WO2020225890A1 - Point group analysis device, method, and program - Google Patents

Point group analysis device, method, and program Download PDF

Info

Publication number
WO2020225890A1
WO2020225890A1 PCT/JP2019/018453 JP2019018453W WO2020225890A1 WO 2020225890 A1 WO2020225890 A1 WO 2020225890A1 JP 2019018453 W JP2019018453 W JP 2019018453W WO 2020225890 A1 WO2020225890 A1 WO 2020225890A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
point
connection
error
point cloud
Prior art date
Application number
PCT/JP2019/018453
Other languages
French (fr)
Japanese (ja)
Inventor
仁 新垣
泰洋 八尾
慎吾 安藤
夏菜 倉田
淳 嵯峨田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/018453 priority Critical patent/WO2020225890A1/en
Publication of WO2020225890A1 publication Critical patent/WO2020225890A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a point cloud analyzer, method, and program, and more particularly to a point cloud analyzer, method, and program that models a linear structure from a point cloud consisting of three-dimensional points.
  • MMS Mobile Mapping System
  • a car equipped with a camera or a laser scanner travels in the city and travels on the surface of objects such as buildings and roads that are structures around the road.
  • MMS Mobile Mapping System
  • This system can record the surface of an object as three-dimensional coordinate information using GPS (Global Positioning System) or IMS (Inertial Measurement Unit). It is expected that this technology will be used to automatically estimate the condition of equipment around roads.
  • the three-dimensional coordinate information is the three-dimensional coordinate information corresponding to the position in the real space, and the relative position in the coordinate information corresponds to the positional relationship in the real space.
  • Non-Patent Document 1 and Patent Document 1 the cable Development of technology to model a quadratic curve (catenary curve or parabolic curve), etc., and development of technology to automatically extract the amount of deflection of a utility pole by applying a curved cylindrical model to a group of points measured with a utility pole ing.
  • a point cloud measured by a laser such as MMS has a property that it is difficult to measure a fine object as the distance from the measurement position increases, and it is difficult to measure a connecting fixing bracket between a cable and a utility pole. Difficult means that the laser point is difficult to hit because the object for connection is small. If the cable and the utility pole are separated, for example, there may be an arm (rod-shaped object) to attach, but occlusion occurs because there are many cables at the connection point between the utility pole and the cable. This is because there are many cases where it is difficult to measure the arm itself.
  • connection position Even if the point group around the connection position is missing in the area of about 1 to 2 m, if the cable is modeled, whether or not it intersects the utility pole by extending the model, or spatially It is possible to know whether or not it exists nearby, but as mentioned above, it is difficult to determine the connection using only spatial information.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a point cloud analysis device, a method, and a program for accurately determining the connection between a cable and a utility pole.
  • the point cloud analysis device is a point cloud analysis device that estimates the connection point of the cable connected to the outdoor structure, and is the first point cloud analysis device included in the cable.
  • the estimation unit has an estimation unit, and the estimation unit has a shape of the second region estimated from a first region model that models the shape of the first region, and a point cloud of the second region. It is estimated whether it is the connection point by associating it.
  • the point cloud analysis method is a point cloud analysis method for estimating a connection point of a cable connected to an outdoor structure, and is a first region included in the cable and the first region.
  • the second region which is a region included in the cable
  • the shape of the second region estimated from the first region model that models the shape of the region with the point cloud of the second region it is estimated whether the connection point is the connection point. ..
  • the program according to the third aspect includes the first region included in the cable and the first region by the estimation unit of the point cloud analyzer that estimates the connection point of the cable connected to the outdoor structure to the computer.
  • the region By associating the region with the second region, which is a region included in the cable, it is estimated whether the boundary between the first region and the second region is the connection point, and in the estimation, the first region is estimated.
  • the shape of the second region estimated from the first region model that models the shape of one region with the point cloud of the second region it is estimated whether the connection point is the connection point. It is a program to execute the process as if it were.
  • the point group analyzer, method, and program of the present invention it is possible to accurately determine whether or not a utility pole is connected to a linear structure such as a cable or a drop wire, and the utility pole is affected by the influence of an arm or the like. It is possible to accurately determine the connection of a cable that is separated from the cable or a cable that passes near the utility pole but is not connected to the utility pole. Further, when connecting a cable away from a utility pole, it is possible to prevent an erroneous determination that a linear structure that is not a communication line or a linear structure that is not a power line is connected to a utility pole.
  • the method according to the embodiment of the present invention is a technique for estimating the connection relationship between the cable and the surrounding structure from the point cloud measured by the point cloud analysis.
  • it is a technique for determining the connection between a cable and a utility pole.
  • the "cable” is represented as a linear structure for infrastructure equipment including all optical fiber cables, metal cables for telephones, high-voltage lines for electric power, and low-voltage lines.
  • an elongated structure such as a rope for a hanging curtain in a shopping district or a clothesline for washing is represented as a linear structure that is not a cable.
  • linear structures can be expressed as a curve model from the measured point cloud by applying a curve model as in Non-Patent Document 1.
  • the cable is modeled as a curve model (called a wire model) by the point cloud analysis technique, and the modeled one is used to determine whether or not the utility pole and the curve model are connected.
  • the wire modeling of the cable can be automatically generated by, for example, an existing method.
  • One of the merits of modeling is that you can check the physical shape information of the cable of interest for a certain cable of interest. For example, when you want to check the length, if you model it, you can calculate it from the distance between the end points (start point and end point), and by calculating the distance between the models, you can calculate the separation distance between the cable of interest and the surrounding cable. It is also possible to ask.
  • FIG. 1A and 1B are image views of the two utility poles and the cables existing around them as viewed from directly above.
  • FIG. 1B shows an image diagram when the connection is determined and the cable is divided.
  • the end point of the cable model (wire model) is indicated by the broken line, and the connection position (connection point) of the cable and the utility pole is indicated by the alternate long and short dash line.
  • FIG. 1A it is assumed that there is a connection relationship between the utility poles 1 to the utility pole 2 to which the wire model belongs.
  • FIG. 1B when it is determined that the utility pole is connected, the wire model is divided and the connection relationship between the utility poles is re-registered.
  • the shape of the cable is deformed from the shape of the quadratic curve because the cable 1 is deformed at the position connected to the utility pole (connection position Q). .. Since the cable 2 is not deformed, it can be sufficiently expressed as one quadratic curve. Actually, there is measurement noise in the measured point cloud, and it may be difficult to visually understand the inflection point as clearly as the exaggerated image diagram.
  • the degree of connection boundary is obtained as an index for determining whether or not the utility pole is connected at the connection position.
  • the connection position between the cable and the utility pole is hereinafter referred to as a connection boundary point.
  • FIG. 3 is an image diagram of the estimation result of the connection boundary point position when the connection boundary point is searched.
  • a region Pi attention region
  • a connection boundary degree at the position Q i are expressed centering on the attention position Q i set by the user.
  • the connection boundary degree determines that the connection point exists at the position of the peak (maximum value) of the connection boundary degree.
  • the determination is made based on the degree of connection boundary, which is an index for determining whether or not the utility pole is connected.
  • the degree of connection boundary which is an index for determining whether or not the utility pole is connected.
  • the model parameters to be estimated are all the model parameters in the divided cable.
  • the model parameters are obtained from the data (point cloud) having the X, Y, and Z coordinate values
  • the model represented by the model parameters is a concept including the position and the direction.
  • the angle between the vertical direction and the model (the plane on which the quadratic curve exists), that is, the inclination direction of the model with respect to the horizontal plane can be known.
  • the minimum ground clearance from the ground and the three-dimensional position that is the minimum ground clearance can be obtained from the distance from the model.
  • connection boundary point position is estimated accurately by considering not only the shape of the cable of interest but also the relative positional relationship with the surrounding utility poles.
  • FIG. 5 is a block diagram showing an example of the functional configuration of the point cloud analysis device 10 according to the first embodiment.
  • the point cloud analysis device 10 includes a calculation unit 20, a three-dimensional data storage unit 12, and an input unit 14.
  • the three-dimensional data storage unit 12 is a device that stores point cloud information.
  • the three-dimensional point cloud is assumed to be data mounted on a moving body such as a fixed laser sensor or MMS, and the point cloud representing a three-dimensional point on an object is measured while scanning the measurement position.
  • the measurement sensor may be a device capable of measuring the distance between the subject and the sensor, such as a laser range finder, an infrared sensor, or an ultrasonic sensor.
  • a measurement system mounted on a moving body is, for example, a laser range finder mounted on a GPS-equipped vehicle or an airplane equipped with GPS and measured while moving to create an outdoor environment. It is a system that measures the three-dimensional position of the surface of an object, for example, a cable, a building, a guardrail, a road ground, or the like.
  • the data input to the three-dimensional data storage unit 12 measures the position on the surface of the object of the subject by using an MMS equipped with GPS and a laser range finder on the vehicle. Let it be a three-dimensional point cloud which is the measurement result.
  • the object of the subject is a utility pole, a cable, and other branch lines related to the utility pole and a structure existing around the utility pole.
  • the three-dimensional data storage unit 12 holds each of the wire models representing the cables obtained from the acquired point cloud. It also holds each of the pole models that represent utility poles.
  • the wire model and the utility pole have information on the connection relationship of which utility pole is connected from the end point position of the wire model.
  • the wire model is represented as the central axis of the cable by a continuous line with two end points. Two endpoints can be determined on the central axis, and physical values such as the three-dimensional position and the ground height of the wire model can be uniquely determined using only one parameter according to the distance from one endpoint. Defined as a model. Here, in the wire model, it is not necessary to distinguish between the start point and the end point at the end points, and it is sufficient that two end points can be set on the central axis.
  • a wire model can be detected for a three-dimensional point cloud by an existing method.
  • the central axis of the cable is represented by a wire model, ignoring the thickness, and that the wire model detected in advance from the point cloud is stored in the three-dimensional data storage unit 12, and the wire model.
  • the method of detecting the connection boundary point position will be described in.
  • the wire model corresponds to one cable stretched in a certain utility pole section. That is, a cable that is deformed by tension or the like or a cable that is not deformed is represented by a wire model.
  • a cable that is deformed by tension or the like or a cable that is not deformed is represented by a wire model.
  • the cable is represented by two quadratic curves.
  • the wire model is composed of these two quadratic curves, and there is a restriction that the three-dimensional positions of the two model end points match at the connection boundary point position.
  • a deformed cable is represented by a wire model composed of a plurality of quadratic curves
  • a cable without deformation is represented by a wire model composed of one quadratic curve.
  • the number of quadratic curves constructed is determined by the connection boundary points, and the quadratic curves that make up the same wire model are discontinuous at the connecting positions. That is, the wire model is a line segment having two end points composed of one quadratic curve or a plurality of quadratic curves.
  • the input unit 14 is a user interface such as a mouse or a keyboard, and receives parameters used by the point cloud analysis device 10 as input.
  • the parameter is, for example, information for collating a model such as a utility pole position and a cable position obtained in advance with a point cloud.
  • the input unit 14 may be an external storage medium such as a USB (Universal Serial Bus) memory that stores measurement information.
  • USB Universal Serial Bus
  • the calculation unit 20 includes a region of interest setting unit 30, a boundary point detection unit 32, and a connection division unit 34.
  • the boundary point detection unit 32 is an example of the estimation unit.
  • the calculation unit 20 performs the following processing for each of the wire models representing the cables stored in the three-dimensional data storage unit 12.
  • the area of interest setting unit 30 window-searches the area at the end or the middle of the wire model for the wire model including the quadratic curve model representing the cable, which is obtained from the point cloud consisting of three-dimensional points on the object.
  • the attention area obtained by the above method which is divided into a first area and a second area, is set.
  • the area of interest means an area of a certain size set by the user for searching for the position where the cable is deformed by connecting with the utility pole.
  • the area of interest is set while shifting the area of interest at regular intervals from the end point of the wire model representing a certain cable to the position of the other end point. If there is a utility pole in the middle of the wire model, pay attention to the position from a predetermined distance on one side to the position of the end point on the other side with respect to the position of the wire model corresponding to the utility pole in the middle part. Set the area of interest while shifting the area at regular intervals.
  • window search corresponds. It corresponds to the process of setting a certain region ROI (Region of Interest) set by the user at various positions on the input data.
  • ROI Region of Interest
  • FIG. 6 is a diagram showing an example of the setting range of the region of interest for each wire model.
  • the region of interest P is set in a range based on the start point and the end point of the end points.
  • any one of the end points may be arbitrarily determined as a start point and an end point.
  • the boundary point detection unit 32 compares the information regarding the first region with the information regarding the second region based on the point cloud and the wire model included in the region of interest for each of the regions of interest.
  • the connection boundary degree which represents the degree to which the division positions of the first region and the second region are the connection points between the cable and the utility pole, is calculated. Further, the boundary point detection unit 32 detects the connection boundary point, which is the connection point between the cable and the utility pole represented by the quadratic curve model, based on the connection boundary degree calculated for each of the regions of interest.
  • FIG. 7 is a diagram showing an example of the configuration of the boundary point detection unit 32 of the first embodiment.
  • the boundary point detection unit 32 includes a connection area error estimation unit 40 and a connection boundary degree calculation unit 42.
  • connection boundary degree calculation unit 42 calculates a connection boundary degree as a model approximation error by the connection boundary degree calculation unit 42 .
  • it is the method shown by the following realization method 1 or realization method 2.
  • Estimating the connecting boundary degree determined from the shape of the cable in the attention region P i determines a connection boundary points by thresholding.
  • realization method 1 and realization method 2 using the error obtained in the first region or the second region there are the following realization method 1 and realization method 2 using the error obtained in the first region or the second region, and any of the methods may be used.
  • the realization method 2 is used.
  • the realization method 1 is a quadratic curve model obtained from either the first region or the second region, as shown in the following equation (4), and represents the ratio at which the cable shape in the other region can be estimated.
  • the connection boundary degree is obtained as the model approximation error E. It is considered that the correlation is so high that the shape of the cable (point group on the cable) in the other region can be predicted by the quadratic curve model estimated from one region. That is, for each of the two regions, it is output that the larger the approximation error of the point group when using the curve model obtained from the other region, the larger the connection boundary degree.
  • a quadratic curve in the first region to be estimated from the secondary curve model M i2 an error between the point p i1 of the first region.
  • N2 is the number of point clouds included in the second region.
  • N1 is the number of point clouds included in the first region.
  • the model approximation error is obtained by subtracting the larger of the first error and the second error from the attention area error.
  • the region of interest error is an error between the quadratic curve model obtained from the point cloud included in the region of interest and the point cloud included in the region of interest.
  • the first error is an error between the quadratic curve model obtained from the point cloud included in the first region and the point cloud included in the first region.
  • the second error is an error between the quadratic curve model obtained from the point cloud included in the second region and the point cloud included in the second region.
  • the connection boundary degree E may be obtained by the following equation (5).
  • the average of the first error and the second error may be subtracted from the region of interest error instead of Max.
  • the reason for taking the difference between the first error and the second error, whichever is larger (max value), is to deal with the case where there is a small accessory in either area.
  • the approximation error becomes small only in one region and the deviation from the attention region error becomes large. Therefore, in order to suppress the determination that there is a connection boundary point even though there is almost no deformation, the difference is calculated using the average value and the max value. In order to estimate the presence or absence of deformation from the approximation error, it is necessary to suppress the influence of measurement error and accessories.
  • the connection region error estimation unit 40 has an attention region error, which is an error between the quadratic curve model obtained from the point group included in the attention region and the point group included in the attention region.
  • the first error which is the error between the quadratic curve model obtained from the point group included in the first region and the point group included in the first region, and the point group obtained from the second region 2
  • the second error which is the error between the next curve model and the point cloud included in the second region, is estimated.
  • connection boundary degree calculation unit 42 calculates the connection boundary degree based on the model approximation error, which is the difference between the region of interest error and the larger of the first error and the second error, according to the above equation (5). ..
  • the boundary point detection unit 32 determines the peak position of the connection boundary degree at the connection point of the cable represented by the quadratic curve model based on the connection boundary degree calculated for each of the regions of interest by the connection boundary degree calculation unit 42. Detected as a connection boundary point.
  • the connection dividing unit 34 divides the wire model based on the connection boundary point detected by the boundary point detection unit 32 and the position of the utility pole. In the division of the wire model, for example, it is determined from the position of the connection boundary point whether or not the utility pole exists in a predetermined range, and if it exists, the wire model is divided and the utility pole connected at the end point of the wire model. Reconnect.
  • the threshold value of the distance to the utility pole may be determined based on the standard length of the arm metal installed on the utility pole. In the embodiment of the present invention, it is set to 2 [m].
  • the degree of connection boundary it may be determined that the connection is made when the threshold value is exceeded.
  • This threshold value depends on the measurement conditions of the laser sensor and the like. Therefore, the threshold value may be determined as, for example, the average value of the connection boundary degree obtained in the region of interest at the position where the actual utility pole and the cable are connected.
  • a threshold value may be set as the minimum value of the connection boundary degree obtained in the region of interest at the position where the cable and the utility pole are actually connected.
  • FIG. 8 is a schematic block diagram showing an example of a computer functioning as a point cloud analysis device.
  • the point cloud analysis device 10 is realized by the computer 84 shown in FIG. 8 as an example.
  • the computer 84 includes a CPU 86, a memory 88, a storage unit 92 that stores the program 82, a display unit 94 that includes a monitor, and an input unit 96 that includes a keyboard and a mouse.
  • the CPU 86, the memory 88, the storage unit 92, the display unit 94, and the input unit 96 are connected to each other via the bus 98.
  • the storage unit 92 is realized by an HDD, SSD, flash memory, or the like.
  • a program 82 for making the computer 84 function as the point cloud analysis device 10 is stored in the storage unit 92.
  • the CPU 86 reads the program 82 from the storage unit 92, expands the program 82 into the memory 88, and executes the program 82.
  • the program 82 may be stored in a computer-readable medium and provided.
  • FIG. 9 is a flowchart showing an example of the processing flow by the program 82 according to the first embodiment.
  • the CPU 86 reads out and executes the program 82 stored in the storage unit 92.
  • the following processing is executed for the wire model. Further, the following processing executed for each quadratic curve model can be calculated in parallel in the program 82.
  • step S100 the attention area setting unit 30 is obtained in advance from the input unit 14, the wire model group representing the cable between the three-dimensional point cloud and the utility pole, the pole model group representing the utility pole, and the input unit 14. Get the parameters.
  • the area of interest setting unit 30 is the area of interest obtained by window-searching the wire model including the quadratic curve model around the utility pole at the end or intermediate portion of the wire model, and is the first area. and setting the divided region of interest P i to the second region.
  • the region of interest Pi is set to move at a predetermined interval S [m] within a predetermined range including the position corresponding to the electric pole of the quadratic curve model.
  • step S104 the boundary point detection unit 32 compares the information regarding the first region with the information regarding the second region based on the point cloud and the quadratic curve model included in the region of interest for each of the regions of interest. Then, the connection boundary degree is calculated.
  • step S106 the boundary point detection unit 32 determines whether or not the connection boundary degree has been detected up to the end point of the quadratic curve model, and if the boundary point detection unit 32 has detected the end point, the process proceeds to step S108, and if not, the end point is not detected. Returning to S102, the next region of interest Pi is set, and the process is repeated.
  • step S108 the boundary point detecting unit 32 detects the center position of the region of interest P i the connecting boundary of the quadratic curve model becomes the maximum value as a connecting boundary points.
  • the maximum value is, for example, a point at which the peak is as shown in FIG.
  • connection dividing unit 34 divides the wire model based on the connection boundary point detected by the boundary point detection unit 32 and the position of the utility pole.
  • FIG. 10 is a flowchart showing an example of a flow of processing for calculating the connection boundary degree according to the first embodiment.
  • connection area error estimator 40 the attention region P i, estimating a first error and the second error of the second region P i2 of the first region P i1. Specifically, the first error between the quadratic curve model Mi1 obtained from the point cloud included in the first region and the point cloud included in the first region Pi1 , and the points included in the second region. The second error between the quadratic curve model Mi2 obtained from the group and the point cloud included in the second region Pi2 is estimated.
  • connection area error estimator 40 the attention region P i, estimates the attention area error of the attention region P i. Specifically, it estimates the attention area error between the point group included in the quadratic curve model M i region of interest P i obtained from a group of points included in the target region.
  • connection boundary degree calculation unit 42 obtains the model approximation error obtained by subtracting the larger of the first error and the second error from the attention area error according to the above equation (5). calculated as the concatenation boundary of the P i.
  • the point cloud analysis device 10 provides information about the first region and information about the first region based on the point cloud included in the region of interest and the quadratic curve model for each region of interest.
  • the connection boundary degree indicating the degree to which the division positions of the first region and the second region of the region of interest are the connection points between the cable and the utility pole is calculated, and the region of interest is calculated.
  • the connection boundary point which is the connection point of the cable represented by the quadratic curve model is detected. Thereby, the connection point with the utility pole can be detected in consideration of the shape of the cable.
  • connection region error estimation unit 40 has a first error, which is an error between the quadratic curve model obtained from the point group included in the first region, and the point group included in the second region, and a first error.
  • the second error which is the error between the quadratic curve model obtained from the point group included in the second region and the point group included in the first region, is estimated, and the connection boundary degree calculation unit 42 performs the above (4).
  • the connection boundary degree may be calculated based on the model approximation error, which is the larger of the first error and the second error.
  • connection boundary degree is calculated based on the magnitude of the approximation error, but in the second embodiment, the connection boundary degree is calculated by machine learning using the feature vector.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 11 is a block diagram showing an example of the functional configuration of the point cloud analysis device 210 according to the second embodiment.
  • the boundary point detection unit 232 obtains a predetermined feature amount vector for each of the regions of interest, inputs it to a model for obtaining a connection point with a utility pole learned in advance, and calculates the connection boundary degree.
  • FIG. 12 is a diagram showing an example of the configuration of the boundary point detection unit 232 of the second embodiment.
  • the boundary point detection unit 232 includes a connection area error estimation unit 40, a connection boundary degree calculation unit 242, and a vector calculation generation unit 244.
  • the vector calculation generation unit 244 includes a plane approximation calculation unit 252, a peripheral distance detection unit 254, an arm metal detection unit 255, and a vector generation unit 256.
  • the vector calculation generation unit 244 represents plane information representing the error between the plane and the point group obtained from the point group included in the attention region, and the periphery representing the information between the quadratic curve model around the attention region and the attention region.
  • the information is calculated to generate a feature vector including the model approximation error, the plane information, and the peripheral information.
  • the feature amount vector is generated by connecting the following feature amounts (1) to (4).
  • (1) and (2) are features related to shape deviation
  • (3) and (4) are features related to the relative positional relationship with the surrounding structure.
  • the plane information is the feature amount of (2)
  • the peripheral information is the feature amount of (3) and (4).
  • connection of the feature amounts all of them may be combined, or they may be selected and combined.
  • the model approximation error obtained by the same method as the boundary point detection unit 32 of the first embodiment, and the number of points included in the first region and the second region of the region of interest are used as feature quantities. To do. When there is no connecting point, there is no deformation of the quadratic curve, and it is possible to estimate the shape of one region from either the point group information (model) of the first region and the second region.
  • the model approximation error obtained by the above equation (5) increases as the quadratic curve is deformed. Therefore, the larger the deformation, the higher the probability of existence of the connection point. It should be noted that the more end points, the smaller the number of points included in the region.
  • the feature amount is the plane approximation error of the region of interest.
  • the plane approximation error is an error between a plane that approximates a point cloud included in the region of interest and a point cloud in the region of interest.
  • tension is generated by the utility pole, so that the plane that approximates the point cloud included in the region of interest is likely to deviate from the quadratic curve shape of the cable (see FIG. 13). That is, it can be determined that the higher the degree of shape deviation from the plane that approximates the point cloud included in the region of interest, the higher the probability of existence of the connecting point.
  • FIG. 14 is a diagram for explaining a normal angle when there is an external force.
  • FIG. 13 is a diagram showing an example of the shape of the cable when there is an external force and when there is no external force.
  • the plane approximation calculation unit 252 calculates, as plane information, a plane approximation error representing an error between a plane that approximates a point group included in the region of interest and a point group of the region of interest for each of the regions of interest. Further, the plane approximation calculation unit 252 calculates the plane approximation normal angle, which is the angle formed by the plane normal and the horizontal plane that approximate the point group included in the region of interest.
  • Peripheral distance detection unit 254 calculates the distance between the area of interest and the nearest utility pole as peripheral information for each of the areas of interest. For the distance to the utility pole, the shortest distance between the straight line (central axis) connecting the lower end and the upper end of the utility pole and the central position of the region of interest may be calculated. Physically, it means the distance from the central position of the region of interest to the foot of the perpendicular to the central axis of the utility pole.
  • Arm-detection unit 255 for each region of interest, as the peripheral information, as if the criterion arm-exists, points to calculate the shortest distance from the utility pole position to the center position of the region of interest P i region Calculate the number of groups.
  • the vector generation unit 256 generates a feature amount vector including a model approximation error, plane information, and peripheral information for each of the regions of interest.
  • the connection boundary degree calculation unit 242 calculates the connection boundary degree for each of the regions of interest using a predetermined machine learning method based on the feature amount vector generated by the vector generation unit 256.
  • the machine learning method may be any method such as logistic regression analysis and rank learning such as AdaRank and RankNet.
  • the machine learning model used for calculating the connection boundary degree may be learned in advance using the learning data in which the correct answer label is attached to the feature quantity vector. Further, since the model approximation error includes the number of point groups in each of the first region and the second region, the connection boundary degree calculation unit 242 acquires the number of point groups in each region.
  • connection boundary degree calculation unit 242 Based on the feature amount vector generated by the part 256, the connection boundary degree is calculated by using a predetermined machine learning method.
  • FIG. 15 is a flowchart showing an example of a flow of processing for calculating the connection boundary degree according to the second embodiment.
  • step S1200 the connection area error estimation unit 40 and the connection boundary degree calculation unit 242 calculate the model approximation error of the region of interest.
  • the model approximation error is calculated by performing the same processing as in steps S200 to 204 of FIG.
  • connection boundary degree calculation unit 242 acquires the number of point groups in each of the first region and the second region for the region of interest.
  • step S1204 the plane approximation calculation unit 252 calculates, as plane information, a plane approximation error representing an error between the plane that approximates the point group included in the region of interest and the point group of the region of interest.
  • step S1206 the peripheral distance detection unit 254 detects the distance between the position of the utility pole and the center position of the region of interest as peripheral information.
  • step S1208 arm-detection unit 255, a determination of whether the reference arm-exists, calculates the number of the points in calculating the shortest distance from the utility pole position to the center position of the region of interest P i region .. That is, the amount of the point cloud present is calculated on the line segment from the center position of the region of interest to the foot of the perpendicular line from the center axis of the utility pole. Specifically, the number of points existing in the region from the shortest distance line segment to the distance r is used.
  • step S1210 the vector generation unit 256 generates a feature amount vector including a model approximation error including the number of point groups in each region, plane information, and peripheral information.
  • the boundary point detection unit 32 includes a model approximation error, plane information, and peripheral information for each of the regions of interest. Is generated, the connection boundary degree is calculated using a predetermined machine learning method, and the connection point, which is the connection point of the cable represented by the quadratic curve model, is calculated based on the connection boundary degree calculated for each of the regions of interest. Detect the boundary point. Thereby, the connection point with the utility pole can be detected in consideration of the shape of the cable.
  • the feature amount vector includes the feature amount of the relative positional relationship with the surrounding structure (arm, etc.). This makes it possible to estimate the connection relationship by connecting utility poles in consideration of the surrounding structures.
  • connecting boundary degree is high, to set the consolidated boundary of each feature amount.
  • connecting the boundary of extraction with position Q i may be calculated using a function such as decreases in inverse proportion, for example, in distance.
  • connection boundary degree is calculated using the learning result for the feature amount at the point of interest position of the wire model, and the position that becomes the maximum value is the connection candidate position (connection candidate position). It can be obtained as the connection boundary point position).
  • connection boundary degree at this candidate position is equal to or greater than the threshold value, it may be determined that the connection is made.
  • This threshold value may be determined using, for example, the average value of the degree of connection boundary obtained from the feature amount at the actual connection position. If you want to detect the connection boundary point position with high recall (without omission) even if there are some errors, set the threshold value using the minimum value of the connection boundary degree actually obtained from the feature amount at the connection position. You may.
  • the point cloud analyzer and method have been illustrated and described above as embodiments.
  • the embodiment may be in the form of a program for making the computer function as each part included in the point cloud analysis device.
  • the embodiment may be in the form of a storage medium that can be read by a computer that stores this program.
  • the configuration of the point cloud analysis device described in the above embodiment is an example, and may be changed depending on the situation within a range that does not deviate from the gist.
  • processing flow of the program described in the above embodiment is also an example, and even if unnecessary steps are deleted, new steps are added, or the processing order is changed within a range that does not deviate from the purpose. Good.
  • the processing according to the embodiment is realized by the software configuration by using the computer by executing the program has been described, but the present invention is not limited to this.
  • the embodiment may be realized by, for example, a hardware configuration or a combination of a hardware configuration and a software configuration.
  • Point cloud analysis device 10
  • 3D data storage unit 14
  • Input unit 20
  • Calculation unit 30
  • Attention area setting unit 32
  • Boundary point detection unit 34
  • Connection division unit 40
  • Connection area error estimation unit 42
  • Connection boundary degree calculation unit 210
  • Point cloud analysis device 232
  • Boundary Point detection unit 242
  • Connection boundary degree calculation unit 244
  • Vector calculation generation unit 252 Plane approximation calculation unit 254
  • Peripheral distance detection unit 255 Arm metal detection unit 256
  • Peripheral distance detection unit 255
  • Arm metal detection unit 256

