices 10-1 to 10-4, which are existing optical communication devices, are also referred to as existing nodes, and the optical communication devices 1-1 and 1-2 are also referred to as new nodes. In FIG. 1, as the optical communication devices constituting the optical communication system 20, the existing nodes, optical communication devices 10-1, 10-4, and the new nodes, optical communication devices 1-1, 1-2, are used. As shown, the number of existing nodes is not limited to the example shown in FIG.
 図1に示すように、既存ノードである光通信装置10-1は、OADM11-1とトランスポンダ(以下、TRPNと略す)12-1とを備える。OADM11-1は、光伝送路として用いられる光ファイバ30によって伝送された光信号を分波し、分波した信号のうち光通信装置10-1に対応する光波長の光信号をTRPN12-1へ出力する。また、OADM11-1は、TRPN12-1から入力される光信号を、上述した分波により得られた信号のうち、光通信装置10-1に対応する光波長以外の光波長の信号と合波し、合波後の光信号を光ファイバ30へ出力する。このようにして、OADM11-1は、受信した光信号から光通信装置10-1に対応する光波長の光信号を分岐させてTRPN12-1へ出力し、送信する光信号にTRPN12-1から出力される光信号を挿入する。 As shown in FIG. 1, the optical communication device 10-1 which is an existing node includes an OADM 11-1 and a transponder (hereinafter, abbreviated as TRPN) 12-1. The OADM11-1 demultiplexes the optical signal transmitted by the optical fiber 30 used as the optical transmission line, and among the demultiplexed signals, the optical signal having the optical wavelength corresponding to the optical communication device 10-1 is transferred to TRPN12-1. Output. Further, the OADM11-1 combines the optical signal input from TRPN12-1 with a signal having an optical wavelength other than the optical wavelength corresponding to the optical communication device 10-1 among the signals obtained by the above-mentioned demultiplexing. Then, the optical signal after the combined wave is output to the optical fiber 30. In this way, the OADM11-1 branches an optical signal having an optical wavelength corresponding to the optical communication device 10-1 from the received optical signal and outputs the optical signal to the TRPN12-1, and outputs the optical signal to be transmitted from the TRPN12-1. Insert the optical signal to be
 TRPN12-1は、OADM11-1から入力された光信号を電気信号に変換する。変換により得られる電気信号は、光通信装置10-1内の図示しない制御部へ出力される。または変換により得られる電気信号は、光通信装置10-1に接続される図示しないクライアント装置などへ送信されてもよい。また、図示しない制御部または図示しないクライアント装置などにより生成された電気信号を光通信装置10-1に対応する光波長の光信号に変換し、この光信号をOADM11-1へ出力する。 TRPN12-1 converts the optical signal input from OADM11-1 into an electric signal. The electric signal obtained by the conversion is output to a control unit (not shown) in the optical communication device 10-1. Alternatively, the electric signal obtained by the conversion may be transmitted to a client device (not shown) connected to the optical communication device 10-1 or the like. Further, an electric signal generated by a control unit (not shown) or a client device (not shown) is converted into an optical signal having an optical wavelength corresponding to the optical communication device 10-1, and this optical signal is output to the OADM 11-1.
 既存ノードである光通信装置10-4は、図示は省略しているが、光通信装置10-1と同様に、OADMとTRPNとを備える。新規ノードである光通信装置1-1,1-2は、既存ノードである光通信装置10-2,10-3をそれぞれ備える。光通信装置10-1と同様に、既存ノードである光通信装置10-2は、OADM11-2とTRPN12-2とを備え、既存ノードである光通信装置10-3は、OADM11-3とTRPN12-3とを備える。OADM11-2,11-3および光通信装置10-4が備えるOADMの機能は、OADM11-1と同様であるため説明を省略する。TRPN12-2,12-3および光通信装置10-4が備えるTRPNの機能は、TRPN12-1と同様であるため説明を省略する。 Although not shown, the optical communication device 10-4, which is an existing node, includes an OADM and a TRPN, similarly to the optical communication device 10-1. The optical communication devices 1-1 and 1-2, which are new nodes, include optical communication devices 10-2 and 10-3, which are existing nodes, respectively. Similar to the optical communication device 10-1, the existing node optical communication device 10-2 includes OADM11-2 and TRPN12-2, and the existing node optical communication device 10-3 has OADM11-3 and TRPN12. -3 and. Since the functions of the OADMs included in the OADMs 11-2, 11-3 and the optical communication device 10-4 are the same as those of the OADMs 11-1, the description thereof will be omitted. Since the functions of TRPN included in TRPN12-2, 12-3 and the optical communication device 10-4 are the same as those of TRPN12-1, the description thereof will be omitted.
 新規ノードである光通信装置1-1は、第1の既存ノードである光通信装置10-2と、光信号の合分波を行うWDM(Wavelength Division Multiplexing)フィルタ(図ではWDMと略す)2-1と、TRPN3-1とを備える。新規ノードである光通信装置1-2は、第2の既存ノードである光通信装置10-3と、WDM2-2と、TRPN3-2とを備える。WDM2-1,2-2と、TRPN3-1,3-2とは、光通信装置1-1と光通信装置1-2との間の区間の伝送容量を増加させるため追加された構成要素である。 The new node, the optical communication device 1-1, is the first existing node, the optical communication device 10-2, and a WDM (Wavelength Division Multiplexing) filter (abbreviated as WDM in the figure) 2 that performs duplexing and demultiplexing of optical signals. -1 and TRPN3-1 are provided. The optical communication device 1-2, which is a new node, includes an optical communication device 10-3, which is a second existing node, WDM2-2, and TRPN3-2. WDM2-1, 2-2 and TRPN3-1, 3-2 are components added to increase the transmission capacity of the section between the optical communication device 1-1 and the optical communication device 1-2. is there.
 光通信装置1-1を構成する光通信装置10-2は、受信した光信号に対して、光信号の分岐および挿入を行う第1の光分岐挿入装置であるOADM11-2を備え、OADM11-2を通過した光信号を出力する第1の既存ノードである。TRPN3-1は、既存の光通信システムで用いられる光波長帯域とは異なる第1の光波長帯域の第1の光信号を出力する光送信器である。なお、ここでは、光通信装置1-1が、送受信器であるTRPN3-1を備える例を説明するが、本実施の形態では、光通信装置1-1は第1の光波長帯域の第1の光信号を出力する光送信器を備えていればよい。本実施の形態では、TRPN3-1が光送信器として機能する。WDM2-1は、光通信装置10-2から出力される光信号と、第1の光信号とを合波し、合波後の光信号を光伝送路である光ファイバ30へ出力する合波器である。なお、ここでは、光通信装置1-1が、合分波器であるWDM2-1を備える例を説明するが、本実施の形態では、光通信装置1-1は、合波器を備えていればよい。本実施の形態では、WDM2-1が合波器として機能する。 The optical communication device 10-2 constituting the optical communication device 1-1 includes OADM11-2, which is a first optical branch insertion device that branches and inserts an optical signal with respect to the received optical signal, and includes OADM11-. This is the first existing node that outputs an optical signal that has passed through 2. The TRPN3-1 is an optical transmitter that outputs a first optical signal in a first optical wavelength band different from the optical wavelength band used in existing optical communication systems. Here, an example in which the optical communication device 1-1 includes TRPN3-1 which is a transmitter / receiver will be described, but in the present embodiment, the optical communication device 1-1 is the first in the first optical wavelength band. It suffices to have an optical transmitter that outputs the optical signal of. In this embodiment, TRPN3-1 functions as an optical transmitter. The WDM2-1 combines the optical signal output from the optical communication device 10-2 with the first optical signal, and outputs the combined optical signal to the optical fiber 30 which is an optical transmission line. It is a vessel. Here, an example in which the optical communication device 1-1 includes a WDM2-1 that is a demultiplexer will be described, but in the present embodiment, the optical communication device 1-1 includes a demultiplexer. Just do it. In this embodiment, WDM2-1 functions as a combiner.
 光通信装置1-2のWDM2-2は、光通信装置1-1から出力された光信号を、光ファイバ30を介して受信し、受信した光信号を、第1の光波長帯域の光信号である第2の光信号と、第1の光波長帯域以外の光波長の信号である第3の光信号とに分波する分波器である。なお、ここでは、光通信装置1-2が、合分波器であるWDM2-2を備える例を説明するが、本実施の形態では、光通信装置1-2は、分波器を備えていればよい。本実施の形態では、WDM2-2が分波器として機能する。光通信装置1-2を構成する光通信装置10-3は、第3の光信号に、光信号の分岐および挿入を行う第2の光分岐挿入装置であるOADM11-3を備え、OADM11-3を通過した光信号を出力する第2の既存ノードである。また、TRPN3-2は、第2の光信号を受信する光受信器である。なお、ここでは、光通信装置1-2が、送受信器であるTRPN3-2を備える例を説明するが、本実施の形態では、光通信装置1-2は第2の光信号を受信する光受信器を備えていればよい。 The WDM2-2 of the optical communication device 1-2 receives the optical signal output from the optical communication device 1-1 via the optical fiber 30, and receives the received optical signal as an optical signal in the first optical wavelength band. It is a demultiplexer that demultiplexes the second optical signal, which is, and the third optical signal, which is a signal having an optical wavelength other than the first optical wavelength band. Here, an example in which the optical communication device 1-2 is provided with the WDM2-2, which is a demultiplexer, will be described. However, in the present embodiment, the optical communication device 1-2 is provided with the demultiplexer. Just do it. In this embodiment, WDM2-2 functions as a demultiplexer. The optical communication device 10-3 constituting the optical communication device 1-2 includes an OADM 11-3 which is a second optical branch insertion device for branching and inserting an optical signal into a third optical signal, and the OADM 11-3. It is a second existing node that outputs an optical signal that has passed through. Further, TRPN3-2 is an optical receiver that receives a second optical signal. Here, an example in which the optical communication device 1-2 includes TRPN3-2, which is a transmitter / receiver, will be described. However, in the present embodiment, the optical communication device 1-2 receives light that receives a second optical signal. It suffices to have a receiver.