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention makes it possible to accurately determine the connection between a cable and an electric pole. A point group analysis device that infers a connection point for a cable that is connected to an outdoor structure. The point group analysis device has an inference unit that associates a first area of the cable and a second area of the cable that is included in the first area and thereby infers whether the boundary between the first area and the second area is the connection point. The inference unit infers whether the boundary is the connection point by associating a point group for the second area and the shape of the second area as inferred from a first area model that is a model of the shape of the first area.

Description

点群解析装置、方法、およびプログラムPoint cloud analyzers, methods, and programs
 本発明は、点群解析装置、方法、およびプログラムに係り、特に、3次元点からなる点群から、線状構造物をモデル化する点群解析装置、方法、およびプログラムに関する。 The present invention relates to a point cloud analyzer, method, and program, and more particularly to a point cloud analyzer, method, and program that models a linear structure from a point cloud consisting of three-dimensional points.
 電力や通信インフラ設備は膨大な数が存在しており、その設備の安全性を確保するために、企業や自治体はその設備の保守保全業務を定期的に行う必要がある。例えば、電柱点検項目では、電柱単体でのひびやたわみの劣化点検だけでなく、その劣化の原因を把握するために電柱に連結したケーブルの数や、方向、また張力などを把握することが重要となる。つまり、たわんだ電柱を再度立て直したとき(更改工事)、その原因となる要因について対応するために連結した構造物について把握することが必要となる。例えば、たわんだ電柱に接続されたケーブルの張力を緩めるべきか、それともケーブルと反対方向に支線を配線すべきなのかなど、電柱と周辺構造物の把握が対策の検討に繋がる。 There are a huge number of electric power and communication infrastructure equipment, and in order to ensure the safety of the equipment, companies and local governments need to perform maintenance work on the equipment on a regular basis. For example, in utility pole inspection items, it is important not only to check the deterioration of cracks and deflections of the utility pole alone, but also to understand the number, direction, and tension of cables connected to the utility pole in order to understand the cause of the deterioration. It becomes. In other words, when the bent utility pole is rebuilt (renewal work), it is necessary to understand the connected structures in order to deal with the factors that cause it. For example, understanding the utility pole and surrounding structures, such as whether the tension of the cable connected to the bent utility pole should be relaxed or whether the branch line should be wired in the direction opposite to the cable, will lead to the examination of countermeasures.
 しかしながら、インフラ設備の数は膨大な数が存在し、かつ設備が存在する範囲は広範囲であるため、その保守保全業務の稼働量は大きいという問題がある。 However, since the number of infrastructure facilities is enormous and the range in which the facilities exist is wide, there is a problem that the amount of operation of the maintenance work is large.
 一方、近年では、モバイルマッピングシステム(MMS(Mobile Mapping System))と呼ばれるカメラやレーザースキャナを搭載した車が、街中を走行することで道路周辺の構造物である建造物や道路などの物体の表面の形状を計測できるシステムの利用が普及しつつある。このシステムは、GPS(全地球測位システム)やIMS(慣性計測装置)を用いて物体の表面を3次元の座標情報として記録できる。この技術を利用して、道路周辺の設備の状態を自動推定することへの活用が期待されている。ここで、3次元の座標情報とは、現実空間における位置と対応した、3次元の座標情報であり、座標情報での相対的位置が、現実空間における位置関係と対応している。 On the other hand, in recent years, a car equipped with a camera or a laser scanner called a mobile mapping system (MMS (Mobile Mapping System)) travels in the city and travels on the surface of objects such as buildings and roads that are structures around the road. The use of a system that can measure the shape of a building is becoming widespread. This system can record the surface of an object as three-dimensional coordinate information using GPS (Global Positioning System) or IMS (Inertial Measurement Unit). It is expected that this technology will be used to automatically estimate the condition of equipment around roads. Here, the three-dimensional coordinate information is the three-dimensional coordinate information corresponding to the position in the real space, and the relative position in the coordinate information corresponds to the positional relationship in the real space.
 MMSを屋外で走行し、レーザ計測することでインフラ構造物(以下、被写体とよぶ)の表面形状をミリ単位の精度で記録することができ、非特許文献1や特許文献1のように、ケーブルを2次曲線(カテナリ曲線や放物線曲線)などでモデル化する技術開発や、電柱を計測した点群について、曲がった円筒モデルを当てはめることで、電柱のたわみ量を自動抽出する技術開発が行われている。 By traveling the MMS outdoors and measuring with a laser, the surface shape of the infrastructure structure (hereinafter referred to as the subject) can be recorded with an accuracy of millimeters, and as in Non-Patent Document 1 and Patent Document 1, the cable Development of technology to model a quadratic curve (catenary curve or parabolic curve), etc., and development of technology to automatically extract the amount of deflection of a utility pole by applying a curved cylindrical model to a group of points measured with a utility pole ing.
 これらの技術を応用して、それぞれのモデルについて、3次元空間中における距離を計算し、その距離が近いかどうか調べることで、モデル同士が連結しているか判定することも可能である。例えば、電柱から一定半径以内にケーブルモデルが存在する場合、その電柱と連結されていると判定される。 By applying these technologies, it is possible to determine whether the models are connected by calculating the distance in the three-dimensional space for each model and checking whether the distance is close. For example, if the cable model exists within a certain radius from the utility pole, it is determined that the cable model is connected to the utility pole.
特許第5981886号公報、日本電信電話株式会社 新垣 仁、島村 潤、新井 啓之、谷口 行信Patent No. 5981886, Nippon Telegraph and Telephone Corporation, Hitoe Arakaki, Jun Shimamura, Hiroyuki Arai, Yukinobu Taniguchi
 しかしながら、ケーブルと電柱の連結については、電柱の付属品(腕金)がある場合、電柱から数メートル離れた位置にケーブルが存在するため、一概に距離を基準とした閾値処理では判定が困難である。また、都会の市街地では、連結はしていないがケーブル近くに、例えばケーブルから数センチほどの近くに、存在する電柱も多数存在するため、閾値距離の範囲を広げると余計なケーブルまでが連結されたと判定されてしまう。つまり、電柱モデルとケーブルモデルの空間的な情報だけからは、連結の判定が困難なことがわかる。 However, regarding the connection between the cable and the utility pole, if there is an accessory (arm) of the utility pole, the cable exists at a position several meters away from the utility pole, so it is difficult to make a general judgment by threshold processing based on the distance. is there. Also, in urban areas, there are many utility poles that are not connected but are located near the cables, for example, a few centimeters from the cables, so if the threshold distance range is widened, even extra cables will be connected. It will be judged that it was. In other words, it can be seen that it is difficult to determine the connection only from the spatial information of the utility pole model and the cable model.
また、MMSのようなレーザ計測した点群は、計測位置から遠距離にあるほど細かな物体を計測しづらいという性質があり、ケーブルと電柱の連結固定金具の計測をすることが難しい。難しいとは、連結のための物体が小さいためにレーザ点があたりにくいことを意味する。ケーブルと電柱が離れている場合には、例えば取り付けようの腕金(棒状の物体)も存在することもあるが、電柱とケーブルの連結箇所については、多数のケーブルが存在するため、オクルージョンが発生していることが多く、腕金自身を計測することがうまくいかないことも多々あるからである。 Further, a point cloud measured by a laser such as MMS has a property that it is difficult to measure a fine object as the distance from the measurement position increases, and it is difficult to measure a connecting fixing bracket between a cable and a utility pole. Difficult means that the laser point is difficult to hit because the object for connection is small. If the cable and the utility pole are separated, for example, there may be an arm (rod-shaped object) to attach, but occlusion occurs because there are many cables at the connection point between the utility pole and the cable. This is because there are many cases where it is difficult to measure the arm itself.
 例えば、連結位置周辺の点群が1~2mほどの領域で欠損している場合でも、ケーブルをモデル化していれば、そのモデルを延長することで電柱と交差しているかどうか、もしくは空間的に近くに存在しているかどうかは把握できるが、上述した通り、空間的な情報だけでは連結の判定までは難しい。
 