 次に、本実施の形態の動作について説明する。ここで、まず、光通信システム20で用いられる光波長の一例を説明する。図2は、光通信システム20で用いられる光波長の一例を示す図である。図2では、横軸に波長を示し、縦軸に光信号のパワーを示している。図2は、光通信システム20で使用可能な各波長を模式的に示しており、実際に送信される各波長の光信号の波長領域での形状を示すものではない。図2に示す光波長のうち光波長λ~λは既存の光通信システムで使用可能な光波長である。なお、実際には、各光波長に対応する光信号はある程度の光波長の帯域幅を有している。光通信システム20では、光通信装置1-1と光通信装置1-2の間では、これら光波長λ~λに加え、さらに追加波長帯域である第1の光波長帯域内の光波長λ,λの光信号を使用可能である。図2では、光通信装置1-1と光通信装置1-2とは光波長λを用いた通信を行うことも可能であり、光波長λ,λの両方を用いて通信を行うことも可能であるが、以下では、光通信装置1-1と光通信装置1-2と光波長λの光信号を用いた通信を行う場合を例に説明する。このように、第1の光波長帯域を追加で使用することで、光通信装置1-1と光通信装置1-2の間の伝送容量を増加させる。なお、図2に示した光波長帯域は一例であり、追加する光波長帯域は、光波長λ~λより短い光波長帯域であってもよいし、既存の光通信システムで使用されていた光波長λから光波長λまでの間の使用されていなかった光波長帯域のなかに設けられてもよい。なお、追加光波長帯域に含まれる光波長の数は上述した例に限定されず1つ以上であればよい。 Next, the operation of this embodiment will be described. Here, first, an example of the optical wavelength used in the optical communication system 20 will be described. FIG. 2 is a diagram showing an example of an optical wavelength used in the optical communication system 20. In FIG. 2, the horizontal axis shows the wavelength and the vertical axis shows the power of the optical signal. FIG. 2 schematically shows each wavelength that can be used in the optical communication system 20, and does not show the shape of the optical signal of each wavelength that is actually transmitted in the wavelength region. Of the optical wavelengths shown in FIG. 2, the optical wavelengths λ 1 to λ n are optical wavelengths that can be used in existing optical communication systems. In reality, the optical signal corresponding to each optical wavelength has a certain bandwidth of the optical wavelength. In the optical communication system 20, between the optical communication device 1-1 and the optical communication device 1-2, in addition to these optical wavelengths λ 1 to λ n , the optical wavelength within the first optical wavelength band, which is an additional wavelength band, Optical signals of λ a and λ b can be used. In FIG. 2, the optical communication device 1-1 and the optical communication device 1-2 can communicate using the optical wavelength λ b , and communicate using both the optical wavelengths λ a and λ b. However, in the following, a case where communication is performed between the optical communication device 1-1 and the optical communication device 1-2 using an optical signal having an optical wavelength λ a will be described as an example. In this way, by additionally using the first optical wavelength band, the transmission capacity between the optical communication device 1-1 and the optical communication device 1-2 is increased. The optical wavelength band shown in FIG. 2 is an example, and the additional optical wavelength band may be an optical wavelength band shorter than the optical wavelengths λ 1 to λ n , and is used in existing optical communication systems. It may be provided in an unused light wavelength band between the light wavelength λ 1 and the light wavelength λ n . The number of light wavelengths included in the additional light wavelength band is not limited to the above-mentioned example, and may be one or more.
 このとき、本実施の形態の光通信システム20では、既存ノードである光通信装置10-2,10-3を流用して、第1の光波長帯域の追加を実現する。既存の通信システムでは、図1に示したように、光通信装置10-1,10-2,10-3に、光波長λ~λのうちそれぞれ光波長λ,λ,λが割り当てられていたとする。したがって、OADM11-1は、光波長λの光信号の分岐および挿入を行う。 At this time, in the optical communication system 20 of the present embodiment, the existing nodes, the optical communication devices 10-2 and 10-3, are diverted to realize the addition of the first optical wavelength band. In the existing communication system, as shown in FIG. 1, the optical communication devices 10-1, 10-2, and 10-3 have optical wavelengths λ 3 , λ 1 , and λ 2 among the optical wavelengths λ 1 to λ n , respectively. Was assigned. Therefore, OADM11-1 branches and inserts an optical signal having an optical wavelength of λ 3 .
 光通信装置1-1のOADM11-2は、第1の光波長帯域内の光波長λの光信号の分岐および挿入を行う。さらに、光通信装置1-1では、TRPN3-1は、光通信装置1-2へ送信する電気信号を光波長λの光信号に変換してWDM2-1へ出力する。WDM2-1は、TRPN3-1から出力された光波長λの光信号とOADM11-2から出力される光信号とを合波し、合波後の光信号を光ファイバ30へ出力する。 The OADM 11-2 of the optical communication device 1-1 branches and inserts an optical signal having an optical wavelength λ 1 within the first optical wavelength band. Further, in the optical communication device 1-1, the TRPN3-1 converts the electric signal transmitted to the optical communication device 1-2 into an optical signal having an optical wavelength λ a and outputs the electric signal to the WDM 2-1. WDM2-1 is an optical signal multiplexes output from the optical signal and OADM11-2 optical wavelength lambda a output from TRPN3-1, and outputs the optical signal after multiplexing the optical fiber 30.
 光通信装置1-2のWDM2-2は、光通信装置1-1から出力された光信号を、光ファイバ30を介して受信し、受信した光信号を分波し、分波した光信号のうち第1の光波長帯域の光信号をTRPN3-2へ出力し、他の光信号をOADM11-3へ出力する。TRPN3-2は、WDM2-2から入力された光信号を電気信号に変換する。これにより、光通信装置1-2は、光通信装置1-1から光波長λの光信号として送信された電気信号を受信することができる。また、OADM11-3は、WDM2-2から入力された光信号に対して、光波長λの光信号の分岐および挿入を行う。OADM11-3から出力される光信号には、追加光波長帯域である第1の光波長帯域の光信号は含まれていない。したがって、既存ノードである光通信装置10-4に、光ファイバ30を介して入力される光信号は、第1の光波長帯域が追加される前と同様である。これにより、光通信装置10-4は、誤動作を誘発せずに既存の光通信システムの場合と同様の通信を行うことができる。 The WDM2-2 of the optical communication device 1-2 receives the optical signal output from the optical communication device 1-1 via the optical fiber 30, and demultiplexes the received optical signal to obtain the demultiplexed optical signal. The optical signal of the first optical wavelength band is output to TRPN3-2, and the other optical signals are output to OADM11-3. TRPN3-2 converts the optical signal input from WDM2-2 into an electric signal. As a result, the optical communication device 1-2 can receive the electric signal transmitted from the optical communication device 1-1 as an optical signal having an optical wavelength λ a . Further, the OADM 11-3 branches and inserts an optical signal having an optical wavelength λ 2 with respect to the optical signal input from the WDM 2-2. The optical signal output from OADM 11-3 does not include an optical signal in the first optical wavelength band, which is an additional optical wavelength band. Therefore, the optical signal input to the existing node, the optical communication device 10-4, via the optical fiber 30 is the same as before the first optical wavelength band is added. As a result, the optical communication device 10-4 can perform the same communication as in the case of the existing optical communication system without inducing a malfunction.
 このように、本実施の形態の光通信システム20では、伝送容量の増加の対象外の既存ノードである光通信装置10-1,10-4には、既存の光通信システムで用いられていた光波長の光信号しか入力されない。このため、光通信装置10-1,10-4は、伝送容量の増加前と同様に通信を行うことができる。さらに、本実施の形態の光通信システム20では、光通信装置1-1および光通信装置1-2は、既存の光通信システムと同様の通信を行うことができるとともに、さらに、第1の波長帯域の光信号を用いた通信が可能となる。これにより、光通信装置1-1と光通信装置1-2の間の伝送容量を増加させることができる。 As described above, in the optical communication system 20 of the present embodiment, the optical communication devices 10-1 and 10-4, which are existing nodes that are not subject to the increase in transmission capacity, have been used in the existing optical communication system. Only optical signals of optical wavelength are input. Therefore, the optical communication devices 10-1 and 10-4 can perform communication in the same manner as before the increase in the transmission capacity. Further, in the optical communication system 20 of the present embodiment, the optical communication device 1-1 and the optical communication device 1-2 can perform the same communication as the existing optical communication system, and further, the first wavelength. Communication using optical signals in the band becomes possible. As a result, the transmission capacity between the optical communication device 1-1 and the optical communication device 1-2 can be increased.
 以上のように、本実施の形態では、伝送容量を増加させる区間に対応する光通信装置11,1-2を、既存ノードにWDMとTRPNを追加することにより実現するようにした。これにより、既存のOADMを用いて一部の区間の伝送容量を増加させることができる。したがって、伝送容量を増加させるためにOADMの再設計が不要となるため工数を抑制することができ、既存のOADMを流用することにより新たな光通信装置を導入する必要がない。また、伝送容量を増加させる区間以外の既存ノードは影響を受けないため、伝送容量を増加させる区間以外の既存ノードを新たなノードに入れ替える必要がない。これにより、コストを抑制して、一部の区間の伝送容量を増加させることができる。 As described above, in the present embodiment, the optical communication devices 11 and 1-2 corresponding to the section where the transmission capacity is increased are realized by adding WDM and TRPN to the existing node. As a result, the transmission capacity of a part of the section can be increased by using the existing OADM. Therefore, since it is not necessary to redesign the OADM in order to increase the transmission capacity, the man-hours can be suppressed, and it is not necessary to introduce a new optical communication device by diverting the existing OADM. Further, since the existing node other than the section where the transmission capacity is increased is not affected, it is not necessary to replace the existing node other than the section where the transmission capacity is increased with a new node. As a result, the cost can be suppressed and the transmission capacity of a part of the section can be increased.
 なお、図1に示した構成例では、既存ノードと、追加するWDMおよびTRPNとで1つの新規ノードとする例を説明したが、既存ノードと、追加するWDMおよびTRPNとは、既存ノードとは別体であってもよい。 In the configuration example shown in FIG. 1, an example in which the existing node and the WDM and TRPN to be added are used as one new node has been described, but the existing node and the WDM and TRPN to be added are the existing nodes. It may be a separate body.
実施の形態2.
 図3は、本発明にかかる実施の形態2の光通信システムの構成例を示す図である。実施の形態1では、隣接するノード間の伝送容量を増加する例を説明した。本実施の形態では、隣接しないノード間で、伝送容量を増加させる例を説明する。
Embodiment 2.
FIG. 3 is a diagram showing a configuration example of the optical communication system of the second embodiment according to the present invention. In the first embodiment, an example of increasing the transmission capacity between adjacent nodes has been described. In this embodiment, an example of increasing the transmission capacity between non-adjacent nodes will be described.
 図3に示すように、実施の形態2の光通信システム20aは、光通信装置1-1,1-2と、第3の光通信装置である光通信装置4とを備える。光通信装置1-1,1-2は、実施の形態1と同様であるため、説明を省略する。光通信装置1-1は、光ファイバ30を介して光通信装置4と接続される。また、光通信装置4は光ファイバ30を介して光通信装置1-2と接続される。光ファイバ30の近傍に示した矢印は該光ファイバ30で伝送される信号の伝送方向を示している。図示は省略しているが、光通信装置1-1は、上流側で、実施の形態1と同様に光ファイバ30を介して光通信装置10-1と接続され、光通信装置1-2は、下流側で、実施の形態1と同様に光ファイバ30を介して光通信装置10-4と接続される。 As shown in FIG. 3, the optical communication system 20a of the second embodiment includes optical communication devices 1-1 and 1-2 and an optical communication device 4 which is a third optical communication device. Since the optical communication devices 1-1 and 1-2 are the same as those in the first embodiment, the description thereof will be omitted. The optical communication device 1-1 is connected to the optical communication device 4 via an optical fiber 30. Further, the optical communication device 4 is connected to the optical communication device 1-2 via the optical fiber 30. The arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30. Although not shown, the optical communication device 1-1 is connected to the optical communication device 10-1 via an optical fiber 30 on the upstream side as in the first embodiment, and the optical communication device 1-2 is On the downstream side, it is connected to the optical communication device 10-4 via the optical fiber 30 as in the first embodiment.
 本実施の形態では、既存の光通信システムにおける光通信装置10-2と光通信装置1-3との間の区間の伝送容量を増加させるために、実施の形態1と同様に、光通信装置10-2,10-3をそれぞれ流用して光通信装置1-1,1-2を構築している。一方、本実施の形態では、実施の形態1と異なり、既存の光通信システムにおいて、光通信装置10-2と光通信装置10-3との間には、既存ノードである光通信装置10-5が存在する。光通信装置10-5の構成は、実施の形態1の光通信装置10-1と同様である。 In the present embodiment, in order to increase the transmission capacity of the section between the optical communication device 10-2 and the optical communication device 1-3 in the existing optical communication system, the optical communication device is similarly to the first embodiment. Optical communication devices 1-1 and 1-2 are constructed by diverting 10-2 and 10-3, respectively. On the other hand, in the present embodiment, unlike the first embodiment, in the existing optical communication system, the optical communication device 10-, which is an existing node, is located between the optical communication device 10-2 and the optical communication device 10-3. 5 exists. The configuration of the optical communication device 10-5 is the same as that of the optical communication device 10-1 of the first embodiment.
 光通信装置1-1および光通信装置1-2を用いると、実施の形態1と同様に光通信装置1-1と光通信装置1-2との間の区間の伝送容量を既存の光通信システムより増加させることができるが、それだけでは光通信装置10-5に、追加された光波長を含む光信号が入力される。追加された光波長を含む光信号を受信しても誤動作を生じさせないようにするには、光通信装置10-5のOADMの設計変更が必要になる。本実施の形態では、光通信装置10-5のOADMの設計変更を要せずに、光通信装置1-1と光通信装置1-2との間の区間の伝送容量を増加させるために、光通信装置10-5を流用した光通信装置4を用いる。 When the optical communication device 1-1 and the optical communication device 1-2 are used, the transmission capacity of the section between the optical communication device 1-1 and the optical communication device 1-2 is transmitted by the existing optical communication as in the first embodiment. Although it can be increased from the system, the optical signal including the added optical wavelength is input to the optical communication device 10-5 by itself. In order to prevent malfunction even if an optical signal including an added optical wavelength is received, it is necessary to change the design of the OADM of the optical communication device 10-5. In the present embodiment, in order to increase the transmission capacity of the section between the optical communication device 1-1 and the optical communication device 1-2 without requiring a design change of the OADM of the optical communication device 10-5, An optical communication device 4 diverted from the optical communication device 10-5 is used.
 光通信装置4は、図3に示すように、第3の既存ノードである光通信装置10-5と、WDM5,6と、光中継器7とを備える。WDM5,6は、WDM2-1,2-2と同様に、光信号の合分波を行う。 As shown in FIG. 3, the optical communication device 4 includes a third existing node, an optical communication device 10-5, WDMs 5 and 6, and an optical repeater 7. WDMs 5 and 6 perform combined and demultiplexing of optical signals in the same manner as WDM2-1 and 2-2.
 詳細には、WDM5は、第1の光通信装置から出力された光信号を、光ファイバ30を介して受信し、受信した光信号を、第1の波長帯域の光信号である第4の光信号と、第1の光波長帯域以外の光波長の信号である第5の光信号に分波する分波器である。WDM5は、分波した光信号のうち第1の波長帯域の光信号を光中継器7へ出力し、他の光信号を光通信装置10-5へ出力する。第3の既存ノードである光通信装置10-5は、第5の光信号に、光信号の分岐および挿入を行う図示を省略した第3の光分岐挿入装置を備え、第3の光分岐挿入装置を通過した光信号を出力する。光中継器7は、入力された光信号損失を補償するための動作を行い、損失の補償が施された光信号を出力する。すなわち、光中継器7は、第4の光信号に対して損失補償を行って出力する。WDM6は、光中継器7から出力される光信号と、光通信装置10-5から出力される光信号とを合波し、合波後の光信号を光ファイバ30へ出力する。このように、光通信装置4は、通過された光波長の光信号を中継する光中継装置としての機能を有する。 Specifically, the WDM 5 receives an optical signal output from the first optical communication device via the optical fiber 30, and receives the received optical signal as a fourth optical signal in the first wavelength band. It is a demultiplexer that demultiplexes a signal and a fifth optical signal that is a signal having an optical wavelength other than the first optical wavelength band. The WDM 5 outputs an optical signal in the first wavelength band of the demultiplexed optical signals to the optical repeater 7, and outputs other optical signals to the optical communication device 10-5. The optical communication device 10-5, which is a third existing node, includes a third optical branch insertion device (not shown) that branches and inserts the optical signal into the fifth optical signal, and inserts the third optical branch. Outputs an optical signal that has passed through the device. The optical repeater 7 performs an operation for compensating for the input optical signal loss, and outputs an optical signal for which the loss has been compensated. That is, the optical repeater 7 performs loss compensation on the fourth optical signal and outputs the signal. The WDM 6 combines the optical signal output from the optical repeater 7 and the optical signal output from the optical communication device 10-5, and outputs the optical signal after the combined wave to the optical fiber 30. As described above, the optical communication device 4 has a function as an optical relay device that relays an optical signal having a passed optical wavelength.