For example, even if the point group around the connection position is missing in the area of about 1 to 2 m, if the cable is modeled, whether or not it intersects the utility pole by extending the model, or spatially It is possible to know whether or not it exists nearby, but as mentioned above, it is difficult to determine the connection using only spatial information.
 本発明は、上記事情を鑑みて成されたものであり、ケーブルと電柱との連結を精度よく判定するための点群解析装置、方法、およびプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a point cloud analysis device, a method, and a program for accurately determining the connection between a cable and a utility pole.
 上記目的を達成するために、第1の態様に係る点群解析装置は、屋外構造物に接続されるケーブルの連結点を推定する点群解析装置であって、前記ケーブルに含まれる第一の領域と、前記第一の領域と前記ケーブルに含まれる領域である第二の領域と、を関連付けることで前記第一の領域と前記第二の領域の境界が前記連結点であるかを推定する推定部を有し、前記推定部は、前記第一の領域の形状をモデル化した第一領域モデルから推定される前記第二の領域の形状と、前記第二の領域の点群と、を関連付けることで前記連結点であるかを推定している。 In order to achieve the above object, the point cloud analysis device according to the first aspect is a point cloud analysis device that estimates the connection point of the cable connected to the outdoor structure, and is the first point cloud analysis device included in the cable. By associating the region with the second region which is a region included in the cable, it is estimated whether the boundary between the first region and the second region is the connection point. The estimation unit has an estimation unit, and the estimation unit has a shape of the second region estimated from a first region model that models the shape of the first region, and a point cloud of the second region. It is estimated whether it is the connection point by associating it.
 第2の態様に係る点群解析方法は、屋外構造物に接続されるケーブルの連結点を推定する点群解析方法であって、前記ケーブルに含まれる第一の領域と、前記第一の領域と前記ケーブルに含まれる領域である第二の領域と、を関連付けることで前記第一の領域と前記第二の領域の境界が前記連結点であるかを推定し、前記推定において、前記第一の領域の形状をモデル化した第一領域モデルから推定される前記第二の領域の形状と、前記第二の領域の点群と、を関連付けることで前記連結点であるかを推定している。 The point cloud analysis method according to the second aspect is a point cloud analysis method for estimating a connection point of a cable connected to an outdoor structure, and is a first region included in the cable and the first region. By associating with the second region, which is a region included in the cable, it is estimated whether the boundary between the first region and the second region is the connection point, and in the estimation, the first region is estimated. By associating the shape of the second region estimated from the first region model that models the shape of the region with the point cloud of the second region, it is estimated whether the connection point is the connection point. ..
 第3の態様に係るプログラムは、コンピュータに、屋外構造物に接続されるケーブルの連結点を推定する点群解析装置の推定部により、前記ケーブルに含まれる第一の領域と、前記第一の領域と前記ケーブルに含まれる領域である第二の領域と、を関連付けることで前記第一の領域と前記第二の領域の境界が前記連結点であるかを推定し、前記推定において、前記第一の領域の形状をモデル化した第一領域モデルから推定される前記第二の領域の形状と、前記第二の領域の点群と、を関連付けることで前記連結点であるかを推定している、ように処理を実行させるためのプログラムである。 The program according to the third aspect includes the first region included in the cable and the first region by the estimation unit of the point cloud analyzer that estimates the connection point of the cable connected to the outdoor structure to the computer. By associating the region with the second region, which is a region included in the cable, it is estimated whether the boundary between the first region and the second region is the connection point, and in the estimation, the first region is estimated. By associating the shape of the second region estimated from the first region model that models the shape of one region with the point cloud of the second region, it is estimated whether the connection point is the connection point. It is a program to execute the process as if it were.
 本発明の点群解析装置、方法、およびプログラムによれば、電柱とケーブルや引込線などの線状構造物が連結しているかどうかを精度よく判定することが可能となり、腕金などの影響により電柱から離れたケーブルや、電柱近くを通るが電柱と連結していないケーブルについても、精度よく連結の判定をすることが可能となる。また、電柱から離れたケーブルを連結する際に、誤って通信線でない線状構造物や電力線でない線状構造物を、電柱と連結すると誤判定してしまうことを抑制する効果がある。 According to the point group analyzer, method, and program of the present invention, it is possible to accurately determine whether or not a utility pole is connected to a linear structure such as a cable or a drop wire, and the utility pole is affected by the influence of an arm or the like. It is possible to accurately determine the connection of a cable that is separated from the cable or a cable that passes near the utility pole but is not connected to the utility pole. Further, when connecting a cable away from a utility pole, it is possible to prevent an erroneous determination that a linear structure that is not a communication line or a linear structure that is not a power line is connected to a utility pole.
二本の電柱とその周辺に存在するケーブルを真上から見たイメージ図である。It is an image diagram of the two utility poles and the cables existing around them as seen from directly above. 二本の電柱とその周辺に存在するケーブルを真上から見たイメージ図であり、ケーブルを分割したときのイメージ図である。It is an image diagram of the two utility poles and the cables existing around them as viewed from directly above, and is an image diagram when the cables are divided. 電柱と連結しているケーブルの変形を表すためのイメージ図である。It is an image diagram for showing the deformation of the cable connected to a utility pole. 連結境界点を探索した際の連結境界点位置の推定結果のイメージ図である。It is an image diagram of the estimation result of the connection boundary point position when searching the connection boundary point. それぞれの領域内でモデルパラメータを推定する場合のイメージ図である。It is an image diagram when the model parameter is estimated in each area. 第1の実施形態に係る点群解析装置の機能的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of the point group analysis apparatus which concerns on 1st Embodiment. ワイヤモデルごとの注目領域の設定範囲の一例を示す図である。It is a figure which shows an example of the setting range of the area of interest for each wire model. 第1の実施形態の境界点検出部の構成の一例を示す図である。It is a figure which shows an example of the structure of the boundary point detection part of 1st Embodiment. 点群解析装置として機能するコンピュータの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the computer which functions as a point cloud analysis apparatus. 第1の実施形態に係るプログラムによる処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the processing flow by the program which concerns on 1st Embodiment. 第1の実施形態に係る連結境界度の算出の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the process flow of the calculation of the connection boundary degree which concerns on 1st Embodiment. 第2の実施形態に係る点群解析装置の機能的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of the point cloud analysis apparatus which concerns on 2nd Embodiment. 第2の実施形態の境界点検出部の構成の一例を示す図である。It is a figure which shows an example of the structure of the boundary point detection part of the 2nd Embodiment. 外力がある場合の法線角度を説明するため図である。It is a figure for demonstrating the normal angle when there is an external force. 外力がある場合と外力がない場合のケーブルの形状の一例を示す図である。It is a figure which shows an example of the shape of the cable when there is an external force and when there is no external force. 第2の実施形態に係る連結境界度の算出の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the process flow of the calculation of the connection boundary degree which concerns on 2nd Embodiment.
 以下、図面を参照して本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施形態に係る手法は、点群解析により計測した点群から、ケーブルと周辺構造物間との接続関係を推定するための技術である。特に、ケーブルと電柱との連結を判定するための技術である。 The method according to the embodiment of the present invention is a technique for estimating the connection relationship between the cable and the surrounding structure from the point cloud measured by the point cloud analysis. In particular, it is a technique for determining the connection between a cable and a utility pole.
 本発明の実施形態において、「ケーブル」とは、光ファイバケーブルや電話用メタルケーブル、また電力用の高圧線、低圧線を全て包含したインフラ設備用の線状構造物として表す。一方、例えば、商店街の垂れ幕用のロープや洗濯用の物干し竿などの細長い構造物については、ケーブルでない線状構造物として表す。 In the embodiment of the present invention, the "cable" is represented as a linear structure for infrastructure equipment including all optical fiber cables, metal cables for telephones, high-voltage lines for electric power, and low-voltage lines. On the other hand, for example, an elongated structure such as a rope for a hanging curtain in a shopping district or a clothesline for washing is represented as a linear structure that is not a cable.
 これら線状構造物は、非特許文献1のような曲線モデルをあてはめることにより、計測した点群から曲線モデルとして表現することが可能である。以降の説明においては、点群解析技術によりケーブルが曲線モデル(ワイヤモデルと呼ぶ)としてモデル化され、そのモデル化したものを用いて、電柱と曲線モデルが連結するかどうかを判定する。ケーブルのワイヤモデル化については、例えば既存手法により自動生成ができる。 These linear structures can be expressed as a curve model from the measured point cloud by applying a curve model as in Non-Patent Document 1. In the following description, the cable is modeled as a curve model (called a wire model) by the point cloud analysis technique, and the modeled one is used to determine whether or not the utility pole and the curve model are connected. The wire modeling of the cable can be automatically generated by, for example, an existing method.
 モデル化のメリットとして、ある注目したケーブルについて、注目したケーブルの物理的な形状情報を調べられることが挙げられる。例えば、長さを調べたいときに、モデル化していれば端点(始点と終点)間の距離から計算できるし、モデル間の距離を計算することで、注目ケーブルと周辺のケーブルとの離隔距離を求めることも可能となる。 One of the merits of modeling is that you can check the physical shape information of the cable of interest for a certain cable of interest. For example, when you want to check the length, if you model it, you can calculate it from the distance between the end points (start point and end point), and by calculating the distance between the models, you can calculate the separation distance between the cable of interest and the surrounding cable. It is also possible to ask.
 つまり、計測した点群の状態では、どの点がどの被写体の表面を計測した点であるかはわからないが、点群解析することにより、どの点が何を表すのか把握でき、モデル化により被写体の物理的な情報がわかる。 In other words, in the state of the measured point cloud, it is not known which point is the point that measured the surface of which subject, but by point cloud analysis, it is possible to grasp which point represents what, and by modeling the subject's surface. Know the physical information.
 本発明の実施形態の処理概要全体について説明する。図1Aおよび図1Bは、二本の電柱とその周辺に存在するケーブルを真上から見たイメージ図である。図1Bには、連結判定を行いケーブルを分割したときのイメージ図を示してある。破線で囲われているのがケーブルのモデル(ワイヤモデル)の端点を示し、一点鎖線で囲われているのがケーブルと電柱の連結された位置(連結点)を示す。 The entire processing outline of the embodiment of the present invention will be described. 1A and 1B are image views of the two utility poles and the cables existing around them as viewed from directly above. FIG. 1B shows an image diagram when the connection is determined and the cable is divided. The end point of the cable model (wire model) is indicated by the broken line, and the connection position (connection point) of the cable and the utility pole is indicated by the alternate long and short dash line.
 図1Aに示すように、電柱1-電柱2の間にワイヤモデルが所属している電柱間の接続関係があったとする。この場合、まず、電柱モデルの有無を確認する。図1Bに示すように、電柱と連結されていると判定された場合には、ワイヤモデルを分断し、電柱間の接続関係を登録し直す。 As shown in FIG. 1A, it is assumed that there is a connection relationship between the utility poles 1 to the utility pole 2 to which the wire model belongs. In this case, first check the existence of the utility pole model. As shown in FIG. 1B, when it is determined that the utility pole is connected, the wire model is divided and the connection relationship between the utility poles is re-registered.
 図2に示すように、電柱と連結しているケーブル1においては、電柱と連結している位置(連結位置Q)において変形が生じるため、ケーブルの形状が2次曲線の形状から変形してしまう。ケーブル2では、変形が生じないため、1つの2次曲線として十分表現可能である。実際には計測した点群には計測ノイズがあり、誇張表現したイメージ図ほど明確に変曲点が目視によりわかりにくいこともある。 As shown in FIG. 2, in the cable 1 connected to the utility pole, the shape of the cable is deformed from the shape of the quadratic curve because the cable 1 is deformed at the position connected to the utility pole (connection position Q). .. Since the cable 2 is not deformed, it can be sufficiently expressed as one quadratic curve. Actually, there is measurement noise in the measured point cloud, and it may be difficult to visually understand the inflection point as clearly as the exaggerated image diagram.
 電柱と連結されていない場合、ある領域について注目したときに、1つの2次曲線モデルでも近似精度が高い(2つのモデルで近似したときとの差分が小さい)。一方、電柱との連結により変形した場合には、形状が乖離するために、その位置を境界として2つの曲線で近似した方が近似精度が高くなる。そのため、領域を分けてモデル化した方が、近似精度が高くなるかどうかを調べることにより、連結境界点位置を推定することが可能となる。 When not connected to a utility pole, when focusing on a certain area, the approximation accuracy is high even with one quadratic curve model (the difference between the two models is small). On the other hand, when the shape is deformed due to the connection with the utility pole, the shapes deviate from each other, so that the approximation accuracy is higher when the two curves are approximated with the position as the boundary. Therefore, it is possible to estimate the position of the connection boundary point by examining whether or not the approximation accuracy is higher when the region is modeled separately.
 本発明の実施形態では、上記の性質に着目し、電柱との連結位置において連結しているかの判定をする指標として、連結境界度を求める。本発明の実施形態において、ケーブルと電柱との連結位置を、以降では連結境界点とよぶ。図3は、連結境界点を探索した際の連結境界点位置の推定結果のイメージ図である。図3の模式図では、ユーザが設定した注目位置Qを中心として、一定の大きさの領域P(注目領域)と、その位置Qにおける連結境界度を表現している。図3に示すように、連結境界度は連結境界度のピーク(極大値)の位置においてに連結点が存在すると判定する。 In the embodiment of the present invention, paying attention to the above-mentioned properties, the degree of connection boundary is obtained as an index for determining whether or not the utility pole is connected at the connection position. In the embodiment of the present invention, the connection position between the cable and the utility pole is hereinafter referred to as a connection boundary point. FIG. 3 is an image diagram of the estimation result of the connection boundary point position when the connection boundary point is searched. In the schematic diagram of FIG. 3, a region Pi (attention region) of a certain size and a connection boundary degree at the position Q i are expressed centering on the attention position Q i set by the user. As shown in FIG. 3, the connection boundary degree determines that the connection point exists at the position of the peak (maximum value) of the connection boundary degree.
 本発明の実施形態では、電柱と連結しているか判定をする指標である、連結境界度を元に判定を行う。具体的には、図4のように、ケーブル上の注目位置Qにおける注目領域Pについて設定した2つの領域PiaとPibにおいて、それぞれの領域内でのモデルパラメータを推定し、各領域内のパラメータの相関が低いほど分割している可能性が高いと考える。記号iは、注目領域を区別するための番号であり、i=1,2,3,…,Np(Npは注目領域の総数)という整数値をとる。図4の例では、領域Pのi=1の領域のみを描画しており、領域Piaは領域PをQの位置で半分にしたときの左側の領域、領域Pibは右側の領域となっている。 In the embodiment of the present invention, the determination is made based on the degree of connection boundary, which is an index for determining whether or not the utility pole is connected. Specifically, as shown in FIG. 4, in the two regions P ia and P ib set for the target area P i at the target position Q i on the cable, to estimate the model parameters at each area, each area It is considered that the lower the correlation of the parameters in, the higher the possibility of division. The symbol i is a number for distinguishing the region of interest, and takes an integer value of i = 1,2,3, ..., Np (Np is the total number of regions of interest). In the example of FIG. 4, has been drawn only i = 1 area of the region P i, the left area when the area P ia is that half the area P i at the location of the Q, region P ib right area It has become.
 ここで、ケーブル全体を2つの領域に分けて解析をするのではなくて、図4のように注目位置から一定の範囲の領域について注目するのは、1つのケーブル上に連結境界点が2つ以上ある可能性もあるためである。つまり、連結境界点が1つしか存在しない場合は、ケーブル全体を2つの領域にして本発明の実施形態の処理を実施しても問題ないが、2つ以上存在する場合には正しく連結境界度が算出されないため、それぞれの一部の領域ごとに解析をする必要である。 Here, instead of analyzing the entire cable by dividing it into two regions, it is important to pay attention to the region within a certain range from the attention position as shown in FIG. 4 with two connecting boundary points on one cable. This is because there is a possibility that there is more than that. That is, when there is only one connection boundary point, there is no problem even if the entire cable is set to two regions and the processing of the embodiment of the present invention is performed, but when there are two or more, the connection boundary degree is correct. Is not calculated, so it is necessary to analyze each part of the area.