 光通信装置1-2は、光通信装置1-1から出力された光信号を、光通信装置4および光ファイバ30を介して受信する。光通信装置4から出力された光信号を受信した光通信装置1-2の動作は実施の形態1と同様である。なお、上述した例では、光通信装置1-1と光通信装置1-2との間に、既存ノードである光通信装置10-5が存在する例を説明したが、光通信装置10-5の替わりに光信号を中継する光中継装置が存在する場合に、同様に、該光中継装置にWDM5,6と、光中継器7とを追加してもよい。また、光通信装置1-1と光通信装置1-2との間に、伝送容量を増加させない複数の既存ノードが存在する場合には、これらの既存ノードに同様にWDM5,6と、光中継器7とを追加することができる。なお、光中継器7については、必須ではない。例えば、光信号の損失が問題にならないような場合には、光通信装置1-1と光通信装置1-2との間の既存ノードに、光中継器7を追加せずにWDM5,6を追加してもよい。 The optical communication device 1-2 receives the optical signal output from the optical communication device 1-1 via the optical communication device 4 and the optical fiber 30. The operation of the optical communication device 1-2 that has received the optical signal output from the optical communication device 4 is the same as that of the first embodiment. In the above-mentioned example, an example in which the optical communication device 10-5, which is an existing node, exists between the optical communication device 1-1 and the optical communication device 1-2 has been described, but the optical communication device 10-5 has been described. If there is an optical relay device that relays an optical signal instead of the above, WDMs 5 and 6 and an optical repeater 7 may be added to the optical relay device in the same manner. Further, when there are a plurality of existing nodes that do not increase the transmission capacity between the optical communication device 1-1 and the optical communication device 1-2, WDMs 5 and 6 and optical relay are similarly provided to these existing nodes. A vessel 7 and can be added. The optical repeater 7 is not essential. For example, when the loss of the optical signal is not a problem, WDMs 5 and 6 are added to the existing node between the optical communication device 1-1 and the optical communication device 1-2 without adding the optical repeater 7. You may add it.
 以上のように、本実施の形態では、既存ノードである光通信装置10-2,10-5,10-3には、既存の光通信システムで想定されていない光波長の光信号、すなわち追加された光波長の光信号は入力されない。このため、既存ノード同士の通信において誤動作を引き起こすことはなく、既存の光通信システムと同等の通信が可能となる。光通信装置1-1のTRPN3-1から出力された光信号は、WDM5によって分波されることにより既存ノードである光通信装置10-5を迂回して光通信装置1-2へ到着する。このため、実施の形態1と同様に、光通信装置1-1と光通信装置1-2とは、追加された光波長の光信号を用いて通信を行うことができる。したがって、光通信装置1-1と光通信装置1-2との間に既存ノードが存在する場合でも、既存ノードのOADMの設計変更を要せずに、既存のOADMを使用して、低コストで、光通信装置1-1と光通信装置1-2との間の伝送容量の増加を実現することができる。また、追加された光波長の光信号が迂回する経路に光中継器7を設けることで、光通信装置1-1と光通信装置1-2との間での信号損失が大きい場合でも、損失を補償することができる。 As described above, in the present embodiment, the optical communication device 10-2, 10-5, 10-3, which is an existing node, is provided with an optical signal having an optical wavelength not assumed in the existing optical communication system, that is, is added. No optical signal with the specified optical wavelength is input. Therefore, no malfunction is caused in the communication between the existing nodes, and the communication equivalent to that of the existing optical communication system becomes possible. The optical signal output from TRPN3-1 of the optical communication device 1-1 is demultiplexed by the WDM5 to bypass the existing node optical communication device 10-5 and arrive at the optical communication device 1-2. Therefore, similarly to the first embodiment, the optical communication device 1-1 and the optical communication device 1-2 can communicate with each other by using the optical signal having the added optical wavelength. Therefore, even if an existing node exists between the optical communication device 1-1 and the optical communication device 1-2, the existing OADM can be used at low cost without requiring a design change of the OADM of the existing node. Therefore, it is possible to realize an increase in the transmission capacity between the optical communication device 1-1 and the optical communication device 1-2. Further, by providing the optical repeater 7 in the path bypassing the optical signal of the added optical wavelength, even if the signal loss between the optical communication device 1-1 and the optical communication device 1-2 is large, the loss is lost. Can be compensated.
実施の形態3.
 図4は、本発明にかかる実施の形態3の光通信システムの構成例を示す図である。実施の形態1および実施の形態2では、一方向すなわち片方向の通信を行う例について説明した。本実施の形態では、双方向通信を実現する例を説明する。
Embodiment 3.
FIG. 4 is a diagram showing a configuration example of the optical communication system according to the third embodiment of the present invention. In the first embodiment and the second embodiment, an example of performing one-way communication, that is, one-way communication has been described. In this embodiment, an example of realizing two-way communication will be described.
 図4に示すように、光通信システム20bは、光通信装置10-4と、第1の光通信装置である光通信装置1a-1と、第2の光通信装置である光通信装置1a-2とを備える。なお、光通信システム20bは、光通信装置10-2~10-4と同様の構成の光通信装置10-1を備えるが、図4では図示を省略している。本実施の形態では、既存の光通信システムを構成する既存の光通信装置10-1~10-4のうち、光通信装置10-2,10-3を流用して、それぞれ新規の光通信装置である光通信装置1a-1,1a-2を構築している。図示しない光通信装置10-1は光通信装置1a-1と光ファイバ30を介して接続され、光通信装置1a-1は、光ファイバ30を介して光通信装置1a-2と接続される。また、光通信装置1a-2は光ファイバ30を介して光通信装置10-4と接続される。光ファイバ30の近傍に示した矢印は該光ファイバ30で伝送される信号の伝送方向を示している。 As shown in FIG. 4, the optical communication system 20b includes an optical communication device 10-4, an optical communication device 1a-1 which is a first optical communication device, and an optical communication device 1a- which is a second optical communication device. 2 and. The optical communication system 20b includes an optical communication device 10-1 having the same configuration as the optical communication devices 10-2 to 10-4, but is not shown in FIG. In the present embodiment, among the existing optical communication devices 10-1 to 10-4 constituting the existing optical communication system, the optical communication devices 10-2 and 10-3 are diverted to each new optical communication device. The optical communication devices 1a-1 and 1a-2 are constructed. The optical communication device 10-1 (not shown) is connected to the optical communication device 1a-1 via the optical fiber 30, and the optical communication device 1a-1 is connected to the optical communication device 1a-2 via the optical fiber 30. Further, the optical communication device 1a-2 is connected to the optical communication device 10-4 via the optical fiber 30. The arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30.
 図4に示すように、光通信システム20bは、信号の伝送方向ごとに光ファイバ30を設けている。すなわち、本実施の形態では、光通信装置1a-1から光通信装置1a-2へ向かう方向の光信号は第1の光伝送路である光ファイバ30を介して伝送され、光通信装置1a-2から光通信装置1a-1へ向かう方向の光信号は第2の光伝送路である光ファイバ31を介して伝送される。また、既存ノードである光通信装置10-1~10-4は、二入力二出力を実現可能であり、これにより双方向通信を行うことができる。 As shown in FIG. 4, the optical communication system 20b is provided with an optical fiber 30 for each signal transmission direction. That is, in the present embodiment, the optical signal in the direction from the optical communication device 1a-1 to the optical communication device 1a-2 is transmitted via the optical fiber 30 which is the first optical transmission line, and the optical communication device 1a-. The optical signal in the direction from 2 to the optical communication device 1a-1 is transmitted via the optical fiber 31 which is the second optical transmission line. Further, the optical communication devices 10-1 to 10-4, which are existing nodes, can realize two inputs and two outputs, whereby bidirectional communication can be performed.
 図4に示すように、光通信装置1a-1は、既存ノードである光通信装置10-2と、WDM2-1,8-1と、TRPN3-1とを備える。TRPN3-1は、送信ポート31-1と受信ポート32-1とを備え、送信する電気信号を光信号に変換する機能と、受信した光信号を電気信号に変換する機能とを有する。TRPN3-1は、実施の形態1の光送信器としての機能を有するとともに、送受信が可能な第1の光送受信器である。また、本実施の形態では、光通信装置1a-1のWDM2-1は、第1の合波器である。 As shown in FIG. 4, the optical communication device 1a-1 includes an existing node, an optical communication device 10-2, WDM2-1, 8-1, and TRPN3-1. TRPN3-1 includes a transmission port 31-1 and a reception port 32-1, and has a function of converting an electric signal to be transmitted into an optical signal and a function of converting the received optical signal into an electric signal. TRPN3-1 is a first optical transmitter / receiver having a function as the optical transmitter of the first embodiment and capable of transmitting / receiving. Further, in the present embodiment, the WDM2-1 of the optical communication device 1a-1 is the first combiner.
 光通信装置1a-2は、既存ノードである光通信装置10-3と、WDM2-2,8-2と、TRPN3-2とを備える。TRPN3-2は、TRPN3-1と同様に、送信ポート31-2と受信ポート32-2とを備え、送信する電気信号を光信号に変換する機能と、受信した光信号を電気信号に変換する機能とを有する。TRPN3-2は、実施の形態1の光受信器としての機能を有するとともに、送受信が可能な第2の光送受信器である。第2の光送受信器であるTRPN3-2は、第1の波長帯域内の光波長λの第5の光信号を出力する。本実施の形態では、光通信装置1a-2のWDM2-2は、第1の分波器である。 The optical communication device 1a-2 includes an optical communication device 10-3, which is an existing node, WDM2-2, 8-2, and TRPN3-2. Like TRPN3-1, TRPN3-2 has a transmission port 31-2 and a reception port 32-2, and has a function of converting an electric signal to be transmitted into an optical signal and a function of converting the received optical signal into an electric signal. Has a function. TRPN3-2 is a second optical transmitter / receiver that has a function as the optical receiver of the first embodiment and is capable of transmitting / receiving. The second optical transmitter / receiver, TRPN3-2, outputs a fifth optical signal having an optical wavelength λ a within the first wavelength band. In the present embodiment, the WDM2-2 of the optical communication device 1a-2 is the first demultiplexer.
 また、本実施の形態の光通信装置1a-2のWDM8-2は、第2の光伝送路である光ファイバ31を介して第2の既存ノードで受信されて第2の既存ノードから出力された光信号と、第5の光信号とを合波し、合波後の光信号を前記第2の光伝送路へ出力する第2の合波器である。本実施の形態の光通信装置1a-1のWDM8-1は、光通信装置1a-2から出力された光信号を、光ファイバ30を介して受信し、受信した光信号を、第1の波長帯域の信号である第6の光信号と、第1の波長帯域以外の光波長の信号である第7の光信号とに分波する第2の分波器である。 Further, the WDM8-2 of the optical communication device 1a-2 of the present embodiment is received by the second existing node via the optical fiber 31 which is the second optical transmission line and is output from the second existing node. This is a second combiner that combines the combined optical signal and the fifth optical signal and outputs the combined optical signal to the second optical transmission line. The WDM8-1 of the optical communication device 1a-1 of the present embodiment receives the optical signal output from the optical communication device 1a-2 via the optical fiber 30, and receives the received optical signal at the first wavelength. It is a second demultiplexer that demultiplexes a sixth optical signal, which is a signal in the band, and a seventh optical signal, which is a signal having an optical wavelength other than the first wavelength band.
 光通信装置1a-1が光通信装置1a-2へ光信号を送信するときの動作は、実施の形態1の光通信装置1-1が光通信装置1-2へ光信号を送信するときの動作と同様であるため説明を省略する。以下、光通信装置1a-2が光通信装置1a-1へ光信号を送信するときの動作を説明する。 The operation when the optical communication device 1a-1 transmits an optical signal to the optical communication device 1a-2 is when the optical communication device 1-1 of the first embodiment transmits an optical signal to the optical communication device 1-2. Since it is the same as the operation, the description thereof will be omitted. Hereinafter, the operation when the optical communication device 1a-2 transmits an optical signal to the optical communication device 1a-1 will be described.
 光通信装置1a-2のOADM11-3は、光波長λの光信号の分岐および挿入を行う。光通信装置1a-2では、TRPN3-2は、光通信装置1a-1へ送信する電気信号を光波長λの光信号に変換してからWDM8-2へ出力する。WDM8-2は、TRPN3-2から出力された光波長λの光信号とOADM11-3から出力される光信号とを合波し、合波後の光信号を光ファイバ31へ出力する。 The OADM 11-3 of the optical communication device 1a-2 branches and inserts an optical signal having an optical wavelength λ 2 . In the optical communication apparatus 1a-2, TRPN3-2 outputs after converting an electrical signal to be transmitted to the optical communication apparatus 1a-1 to an optical signal of the optical wavelength lambda a to WDM8-2. WDM8-2 is an optical signal multiplexes output from the optical signal and OADM11-3 optical wavelength lambda a output from TRPN3-2, and outputs the optical signal after multiplexing the optical fiber 31.
 光通信装置1a-1では、WDM8-1は、光通信装置1a-2から出力された光信号を、光ファイバ31を介して受信し、受信した光信号を、第1の波長帯域の信号である第6の光信号と、他の光信号である第7の光信号とに分波する。WDM8-1は、第1の波長帯域の光信号をTRPN3-1へ出力し、他の光信号をOADM11-2へ出力する。TRPN3-1は、WDM8-1から入力された光信号を電気信号に変換する。これにより、光通信装置1a-1から光通信装置1a-2へ向かう方向だけでなく、光通信装置1a-2から光通信装置1a-1へ向かう方向の通信においても、光波長を追加することができる。 In the optical communication device 1a-1, the WDM8-1 receives the optical signal output from the optical communication device 1a-2 via the optical fiber 31, and the received optical signal is a signal in the first wavelength band. It splits into a sixth optical signal and a seventh optical signal, which is another optical signal. WDM8-1 outputs an optical signal in the first wavelength band to TRPN3-1 and outputs other optical signals to OADM11-2. TRPN3-1 converts the optical signal input from WDM8-1 into an electric signal. As a result, the optical wavelength can be added not only in the direction from the optical communication device 1a-1 to the optical communication device 1a-2 but also in the communication in the direction from the optical communication device 1a-2 to the optical communication device 1a-1. Can be done.
 以上のように、本実施の形態では、双方向通信を行う場合に、双方向で光波長を追加することができる。これにより、実施の形態1と同様の効果が得られるとともに、実施の形態1に比べより効率的な通信を行うことができる。なお、図4に示した例では、隣接する光通信装置間の伝送容量を増加させる例を示したが、伝送容量を増加させる光通信装置間に既存ノードが存在する場合には、実施の形態2と同様に、WDMと光中継器を追加することで、既存ノードに入力される光信号を変更せずに、伝送容量の増加を実現することができる。具体的には、光通信装置1a-1から光通信装置1a-2へ向かう方向に関しては実施の形態2で述べたWDM5,6および光中継器7を追加する。光通信装置1a-2から光通信装置1a-1へ向かう方向に関しても、同様に、2つのWDMと光中継器を追加することにより、追加した光波長の光信号を迂回させる。これにより、実施の形態2と同様に、光通信装置1a-1と光通信装置1a-2の間に既存ノードが存在する場合でも、損失を補償して双方向通信を行うことができる。光通信装置1a-1と光通信装置1a-2の間に光中継装置が存在する場合にも、実施の形態2と同様に、各方向に2つのWDMと光中継器を追加すればよい。 As described above, in the present embodiment, the optical wavelength can be added in both directions when bidirectional communication is performed. As a result, the same effect as that of the first embodiment can be obtained, and more efficient communication can be performed as compared with the first embodiment. In the example shown in FIG. 4, an example of increasing the transmission capacity between adjacent optical communication devices is shown, but when an existing node exists between the optical communication devices for increasing the transmission capacity, the embodiment Similar to 2, by adding WDM and an optical repeater, it is possible to increase the transmission capacity without changing the optical signal input to the existing node. Specifically, the WDMs 5 and 6 and the optical repeater 7 described in the second embodiment are added in the direction from the optical communication device 1a-1 to the optical communication device 1a-2. Similarly, in the direction from the optical communication device 1a-2 to the optical communication device 1a-1, the optical signal of the added optical wavelength is bypassed by adding two WDMs and an optical repeater. As a result, as in the second embodiment, even if an existing node exists between the optical communication device 1a-1 and the optical communication device 1a-2, the loss can be compensated for bidirectional communication. Even when an optical relay device exists between the optical communication device 1a-1 and the optical communication device 1a-2, two WDMs and an optical repeater may be added in each direction as in the second embodiment.
実施の形態4.
 図5は、本発明にかかる実施の形態4の光通信システムの構成例を示す図である。実施の形態3では、方向ごとの光ファイバ30を用いた双方向通信について説明した。本実施の形態では、1本の光ファイバ30で双方向の信号を伝送することで、光ファイバ1本あたりの伝送容量を実施の形態4に比べて向上させることができる方式について説明する。
Embodiment 4.
FIG. 5 is a diagram showing a configuration example of the optical communication system according to the fourth embodiment of the present invention. In the third embodiment, bidirectional communication using the optical fiber 30 for each direction has been described. In the present embodiment, a method capable of improving the transmission capacity per optical fiber as compared with the fourth embodiment by transmitting a bidirectional signal with one optical fiber 30 will be described.
 図5に示すように、光通信システム20cは、第1の光通信装置である光通信装置1b-1と、第2の光通信装置である1b-2とを備える。なお、光通信システム20cは、実施の形態1と同様に光通信装置10-1,10-4を備えるが、図5では図示を省略している。 As shown in FIG. 5, the optical communication system 20c includes an optical communication device 1b-1 which is a first optical communication device and 1b-2 which is a second optical communication device. The optical communication system 20c includes optical communication devices 10-1 and 10-4 as in the first embodiment, but is not shown in FIG.
 本実施の形態では、既存の光通信システムを構成する既存の光通信装置10-1~10-4のうち、光通信装置10-2,10-3を流用して、それぞれ新規の光通信装置である光通信装置1b-1,1b-2を構築している。既存ノードである光通信装置10-1~10-4は、1本の光ファイバ30を用いた双方向の通信を行うことが可能である。図示しない光通信装置10-1は光通信装置1b-1と光ファイバ30を介して接続され、光通信装置1b-1は、光ファイバ30を介して光通信装置1b-2と接続される。また、光通信装置1b-2は光ファイバ30を介して図示しない光通信装置10-4と接続される。光ファイバ30の近傍に示した矢印は該光ファイバ30で伝送される信号の伝送方向を示している。 In the present embodiment, among the existing optical communication devices 10-1 to 10-4 constituting the existing optical communication system, the optical communication devices 10-2 and 10-3 are diverted to each new optical communication device. The optical communication devices 1b-1 and 1b-2 are constructed. The optical communication devices 10-1 to 10-4, which are existing nodes, can perform bidirectional communication using one optical fiber 30. The optical communication device 10-1 (not shown) is connected to the optical communication device 1b-1 via the optical fiber 30, and the optical communication device 1b-1 is connected to the optical communication device 1b-2 via the optical fiber 30. Further, the optical communication device 1b-2 is connected to an optical communication device 10-4 (not shown) via an optical fiber 30. The arrow shown in the vicinity of the optical fiber 30 indicates the transmission direction of the signal transmitted by the optical fiber 30.