 ここで、推定するモデルパラメータは、分割されたケーブルにおける全てのモデルパラメータである。例えば、連結境界点が3つの場合は、4つのモデルが求まる。X,Y,Z座標値を持つデータ(点群)からモデルパラメータを求めているため、当該モデルパラメータにより表現されるモデルは位置および方向を含む概念である。モデルパラメータによるワイヤモデルからは、鉛直方向とモデル(2次曲線の存在する平面)のなす角度、つまりモデルの水平面に対する傾き方向がわかる。また、地面点群があれば、モデルとの距離により、地面からの最低地上高やその最低地上となる3次元位置も求めることができる。 Here, the model parameters to be estimated are all the model parameters in the divided cable. For example, when there are three connecting boundary points, four models can be obtained. Since the model parameters are obtained from the data (point cloud) having the X, Y, and Z coordinate values, the model represented by the model parameters is a concept including the position and the direction. From the wire model based on the model parameters, the angle between the vertical direction and the model (the plane on which the quadratic curve exists), that is, the inclination direction of the model with respect to the horizontal plane can be known. In addition, if there is a ground point cloud, the minimum ground clearance from the ground and the three-dimensional position that is the minimum ground clearance can be obtained from the distance from the model.
 また、電柱と連結されるためには、注目するケーブル周辺に連結する対象となる電柱が存在していることが必要である。そこで、実施形態では、注目するケーブルの形状だけでなく、周辺の電柱との相対位置関係も考慮することで、精度よく連結境界点位置を推定する。 Also, in order to be connected to a utility pole, it is necessary that there is a utility pole to be connected around the cable of interest. Therefore, in the embodiment, the connection boundary point position is estimated accurately by considering not only the shape of the cable of interest but also the relative positional relationship with the surrounding utility poles.
[第1の実施形態]
<第1の実施形態に係る点群解析装置の構成>
[First Embodiment]
<Configuration of point cloud analysis device according to the first embodiment>
 図5は、第1の実施形態に係る点群解析装置10の機能的な構成の一例を示すブロック図である。 FIG. 5 is a block diagram showing an example of the functional configuration of the point cloud analysis device 10 according to the first embodiment.
 図5に示すように、点群解析装置10は、演算部20と、3次元データ記憶部12と、入力部14と、を備えている。 As shown in FIG. 5, the point cloud analysis device 10 includes a calculation unit 20, a three-dimensional data storage unit 12, and an input unit 14.
 3次元データ記憶部12は、点群情報を記憶する装置である。ここで、3次元点群とは、固定レーザセンサやMMSのように移動体に搭載され、かつ、計測位置をスキャンしながら、物体上の3次元点を表す点群を計測されたデータを想定している。計測センサは、例えばレーザレンジファインダや、赤外線センサ、または超音波センサなど、被写体とセンサとの距離を測定可能な装置であればよい。 The three-dimensional data storage unit 12 is a device that stores point cloud information. Here, the three-dimensional point cloud is assumed to be data mounted on a moving body such as a fixed laser sensor or MMS, and the point cloud representing a three-dimensional point on an object is measured while scanning the measurement position. doing. The measurement sensor may be a device capable of measuring the distance between the subject and the sensor, such as a laser range finder, an infrared sensor, or an ultrasonic sensor.
 移動体に搭載された計測システムとは、例えばレーザレンジファインダを、GPSが搭載された車の上、もしくはGPSの搭載された飛行機に搭載し、移動しながら計測することで、屋外の環境の地物を被写体とし、例えば、ケーブル、建物、ガードレール、道路地面などであり、これら被写体表面の3次元位置を計測するシステムである。第1の実施形態においては、3次元データ記憶部12へ入力されるデータは、車上にGPSとレーザレンジファインダとが搭載されているMMSを用いて、被写体の物体の表面上の位置を計測した計測結果である3次元点群とする。第1の実施形態においては、被写体の物体は電柱、ケーブル、および電柱に係るその他の支線および電柱周辺に存在する構造物とする。 A measurement system mounted on a moving body is, for example, a laser range finder mounted on a GPS-equipped vehicle or an airplane equipped with GPS and measured while moving to create an outdoor environment. It is a system that measures the three-dimensional position of the surface of an object, for example, a cable, a building, a guardrail, a road ground, or the like. In the first embodiment, the data input to the three-dimensional data storage unit 12 measures the position on the surface of the object of the subject by using an MMS equipped with GPS and a laser range finder on the vehicle. Let it be a three-dimensional point cloud which is the measurement result. In the first embodiment, the object of the subject is a utility pole, a cable, and other branch lines related to the utility pole and a structure existing around the utility pole.
 また、3次元データ記憶部12は、取得した点群から求められた、ケーブルを表すワイヤモデルの各々を保持している。また、電柱を表すポールモデルの各々を保持している。ワイヤモデルと電柱とは、ワイヤモデルの端点位置からいずれの電柱と連結しているかの接続関係の情報を持つ。 Further, the three-dimensional data storage unit 12 holds each of the wire models representing the cables obtained from the acquired point cloud. It also holds each of the pole models that represent utility poles. The wire model and the utility pole have information on the connection relationship of which utility pole is connected from the end point position of the wire model.
 ワイヤモデルとは、3次元空間中に存在するN次多項式やスプライン曲線、または区分的に滑らかな連続な線とする。数学的には、一部区間に微分不可であるが、連続な線分を意味し、例えば原点で微分不可なy=|x|(絶対値)が該当する。 The wire model is an Nth-order polynomial or spline curve existing in three-dimensional space, or a piecewise smooth continuous line. Mathematically, it means a continuous line segment that cannot be differentiated in some sections, and for example, y = | x | (absolute value) that cannot be differentiated at the origin corresponds.
 ワイヤモデルは、2つの端点を持つ連続線によってケーブルの中心軸として表現する。中心軸に2つの端点を決められ、かつ、一方の端点からの距離に応じた1つのみのパラメータを用いて、3次元位置やワイヤモデルの地上高などの物理的な値を一意に決められるモデルと定義する。ここで、ワイヤモデルにおいて、端点における始点と終点との区別は必要なく、中心軸上に2つ端点が設定できればよい。3次元点群について、既存手法によって、ワイヤモデルを検出することができる。以降、ケーブルについては太さを無視して、中心軸をワイヤモデルで表現されるものとし、点群から事前に検出されたワイヤモデルが3次元データ記憶部12に格納されているとし、ワイヤモデルにおいて連結境界点位置を検出する方法について記載する。 The wire model is represented as the central axis of the cable by a continuous line with two end points. Two endpoints can be determined on the central axis, and physical values such as the three-dimensional position and the ground height of the wire model can be uniquely determined using only one parameter according to the distance from one endpoint. Defined as a model. Here, in the wire model, it is not necessary to distinguish between the start point and the end point at the end points, and it is sufficient that two end points can be set on the central axis. A wire model can be detected for a three-dimensional point cloud by an existing method. Hereafter, it is assumed that the central axis of the cable is represented by a wire model, ignoring the thickness, and that the wire model detected in advance from the point cloud is stored in the three-dimensional data storage unit 12, and the wire model. The method of detecting the connection boundary point position will be described in.
 本発明の実施形態において、ワイヤモデルとは、ある電柱区間に張られた1つのケーブルに対応する。すなわち、張力等により変形されたケーブルであろうと、変形されないケーブルであってもワイヤモデルで表現される。例えば、電柱との連結により注目するケーブルが変形しているときには、そのケーブルは2つの2次曲線で表現される。この2つの2次曲線によりワイヤモデルは構成され、連結境界点位置において2つのモデル端点の3次元位置は一致するという制約がある。 In the embodiment of the present invention, the wire model corresponds to one cable stretched in a certain utility pole section. That is, a cable that is deformed by tension or the like or a cable that is not deformed is represented by a wire model. For example, when the cable of interest is deformed due to the connection with the utility pole, the cable is represented by two quadratic curves. The wire model is composed of these two quadratic curves, and there is a restriction that the three-dimensional positions of the two model end points match at the connection boundary point position.
 例えば、変形されたケーブルについては、複数の2次曲線で構成されたワイヤモデルで表現され、変形がないケーブルについては、1つの2次曲線で構成されたワイヤモデルで表現される。構成される2次曲線の数は連結境界点により決定され、同一のワイヤモデルを構成する2次曲線は、連結位置において不連続である。つまり、ワイヤモデルは、1つの2次曲線、または複数の2次曲線で構成された、2つの端点を有する線分である。 For example, a deformed cable is represented by a wire model composed of a plurality of quadratic curves, and a cable without deformation is represented by a wire model composed of one quadratic curve. The number of quadratic curves constructed is determined by the connection boundary points, and the quadratic curves that make up the same wire model are discontinuous at the connecting positions. That is, the wire model is a line segment having two end points composed of one quadratic curve or a plurality of quadratic curves.
 入力部14は、マウスやキーボードなどのユーザーインターフェースであり、点群解析装置10で使用するパラメータを入力として受け付けるものである。パラメータは、例えば、予め求められた電柱位置およびケーブル位置等のモデルと点群とを照合するための情報である。また、入力部14は、計測情報を記憶したUSB(Universal Serial Bus)メモリなどの外部記憶媒体でもよい。 The input unit 14 is a user interface such as a mouse or a keyboard, and receives parameters used by the point cloud analysis device 10 as input. The parameter is, for example, information for collating a model such as a utility pole position and a cable position obtained in advance with a point cloud. Further, the input unit 14 may be an external storage medium such as a USB (Universal Serial Bus) memory that stores measurement information.
 演算部20は、注目領域設定部30、境界点検出部32、および連結分割部34を備えている。なお、境界点検出部32が推定部の一例である。 The calculation unit 20 includes a region of interest setting unit 30, a boundary point detection unit 32, and a connection division unit 34. The boundary point detection unit 32 is an example of the estimation unit.
 演算部20では、3次元データ記憶部12に記憶されているケーブルを表現するワイヤモデルの各々について以下の処理を行う。 The calculation unit 20 performs the following processing for each of the wire models representing the cables stored in the three-dimensional data storage unit 12.
 注目領域設定部30は、物体上の3次元点からなる点群から求められた、ケーブルを表す2次曲線モデルを含むワイヤモデルについて、ワイヤモデルの端部または中間部の領域をウインドウサーチすることにより得られる注目領域であって、第一の領域および第二の領域に分割された注目領域を設定する。 The area of interest setting unit 30 window-searches the area at the end or the middle of the wire model for the wire model including the quadratic curve model representing the cable, which is obtained from the point cloud consisting of three-dimensional points on the object. The attention area obtained by the above method, which is divided into a first area and a second area, is set.
 ここで、注目領域とは、電柱との連結によりケーブルが変形した位置を探索するための、ユーザが設定した一定の大きさの領域を意味する。具体的には、あるケーブルを表現したワイヤモデルの端点から、もう片方の端点位置まで、注目領域を一定の間隔でずらしつつ注目領域を設定する。また、ワイヤモデルの中間部に電柱が存在する場合には、当該中間部の電柱に対応するワイヤモデルの位置に対して一方側に所定距離離れた位置から、他方側の端点位置近くまで、注目領域を一定の間隔でずらしつつ注目領域を設定する。 Here, the area of interest means an area of a certain size set by the user for searching for the position where the cable is deformed by connecting with the utility pole. Specifically, the area of interest is set while shifting the area of interest at regular intervals from the end point of the wire model representing a certain cable to the position of the other end point. If there is a utility pole in the middle of the wire model, pay attention to the position from a predetermined distance on one side to the position of the end point on the other side with respect to the position of the wire model corresponding to the utility pole in the middle part. Set the area of interest while shifting the area at regular intervals.
 2次元の画像解析処理でいえば、ウインドウサーチが対応する。ユーザが設定した一定の領域ROI(Region of Interest)を、入力データ上の様々な位置に設定する処理に対応する。本発明の実施形態においては、連結境界点はケーブル上にあるため、ケーブルを表現するワイヤモデルの端点間の位置に、このROIを設定すれば十分である。 Speaking of two-dimensional image analysis processing, window search corresponds. It corresponds to the process of setting a certain region ROI (Region of Interest) set by the user at various positions on the input data. In the embodiment of the present invention, since the connection boundary point is on the cable, it is sufficient to set this ROI at a position between the end points of the wire model representing the cable.
 図6は、ワイヤモデルごとの注目領域の設定範囲の一例を示す図である。図6に示すように、注目領域Pは端点の始点と終点を基準にした範囲で設定する。なお、端点のいずれかを始点、終点と任意に定めてよい。領域の大きさを示すdはユーザが設定する値であり、本実施形態ではd=2.0[m]とする。 FIG. 6 is a diagram showing an example of the setting range of the region of interest for each wire model. As shown in FIG. 6, the region of interest P is set in a range based on the start point and the end point of the end points. In addition, any one of the end points may be arbitrarily determined as a start point and an end point. D indicating the size of the region is a value set by the user, and d = 2.0 [m] in the present embodiment.
 境界点検出部32は、注目領域の各々について、注目領域に含まれる点群およびワイヤモデルに基づいて、第一の領域に関する情報と、第二の領域に関する情報とを比較して、注目領域の第一の領域および第二の領域の分割位置が、ケーブルと電柱との連結点である度合いを表す連結境界度を算出する。また、境界点検出部32は、注目領域の各々について算出された連結境界度に基づいて、2次曲線モデルが表すケーブルと電柱との連結点である連結境界点を検出する。 The boundary point detection unit 32 compares the information regarding the first region with the information regarding the second region based on the point cloud and the wire model included in the region of interest for each of the regions of interest. The connection boundary degree, which represents the degree to which the division positions of the first region and the second region are the connection points between the cable and the utility pole, is calculated. Further, the boundary point detection unit 32 detects the connection boundary point, which is the connection point between the cable and the utility pole represented by the quadratic curve model, based on the connection boundary degree calculated for each of the regions of interest.
 図7は、第1の実施形態の境界点検出部32の構成の一例を示す図である。図7に示すように、境界点検出部32は、連結領域誤差推定部40と、連結境界度算出部42とを含んで構成されている。 FIG. 7 is a diagram showing an example of the configuration of the boundary point detection unit 32 of the first embodiment. As shown in FIG. 7, the boundary point detection unit 32 includes a connection area error estimation unit 40 and a connection boundary degree calculation unit 42.
 ここで、連結境界度算出部42によりモデル近似誤差として連結境界度を求める原理について説明する。第1の実施形態では、以下の実現手法1または実現手法2で示される方法である。注目領域P内でのケーブルの形状から求まる連結境界度を推定し、閾値処理により連結境界点として判定する。 Here, the principle of obtaining the connection boundary degree as a model approximation error by the connection boundary degree calculation unit 42 will be described. In the first embodiment, it is the method shown by the following realization method 1 or realization method 2. Estimating the connecting boundary degree determined from the shape of the cable in the attention region P i, determines a connection boundary points by thresholding.
 例えば、第一の領域または第二の領域において求まる誤差を用いた以下の実現手法1と実現手法2とがあり、いずれの手法を用いても良い。第1の実施形態では、実現手法2を用いる。 For example, there are the following realization method 1 and realization method 2 using the error obtained in the first region or the second region, and any of the methods may be used. In the first embodiment, the realization method 2 is used.
 実現手法1は、以下の(4)式に示すように、第一の領域および第二の領域の何れか一方から得られる2次曲線モデルで、他方の領域のケーブル形状を推定できる割合を表すモデル近似誤差Eとして連結境界度を求める。一方の領域から推定した2次曲線モデルにより、他方の領域のケーブル(ケーブル上の点群)形状を予測できるほど、相関が高いと考えられる。すなわち、2つの領域それぞれについて、他方の領域から求めた曲線モデルを用いた際の点群の近似誤差が大きいほど、連結境界度は大きいと出力される。 The realization method 1 is a quadratic curve model obtained from either the first region or the second region, as shown in the following equation (4), and represents the ratio at which the cable shape in the other region can be estimated. The connection boundary degree is obtained as the model approximation error E. It is considered that the correlation is so high that the shape of the cable (point group on the cable) in the other region can be predicted by the quadratic curve model estimated from one region. That is, for each of the two regions, it is output that the larger the approximation error of the point group when using the curve model obtained from the other region, the larger the connection boundary degree.
 これは、一方の領域について他方の領域から形状を予測しにくいほど、連結境界度が高いことを意味する。つまり、一方の領域から他方の領域が推定できるほど、両方の領域に存在するケーブルの形状に相関がある、すなわち注目領域の境界点位置で変形が生じていないことを意味する。 This means that the more difficult it is to predict the shape of one region from the other region, the higher the degree of connection boundary. That is, it means that the shapes of the cables existing in both regions are correlated so that the other region can be estimated from one region, that is, the deformation does not occur at the boundary point position of the region of interest.
 位置Qにおける注目領域内の全ての点群をP、注目領域1内の点群をpi1、注目領域2内の点群をpi2とすると、連結境界度は次式Eで求まる。 Position Q all of the points in the target region in the i P i, the point group p i1 in the region of interest 1, the point group in the region of interest 2 When p i2, connecting boundary degree determined by the following equation E.
Figure JPOXMLDOC01-appb-M000001