 図5に示すように、光通信装置1b-1は、既存ノードである光通信装置10-2と、WDM2-1と、サーキュレータ9-1と、TRPN3-1とを備える。TRPN3-1は、実施の形態4のTRPN3-1と同様である。TRPN3-1は、実施の形態1の光送信器としての機能を有するとともに、送受信が可能な第1の光送受信器である。また、本実施の形態では、光通信装置1b-1のWDM2-1は、実施の形態1の合波器としての機能を有するとともに合分波が可能な第1の合分波器である。 As shown in FIG. 5, the optical communication device 1b-1 includes an existing node, an optical communication device 10-2, a WDM2-1, a circulator 9-1, and a TRPN3-1. TRPN3-1 is the same as TRPN3-1 of the fourth embodiment. TRPN3-1 is a first optical transmitter / receiver having a function as the optical transmitter of the first embodiment and capable of transmitting / receiving. Further, in the present embodiment, the WDM2-1 of the optical communication device 1b-1 is a first combiner / demultiplexer having a function as a combiner of the first embodiment and capable of demultiplexing.
 光通信装置1b-2は、既存ノードである光通信装置10-3と、WDM2-2と、サーキュレータ9-2と、TRPN3-2とを備える。TRPN3-2は、実施の形態4のTRPN3-2と同様である。TRPN3-2は、実施の形態1の光受信器としての機能を有するとともに、送受信が可能な第2の光送受信器である。また、本実施の形態では、光通信装置1b-2のWDM2-2は、実施の形態1の分波器としての機能を有するとともに合分波が可能な第2の合分波器である。 The optical communication device 1b-2 includes an existing node optical communication device 10-3, WDM2-2, a circulator 9-2, and TRPN3-2. TRPN3-2 is the same as TRPN3-2 of the fourth embodiment. TRPN3-2 is a second optical transmitter / receiver that has a function as the optical receiver of the first embodiment and is capable of transmitting / receiving. Further, in the present embodiment, the WDM2-2 of the optical communication device 1b-2 is a second demultiplexer having a function as a demultiplexer of the first embodiment and capable of demultiplexing.
 光通信装置1b-1のOADM11-2は、光波長λの光信号の分岐および挿入を行う。光通信装置1b-1では、TRPN3-1から出力される光信号は送信ポート31-1を介してサーキュレータ9-1に入力される。サーキュレータ9-1は、TRPN3-1から入力された光信号をWDM2-1へ出力する第1のサーキュレータである。WDM2-1は、サーキュレータ9-1から入力された光信号と、OADM11-2から出力される光信号とを合波し、合波した光信号を光ファイバ30へ出力する。 The OADM 11-2 of the optical communication device 1b-1 branches and inserts an optical signal having an optical wavelength λ 2 . In the optical communication device 1b-1, the optical signal output from TRPN3-1 is input to the circulator 9-1 via the transmission port 31-1. The circulator 9-1 is a first circulator that outputs an optical signal input from TRPN3-1 to WDM2-1. The WDM2-1 combines the optical signal input from the circulator 9-1 and the optical signal output from the OADM 11-2, and outputs the combined optical signal to the optical fiber 30.
 WDM2-1から出力された光信号は光ファイバ30を介して、光通信装置1b-1のWDM2-2に入力される。WDM2-2は、実施の形態1のWDM2-2と同様に、入力された光信号を分波し、第1の波長帯域の光信号をサーキュレータ9-2へ出力し、他の光信号をOADM11-3へ出力する。サーキュレータ9-2は、WDM2-2から入力された光信号をTRPN3-2の受信ポート32-2へ出力する第2のサーキュレータである。TRPN3-2は、受信ポート32-2から入力された光信号を電気信号に変換する。以上により、光通信装置1b-1から光通信装置1b-2への、追加された光波長である光波長λの光信号を用いた通信が可能となる。 The optical signal output from WDM2-1 is input to WDM2-2 of the optical communication device 1b-1 via the optical fiber 30. Similar to WDM2-2 of the first embodiment, WDM2-2 demultiplexes the input optical signal, outputs the optical signal of the first wavelength band to the circulator 9-2, and outputs other optical signals to OADM11. Output to -3. The circulator 9-2 is a second circulator that outputs an optical signal input from the WDM2-2 to the receiving port 32-2 of the TRPN3-2. TRPN3-2 converts the optical signal input from the receiving port 32-2 into an electric signal. As described above, communication from the optical communication device 1b-1 to the optical communication device 1b-2 using the optical signal of the optical wavelength λ a , which is the added optical wavelength, becomes possible.
 光通信装置1b-2から光通信装置1b-1へ光波長λの光信号を用いた通信を行う場合には、光通信装置1b-2では、TRPN3-2から出力される光波長λの光信号である第5の光信号は送信ポート31-2を介してサーキュレータ9-2に入力される。サーキュレータ9-2は、TRPN3-2から入力された光信号をWDM2-2へ入力する。WDM2-2は、サーキュレータ9-2から入力された光信号と、OADM11-3から出力される光信号とを合波し、合波した光信号を光ファイバ30へ出力する。すなわち、WDM2-2は、光ファイバ30を介して光通信装置10-3で受信されて光通信装置10-3から出力された光信号と、サーキュレータ9-2から出力される光信号とを合波し、合波後の光信号を光ファイバ30へ出力する第2の合波器である。 When communication is performed from the optical communication device 1b-2 to the optical communication device 1b-1 using an optical signal having an optical wavelength λ a , the optical communication device 1b-2 has an optical wavelength λ a output from TRPN3-2. The fifth optical signal, which is the optical signal of the above, is input to the circulator 9-2 via the transmission port 31-2. The circulator 9-2 inputs the optical signal input from TRPN3-2 to WDM2-2. WDM2-2 combines the optical signal input from the circulator 9-2 and the optical signal output from OADM11-3, and outputs the combined optical signal to the optical fiber 30. That is, WDM2-2 combines the optical signal received by the optical communication device 10-3 via the optical fiber 30 and output from the optical communication device 10-3 with the optical signal output from the circulator 9-2. This is a second combiner that waves and outputs an optical signal after the combined wave to the optical fiber 30.
 WDM2-2から出力された光信号は光ファイバ30を介して、光通信装置1b-1のWDM2-1に入力される。WDM2-1は、入力された光信号を分波し、第1の波長帯域の光信号をサーキュレータ9-1へ出力し、他の光信号をOADM11-2へ出力する。すなわち、WDM2-1は、光通信装置1b-2から出力された光信号を、光ファイバ30を介して受信し、受信した光信号を、第1の波長帯域の光信号である第6の光信号と、第1の波長帯域以外の光波長の信号である第7の光信号に分波する第2の分波器である。WDM2-1は、第6の光信号をサーキュレータ9-1へ出力し、第7の光信号を光通信装置10-2へ出力する。サーキュレータ9-1は、WDM2-1から入力された光信号をTRPN3-1の受信ポート32-1へ出力する。TRPN3-1は、受信ポート32-1から入力された光信号を電気信号に変換する。以上により、光通信装置1b-2から光通信装置1b-1への、第1の波長帯域内の光波長λの光信号を用いた通信が可能となる。 The optical signal output from WDM2-2 is input to WDM2-1 of the optical communication device 1b-1 via the optical fiber 30. WDM2-1 demultiplexes the input optical signal, outputs the optical signal of the first wavelength band to the circulator 9-1, and outputs the other optical signal to OADM11-2. That is, the WDM2-1 receives the optical signal output from the optical communication device 1b-2 via the optical fiber 30, and the received optical signal is the sixth light which is an optical signal in the first wavelength band. It is a second demultiplexer that demultiplexes a signal and a seventh optical signal that is a signal having an optical wavelength other than the first wavelength band. WDM2-1 outputs the sixth optical signal to the circulator 9-1, and outputs the seventh optical signal to the optical communication device 10-2. The circulator 9-1 outputs the optical signal input from the WDM2-1 to the reception port 32-1 of the TRPN3-1. TRPN3-1 converts the optical signal input from the receiving port 32-1 into an electric signal. Thus, the optical communication apparatus 1b-1 from the optical communication apparatus 1b-2, communication becomes possible using an optical signal of the optical wavelength lambda a in the first wavelength band.