                                                 ・・・(4)
Figure JPOXMLDOC01-appb-M000001

... (4)
 ここで、
Figure JPOXMLDOC01-appb-I000002

 は、第一の領域に含まれる点pi1と、第二の領域に含まれる点群から求められる2次曲線モデルMi2との誤差である。言い換えれば、2次曲線モデルMi2から推定される第一の領域内の2次曲線と、第一の領域内の点pi1との誤差である。
here,
Figure JPOXMLDOC01-appb-I000002

Is the error between the point p i1 included in the first region and the quadratic curve model M i2 obtained from the point cloud included in the second region. In other words, a quadratic curve in the first region to be estimated from the secondary curve model M i2, an error between the point p i1 of the first region.
Figure JPOXMLDOC01-appb-I000003

は、第二の領域に含まれる点pi2と、第一の領域に含まれる点群から求められる2次曲線モデルMi1との誤差である。言い換えれば、2次曲線モデルMi1から推定される第二の領域内の2次曲線と、第二の領域内の点pi2との誤差である。
Figure JPOXMLDOC01-appb-I000003

Is the error between the point p i2 included in the second region and the quadratic curve model M i1 obtained from the point cloud included in the first region. In other words, the secondary curve of the second region to be estimated from the secondary curve model M i1, which is an error between the point p i2 of the second region.
 N2は、第二の領域に含まれる点群の数である。N1は、第一の領域に含まれる点群の数である。 N2 is the number of point clouds included in the second region. N1 is the number of point clouds included in the first region.
 実現手法2は、以下の(5)式に示すように、注目領域誤差から、第一誤差、および第二誤差の何れか大きい方を引いて、モデル近似誤差を求める。注目領域誤差とは、注目領域に含まれる点群から求められる2次曲線モデルと、注目領域に含まれる点群との誤差である。第一誤差とは、第一の領域に含まれる点群から求められる2次曲線モデルと、第一の領域に含まれる点群との誤差である。第二誤差とは、第二の領域に含まれる点群から求められる2次曲線モデルと、第二の領域に含まれる点群との誤差である。連結境界度Eは次の(5)式で求めてもよい。 In the realization method 2, as shown in the following equation (5), the model approximation error is obtained by subtracting the larger of the first error and the second error from the attention area error. The region of interest error is an error between the quadratic curve model obtained from the point cloud included in the region of interest and the point cloud included in the region of interest. The first error is an error between the quadratic curve model obtained from the point cloud included in the first region and the point cloud included in the first region. The second error is an error between the quadratic curve model obtained from the point cloud included in the second region and the point cloud included in the second region. The connection boundary degree E may be obtained by the following equation (5).
Figure JPOXMLDOC01-appb-M000004