 以上述べたとおり、本実施の形態では、光通信装置1b-1では、WDM2-1で分波された光信号は、サーキュレータ9-1により、送信ポート31-1とは異なる受信ポート32-1に入力される。光通信装置1b-2においても同様の動作が行われる。これにより、光通信装置1b-1と光通信装置1b-2とは、1本の一芯の光ファイバ30を用いて、送信受信ともに同一波長であっても、追加した第1の波長帯域内の光波長λの光信号を用いた双方向通信が可能となる。これにより、実施の形態4と同様の効果が得られるとともに、実施の形態4に比べて光ファイバ30の伝送効率を向上させることができる。これにより、実施の形態4に比べ低コストで伝送容量を増加させることができる。 As described above, in the present embodiment, in the optical communication device 1b-1, the optical signal demultiplexed by the WDM2-1 is different from the transmission port 31-1 by the circulator 9-1. Is entered in. The same operation is performed in the optical communication device 1b-2. As a result, the optical communication device 1b-1 and the optical communication device 1b-2 use one single-core optical fiber 30 and are within the added first wavelength band even if both transmission and reception have the same wavelength. Bidirectional communication is possible using an optical signal having an optical wavelength of λ a . As a result, the same effect as that of the fourth embodiment can be obtained, and the transmission efficiency of the optical fiber 30 can be improved as compared with the fourth embodiment. As a result, the transmission capacity can be increased at a lower cost than in the fourth embodiment.
 なお、図5に示した例では、隣接する光通信装置間の伝送容量を増加させる例を示したが、伝送容量を増加させる光通信装置間に既存ノードが存在する場合には、実施の形態2と同様に、WDMと光中継器を追加することで、既存ノードに入力される光信号を変更せずに、伝送容量の増加を実現することができる。具体的には、実施の形態2と同様に、既存ノードにWDM5,6および光中継器7を追加すればよい。 In the example shown in FIG. 5, an example of increasing the transmission capacity between adjacent optical communication devices is shown, but when an existing node exists between the optical communication devices for increasing the transmission capacity, the embodiment Similar to 2, by adding WDM and an optical repeater, it is possible to increase the transmission capacity without changing the optical signal input to the existing node. Specifically, WDMs 5 and 6 and the optical repeater 7 may be added to the existing nodes as in the second embodiment.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1-1,1-2,1a-1,1a-2,1b-1,1b-2,10-1~10-5 光通信装置、2-1,2-2,5,6,8-1,8-2 WDM、3-1,3-2,12-1,12-2 TRPN、9-1,9-2 サーキュレータ、11-1~11-3 OADM、20,20a,20b,20c 光通信システム、30,31 光ファイバ、31-1,31-2 送信ポート、32-1,32-2 受信ポート。 1-1, 1-2, 1a-1, 1a-2, 1b-1, 1b-2, 10-1 to 10-5 Optical communication device, 2-1, 2-2, 5, 6, 8-1 , 8-2 WDM, 3-1, 3-2, 12-1, 12-2 TRPN, 9-1, 9-2 circulator, 11-1 to 11-3 OADM, 20, 20a, 20b, 20c Optical communication System, 30, 31 optical fiber, 31-1, 31-2 transmission port, 32-1, 32-2 reception port.

Claims (5)

  1.  第1の光通信装置と第2の光通信装置を備え、
     前記第1の光通信装置は、
     既に敷設されている既存の光通信システムを構成する光通信装置であって、受信した光信号に対して、光信号の分岐および挿入を行う第1の光分岐挿入装置を備え、前記第1の光分岐挿入装置を通過した光信号を出力する第1の既存ノードと、
     前記既存の光通信システムで用いられる光波長帯域とは異なる第1の光波長帯域の第1の光信号を出力する光送信器と、
     前記第1の既存ノードから出力される光信号と、前記第1の光信号とを合波し、合波後の光信号を光伝送路へ出力する合波器と、
     を備え、
     前記第2の光通信装置は、
     前記第1の光通信装置から出力された光信号を、前記光伝送路を介して受信し、受信した光信号を、前記第1の光波長帯域の光信号である第2の光信号と、前記第1の光波長帯域以外の光波長の信号である第3の光信号とに分波する分波器と、
     前記既存の光通信システムを構成する光通信装置であって、前記第3の光信号に、光信号の分岐および挿入を行う第2の光分岐挿入装置を備え、前記第2の光分岐挿入装置を通過した光信号を出力する第2の既存ノードと、
     前記第2の光信号を受信する光受信器と、
     を備えることを特徴とする光通信システム。
    It is equipped with a first optical communication device and a second optical communication device.
    The first optical communication device is
    An optical communication device constituting an existing optical communication system that has already been laid, comprising a first optical branch insertion device that branches and inserts an optical signal with respect to a received optical signal, and the first The first existing node that outputs the optical signal that has passed through the optical branch insertion device, and
    An optical transmitter that outputs a first optical signal in a first optical wavelength band different from the optical wavelength band used in the existing optical communication system, and
    A combiner that combines the optical signal output from the first existing node and the first optical signal and outputs the optical signal after the combined wave to the optical transmission line.
    With
    The second optical communication device is
    The optical signal output from the first optical communication device is received via the optical transmission path, and the received optical signal is combined with a second optical signal which is an optical signal in the first optical wavelength band. A demultiplexer that demultiplexes into a third optical signal that is a signal with an optical wavelength other than the first optical wavelength band.
    An optical communication device constituting the existing optical communication system, comprising a second optical branch insertion device for branching and inserting an optical signal into the third optical signal, and the second optical branch insertion device. A second existing node that outputs an optical signal that has passed through
    An optical receiver that receives the second optical signal and
    An optical communication system characterized by comprising.
  2.  前記第1の光通信装置と前記第2の光通信装置との間に設置された第3の光通信装置を備え、
     前記第3の光通信装置は、
     前記第1の光通信装置から出力された光信号を、前記光伝送路を介して受信し、受信した光信号を、前記第1の光波長帯域の信号である第4の光信号と、前記第1の光波長帯域以外の光波長の信号である第5の光信号に分波する分波器と、
     前記既存の光通信システムを構成する光通信装置であって、前記第5の光信号に、光信号の分岐および挿入を行う第3の光分岐挿入装置を備え、前記第3の光分岐挿入装置を通過した光信号を出力する第3の既存ノードと、
     前記第4の光信号に対して損失補償を行って出力する光中継器と、
     前記光中継器から出力される光信号と、前記第3の既存ノードから出力される光信号とを合波し、合波後の光信号を前記光伝送路へ出力する合波器と、
     を備え、
     前記第2の光通信装置は、前記第1の光通信装置から出力された光信号を、前記第3の光通信装置および前記光伝送路を介して受信することを特徴とする請求項1に記載の光通信システム。
    A third optical communication device installed between the first optical communication device and the second optical communication device is provided.
    The third optical communication device is
    The optical signal output from the first optical communication device is received via the optical transmission path, and the received optical signal is the signal of the first optical wavelength band, the fourth optical signal, and the above. A demultiplexer that demultiplexes into a fifth optical signal, which is a signal with an optical wavelength other than the first optical wavelength band,
    An optical communication device constituting the existing optical communication system, comprising a third optical branch insertion device for branching and inserting an optical signal into the fifth optical signal, and the third optical branch insertion device. A third existing node that outputs an optical signal that has passed through
    An optical repeater that performs loss compensation on the fourth optical signal and outputs it.
    An optical signal output from the optical repeater and an optical signal output from the third existing node are combined, and the combined optical signal is output to the optical transmission line.
    With
    The first aspect of the invention is characterized in that the second optical communication device receives an optical signal output from the first optical communication device via the third optical communication device and the optical transmission line. The optical communication system described.
  3.  前記第1の光通信装置から前記第2の光通信装置へ向かう方向の光信号は前記光伝送路である第1の光伝送路を介して伝送され、前記第2の光通信装置から前記第1の光通信装置へ向かう方向の光信号は第2の光伝送路を介して伝送され、
     前記第1の光通信装置の前記光送信器は、送受信が可能な第1の光送受信器であり、
     前記第1の光通信装置の前記合波器は、第1の合波器であり、
     前記第2の光通信装置の前記光受信器は、送受信が可能な第2の光送受信器であり、
     前記第2の光通信装置の前記分波器は、第1の分波器であり、
     前記第2の光送受信器は、前記第1の光波長帯域の第5の光信号を出力し、
     前記第2の光通信装置は、前記第2の光伝送路を介して前記第2の既存ノードで受信されて前記第2の既存ノードから出力された光信号と、前記第5の光信号とを合波し、合波後の光信号を前記第2の光伝送路へ出力する第2の合波器を備え、
     前記第1の光通信装置は、前記第2の光通信装置から出力された光信号を、前記第2の光伝送路を介して受信し、受信した光信号を、前記第1の光波長帯域の信号である第6の光信号と、前記第1の光波長帯域以外の光波長の信号である第7の光信号とに分波し、前記第7の光信号を前記第1の既存ノードへ出力し、前記第6の光信号を前記第1の光送受信器へ出力する第2の分波器を備えることを特徴とする請求項1または2に記載の光通信システム。
    The optical signal in the direction from the first optical communication device to the second optical communication device is transmitted via the first optical transmission line which is the optical transmission line, and is transmitted from the second optical communication device to the second. The optical signal in the direction toward the optical communication device of 1 is transmitted via the second optical transmission line, and is transmitted.
    The optical transmitter of the first optical communication device is a first optical transmitter / receiver capable of transmitting / receiving.
    The combiner of the first optical communication device is a first combiner, and is
    The optical receiver of the second optical communication device is a second optical transmitter / receiver capable of transmitting / receiving.
    The demultiplexer of the second optical communication device is a first demultiplexer.
    The second optical transmitter / receiver outputs a fifth optical signal in the first optical wavelength band, and outputs a fifth optical signal.
    The second optical communication device includes an optical signal received by the second existing node via the second optical transmission line and output from the second existing node, and the fifth optical signal. A second combiner is provided, which combines the waves and outputs the optical signal after the combined waves to the second optical transmission line.
    The first optical communication device receives an optical signal output from the second optical communication device via the second optical transmission line, and receives the received optical signal in the first optical wavelength band. The sixth optical signal, which is the signal of, and the seventh optical signal, which is a signal having an optical wavelength other than the first optical wavelength band, are demultiplexed, and the seventh optical signal is divided into the first existing node. The optical communication system according to claim 1 or 2, further comprising a second demultiplexer that outputs the sixth optical signal to the first optical transmitter / receiver.
  4.  前記第1の光通信装置から前記第2の光通信装置へ向かう方向の光信号と、前記第2の光通信装置から前記第1の光通信装置へ向かう方向の光信号とは、前記光伝送路を介して伝送され、
     前記第1の光通信装置の前記光送信器は、送受信が可能な第1の光送受信器であり、
     前記第1の光通信装置の前記合波器は、合分波が可能な第1の合分波器であり、
     前記第1の光通信装置は、前記第1の光送受信器から出力される前記第1の光信号を前記第1の合分波器へ出力する第1のサーキュレータを備え、
     前記第2の光通信装置の前記光受信器は、送受信が可能な第2の光送受信器であり、
     前記第2の光通信装置の前記分波器は、合分波が可能な第2の合分波器であり、
     前記第2の光通信装置は、前記第2の合分波器から出力される前記第2の光信号を前記第2の光送受信器へ出力する第2のサーキュレータを備え、
     前記第2の光送受信器は、前記第1の光波長帯域の第5の光信号を前記第2のサーキュレータへ出力し、
     前記第2のサーキュレータは、前記第5の光信号を前記第2の合分波器へ出力し、
     前記第2の合分波器は、前記光伝送路を介して前記第2の既存ノードで受信されて前記第2の既存ノードから出力された光信号と、前記第2のサーキュレータから出力される光信号とを合波し、合波後の光信号を前記光伝送路へ出力し、
     前記第1の合分波器は、前記第2の光通信装置から出力された光信号を、前記光伝送路を介して受信し、受信した光信号を、前記第1の光波長帯域の光信号である第6の光信号と、前記第1の光波長帯域以外の光波長の信号である第7の光信号に分波し、前記第6の光信号を前記第1のサーキュレータへ出力し、前記第7の光信号を前記第1の既存ノードへ出力し、
     前記第1のサーキュレータは、前記第6の光信号を前記第1の光送受信器へ出力することを特徴とする請求項1または2に記載の光通信システム。
    The optical signal in the direction from the first optical communication device to the second optical communication device and the optical signal in the direction from the second optical communication device to the first optical communication device are the optical transmissions. Transmitted over the road
    The optical transmitter of the first optical communication device is a first optical transmitter / receiver capable of transmitting / receiving.
    The combiner of the first optical communication device is a first combiner / demultiplexer capable of demultiplexing and demultiplexing.
    The first optical communication device includes a first circulator that outputs the first optical signal output from the first optical transmitter / receiver to the first duplexer.
    The optical receiver of the second optical communication device is a second optical transmitter / receiver capable of transmitting / receiving.
    The demultiplexer of the second optical communication device is a second demultiplexer capable of demultiplexing.
    The second optical communication device includes a second circulator that outputs the second optical signal output from the second duplexer to the second optical transmitter / receiver.
    The second optical transmitter / receiver outputs a fifth optical signal in the first optical wavelength band to the second circulator.
    The second circulator outputs the fifth optical signal to the second duplexer.
    The second duplexer is an optical signal received by the second existing node via the optical transmission line and output from the second existing node, and output from the second circulator. The optical signal is combined, and the optical signal after the combined wave is output to the optical transmission line.
    The first duplexer receives an optical signal output from the second optical communication device via the optical transmission line, and receives the received optical signal as light in the first optical wavelength band. It is split into a sixth optical signal, which is a signal, and a seventh optical signal, which is a signal having an optical wavelength other than the first optical wavelength band, and the sixth optical signal is output to the first circulator. , The seventh optical signal is output to the first existing node,
    The optical communication system according to claim 1 or 2, wherein the first circulator outputs the sixth optical signal to the first optical transmitter / receiver.
  5.  既に敷設されている既存の光通信システムを構成する光通信装置であって、
     受信した光信号に、光波長の光信号の分岐および挿入を行う光分岐挿入装置を備え、前記光分岐挿入装置を通過した光信号を出力する既存ノードと、
     前記既存の光通信システムで用いられる光波長帯域とは異なる光波長の光信号を出力する光送信器と、
     前記光送信器から出力される光信号と、前記既存ノードから出力される光信号とを合波し、合波後の光信号を光伝送路へ出力する合波器と、
     を備えることを特徴とする光通信装置。
    An optical communication device that constitutes an existing optical communication system that has already been installed.
    An existing node that is equipped with an optical branch insertion device that branches and inserts an optical signal of an optical wavelength into the received optical signal and outputs an optical signal that has passed through the optical branch insertion device.
    An optical transmitter that outputs an optical signal having an optical wavelength different from the optical wavelength band used in the existing optical communication system, and
    An optical signal output from the optical transmitter and an optical signal output from the existing node are combined, and the combined optical signal is output to an optical transmission line.
    An optical communication device characterized by being provided with.
PCT/JP2019/018776 2019-05-10 2019-05-10 Optical communication system and optical communication device WO2020230195A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/018776 WO2020230195A1 (en) 2019-05-10 2019-05-10 Optical communication system and optical communication device
JP2019545375A JP6735928B1 (en) 2019-05-10 2019-05-10 Optical communication system and optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018776 WO2020230195A1 (en) 2019-05-10 2019-05-10 Optical communication system and optical communication device

Publications (1)

Publication Number Publication Date
WO2020230195A1 true WO2020230195A1 (en) 2020-11-19

Family

ID=71892503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018776 WO2020230195A1 (en) 2019-05-10 2019-05-10 Optical communication system and optical communication device

Country Status (2)

Country Link
JP (1) JP6735928B1 (en)
WO (1) WO2020230195A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019572A1 (en) * 2000-08-31 2002-03-07 Fujitsu Limited Method for starting up optical communication system, method for extending/reducing channels, and computer readable recorded medium
JP2018113556A (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Wavelength multiplex optical communication system
US20180234749A1 (en) * 2017-02-16 2018-08-16 Ciena Corporation Systems and methods for modular deployment and upgrade of multiple optical spectrum bands in optical transmission systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019572A1 (en) * 2000-08-31 2002-03-07 Fujitsu Limited Method for starting up optical communication system, method for extending/reducing channels, and computer readable recorded medium
JP2018113556A (en) * 2017-01-11 2018-07-19 三菱電機株式会社 Wavelength multiplex optical communication system
US20180234749A1 (en) * 2017-02-16 2018-08-16 Ciena Corporation Systems and methods for modular deployment and upgrade of multiple optical spectrum bands in optical transmission systems

Also Published As

Publication number Publication date
JP6735928B1 (en) 2020-08-05
JPWO2020230195A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US9520959B2 (en) Optical drop apparatus, optical add apparatus, and optical add/drop apparatus
CN101076961B (en) Communications method, particularly for mobile radio network
CN110212985B (en) Optical fiber time frequency and data combined transmission system and method
EP1128585A2 (en) Node apparatus and optical wavelength division multiplexing network, and system switching method
US7505687B2 (en) Distributed terminal optical transmission system
US8774633B2 (en) Element of a wavelength division multiplexing optical network
US8948593B2 (en) Optical network interconnect device
US7519296B2 (en) Optical demultiplexing method and optical multiplexing method, and optical transmission apparatus using same
JP6256626B2 (en) Node device and control method of node device
US7715711B2 (en) Wavelength selective switch design configurations for mesh light-trails
CN106605381A (en) Reconfigurable add/drop multiplexing in optical networks
US6249620B1 (en) Reconfigurable branching unit for a submarine communications system
JP7383157B2 (en) submarine optical cable system
JP4852260B2 (en) Single-core bidirectional wavelength division multiplexing transmission system
EP2852081B1 (en) Optical ring network
WO2020230195A1 (en) Optical communication system and optical communication device
KR100594902B1 (en) Optical transmission system of ring type
JP5911104B2 (en) Optical demultiplexing transmission apparatus, control method, and optical demultiplexing transmission control system
EP1267587A2 (en) Communications network
WO2005060136A2 (en) Method and system for communicating optical traffic at a node
EP2403170B1 (en) A reconfigurable optical add and drop wavelength multiplexer for an optical network using wavelength division multiplexing
JP2003234721A (en) Optical communication system
WO2024033995A1 (en) Optical communication device and optical communication method
US7672588B2 (en) Ring optical transmission network access node
JP2000236303A (en) Optical transmission system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545375

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929140

Country of ref document: EP

Kind code of ref document: A1