                                                 ・・・(5)
Figure JPOXMLDOC01-appb-M000004

... (5)
 連結点など大きな張力が発生して、注目するケーブルの変形量が大きいほど、注目領域誤差よりも第一誤差および第二誤差の方が小さくなる。(5)式についてMaxではなく、注目領域誤差から、第一誤差および第二誤差の平均を差し引くようにしてもよい。 The larger the amount of deformation of the cable of interest due to the generation of large tension such as the connection point, the smaller the first error and the second error than the area of interest error. For equation (5), the average of the first error and the second error may be subtracted from the region of interest error instead of Max.
 第一誤差および第二誤差の何れか大きい方(maxの値)との差分をとる理由は、どちらか片方の領域に小さな付属品がある場合などに対処するためのである。この場合、片方の領域のみが近似誤差が小さくなり、注目領域誤差との乖離が大きくなることが考えられる。そのため、変形がほぼないにもかかわらず連結境界点があると判定することを抑制するために、平均値やmaxの値を用いて差分を算出している。変形有無について近似誤差から推定するためには、計測誤差および付属品等の影響を抑える必要がある。 The reason for taking the difference between the first error and the second error, whichever is larger (max value), is to deal with the case where there is a small accessory in either area. In this case, it is conceivable that the approximation error becomes small only in one region and the deviation from the attention region error becomes large. Therefore, in order to suppress the determination that there is a connection boundary point even though there is almost no deformation, the difference is calculated using the average value and the max value. In order to estimate the presence or absence of deformation from the approximation error, it is necessary to suppress the influence of measurement error and accessories.
 上述したように、本実施形態に係る連結領域誤差推定部40は、注目領域に含まれる点群から求められる2次曲線モデルと、注目領域に含まれる点群との誤差である注目領域誤差、第一の領域に含まれる点群から求められる2次曲線モデルと、第一の領域に含まれる点群との誤差である第一誤差、および第二の領域に含まれる点群から求められる2次曲線モデルと、第二の領域に含まれる点群との誤差である第二誤差を推定する。 As described above, the connection region error estimation unit 40 according to the present embodiment has an attention region error, which is an error between the quadratic curve model obtained from the point group included in the attention region and the point group included in the attention region. The first error, which is the error between the quadratic curve model obtained from the point group included in the first region and the point group included in the first region, and the point group obtained from the second region 2 The second error, which is the error between the next curve model and the point cloud included in the second region, is estimated.
 連結境界度算出部42は、上記(5)式に従って、注目領域誤差と、第一誤差および第二誤差の何れか大きいほうとの差分であるモデル近似誤差に基づいて、連結境界度を算出する。 The connection boundary degree calculation unit 42 calculates the connection boundary degree based on the model approximation error, which is the difference between the region of interest error and the larger of the first error and the second error, according to the above equation (5). ..
 境界点検出部32は、連結境界度算出部42により注目領域の各々について算出された連結境界度に基づいて、連結境界度のピークとなる位置を、2次曲線モデルが表すケーブルの連結点である連結境界点として検出する。 The boundary point detection unit 32 determines the peak position of the connection boundary degree at the connection point of the cable represented by the quadratic curve model based on the connection boundary degree calculated for each of the regions of interest by the connection boundary degree calculation unit 42. Detected as a connection boundary point.
 連結分割部34は、境界点検出部32で検出した連結境界点と、電柱の位置とに基づいて、ワイヤモデルを分割する。ワイヤモデルの分割は、例えば、連結境界点位置から、所定の範囲に電柱が存在するか否かを判定し、存在する場合にはワイヤモデルを分割して、ワイヤモデルの端点で連結される電柱をつなぎ直す。電柱との距離の閾値は、電柱に設置された腕金の規格の長さを元に決めればよい。本発明の実施形態では2[m]とした。 The connection dividing unit 34 divides the wire model based on the connection boundary point detected by the boundary point detection unit 32 and the position of the utility pole. In the division of the wire model, for example, it is determined from the position of the connection boundary point whether or not the utility pole exists in a predetermined range, and if it exists, the wire model is divided and the utility pole connected at the end point of the wire model. Reconnect. The threshold value of the distance to the utility pole may be determined based on the standard length of the arm metal installed on the utility pole. In the embodiment of the present invention, it is set to 2 [m].
 連結境界度について、閾値以上のときに連結すると判定すればよい。この閾値はレーザセンサなどの計測条件に依存した値となる。そのため閾値は、例えば実際の電柱とケーブルが連結する位置における注目領域で求めた連結境界度の平均値として決めればよい。再現率を高く(漏れなく)連結境界点位置を検出したいときは、実際にケーブルと電柱が連結する位置における注目領域において求めた連結境界度の最小値として、閾値を設定してもよい。 Regarding the degree of connection boundary, it may be determined that the connection is made when the threshold value is exceeded. This threshold value depends on the measurement conditions of the laser sensor and the like. Therefore, the threshold value may be determined as, for example, the average value of the connection boundary degree obtained in the region of interest at the position where the actual utility pole and the cable are connected. When it is desired to detect the connection boundary point position with high recall (without omission), a threshold value may be set as the minimum value of the connection boundary degree obtained in the region of interest at the position where the cable and the utility pole are actually connected.
 図8は、点群解析装置として機能するコンピュータの一例を示す概略ブロック図である。点群解析装置10は、一例として、図8に示すコンピュータ84によって実現される。コンピュータ84は、CPU86、メモリ88、プログラム82を記憶した記憶部92、モニタを含む表示部94、およびキーボードやマウスを含む入力部96を含んでいる。CPU86、メモリ88、記憶部92、表示部94、および入力部96はバス98を介して互いに接続されている。 FIG. 8 is a schematic block diagram showing an example of a computer functioning as a point cloud analysis device. The point cloud analysis device 10 is realized by the computer 84 shown in FIG. 8 as an example. The computer 84 includes a CPU 86, a memory 88, a storage unit 92 that stores the program 82, a display unit 94 that includes a monitor, and an input unit 96 that includes a keyboard and a mouse. The CPU 86, the memory 88, the storage unit 92, the display unit 94, and the input unit 96 are connected to each other via the bus 98.
 記憶部92はHDD、SSD、フラッシュメモリ等によって実現される。記憶部92には、コンピュータ84を点群解析装置10として機能させるためのプログラム82が記憶されている。CPU86は、プログラム82を記憶部92から読み出してメモリ88に展開し、プログラム82を実行する。なお、プログラム82をコンピュータ可読媒体に格納して提供してもよい。 The storage unit 92 is realized by an HDD, SSD, flash memory, or the like. A program 82 for making the computer 84 function as the point cloud analysis device 10 is stored in the storage unit 92. The CPU 86 reads the program 82 from the storage unit 92, expands the program 82 into the memory 88, and executes the program 82. The program 82 may be stored in a computer-readable medium and provided.
<第1の実施形態に係る点群解析装置の作用> <Operation of the point cloud analyzer according to the first embodiment>
 次に、図9を参照して、第1の実施形態に係る点群解析装置10の作用を説明する。なお、図9は、第1の実施形態に係るプログラム82による処理の流れの一例を示すフローチャートである。 Next, with reference to FIG. 9, the operation of the point cloud analysis device 10 according to the first embodiment will be described. Note that FIG. 9 is a flowchart showing an example of the processing flow by the program 82 according to the first embodiment.
 本第1の実施形態に係る点群解析装置10は、操作者の操作により点群解析処理の実行が指示されると、CPU86が記憶部92に記憶されているプログラム82を読み出して実行する。なお、以下の処理は、ワイヤモデルについて実行する。また、各2次曲線モデルについて実行する以下の処理は、プログラム82において並列して計算可能である。 When the point cloud analysis device 10 according to the first embodiment is instructed to execute the point cloud analysis process by the operation of the operator, the CPU 86 reads out and executes the program 82 stored in the storage unit 92. The following processing is executed for the wire model. Further, the following processing executed for each quadratic curve model can be calculated in parallel in the program 82.
 まず、ステップS100では、注目領域設定部30が、3次元点群と電柱間のケーブルを表現するワイヤモデル群と、電柱を表現するポールモデル群と、入力部14から入力された予め求められたパラメータとを取得する。 First, in step S100, the attention area setting unit 30 is obtained in advance from the input unit 14, the wire model group representing the cable between the three-dimensional point cloud and the utility pole, the pole model group representing the utility pole, and the input unit 14. Get the parameters.
 ステップS102では、注目領域設定部30が、2次曲線モデルを含むワイヤモデルについて、ワイヤモデルの端部または中間部の電柱周辺をウインドウサーチすることにより得られる注目領域であって、第一の領域および第二の領域に分割された注目領域Pを設定する。注目領域Pは、2次曲線モデルの、電柱に対応する位置を含む所定範囲内で定めた間隔S[m]で移動するように設定する。 In step S102, the area of interest setting unit 30 is the area of interest obtained by window-searching the wire model including the quadratic curve model around the utility pole at the end or intermediate portion of the wire model, and is the first area. and setting the divided region of interest P i to the second region. The region of interest Pi is set to move at a predetermined interval S [m] within a predetermined range including the position corresponding to the electric pole of the quadratic curve model.
 ステップS104では、境界点検出部32が、注目領域の各々について、注目領域に含まれる点群および2次曲線モデルに基づいて、第一の領域に関する情報と、第二の領域に関する情報とを比較して、連結境界度を算出する。 In step S104, the boundary point detection unit 32 compares the information regarding the first region with the information regarding the second region based on the point cloud and the quadratic curve model included in the region of interest for each of the regions of interest. Then, the connection boundary degree is calculated.
 ステップS106では、境界点検出部32が、2次曲線モデルについて終点まで連結境界度を検出したかを判定し、終点まで検出していればステップS108へ移行し、終点まで検出していなければステップS102に戻って次の注目領域Pを設定して処理を繰り返す。 In step S106, the boundary point detection unit 32 determines whether or not the connection boundary degree has been detected up to the end point of the quadratic curve model, and if the boundary point detection unit 32 has detected the end point, the process proceeds to step S108, and if not, the end point is not detected. Returning to S102, the next region of interest Pi is set, and the process is repeated.
 ステップS108では、境界点検出部32が、2次曲線モデルの連結境界度が極大値となる注目領域Pの中心位置を連結境界点として検出する。極大値とは、例えば、上記図3に示したようなピークとなる点である。 In step S108, the boundary point detecting unit 32 detects the center position of the region of interest P i the connecting boundary of the quadratic curve model becomes the maximum value as a connecting boundary points. The maximum value is, for example, a point at which the peak is as shown in FIG.
 ステップS110では、連結分割部34は、境界点検出部32で検出された連結境界点と、電柱の位置とに基づいて、ワイヤモデルを分割する。 In step S110, the connection dividing unit 34 divides the wire model based on the connection boundary point detected by the boundary point detection unit 32 and the position of the utility pole.
 次に、ステップS104の処理の詳細を説明する。図10は、第1の実施形態に係る連結境界度の算出の処理の流れの一例を示すフローチャートである。 Next, the details of the process in step S104 will be described. FIG. 10 is a flowchart showing an example of a flow of processing for calculating the connection boundary degree according to the first embodiment.
 ステップS200では、連結領域誤差推定部40が、注目領域Pについて、第一の領域Pi1の第一誤差および第二の領域Pi2の第二誤差を推定する。具体的には、第一の領域に含まれる点群から求められる2次曲線モデルMi1と第一の領域Pi1に含まれる点群との第一誤差、および第二の領域に含まれる点群から求められる2次曲線モデルMi2と第二の領域Pi2に含まれる点群との第二誤差を推定する。 At step S200, connection area error estimator 40, the attention region P i, estimating a first error and the second error of the second region P i2 of the first region P i1. Specifically, the first error between the quadratic curve model Mi1 obtained from the point cloud included in the first region and the point cloud included in the first region Pi1 , and the points included in the second region. The second error between the quadratic curve model Mi2 obtained from the group and the point cloud included in the second region Pi2 is estimated.
 ステップS202では、連結領域誤差推定部40が、注目領域Pについて、当該注目領域Pの注目領域誤差を推定する。具体的には、注目領域に含まれる点群から求められる2次曲線モデルMと注目領域Pに含まれる点群との注目領域誤差を推定する。 At step S202, connection area error estimator 40, the attention region P i, estimates the attention area error of the attention region P i. Specifically, it estimates the attention area error between the point group included in the quadratic curve model M i region of interest P i obtained from a group of points included in the target region.
 ステップS204では、連結境界度算出部42が、上記(5)式に従って、注目領域誤差から、第一誤差、および第二誤差の何れか大きい方を引いて求めたモデル近似誤差を、当該注目領域Pの連結境界度として算出する。 In step S204, the connection boundary degree calculation unit 42 obtains the model approximation error obtained by subtracting the larger of the first error and the second error from the attention area error according to the above equation (5). calculated as the concatenation boundary of the P i.
 以上説明したように、第1の実施形態に係る点群解析装置10は、注目領域の各々について、注目領域に含まれる点群および2次曲線モデルに基づいて、第一の領域に関する情報と、第二の領域に関する情報とを比較して、注目領域の第一の領域および第二の領域の分割位置が、ケーブルと電柱との連結点である度合いを表す連結境界度を算出し、注目領域の各々について算出された連結境界度に基づいて、2次曲線モデルが表すケーブルの連結点である連結境界点を検出する。これにより、ケーブルの形状を考慮して電柱との連結点を検出することができる。 As described above, the point cloud analysis device 10 according to the first embodiment provides information about the first region and information about the first region based on the point cloud included in the region of interest and the quadratic curve model for each region of interest. By comparing with the information about the second region, the connection boundary degree indicating the degree to which the division positions of the first region and the second region of the region of interest are the connection points between the cable and the utility pole is calculated, and the region of interest is calculated. Based on the connection boundary degree calculated for each of the above, the connection boundary point which is the connection point of the cable represented by the quadratic curve model is detected. Thereby, the connection point with the utility pole can be detected in consideration of the shape of the cable.
 また、上述した連結領域誤差推定部40は、第一の領域に含まれる点群から求められる2次曲線モデルと、第二の領域に含まれる点群との誤差である第一誤差、および第二の領域に含まれる点群から求められる2次曲線モデルと、第一の領域に含まれる点群との誤差である第二誤差を推定し、連結境界度算出部42は、上記(4)式に従って、第一誤差および第二誤差の何れか大きいほうであるモデル近似誤差に基づいて、連結境界度を算出するようにしてもよい。 Further, the connection region error estimation unit 40 described above has a first error, which is an error between the quadratic curve model obtained from the point group included in the first region, and the point group included in the second region, and a first error. The second error, which is the error between the quadratic curve model obtained from the point group included in the second region and the point group included in the first region, is estimated, and the connection boundary degree calculation unit 42 performs the above (4). According to the equation, the connection boundary degree may be calculated based on the model approximation error, which is the larger of the first error and the second error.
[第2の実施形態]
 第1の実施形態では近似誤差の大きさを基にして連結境界度の算出を行っていたが、第2の実施形態では特徴ベクトルを用いた機械学習によって連結境界度の算出を実現する。なお、第1の実施形態と同様となる箇所は同一符号を付して説明を省略する。
[Second Embodiment]
In the first embodiment, the connection boundary degree is calculated based on the magnitude of the approximation error, but in the second embodiment, the connection boundary degree is calculated by machine learning using the feature vector. The same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図11は、第2の実施形態に係る点群解析装置210の機能的な構成の一例を示すブロック図である。 FIG. 11 is a block diagram showing an example of the functional configuration of the point cloud analysis device 210 according to the second embodiment.
 境界点検出部232は、注目領域の各々について、所定の特徴量ベクトルを求めて、予め学習された電柱との連結点を求めるためのモデルへ入力し、連結境界度を算出する。 The boundary point detection unit 232 obtains a predetermined feature amount vector for each of the regions of interest, inputs it to a model for obtaining a connection point with a utility pole learned in advance, and calculates the connection boundary degree.
 図12は、第2の実施形態の境界点検出部232の構成の一例を示す図である。図12に示すように、境界点検出部232は、連結領域誤差推定部40と、連結境界度算出部242と、ベクトル計算生成部244とを含んで構成されている。ベクトル計算生成部244は平面近似算出部252と、周辺距離検出部254と、腕金検出部255と、ベクトル生成部256とを含む。 FIG. 12 is a diagram showing an example of the configuration of the boundary point detection unit 232 of the second embodiment. As shown in FIG. 12, the boundary point detection unit 232 includes a connection area error estimation unit 40, a connection boundary degree calculation unit 242, and a vector calculation generation unit 244. The vector calculation generation unit 244 includes a plane approximation calculation unit 252, a peripheral distance detection unit 254, an arm metal detection unit 255, and a vector generation unit 256.
 ベクトル計算生成部244は、注目領域に含まれる点群から求められる平面と点群との誤差を表す平面情報と、注目領域の周辺の2次曲線モデルと注目領域との間の情報を表す周辺情報とを計算し、モデル近似誤差と、平面情報と、周辺情報とを含む特徴量ベクトルを生成する。 The vector calculation generation unit 244 represents plane information representing the error between the plane and the point group obtained from the point group included in the attention region, and the periphery representing the information between the quadratic curve model around the attention region and the attention region. The information is calculated to generate a feature vector including the model approximation error, the plane information, and the peripheral information.
 特徴量ベクトルは、具体的には以下(1)~(4)の特徴量を連結して生成する。(1)、(2)は形状乖離に関する特徴量、(3)、(4)は周辺構造物との相対的な位置関係についての特徴量である。平面情報は、(2)、周辺情報は(3)、(4)の特徴量である。なお、特徴量の連結は、全てを結合してもよいし、選択して結合してもよい。 Specifically, the feature amount vector is generated by connecting the following feature amounts (1) to (4). (1) and (2) are features related to shape deviation, and (3) and (4) are features related to the relative positional relationship with the surrounding structure. The plane information is the feature amount of (2), and the peripheral information is the feature amount of (3) and (4). As for the connection of the feature amounts, all of them may be combined, or they may be selected and combined.
 (1)第1の実施形態の境界点検出部32と同様の手法により求めたモデル近似誤差、および注目領域の第一の領域および第二の領域に含まれる点の数の各々を特徴量とする。連結点がない場合、2次曲線の変形がなく、第一の領域および第二の領域の点群情報(モデル)のいずれかから、片方の領域の形状を推定することが可能である。上記(5)式で求められるモデル近似誤差は、2次曲線が変形しているほど大きくなる。よって、変形が大きいほど、連結点の存在確率が高くなる。なお、端点であるほど領域に含まれる点の数が少ないという特徴を有する。 (1) The model approximation error obtained by the same method as the boundary point detection unit 32 of the first embodiment, and the number of points included in the first region and the second region of the region of interest are used as feature quantities. To do. When there is no connecting point, there is no deformation of the quadratic curve, and it is possible to estimate the shape of one region from either the point group information (model) of the first region and the second region. The model approximation error obtained by the above equation (5) increases as the quadratic curve is deformed. Therefore, the larger the deformation, the higher the probability of existence of the connection point. It should be noted that the more end points, the smaller the number of points included in the region.
 (2)注目領域の平面近似誤差を特徴量とする。平面近似誤差とは、注目領域に含まれる点群を近似した平面と当該注目領域の点群との誤差である。連結点がある場合、電柱による張力が生じているため、注目領域に含まれる点群を近似した平面は、ケーブルの2次曲線形状から乖離が生じている可能性が高い(図13参照)。つまり、注目領域に含まれる点群を近似した平面との形状乖離度合いが高いほど、連結点の存在確率は高いと判定できる。図14は、外力がある場合の法線角度を説明するため図である。図13は、外力がある場合と外力がない場合のケーブルの形状の一例を示す図である。 (2) The feature amount is the plane approximation error of the region of interest. The plane approximation error is an error between a plane that approximates a point cloud included in the region of interest and a point cloud in the region of interest. When there is a connecting point, tension is generated by the utility pole, so that the plane that approximates the point cloud included in the region of interest is likely to deviate from the quadratic curve shape of the cable (see FIG. 13). That is, it can be determined that the higher the degree of shape deviation from the plane that approximates the point cloud included in the region of interest, the higher the probability of existence of the connecting point. FIG. 14 is a diagram for explaining a normal angle when there is an external force. FIG. 13 is a diagram showing an example of the shape of the cable when there is an external force and when there is no external force.
 (3)電柱の位置と注目領域の中心位置との距離の特徴量である。MMS計測の特性上、電柱の交点近くの点群がオクルージョンの影響で欠損していることが多い。よって、電柱と注目するケーブルとの交点位置の付近で点群欠損があるとしても、連結点がある場合は、電柱がケーブル近くに存在することが多い。つまり、近傍に電柱が存在する場合に、電柱による連結点が存在する可能性が高い。 (3) A feature of the distance between the position of the utility pole and the center position of the area of interest. Due to the characteristics of MMS measurement, the point group near the intersection of utility poles is often missing due to the influence of occlusion. Therefore, even if there is a point cloud defect near the intersection position of the utility pole and the cable of interest, if there is a connection point, the utility pole is often located near the cable. That is, when there is a utility pole in the vicinity, there is a high possibility that a connection point by the utility pole exists.
 (4)腕金が存在するかどうかの判定基準の特徴量である。腕金が存在する場合に付近に連結点がある場合が考えられるからである。 (4) It is a feature amount of the criterion for judging whether or not the arm is present. This is because it is possible that there is a connecting point in the vicinity when there is an arm.
 平面近似算出部252は、注目領域の各々について、平面情報として、注目領域に含まれる点群を近似した平面と当該注目領域の点群との誤差を表す平面近似誤差を算出する。また、平面近似算出部252は、注目領域に含まれる点群を近似した平面の法線と水平面とのなす角である平面近似法線角度を算出する。 The plane approximation calculation unit 252 calculates, as plane information, a plane approximation error representing an error between a plane that approximates a point group included in the region of interest and a point group of the region of interest for each of the regions of interest. Further, the plane approximation calculation unit 252 calculates the plane approximation normal angle, which is the angle formed by the plane normal and the horizontal plane that approximate the point group included in the region of interest.
 周辺距離検出部254は、注目領域の各々について、周辺情報として、注目領域と最も近い電柱との距離を算出する。電柱との距離は、電柱の下端と上端を結んだ直線(中心軸)と、注目領域の中心位置との最短距離を計算すればよい。物理的には、注目領域の中心位置から電柱の中心軸への垂線の足までの距離を意味する。 Peripheral distance detection unit 254 calculates the distance between the area of interest and the nearest utility pole as peripheral information for each of the areas of interest. For the distance to the utility pole, the shortest distance between the straight line (central axis) connecting the lower end and the upper end of the utility pole and the central position of the region of interest may be calculated. Physically, it means the distance from the central position of the region of interest to the foot of the perpendicular to the central axis of the utility pole.
 腕金検出部255は、注目領域の各々について、周辺情報として、腕金が存在するかどうかの判定基準として、電柱位置から注目領域Pの中心位置までの最短距離を計算した領域内の点群の数を算出する。 Arm-detection unit 255, for each region of interest, as the peripheral information, as if the criterion arm-exists, points to calculate the shortest distance from the utility pole position to the center position of the region of interest P i region Calculate the number of groups.
 ベクトル生成部256は、注目領域の各々について、モデル近似誤差と、平面情報と、周辺情報とを含む特徴量ベクトルを生成する。 The vector generation unit 256 generates a feature amount vector including a model approximation error, plane information, and peripheral information for each of the regions of interest.
 連結境界度算出部242は、注目領域の各々について、ベクトル生成部256が生成した特徴量ベクトルに基づいて、予め定めた機械学習の手法を用いて、連結境界度を算出する。なお、機械学習の手法は、ロジティクス回帰分析、およびAdaRank、RankNetといったランク学習等どのような手法でもよい。連結境界度の算出に用いる機械学習のモデルは、上記特徴量ベクトルに正解ラベルを付した学習データを用いて予め学習しておけばよい。また、モデル近似誤差には、第一の領域および第二の領域の各々の各領域の点群数を含めるため、連結境界度算出部242は、各領域の点群の数を取得する。 The connection boundary degree calculation unit 242 calculates the connection boundary degree for each of the regions of interest using a predetermined machine learning method based on the feature amount vector generated by the vector generation unit 256. The machine learning method may be any method such as logistic regression analysis and rank learning such as AdaRank and RankNet. The machine learning model used for calculating the connection boundary degree may be learned in advance using the learning data in which the correct answer label is attached to the feature quantity vector. Further, since the model approximation error includes the number of point groups in each of the first region and the second region, the connection boundary degree calculation unit 242 acquires the number of point groups in each region.
<第2の実施形態に係る点群解析装置の作用> <Operation of the point cloud analyzer according to the second embodiment>
 次に、第2の実施形態に係る点群解析装置210の作用を説明する。なお、第2の実施形態に係るプログラム82による処理の流れは、第1の実施形態の上記図9の一例を示すフローチャートと同様であり、ステップS108において、連結境界度算出部242が、ベクトル生成部256が生成した特徴量ベクトルに基づいて、予め定めた機械学習の手法を用いて、連結境界度を算出する。 Next, the operation of the point cloud analyzer 210 according to the second embodiment will be described. The flow of processing by the program 82 according to the second embodiment is the same as the flowchart showing an example of FIG. 9 of the first embodiment, and in step S108, the connection boundary degree calculation unit 242 generates a vector. Based on the feature amount vector generated by the part 256, the connection boundary degree is calculated by using a predetermined machine learning method.
 第2の実施形態ではステップS104の連結境界度の算出の処理が第1の実施形態と異なる。図15は、第2の実施形態に係る連結境界度の算出の処理の流れの一例を示すフローチャートである。 In the second embodiment, the process of calculating the connection boundary degree in step S104 is different from that in the first embodiment. FIG. 15 is a flowchart showing an example of a flow of processing for calculating the connection boundary degree according to the second embodiment.
 ステップS1200では、連結領域誤差推定部40および連結境界度算出部242が、注目領域のモデル近似誤差を算出する。モデル近似誤差は、上記図10のステップS200~204と同様の処理を行うことで算出する。 In step S1200, the connection area error estimation unit 40 and the connection boundary degree calculation unit 242 calculate the model approximation error of the region of interest. The model approximation error is calculated by performing the same processing as in steps S200 to 204 of FIG.
 ステップS1202では、連結境界度算出部242が、注目領域について、第一の領域および第二の領域の各々の各領域の点群数を取得する。 In step S1202, the connection boundary degree calculation unit 242 acquires the number of point groups in each of the first region and the second region for the region of interest.
 ステップS1204では、平面近似算出部252が、平面情報として、注目領域に含まれる点群を近似した平面と当該注目領域の点群との誤差を表す平面近似誤差を算出する。
   
In step S1204, the plane approximation calculation unit 252 calculates, as plane information, a plane approximation error representing an error between the plane that approximates the point group included in the region of interest and the point group of the region of interest.
 ステップS1206では、周辺距離検出部254が、周辺情報として、電柱の位置と注目領域の中心位置との距離を検出する。 In step S1206, the peripheral distance detection unit 254 detects the distance between the position of the utility pole and the center position of the region of interest as peripheral information.
 ステップS1208では、腕金検出部255が、腕金が存在するかどうかの判定基準として、電柱位置から注目領域Pの中心位置までの最短距離を計算した領域内の点群の数を算出する。つまり、注目領域の中心位置から電柱中心軸までの垂線の足までの線分上について、点群の存在する量を算出する。具体的には、最短距離の線分から距離rまでの範囲の領域に存在する点数とする。距離rは、例えば腕金の太さを含むように設定すればよく、本実施形態ではr=0.2とする。 In step S1208, arm-detection unit 255, a determination of whether the reference arm-exists, calculates the number of the points in calculating the shortest distance from the utility pole position to the center position of the region of interest P i region .. That is, the amount of the point cloud present is calculated on the line segment from the center position of the region of interest to the foot of the perpendicular line from the center axis of the utility pole. Specifically, the number of points existing in the region from the shortest distance line segment to the distance r is used. The distance r may be set to include, for example, the thickness of the arm, and in this embodiment, r = 0.2.
 ステップS1210では、ベクトル生成部256が、各領域の点群数を含むモデル近似誤差と、平面情報と、周辺情報とを含む特徴量ベクトルを生成する。 In step S1210, the vector generation unit 256 generates a feature amount vector including a model approximation error including the number of point groups in each region, plane information, and peripheral information.
 以上説明したように、第2の実施形態に係る点群解析装置10は、境界点検出部32が、注目領域の各々について、モデル近似誤差と、平面情報と、周辺情報とを含む特徴量ベクトルを生成し、予め定めた機械学習の手法を用いて、連結境界度を算出し、注目領域の各々について算出された連結境界度に基づいて、2次曲線モデルが表すケーブルの連結点である連結境界点を検出する。これにより、ケーブルの形状を考慮して電柱との連結点を検出することができる。 As described above, in the point group analysis device 10 according to the second embodiment, the boundary point detection unit 32 includes a model approximation error, plane information, and peripheral information for each of the regions of interest. Is generated, the connection boundary degree is calculated using a predetermined machine learning method, and the connection point, which is the connection point of the cable represented by the quadratic curve model, is calculated based on the connection boundary degree calculated for each of the regions of interest. Detect the boundary point. Thereby, the connection point with the utility pole can be detected in consideration of the shape of the cable.
 また、特徴量ベクトルに周辺構造物(腕金など)との相対的な位置関係の特徴量を含める。これにより、周辺構造物を考慮した電柱間の連結による接続関係の推定ができるようになる。 Also, the feature amount vector includes the feature amount of the relative positional relationship with the surrounding structure (arm, etc.). This makes it possible to estimate the connection relationship by connecting utility poles in consideration of the surrounding structures.
 機械学習の学習においては、図4に示すように、連結境界点位置とQの距離DQiの値が近い程、連結境界度が高くなるように、特徴量ごとに連結境界度を設定する。つまり、位置Qで抽出した連結境界度は、例えば距離に反比例して小さくなるような関数を用いて算出すればよい。 In the learning machine learning, as shown in FIG. 4, as the value of the distance DQi consolidated boundary point positions and Q i are close, so connecting boundary degree is high, to set the consolidated boundary of each feature amount. In other words, connecting the boundary of extraction with position Q i may be calculated using a function such as decreases in inverse proportion, for example, in distance.
Figure JPOXMLDOC01-appb-M000005

                                          ・・・(6)
Figure JPOXMLDOC01-appb-M000005

... (6)
 機械学習の方法は、例えば、ロジスティック回帰分析やランク学習を用いればよい。
学習に使用していない未知のケーブル(ワイヤモデル)について、当該ワイヤモデルの注目点位置における特徴量について、学習した結果を用いて連結境界度を算出し、極大値となる位置が連結候補位置(連結境界点位置)として求まる。
As the machine learning method, for example, logistic regression analysis or rank learning may be used.
For an unknown cable (wire model) that is not used for learning, the connection boundary degree is calculated using the learning result for the feature amount at the point of interest position of the wire model, and the position that becomes the maximum value is the connection candidate position (connection candidate position). It can be obtained as the connection boundary point position).
 この候補位置における連結境界度の値が、閾値以上の場合に、連結すると判定すればよい。この閾値は、例えば実際の連結位置における特徴量から求めた連結境界度の平均値を用いて決めればよい。誤りが多少あったとしても、再現率の高い(漏れなく)連結境界点位置を検出したいときは、実際に連結位置における特徴量から求めた連結境界度の最小値を用いて、閾値を設定してもよい。 If the value of the connection boundary degree at this candidate position is equal to or greater than the threshold value, it may be determined that the connection is made. This threshold value may be determined using, for example, the average value of the degree of connection boundary obtained from the feature amount at the actual connection position. If you want to detect the connection boundary point position with high recall (without omission) even if there are some errors, set the threshold value using the minimum value of the connection boundary degree actually obtained from the feature amount at the connection position. You may.
 以上、実施形態として点群解析装置および方法を例示して説明した。実施形態は、コンピュータを、点群解析装置が備える各部として機能させるためのプログラムの形態としてもよい。実施形態は、このプログラムを記憶したコンピュータが読み取り可能な記憶媒体の形態としてもよい。 The point cloud analyzer and method have been illustrated and described above as embodiments. The embodiment may be in the form of a program for making the computer function as each part included in the point cloud analysis device. The embodiment may be in the form of a storage medium that can be read by a computer that stores this program.
 その他、上記実施形態で説明した点群解析装置の構成は、一例であり、主旨を逸脱しない範囲内において状況に応じて変更してもよい。 In addition, the configuration of the point cloud analysis device described in the above embodiment is an example, and may be changed depending on the situation within a range that does not deviate from the gist.
 また、上記実施形態で説明したプログラムの処理の流れも、一例であり、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。 Further, the processing flow of the program described in the above embodiment is also an example, and even if unnecessary steps are deleted, new steps are added, or the processing order is changed within a range that does not deviate from the purpose. Good.
 また、上記実施形態では、プログラムを実行することにより、実施形態に係る処理がコンピュータを利用してソフトウェア構成により実現される場合について説明したが、これに限らない。実施形態は、例えば、ハードウェア構成や、ハードウェア構成とソフトウェア構成との組み合わせによって実現してもよい。 Further, in the above embodiment, the case where the processing according to the embodiment is realized by the software configuration by using the computer by executing the program has been described, but the present invention is not limited to this. The embodiment may be realized by, for example, a hardware configuration or a combination of a hardware configuration and a software configuration.
10   点群解析装置
12   3次元データ記憶部
14   入力部
20   演算部
30   注目領域設定部
32   境界点検出部
34   連結分割部
40   連結領域誤差推定部
42   連結境界度算出部
210 点群解析装置
232 境界点検出部
242 連結境界度算出部
244 ベクトル計算生成部
252 平面近似算出部
254 周辺距離検出部
255 腕金検出部
256 ベクトル生成部
10 Point cloud analysis device 12 3D data storage unit 14 Input unit 20 Calculation unit 30 Attention area setting unit 32 Boundary point detection unit 34 Connection division unit 40 Connection area error estimation unit 42 Connection boundary degree calculation unit 210 Point cloud analysis device 232 Boundary Point detection unit 242 Connection boundary degree calculation unit 244 Vector calculation generation unit 252 Plane approximation calculation unit 254 Peripheral distance detection unit 255 Arm metal detection unit 256 Vector generation unit

Claims (9)

  1.  屋外構造物に接続されるケーブルの連結点を推定する点群解析装置であって、
     前記ケーブルに含まれる第一の領域と、前記第一の領域と前記ケーブルに含まれる領域である第二の領域と、を関連付けることで前記第一の領域と前記第二の領域の境界が前記連結点であるかを推定する推定部を有し、
     前記推定部は、
     前記第一の領域の形状をモデル化した第一領域モデルから推定される前記第二の領域の形状と、前記第二の領域の点群と、を関連付けることで前記連結点であるかを推定している点群解析装置。
    A point cloud analyzer that estimates the connection points of cables connected to outdoor structures.
    By associating the first region included in the cable with the second region which is the region included in the cable, the boundary between the first region and the second region is the said. It has an estimation unit that estimates whether it is a connection point,
    The estimation unit
    It is estimated whether it is the connection point by associating the shape of the second region estimated from the first region model that models the shape of the first region with the point cloud of the second region. Point cloud analyzer.
  2.  前記推定部による推定は注目領域設定部および境界点検出部の各処理によって行うこととし、
     前記注目領域設定部は、物体上の3次元点からなる点群から求められた、ケーブルを表す2次曲線モデルを含むワイヤモデルについて、前記ワイヤモデルをウインドウサーチすることにより得られる注目領域であって、第一の領域および第二の領域に分割された注目領域を複数設定し、
     前記境界点検出部は、前記注目領域の各々について、前記注目領域に含まれる点群および前記2次曲線モデルに基づいて、前記第一の領域に関する情報と、前記第二の領域に関する情報とを比較して、前記注目領域の前記第一の領域および前記第二の領域の分割位置が、電柱との連結点である度合いを表す連結境界度を算出し、前記注目領域の各々について算出された連結境界度に基づいて、前記ワイヤモデルが表すケーブルと前記電柱との連結点である連結境界点を検出する請求項1に記載の点群解析装置。
    The estimation by the estimation unit is performed by each process of the attention area setting unit and the boundary point detection unit.
    The attention area setting unit is an attention area obtained by window-searching the wire model for a wire model including a quadratic curve model representing a cable, which is obtained from a point cloud consisting of three-dimensional points on an object. Then, set a plurality of areas of interest divided into the first area and the second area.
    For each of the attention regions, the boundary point detection unit obtains information on the first region and information on the second region based on the point cloud included in the attention region and the quadratic curve model. By comparison, the connection boundary degree indicating the degree to which the division positions of the first region and the second region of the attention region are the connection points with the utility pole was calculated, and calculated for each of the attention regions. The point cloud analysis device according to claim 1, wherein a connection boundary point, which is a connection point between the cable represented by the wire model and the utility pole, is detected based on the connection boundary degree.
  3.  検出された連結境界点と、前記電柱の位置とに基づいて、前記ワイヤモデルを分割する連結分割部
     を更に含む請求項2に記載の点群解析装置。
    The point cloud analysis device according to claim 2, further comprising a connection dividing portion that divides the wire model based on the detected connection boundary point and the position of the utility pole.
  4.  前記境界点検出部は、連結領域誤差推定部と、連結境界度算出部とを含んで構成され、
     前記連結領域誤差推定部は、
    前記第一の領域に含まれる点群から求められる2次曲線モデルと、前記第二の領域に含まれる点群との誤差である第一誤差、および前記第二の領域に含まれる点群から求められる2次曲線モデルと、前記第一の領域に含まれる点群との誤差である第二誤差を推定し、
     前記連結境界度算出部は、前記第一誤差および前記第二誤差の何れか大きいほうであるモデル近似誤差に基づいて、前記連結境界度を算出する請求項2または請求項3に記載の点群解析装置。
    The boundary point detection unit is configured to include a connection area error estimation unit and a connection boundary degree calculation unit.
    The connection area error estimation unit is
    From the first error, which is the error between the quadratic curve model obtained from the point cloud included in the first region and the point cloud included in the second region, and the point cloud included in the second region. The second error, which is the error between the obtained quadratic curve model and the point cloud included in the first region, is estimated.
    The point cloud according to claim 2 or 3, wherein the connection boundary degree calculation unit calculates the connection boundary degree based on a model approximation error which is the larger of the first error and the second error. Analytical device.
  5.  前記境界点検出部は、連結領域誤差推定部と、連結境界度算出部とを含んで構成され、
     前記連結領域誤差推定部は、前記注目領域に含まれる点群から求められる2次曲線モデルと、前記注目領域に含まれる点群との誤差である注目領域誤差、前記第一の領域に含まれる点群から求められる2次曲線モデルと、前記第一の領域に含まれる点群との誤差である第一誤差、および前記第二の領域に含まれる点群から求められる2次曲線モデルと、前記第二の領域に含まれる点群との誤差である第二誤差を推定し、
     前記連結境界度算出部は、前記注目領域誤差と、前記第一誤差および前記第二誤差に基づく誤差との差分であるモデル近似誤差に基づいて、前記連結境界度を算出する請求項2または請求項3に記載の点群解析装置。
    The boundary point detection unit is configured to include a connection area error estimation unit and a connection boundary degree calculation unit.
    The connection region error estimation unit includes a quadratic curve model obtained from a point cloud included in the attention region, an attention region error which is an error between the point cloud included in the attention region, and the first region. A first error, which is an error between the quadratic curve model obtained from the point cloud and the point cloud included in the first region, and a quadratic curve model obtained from the point cloud included in the second region. Estimate the second error, which is the error from the point cloud included in the second region,
    Claim 2 or claim that the connection boundary degree calculation unit calculates the connection boundary degree based on a model approximation error which is a difference between the attention area error and an error based on the first error and the second error. Item 3. The point cloud analyzer according to item 3.
  6.  前記境界点検出部は、ベクトル計算生成部をさらに含んで構成され、
     前記ベクトル計算生成部は、前記注目領域に含まれる点群から求められる平面と前記点群との誤差を表す平面情報と、前記注目領域の周辺の電柱と前記注目領域との間の情報を表す周辺情報とを計算し、前記モデル近似誤差と、前記平面情報と、前記周辺情報とを含む特徴量ベクトルを生成し、
     前記連結境界度算出部は、前記特徴量ベクトルに基づいて、予め定めた機械学習の手法を用いて、前記連結境界度を算出する請求項4または5に記載の点群解析装置。
    The boundary point detection unit is configured to further include a vector calculation generation unit.
    The vector calculation generation unit represents plane information representing an error between the plane obtained from the point group included in the attention region and the point group, and information between the electric column around the attention region and the attention region. The peripheral information is calculated, and a feature quantity vector including the model approximation error, the plane information, and the peripheral information is generated.
    The point cloud analysis device according to claim 4 or 5, wherein the connection boundary degree calculation unit calculates the connection boundary degree using a predetermined machine learning method based on the feature quantity vector.
  7.  前記ベクトル計算生成部は、平面近似算出部と、周辺距離検出部と、腕金検出部と、ベクトル生成部とを含み、
     前記平面近似算出部は、前記平面情報として、前記注目領域に含まれる点群を近似した平面と当該注目領域の点群との誤差を表す平面近似誤差と、前記注目領域に含まれる点群を近似した平面の法線と水平面とのなす角である平面近似法線角度とを算出し、
     前記周辺距離検出部は、前記周辺情報として、前記周辺の電柱の位置と前記注目領域の中心位置との距離を含む周辺距離情報を検出し、
     前記腕金検出部は、前記周辺情報として、腕金が存在するかどうかの判定基準である前記注目領域の中心位置までの所定の領域内の点群の数を算出し、
     前記ベクトル生成部は、前記モデル近似誤差と、前記平面情報と、前記周辺情報とを含む特徴量ベクトルを生成する請求項6に記載の点群解析装置。
    The vector calculation generation unit includes a plane approximation calculation unit, a peripheral distance detection unit, an arm metal detection unit, and a vector generation unit.
    The plane approximation calculation unit uses, as the plane information, a plane approximation error representing an error between a plane that approximates the point group included in the attention region and the point group of the attention region, and a point group included in the attention region. Calculate the plane-approximate normal angle, which is the angle between the approximated plane normal and the horizontal plane.
    The peripheral distance detecting unit detects peripheral distance information including the distance between the position of the electric column in the periphery and the center position of the region of interest as the peripheral information.
    The arm metal detection unit calculates the number of point clouds in a predetermined area up to the center position of the attention area, which is a criterion for determining whether or not the arm metal exists, as the peripheral information.
    The point cloud analysis device according to claim 6, wherein the vector generation unit generates a feature quantity vector including the model approximation error, the plane information, and the peripheral information.
  8.  屋外構造物に接続されるケーブルの連結点を推定する点群解析方法であって、
     前記ケーブルに含まれる第一の領域と、前記第一の領域と前記ケーブルに含まれる領域である第二の領域と、を関連付けることで前記第一の領域と前記第二の領域の境界が前記連結点であるかを推定し、
     前記推定において、
     前記第一の領域の形状をモデル化した第一領域モデルから推定される前記第二の領域の形状と、前記第二の領域の点群と、を関連付けることで前記連結点であるかを推定している点群解析方法。
    A point cloud analysis method that estimates the connection points of cables connected to outdoor structures.
    By associating the first region included in the cable with the second region which is the region included in the cable, the boundary between the first region and the second region is the said. Estimate whether it is a connection point and
    In the above estimation
    It is estimated whether it is the connection point by associating the shape of the second region estimated from the first region model that models the shape of the first region with the point cloud of the second region. Point cloud analysis method.
  9.  コンピュータに、
     屋外構造物に接続されるケーブルの連結点を推定する点群解析装置の推定部により、前記ケーブルに含まれる第一の領域と、前記第一の領域と前記ケーブルに含まれる領域である第二の領域と、を関連付けることで前記第一の領域と前記第二の領域の境界が前記連結点であるかを推定し、
     前記推定において、
     前記第一の領域の形状をモデル化した第一領域モデルから推定される前記第二の領域の形状と、前記第二の領域の点群と、を関連付けることで前記連結点であるかを推定している、ように処理を実行させるためのプログラム。
    On the computer
    The first region included in the cable, the first region, and the second region included in the cable are determined by the estimation unit of the point cloud analyzer that estimates the connection point of the cable connected to the outdoor structure. By associating with the region of, it is estimated whether the boundary between the first region and the second region is the connection point.
    In the above estimation
    It is estimated whether it is the connection point by associating the shape of the second region estimated from the first region model that models the shape of the first region with the point cloud of the second region. A program to execute the process as if it were.
PCT/JP2019/018453 2019-05-08 2019-05-08 Point group analysis device, method, and program WO2020225890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018453 WO2020225890A1 (en) 2019-05-08 2019-05-08 Point group analysis device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018453 WO2020225890A1 (en) 2019-05-08 2019-05-08 Point group analysis device, method, and program

Publications (1)

Publication Number Publication Date
WO2020225890A1 true WO2020225890A1 (en) 2020-11-12

Family

ID=73051461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018453 WO2020225890A1 (en) 2019-05-08 2019-05-08 Point group analysis device, method, and program

Country Status (1)

Country Link
WO (1) WO2020225890A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141346A (en) * 2003-11-05 2005-06-02 Yaskawa Electric Corp Object detection apparatus
JP2005346137A (en) * 2004-05-31 2005-12-15 Canon Inc Processing method for converting into function, function approximation processor and image processor
JP2011170481A (en) * 2010-02-17 2011-09-01 Fuji Xerox Co Ltd Image processing apparatus and image processing program
JP2014093931A (en) * 2012-11-07 2014-05-19 Toshiba Corp Power theft detection support device, power theft detection support method and program
JP2018195240A (en) * 2017-05-22 2018-12-06 日本電信電話株式会社 Facility state detection method, detection system and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141346A (en) * 2003-11-05 2005-06-02 Yaskawa Electric Corp Object detection apparatus
JP2005346137A (en) * 2004-05-31 2005-12-15 Canon Inc Processing method for converting into function, function approximation processor and image processor
JP2011170481A (en) * 2010-02-17 2011-09-01 Fuji Xerox Co Ltd Image processing apparatus and image processing program
JP2014093931A (en) * 2012-11-07 2014-05-19 Toshiba Corp Power theft detection support device, power theft detection support method and program
JP2018195240A (en) * 2017-05-22 2018-12-06 日本電信電話株式会社 Facility state detection method, detection system and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOHN, GUNHO ET AL.: "AUTOMATIC POWERLINE SCENE CLASSIFICATION AND RECONSTRUCTION USING AIRBORNE LIDAR DATA", ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES, vol. 1, no. 3, 2012, pages 167 - 172, XP055759368 *

Similar Documents

Publication Publication Date Title
JP6114052B2 (en) Point cloud analysis processing device and point cloud analysis processing program
Tian et al. Noncontact cable force estimation with unmanned aerial vehicle and computer vision
JP7235104B2 (en) Point group analysis device, method, and program
CN108830837B (en) Method and device for detecting steel ladle corrosion defect
JP5991489B2 (en) Road deformation detection device, road deformation detection method and program
JP2019215853A (en) Method for positioning, device for positioning, device, and computer readable storage medium
US11823330B2 (en) Detection device, detection method and detection program for linear structure
JP7074043B2 (en) Equipment status detector, equipment status detection method, and program
JP5981886B2 (en) Point cloud analysis processing device, point cloud analysis processing method, and program
JP6785751B2 (en) Model generator, generator, and program
US20160133007A1 (en) Crack data collection apparatus and server apparatus to collect crack data
JP7235105B2 (en) Point group analysis device, estimation device, point group analysis method, and program
Do et al. A simple camera calibration method for vehicle velocity estimation
KR20100003856A (en) Apparatus and method for detecting obstacles
WO2021051863A1 (en) Water level pre-warning and monitoring method and apparatus, and storage medium and electronic device
JP5870011B2 (en) Point cloud analysis device, point cloud analysis method, and point cloud analysis program
EP4308909A1 (en) System and method for automatic monitoring of pavement condition
JP2017102672A (en) Geographic position information specification system and geographic position information specification method
JP6322564B2 (en) Point cloud analysis processing apparatus, method, and program
WO2020225890A1 (en) Point group analysis device, method, and program
WO2021255798A1 (en) Powerline model generation device, powerline model generation method and powerline model generation program
Guan et al. Multi-scale asphalt pavement deformation detection and measurement based on machine learning of full field-of-view digital surface data
CN115761487A (en) Method for quickly identifying vibration characteristics of small and medium-span bridges based on machine vision
CN114166234A (en) System, method, device, processor and computer storage medium for selecting navigation route and road damage identification early warning based on road damage measurement
JP6546898B2 (en) Three-dimensional space identification apparatus, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP