WO2020218553A1 - Digital analysis of microbial flora - Google Patents

Digital analysis of microbial flora Download PDF

Info

Publication number
WO2020218553A1
WO2020218553A1 PCT/JP2020/017792 JP2020017792W WO2020218553A1 WO 2020218553 A1 WO2020218553 A1 WO 2020218553A1 JP 2020017792 W JP2020017792 W JP 2020017792W WO 2020218553 A1 WO2020218553 A1 WO 2020218553A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
nucleic acid
microbiota
gel capsule
cells
Prior art date
Application number
PCT/JP2020/017792
Other languages
French (fr)
Japanese (ja)
Inventor
正人 細川
春子 竹山
西川 洋平
小川 雅人
Original Assignee
bitBiome株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by bitBiome株式会社 filed Critical bitBiome株式会社
Priority to JP2021516285A priority Critical patent/JPWO2020218553A1/ja
Publication of WO2020218553A1 publication Critical patent/WO2020218553A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • C12M1/28Inoculator or sampler being part of container
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • This disclosure is available in fields such as biological research, medicine, environment, and healthcare regarding the analysis of microbiota composition.
  • amplicon sequence analysis targeting the conserved regions of 16S rRNA genes and 18S rRNA genes has been widely used in recent years using a next-generation sequencer.
  • 16SrRNA gene When the 16SrRNA gene is targeted, a storage region of several hundred bases is PCR-amplified on DNA collectively extracted from a sample containing various microorganisms (feces, soil, seawater, etc.), and the storage region is stored by a next-generation sequencer.
  • there are some problems with this method are some problems with this method.
  • the copy number of the 16S rRNA gene on the genome is different for each bacterium. Some bacteria have only a single copy of the 16S rRNA gene, while others have more than 7 genes. Furthermore, since the genomes of most of the environmental microorganisms are undecided, the number of the genes is unknown and cannot be corrected.
  • the total amount of the microorganisms X may have decreased, or the number of other microorganisms has simply increased and the number of microorganisms X has not changed. It is also possible.
  • the present inventors are a method of analyzing the microbiota composition as a result of diligent research, and include a step of evaluating the microbiota composition from a sample containing amplified nucleic acid derived from each cell in the microbiota.
  • a step of evaluating the microbiota composition from a sample containing amplified nucleic acid derived from each cell in the microbiota.
  • the present disclosure comprehensively reads the gene sequences that identify microbial species from amplified polynucleotides that are conditioned in parallel for each cell from a variety of microbial species, and digitally counts the microbial species in the sample cell by cell. However, it provides information that is digitally counted with the microbiota as an absolute amount.
  • Examples of embodiments of the present disclosure include: (Item 1) A method for analyzing microbiota composition. A method comprising the step of evaluating microbiota composition from a sample containing an amplified nucleic acid derived from each cell in the microbiota. (Item 1A) A method for analyzing the microflora.
  • a method comprising the step of evaluating the microbiota based on information for each nucleic acid derived from each cell in the microbiota.
  • (Item 2) The amplified nucleic acid derived from each of the cells A step of encapsulating cells one by one in a droplet using a sample containing a microflora, The process of gelling the droplets to form gel capsules, A step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, wherein the genomic DNA of the cell or a polynucleotide containing a portion thereof is eluted into the gel capsule and the genomic DNA or its portion.
  • the process of holding in the gel capsule with the substance bound to the moiety removed The method according to any of the above items, which is produced by a method comprising contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule.
  • the item which comprises flowing the suspension of the cells into a microchannel and shearing the suspension with oil to produce the droplets encapsulating the cells.
  • the method described in any of. (Item 4) The method according to any one of the above items, wherein the gel capsule is formed from agarose, acrylamide, PEG, gelatin, sodium alginate, matrigel, collagen or a photocurable resin.
  • the solubilizing reagents are lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform , Guanidin Hydrochloride, Urea, 2-Mercaptoethanol, Dithiotreitol, TCEP-HCl, Sodium Colate, Sodium Deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58 , Tween 20, Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl- ⁇ -D-hydrochloride, Nonide
  • the method according to any one of the above items (Item 6) The method according to any one of the above items, wherein the gel capsule is a hydrogel capsule. (Item 7) The method according to any one of the above items, further comprising a step of selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell. (Item 8) The method according to any one of the above items, which comprises a step of detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each cell.
  • the method according to any one of the above items, wherein the step of detecting the nucleic acid having the specific sequence comprises amplifying and sequencing the nucleic acid having the specific sequence.
  • the step of evaluating the microbiota composition comprises specifying the absolute number of various microorganisms in the microbiota.
  • the step of evaluating the microbiota composition includes comparing gene sequences (for example, 16S rRNA gene sequence, 18S rRNA gene sequence, common gene set, etc.) extracted from Denovo assembly data in each microorganism.
  • the method according to any of the above items. (Item 14) The method according to any one of the above items, wherein the microbiota is a bacterial flora.
  • the microbiota is an intestinal flora.
  • (Item 16) A kit for use in the methods of items 1 to 15, comprising a sample collection container containing a storage solution.
  • (Item 17) The kit according to item 16, wherein the preservation solution contains guanidine or ethanol.
  • (Item 18) A system for analyzing microbiota composition.
  • a sample providing unit that provides a sample containing an amplified nucleic acid derived from each cell in the microflora, and a sample providing unit.
  • a system comprising a composition evaluation unit for evaluating the microbiota composition from a sample containing each cell-derived amplified nucleic acid in the microbiota.
  • the sample providing unit is A droplet encapsulation part that encloses cells one by one in a droplet using a sample containing a microflora, A gel capsule generation unit that gels the droplet to generate a gel capsule, A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, which contains one or more lysis reagents for lysing cells.
  • the polynucleotide containing the genomic DNA of the cell or a portion thereof is eluted in the gel capsule and retained in the gel capsule with the substance binding to the genomic DNA or the portion removed.
  • a cell lysate comprising a reagent for amplifying the polynucleotide for amplifying the polynucleotide in a gel capsule.
  • a sample collection container containing a storage solution.
  • a sample selection unit for selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell.
  • composition evaluation unit is described in any one of the above items, which includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells.
  • System. 23 The system of claim 5A, wherein the detection reagent or device comprises a nucleic acid amplification sequencing device for amplifying and sequencing nucleic acids.
  • the composition evaluation unit includes a calculation unit that executes a procedure for specifying the absolute number of various microorganisms in the microbiota.
  • the composition evaluation unit further includes a genome sequence data acquisition unit for genome sequence data of each cell from a sample containing an amplified nucleic acid derived from each cell in the microbiota. The system described in any of the items.
  • the composition evaluation unit further includes a data selection unit that selects genome sequence data to be analyzed from the genome sequence data of each cell.
  • the composition evaluation unit has a function of containing or introducing a gene sequence extracted from De novo assembly data in each microorganism and comparing the gene sequences.
  • the present disclosure it is possible to evaluate the absolute number of the composition of the microbiota by evaluating the microbiota based on the information for each nucleic acid derived from each cell in the microbiota.
  • microbiota analysis by PCR it is possible to use a part of the amplified DNA sample, and by performing sequencing and sequencing and determining the partial sequence, information on a specific gene sequence can be used.
  • the microbiota composition can be evaluated from the above, and a cheap and simple evaluation can be performed.
  • the gene sequence used for bacterial flora analysis is extracted from the digital sequence data obtained by sequencing, and composition data is created with high accuracy. Analysis can also be performed.
  • Microorganisms with a low composition ratio may be grouped as "other", but where there is concern that the microbial composition is estimated to be higher or lower than it actually is, this disclosure allows for absolute counts. This allows for a more accurate measurement of the actual composition.
  • FIG. 1 shows a schematic diagram in which steps are taken to prepare amplified DNA.
  • FIG. 2 shows a schematic diagram of wet sequence screening.
  • FIG. 3 is a schematic diagram of the sequence determination after selection.
  • FIG. 4 is a schematic diagram showing a dry sequence screening step.
  • FIG. 5 is a schematic diagram showing the overall flow of analysis of the microbiota in the present disclosure.
  • FIG. 6 is a box-and-whisker plot of the genome decoding rate (complete rate) of the draft genome prepared from the amplified nucleic acid derived from a single cell from a stool sample. The left is the analysis result of the single cell derived from the stool sample not immersed in the preservation solution, and the right is the analysis result of the single cell derived from the stool sample immersed in the preservation solution.
  • FIG. 6 is a box-and-whisker plot of the genome decoding rate (complete rate) of the draft genome prepared from the amplified nucleic acid derived from a single cell from a stool sample. The left
  • FIG. 7 shows the evolutionary phylogenetic classification analysis of bacteria from the genomic data of each sample with reference to the marker gene group detected using CheckM based on the draft genome prepared from the amplified nucleic acid derived from a single cell from the fecal sample. It is a figure which shows the result of having performed. The left is the analysis result of the single cell derived from the stool sample not immersed in the preservation solution, and the right is the analysis result of the single cell derived from the stool sample immersed in the preservation solution.
  • the present disclosure relates to a method for detecting and analyzing a microbial flora (for example, a microbial flora) in a microbial manner.
  • a microbial flora for example, a microbial flora
  • cell refers to a particle that contains a molecule that carries the genetic information and is any particle that can be replicated (whether or not it is possible alone).
  • the term “cell” as used herein includes cells of unicellular organisms, bacteria, cells derived from multicellular organisms, fungi, viruses and the like.
  • biomolecule refers to a molecule possessed by any organism or virus.
  • In vivo molecules can include nucleic acids, proteins, sugar chains, lipids, and the like.
  • biomolecular analog refers to a natural or non-natural variant of a biomolecule.
  • Analogs of in vivo molecules can include modified nucleic acids, modified amino acids, modified lipids or modified sugar chains.
  • aggregate refers to an aggregate containing two or more single biological units, cells or structures for cells.
  • subset refers to a portion of a set having a smaller number of single biological units, cells or cell structures.
  • gel refers to a colloidal solution (sol) in which a polymer substance or colloidal particles interact with each other to form a network structure as a whole and contain a large amount of a liquid phase as a solvent or a dispersion medium. A state in which fluidity is lost.
  • gelling means changing a solution into a “gel” state.
  • the "gel capsule” refers to a gel-like fine particle structure capable of holding a cell or a cell-like structure therein.
  • gene analysis means examining the state of nucleic acids (DNA, RNA, etc.) in a biological sample.
  • the gene analysis can include those that utilize a nucleic acid amplification reaction.
  • Examples of gene analysis including these include sequencing, genotyping / polymorphism analysis (SNP analysis, copy number polymorphism, restriction enzyme fragment length polymorphism, repeat number polymorphism), expression analysis, fluorescence quenching probe ( Quenching Probe: Q-Probe), SYBR green method, melting curve analysis, real-time PCR, quantitative RT-PCR, digital PCR and the like can be mentioned.
  • single biological unit level refers to genetic information contained in one single biological unit or information on other biomolecules, as opposed to genetic information contained in another single biological unit or other information. It refers to processing in a state that can be distinguished from the information of biomolecules.
  • single cell level means that the genetic information contained in one cell or cell-like structure is processed in a state of being distinguished from the genetic information contained in another cell or cell-like structure. To do. For example, when amplifying a polynucleotide at the "single cell level", the amplification is performed in a state in which the polynucleotide in one cell and the polynucleotide in another cell can be distinguished from each other.
  • single cell analysis refers to the analysis of genetic information contained in one cell or cell-like structure in a state of being distinguished from the genetic information contained in another cell or cell-like structure. Point to.
  • nucleic acid information refers to information on nucleic acids contained in one cell or cell-like structure, and includes the presence or absence of a specific gene sequence, the yield of a specific gene, or the total nucleic acid yield.
  • identity refers to sequence similarity between two nucleic acid molecules. Identity can be determined by comparing positions in each sequence that can be aligned for comparison.
  • microbiota refers to the entire set of microorganisms existing in a certain physical range.
  • the "microorganism” includes an organism (in the case of a multicellular organism, it may be an individual cell) whose existence cannot be discriminated by the naked eye and whose size is smaller than that that can be observed with a microscope or the like.
  • a certain physical range includes, for example, a certain range in the intestine, skin, oral cavity, nasal cavity, or vagina of an individual, water area in the environment, soil, biological surface, and internal organism.
  • the microflora may be a combination of microorganisms of a plurality of classifications, for example, a combination of fungi, bacteria, archaea, unicellular animals, viruses, etc., or a collection of microorganisms of some classifications may be extracted.
  • a combination of fungi, bacteria, archaea, unicellular animals, viruses, etc. or a collection of microorganisms of some classifications may be extracted.
  • One example of the microflora is the bacterial flora.
  • composition refers to information about what species are contained in the microbiota or the amount of each species contained, and is a part of the microbiota. It also includes information about whether or the amount of microbial species contained in the plant.
  • a method of analyzing the microbiota comprising the step of evaluating the microbiota based on information for each cell-derived nucleic acid in the microbiota. Will be done.
  • the amount of nucleic acid in a certain sequence can be specified from the information on nucleic acids derived from multiple cells, it is possible to measure the absolute amount of a specific type of microorganism because there is a difference in the number of copies for each microorganism.
  • the absolute amount of a particular species of microorganism can be measured based on the information of nucleic acids derived from each cell.
  • a method of analyzing microbiota composition comprising the step of evaluating microbiota composition from a sample containing amplified nucleic acid derived from each cell in the microbiota.
  • the amount of nucleic acid derived from microorganisms is small per cell, and even when analysis is performed in a state where nucleic acids derived from a plurality of cells are mixed, an amplification reaction is generally used, but a random primer is used. It is known that even when an attempt is made to amplify a nucleic acid as a whole, the degree of amplification is biased for each sequence depending on the GC content and the like. When amplification is biased, it is difficult to measure the relative amount of a particular species of microorganism in the microbiota.
  • information for each nucleic acid derived from each cell may be obtained by any method, but in order to easily obtain information for each nucleic acid derived from one cell from a large number of cells, a microorganism
  • the genomic DNA of the cell or the polynucleotide containing the portion thereof is eluted into the gel capsule, and the substance binding to the genomic DNA or the portion thereof is removed in the gel capsule. It is preferable to obtain each cell-derived amplified nucleic acid by a method including a step of contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule. In some cases.
  • the step of contacting the polynucleotide with an amplification reagent to amplify the polynucleotide in a gel capsule can also amplify the polynucleotide while maintaining a gel state in the gel capsule. ..
  • droplets can be made by encapsulating one cell by flowing one cell into a microchannel and shearing the suspension with oil.
  • the gel capsule may be a hydrogel capsule.
  • the material of the gel capsule may include agarose, acrylamide, a photocurable resin (for example, PEG-DA), PEG, gelatin, sodium alginate, matrigel, collagen and the like.
  • Gelation of the droplets can be performed by configuring the droplets to contain the material of the gel capsule and cooling the prepared droplets. Alternatively, gelation can be performed by giving a stimulus such as light to the droplet.
  • the inclusion of the gel capsule material in the droplets can be done, for example, by including the gel capsule material in a suspension of cells or cell-like structures.
  • the gel capsule may be a hydrogel capsule.
  • hydrogel refers to one in which the solvent or dispersion medium held by the network structure of the polymer substance or colloidal particles is water.
  • Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride.
  • a lytic reagent or a combination of lysing reagents that is strong to some extent.
  • Gram-positive bacteria have a cell wall with a thick peptidoglycan layer, so mild ones alone may not be sufficient to lyse cells.
  • Non-patent literature (Rinke C, Lee J, Nath N, et al. Obtaining genomes from uncultivated denvironmental microorganisms using FACS-based single-cell genomics. Nat Protoc. 2014; 9 (5): 1038-1048. Doi: 10.1038 / pro 2014.067).
  • a method for evaluating the microbial composition as reported in various literatures such as non-patent literature (Vandeputteet al. 2017 Nature), the partial sequence or the entire sequence of the 16S rRNA gene is sequenced.
  • the cells or cell-like structures that can be targeted in the microbiota analysis of the present disclosure are two or more arbitrary numbers, for example, 10 or more, 50 or more, 100 or more, 500 or more, 1000 or more. It can be 5000 or more, 10,000 or more, 50,000 or more, 100,000 or more, 500,000 or more, 1 million or more, 5 million or more, 10 million or more.
  • the microbiota analysis of the present disclosure may use individual cell-derived nucleic acid-by-nucleic acid information from a larger number of cells than using conventional single-cell reaction systems, such as 0.2 mL, 1.5 mL microtube reaction systems. .. (Analysis before genome sequencing)
  • the methods prior to analysis of the total sequence information of individual microorganisms (for example, genome sequencing), the structures and sequences of nucleic acids or other biomolecules prepared in parallel from various microorganisms are used. It may be carried out to detect and select each individual specifically with reference to. That is, the method may include selecting a sample containing the amplified nucleic acid to be analyzed from a sample containing the amplified nucleic acid derived from each cell.
  • selection can be made based on the presence or absence of a particular gene sequence, the yield of a particular gene or the total nucleic acid yield. In some embodiments, it may be selected when there is a specific gene sequence, or it may be selected when there is no specific gene sequence. In some embodiments, it may be selected if the yield of the particular gene is greater than or equal to the baseline yield. In some embodiments, it may be selected if the total nucleic acid yield is greater than or equal to the reference yield.
  • reagents that specifically detect the presence or absence of a particular gene sequence include antibodies, probes, DNA-binding fluorescent dyes, fluorescent dye-binding nucleotides.
  • the yield of a specific gene or the total nucleic acid yield can be measured by absorbance measurement, fluorescence measurement, agarose gel electrophoresis, or microchip electrophoresis.
  • the method may include detecting nucleic acid having a particular sequence in a sample containing amplified nucleic acid derived from each cell.
  • the step of detecting a nucleic acid having a specific sequence may include amplifying and sequencing the nucleic acid having a specific sequence.
  • Evaluation of microbiota composition may include identifying the absolute number of various microbiota in the microbiota.
  • the absolute number of various microorganisms can be specified by specifying the microbial species for each of the amplified nucleic acids derived from each cell.
  • the microbial species can be specified, for example, by specifying the presence or absence of a specific gene sequence.
  • the method of the present disclosure may include obtaining genomic sequence data for each cell from a sample containing amplified nucleic acid derived from each cell in the microbiota.
  • obtaining genomic sequence data it is possible to obtain not only information as a sequence but also information from the viewpoint of the function performed by the sequence for each microorganism in the microflora.
  • Genome sequence data It is possible to select the genome sequence data to be analyzed from the genome sequence data of each cell. Genome sequence data has a large amount of information, and limiting the amount to be processed leads to a reduction in labor and time.
  • Selection may include assessing the presence or absence of a particular gene sequence and / or identity with a particular gene sequence. In some embodiments, identity with a particular gene sequence can be assessed by using BLAST or the like. In certain embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the presence or absence of a particular gene sequence. In other embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the identity of a particular gene sequence with nucleic acid information derived from two or more cells. In some embodiments, it may be selected when it has a certain level of identity or more, or it may be selected when it has a certain level of identity or less.
  • the identity is 50% or higher, 55% or higher, 60% or higher, 65% or higher, 70% or higher, 75% or higher, 80% or higher, 85% or higher, 90% or higher, 91% or higher, It may be 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 100%.
  • the identity is 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 9% or less, It may be 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, or 0%.
  • evaluation of microbiota composition may be performed by comparing long gene sequences in each microorganism.
  • the long sequence may be, for example, a gene sequence extracted from de novo assembly data (for example, a 16S gene sequence or a set of common genes). Comparison of such long gene sequences can not only improve the accuracy of evaluation, but also enable evaluation of function in the microflora. For example, even if it is known that multiple species exist from sequence information alone, it is not possible to understand the function of the entire microbiota without individual information on each function, but it is based on genetic information. For example, information can be obtained about the amount of species that may have a particular activity (eg, enzymatic activity) within the microbiota.
  • the microbial flora that can be covered in this disclosure is, but is not limited to, eubacteria, Escherichia coli, bacilli, indigo bacteria, cocci, bacilli, racen, gram-negative bacteria, gram-positive bacteria, archaea, fungi. , Or any combination thereof.
  • An example of a microflora is a bacterial flora. Since the microflora can contain multiple microorganisms having different cell properties (eg, the presence or absence of a cell wall), the nucleic acid information for each cell can be obtained or one cell in the same manner regardless of the microbial species. Adopting a means capable of obtaining each amplified nucleic acid may be preferable in the analysis of the present disclosure.
  • the microbiota is not limited, but is limited to intestinal microbiota, cutaneous microbiota, oral microbiota, nasal microbiota, vaginal microbiota, soil microbiota, root zone microbiota, river / seawater microbiota, and activity. It can be a sludge microbiota, an insect coexisting microbiota, an animal symbiotic microbiota, and the like.
  • the gut flora has been extensively studied for its effects on human health and is one of the preferred analyzes of the present disclosure.
  • Metagenomic analysis is a method of extracting and collecting nucleic acids, genes, and DNA possessed by microorganisms in the environment as a whole and comprehensively examining their structures (base sequences) without going through the process of culturing. Although it is not known which microorganism the individual nucleic acid or gene is derived from, it is possible to obtain information about the gene group of a collection (community) of microorganisms in the environment, and such a method is called metagenomic analysis.
  • a system for analyzing microbiota composition may be provided.
  • the system may be provided with a method or means for implementing a process thereof that comprises any of the features described in the other items herein.
  • the system may include a device for amplifying polynucleotides in cells.
  • the device can be, among other things, capable of amplifying polynucleotides in cells at the single cell level.
  • the device is a droplet preparation unit that encapsulates cells or cell-like structures in droplets one cell or structure at a time; a gel capsule generation unit that gels droplets to generate gel capsules; a reagent for dissolving gel capsules. It may be provided with a dissolving reagent dipping part to be immersed in; a removing part for removing contaminants from the gel capsule; and / or an amplification reagent dipping part for immersing the gel capsule in the amplification reagent.
  • the system or device may further comprise a sorting unit that sorts the gel capsules and houses the gel capsules in a storage container.
  • the system or device may optionally include media for encapsulating cells or cell-like structures, gel capsule materials, lysis reagents, amplification reagents, reagents used for sequencing nucleic acids (eg, polymerases, primer sets (eg, polymerases, primer sets). Barcode sequences may be included), etc.) and other reagents.
  • reagents in addition to those described elsewhere in the present specification, reagents known in the art may be used.
  • the device or system may further include a sequencing section for sequencing the nucleic acid sequence in the amplified polynucleotide in the amplification reagent immersion section.
  • the sequencing unit may be provided integrally with the above device or as another device in the system.
  • the sequencing unit includes the Sanger method, the Maxam-Gilbird method, single molecule real-time sequencing (for example, Pacific Biosciences, Menlo Park, California), and ion semiconductor sequencing (for example, Ion Torrent, South San Francisco, California).
  • Bisynthesis pyrosequencing (eg, 454, Brandored, Connecticut), ligation sequencing (eg, Life Technologies, Carlsbad, California SOLiD sequencing), synthetic and reversible terminator sequencing (eg, Illumina) , California), nucleic acid imaging techniques such as transmission electron microscopy, nanopore sequencing, and the like.
  • ligation sequencing eg, Life Technologies, Carlsbad, California SOLiD sequencing
  • synthetic and reversible terminator sequencing eg, Illumina
  • nucleic acid imaging techniques such as transmission electron microscopy, nanopore sequencing, and the like.
  • the system or device may be equipped with means for detecting and measuring the amplified gene.
  • a flow cytometry device suitable for handling the shape of a gelul capsule may be provided integrally with the above device or as another device in the system.
  • Means for detecting and measuring the amplified gene include means for performing a detection reaction (eg, thermal cycler and suitable reagents) and / or means for detecting signals (optical sensors, cameras, and suitable means for analysis). Can be included.
  • the system or device may include a calculator that may be configured to perform any information processing described elsewhere herein.
  • the calculation unit may be provided integrally with the above-mentioned device, or may be provided as another device (computer) in the system.
  • a calculation unit may also provide a program for performing information processing described elsewhere in the specification to implement the method of the present disclosure and a storage medium on which it is recorded.
  • the calculator may optionally include such a program and / or a storage medium on which it is recorded.
  • kits for analyzing microbiota composition may be provided.
  • the kit may include the material of the gel capsule, and the use of the gel capsule is advantageous for amplifying nucleic acids in cells or cell-like structures at the single cell level, as described elsewhere herein. And can be used as described herein for analysis of microbial composition.
  • the kit may include, for example, the material of the gel capsule and, optionally, one or more reagents. As the reagent, in addition to those described elsewhere in the present specification, reagents known in the art may be used.
  • Kits for analyzing microbiota composition may include reagents for lysis.
  • Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride.
  • Tween 20 Urea, 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, It may include at least one selected from the group consisting of Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl- ⁇ -D-maltoside, Nonidet P-40, Zwittergent 3-12. Dissolving reagents are useful for obtaining amplified polynucleotides at the single cell level, especially genomic-wide amplification products.
  • the kit may include reagents for amplifying nucleic acids.
  • Amplification reagents include, for example, polymerases, primer sets (which may include barcode sequences), base mixes, suitable buffers and the like.
  • the kit may include reagents such as reagents used for sequencing nucleic acids (eg, polymerases, primer sets (which may include barcode sequences), etc.).
  • reagents polymerase, primer set (which may include a barcode sequence), etc.) for amplifying / decoding a specific gene by a Sanger sequence or NGS may be included.
  • the kit may also include reagents that can be used to detect and measure specific sequences, such as nucleic acid binding dyes, fluorescently labeled probes, and the like. Using these reagents, the presence or absence of a specific sequence can be measured by an instrument that detects and measures the amplified gene (flow cytometry, etc.).
  • specific sequences such as nucleic acid binding dyes, fluorescently labeled probes, and the like.
  • the kit may include means for taking a sample.
  • the kit may also include means for storing the sample taken.
  • Means for collecting a sample include a syringe, a swab, a biopsy punch, a urine collection container, a stool collection container, a saliva collection container, a medical tape, and the like.
  • Examples of the means for storage include a coolant (for example, an ice pack, dry ice, liquid nitrogen), a preservation solution (for example, a solution containing any of guanidine hydrochloride, ammonium sulfate, ethanol, etc.) and the like.
  • a kit comprising a sample collection container containing a preservation solution for analyzing microbiota composition
  • the storage solution may contain, for example, a guanidine solution (for example, FS-0007 or FS-0008, Technosulgarabo) or ethanol (for example, OMR-200 or OM-501, DNA genomek).
  • a guanidine solution for example, FS-0007 or FS-0008, Technosulgarabo
  • ethanol for example, OMR-200 or OM-501, DNA genomek.
  • Preservatives are generally used to increase the stability of nucleic acids, for example, guanidine solutions and alcohols are used to cause protein denaturation and inhibit the action of enzymes that promote nucleic acid degradation. Will be done.
  • a preservation solution that causes protein denaturation was expected to be disadvantageous for the stability of cell morphology, but in the examples herein, unexpectedly, after preservation with the preservation solution, the cells Many retain their morphology well and have been found to be particularly suitable for the methods of the present disclosure.
  • a gel capsule containing the amplified and retained 1-cell genome-derived polynucleotide is prepared by a method including the step of amplifying the polynucleotide in the gel capsule.
  • This gel capsule is stained with a DNA-binding fluorescent dye or the like, and fluorescence-positive capsules are counted by flow cytometry.
  • the number of fluorescence-positive capsules in a fixed volume corresponds to the total number of introduced microorganisms.
  • the step of contacting the polynucleotide with an amplification reagent to amplify the polynucleotide in the gel capsule can also amplify the polynucleotide while maintaining the gel state in the gel capsule.
  • the above primer set contains a barcode sequence
  • each sample is subjected to an amplification reaction in which a different barcode is added, and PCR products derived from multiple replica plates are pooled to perform a next-generation sequence.
  • the plate well number is specified by the barcode sequence
  • the microbial species of hundreds to thousands of samples are specified at once by specifying the sequence of the PCR product.
  • the primer set may be a mixture of primer sets targeting a plurality of gene regions. More specifically, it is selected from those targeting the v3-v4 and v1-v2 regions of the 16S rRNA gene, and primer sets for distinguishing bacteria, archaea, fungi, etc. such as 18S rRNA and ITS. Bacteria, archaea, and fungi can be detected at the same time by using a plurality of types of the primer sets at the same time.
  • system Contains a droplet encapsulation unit that encloses cells one by one in a droplet, a gel capsule generation unit that gels the droplets to generate gel capsules, and one or more lysis reagents for lysing cells.
  • a cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, and the cell lysate is a polynucleotide containing genomic DNA of the cells or a portion thereof.
  • the cell lysate and the polynucleotide which are configured to be retained in the gel capsule in a state where the substance that is eluted in the gel capsule and binds to the genomic DNA or a portion thereof is removed, are contained in the gel capsule.
  • a gel capsule containing a single-cell genome-derived polynucleotide that has been amplified and retained is prepared by a system for analyzing the composition of the microflora containing the polynucleotide amplification reagent for amplification.
  • the gel capsule prepared in this way it is possible to perform a complex analysis of the genetic information and the like of the host itself such as a human and the microflora of the human-derived sample.
  • the microbial species contained in the sample is identified, and the information on the intestinal microbiota and human cells are targeted.
  • the genetic information obtained from each gel capsule obtained by the above method and system is also analyzed.
  • the composition evaluation unit of the above system can evaluate the human intestinal microflora and the human cell to be evaluated, respectively, to amplify and sequence the nucleic acid, and obtain the genome sequence data of each cell. Can be obtained.
  • the system of the present invention can evaluate the effects of the intestinal bacteria and their biotransformers on the host and the functions of the intestinal bacteria themselves, and can find the correlation between them. it can.
  • Example 1 Analysis of mouse intestinal flora composition
  • DPBS buffered saline
  • microdroplets were prepared and mouse intestinal microbial cells were encapsulated in the microdroplets.
  • a microchannel consisting of a first channel, a second channel, a third channel, and a fourth channel, in which adjacent channels are arranged at right angles, is used, but they are connected in a substantially T shape. It is also possible to use a microchannel.
  • the microchannel of this example used had a width of 34 ⁇ m and a height of 50 ⁇ m, but the size of the microchannel can be appropriately changed depending on the size of the microdroplets to be produced and the size of one cell to be encapsulated.
  • the intestinal microbial suspension was introduced from the first channel (aqueous phase inlet), and Pico-Surf1 (2% in Novec7500) (Sphere Fluidics) from the second channel and the fourth channel (oil phase inlet). ) (Hereinafter referred to as "oil") is introduced to shear the intestinal microbial suspension to prepare fine droplets having a diameter of 50 ⁇ m, and the third flow path 7 is allowed to flow through a tube having a capacity of 0.2 mL. Collected in. Approximately 450,000 microdroplets were produced at a rate of 500 droplets / second. The cell concentration in the microdroplets is 0.1 cells / droplet.
  • the diameter of the microdroplets is made uniform to 50 ⁇ m, so that each cell can be easily encapsulated in the microdroplets.
  • the diameter of the microdroplets is, for example, 1 to 250 ⁇ m, preferably 20 to 200 ⁇ m.
  • the diameter of the droplet may be from about 1 to 250 ⁇ m, more preferably from about 10 to 200 ⁇ m, for example, the diameter of the droplet is about 1 ⁇ m, about 5 ⁇ m, about 10 ⁇ m, about 15 ⁇ m, about 20 ⁇ m, about 25 ⁇ m, about. It may be 30 ⁇ m, about 40 ⁇ m, about 50 ⁇ m, about 80 ⁇ m, about 100 ⁇ m, about 150 ⁇ m, about 200 ⁇ m, or about 250 ⁇ m.
  • microdroplets and oil are stored in the tube, but the microdroplets have a lighter specific gravity than oil, so they accumulate in the upper layer.
  • the tube was cooled on ice for 15 minutes, and microdroplets were gelled with ultra-low melting point agarose.
  • the gelled microdroplets are gel capsules. Since the diameter of the microdroplets is 50 ⁇ m, the diameter of the gel capsule is also 50 ⁇ m.
  • the diameter of the gel capsule may be about 1-250 ⁇ m, more preferably about 10-200 ⁇ m, eg, about 1 ⁇ m, about 5 ⁇ m, about 10 ⁇ m, about 15 ⁇ m, about 20 ⁇ m, about 25 ⁇ m, about 30 ⁇ m, about 40 ⁇ m, about. It may be 50 ⁇ m, about 80 ⁇ m, about 100 ⁇ m, about 150 ⁇ m, about 200 ⁇ m, or about 250 ⁇ m.
  • the diameter of the gel capsule may be the same as that of the droplet to be produced, but the diameter may change during gelation.
  • the diameter of the gel capsule is preferably 1 to 250 ⁇ m.
  • the gel capsule was sequentially immersed in a lytic reagent as a lysis reagent, and a part other than the object to be collected such as a cell wall of a cell was dissolved inside the gel capsule, and genomic DNA was eluted into the gel capsule.
  • lysozyme (10 U / ⁇ L) (R1804M, Epicenter), which is one of the lytic reagents, was added to the tube to lyse the cells.
  • achromopeptidase (850 U / mL) (015-09951, Fujifilm Wako Pure Chemical Industries, Ltd.), which is one of the lytic reagents, was added to the tube.
  • protease K (1 mg / mL) (MC5005, Promega) and sodium dodecyl sulfate (SDS) 0.5% (71736-100ML, SIGMA-ALDRICH), which are one of the lytic reagents, to the tube to add cells.
  • the gel capsule was immersed in Buffer D2 (QIAGEN), which is an aqueous solution containing potassium hydroxide, which is one of the lytic reagents, to dissolve the residual components and denature the genomic DNA.
  • Buffer D2 QIAGEN
  • the lytic test solution used in this example was lysozyme, achromopeptidase, proteinase K, sodium dodecyl sulfate, and Buffer D2.
  • Potassium hydroxide is also used in a normal DNA amplification reaction step, but since it also has a lytic effect, it was used as one of the lytic reagents in this example. Since the gel capsule is immersed in the lytic reagent for a short time, the eluted genomic DNA is not discharged from the gel capsule by the lytic reagent and is retained in the gel capsule. In this example, the lytic reagent permeated into the gel capsule is also included in the contaminants.
  • lysozyme, achromopeptidase, and protease K were added in sequence, sodium dodecyl sulfate was added to lyse the cells, and then centrifugation was performed only before adding Buffer D2. Thereby, a sufficient cleaning effect can be obtained.
  • centrifugation may be performed after lysing the cells with each lytic reagent.
  • the target genomic DNA can be collected by lysing the cells with a plurality of types of lytic reagents, and the lytic reagent and the poly of the lysed cells can be collected by centrifugation after immersion in the lytic reagent. Contaminants such as components other than nucleotides can be removed, and genomic DNA can be purified without inhibiting the subsequent genomic DNA amplification reaction.
  • the amplification reagent was added to the tube containing the gel capsule holding the denatured genomic DNA in the potassium hydroxide solution (Buffer D2), and the gel capsule was immersed in the amplification reagent.
  • the MDA (Multiple Replication Replication) method using phi29 DNA polymerase, which is a strand-substitution type DNA synthase was used.
  • the whole genome amplification reaction reagent was immersed in REPLI-g Single Cell Kit (QIAGEN), and the whole genome amplification reaction was carried out for 3 hours (S1000 thermal cycler, Bio-Rad).
  • the amplification reagent (REPLI-g Single Cell Kit) contains a component that neutralizes the potassium hydroxide solution (Buffer D2).
  • a fluorescent DNA intercalator SYBR Green I nucleic acid gel stain 10,000 in DMSO, (S7563, Thermo Fisher Scientific)
  • flow cytometer BD FACSMelody cell sorter, BD Biosciences
  • the MDA method (REPLI-g Single Cell Kit, 150345) is used in the wells of each plate.
  • QIAGEN QIAGEN was performed to prepare a library master plate containing 10 ⁇ L of DNA amplification product for each well.
  • Dispense 39 ⁇ L of nuclease-free water (UltraPure DNase / RNase-Free Distilled Water, 10977-015, Thermo Fisher Scientific) into each well of the new plate, add 1 ⁇ L of DNA amplification product in the library master plate, and add 1 ⁇ L of DNA amplification product to the library master plate.
  • a 40-fold diluted solution was prepared.
  • the DNA concentration was quantified by a Qubit fluorometer (Q33226, Thermo Fisher Scientific) Qubit dsDNA HS Assay Kit (Q32854, Thermo Fisher Scientific) using 1 ⁇ L of the diluted solution.
  • PCR was performed on the V3V4 region of the 16S rRNA gene using 1 ⁇ L of the diluted solution as a template (6.25 ⁇ L PrimeSTAR Max DNA Polymerase (R045B, Takara Bio), 0.5 ⁇ L 10 ⁇ M Primer Forward (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3).
  • PCR reaction conditions are 95 ° C, 5 minutes for initial thermal denaturation, 98 ° C, 10 seconds for thermal denaturation, 51 ° C, 15 seconds for annealing, and 72 ° C for elongation reaction.
  • the criteria were (1) the DNA yield after MDA amplification was 200 ng or more, and (2) amplification was confirmed after PCR of the 16S rRNA gene. Samples were selected that were set and the DNA yield was sufficient for subsequent analysis and met the criteria of bacterial origin. As a result of sample selection, 347 (74%) out of 470 samples were selected. Furthermore, homology search (default condition) using BLAST was performed on the sequence information obtained by sequence analysis of PCR products, and information on the type and number of bacteria contained in the library master plate was obtained.
  • Example 2 Analysis of human intestinal flora composition
  • Example collection from humans Human feces were collected in a stool collection container (FS-0007 or FS-0008, Technosurgarabo).
  • the preservation solution was removed, and the container was washed once with 1000 ⁇ L of DPBS.
  • Frozen stool in 1.5 ml tube was naturally thawed by placing it on ice for 30 minutes. Fresh stools that do not contain a preservative solution are not treated before crushing.
  • DPBS Phosphate Buffered Saline
  • microdroplets were prepared and human intestinal microbial cells were encapsulated in the microdroplets.
  • a microchannel consisting of a first channel, a second channel, a third channel, and a fourth channel, in which adjacent channels are arranged at right angles, is used, but they are connected in a substantially T shape. It is also possible to use a microchannel.
  • the microchannel of this example used had a width of 34 ⁇ m and a height of 50 ⁇ m, but the size of the microchannel can be appropriately changed depending on the size of the microdroplets to be produced and the size of one cell to be encapsulated.
  • the intestinal microbial suspension was introduced from the first channel (aqueous phase inlet), and Pico-Surf1 (2% in Novec7500) (Sphere Fluidics) from the second channel and the fourth channel (oil phase inlet). ) (Hereinafter referred to as "oil") is introduced to shear the intestinal microbial suspension to prepare fine droplets having a diameter of 50 ⁇ m, and the third flow path 7 is allowed to flow through a tube having a capacity of 0.2 mL. Collected in. Approximately 450,000 microdroplets were produced at a rate of 500 droplets / second. The cell concentration in the microdroplets is 0.1 cells / droplet.
  • the diameter of the microdroplets is made uniform to 50 ⁇ m, so that each cell can be easily encapsulated in the microdroplets.
  • the diameter of the microdroplets is, for example, 1 to 250 ⁇ m, preferably 10 to 200 ⁇ m.
  • microdroplets and oil are stored in the tube, but the microdroplets have a lighter specific gravity than oil, so they accumulate in the upper layer.
  • the tube was cooled on ice for 15 minutes, and microdroplets were gelled with ultra-low melting point agarose.
  • the gelled microdroplets are gel capsules. Since the diameter of the microdroplets is 50 ⁇ m, the diameter of the gel capsule is also 50 ⁇ m. The diameter of the gel capsule is preferably 1 to 250 ⁇ m. By making the diameter of the gel capsule uniform, the penetration rate of the lytic reagent described later into each gel capsule can be made more uniform.
  • the gel capsule was sequentially immersed in a lytic reagent as a lysis reagent, and a part other than the object to be collected such as a cell wall of a cell was dissolved inside the gel capsule, and genomic DNA was eluted into the gel capsule.
  • lysozyme (10 U / ⁇ L) (R1804M, Epicenter), which is one of the lytic reagents, was added to the tube to lyse the cells.
  • achromopeptidase (850 U / mL) (015-09951, Fujifilm Wako Pure Chemical Industries, Ltd.), which is one of the lytic reagents, was added to the tube.
  • protease K (1 mg / mL) (MC5005, Promega) and sodium dodecyl sulfate (SDS) 0.5% (71736-100ML, SIGMA-ALDRICH), which are one of the lytic reagents, to the tube to add cells.
  • the gel capsule was immersed in Buffer D2 (QIAGEN), which is an aqueous solution containing potassium hydroxide, which is one of the lytic reagents, to dissolve the residual components and denature the genomic DNA.
  • Buffer D2 QIAGEN
  • the lytic test solution used in this example was lysozyme, achromopeptidase, proteinase K, sodium dodecyl sulfate, and Buffer D2.
  • Potassium hydroxide is also used in a normal DNA amplification reaction step, but since it also has a lytic effect, it was used as one of the lytic reagents in this example. Since the gel capsule is immersed in the lytic reagent for a short time, the eluted genomic DNA is not discharged from the gel capsule by the lytic reagent and is retained in the gel capsule. In this example, the lytic reagent permeated into the gel capsule is also included in the contaminants.
  • sufficient cleaning effect can be obtained by sequentially adding lysozyme, achromopeptidase, and protease K, adding sodium dodecyl sulfate to lyse the cells, and then performing centrifugation only before adding Buffer D2. it can.
  • centrifugation may be performed after lysing the cells with each lytic reagent.
  • the target genomic DNA can be collected by lysing the cells with a plurality of types of lytic reagents, and the lytic reagent and the poly of the lysed cells can be collected by centrifugation after immersion in the lytic reagent. Contaminants such as components other than nucleotides can be removed, and genomic DNA can be purified without inhibiting the subsequent genomic DNA amplification reaction.
  • the amplification reagent was added to the tube containing the gel capsule holding the denatured genomic DNA in the potassium hydroxide solution (Buffer D2), and the gel capsule was immersed in the amplification reagent.
  • the MDA (Multiple Replication Replication) method using phi29 DNA polymerase, which is a strand-substitution type DNA synthase was used.
  • the whole genome amplification reaction reagent was immersed in REPLI-g Single Cell Kit (QIAGEN), and the whole genome amplification reaction was carried out for 3 hours (S1000 thermal cycler, Bio-Rad).
  • the amplification reagent (REPLI-g Single Cell Kit) contains a component that neutralizes the potassium hydroxide solution (Buffer D2).
  • a fluorescent DNA intercalator SYBR Green I nucleic acid gel stain 10,000 in DMSO, (S7563, Thermo Fisher Scientific)
  • flow cytometer BD FACSMelody cell sorter, BD Biosciences
  • the MDA method (REPLI-g Single Cell Kit, 150345) is used in the wells of each plate.
  • QIAGEN QIAGEN was performed to prepare a library master plate containing 10 ⁇ L of DNA amplification product for each well.
  • Dispense 39 ⁇ L of nuclease-free water (UltraPure DNase / RNase-Free Distilled Water, 10977-015, Thermo Fisher Scientific) into each well of the new plate, add 1 ⁇ L of DNA amplification product in the library master plate, and add 1 ⁇ L of DNA amplification product to the library master plate.
  • a 40-fold diluted solution was prepared.
  • the DNA concentration was quantified by a Qubit fluorometer (Q33226, Thermo Fisher Scientific) Qubit dsDNA HS Assay Kit (Q32854, Thermo Fisher Scientific) using 1 ⁇ L of the diluted solution.
  • PCR was performed on the V3V4 region of the 16S rRNA gene using 1 ⁇ L of the diluted solution as a template (6.25 ⁇ L PrimeSTAR Max DNA Polymerase (R045B, Takara Bio), 0.5 ⁇ L 10 ⁇ M Primer Forward (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3).
  • PCR reaction conditions are 95 ° C, 5 minutes for initial thermal denaturation, 98 ° C, 10 seconds for thermal denaturation, 51 ° C, 15 seconds for annealing, and 72 ° C for elongation reaction.
  • analyzing the digital sequence information of the bacterium it is possible to analyze the metabolic function of the bacterium, possess a drug resistance gene, analyze a gene mutation, compare with a known bacterium, and compare with another sample.
  • This process includes, for example, search engines such as blast, analysis websites such as Ensembl, assembly evaluation tools such as QUAST and CheckM, annotation tools such as Prokka, InterProScan, and DFAST, and metabolism / physiology such as MetaCyc and MAPLE. It can be carried out using a functional potential evaluation system.
  • search engines such as blast
  • analysis websites such as Ensembl
  • assembly evaluation tools such as QUAST and CheckM
  • annotation tools such as Prokka, InterProScan, and DFAST
  • metabolism / physiology such as MetaCyc and MAPLE.
  • the genes in the genome are identified, and the conservativeness as a metabolic pathway is evaluated by MAPLE.
  • the conservativeness and identity of each gene will be evaluated, and comparative genome analysis with related species will be performed.
  • homology search of gene sequences derived from a single organism using BLAST or hmmer, or homology search for target genes, or (2) By mapping the sequence data derived from a single organism using BWA and bowtie2, the difference between the gene sequence derived from a single organism and the target gene sequence is detected, and the gene mutation is identified.
  • genomes derived from allogeneic microorganisms based on the single copy marker gene sequences detected by Average Nucleotide Identity, CheckM, and GTDB-tk. Create a genome set containing genetic information derived from a single organism that is presumed to be and genetic information of known microorganisms. Subsequently, differences between genomes such as the presence or absence of a specific gene, a locus, and a mutation in a common gene sequence are identified and extracted by a homology search tool such as BLAST or hmmer. By performing clustering based on characteristic intergenomic differences, classification of allogeneic microorganisms at the strain level or substrain level of homologous microorganisms is performed.
  • Example 3 When it is desired to selectively acquire data of cells having specific characteristics from various cells, A gel containing a polynucleotide when the purpose is to obtain genomic data of one or more specific microorganisms of interest to those skilled in the art among animal symbiotic microorganisms such as gut flora and marine / soil microorganisms. By confirming in advance the presence or absence of a gene fragment of the target microorganism in the amplified nucleic acid recovered from the capsule or gel capsule, it is possible to reduce unnecessary gene sequence data acquisition and the cost associated therewith.
  • measurement targets include comparative analysis of microorganisms of the same strain (for example, analysis of subspecies in a group of microorganisms related to diseases, etc.) and microorganisms having a specific gene (for example, secondary metabolites and enzymes produced by microorganisms). It is assumed that the purpose is to search for or analyze bacteria, archaea, fungi, and other eukaryotic cells individually from among various species. In particular, for the purpose of evaluating the intestinal environment, oral cavity, and skin environment of the host human, intestinal bacteria and oral bacteria responsible for specific metabolic functions can be specifically detected from genes, and variants of skin bacteria can be detected. It is expected to be detected.
  • Example 4 When a large amount of host DNA or the like is mixed, the analysis sample is feces, saliva, sputum or skin, oral cavity, nasal cavity, ears, genital lavage fluid, surgical cleaning solution, tissue extract or blood, and the microorganisms contained in the sample are analyzed. Contains cells, intracellular small organs, and nucleic acids from many host animals in the sample. Some of these can also be encapsulated inside the gel capsule to perform polynucleotide amplification.
  • polynucleotide derived from the host can be applied to the complex analysis of the microflora.
  • the intestinal flora and host animals present in the gastrointestinal tract have a symbiotic relationship in which the host provides an anaerobic environment for colonization of the gastrointestinal tract, while the intestinal flora affects the health of the host. It is known to have.
  • the major effects on the health status of the host include the production of nutrients, the defense against infectious diseases, and the development of the immune system.
  • inflammatory bowel disease is a disease caused by an abnormality of intestinal environmental factors such as intestinal bacteria in addition to a genetic predisposition.
  • the intestinal bacteria and the living body side compete for nutrients, while the intestinal bacteria also metabolize and decompose nutrients for the living body for more integrated analysis. It can be carried out.
  • the function of biotransformers derived from gut flora is analyzed in a complex manner by host-side genetic analysis, metabolome analysis, biochemical analysis, etc., and the gut flora Regarding the function, the function can be inferred from the genome sequence information of the bacterium, and the correlation with the produced metabolome can be seen.
  • Mutant diversity on the genome sequence can be evaluated on a single cell basis to track the genomic heterogeneity of each microorganism in the microbiota and the development and progression of mutant strains.
  • By selectively amplifying and detecting the target gene mutation site of the target cell for the gel capsule containing the amplified polynucleotide only the gene sequence data to be analyzed can be specifically acquired, and the cost for it can be reduced. can do. It can be used to detect genetically mutated microorganisms and plasmid infections.
  • Example 6 Evaluation of preservation of specific species
  • the disclosed technology is used to amplify the specific organism from a gel capsule containing an amplified polynucleotide. By detecting and selecting, the content rate can be shown.
  • the degree of coincidence with the standard at the genome level, preservation, and the like. It is expected to be used for quality assurance of microbial preparations.
  • Specific procedures include (1) homology search of single organism-derived gene sequences using BLAST and hmmer for target genes, or (2) single organism-derived sequence data using BWA and bowtie2. By mapping, the difference between the gene sequence derived from a single organism and the target gene sequence is detected, and the gene mutation is identified.
  • Example 7 Detection of specific species
  • Analysis samples are feces, saliva, sputum and skin, oral cavity, nasal cavity, ears, genital lavage fluid, surgical lavage fluid, tissue extract, blood, etc., and detect the presence of one or more specific microorganisms. It may determine drug response, drug resistance, and evaluate the metabolic capacity of foods.
  • a specific organism can be detected and selected from a gel capsule containing an amplified polynucleotide to indicate its content.
  • a homology search for a single organism-derived gene sequence is performed based on a gene that metabolizes dietary fiber inulin or a gene marker that identifies the microbial Bacteroides species.
  • the microorganisms and gene groups responsible for the degradation of the dietary inulin could be identified, and their functions could be estimated from the homology of known genes and the prediction of the three-dimensional structure based on the amino acid sequence.
  • Example 8 Evaluation of soil bacteria
  • various specific organisms inhabiting soil or seawater are detected and selected from gel capsules containing amplified polynucleotide using the technology disclosed in the present disclosure. It is possible to identify the area and indicate the abundance. Further, by analyzing the obtained genetic information in detail, it is possible to evaluate cultivars, livestock or aquaculture varieties suitable for the soil or seawater at the genome level. Furthermore, it is expected to be used for pesticide-free manufacturing methods using soil bacteria or marine bacteria.
  • DPBS phosphate buffered saline
  • the supernatant was filtered using a filter having a diameter of 5 ⁇ m (SMWP04700, Sigma-Aldrich) and then centrifuged at 10,000 ⁇ g for 5 minutes (75004263, Thermo Fisher Scientific) to remove the supernatant.
  • the pellets are resuspended in 10 mL PBS, dispensed in 1 mL each in a 1.5 mL tube (MCT-150-C, Axygen), and then centrifuged at 10,000 xg for 5 minutes to collect soil bacteria.
  • Bacteria Bacterial pellets were combined into a single 1.5 mL tube, washed twice by centrifugation with PBS, and then suspended in PBS to obtain a cell suspension of soil bacteria.
  • the cell concentration in the prepared cell suspension was measured (microscope: CKX41, OLYMPUS, bacterial calculator A161,2-5679-01, AS ONE), and ultra-low melting point agarose (A5030) was adjusted to a final concentration of 1.5%.
  • -10G, Sigma-Aldrich was added to prepare a soil bacterial suspension used for gel capsule preparation (cell final concentration: 1.5 ⁇ 10 3 cells / ⁇ L). Subsequently, the analysis was advanced and evaluated in the same procedure as the method described in Example 1 or 2.
  • Example 9 Analysis of aquatic microbial composition
  • 4 L of seawater or fresh water was collected in a sterilized plastic tank, filtered using a 5 ⁇ m diameter filter (SMWP04700, Sigma-Aldrich), and then filtered through a 0.22 ⁇ m diameter filter (GSWP04700, Sigma-Aldrich). By doing so, the bacterial fraction was trapped on the filter.
  • DPBS Phosphate Buffered Saline
  • Bacteria derived from seawater or freshwater are collected by dispensing 1 mL of a 10 mL bacterial suspension into a 1.5 mL tube (MCT-150-C, Axygen) and centrifuging at 10,000 xg for 5 minutes. Bacteria.
  • Bacterial cell suspensions derived from seawater or freshwater are obtained by collecting the bacterial cell pellets in a single 1.5 mL tube, washing them by centrifugation twice with PBS, and then suspending them in PBS. did. The cell concentration in the prepared cell suspension was measured (microscope: CKX41, OLYMPUS, bacterial calculator A161,2-5679-01, AS ONE), and ultra-low melting point agarose (A5030) was adjusted to a final concentration of 1.5%.
  • This disclosure is available in fields such as biological research, medicine, environment, and healthcare.
  • SEQ ID NO: 1 Forward primer
  • SEQ ID NO: 2 Reverse primer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present disclosure provides a method for evaluating an absolute number of a microbial flora composition inexpensively, simply, and/or highly accurately. The method for analyzing a microbial flora composition comprises a step for evaluating the microbial flora composition from a specimen including amplified nucleic acids derived from respective cells in the microbial flora. According to this method, in an execution before whole-genome sequencing, the absolute number of the microbial flora can be evaluated inexpensively and simply, and after whole-genome sequencing, it becomes possible to compare with a long gene sequence by narrowing, from digital sequence information, information to be analyzed, thereby increasing the degree of accuracy.

Description

デジタル微生物叢解析Digital microflora analysis
 本開示は、微生物叢組成の分析に関し、生物学的研究、医療、環境、ヘルスケアなどの分野において利用可能である。 This disclosure is available in fields such as biological research, medicine, environment, and healthcare regarding the analysis of microbiota composition.
 環境微生物の多様性を評価する方法として、次世代シーケンサーを利用して、16SrRNA遺伝子や18SrRNA遺伝子の保存領域を対象としたアンプリコンシーケンス解析が近年広く用いられている。16SrRNA遺伝子を対象とした場合は、多様な微生物を含むサンプル(糞便や土壌、海水など)から一括抽出したDNAに対して、数百塩基の保存領域をPCR増幅し、次世代シーケンサーで保存領域の塩基配列を網羅解析することで、塩基配列の種類=微生物種の種類として微生物叢組成を評価することができる。一方、本法にはいくつかの問題が存在する。 As a method for evaluating the diversity of environmental microorganisms, amplicon sequence analysis targeting the conserved regions of 16S rRNA genes and 18S rRNA genes has been widely used in recent years using a next-generation sequencer. When the 16SrRNA gene is targeted, a storage region of several hundred bases is PCR-amplified on DNA collectively extracted from a sample containing various microorganisms (feces, soil, seawater, etc.), and the storage region is stored by a next-generation sequencer. By comprehensively analyzing the base sequence, the microbiota composition can be evaluated as the type of base sequence = the type of microbial species. On the other hand, there are some problems with this method.
 第一に、16SrRNA遺伝子のゲノム上のコピー数は各細菌で異なることが挙げられる。細菌では、単一コピーの16SrRNA遺伝子しか持たない細菌もいれば、7遺伝子以上持つ細菌も存在する。さらには、環境微生物の大部分のゲノムが未決定であるため、当該遺伝子の数が不明であり、補正をかけることもできない。 First, the copy number of the 16S rRNA gene on the genome is different for each bacterium. Some bacteria have only a single copy of the 16S rRNA gene, while others have more than 7 genes. Furthermore, since the genomes of most of the environmental microorganisms are undecided, the number of the genes is unknown and cannot be corrected.
 第二にPCR時の増幅バイアスの問題がある。前記PCR増幅では、保存領域を対象として増幅が行われるが、内部の配列が微生物ごとに異なるため、塩基配列などの違いなどから増幅効率が各々異なることになる。この結果、PCR増幅のサイクルが増えるほど増幅効率の差異に由来するバイアスが大きくなる。上記の理由により、最終的にPCR増幅後に検出される遺伝子配列の組成比は実際の細菌組成比を反映していない。また、このようなアンプリコンシーケンス解析で得られるのはあくまで組成比であるため、実際の微生物総量の増減については不明である。つまり、あるサンプルを比較して、微生物Xが他種微生物よりも少なくなる事象を発見したとしても、その微生物Xの総量が減ったのか、他微生物数が単に増え微生物Xの数は変わっていないことも考えられる。 Secondly, there is the problem of amplification bias during PCR. In the PCR amplification, amplification is performed for the storage region, but since the internal sequence is different for each microorganism, the amplification efficiency is different due to differences in the base sequence and the like. As a result, as the number of PCR amplification cycles increases, the bias due to the difference in amplification efficiency increases. For the above reasons, the composition ratio of the gene sequence finally detected after PCR amplification does not reflect the actual bacterial composition ratio. Moreover, since what is obtained by such an amplicon sequence analysis is only the composition ratio, the actual increase or decrease in the total amount of microorganisms is unknown. In other words, even if a sample is compared and an event is found in which the number of microorganisms X is smaller than that of other microorganisms, the total amount of the microorganisms X may have decreased, or the number of other microorganisms has simply increased and the number of microorganisms X has not changed. It is also possible.
 さらには、多くの微生物叢解析では、組成比1%以下の微生物は「その他」としてまとめられて議論されているが、上記のバイアスを考慮すると実際よりも多く又は少なく微生物組成が見積もられていることが懸念される。この解決方法として、内部標準として配列既知のDNAを用い、これをサンプルにスパイクしてPCRを行う手法(非特許文献1(Stammler et al., 2016 Microbiome, 4(1), 28))や細菌絶対数を別法でカウントして補正する手法がある。前者では、内部標準との読み取り配列総量の比較から、各サンプルごとの微生物総数の相対的比較は可能であるが、PCR増幅時の問題は依然として残されており、多種の細菌絶対数をカウントすることはできていない。後者では非特許文献2(Vandeputte et al. 2017 Nature)にてフローサイトメトリーで細菌絶対数をカウントするとともに、各微生物種の代表的な16SrRNA遺伝子コピー数で補正をかけて、各種細菌数を定量的に評価する方法が紹介されている。この方法では、代表的な値で補正をかけており、中には正確なコピー数を見積もれない微生物が存在する問題点と、細菌数の測定サンプルと配列解析のサンプルが実質的には別であること、フローサイトメトリーで微小な微生物を非細胞粒子と分けてカウントすることは一般的には困難であること等が挙げられ、精度面に問題が残る。 Furthermore, in many microbiota analyzes, microorganisms with a composition ratio of 1% or less are collectively discussed as "others", but considering the above bias, the microbial composition is estimated to be more or less than the actual one. There is concern that there is. As a solution to this, DNA with a known sequence is used as an internal standard, and this is spiked into a sample for PCR (Non-Patent Document 1 (Stammler et al., 2016 Microbiome, 4 (1), 28)) and bacteria. There is a method of counting and correcting absolute numbers by another method. In the former, it is possible to make a relative comparison of the total number of microorganisms for each sample by comparing the total amount of read sequences with the internal standard, but the problem of PCR amplification still remains, and the absolute numbers of various bacteria are counted. I haven't been able to do that. In the latter, the absolute number of bacteria is counted by flow cytometry in Non-Patent Document 2 (Vandeputte et al. 2017 Nature), and the number of various bacteria is quantified by correcting with the typical 16S rRNA gene copy number of each microbial species. The method of evaluation is introduced. In this method, correction is applied with a typical value, and the problem that there are microorganisms whose accurate copy number cannot be estimated, and the sample for measuring the number of bacteria and the sample for sequence analysis are substantially different. In addition, it is generally difficult to count minute microorganisms separately from non-cellular particles by flow cytometry, and there remains a problem in terms of accuracy.
 本発明者らは、鋭意研究の結果、微生物叢組成を分析する方法であって、該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、微生物叢組成を評価する工程を含む、方法により、全ゲノム配列解読前の実行で、安く簡単に微生物叢組成の絶対数評価が可能で、全ゲノム配列解読後に、デジタル配列情報から、解析対象の情報を絞り込むことで、長い遺伝子配列で比較することなどが可能になり精度が高まることを見出し、本開示を完成させた。 The present inventors are a method of analyzing the microbiota composition as a result of diligent research, and include a step of evaluating the microbiota composition from a sample containing amplified nucleic acid derived from each cell in the microbiota. By the method, it is possible to evaluate the absolute number of microbiota composition cheaply and easily by executing before decoding the whole genome sequence. After decoding the whole genome sequence, by narrowing down the information to be analyzed from the digital sequence information, a long gene sequence can be obtained. We have completed this disclosure by finding that it is possible to make comparisons with the above and the accuracy is improved.
 1つの局面では、本開示は、多様な微生物から1細胞ごとに並列調整された増幅ポリヌクレオチドから、微生物種を同定する遺伝子配列を網羅的に読み取り、サンプル中の微生物種を1細胞ずつデジタルカウントし、微生物叢を絶対量としてデジタルカウントした情報を提供するものである。
 本開示の実施形態の例として、以下のものが挙げられる。
(項目1) 微生物叢組成を分析する方法であって、
 該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、微生物叢組成を評価する工程を含む、方法。
(項目1A) 微生物叢を分析する方法であって、
 該微生物叢中の1つずつの細胞由来の核酸ごとの情報に基づいて、微生物叢を評価する工程を含む、方法。
(項目2) 前記1つずつの細胞由来の増幅核酸が、
 微生物叢を含む試料を用い、細胞を1細胞ずつ液滴中に封入する工程と、
 該液滴をゲル化してゲルカプセルを生成する工程と、
 該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する工程であって、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持される、工程と、
 該ポリヌクレオチドを増幅用試薬に接触させて該ポリヌクレオチドをゲルカプセル内で増幅する工程と
を含む、方法によって生成されている、前記項目のいずれかに記載の方法。
(項目3) 前記細胞の懸濁液をマイクロ流路中に流動させ、オイルで前記懸濁液をせん断することにより前記細胞を封入した前記液滴が作製されることを特徴とする、前記項目のいずれかに記載の方法。
(項目4) 前記ゲルカプセルがアガロース、アクリルアミド、PEG、ゼラチン、アルギン酸ナトリウム、マトリゲル、コラーゲン又は光硬化性樹脂から形成されることを特徴とする、前記項目のいずれかに記載の方法。
(項目5) 前記溶解用試薬がリゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、Triton X-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween 20、Tween 80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、Nonidet P-40、およびZwittergent 3-12からなる群から少なくとも1種選択されることを特徴とする、前記項目のいずれかに記載の方法。
(項目6) 前記ゲルカプセルがヒドロゲルカプセルであることを特徴とする、前記項目のいずれかに記載の方法。
(項目7) 前記1つずつの細胞由来の増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択する工程をさらに含む、前記項目のいずれかに記載の方法。
(項目8) 前記1つずつの細胞由来の増幅核酸を含む試料において、特定の配列を有する核酸を検出する工程を含む、前記項目のいずれかに記載の方法。
(項目9) 前記特定の配列を有する核酸を検出する工程が、特定の配列を有する核酸を増幅および配列解読することを含む、前記項目のいずれかに記載の方法。
(項目10) 前記微生物叢組成を評価する工程が、微生物叢中の各種微生物の絶対数を特定することを含む、前記項目のいずれかに記載の方法。
(項目11) 前記微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、該1つずつの細胞のゲノム配列データを得る工程をさらに含む、前記項目のいずれかに記載の方法。
(項目12) 前記1つずつの細胞のゲノム配列データから、分析するゲノム配列データを選択する工程をさらに含む、前記項目のいずれかに記載の方法。
(項目13) 前記微生物叢組成を評価する工程が、各微生物におけるDe novoアセンブリデータより抽出した遺伝子配列(例えば、16SrRNA遺伝子配列、18SrRNA遺伝子配列や共通遺伝子のセットなど)を比較することを含む、前記項目のいずれかに記載の方法。
(項目14) 前記微生物叢が、細菌叢である、前記項目のいずれかに記載の方法。
(項目15) 前記微生物叢が、腸内細菌叢である、前記項目のいずれかに記載の方法。
(項目16) 項目1~15の方法において用いるためのキットであって、保存液を含む検体採取容器を備える、キット。
(項目17) 前記保存液が、グアニジンまたはエタノールを含む、項目16に記載のキット。
(項目18) 微生物叢組成を分析するためのシステムであって、
 該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料を提供する試料提供部と、
 該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、微生物叢組成を評価する組成評価部と
を含む、システム。
(項目19) 前記試料提供部は、
 微生物叢を含む試料を用い、細胞を1細胞ずつ液滴中に封入する液滴封入部と、
 該液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部と、
 細胞を溶解するための1種以上の溶解用試薬が格納された、該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する細胞溶解部であって、該細胞溶解部は、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持されるように構成されている、細胞溶解部と、
 該ポリヌクレオチドをゲルカプセル内で増幅するための該ポリヌクレオチド増幅用試薬と
を含む、前記項目のいずれかに記載のシステム。
(項目20)さらに、保存液を含む検体採取容器を含む、前記項目のいずれかに記載のシステム。
(項目21) 前記1つずつの細胞由来の増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択するための試料選択部をさらに含む、前記項目のいずれかに記載のシステム。
(項目22) 前記組成評価部は、前記1つずつの細胞由来の増幅核酸を含む試料において特定の配列を有する核酸を検出するための検出試薬または検出装置を含む、前記項目のいずれかに記載のシステム。
(項目23) 前記検出試薬または検出装置が、核酸を増幅および配列解読するための核酸増幅配列決定装置を含む、請求項5Aに記載のシステム。
(項目24) 前記組成評価部は、微生物叢中の各種微生物の絶対数を特定する手順を実行する計算部を含む、前記項目のいずれかに記載のシステム。
(項目25) 前記組成評価部は、前記微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、該1つずつの細胞のゲノム配列データをゲノム配列データ取得部をさらに含む、前記項目のいずれかに記載のシステム。
(項目26) 前記組成評価部は、前記1つずつの細胞のゲノム配列データから、分析するゲノム配列データを選択するデータ選択部をさらに含む、前記項目のいずれかに記載のシステム。
(項目27) 前記組成評価部は、各微生物におけるDe novoアセンブリデータより抽出した遺伝子配列を含むまたは導入し、比較する機能を有する、前記項目のいずれかに記載のシステム。
In one aspect, the present disclosure comprehensively reads the gene sequences that identify microbial species from amplified polynucleotides that are conditioned in parallel for each cell from a variety of microbial species, and digitally counts the microbial species in the sample cell by cell. However, it provides information that is digitally counted with the microbiota as an absolute amount.
Examples of embodiments of the present disclosure include:
(Item 1) A method for analyzing microbiota composition.
A method comprising the step of evaluating microbiota composition from a sample containing an amplified nucleic acid derived from each cell in the microbiota.
(Item 1A) A method for analyzing the microflora.
A method comprising the step of evaluating the microbiota based on information for each nucleic acid derived from each cell in the microbiota.
(Item 2) The amplified nucleic acid derived from each of the cells
A step of encapsulating cells one by one in a droplet using a sample containing a microflora,
The process of gelling the droplets to form gel capsules,
A step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, wherein the genomic DNA of the cell or a polynucleotide containing a portion thereof is eluted into the gel capsule and the genomic DNA or its portion. The process of holding in the gel capsule with the substance bound to the moiety removed,
The method according to any of the above items, which is produced by a method comprising contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule.
(Item 3) The item, which comprises flowing the suspension of the cells into a microchannel and shearing the suspension with oil to produce the droplets encapsulating the cells. The method described in any of.
(Item 4) The method according to any one of the above items, wherein the gel capsule is formed from agarose, acrylamide, PEG, gelatin, sodium alginate, matrigel, collagen or a photocurable resin.
(Item 5) The solubilizing reagents are lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform , Guanidin Hydrochloride, Urea, 2-Mercaptoethanol, Dithiotreitol, TCEP-HCl, Sodium Colate, Sodium Deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58 , Tween 20, Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-hydrochloride, Nonidet P-40, and Zwittergent 3-12. The method according to any one of the above items.
(Item 6) The method according to any one of the above items, wherein the gel capsule is a hydrogel capsule.
(Item 7) The method according to any one of the above items, further comprising a step of selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell.
(Item 8) The method according to any one of the above items, which comprises a step of detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each cell.
(Item 9) The method according to any one of the above items, wherein the step of detecting the nucleic acid having the specific sequence comprises amplifying and sequencing the nucleic acid having the specific sequence.
(Item 10) The method according to any one of the above items, wherein the step of evaluating the microbiota composition comprises specifying the absolute number of various microorganisms in the microbiota.
(Item 11) The method according to any one of the above items, further comprising a step of obtaining genomic sequence data of each cell from a sample containing amplified nucleic acid derived from each cell in the microbiota.
(Item 12) The method according to any one of the above items, further comprising a step of selecting genome sequence data to be analyzed from the genome sequence data of each cell.
(Item 13) The step of evaluating the microbiota composition includes comparing gene sequences (for example, 16S rRNA gene sequence, 18S rRNA gene sequence, common gene set, etc.) extracted from Denovo assembly data in each microorganism. The method according to any of the above items.
(Item 14) The method according to any one of the above items, wherein the microbiota is a bacterial flora.
(Item 15) The method according to any one of the above items, wherein the microbiota is an intestinal flora.
(Item 16) A kit for use in the methods of items 1 to 15, comprising a sample collection container containing a storage solution.
(Item 17) The kit according to item 16, wherein the preservation solution contains guanidine or ethanol.
(Item 18) A system for analyzing microbiota composition.
A sample providing unit that provides a sample containing an amplified nucleic acid derived from each cell in the microflora, and a sample providing unit.
A system comprising a composition evaluation unit for evaluating the microbiota composition from a sample containing each cell-derived amplified nucleic acid in the microbiota.
(Item 19) The sample providing unit is
A droplet encapsulation part that encloses cells one by one in a droplet using a sample containing a microflora,
A gel capsule generation unit that gels the droplet to generate a gel capsule,
A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, which contains one or more lysis reagents for lysing cells. , The polynucleotide containing the genomic DNA of the cell or a portion thereof is eluted in the gel capsule and retained in the gel capsule with the substance binding to the genomic DNA or the portion removed. There is a cell lysate and
The system according to any of the above items, comprising a reagent for amplifying the polynucleotide for amplifying the polynucleotide in a gel capsule.
(Item 20) The system according to any one of the above items, further comprising a sample collection container containing a storage solution.
(Item 21) The system according to any one of the above items, further comprising a sample selection unit for selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell.
(Item 22) The composition evaluation unit is described in any one of the above items, which includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells. System.
23. The system of claim 5A, wherein the detection reagent or device comprises a nucleic acid amplification sequencing device for amplifying and sequencing nucleic acids.
(Item 24) The system according to any one of the above items, wherein the composition evaluation unit includes a calculation unit that executes a procedure for specifying the absolute number of various microorganisms in the microbiota.
(Item 25) The composition evaluation unit further includes a genome sequence data acquisition unit for genome sequence data of each cell from a sample containing an amplified nucleic acid derived from each cell in the microbiota. The system described in any of the items.
(Item 26) The system according to any one of the above items, wherein the composition evaluation unit further includes a data selection unit that selects genome sequence data to be analyzed from the genome sequence data of each cell.
(Item 27) The system according to any one of the above items, wherein the composition evaluation unit has a function of containing or introducing a gene sequence extracted from De novo assembly data in each microorganism and comparing the gene sequences.
 本開示において、上記1又は複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態及び利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that the above one or more features may be provided in a further combination in addition to the specified combinations. Further embodiments and advantages of the present disclosure will be appreciated by those skilled in the art upon reading and understanding the following detailed description as necessary.
 本開示により、微生物叢中の1つずつの細胞由来の核酸ごとの情報に基づいて、微生物叢を評価することによって、微生物叢の組成の絶対数評価を可能とすることができる。 According to the present disclosure, it is possible to evaluate the absolute number of the composition of the microbiota by evaluating the microbiota based on the information for each nucleic acid derived from each cell in the microbiota.
 PCRによる微生物叢解析の場合には、増幅DNAサンプルのうちの一部を使うことが可能であり、PCRを行った後に配列決定を行い、部分配列を決定することで、特定の遺伝子配列の情報から微生物叢組成を評価し、安く簡単な評価を行うことができる。デジタル配列データに基づく微生物叢解析を行う場合、配列決定を行って得られたデジタル配列データを対象とし、細菌叢解析に利用する遺伝子配列を抽出して、組成データを作成し、高い精度での解析を行うこともできる。本開示により、標的遺伝子のコピー数や配列によって生じるバイアスの問題を解消しつつ、同時に相対組成比ではなく絶対量比を求めることが可能である。組成比の割合の低い微生物は「その他」としてまとめられる場合があるが、実際よりも多く又は少なく微生物組成が見積もられていることが懸念されるところ、本開示は、絶対数カウントを可能にすることによって実際の組成のより正確な測定を可能にする。 In the case of microbiota analysis by PCR, it is possible to use a part of the amplified DNA sample, and by performing sequencing and sequencing and determining the partial sequence, information on a specific gene sequence can be used. The microbiota composition can be evaluated from the above, and a cheap and simple evaluation can be performed. When performing microbiota analysis based on digital sequence data, the gene sequence used for bacterial flora analysis is extracted from the digital sequence data obtained by sequencing, and composition data is created with high accuracy. Analysis can also be performed. With the present disclosure, it is possible to solve the problem of bias caused by the copy number and sequence of the target gene, and at the same time, to obtain the absolute amount ratio instead of the relative composition ratio. Microorganisms with a low composition ratio may be grouped as "other", but where there is concern that the microbial composition is estimated to be higher or lower than it actually is, this disclosure allows for absolute counts. This allows for a more accurate measurement of the actual composition.
 したがって、本開示は、全ゲノム配列解読前の実行で、安く簡単に微生物叢組成の絶対数評価が可能であり、全ゲノム配列解読後に、デジタル配列情報から、解析対象の情報を絞り込むことで、長い遺伝子配列で比較することなどが可能になり精度が高まるという効果を奏する。 Therefore, in the present disclosure, it is possible to evaluate the absolute number of microbiota composition cheaply and easily by executing before decoding the whole genome sequence, and after decoding the whole genome sequence, the information to be analyzed is narrowed down from the digital sequence information. It has the effect of increasing accuracy by making it possible to compare long gene sequences.
図1は、増幅DNAを調製するためのステップを行う模式図を示す。FIG. 1 shows a schematic diagram in which steps are taken to prepare amplified DNA. 図2は、ウェットの配列スクリーニングの模式図を示す。FIG. 2 shows a schematic diagram of wet sequence screening. 図3は、選抜後の配列決定の模式図である。FIG. 3 is a schematic diagram of the sequence determination after selection. 図4は、ドライの配列スクリーニングステップを示す模式図である。FIG. 4 is a schematic diagram showing a dry sequence screening step. 図5は、本開示における微生物叢の解析の全体的なフローを示す模式図である。FIG. 5 is a schematic diagram showing the overall flow of analysis of the microbiota in the present disclosure. 図6は、糞便試料からのシングルセル由来の増幅核酸から作成されたドラフトゲノムのゲノム解読率(コンプリート率)の箱ひげ図である。左は保存液に浸漬しなかった糞便試料由来のシングルセルの解析結果であり、右は保存液に浸漬した糞便試料由来のシングルセルの解析結果である。FIG. 6 is a box-and-whisker plot of the genome decoding rate (complete rate) of the draft genome prepared from the amplified nucleic acid derived from a single cell from a stool sample. The left is the analysis result of the single cell derived from the stool sample not immersed in the preservation solution, and the right is the analysis result of the single cell derived from the stool sample immersed in the preservation solution. 図7は、糞便試料からのシングルセル由来の増幅核酸から作成されたドラフトゲノムに基づき、CheckMを用いて検出されたマーカー遺伝子群を参照して、各サンプルのゲノムデータから細菌の進化系統分類解析を行った結果を示す図である。左は保存液に浸漬しなかった糞便試料由来のシングルセルの解析結果であり、右は保存液に浸漬した糞便試料由来のシングルセルの解析結果である。FIG. 7 shows the evolutionary phylogenetic classification analysis of bacteria from the genomic data of each sample with reference to the marker gene group detected using CheckM based on the draft genome prepared from the amplified nucleic acid derived from a single cell from the fecal sample. It is a figure which shows the result of having performed. The left is the analysis result of the single cell derived from the stool sample not immersed in the preservation solution, and the right is the analysis result of the single cell derived from the stool sample immersed in the preservation solution.
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語及び科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present disclosure will be described while showing the best form. Throughout the specification, it should be understood that the singular representation also includes its plural concept, unless otherwise stated. Therefore, it should be understood that singular articles (eg, "a", "an", "the", etc. in English) also include the concept of their plural, unless otherwise noted. It should also be understood that the terms used herein are used in the meaning commonly used in the art unless otherwise noted. Thus, unless otherwise defined, all terminology and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. In case of conflict, this specification (including definitions) takes precedence.
 本開示は、微生物叢(例えば、細菌叢)を微生物特異的に検出し、解析する方法に関するものである。 The present disclosure relates to a method for detecting and analyzing a microbial flora (for example, a microbial flora) in a microbial manner.
 (定義等)
 以下に本明細書において特に使用される用語の定義及び/又は基本的技術内容を適宜説明する。
(Definition, etc.)
The definitions and / or basic technical contents of terms particularly used in the present specification will be described below as appropriate.
 本明細書において、「細胞」とは、遺伝情報を有する分子を内包する粒子であって、(単独で可能かどうかにかかわらず)複製されることが可能である任意の粒子を指す。本明細書における「細胞」としては、単細胞生物の細胞、細菌、多細胞生物由来の細胞、真菌、ウイルスなどが包含される。 As used herein, the term "cell" refers to a particle that contains a molecule that carries the genetic information and is any particle that can be replicated (whether or not it is possible alone). The term "cell" as used herein includes cells of unicellular organisms, bacteria, cells derived from multicellular organisms, fungi, viruses and the like.
 本明細書において、「生体分子」とは、任意の生物またはウイルスが有する分子を指す。生体内分子には、核酸、タンパク質、糖鎖または脂質などを含み得る。本明細書において、「生体分子の類似体」とは、生体分子の天然または非天然の変種を指す。生体内分子の類似体には、修飾核酸、修飾アミノ酸、修飾脂質または修飾糖鎖などを含み得る。 In the present specification, the "biomolecule" refers to a molecule possessed by any organism or virus. In vivo molecules can include nucleic acids, proteins, sugar chains, lipids, and the like. As used herein, the term "biomolecular analog" refers to a natural or non-natural variant of a biomolecule. Analogs of in vivo molecules can include modified nucleic acids, modified amino acids, modified lipids or modified sugar chains.
 本明細書において、「集合」とは、2つ以上の単一生物単位、細胞または細胞用構造物を含む集まりをいう。 As used herein, the term "aggregate" refers to an aggregate containing two or more single biological units, cells or structures for cells.
 本明細書において、「サブ集合」とは、集合よりも少ない数の単一生物単位、細胞または細胞用構造を有する集合の一部分を指す。 As used herein, the term "subset" refers to a portion of a set having a smaller number of single biological units, cells or cell structures.
 本明細書において、「ゲル」とは、コロイド溶液(ゾル)において、高分子物質またはコロイド粒子がその相互作用により全体として網目構造をつくり,溶媒あるいは分散媒である液相を多量に含んだまま流動性を失った状態のことをいう。本明細書において、「ゲル化」とは、溶液を「ゲル」の状態に変化させることをいう。 In the present specification, the term "gel" refers to a colloidal solution (sol) in which a polymer substance or colloidal particles interact with each other to form a network structure as a whole and contain a large amount of a liquid phase as a solvent or a dispersion medium. A state in which fluidity is lost. As used herein, "gelling" means changing a solution into a "gel" state.
 本明細書において、「ゲルカプセル」とは、その中に細胞または細胞様構造物を保持することが可能なゲル状の微粒子状構造体を指す。 In the present specification, the "gel capsule" refers to a gel-like fine particle structure capable of holding a cell or a cell-like structure therein.
 本明細書において、「遺伝子分析」とは生体サンプル中の核酸(DNA、RNA等)の状態を調べることをいう。1つの実施形態では、遺伝子分析は、核酸増幅反応を利用するものを挙げることができる。これらを含め、遺伝子分析の例としては、配列決定、遺伝子型判定・多型分析(SNP分析、コピー数多型、制限酵素断片長多型、リピート数多型)、発現解析、蛍光消光プローブ(Quenching Probe:Q-Probe)、SYBR green法、融解曲線分析、リアルタイムPCR、定量RT-PCR、デジタルPCRなどを挙げることができる。 In the present specification, "gene analysis" means examining the state of nucleic acids (DNA, RNA, etc.) in a biological sample. In one embodiment, the gene analysis can include those that utilize a nucleic acid amplification reaction. Examples of gene analysis including these include sequencing, genotyping / polymorphism analysis (SNP analysis, copy number polymorphism, restriction enzyme fragment length polymorphism, repeat number polymorphism), expression analysis, fluorescence quenching probe ( Quenching Probe: Q-Probe), SYBR green method, melting curve analysis, real-time PCR, quantitative RT-PCR, digital PCR and the like can be mentioned.
 本明細書において「単一生物単位レベル」とは、1つの単一生物単位に含まれる遺伝情報またはその他の生体分子の情報に対して、他の単一生物単位に含まれる遺伝情報またはその他の生体分子の情報と区別し得る状態で処理を行うことをいう。 As used herein, the term "single biological unit level" refers to genetic information contained in one single biological unit or information on other biomolecules, as opposed to genetic information contained in another single biological unit or other information. It refers to processing in a state that can be distinguished from the information of biomolecules.
 本明細書において、「シングルセルレベル」とは、1つの細胞または細胞様構造物に含まれる遺伝情報に対して、他の細胞または細胞様構造物に含まれる遺伝情報と区別した状態で処理を行うことをいう。例えば、「シングルセルレベル」でのポリヌクレオチドを増幅する場合、ある細胞中のポリヌクレオチドと、他の細胞中のポリヌクレオチドが区別可能な状態でそれぞれの増幅が行われる。 As used herein, the term "single cell level" means that the genetic information contained in one cell or cell-like structure is processed in a state of being distinguished from the genetic information contained in another cell or cell-like structure. To do. For example, when amplifying a polynucleotide at the "single cell level", the amplification is performed in a state in which the polynucleotide in one cell and the polynucleotide in another cell can be distinguished from each other.
 本明細書において、「シングルセル解析」とは、1つの細胞または細胞様構造物に含まれる遺伝情報を、他の細胞または細胞様構造物に含まれる遺伝情報と区別した状態で解析することを指す。 As used herein, "single cell analysis" refers to the analysis of genetic information contained in one cell or cell-like structure in a state of being distinguished from the genetic information contained in another cell or cell-like structure. Point to.
 本明細書において、「核酸情報」とは、1つの細胞または細胞様構造物に含まれる核酸の情報を指し、特定の遺伝子配列の有無、特定の遺伝子の収量または全核酸収量を含む。 In the present specification, "nucleic acid information" refers to information on nucleic acids contained in one cell or cell-like structure, and includes the presence or absence of a specific gene sequence, the yield of a specific gene, or the total nucleic acid yield.
 本明細書において、「同一性」とは、2つの核酸分子間の配列類似性を指す。同一性は、比較のためにアライメントしうる各配列中の位置を比較することによって決定することができる。 In the present specification, "identity" refers to sequence similarity between two nucleic acid molecules. Identity can be determined by comparing positions in each sequence that can be aligned for comparison.
 本明細書において、「微生物叢」とは、一定の物理的な範囲に存在している微生物の集合全体を指す。「微生物」は、肉眼でその存在が判別できず、顕微鏡などによって観察できる程度以下の大きさの生物(多細胞生物の場合個々の細胞であってもよい)を含む。一定の物理的な範囲としては、例えば、ある個体の腸内、皮膚、口腔、鼻腔、または膣や、環境での水域、土壌、生物表面、生物内部などにおける一定範囲が挙げられる。微生物叢は、複数種の分類にわたる微生物の集合、例えば、真菌、細菌、古細菌、単細胞動物、ウイルスなどの組合せであってもよく、一部の分類の微生物を抜き出して集合としてもよい。微生物叢の1つの例として、細菌叢が挙げられる。 In the present specification, the "microbiota" refers to the entire set of microorganisms existing in a certain physical range. The "microorganism" includes an organism (in the case of a multicellular organism, it may be an individual cell) whose existence cannot be discriminated by the naked eye and whose size is smaller than that that can be observed with a microscope or the like. A certain physical range includes, for example, a certain range in the intestine, skin, oral cavity, nasal cavity, or vagina of an individual, water area in the environment, soil, biological surface, and internal organism. The microflora may be a combination of microorganisms of a plurality of classifications, for example, a combination of fungi, bacteria, archaea, unicellular animals, viruses, etc., or a collection of microorganisms of some classifications may be extracted. One example of the microflora is the bacterial flora.
 本明細書において、微生物叢の「組成」とは、微生物叢中にどのような種が含まれているか、または含まれている各々の種の量についての情報を指し、微生物叢中の一部の微生物種が含まれるかについて、またはその量についての情報も包含する。 As used herein, the "composition" of the microbiota refers to information about what species are contained in the microbiota or the amount of each species contained, and is a part of the microbiota. It also includes information about whether or the amount of microbial species contained in the plant.
 (分析)
 本開示の1つの局面において、微生物叢を分析する方法であって、当該微生物叢中の1つずつの細胞由来の核酸ごとの情報に基づいて、微生物叢を評価する工程を含む、方法が提供される。複数の細胞由来の核酸の情報からは、ある配列の核酸の量を特定することができるものの、微生物ごとにコピー数の差があることから、特定の種の微生物の絶対量を測定することができないが、1つずつの細胞由来の核酸の情報に基づくことによって、特定の種の微生物の絶対量を測定することができる。
(analysis)
In one aspect of the present disclosure, there is provided a method of analyzing the microbiota, comprising the step of evaluating the microbiota based on information for each cell-derived nucleic acid in the microbiota. Will be done. Although the amount of nucleic acid in a certain sequence can be specified from the information on nucleic acids derived from multiple cells, it is possible to measure the absolute amount of a specific type of microorganism because there is a difference in the number of copies for each microorganism. Although not possible, the absolute amount of a particular species of microorganism can be measured based on the information of nucleic acids derived from each cell.
 本開示の1つの実施形態において、微生物叢組成を分析する方法であって、当該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、微生物叢組成を評価する工程を含む、方法が提供され得る。微生物由来の核酸は1細胞あたりの量が少なく、複数の細胞由来の核酸が混合された状態で分析する場合であったとしても、増幅反応を用いることが一般的であるが、ランダムプライマーを用いるなど、核酸を全体として増幅しようとした場合であっても、GC含量などにより、配列ごとに増幅の程度に偏りが生じることが知られている。増幅に偏りが生じる場合、微生物叢内の特定の種の微生物の相対量の測定は困難である。 In one embodiment of the present disclosure, a method of analyzing microbiota composition, comprising the step of evaluating microbiota composition from a sample containing amplified nucleic acid derived from each cell in the microbiota. Can be provided. The amount of nucleic acid derived from microorganisms is small per cell, and even when analysis is performed in a state where nucleic acids derived from a plurality of cells are mixed, an amplification reaction is generally used, but a random primer is used. It is known that even when an attempt is made to amplify a nucleic acid as a whole, the degree of amplification is biased for each sequence depending on the GC content and the like. When amplification is biased, it is difficult to measure the relative amount of a particular species of microorganism in the microbiota.
 (シングルセル解析)
 本開示において、1つずつの細胞由来の核酸ごとの情報は、任意の方法によって得てよいが、多数の細胞から簡便に1つずつの細胞由来の核酸ごとの情報を得るためには、微生物叢を含む試料を用い、細胞を1細胞ずつ液滴中に封入する工程と、当該液滴をゲル化してゲルカプセルを生成する工程と、当該ゲルカプセルを1種以上の溶解用試薬に浸漬して細胞を溶解する工程であって、当該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが当該ゲルカプセル内に溶出し当該ゲノムDNAまたはその部分に結合する物質が除去された状態で当該ゲルカプセル内に保持される、工程と、当該ポリヌクレオチドを増幅用試薬に接触させて当該ポリヌクレオチドをゲルカプセル内で増幅する工程とを含む、方法によって1つずつの細胞由来の増幅核酸を得ることが好ましい場合がある。
 本開示の一実施形態において、当該ポリヌクレオチドを増幅用試薬に接触させて当該ポリヌクレオチドをゲルカプセル内で増幅する工程は、当該ポリヌクレオチドをゲルカプセル内でゲル状態を保ちながら増幅することもできる。
(Single cell analysis)
In the present disclosure, information for each nucleic acid derived from each cell may be obtained by any method, but in order to easily obtain information for each nucleic acid derived from one cell from a large number of cells, a microorganism A step of encapsulating cells one by one in a droplet using a sample containing a flora, a step of gelling the droplet to generate a gel capsule, and a step of immersing the gel capsule in one or more kinds of solubilizing reagents. In the step of lysing the cell, the genomic DNA of the cell or the polynucleotide containing the portion thereof is eluted into the gel capsule, and the substance binding to the genomic DNA or the portion thereof is removed in the gel capsule. It is preferable to obtain each cell-derived amplified nucleic acid by a method including a step of contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule. In some cases.
In one embodiment of the present disclosure, the step of contacting the polynucleotide with an amplification reagent to amplify the polynucleotide in a gel capsule can also amplify the polynucleotide while maintaining a gel state in the gel capsule. ..
 1つの実施形態において、液滴は、1つの細胞をマイクロ流路中に流動させ、オイルで懸濁液をせん断することにより1つの細胞を封入することで作製され得る。一部の実施形態において、ゲルカプセルはヒドロゲルカプセルであってもよい。 In one embodiment, droplets can be made by encapsulating one cell by flowing one cell into a microchannel and shearing the suspension with oil. In some embodiments, the gel capsule may be a hydrogel capsule.
 ゲルカプセルの材料は、アガロース、アクリルアミド、光硬化性樹脂(例えば、PEG-DA)、PEG、ゼラチン、アルギン酸ナトリウム、マトリゲル、コラーゲンなどを含み得る。液滴のゲル化は、液滴にゲルカプセルの材料が含まれるように構成し、作製した液滴を冷却することによって行うことができる。あるいは、液滴に対して光等の刺激を与えることによってゲル化を行うこともできる。液滴にゲルカプセルの材料が含まれるようにするには、例えば、細胞または細胞様構造物の懸濁液にゲルカプセルの材料を含めておくことによって行うことができる。 The material of the gel capsule may include agarose, acrylamide, a photocurable resin (for example, PEG-DA), PEG, gelatin, sodium alginate, matrigel, collagen and the like. Gelation of the droplets can be performed by configuring the droplets to contain the material of the gel capsule and cooling the prepared droplets. Alternatively, gelation can be performed by giving a stimulus such as light to the droplet. The inclusion of the gel capsule material in the droplets can be done, for example, by including the gel capsule material in a suspension of cells or cell-like structures.
 ゲルカプセルは、ヒドロゲルカプセルであってよい。本明細書において、「ヒドロゲル」とは、高分子物質またはコロイド粒子の網目構造によって保持されている溶媒あるいは分散媒が水であるものを指す。 The gel capsule may be a hydrogel capsule. As used herein, the term "hydrogel" refers to one in which the solvent or dispersion medium held by the network structure of the polymer substance or colloidal particles is water.
 溶解用試薬は、リゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、Triton X-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween 20、Tween 80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、Nonidet P-40、およびZwittergent 3-12からなる群から少なくとも1種選択され得る。 Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride. , Urea, 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, At least one can be selected from the group consisting of Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-maltoside, Nonidet P-40, and Zwittergent 3-12.
 多様な微生物について、細胞ごとに核酸の増幅または分析を行う場合、溶解試薬または溶解試薬の組合せとして、ある程度強力なものを用いることが望ましい。例えば、グラム陽性菌は厚いペプチドグリカン層を有する細胞壁を有するため、緩和なもののみでは細胞が十分に溶解できない可能性がある。 When amplifying or analyzing nucleic acids for each cell of various microorganisms, it is desirable to use a lytic reagent or a combination of lysing reagents that is strong to some extent. For example, Gram-positive bacteria have a cell wall with a thick peptidoglycan layer, so mild ones alone may not be sufficient to lyse cells.
 本開示において、1つずつの細胞にわけて増幅核酸を含む試料を調製する手法としては、マイクロマニピュレーターやフローサイトメトリーを用いて1細胞をチューブに分取し、チューブ一つ一つに対して溶解試薬や全ゲノム増幅試薬を添加する一般的な方法がある。非特許文献(Rinke C, Lee J, Nath N, et al. Obtaining genomes from uncultivatedenvironmental microorganisms using FACS-based single-cell genomics. Nat Protoc.2014;9(5):1038-1048. doi:10.1038/nprot.2014.067)。微生物組成を評価する方法としては、非特許文献(Vandeputteet al.2017 Nature)等の様々な文献で報告されているように、16S rRNA遺伝子の部分配列または全体配列をシークエンスすることなどによってなされる。 In the present disclosure, as a method for preparing a sample containing an amplified nucleic acid by dividing into individual cells, one cell is divided into tubes using a micromanipulator or flow cytometry, and each tube is subjected to. There are common methods of adding lysis reagents and whole genome amplification reagents. Non-patent literature (Rinke C, Lee J, Nath N, et al. Obtaining genomes from uncultivated denvironmental microorganisms using FACS-based single-cell genomics. Nat Protoc. 2014; 9 (5): 1038-1048. Doi: 10.1038 / pro 2014.067). As a method for evaluating the microbial composition, as reported in various literatures such as non-patent literature (Vandeputteet al. 2017 Nature), the partial sequence or the entire sequence of the 16S rRNA gene is sequenced.
 本開示の微生物叢分析で対象としうる細胞または細胞様構造物は、2つ以上の任意の数字であり、例えば、10個以上、50個以上、100個以上、500個以上、1000個以上、5000個以上、1万個以上、5万個以上、10万個以上、50万個以上、100万個以上、500万個以上、1000万個以上であり得る。本開示の微生物叢分析は、従来のシングルセル反応系、例えば、0.2mL、1.5mLマイクロチューブ反応系を用いるよりも多数の細胞からの、1つずつの細胞由来の核酸ごとの情報を用い得る。
 (ゲノム配列解読前の分析)
The cells or cell-like structures that can be targeted in the microbiota analysis of the present disclosure are two or more arbitrary numbers, for example, 10 or more, 50 or more, 100 or more, 500 or more, 1000 or more. It can be 5000 or more, 10,000 or more, 50,000 or more, 100,000 or more, 500,000 or more, 1 million or more, 5 million or more, 10 million or more. The microbiota analysis of the present disclosure may use individual cell-derived nucleic acid-by-nucleic acid information from a larger number of cells than using conventional single-cell reaction systems, such as 0.2 mL, 1.5 mL microtube reaction systems. ..
(Analysis before genome sequencing)
 本開示において、個々の微生物の配列情報の総体に対する解析(例えば、ゲノム配列解読)を行う前に、多様な微生物から並列調製された核酸またはその他の生体分子の構造や配列から、その構造や配列を参照して個別の個体特異的に検出し、選抜することを行ってよい。すなわち、方法は、1つずつの細胞由来の増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択する工程を含み得る。 In the present disclosure, prior to analysis of the total sequence information of individual microorganisms (for example, genome sequencing), the structures and sequences of nucleic acids or other biomolecules prepared in parallel from various microorganisms are used. It may be carried out to detect and select each individual specifically with reference to. That is, the method may include selecting a sample containing the amplified nucleic acid to be analyzed from a sample containing the amplified nucleic acid derived from each cell.
 1つの実施形態において、選択は、特定の遺伝子配列の有無、特定の遺伝子の収量または全核酸収量に基づいて行い得る。一部の実施形態において、特定の遺伝子配列がある場合に選択してもよく、特定の遺伝子配列が無い場合に選択してもよい。一部の実施形態において、特定の遺伝子の収量が基準となる収量より多い場合選択してもよく、低い場合に選択してもよい。一部の実施形態において、全核酸収量が、基準となる収量より多い場合に選択してもよく、低い場合に選択してもよい。 In one embodiment, selection can be made based on the presence or absence of a particular gene sequence, the yield of a particular gene or the total nucleic acid yield. In some embodiments, it may be selected when there is a specific gene sequence, or it may be selected when there is no specific gene sequence. In some embodiments, it may be selected if the yield of the particular gene is greater than or equal to the baseline yield. In some embodiments, it may be selected if the total nucleic acid yield is greater than or equal to the reference yield.
 特定の実施形態において、特定の遺伝子配列の有無を、特定の遺伝子配列を特異的に検出する試薬、アガロースゲル電気泳動、マイクロチップ電気泳動、PCR、qPCR、遺伝子配列決定(サンガーシーケンシング、NGS)からなる群から選択される手段により検出する。一部の実施形態において、特定の遺伝子配列を特異的に検出する試薬として、抗体、プローブ、DNA結合性蛍光色素、蛍光色素結合ヌクレオチドが挙げられる。 In certain embodiments, reagents that specifically detect the presence or absence of a particular gene sequence, agarose gel electrophoresis, microchip electrophoresis, PCR, qPCR, gene sequencing (Sanger sequencing, NGS). Detected by means selected from the group consisting of. In some embodiments, reagents that specifically detect a particular gene sequence include antibodies, probes, DNA-binding fluorescent dyes, fluorescent dye-binding nucleotides.
 特定の実施形態において、特定の遺伝子の収量または全核酸収量を吸光度測定、蛍光光度測定、アガロースゲル電気泳動、マイクロチップ電気泳動により測定することができる。方法は、1つずつの細胞由来の増幅核酸を含む試料において、特定の配列を有する核酸を検出する工程を含み得る。特定の配列を有する核酸を検出する工程は、特定の配列を有する核酸を増幅および配列解読することを含み得る。 In a specific embodiment, the yield of a specific gene or the total nucleic acid yield can be measured by absorbance measurement, fluorescence measurement, agarose gel electrophoresis, or microchip electrophoresis. The method may include detecting nucleic acid having a particular sequence in a sample containing amplified nucleic acid derived from each cell. The step of detecting a nucleic acid having a specific sequence may include amplifying and sequencing the nucleic acid having a specific sequence.
 微生物叢組成の評価は、微生物叢中の各種微生物の絶対数を特定することを含み得る。1つずつの細胞由来の増幅核酸のそれぞれについて、微生物種を特定することによって、各種微生物の絶対数が特定され得る。微生物種の特定は、例えば、特定の遺伝子配列の有無を特定することによって行うことができる。 Evaluation of microbiota composition may include identifying the absolute number of various microbiota in the microbiota. The absolute number of various microorganisms can be specified by specifying the microbial species for each of the amplified nucleic acids derived from each cell. The microbial species can be specified, for example, by specifying the presence or absence of a specific gene sequence.
 (ゲノム配列解読を伴う分析)
 本開示の方法は、微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、当該1つずつの細胞のゲノム配列データを得る工程を含み得る。ゲノム配列データを得ることによって、微生物叢中の個々の微生物について、単に配列としての情報だけではなく、配列が果たす機能という観点からの情報を得ることも可能である。
(Analysis with genome sequencing)
The method of the present disclosure may include obtaining genomic sequence data for each cell from a sample containing amplified nucleic acid derived from each cell in the microbiota. By obtaining genome sequence data, it is possible to obtain not only information as a sequence but also information from the viewpoint of the function performed by the sequence for each microorganism in the microflora.
 1つずつの細胞のゲノム配列データから、分析するゲノム配列データを選択することが可能である。ゲノム配列データは情報量が多く、処理する量を限定することは、労力や時間の削減につながる。 It is possible to select the genome sequence data to be analyzed from the genome sequence data of each cell. Genome sequence data has a large amount of information, and limiting the amount to be processed leads to a reduction in labor and time.
 選択は、特定の遺伝子配列の有無および/または特定の遺伝子配列との同一性を評価することを含み得る。一部の実施形態において、特定の遺伝子配列との同一性は、BLAST等を用いることで評価することができる。特定の実施形態において、選択は、特定の遺伝子配列の有無に基づき、核酸情報を細胞ごとに選別してもよい。他の実施形態において、選択は、特定の遺伝子配列と、2つ以上の細胞に由来する核酸情報との同一性に基づき、核酸情報を細胞ごとに選別してもよい。一部の実施形態において、一定以上の同一性を有する場合に選択してもよく、一定以下の同一性の場合に選択してもよい。特定の実施形態において、同一性は、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、100%であってもよい。他の実施形態において、同一性は、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下、または0%であってもよい。 Selection may include assessing the presence or absence of a particular gene sequence and / or identity with a particular gene sequence. In some embodiments, identity with a particular gene sequence can be assessed by using BLAST or the like. In certain embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the presence or absence of a particular gene sequence. In other embodiments, the selection may be cell-by-cell selection of nucleic acid information based on the identity of a particular gene sequence with nucleic acid information derived from two or more cells. In some embodiments, it may be selected when it has a certain level of identity or more, or it may be selected when it has a certain level of identity or less. In certain embodiments, the identity is 50% or higher, 55% or higher, 60% or higher, 65% or higher, 70% or higher, 75% or higher, 80% or higher, 85% or higher, 90% or higher, 91% or higher, It may be 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 100%. In other embodiments, the identity is 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 9% or less, It may be 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, or 0%.
 ゲノム配列データを得ている場合、微生物叢組成の評価は、各微生物における長い遺伝子配列を比較することによって行ってよい。長い配列は、例えば、de novoアセンブリデータより抽出した遺伝子配列(例えば、16S遺伝子配列や共通遺伝子のセットなど)であってよい。このような長い遺伝子配列の比較は、評価の精度を高めるだけでなく、微生物叢における機能の評価も可能とし得る。例えば、配列情報のみでは、複数の種が存在することがわかってもそれぞれの機能については個別の情報が無ければ、微生物叢全体の機能の点を理解することができないが、遺伝子の情報に基づけば、微生物叢内で、特定の活性(例えば、酵素活性)を有する可能性のある種の量などについての情報を得ることができる。 When genomic sequence data is obtained, evaluation of microbiota composition may be performed by comparing long gene sequences in each microorganism. The long sequence may be, for example, a gene sequence extracted from de novo assembly data (for example, a 16S gene sequence or a set of common genes). Comparison of such long gene sequences can not only improve the accuracy of evaluation, but also enable evaluation of function in the microflora. For example, even if it is known that multiple species exist from sequence information alone, it is not possible to understand the function of the entire microbiota without individual information on each function, but it is based on genetic information. For example, information can be obtained about the amount of species that may have a particular activity (eg, enzymatic activity) within the microbiota.
 (微生物叢)
 本開示で対象とされ得る微生物叢は、限定されるものではないが、真正細菌、大腸菌、枯草菌、藍色細菌、球菌、桿菌、ラセン菌、グラム陰性菌、グラム陽性菌、古細菌、真菌、あるいはそれらの任意の組合せを含むものが挙げられる。微生物叢の一例としては、細菌叢が挙げられる。微生物叢は、異なる細胞の性質(例えば、細胞壁の有無など)を有する複数の微生物を含み得るため、微生物種を問わず同一の様式で、細胞1つ毎の核酸情報を得るか、細胞1つごとの増幅核酸を得ることができる手段を採用することは、本開示の解析において好ましい場合があり得る。
(Microbiota)
The microbial flora that can be covered in this disclosure is, but is not limited to, eubacteria, Escherichia coli, bacilli, indigo bacteria, cocci, bacilli, racen, gram-negative bacteria, gram-positive bacteria, archaea, fungi. , Or any combination thereof. An example of a microflora is a bacterial flora. Since the microflora can contain multiple microorganisms having different cell properties (eg, the presence or absence of a cell wall), the nucleic acid information for each cell can be obtained or one cell in the same manner regardless of the microbial species. Adopting a means capable of obtaining each amplified nucleic acid may be preferable in the analysis of the present disclosure.
 微生物叢は、限定されるものではないが、腸内微生物叢、皮膚微生物叢、口腔微生物叢、鼻腔微生物叢、膣微生物叢、土壌微生物叢、根圏微生物叢、河川・海水中微生物叢、活性汚泥微生物叢、昆虫共在微生物叢、動物共生微生物叢などであり得る。腸内細菌叢は、ヒトの健康状態への影響が広く研究されており、本開示の解析の対象として好ましいものの1つである。 The microbiota is not limited, but is limited to intestinal microbiota, cutaneous microbiota, oral microbiota, nasal microbiota, vaginal microbiota, soil microbiota, root zone microbiota, river / seawater microbiota, and activity. It can be a sludge microbiota, an insect coexisting microbiota, an animal symbiotic microbiota, and the like. The gut flora has been extensively studied for its effects on human health and is one of the preferred analyzes of the present disclosure.
 (組み合わせの実施形態)
 本開示において、同じ微生物叢に由来する、1つずつの細胞由来ではない核酸配列情報の解析の情報をさらに組み合わせて解析を行うことが可能である。解析としては、メタゲノム解析が挙げられる。メタゲノム解析は、培養という過程を経ずに、環境中の微生物がもつ核酸、遺伝子、DNAを全体として抽出、収集し、これらの構造(塩基配列)を網羅的に調べる手法である。個々の核酸や遺伝子がどの微生物由来かはわからないものの、環境中の微生物の集合体(コミュニティー)がもつ遺伝子群についての情報を得ることができ、このような手法をメタゲノム解析と呼ぶ。
(Combination embodiment)
In the present disclosure, it is possible to further combine and analyze the information of the analysis of nucleic acid sequence information derived from the same microflora and not derived from each cell. Examples of the analysis include metagenomic analysis. Metagenomic analysis is a method of extracting and collecting nucleic acids, genes, and DNA possessed by microorganisms in the environment as a whole and comprehensively examining their structures (base sequences) without going through the process of culturing. Although it is not known which microorganism the individual nucleic acid or gene is derived from, it is possible to obtain information about the gene group of a collection (community) of microorganisms in the environment, and such a method is called metagenomic analysis.
 (システム)
 本開示の別の局面において、微生物叢組成を分析するシステムが提供され得る。システムは、本明細書における他の項目において記載される任意の特徴を備える方法またはその工程を実装するための手段を備え得る。
(system)
In another aspect of the disclosure, a system for analyzing microbiota composition may be provided. The system may be provided with a method or means for implementing a process thereof that comprises any of the features described in the other items herein.
 システムは、細胞中のポリヌクレオチドを増幅するための装置を含み得る。装置は、とりわけ、シングルセルレベルで細胞中のポリヌクレオチドを増幅することができるものであり得る。装置は、細胞または細胞様構造物を1細胞または構造物単位ずつ液滴中に封入する液滴作製部;液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部;ゲルカプセルを溶解用試薬に浸漬する溶解用試薬浸漬部;ゲルカプセルから夾雑物質を除去する除去部;および/またはゲルカプセルを増幅用試薬に浸漬する増幅用試薬浸漬部を備え得る。システムまたは装置は、ゲルカプセルを選別し、ゲルカプセルを収容容器に収容する選別部をさらに備え得る。 The system may include a device for amplifying polynucleotides in cells. The device can be, among other things, capable of amplifying polynucleotides in cells at the single cell level. The device is a droplet preparation unit that encapsulates cells or cell-like structures in droplets one cell or structure at a time; a gel capsule generation unit that gels droplets to generate gel capsules; a reagent for dissolving gel capsules. It may be provided with a dissolving reagent dipping part to be immersed in; a removing part for removing contaminants from the gel capsule; and / or an amplification reagent dipping part for immersing the gel capsule in the amplification reagent. The system or device may further comprise a sorting unit that sorts the gel capsules and houses the gel capsules in a storage container.
 システムまたは装置は、必要に応じて、細胞または細胞様構造物を封入する媒体、ゲルカプセルの材料、溶解用試薬、増幅用試薬、核酸の配列決定に用いられる試薬(例えば、ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)など)などの試薬を備え得る。試薬としては、本明細書の他の箇所に記載されるものに加えて、当技術分野で公知のものを使用してもよい。 The system or device may optionally include media for encapsulating cells or cell-like structures, gel capsule materials, lysis reagents, amplification reagents, reagents used for sequencing nucleic acids (eg, polymerases, primer sets (eg, polymerases, primer sets). Barcode sequences may be included), etc.) and other reagents. As the reagent, in addition to those described elsewhere in the present specification, reagents known in the art may be used.
 装置またはシステムは、増幅用試薬浸漬部において増幅されたポリヌクレオチド中の核酸配列の配列決定を行う配列決定部をさらに備え得る。配列決定部は上記装置と一体として提供されてもよく、システム中の別の装置として提供されてもよい。配列決定部は、サンガー法、マクサム・ギルバード法、単一分子リアルタイムシーケンシング(例えば、Pacific Biosciences、Menlo Park、California)、イオン半導体シーケンシング(例えば、Ion Torrent、South San Francisco、California)、シーケンシングバイシンセシス、パイロシーケンシング(例えば、454、Branford、Connecticut)、ライゲーションによるシーケンシング(例えば、Life Technologies、Carlsbad、CaliforniaのSOLiDシーケンシング)、合成および可逆性ターミネーターによるシーケンシング(例えば、Illumina、San Diego、California)、透過型電子顕微鏡法などの核酸イメージング技術、ナノポアシーケンシングなどを実行するための機器であってよい。 The device or system may further include a sequencing section for sequencing the nucleic acid sequence in the amplified polynucleotide in the amplification reagent immersion section. The sequencing unit may be provided integrally with the above device or as another device in the system. The sequencing unit includes the Sanger method, the Maxam-Gilbird method, single molecule real-time sequencing (for example, Pacific Biosciences, Menlo Park, California), and ion semiconductor sequencing (for example, Ion Torrent, South San Francisco, California). Bisynthesis, pyrosequencing (eg, 454, Brandored, Connecticut), ligation sequencing (eg, Life Technologies, Carlsbad, California SOLiD sequencing), synthetic and reversible terminator sequencing (eg, Illumina) , California), nucleic acid imaging techniques such as transmission electron microscopy, nanopore sequencing, and the like.
 システムまたは装置は、増幅した遺伝子を検出・計測する手段を備え得る。例えば、ゲルルカプセルの形状を扱うのに好適である、フローサイトメトリー機器が、上記装置と一体として提供されてもよく、システム中の別の装置として提供されてもよい。増幅した遺伝子を検出・計測する手段としては、検出反応を行う手段(例えば、サーマルサイクラーおよび適当な試薬)、および/またはシグナルを検出する手段(光センサ、カメラ、および適当な分析用の手段)が含まれ得る。 The system or device may be equipped with means for detecting and measuring the amplified gene. For example, a flow cytometry device suitable for handling the shape of a gelul capsule may be provided integrally with the above device or as another device in the system. Means for detecting and measuring the amplified gene include means for performing a detection reaction (eg, thermal cycler and suitable reagents) and / or means for detecting signals (optical sensors, cameras, and suitable means for analysis). Can be included.
 システムまたは装置は、本明細書の他の箇所に記載される任意の情報処理を行うように構成され得る、計算部を備え得る。計算部は、上記装置と一体として提供されてもよく、システム中の別の装置(コンピュータ)として提供されてもよい。本開示の別の局面では、計算部において、本明細書の他の箇所に記載される情報処理を行い、本開示の方法を実装させるためのプログラムおよびそれを記録した記憶媒体も提供され得る。計算部は、必要に応じて、かかるプログラムおよび/またはそれを記録した記憶媒体を備え得る。 The system or device may include a calculator that may be configured to perform any information processing described elsewhere herein. The calculation unit may be provided integrally with the above-mentioned device, or may be provided as another device (computer) in the system. In another aspect of the present disclosure, a calculation unit may also provide a program for performing information processing described elsewhere in the specification to implement the method of the present disclosure and a storage medium on which it is recorded. The calculator may optionally include such a program and / or a storage medium on which it is recorded.
 (キット)
 本開示の1つの局面は、本開示の方法において用いられ得るキットを提供する。本開示において、微生物叢組成を分析するためのキットが提供され得る。キットは、ゲルカプセルの材料を含み得、ゲルカプセルを用いることは、本明細書の他の箇所に記載されるとおり、細胞または細胞様構造物中の核酸をシングルセルレベルで増幅することについて有利であり、微生物組成の分析に関して本明細書に記載されるとおり用いられ得る。キットは、例えば、ゲルカプセルの材料と、必要に応じて、1以上の試薬を含み得る。試薬としては、本明細書の他の箇所に記載されるものに加えて、当技術分野で公知のものを使用してもよい。
(kit)
One aspect of the disclosure provides a kit that can be used in the methods of the disclosure. In the present disclosure, kits for analyzing microbiota composition may be provided. The kit may include the material of the gel capsule, and the use of the gel capsule is advantageous for amplifying nucleic acids in cells or cell-like structures at the single cell level, as described elsewhere herein. And can be used as described herein for analysis of microbial composition. The kit may include, for example, the material of the gel capsule and, optionally, one or more reagents. As the reagent, in addition to those described elsewhere in the present specification, reagents known in the art may be used.
 微生物叢組成を分析するためのキットは、溶解用試薬を含み得る。溶解用試薬は、リゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、Triton X-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween 20、Tween 80、オクチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシド、Nonidet P-40、Zwittergent 3-12からなる群から選択される少なくとも1つを含み得る。溶解用試薬は、シングルセルレベルでの増幅ポリヌクレオチド、特に、ゲノム全域にわたる増幅産物を得るのに有用である。 Kits for analyzing microbiota composition may include reagents for lysis. Reagents for lysis include lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride. , Urea, 2-mercaptoethanol, dithiotreitol, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, It may include at least one selected from the group consisting of Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-maltoside, Nonidet P-40, Zwittergent 3-12. Dissolving reagents are useful for obtaining amplified polynucleotides at the single cell level, especially genomic-wide amplification products.
 キットは、核酸の増幅用試薬を含み得る。増幅用試薬としては、例えば、ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)、塩基ミックス、好適なバッファーなどが挙げられる。キットは、核酸の配列決定に用いられる試薬(例えば、ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)など)などの試薬を備え得る。例えば、サンガーシーケンスやNGSにて特定の遺伝子を増幅・解読するための試薬(ポリメラーゼ、プライマーセット(バーコード配列が含まれることもある)ほか)が含まれ得る。また、キットは、特定の配列の検出・計測に用いられ得る試薬、例えば、核酸結合色素、蛍光標識プローブなどを含み得る。これらの試薬を用いて、増幅した遺伝子を検出・計測する機器(フローサイトメトリーなど)によって特定の配列の有無を測定することができる。 The kit may include reagents for amplifying nucleic acids. Amplification reagents include, for example, polymerases, primer sets (which may include barcode sequences), base mixes, suitable buffers and the like. The kit may include reagents such as reagents used for sequencing nucleic acids (eg, polymerases, primer sets (which may include barcode sequences), etc.). For example, reagents (polymerase, primer set (which may include a barcode sequence), etc.) for amplifying / decoding a specific gene by a Sanger sequence or NGS may be included. The kit may also include reagents that can be used to detect and measure specific sequences, such as nucleic acid binding dyes, fluorescently labeled probes, and the like. Using these reagents, the presence or absence of a specific sequence can be measured by an instrument that detects and measures the amplified gene (flow cytometry, etc.).
 キットは、試料を採取するための手段を含み得る。また、キットは、採取した試料を保存するための手段を含み得る。試料を採取するための手段としては、注射器、スワブ、生検パンチ、採尿容器、採便容器、唾液採取容器、医療用テープなどが挙げられる。保存するための手段としては、冷却剤(例えば、保冷剤、ドライアイス、液体窒素)や、保存液(例えば、グアニジン塩酸塩、硫酸アンモニウム、エタノールなどのいずれかを含む溶液)などが挙げられる。 The kit may include means for taking a sample. The kit may also include means for storing the sample taken. Means for collecting a sample include a syringe, a swab, a biopsy punch, a urine collection container, a stool collection container, a saliva collection container, a medical tape, and the like. Examples of the means for storage include a coolant (for example, an ice pack, dry ice, liquid nitrogen), a preservation solution (for example, a solution containing any of guanidine hydrochloride, ammonium sulfate, ethanol, etc.) and the like.
 本開示の1つの局面では、微生物叢組成を分析するための、保存液を含む検体採取容器を備えるキットが提供され得る。保存液は、例えば、グアニジン溶液(例えば、FS-0007やFS-0008、テクノスルガラボ社)又はエタノール(例えば、OMR-200やOM-501、DNA genotek社)を含み得る。このような保存液を備えるキットを用いることにより、常温で一定期間病院施設等で保管されたとしても、その後のシングルセルレベル解析において、良好なゲノム解読率(コンプリート率)や、試料中の多くの生物系統の同定といった効果が奏され得る。また、通常行われている凍結便としての採便保存方法と比較して、利便性が格段に高い。 In one aspect of the present disclosure, a kit comprising a sample collection container containing a preservation solution for analyzing microbiota composition may be provided. The storage solution may contain, for example, a guanidine solution (for example, FS-0007 or FS-0008, Technosulgarabo) or ethanol (for example, OMR-200 or OM-501, DNA genomek). By using a kit equipped with such a preservation solution, even if it is stored at room temperature for a certain period of time in a hospital facility or the like, a good genome decoding rate (complete rate) and many in the sample can be obtained in the subsequent single cell level analysis. Effects such as identification of biological strains can be achieved. In addition, it is much more convenient than the usual method of collecting and storing frozen stools.
 保存液は、一般的には核酸の安定性を高めるために用いられ、例えば、グアニジン溶液およびアルコール類などは、タンパク質変性を生じさせ、核酸の分解を進行させる酵素の働きを阻害するように使用される。本開示の方法においては、試料の保存において、細胞としての形態安定性が維持されることが好ましい場合がある。これは、細胞が崩れているとドロップレットへの封入が難しくなること、または細胞デブリなどの多発によりデータの取得が困難になることなどによるものである。そのため、タンパク質変性を生じさせるような保存液は、細胞形態の安定性に対して不利であると予想されていたが、本明細書の実施例において、予想外に、保存液による保存後に細胞の多くが良好に形態を保持しており、本開示の方法において特に好適であることが見出されている。 Preservatives are generally used to increase the stability of nucleic acids, for example, guanidine solutions and alcohols are used to cause protein denaturation and inhibit the action of enzymes that promote nucleic acid degradation. Will be done. In the method of the present disclosure, it may be preferable that the morphological stability as a cell is maintained in the storage of the sample. This is because if the cells are broken, it becomes difficult to enclose them in the droplets, or it becomes difficult to acquire data due to the frequent occurrence of cell debris. Therefore, a preservation solution that causes protein denaturation was expected to be disadvantageous for the stability of cell morphology, but in the examples herein, unexpectedly, after preservation with the preservation solution, the cells Many retain their morphology well and have been found to be particularly suitable for the methods of the present disclosure.
 (好ましい実施形態)
 細胞を1細胞または構造物単位ずつ液滴中に封入する工程と、液滴をゲル化してゲルカプセルを生成する工程と、ゲルカプセルを1種以上の溶解用試薬に浸漬して細胞を溶解する工程であって、当該細胞中のポリヌクレオチドがゲルカプセル内に溶出しポリヌクレオチドに結合する物質が除去された状態でゲルカプセル内に保持される、工程と、ポリヌクレオチドを増幅用試薬に接触させてポリヌクレオチドをゲルカプセル内で増幅する工程とを含む方法によって、増幅保持された1細胞ゲノム由来ポリヌクレオチドを含むゲルカプセルを調製する。本ゲルカプセルをDNA結合蛍光色素などで染色し、フローサイトメトリーで蛍光陽性カプセルをカウントする。一定容量中の蛍光陽性カプセル数が導入された微生物総数に相当する。この場合、ポリヌクレオチドを増幅用試薬に接触させてポリヌクレオチドをゲルカプセル内で増幅する工程は、ポリヌクレオチドをゲルカプセル内でゲル状態を保ちながら増幅することもできる。
(Preferable embodiment)
A step of encapsulating cells one cell or a structural unit in a droplet, a step of gelling the droplet to generate a gel capsule, and a step of immersing the gel capsule in one or more solubilizing reagents to lyse the cells. A step in which the polynucleotide in the cell is eluted in the gel capsule and retained in the gel capsule with the substance binding to the polynucleotide removed, and the polynucleotide is brought into contact with the amplification reagent. A gel capsule containing the amplified and retained 1-cell genome-derived polynucleotide is prepared by a method including the step of amplifying the polynucleotide in the gel capsule. This gel capsule is stained with a DNA-binding fluorescent dye or the like, and fluorescence-positive capsules are counted by flow cytometry. The number of fluorescence-positive capsules in a fixed volume corresponds to the total number of introduced microorganisms. In this case, the step of contacting the polynucleotide with an amplification reagent to amplify the polynucleotide in the gel capsule can also amplify the polynucleotide while maintaining the gel state in the gel capsule.
 ついで、フローサイトメーターなどにより所定以上に増幅したゲノムDNAを保持するゲルカプセルを選別し、で、ゲルカプセルを1細胞ごとにマイクロプレートなどに分別収集する。さらに、プレート内で各ゲルカプセル中のポリヌクレオチドを鋳型として全ゲノム増幅反応を行い、これをライブラリマスタープレートとする。ついで、ライブラリマスタープレート中の反応液の一部を分取し、レプリカプレートを調製する。本レプリカを鋳型として標的遺伝子特異的なプライマーセットで増幅を行う。続いて、増幅物をサンガーシーケンスなどにより、配列を特定し各サンプルの微生物種を特定する。 Next, select gel capsules that hold genomic DNA amplified above a predetermined level using a flow cytometer or the like, and separate and collect the gel capsules for each cell on a microplate or the like. Further, a whole genome amplification reaction is carried out in the plate using the polynucleotide in each gel capsule as a template, and this is used as a library master plate. Then, a part of the reaction solution in the library master plate is separated to prepare a replica plate. Amplification is performed with a primer set specific to the target gene using this replica as a template. Subsequently, the sequence of the amplified product is specified by a Sanger sequence or the like, and the microbial species of each sample is specified.
 より効果的には、上記プライマーセットにバーコード配列を含ませて、各サンプルに異なるバーコードが付与される増幅反応を行い、複数レプリカプレート由来のPCR産物をプールして次世代シーケンスを行う。その後、バーコード配列でプレート・ウェル番号を特定するとともに、PCR産物の配列を特定することで一挙に数百から数千のサンプルの微生物種を特定する。なお、上記プライマーセットは複数の遺伝子領域を対象としたプライマーセットの混合物であってもよい。より具体的には、16S rRNA遺伝子のv3-v4、v1-v2領域などを対象としたものや、18S rRNA、ITSなど細菌やアーキア、真菌などを見分けるプライマーセットなどから選択される。前記プライマーセットを複数種同時に用いれば、細菌・アーキア・真菌を同時に検出することができる。 More effectively, the above primer set contains a barcode sequence, each sample is subjected to an amplification reaction in which a different barcode is added, and PCR products derived from multiple replica plates are pooled to perform a next-generation sequence. Then, the plate well number is specified by the barcode sequence, and the microbial species of hundreds to thousands of samples are specified at once by specifying the sequence of the PCR product. The primer set may be a mixture of primer sets targeting a plurality of gene regions. More specifically, it is selected from those targeting the v3-v4 and v1-v2 regions of the 16S rRNA gene, and primer sets for distinguishing bacteria, archaea, fungi, etc. such as 18S rRNA and ITS. Bacteria, archaea, and fungi can be detected at the same time by using a plurality of types of the primer sets at the same time.
 上記いずれかの方法で、ウェルプレート等に分取された各ゲルカプセルに含まれていた微生物種を特定し、計数するとともに、初期に測定した微生物総数と合わせる。本反応では、全てのPCR反応が別個に行われ、各バーコードごとに微生物種を同定・計数していくことから、細胞数を反映したデジタルカウントデータが得られる。すなわち従来の問題であった、コピー数や配列の差異によるバイアスを避けたデータが得られる。また、相対比1%以下の希少細胞についても実質的な総数での比較が可能となる。 By any of the above methods, identify the microbial species contained in each gel capsule separated into a well plate or the like, count them, and combine them with the total number of microorganisms measured initially. In this reaction, all PCR reactions are performed separately, and the microbial species are identified and counted for each barcode, so that digital count data reflecting the number of cells can be obtained. That is, data can be obtained that avoids the bias caused by the difference in copy number and sequence, which has been a conventional problem. In addition, it is possible to compare rare cells with a relative ratio of 1% or less in a substantially total number.
 (システム)
 細胞を1細胞ずつ液滴中に封入する液滴封入部と、該液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部と、細胞を溶解するための1種以上の溶解用試薬が格納された、該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する細胞溶解部であって、該細胞溶解部は、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持されるように構成されている、細胞溶解部と、該ポリヌクレオチドをゲルカプセル内で増幅するための該ポリヌクレオチド増幅用試薬とを含む微生物叢組成を分析するためのシステムによって、増幅保持された1細胞ゲノム由来ポリヌクレオチドを含むゲルカプセルを調製する。
(system)
Contains a droplet encapsulation unit that encloses cells one by one in a droplet, a gel capsule generation unit that gels the droplets to generate gel capsules, and one or more lysis reagents for lysing cells. A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, and the cell lysate is a polynucleotide containing genomic DNA of the cells or a portion thereof. In the gel capsule, the cell lysate and the polynucleotide, which are configured to be retained in the gel capsule in a state where the substance that is eluted in the gel capsule and binds to the genomic DNA or a portion thereof is removed, are contained in the gel capsule. A gel capsule containing a single-cell genome-derived polynucleotide that has been amplified and retained is prepared by a system for analyzing the composition of the microflora containing the polynucleotide amplification reagent for amplification.
 このようにして調整したゲルカプセルを用いて、ヒトなどのホスト自体の遺伝子情報等の解析と、ヒト由来試料の微生物叢との複合的な解析を行うことができる。例えば、ヒト腸内微生物叢を対象として上記のような方法およびシステムによって得られた各ゲルカプセルから、サンプルに含まれる微生物種を特定し、この腸内微生物叢の情報と、ヒトの細胞を対象として上記のような方法およびシステムによって得られた各ゲルカプセルから得られる遺伝情報とを併せて解析する。この場合、上記システムの組成評価部は、評価対象としたヒト腸内微生物叢とヒト細胞とをそれぞれ評価して核酸を増幅および配列解読することができ、1つずつの細胞のゲノム配列データを取得することができる。
 以上のようにして、本発明のシステムは、腸内細菌やそれに由来する代謝物がホストに与える影響や、腸内細菌自体の機能を併せて評価することができ、その相関関係を見出すことができる。
Using the gel capsule prepared in this way, it is possible to perform a complex analysis of the genetic information and the like of the host itself such as a human and the microflora of the human-derived sample. For example, from each gel capsule obtained by the above method and system for the human intestinal microflora, the microbial species contained in the sample is identified, and the information on the intestinal microbiota and human cells are targeted. The genetic information obtained from each gel capsule obtained by the above method and system is also analyzed. In this case, the composition evaluation unit of the above system can evaluate the human intestinal microflora and the human cell to be evaluated, respectively, to amplify and sequence the nucleic acid, and obtain the genome sequence data of each cell. Can be obtained.
As described above, the system of the present invention can evaluate the effects of the intestinal bacteria and their biotransformers on the host and the functions of the intestinal bacteria themselves, and can find the correlation between them. it can.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety to the same extent as they are specifically described.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したものではない。したがって、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. The present disclosure will be described below based on examples, but the above description and the following examples are provided for purposes of illustration only and not for the purpose of limiting the present disclosure. Therefore, the scope of the present disclosure is not limited to the embodiments or examples specifically described in the present specification, and is limited only by the scope of claims.
 以下、本開示の実施例を記載する。
 試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、和光純薬、ナカライ、R&D Systems、USCN Life Science INC等)の同等品でも代用可能である。
Hereinafter, examples of the present disclosure will be described.
Specifically, the reagents described in the examples were used, but equivalent products of other manufacturers (Sigma-Aldrich, Wako Pure Chemical Industries, Nacalai, R & D Systems, USCN Life Science INC, etc.) can be substituted.
 (実施例1:マウス腸内細菌叢組成の解析)
 実験は、雄性BALB/cマウス(7、9週齢)(日本クレア株式会社)の糞便を容量1.5mLのチューブ(1212-10, SSIbio)に採取し(n=5)、500μLのリン酸緩衝生理食塩水(DPBS)(Dulbecco's Phosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific)中で破砕機を用いて固形物がなくなるまですり潰した。2,000×gで2秒間遠心分離し(himac CF15RX, 工機ホールディングス)、上清を回収する操作を2回繰り返した後、15,000×gで3分間遠心分離することでマウス腸内微生物を集菌した。菌体のペレットをPBSを用いて2回遠心分離により洗浄した後、PBS中に懸濁することでマウス腸内微生物の細胞懸濁液を取得した。調製した細胞懸濁液中の細胞濃度を測定し(顕微鏡:CKX41, OLYMPUS、バクテリア計算盤A161,2-5679-01, アズワン)、終濃度1.5%になるように超低融点アガロース(A5030-10G, SIGMA-ALDRICH)を加えることで、ゲルカプセル作製に用いる腸内微生物懸濁液を調製した(細胞終濃度:1.5×10cells/μL)。
(Example 1: Analysis of mouse intestinal flora composition)
In the experiment, feces of male BALB / c mice (7, 9 weeks old) (Nippon Claire Co., Ltd.) were collected in a 1.5 mL tube (1212-10, SSIbio) (n = 5), and 500 μL of phosphate was collected. It was ground in buffered saline (DPBS) (Dulbecco's Phosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific) using a crusher until the solids were gone. Centrifuge at 2,000 xg for 2 seconds (himac CF15RX, Koki Holdings), repeat the operation of collecting the supernatant twice, and then centrifuge at 15,000 xg for 3 minutes to intestinal microorganisms in mice. Was collected. The cell pellet was washed twice with PBS by centrifugation and then suspended in PBS to obtain a cell suspension of mouse intestinal microorganisms. Measure the cell concentration in the prepared cell suspension (microscope: CKX41, OLYMPUS, bacterium calculator A161,2-5679-01, AS ONE), and ultra-low melting point agarose (A5030) so that the final concentration is 1.5%. By adding -10G, SIGMA-ALDRICH), an intestinal microbial suspension used for gel capsule preparation was prepared (cell final concentration: 1.5 × 10 3 cells / μL).
 ポリジメチルシロキサン(Sylgard 184: Dow Corning社)を用いて自作したマイクロ流路を用いて、微小液滴の作製および微小液滴内へのマウス腸内微生物細胞の封入を行った。本実施例では、第一流路、第二流路、第三流路及び第四流路からなり、隣接する流路が直角に配置されたマイクロ流路を用いたが、略T字状に接続したマイクロ流路を使用することも可能である。本実施例のマイクロ流路は、幅34μm、高さ50μmのものを使用したが、作製する微小液滴の大きさや封入する1細胞の大きさによりマイクロ流路のサイズは適宜変更可能である。 Using a microchannel made by myself using polydimethylsiloxane (Sylgard 184: Dow Corning), microdroplets were prepared and mouse intestinal microbial cells were encapsulated in the microdroplets. In this embodiment, a microchannel consisting of a first channel, a second channel, a third channel, and a fourth channel, in which adjacent channels are arranged at right angles, is used, but they are connected in a substantially T shape. It is also possible to use a microchannel. The microchannel of this example used had a width of 34 μm and a height of 50 μm, but the size of the microchannel can be appropriately changed depending on the size of the microdroplets to be produced and the size of one cell to be encapsulated.
 次に、第一流路(水相インレット)から腸内微生物懸濁液を導入し、第二流路及び第四流路(油相インレット)からPico-Surf1(2% in Novec7500)(Sphere Fluidics社)(以下、「オイル」という)を導入して腸内微生物懸濁液をせん断することで、直径50μmの微小液滴を作製し、第三流路7を流動させて容量0.2mLのチューブに回収した。微小液滴は、500液滴/秒の速度で約45万個作製した。微小液滴内の細胞濃度は、0.1 cells/dropletである。 Next, the intestinal microbial suspension was introduced from the first channel (aqueous phase inlet), and Pico-Surf1 (2% in Novec7500) (Sphere Fluidics) from the second channel and the fourth channel (oil phase inlet). ) (Hereinafter referred to as "oil") is introduced to shear the intestinal microbial suspension to prepare fine droplets having a diameter of 50 μm, and the third flow path 7 is allowed to flow through a tube having a capacity of 0.2 mL. Collected in. Approximately 450,000 microdroplets were produced at a rate of 500 droplets / second. The cell concentration in the microdroplets is 0.1 cells / droplet.
 本実施例では、微小液滴の直径を50μmと均一にすることで、1細胞ずつ微小液滴に封入され易くしている。1細胞の大きさを考慮すると、微小液滴の直径は、例えば1~250μmであり、20~200μmであることが好ましい。液滴の直径は、約1~250μm、より好ましくは約10~200μmであってよく、例えば、液滴の直径は、約1μm、約5μm、約10μm、約15μm、約20μm、約25μm、約30μm、約40μm、約50μm、約80μm、約100μm、約150μm、約200μm、または約250μmであってよい。 In this embodiment, the diameter of the microdroplets is made uniform to 50 μm, so that each cell can be easily encapsulated in the microdroplets. Considering the size of one cell, the diameter of the microdroplets is, for example, 1 to 250 μm, preferably 20 to 200 μm. The diameter of the droplet may be from about 1 to 250 μm, more preferably from about 10 to 200 μm, for example, the diameter of the droplet is about 1 μm, about 5 μm, about 10 μm, about 15 μm, about 20 μm, about 25 μm, about. It may be 30 μm, about 40 μm, about 50 μm, about 80 μm, about 100 μm, about 150 μm, about 200 μm, or about 250 μm.
 チューブ内には複数の微小液滴とオイルが収容されるが、微小液滴はオイルよりも比重が軽いため上層に集積する。 Multiple microdroplets and oil are stored in the tube, but the microdroplets have a lighter specific gravity than oil, so they accumulate in the upper layer.
 次に、チューブを氷上で15分間冷却し、超低融点アガロースにより微小液滴をゲル化した。ゲル化した微小液滴がゲルカプセルである。微小液滴の直径が50μmであることからゲルカプセルの直径も50μmとなる。ゲルカプセルの直径は、約1~250μm、より好ましくは約10~200μmであってよく、例えば、約1μm、約5μm、約10μm、約15μm、約20μm、約25μm、約30μm、約40μm、約50μm、約80μm、約100μm、約150μm、約200μm、または約250μmであってよい。ゲルカプセルの直径は、作製する液滴と同じであってもよいが、ゲル化に際して直径が変化してもよい。また、ゲルカプセルの直径は1~250μmであることが好ましい。ゲルカプセルの直径を均一とすることにより、後述する溶菌試薬の各ゲルカプセル内への浸透率をより均一化することができる。 Next, the tube was cooled on ice for 15 minutes, and microdroplets were gelled with ultra-low melting point agarose. The gelled microdroplets are gel capsules. Since the diameter of the microdroplets is 50 μm, the diameter of the gel capsule is also 50 μm. The diameter of the gel capsule may be about 1-250 μm, more preferably about 10-200 μm, eg, about 1 μm, about 5 μm, about 10 μm, about 15 μm, about 20 μm, about 25 μm, about 30 μm, about 40 μm, about. It may be 50 μm, about 80 μm, about 100 μm, about 150 μm, about 200 μm, or about 250 μm. The diameter of the gel capsule may be the same as that of the droplet to be produced, but the diameter may change during gelation. The diameter of the gel capsule is preferably 1 to 250 μm. By making the diameter of the gel capsule uniform, the penetration rate of the lytic reagent described later into each gel capsule can be made more uniform.
 次に、チューブに20μLの1H,1H,2H,2H-パーフルオロ-1-オクタノール(SIGMA-ALDRICH社)を加え、下層のオイルを取り除いた後、アセトン(富士フイルム和光純薬社)(500μL)、イソプロパノール(富士フイルム和光純薬社)(500μL)を順に加えて遠心洗浄し、オイルの除去を行った。オイルを除去するための遠心洗浄は後述の除去部により行った。本実施例では、ゲルカプセルに浸透したオイルも夾雑物質に含まれるものとする。さらに、500μLのPBSを添加して遠心洗浄を3回行い、ゲルカプセルを水層(PBS)に懸濁した状態とした。ゲルカプセルは水層よりも比重が重いため下層に集積した。 Next, 20 μL of 1H, 1H, 2H, 2H-perfluoro-1-octanol (SIGMA-ALDRICH) was added to the tube, the oil in the lower layer was removed, and then acetone (Fujifilm Wako Pure Chemical Industries, Ltd.) (500 μL). , Isopropanol (Fujifilm Wako Pure Chemical Industries, Ltd.) (500 μL) was added in this order and centrifuged to remove the oil. Centrifugal cleaning for removing the oil was performed by the removing part described later. In this example, the oil that has permeated the gel capsule is also included in the contaminants. Further, 500 μL of PBS was added and centrifugation was performed three times to bring the gel capsule into a suspended state in the aqueous layer (PBS). Since the gel capsule has a heavier specific gravity than the aqueous layer, it accumulated in the lower layer.
 続いて、溶解用試薬としての溶菌試薬にゲルカプセルを順次浸漬し、ゲルカプセル内部で細胞の細胞壁等の収集目的物以外の部分を溶解し、ゲルカプセル内にゲノムDNAを溶出させた。 Subsequently, the gel capsule was sequentially immersed in a lytic reagent as a lysis reagent, and a part other than the object to be collected such as a cell wall of a cell was dissolved inside the gel capsule, and genomic DNA was eluted into the gel capsule.
 具体的には、チューブに溶菌試薬の1種であるリゾチーム(10U/μL)(R1804M、Epicentre)を加え、細胞を溶解した。次に、チューブに溶菌試薬の1種であるアクロモペプチダーゼ(850U/mL)(015-09951、富士フイルム和光純薬社)を加えた。次に、チューブに溶菌試薬の1種であるプロテアーゼK(1mg/mL)(MC5005、Promega)及びドデシル硫酸ナトリウム(SDS)0.5%(71736-100ML、SIGMA-ALDRICH社)を加え、細胞を溶解した後に遠心洗浄を5回行いプロテアーゼ及び溶解した細胞のゲノムDNA以外の成分(夾雑物質)をチューブから除去した。続いて、溶菌試薬の1種である水酸化カリウムを含む水溶液であるBuffer D2(QIAGEN社)にゲルカプセルを浸漬し、残存成分の溶解とゲノムDNAの変性を行った。本実施例で使用する溶菌試液は、上述のとおり、リゾチーム、アクロモペプチダーゼ、プロテアーゼK、ドデシル硫酸ナトリウム及びBuffer D2であった。なお、水酸化カリウムは通常のDNA増幅反応工程でも使用するが、溶菌の効果も兼ねていることから、本実施例では溶菌試薬の一つとした。ゲルカプセルの溶菌試薬への浸漬は短時間であるため、溶出させたゲノムDNAが溶菌試薬によりゲルカプセル外に流出されることはなく、ゲルカプセル内に保持される。本実施例では、ゲルカプセルに浸透した溶菌試薬も夾雑物質に含まれるものとする。 Specifically, lysozyme (10 U / μL) (R1804M, Epicenter), which is one of the lytic reagents, was added to the tube to lyse the cells. Next, achromopeptidase (850 U / mL) (015-09951, Fujifilm Wako Pure Chemical Industries, Ltd.), which is one of the lytic reagents, was added to the tube. Next, add protease K (1 mg / mL) (MC5005, Promega) and sodium dodecyl sulfate (SDS) 0.5% (71736-100ML, SIGMA-ALDRICH), which are one of the lytic reagents, to the tube to add cells. After lysis, centrifugation was performed 5 times to remove components (contaminants) other than protease and genomic DNA of the lysed cells from the tube. Subsequently, the gel capsule was immersed in Buffer D2 (QIAGEN), which is an aqueous solution containing potassium hydroxide, which is one of the lytic reagents, to dissolve the residual components and denature the genomic DNA. As described above, the lytic test solution used in this example was lysozyme, achromopeptidase, proteinase K, sodium dodecyl sulfate, and Buffer D2. Potassium hydroxide is also used in a normal DNA amplification reaction step, but since it also has a lytic effect, it was used as one of the lytic reagents in this example. Since the gel capsule is immersed in the lytic reagent for a short time, the eluted genomic DNA is not discharged from the gel capsule by the lytic reagent and is retained in the gel capsule. In this example, the lytic reagent permeated into the gel capsule is also included in the contaminants.
 本実施例は、リゾチーム、アクロモペプチダーゼ及びプロテアーゼKを順次加え、ドデシル硫酸ナトリウムを加えて細胞を溶解した後、Buffer D2を入れる前にのみ遠心洗浄を行った。これによって十分な洗浄効果を得ることができる。しかしながら、各溶菌試薬により細胞を溶解した後に遠心洗浄を行ってもよい。 In this example, lysozyme, achromopeptidase, and protease K were added in sequence, sodium dodecyl sulfate was added to lyse the cells, and then centrifugation was performed only before adding Buffer D2. Thereby, a sufficient cleaning effect can be obtained. However, centrifugation may be performed after lysing the cells with each lytic reagent.
 このように、複数種類の溶菌試薬により細胞の溶解を行うことで、目的のゲノムDNAを採取することができ、溶菌試薬への浸漬後に遠心洗浄を行うことで、溶菌試薬や溶解した細胞のポリヌクレオチド以外の成分等の夾雑物質を除去し、続くゲノムDNA増幅反応を阻害することのなくゲノムDNAを精製することができる。 In this way, the target genomic DNA can be collected by lysing the cells with a plurality of types of lytic reagents, and the lytic reagent and the poly of the lysed cells can be collected by centrifugation after immersion in the lytic reagent. Contaminants such as components other than nucleotides can be removed, and genomic DNA can be purified without inhibiting the subsequent genomic DNA amplification reaction.
 水酸化カリウム溶液(Buffer D2)中で変性したゲノムDNAを保持するゲルカプセルを含むチューブに増幅用試薬を加え、ゲルカプセルを増幅用試薬に浸漬した。具体的には、鎖置換型DNA合成酵素であるphi29DNAポリメラーゼを用いたMDA(Multiple Displacement Amplification)法を使用した。ここでは、全ゲノム増幅反応試薬REPLI-g Single Cell Kit(QIAGEN社)に浸漬し、3時間の全ゲノム増幅反応を行った(S1000 サーマルサイクラー, Bio-Rad社)。増幅用試薬(REPLI-g Single Cell Kit)には水酸化カリウム溶液(Buffer D2)を中和する成分が含まれている。 The amplification reagent was added to the tube containing the gel capsule holding the denatured genomic DNA in the potassium hydroxide solution (Buffer D2), and the gel capsule was immersed in the amplification reagent. Specifically, the MDA (Multiple Replication Replication) method using phi29 DNA polymerase, which is a strand-substitution type DNA synthase, was used. Here, the whole genome amplification reaction reagent was immersed in REPLI-g Single Cell Kit (QIAGEN), and the whole genome amplification reaction was carried out for 3 hours (S1000 thermal cycler, Bio-Rad). The amplification reagent (REPLI-g Single Cell Kit) contains a component that neutralizes the potassium hydroxide solution (Buffer D2).
 さらに、蛍光性DNAインターカレーター(SYBR Green I nucleic acid gel stain 10,000 in DMSO, (S7563、Thermo Fisher Scientific社))による染色を行い、フローサイトメーター(BD FACSMelody セルソーター, BD Biosciences)を用いて、各糞便由来のサンプル(n=5)から蛍光を示すゲルカプセルをプレート(PCR-96-FS-C、Axygen社)に94個ずつ個別に回収した(計470個)。 Furthermore, staining is performed with a fluorescent DNA intercalator (SYBR Green I nucleic acid gel stain 10,000 in DMSO, (S7563, Thermo Fisher Scientific)), and each feces is stained using a flow cytometer (BD FACSMelody cell sorter, BD Biosciences). From the derived sample (n = 5), 94 fluorescent gel capsules were individually collected on a plate (PCR-96-FS-C, Axygen) (470 in total).
 回収した個々のゲルカプセルに対して65℃で加熱を行う(S1000 サーマルサイクラー, Bio-Rad)ことによりゲルカプセルを溶解した後、各プレートのウェル内でMDA法(REPLI-g Single Cell Kit, 150345 ,QIAGEN)による二次増幅を実施し、各ウェルにつき10 μLのDNA増幅産物を含むライブラリマスタープレートを作成した。 After melting the gel capsules by heating the collected individual gel capsules at 65 ° C (S1000 thermal cycler, Bio-Rad), the MDA method (REPLI-g Single Cell Kit, 150345) is used in the wells of each plate. , QIAGEN) was performed to prepare a library master plate containing 10 μL of DNA amplification product for each well.
 新しいプレートの各ウェルに39μLのヌクレアーゼフリー水(UltraPure DNase/RNase-Free Distilled Water, 10977-015, Thermo Fisher Scientific)を分注し、ライブラリマスタープレート中のDNA増幅産物1μLを加え、ライブラリマスタープレートの40倍希釈溶液を調製した。次に、希釈液1μLを用いてQubitフルオロメーター(Q33226, Thermo Fisher Scientific)Qubit dsDNA HS Assay Kit(Q32854, Thermo Fisher Scientific )によるDNA濃度の定量を行った。また、希釈液1μLをテンプレートに用いて16S rRNA遺伝子のV3V4領域を対象としたPCRを行った(6.25 μL PrimeSTAR Max DNA Polymerase(R045B, タカラバイオ)、0.5μL 10μM Primer Forward(5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’(配列番号1))、0.5μL 10μM Primer Reverse (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’(配列番号2))、1.0μL DNA希釈液、4.25μL UltraPure DNase/RNase-Free Distilled Water(10977-015, Thermo Fisher Scientific)(S1000 サーマルサイクラー, Bio-Rad)。PCRの反応条件は、初期熱変性を95℃, 5分、熱変性を98℃, 10秒、アニーリング51℃, 15秒、伸長反応を72℃, 5秒で27サイクル行い、72℃, 5分の反応後、4℃で保存した。アガロースゲル電気泳動(泳動槽:Mupid-exU, EXU-1, Mupid、マーカー:GeneRulerTM 1kb DNA Ladder, #SM0318, Fermentas、染色:Midori Green Direct, NE-MG06,日本ジェネティクス、ローディングバッファー:6×Loading Buffer, 9157, タカラバイオ)(泳動条件:100V, 15min)によってPCR産物の有無を確認後、増幅が見られたサンプルについてサンガー法(株式会社ファスマックのDNAシーケンス外注サービス)を用いてシークエンス解析を行った。 Dispense 39 μL of nuclease-free water (UltraPure DNase / RNase-Free Distilled Water, 10977-015, Thermo Fisher Scientific) into each well of the new plate, add 1 μL of DNA amplification product in the library master plate, and add 1 μL of DNA amplification product to the library master plate. A 40-fold diluted solution was prepared. Next, the DNA concentration was quantified by a Qubit fluorometer (Q33226, Thermo Fisher Scientific) Qubit dsDNA HS Assay Kit (Q32854, Thermo Fisher Scientific) using 1 μL of the diluted solution. In addition, PCR was performed on the V3V4 region of the 16S rRNA gene using 1 μL of the diluted solution as a template (6.25 μL PrimeSTAR Max DNA Polymerase (R045B, Takara Bio), 0.5 μL 10 μM Primer Forward (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3). '(SEQ ID NO: 1)), 0.5 μL 10 μM Primer Reverse (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3' (SEQ ID NO: 2)), 1.0 μL DNA diluent, 4.25 μL UltraPure DNase / RNase-Free Distilled Water (10977-015, Thermo) Fisher Scientific) (S1000 thermal cycler, Bio-Rad). PCR reaction conditions are 95 ° C, 5 minutes for initial thermal denaturation, 98 ° C, 10 seconds for thermal denaturation, 51 ° C, 15 seconds for annealing, and 72 ° C for elongation reaction. , Performed 27 cycles in 5 seconds, reacted at 72 ° C for 5 minutes, and stored at 4 ° C. Agalose gel electrophoresis (translocation tank: Mupid-exU, EXU-1, Mupid, marker: GeneRuler TM 1kb DNA Ladder, # SM0318, Fermentas, Staining: Midori Green Direct, NE-MG06, Nippon Genetics, Loading Buffer: 6 × Loading Buffer, 9157, Takara Bio) (Migration conditions: 100V, 15min) After confirming the presence or absence of PCR products, amplification is achieved. Sequence analysis was performed on the found samples using the Sanger method (DNA sequence outsourced service of Fasmac Co., Ltd.).
 (選抜条件)
 MDAによる増幅を行った470個のサンプルの内、本実施例では(1)MDA増幅後のDNA収量が200ng以上である、(2)16S rRNA遺伝子のPCR後に増幅が確認される、の基準を設定し、DNA収量がその後の解析に十分であり、細菌由来物であることの基準を満たすサンプルの選抜を行った。サンプル選抜の結果、470個のサンプル中347個(74%)が選抜された。さらに、PCR産物のシーケンス解析により得られた配列情報に対してBLASTを用いた相同性検索(デフォルト条件)を行い、ライブラリマスタープレートに含まれる細菌の種類や数の情報を取得した。本実施例では、BLASTでの相同性検索の結果Lachnospiraceae(ラクノスピラ科)およびBacteroidaceae(バクテロイデス科)に分類される1細胞増幅ゲノムライブラリーが多く確認され、147個がLachnospiraceae細菌、68個がBacteroidaceae細菌であった(下表)。
Figure JPOXMLDOC01-appb-T000001
(Selection conditions)
Of the 470 samples amplified by MDA, in this example, the criteria were (1) the DNA yield after MDA amplification was 200 ng or more, and (2) amplification was confirmed after PCR of the 16S rRNA gene. Samples were selected that were set and the DNA yield was sufficient for subsequent analysis and met the criteria of bacterial origin. As a result of sample selection, 347 (74%) out of 470 samples were selected. Furthermore, homology search (default condition) using BLAST was performed on the sequence information obtained by sequence analysis of PCR products, and information on the type and number of bacteria contained in the library master plate was obtained. In this example, as a result of homology search in BLAST, many 1-cell amplified genomic libraries classified into Lachnospiraceae (Lachnospiraceae) and Bacteroidaceae (Bacteroides) were confirmed, 147 were Lachnospiraceae bacteria and 68 were Bacteroidaceae bacteria. It was (table below).
Figure JPOXMLDOC01-appb-T000001
 (実施例2:ヒト腸内細菌叢組成の解析)
 (ヒトからの試料回収)
 ヒト糞便を採便容器(FS-0007またはFS-0008、テクノスルガラボ社)に回収した。保存液を含む採便容器では、8000xg, 5min, 4℃の遠心の後、保存液を取り除き、1000μLのDPBSでの洗浄を1度行った。冷凍便(in 1.5ml tube)は、氷上に30分置くことで自然解凍した。保存液を含まない新鮮便では特に破砕前の処理はない。その後、500μLのリン酸緩衝生理食塩水(DPBS)(Dulbecco's Phosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific)中で破砕機を用いて固形物がなくなるまですり潰した。2,000×gで2秒間遠心分離し(himac CF15RX, 工機ホールディングス)、上清を回収する操作を2回繰り返した後、15,000×gで3分間遠心分離することでマウス腸内微生物を集菌した。菌体のペレットをPBSを用いて2回遠心分離により洗浄した後、PBS中に懸濁することでマウス腸内微生物の細胞懸濁液を取得した。調製した細胞懸濁液中の細胞濃度を測定し(顕微鏡:CKX41, OLYMPUS、バクテリア計算盤A161,2-5679-01, アズワン)、終濃度1.5%になるように超低融点アガロース(A5030-10G, SIGMA-ALDRICH)を加えることで、ゲルカプセル作製に用いる腸内微生物懸濁液を調製した(細胞終濃度:1.5×10cells/μL)。
(Example 2: Analysis of human intestinal flora composition)
(Sample collection from humans)
Human feces were collected in a stool collection container (FS-0007 or FS-0008, Technosurgarabo). In the stool collection container containing the preservation solution, after centrifugation at 8000xg, 5min, 4 ° C., the preservation solution was removed, and the container was washed once with 1000 μL of DPBS. Frozen stool (in 1.5 ml tube) was naturally thawed by placing it on ice for 30 minutes. Fresh stools that do not contain a preservative solution are not treated before crushing. It was then ground in 500 μL of Phosphate Buffered Saline (DPBS) (Dulbecco's Phosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific) using a crusher until the solids were gone. Centrifuge at 2,000 xg for 2 seconds (himac CF15RX, Koki Holdings), repeat the operation of collecting the supernatant twice, and then centrifuge at 15,000 xg for 3 minutes to intestinal microorganisms in mice. Was collected. The cell pellet was washed twice with PBS by centrifugation and then suspended in PBS to obtain a cell suspension of mouse intestinal microorganisms. Measure the cell concentration in the prepared cell suspension (microscope: CKX41, OLYMPUS, bacterium calculator A161,2-5679-01, AS ONE), and ultra-low melting point agarose (A5030) so that the final concentration is 1.5%. By adding -10G, SIGMA-ALDRICH), an intestinal microbial suspension used for gel capsule preparation was prepared (cell final concentration: 1.5 × 10 3 cells / μL).
 (回収した試料の処理(ウェット))
 ポリジメチルシロキサン(Sylgard 184: Dow Corning社)を用いて自作したマイクロ流路を用いて、微小液滴の作製および微小液滴内へのヒト腸内微生物細胞の封入を行った。本実施例では、第一流路、第二流路、第三流路及び第四流路からなり、隣接する流路が直角に配置されたマイクロ流路を用いたが、略T字状に接続したマイクロ流路を使用することも可能である。本実施例のマイクロ流路は、幅34μm、高さ50μmのものを使用したが、作製する微小液滴の大きさや封入する1細胞の大きさによりマイクロ流路のサイズは適宜変更可能である。
(Treatment of recovered sample (wet))
Using a microchannel self-made using polydimethylsiloxane (Sylgard 184: Dow Corning), microdroplets were prepared and human intestinal microbial cells were encapsulated in the microdroplets. In this embodiment, a microchannel consisting of a first channel, a second channel, a third channel, and a fourth channel, in which adjacent channels are arranged at right angles, is used, but they are connected in a substantially T shape. It is also possible to use a microchannel. The microchannel of this example used had a width of 34 μm and a height of 50 μm, but the size of the microchannel can be appropriately changed depending on the size of the microdroplets to be produced and the size of one cell to be encapsulated.
 次に、第一流路(水相インレット)から腸内微生物懸濁液を導入し、第二流路及び第四流路(油相インレット)からPico-Surf1(2% in Novec7500)(Sphere Fluidics社)(以下、「オイル」という)を導入して腸内微生物懸濁液をせん断することで、直径50μmの微小液滴を作製し、第三流路7を流動させて容量0.2mLのチューブに回収した。微小液滴は、500液滴/秒の速度で約45万個作製した。微小液滴内の細胞濃度は、0.1 cells/dropletである。 Next, the intestinal microbial suspension was introduced from the first channel (aqueous phase inlet), and Pico-Surf1 (2% in Novec7500) (Sphere Fluidics) from the second channel and the fourth channel (oil phase inlet). ) (Hereinafter referred to as "oil") is introduced to shear the intestinal microbial suspension to prepare fine droplets having a diameter of 50 μm, and the third flow path 7 is allowed to flow through a tube having a capacity of 0.2 mL. Collected in. Approximately 450,000 microdroplets were produced at a rate of 500 droplets / second. The cell concentration in the microdroplets is 0.1 cells / droplet.
 本実施例では、微小液滴の直径を50μmと均一にすることで、1細胞ずつ微小液滴に封入され易くしている。1細胞の大きさを考慮すると、微小液滴の直径は、例えば1~250μmであり、10~200μmであることが好ましい。 In this embodiment, the diameter of the microdroplets is made uniform to 50 μm, so that each cell can be easily encapsulated in the microdroplets. Considering the size of one cell, the diameter of the microdroplets is, for example, 1 to 250 μm, preferably 10 to 200 μm.
 チューブ内には複数の微小液滴とオイルが収容されるが、微小液滴はオイルよりも比重が軽いため上層に集積する。 Multiple microdroplets and oil are stored in the tube, but the microdroplets have a lighter specific gravity than oil, so they accumulate in the upper layer.
 次に、チューブを氷上で15分間冷却し、超低融点アガロースにより微小液滴をゲル化した。ゲル化した微小液滴がゲルカプセルである。微小液滴の直径が50μmであることからゲルカプセルの直径も50μmとなる。また、ゲルカプセルの直径は1~250μmであることが好ましい。ゲルカプセルの直径を均一とすることにより、後述する溶菌試薬の各ゲルカプセル内への浸透率をより均一化することができる。 Next, the tube was cooled on ice for 15 minutes, and microdroplets were gelled with ultra-low melting point agarose. The gelled microdroplets are gel capsules. Since the diameter of the microdroplets is 50 μm, the diameter of the gel capsule is also 50 μm. The diameter of the gel capsule is preferably 1 to 250 μm. By making the diameter of the gel capsule uniform, the penetration rate of the lytic reagent described later into each gel capsule can be made more uniform.
 次に、チューブに20μLの1H,1H,2H,2H-パーフルオロ-1-オクタノール(SIGMA-ALDRICH社)を加え、下層のオイルを取り除いた後、アセトン(富士フイルム和光純薬社)(500μL)、イソプロパノール(富士フイルム和光純薬社)(500μL)を順に加えて遠心洗浄し、オイルの除去を行った。オイルを除去するための遠心洗浄は後述の除去部により行った。本実施例では、ゲルカプセルに浸透したオイルも夾雑物質に含まれるものとする。さらに、500μLのPBSを添加して遠心洗浄を3回行い、ゲルカプセルを水層(PBS)に懸濁した状態とした。ゲルカプセルは水層よりも比重が重いため下層に集積した。 Next, 20 μL of 1H, 1H, 2H, 2H-perfluoro-1-octanol (SIGMA-ALDRICH) was added to the tube, the oil in the lower layer was removed, and then acetone (Fujifilm Wako Pure Chemical Industries, Ltd.) (500 μL). , Isopropanol (Fujifilm Wako Pure Chemical Industries, Ltd.) (500 μL) was added in this order and centrifuged to remove the oil. Centrifugal cleaning for removing the oil was performed by the removing part described later. In this example, the oil that has permeated the gel capsule is also included in the contaminants. Further, 500 μL of PBS was added and centrifugation was performed three times to bring the gel capsule into a suspended state in the aqueous layer (PBS). Since the gel capsule has a heavier specific gravity than the aqueous layer, it accumulated in the lower layer.
 続いて、溶解用試薬としての溶菌試薬にゲルカプセルを順次浸漬し、ゲルカプセル内部で細胞の細胞壁等の収集目的物以外の部分を溶解し、ゲルカプセル内にゲノムDNAを溶出させた。 Subsequently, the gel capsule was sequentially immersed in a lytic reagent as a lysis reagent, and a part other than the object to be collected such as a cell wall of a cell was dissolved inside the gel capsule, and genomic DNA was eluted into the gel capsule.
 具体的には、チューブに溶菌試薬の1種であるリゾチーム(10U/μL)(R1804M、Epicentre)を加え、細胞を溶解した。次に、チューブに溶菌試薬の1種であるアクロモペプチダーゼ(850U/mL)(015-09951、富士フイルム和光純薬社)を加えた。次に、チューブに溶菌試薬の1種であるプロテアーゼK(1mg/mL)(MC5005、Promega)及びドデシル硫酸ナトリウム(SDS)0.5%(71736-100ML、SIGMA-ALDRICH社)を加え、細胞を溶解した後に遠心洗浄を5回行いプロテアーゼ及び溶解した細胞のゲノムDNA以外の成分(夾雑物質)をチューブから除去した。続いて、溶菌試薬の1種である水酸化カリウムを含む水溶液であるBuffer D2(QIAGEN社)にゲルカプセルを浸漬し、残存成分の溶解とゲノムDNAの変性を行った。本実施例で使用する溶菌試液は、上述のとおり、リゾチーム、アクロモペプチダーゼ、プロテアーゼK、ドデシル硫酸ナトリウム及びBuffer D2であった。なお、水酸化カリウムは通常のDNA増幅反応工程でも使用するが、溶菌の効果も兼ねていることから、本実施例では溶菌試薬の一つとした。ゲルカプセルの溶菌試薬への浸漬は短時間であるため、溶出させたゲノムDNAが溶菌試薬によりゲルカプセル外に流出されることはなく、ゲルカプセル内に保持される。本実施例では、ゲルカプセルに浸透した溶菌試薬も夾雑物質に含まれるものとする。 Specifically, lysozyme (10 U / μL) (R1804M, Epicenter), which is one of the lytic reagents, was added to the tube to lyse the cells. Next, achromopeptidase (850 U / mL) (015-09951, Fujifilm Wako Pure Chemical Industries, Ltd.), which is one of the lytic reagents, was added to the tube. Next, add protease K (1 mg / mL) (MC5005, Promega) and sodium dodecyl sulfate (SDS) 0.5% (71736-100ML, SIGMA-ALDRICH), which are one of the lytic reagents, to the tube to add cells. After lysis, centrifugation was performed 5 times to remove components (contaminants) other than protease and genomic DNA of the lysed cells from the tube. Subsequently, the gel capsule was immersed in Buffer D2 (QIAGEN), which is an aqueous solution containing potassium hydroxide, which is one of the lytic reagents, to dissolve the residual components and denature the genomic DNA. As described above, the lytic test solution used in this example was lysozyme, achromopeptidase, proteinase K, sodium dodecyl sulfate, and Buffer D2. Potassium hydroxide is also used in a normal DNA amplification reaction step, but since it also has a lytic effect, it was used as one of the lytic reagents in this example. Since the gel capsule is immersed in the lytic reagent for a short time, the eluted genomic DNA is not discharged from the gel capsule by the lytic reagent and is retained in the gel capsule. In this example, the lytic reagent permeated into the gel capsule is also included in the contaminants.
 本実施例は、リゾチーム、アクロモペプチダーゼ及びプロテアーゼKを順次加え、ドデシル硫酸ナトリウムを加えて細胞を溶解した後、Buffer D2を入れる前にのみ遠心洗浄を行うことで十分な洗浄効果を得ることができる。しかしながら、各溶菌試薬により細胞を溶解した後に遠心洗浄を行ってもよい。 In this example, sufficient cleaning effect can be obtained by sequentially adding lysozyme, achromopeptidase, and protease K, adding sodium dodecyl sulfate to lyse the cells, and then performing centrifugation only before adding Buffer D2. it can. However, centrifugation may be performed after lysing the cells with each lytic reagent.
 このように、複数種類の溶菌試薬により細胞の溶解を行うことで、目的のゲノムDNAを採取することができ、溶菌試薬への浸漬後に遠心洗浄を行うことで、溶菌試薬や溶解した細胞のポリヌクレオチド以外の成分等の夾雑物質を除去し、続くゲノムDNA増幅反応を阻害することのなくゲノムDNAを精製することができる。 In this way, the target genomic DNA can be collected by lysing the cells with a plurality of types of lytic reagents, and the lytic reagent and the poly of the lysed cells can be collected by centrifugation after immersion in the lytic reagent. Contaminants such as components other than nucleotides can be removed, and genomic DNA can be purified without inhibiting the subsequent genomic DNA amplification reaction.
 水酸化カリウム溶液(Buffer D2)中で変性したゲノムDNAを保持するゲルカプセルを含むチューブに増幅用試薬を加え、ゲルカプセルを増幅用試薬に浸漬した。具体的には、鎖置換型DNA合成酵素であるphi29DNAポリメラーゼを用いたMDA(Multiple Displacement Amplification)法を使用した。ここでは、全ゲノム増幅反応試薬REPLI-g Single Cell Kit(QIAGEN社)に浸漬し、3時間の全ゲノム増幅反応を行った(S1000 サーマルサイクラー, Bio-Rad社)。増幅用試薬(REPLI-g Single Cell Kit)には水酸化カリウム溶液(Buffer D2)を中和する成分が含まれている。 The amplification reagent was added to the tube containing the gel capsule holding the denatured genomic DNA in the potassium hydroxide solution (Buffer D2), and the gel capsule was immersed in the amplification reagent. Specifically, the MDA (Multiple Replication Replication) method using phi29 DNA polymerase, which is a strand-substitution type DNA synthase, was used. Here, the whole genome amplification reaction reagent was immersed in REPLI-g Single Cell Kit (QIAGEN), and the whole genome amplification reaction was carried out for 3 hours (S1000 thermal cycler, Bio-Rad). The amplification reagent (REPLI-g Single Cell Kit) contains a component that neutralizes the potassium hydroxide solution (Buffer D2).
 さらに、蛍光性DNAインターカレーター(SYBR Green I nucleic acid gel stain 10,000 in DMSO, (S7563、Thermo Fisher Scientific社))による染色を行い、フローサイトメーター(BD FACSMelody セルソーター, BD Biosciences)を用いて、各糞便由来のサンプル(n=2)から蛍光を示すゲルカプセルをプレート(PCR-96-FS-C、Axygen社)に94個ずつ個別に回収した(計188個)。 Furthermore, staining is performed with a fluorescent DNA intercalator (SYBR Green I nucleic acid gel stain 10,000 in DMSO, (S7563, Thermo Fisher Scientific)), and each feces is stained using a flow cytometer (BD FACSMelody cell sorter, BD Biosciences). From the derived sample (n = 2), 94 fluorescent gel capsules were individually collected on a plate (PCR-96-FS-C, Axygen) (188 in total).
 回収した個々のゲルカプセルに対して65℃で加熱を行う(S1000 サーマルサイクラー, Bio-Rad)ことによりゲルカプセルを溶解した後、各プレートのウェル内でMDA法(REPLI-g Single Cell Kit, 150345 ,QIAGEN)による二次増幅を実施し、各ウェルにつき10 μLのDNA増幅産物を含むライブラリマスタープレートを作成した。 After melting the gel capsules by heating the collected individual gel capsules at 65 ° C (S1000 thermal cycler, Bio-Rad), the MDA method (REPLI-g Single Cell Kit, 150345) is used in the wells of each plate. , QIAGEN) was performed to prepare a library master plate containing 10 μL of DNA amplification product for each well.
 新しいプレートの各ウェルに39μLのヌクレアーゼフリー水(UltraPure DNase/RNase-Free Distilled Water, 10977-015, Thermo Fisher Scientific)を分注し、ライブラリマスタープレート中のDNA増幅産物1μLを加え、ライブラリマスタープレートの40倍希釈溶液を調製した。次に、希釈液1μLを用いてQubitフルオロメーター(Q33226, Thermo Fisher Scientific)Qubit dsDNA HS Assay Kit(Q32854, Thermo Fisher Scientific )によるDNA濃度の定量を行った。また、希釈液1μLをテンプレートに用いて16S rRNA遺伝子のV3V4領域を対象としたPCRを行った(6.25 μL PrimeSTAR Max DNA Polymerase(R045B, タカラバイオ), 0.5μL 10μM Primer Forward (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’(配列番号1)), 0.5μL 10μM Primer Reverse (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’(配列番号2)), 1.0μL DNA希釈液, 4.25μL UltraPure DNase/RNase-Free Distilled Water(10977-015, Thermo Fisher Scientific)(S1000 サーマルサイクラー, Bio-Rad)。PCRの反応条件は、初期熱変性を95℃, 5分、熱変性を98℃, 10秒、アニーリング51℃, 15秒、伸長反応を72℃, 5秒で27サイクル行い、72℃, 5分の反応後、4℃で保存した。アガロースゲル電気泳動(泳動槽:Mupid-exU, EXU-1, Mupid、マーカー:GeneRulerTM 1kb DNA Ladder, #SM0318, Fermentas、染色:Midori Green Direct, NE-MG06,日本ジェネティクス、ローディングバッファー:6× Loading Buffer, 9157, タカラバイオ)(泳動条件:100V, 15 min)によってPCR産物の有無を確認後、増幅が見られたサンプルについてサンガー法(株式会社ファスマックのDNAシーケンス外注サービス)を用いてシークエンス解析を行った。 Dispense 39 μL of nuclease-free water (UltraPure DNase / RNase-Free Distilled Water, 10977-015, Thermo Fisher Scientific) into each well of the new plate, add 1 μL of DNA amplification product in the library master plate, and add 1 μL of DNA amplification product to the library master plate. A 40-fold diluted solution was prepared. Next, the DNA concentration was quantified by a Qubit fluorometer (Q33226, Thermo Fisher Scientific) Qubit dsDNA HS Assay Kit (Q32854, Thermo Fisher Scientific) using 1 μL of the diluted solution. In addition, PCR was performed on the V3V4 region of the 16S rRNA gene using 1 μL of the diluted solution as a template (6.25 μL PrimeSTAR Max DNA Polymerase (R045B, Takara Bio), 0.5 μL 10 μM Primer Forward (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3). '(SEQ ID NO: 1)), 0.5 μL 10 μM Primer Reverse (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3' (SEQ ID NO: 2)), 1.0 μL DNA diluent, 4.25 μL UltraPure DNase / RNase-Free Distilled Water (10977-015, Thermo) Fisher Scientific) (S1000 thermal cycler, Bio-Rad). PCR reaction conditions are 95 ° C, 5 minutes for initial thermal denaturation, 98 ° C, 10 seconds for thermal denaturation, 51 ° C, 15 seconds for annealing, and 72 ° C for elongation reaction. , Performed 27 cycles in 5 seconds, reacted at 72 ° C for 5 minutes, and stored at 4 ° C. Agalose gel electrophoresis (translocation tank: Mupid-exU, EXU-1, Mupid, marker: GeneRuler TM 1kb DNA Ladder, # SM0318, Fermentas, Staining: Midori Green Direct, NE-MG06, Nippon Genetics, Loading Buffer: 6 × Loading Buffer, 9157, Takara Bio) (Migration conditions: 100V, 15 min) After confirming the presence or absence of PCR products, amplification Sequence analysis was performed on the samples in which were found using the Sanger method (DNA sequence outsourced service of Fasmac Co., Ltd.).
 (シングルセルレベルで得られたデータの解析)
 (選抜条件)
 MDAによる増幅を行った188個のサンプルの内の96個を対象とし、本実施例では(1)MDA増幅後のDNA収量が200ng以上である、(2)16S rRNA遺伝子のPCR後に増幅が確認される、の基準を設定し、DNA収量がその後の解析に十分であり、細菌由来物であることの基準を満たすサンプルの選抜を行った。サンプル選抜の結果、95個のサンプルが選抜された。また、PCR産物のシーケンス解析により得られた配列情報に対してBLASTを用いた相同性検索(デフォルト条件)を行い、ライブラリマスタープレートに含まれる細菌の種類や数の情報を取得した。
(Analysis of data obtained at the single cell level)
(Selection conditions)
96 of the 188 samples amplified by MDA were targeted, and in this example, (1) the DNA yield after MDA amplification was 200 ng or more, and (2) amplification was confirmed after PCR of the 16S rRNA gene. Criteria were set and samples were selected whose DNA yield was sufficient for subsequent analysis and met the criteria of bacterial origin. As a result of sample selection, 95 samples were selected. In addition, homology search (default condition) using BLAST was performed on the sequence information obtained by sequence analysis of PCR products to obtain information on the type and number of bacteria contained in the library master plate.
 上記の95個のサンプルに対して、Nextera XT DNA sample prep kit(Illumina社, FC-131-1096)を用いてライブラリー調製を行い、Miseq(Illumina社, SY-410-1003)を用いた全ゲノムシークエンスによって2×75bpのペアエンドリードを取得した。SPAdes(Bankevich A et al., J Comput Biol. 2012 May;19(5):455-77. http://doi.org/10.1089/cmb.2012.0021)を用いてシークエンスデータのアセンブリを行い、Contigを作製した。また、ゲノム解読率(コンプリート率)およびコンタミネーション度の評価にはCheckM(Parks et al., Genome Res. 2015. 25: 1043-1055, doi:10.1101/gr.186072.114)を用いてデフォルト条件で解析を行った。この結果、新鮮便サンプルで平均コンプリート率は37.8%、平均コンタミネーション率は1.3%、保存液便サンプルで平均コンプリート率は52.6%、平均コンタミネーション率は4.8%と算出された(図6)。 For the above 95 samples, library preparation was performed using Nextera XT DNA genome prep kit (Illumina, FC-131-1096), and all using Miseq (Illumina, SY-410-1003). A 2 × 75 bp paired-end read was obtained by genome sequencing. Assemble the sequence data using SPAdes (Bankevich A et al., J Comput Biol. 2012 May; 19 (5): 455-77. Http://doi.org/10.1089/cmb.2012.0021) and contig. Made. In addition, checkM (Parks et al., Genome Res. 2015. 25: 1043-1055, doi: 10.1101 / gr.186072.114) was used to evaluate the genome decoding rate (complete rate) and contamination degree under the default conditions. Was done. As a result, the average completion rate was calculated to be 37.8% and the average contamination rate was 1.3% for the fresh stool sample, and the average completion rate was 52.6% and the average contamination rate was 4.8% for the preservative stool sample (Fig. 6).
 さらに、CheckMを用いて検出されたマーカー遺伝子群を参照して、各サンプルのゲノムデータから細菌の進化系統分類解析を行った。この結果、多くのデータが、腸内細菌の優先種として存在するFirmicutes門、Actinobacteria門、Bacteroidetes門、Proteobacteria門に由来することが示された。この様な系統分類に関する指標や16SrRNA遺伝子の同一性を参照して、細菌種を特定・カウントし、図7のように組成比を算出することが可能である。また、当該細菌のデジタル配列情報を解析することで、当該細菌の代謝機能解析、薬剤耐性遺伝子の保有、遺伝子変異の解析、既知細菌との比較、他検体との比較なども可能である。この工程は、例えば、blastなどの検索エンジンや、Ensembl等の解析ウェブサイトなどのほか、QUAST、CheckMなどのアセンブリ評価ツール、Prokka、InterProScan、DFASTなどのアノテーションツール、MetaCyc、MAPLEなどの代謝・生理機能ポテンシャル評価システムを用いて実施することができる。遺伝情報の解析の一連の流れとして、denovo     アセンブリを行って得た遺伝情報に対し、QUASTでアセンブリの実効性を評価し、CheckMでゲノムセットとしての質評価を行う。その後、Prokkaなどのアノテーションツールを用いて、ゲノム中の遺伝子を同定し、MAPLEにて代謝経路としての保存性を評価する。PfamおよびCOGデータベースを用いて、各遺伝子の保存性や同一性を評価し、近縁種生物との比較ゲノム解析を実行する。 Furthermore, with reference to the marker gene group detected using CheckM, the evolutionary phylogenetic classification analysis of bacteria was performed from the genomic data of each sample. As a result, it was shown that many data are derived from the phylum Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria, which are the preferred species of gut flora. It is possible to identify and count bacterial species and calculate the composition ratio as shown in FIG. 7 by referring to the index related to such phylogenetic classification and the identity of the 16S rRNA gene. Further, by analyzing the digital sequence information of the bacterium, it is possible to analyze the metabolic function of the bacterium, possess a drug resistance gene, analyze a gene mutation, compare with a known bacterium, and compare with another sample. This process includes, for example, search engines such as blast, analysis websites such as Ensembl, assembly evaluation tools such as QUAST and CheckM, annotation tools such as Prokka, InterProScan, and DFAST, and metabolism / physiology such as MetaCyc and MAPLE. It can be carried out using a functional potential evaluation system. As a series of flow of analysis of genetic information, the effectiveness of the assembly is evaluated by QUAST and the quality of the genome set is evaluated by CheckM for the genetic information obtained by performing the de novo assembly. Then, using an annotation tool such as Prokka, the genes in the genome are identified, and the conservativeness as a metabolic pathway is evaluated by MAPLE. Using the Pfam and COG databases, the conservativeness and identity of each gene will be evaluated, and comparative genome analysis with related species will be performed.
 より具体的には、遺伝子変異の単一細胞単位での評価を目的とした際は、標的遺伝子を対象とした(1)BLAST、hmmerを用いた単一生物由来遺伝子配列の相同性検索、もしくは(2)BWA、bowtie2を用いた単一生物由来シーケンスデータのマッピングによって、単一生物由来遺伝子配列と標的遺伝子配列の差異を検出し、遺伝子変異を特定する。 More specifically, when the purpose is to evaluate gene mutations on a single cell basis, (1) homology search of gene sequences derived from a single organism using BLAST or hmmer, or homology search for target genes, or (2) By mapping the sequence data derived from a single organism using BWA and bowtie2, the difference between the gene sequence derived from a single organism and the target gene sequence is detected, and the gene mutation is identified.
 既知細菌との比較、他検体との比較、亜種の解析を目的とした場合は、Average Nucleotide IdentityおよびCheckM、GTDB-tkで検出されるシングルコピーマーカー遺伝子配列をもとに、同種微生物由来ゲノムと推定される単一生物由来遺伝子情報および既知微生物遺伝子情報を含んだゲノムセットを作成する。続いて、特定遺伝子の有無、遺伝子座、共通遺伝子配列の変異、など各ゲノム間の差異をBLAST、hmmerなどの相同性検索ツールによって特定・抽出する。特徴的なゲノム間差異に基づいたクラスタリングを行うことで、同種微生物の株レベルでの分類もしくは同株微生物の亜株レベルでの分類を行う。 For the purpose of comparison with known bacteria, comparison with other samples, and analysis of subspecies, genomes derived from allogeneic microorganisms based on the single copy marker gene sequences detected by Average Nucleotide Identity, CheckM, and GTDB-tk. Create a genome set containing genetic information derived from a single organism that is presumed to be and genetic information of known microorganisms. Subsequently, differences between genomes such as the presence or absence of a specific gene, a locus, and a mutation in a common gene sequence are identified and extracted by a homology search tool such as BLAST or hmmer. By performing clustering based on characteristic intergenomic differences, classification of allogeneic microorganisms at the strain level or substrain level of homologous microorganisms is performed.
 (実施例3:多様な細胞の中から特定の特徴を有する細胞のデータを選択的に獲得したい場合)
 腸内細菌などの動物共生微生物や海洋・土壌微生物の中で、当業者が注目する特定の1種以上の微生物のゲノムデータを獲得することが目的であった場合には、ポリヌクレオチドを含むゲルカプセルまたはゲルカプセルより回収した増幅核酸に対し、事前に標的とする微生物の遺伝子断片の有無を事前確認しておくことで、不要な遺伝子配列データ取得とそれにかかるコストを削減することができる。測定対象例としては、同一系統微生物の比較解析(例えば、疾患等に関連する微生物系統群における亜種の解析)や特定の遺伝子(例えば、微生物の生産する二次代謝産物や酵素)を有する微生物の探索、あるいは多系統の生物種を含む中から細菌・アーキア・真菌・その他真核細胞等を個別に選択して解析することなどを目的とした場合が想定される。特に、ホストであるヒトの腸内環境や口腔、皮膚環境の評価を目的として、特定の代謝機能を担う腸内細菌、口腔細菌を遺伝子から特異的に検出することや、皮膚細菌における亜種の検出することなどが想定される。
(Example 3: When it is desired to selectively acquire data of cells having specific characteristics from various cells)
A gel containing a polynucleotide when the purpose is to obtain genomic data of one or more specific microorganisms of interest to those skilled in the art among animal symbiotic microorganisms such as gut flora and marine / soil microorganisms. By confirming in advance the presence or absence of a gene fragment of the target microorganism in the amplified nucleic acid recovered from the capsule or gel capsule, it is possible to reduce unnecessary gene sequence data acquisition and the cost associated therewith. Examples of measurement targets include comparative analysis of microorganisms of the same strain (for example, analysis of subspecies in a group of microorganisms related to diseases, etc.) and microorganisms having a specific gene (for example, secondary metabolites and enzymes produced by microorganisms). It is assumed that the purpose is to search for or analyze bacteria, archaea, fungi, and other eukaryotic cells individually from among various species. In particular, for the purpose of evaluating the intestinal environment, oral cavity, and skin environment of the host human, intestinal bacteria and oral bacteria responsible for specific metabolic functions can be specifically detected from genes, and variants of skin bacteria can be detected. It is expected to be detected.
 (実施例4:ホストDNAなどが多量に混在する場合)
 解析試料が、糞便、唾液、喀痰や皮膚、口腔、鼻腔、耳、生殖器などの拭い液、手術洗浄液、あるいは組織抽出物や血液であり、当該試料中に含まれる微生物を解析対象とした場合には、試料中に多くのホスト動物由来の細胞、細胞内小器官、核酸が含まれる。これらの一部も、ゲルカプセル内部に封入されポリヌクレオチド増幅が実行されうる。このため、増幅ポリヌクレオチドを含むゲルカプセルに対し、事前に標的とする微生物の遺伝子断片あるいはホスト由来の遺伝子断片の有無を確認しておくことで、ホスト由来のポリヌクレオチドを含む不要な遺伝子配列データ取得を避け、それにかかるコストを削減することができる。測定例としては、ヒト由来試料からの微生物検出、例えば、血液や喀痰からの病原性微生物の探索や組織内部に共生する微生物解析などが想定される。
(Example 4: When a large amount of host DNA or the like is mixed)
When the analysis sample is feces, saliva, sputum or skin, oral cavity, nasal cavity, ears, genital lavage fluid, surgical cleaning solution, tissue extract or blood, and the microorganisms contained in the sample are analyzed. Contains cells, intracellular small organs, and nucleic acids from many host animals in the sample. Some of these can also be encapsulated inside the gel capsule to perform polynucleotide amplification. Therefore, by confirming in advance the presence or absence of the gene fragment of the target microorganism or the gene fragment derived from the host in the gel capsule containing the amplified polynucleotide, unnecessary gene sequence data containing the polynucleotide derived from the host can be confirmed. You can avoid acquisition and reduce the cost of it. As a measurement example, detection of microorganisms from a human-derived sample, for example, search for pathogenic microorganisms from blood or sputum, and analysis of microorganisms symbiotic inside tissues are assumed.
 あるいは、ホスト由来のポリヌクレオチドを積極的に解析することで、微生物叢の複合的な解析に応用することもできる。 Alternatively, by actively analyzing the polynucleotide derived from the host, it can be applied to the complex analysis of the microflora.
 例えば、消化管に存在する腸内細菌叢と宿主動物は、宿主が消化管という細菌叢定着のための嫌気的環境を提供すると同時に、腸内細菌叢は宿主の健康に影響を及ぼすという共生関係を持つことが知られている。例えば、ホストの健康状態への影響として、大きなものは栄養素の産生と感染症に対する防御・免疫系の発達などが挙げられる。また、他の例を挙げると、炎症性腸疾患は、遺伝的素因に加え、腸内細菌を初めとする腸内環境因子の異常が相まって起こる疾患である。 For example, the intestinal flora and host animals present in the gastrointestinal tract have a symbiotic relationship in which the host provides an anaerobic environment for colonization of the gastrointestinal tract, while the intestinal flora affects the health of the host. It is known to have. For example, the major effects on the health status of the host include the production of nutrients, the defense against infectious diseases, and the development of the immune system. In addition, to give another example, inflammatory bowel disease is a disease caused by an abnormality of intestinal environmental factors such as intestinal bacteria in addition to a genetic predisposition.
 このような病態等については、ホスト自体の遺伝子情報等の解析と、腸内微生物叢、つまり細菌、ウイルス、真菌とを含めた統合的解析と、宿主生理機能への作用機序を明らかにすることが必要であり、本開示の技術はこれらに寄与し得る。また、腸内微生物叢と種々の疾患の病態との関わりや、代謝産物を中心とした機能解析も、ホスト自体の遺伝子情報等も含めて解析することでより深化した解析を行うことができる。 Regarding such pathological conditions, analysis of the genetic information of the host itself, integrated analysis including the intestinal microflora, that is, bacteria, viruses, and fungi, and the mechanism of action on the host physiological function will be clarified. It is necessary, and the techniques of the present disclosure may contribute to these. In addition, the relationship between the intestinal microflora and the pathophysiology of various diseases and the functional analysis centered on metabolites can be further analyzed by analyzing the genetic information of the host itself.
 また、腸管においては、腸内細菌と生体側は栄養素を競合して取り合う関係である一方、生体のために腸内細菌は栄養素の代謝や分解も併せて行うことで、より統合的な解析を行うことができる。このように、腸内細菌に由来する代謝物がどのような働きを示すかについてはホスト側の、遺伝子解析、メタボローム解析や生化学的解析等も交えて複合的に解析し、腸内細菌の機能については細菌のゲノム配列情報から機能を類推し、生成する代謝物との相関を見ることができる。 In addition, in the intestinal tract, the intestinal bacteria and the living body side compete for nutrients, while the intestinal bacteria also metabolize and decompose nutrients for the living body for more integrated analysis. It can be carried out. In this way, the function of biotransformers derived from gut flora is analyzed in a complex manner by host-side genetic analysis, metabolome analysis, biochemical analysis, etc., and the gut flora Regarding the function, the function can be inferred from the genome sequence information of the bacterium, and the correlation with the produced metabolome can be seen.
 (実施例5:遺伝子変異の単一細胞単位での評価)
 ゲノム配列上の変異多様性を単一細胞単位で評価し、微生物叢中の各微生物のゲノム不均質性や変異系統の発生や進展の追跡を実行することができる。増幅ポリヌクレオチドを含むゲルカプセルに対し、標的とする細胞の標的遺伝子変異箇所を選択的に増幅・検出することで、解析対象とする遺伝子配列データのみを特異的に取得し、それにかかるコストを削減することができる。遺伝子変異微生物やプラスミド感染の検出などに利用できる。
(Example 5: Evaluation of gene mutation in a single cell unit)
Mutant diversity on the genome sequence can be evaluated on a single cell basis to track the genomic heterogeneity of each microorganism in the microbiota and the development and progression of mutant strains. By selectively amplifying and detecting the target gene mutation site of the target cell for the gel capsule containing the amplified polynucleotide, only the gene sequence data to be analyzed can be specifically acquired, and the cost for it can be reduced. can do. It can be used to detect genetically mutated microorganisms and plasmid infections.
 (実施例6:特定生物種の保存性評価)
 薬剤、農薬、食品などで、特定の生物種を包含することを立証する、あるいは棄却することが目的であった際に、本開示技術を用いることで特定生物を増幅ポリヌクレオチドを含むゲルカプセルから検出・選抜することで、その含有率を示すことができる。また得られた遺伝情報を詳細に解析することで、標品とのゲノムレベルでの一致度、保存性などを評価することができる。微生物製剤等の品質保証などに利用が想定される。
(Example 6: Evaluation of preservation of specific species)
When the purpose is to prove or reject a specific organism in a drug, pesticide, food, etc., the disclosed technology is used to amplify the specific organism from a gel capsule containing an amplified polynucleotide. By detecting and selecting, the content rate can be shown. In addition, by analyzing the obtained genetic information in detail, it is possible to evaluate the degree of coincidence with the standard at the genome level, preservation, and the like. It is expected to be used for quality assurance of microbial preparations.
 具体的な手順としては、標的遺伝子を対象とした(1)BLAST、hmmerを用いた単一生物由来遺伝子配列の相同性検索、もしくは(2)BWA、bowtie2を用いた単一生物由来シーケンスデータのマッピングによって、単一生物由来遺伝子配列と標的遺伝子配列の差異を検出し、遺伝子変異を特定する。 Specific procedures include (1) homology search of single organism-derived gene sequences using BLAST and hmmer for target genes, or (2) single organism-derived sequence data using BWA and bowtie2. By mapping, the difference between the gene sequence derived from a single organism and the target gene sequence is detected, and the gene mutation is identified.
 (実施例7:特定生物種の検出)
 解析試料が、糞便、唾液、喀痰や皮膚、口腔、鼻腔、耳、生殖器などの拭い液、手術洗浄液、あるいは組織抽出物や血液などであり、特定の1種以上の微生物の存在を検知し、薬剤奏効性、薬剤耐性を判定することや食品の代謝能力を評価することがある。本開示技術を用いることで特定生物を増幅ポリヌクレオチドを含むゲルカプセルから検出・選抜することで、その含有率を示すことができる。また得られた遺伝情報を詳細に解析することで、ゲノムレベルでの機能推定と保存性などを評価することができる。
(Example 7: Detection of specific species)
Analysis samples are feces, saliva, sputum and skin, oral cavity, nasal cavity, ears, genital lavage fluid, surgical lavage fluid, tissue extract, blood, etc., and detect the presence of one or more specific microorganisms. It may determine drug response, drug resistance, and evaluate the metabolic capacity of foods. By using the disclosed technology, a specific organism can be detected and selected from a gel capsule containing an amplified polynucleotide to indicate its content. In addition, by analyzing the obtained genetic information in detail, it is possible to evaluate the functional estimation and conservativeness at the genome level.
 例えば、マウス腸内微生物の単一細胞由来配列データを得た場合、食物繊維イヌリンを代謝する遺伝子あるいは微生物Bacteroides種を特定する遺伝子マーカーを元に、単一生物由来遺伝子配列の相同性検索を行うことで、当該食品イヌリンの分解を担う微生物および遺伝子群を特定し、既知遺伝子の相同性、アミノ酸配列に基づく立体構造予測からその機能を推定することができた。また、複数の腸内微生物の単一細胞由来配列データ中での当該微生物種の占める比率(含有率)までを評価することができた。 For example, when single cell-derived sequence data of a mouse intestinal microorganism is obtained, a homology search for a single organism-derived gene sequence is performed based on a gene that metabolizes dietary fiber inulin or a gene marker that identifies the microbial Bacteroides species. As a result, the microorganisms and gene groups responsible for the degradation of the dietary inulin could be identified, and their functions could be estimated from the homology of known genes and the prediction of the three-dimensional structure based on the amino acid sequence. In addition, it was possible to evaluate up to the ratio (content rate) of the microorganism species in the single cell-derived sequence data of a plurality of intestinal microorganisms.
 (実施例8:土壌細菌の評価)
 土壌や海水を解析試料の対象とした場合には、本開示の技術を用いて土壌や海水に生息する種々の特定生物を、増幅ポリヌクレオチドを含むゲルカプセルから検出・選抜することで、その生息区域の特定や生息量を示すことができる。また得られた遺伝情報を詳細に解析することで、当該土壌や海水に適した栽培品種や畜産または養殖品種などをゲノムレベルで評価することができる。さらに土壌細菌または海洋細菌を用いた無農薬製法などにも利用が想定される。
(Example 8: Evaluation of soil bacteria)
When soil or seawater is used as an analysis sample, various specific organisms inhabiting soil or seawater are detected and selected from gel capsules containing amplified polynucleotide using the technology disclosed in the present disclosure. It is possible to identify the area and indicate the abundance. Further, by analyzing the obtained genetic information in detail, it is possible to evaluate cultivars, livestock or aquaculture varieties suitable for the soil or seawater at the genome level. Furthermore, it is expected to be used for pesticide-free manufacturing methods using soil bacteria or marine bacteria.
 具体的には、10gの土壌を容量50mLのチューブ(2342-050, Iwaki)に採取し(n=3)、リン酸緩衝生理食塩水(DPBS)(Dulbecco’sPhosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific)を全量が40mLとなるまで加えて十分に懸濁した。懸濁後のチューブを氷上にて5分間静置した後、上清を新しい容量50mLのチューブに移した。上清を5μm径のフィルター(SMWP04700,Sigma-Aldrich)を用いて濾過した後、10,000×gで5分間遠心分離し(75004263, Thermo Fisher Scientific)、上清を除去した。ペレットを10mLのPBS中に再度懸濁し、1.5mLのチューブ(MCT-150-C,Axygen)に1mLずつ分注した後、10,000×gで5分間遠心分離することで土壌細菌を集菌した。菌体のペレットを1本の1.5mLのチューブにまとめ、PBSを用いて2回遠心分離により洗浄した後、PBS中に懸濁することで土壌細菌の細胞懸濁液を取得した。調製した細胞懸濁液中の細胞濃度を測定し(顕微鏡:CKX41,OLYMPUS、バクテリア計算盤A161,2-5679-01, アズワン)、終濃度1.5%になるように超低融点アガロース(A5030-10G,Sigma-Aldrich)を加えることで、ゲルカプセル作製に用いる土壌細菌懸濁液を調製した(細胞終濃度:1.5×10cells/μL)。続いて、実施例1または2に記載した手法と同様の手順で解析を進めて評価した。 Specifically, 10 g of soil was collected in a 50 mL volume tube (2342-050, Iwaki) (n = 3) and phosphate buffered saline (DPBS) (Dulbecco's Phosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific) was added until the total volume was 40 mL and suspended sufficiently. After allowing the suspended tube to stand on ice for 5 minutes, the supernatant was transferred to a new 50 mL tube. The supernatant was filtered using a filter having a diameter of 5 μm (SMWP04700, Sigma-Aldrich) and then centrifuged at 10,000 × g for 5 minutes (75004263, Thermo Fisher Scientific) to remove the supernatant. The pellets are resuspended in 10 mL PBS, dispensed in 1 mL each in a 1.5 mL tube (MCT-150-C, Axygen), and then centrifuged at 10,000 xg for 5 minutes to collect soil bacteria. Bacteria. Bacterial pellets were combined into a single 1.5 mL tube, washed twice by centrifugation with PBS, and then suspended in PBS to obtain a cell suspension of soil bacteria. The cell concentration in the prepared cell suspension was measured (microscope: CKX41, OLYMPUS, bacterial calculator A161,2-5679-01, AS ONE), and ultra-low melting point agarose (A5030) was adjusted to a final concentration of 1.5%. -10G, Sigma-Aldrich) was added to prepare a soil bacterial suspension used for gel capsule preparation (cell final concentration: 1.5 × 10 3 cells / μL). Subsequently, the analysis was advanced and evaluated in the same procedure as the method described in Example 1 or 2.
 (実施例9:水圏微生物組成の解析)
 実験は、4Lの海水または淡水を滅菌済のポリタンクに回収し、5μm径のフィルター(SMWP04700, Sigma-Aldrich)を用いて濾過したのち、0.22μm径のフィルター(GSWP04700,Sigma-Aldrich)で濾過することによって細菌画分をフィルター上にトラップした。0.22μm径のフィルターを、10mLのリン酸緩衝生理食塩水(DPBS)(Dulbecco’sPhosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific)を含んだ容量25mLのチューブ(2362-025,Iwaki)内に入れ、十分に懸濁した。10mLの細菌懸濁液を1.5mLのチューブ(MCT-150-C, Axygen)に1mLずつ分注した後、10,000×gで5分間遠心分離することで海水または淡水由来の細菌を集菌した。菌体のペレットを1本の1.5mLのチューブにまとめ、PBSを用いて2回遠心分離により洗浄した後、PBS中に懸濁することで海水または淡水由来の細菌の細胞懸濁液を取得した。調製した細胞懸濁液中の細胞濃度を測定し(顕微鏡:CKX41,OLYMPUS、バクテリア計算盤A161,2-5679-01, アズワン)、終濃度1.5%になるように超低融点アガロース(A5030-10G,Sigma-Aldrich)を加えることで、ゲルカプセル作製に用いる海水または淡水由来細菌懸濁液を調製した(細胞終濃度:1.5×10cells/μL)。続いて、実施例1または2に記載した手法と同様の手順で解析を進めて評価した。
(Example 9: Analysis of aquatic microbial composition)
In the experiment, 4 L of seawater or fresh water was collected in a sterilized plastic tank, filtered using a 5 μm diameter filter (SMWP04700, Sigma-Aldrich), and then filtered through a 0.22 μm diameter filter (GSWP04700, Sigma-Aldrich). By doing so, the bacterial fraction was trapped on the filter. A 0.22 μm diameter filter in a 25 mL tube (2362-025, Iwaki) containing 10 mL Phosphate Buffered Saline (DPBS) (Dulbecco's Phosphate-Buffered Saline, 14190-144, Thermo Fisher Scientific). And suspended well. Bacteria derived from seawater or freshwater are collected by dispensing 1 mL of a 10 mL bacterial suspension into a 1.5 mL tube (MCT-150-C, Axygen) and centrifuging at 10,000 xg for 5 minutes. Bacteria. Bacterial cell suspensions derived from seawater or freshwater are obtained by collecting the bacterial cell pellets in a single 1.5 mL tube, washing them by centrifugation twice with PBS, and then suspending them in PBS. did. The cell concentration in the prepared cell suspension was measured (microscope: CKX41, OLYMPUS, bacterial calculator A161,2-5679-01, AS ONE), and ultra-low melting point agarose (A5030) was adjusted to a final concentration of 1.5%. -10G, Sigma-Aldrich) was added to prepare seawater or freshwater-derived bacterial suspensions used for gel capsule preparation (cell final concentration: 1.5 × 10 3 cells / μL). Subsequently, the analysis was advanced and evaluated in the same procedure as the method described in Example 1 or 2.
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、この実施形態に限定して解釈されるべきものではない。本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本開示の具体的な好ましい実施形態の記載から、本開示の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は、日本国特許庁に2019年4月26日に出願された特許出願2019-85836に対して優先権主張をするものであり、同出願の内容自体は具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
(Note)
As described above, the present disclosure has been illustrated using the preferred embodiments of the present disclosure, but the present disclosure should not be construed as being limited to this embodiment. It is understood that the present disclosure should be construed only by the claims. It will be understood from those skilled in the art that the description of the specific preferred embodiments of the present disclosure will enable equivalent scope to be implemented based on the description of the present disclosure and common general technical knowledge. The patents, patent applications and documents cited herein are to be incorporated by reference in their content as they are specifically described herein. Understood. The present application claims priority to the patent application 2019-85836 filed with the Japan Patent Office on April 26, 2019, and the content of the application itself is specifically described in the present specification. It is understood that the content should be incorporated as a reference to this specification as well as.
 本開示は、生物学的研究、医療、環境、ヘルスケアなどの分野において利用可能である。 This disclosure is available in fields such as biological research, medicine, environment, and healthcare.
配列番号1:フォワードプライマー
配列番号2:リバースプライマー
SEQ ID NO: 1: Forward primer SEQ ID NO: 2: Reverse primer

Claims (27)

  1.  微生物叢組成を分析する方法であって、
     該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、微生物叢組成を評価する工程を含む、方法。
    A method of analyzing microbiota composition
    A method comprising the step of evaluating microbiota composition from a sample containing an amplified nucleic acid derived from each cell in the microbiota.
  2.  前記1つずつの細胞由来の増幅核酸が、
     微生物叢を含む試料を用い、細胞を1細胞ずつ液滴中に封入する工程と、
     該液滴をゲル化してゲルカプセルを生成する工程と、
     該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する工程であって、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持される、工程と、
     該ポリヌクレオチドを増幅用試薬に接触させて該ポリヌクレオチドをゲルカプセル内で増幅する工程と
    を含む、方法によって生成されている、請求項1に記載の方法。
    Amplified nucleic acid derived from each of the above cells
    A step of encapsulating cells one by one in a droplet using a sample containing a microflora,
    The process of gelling the droplets to form gel capsules,
    A step of immersing the gel capsule in one or more solubilizing reagents to lyse the cell, wherein the genomic DNA of the cell or a polynucleotide containing a portion thereof is eluted into the gel capsule and the genomic DNA or its portion. The process of holding in the gel capsule with the substance bound to the moiety removed,
    The method of claim 1, wherein the method is produced by a method comprising contacting the polynucleotide with an amplification reagent and amplifying the polynucleotide in a gel capsule.
  3.  前記細胞の懸濁液をマイクロ流路中に流動させ、オイルで前記懸濁液をせん断することにより前記細胞を封入した前記液滴が作製されることを特徴とする、請求項2に記載の方法。 The second aspect of the present invention, wherein the droplets containing the cells are produced by flowing the suspension of the cells into a microchannel and shearing the suspension with oil. Method.
  4.  前記ゲルカプセルがアガロース、アクリルアミド、PEG、ゼラチン、アルギン酸ナトリウム、マトリゲル、コラーゲン又は光硬化性樹脂から形成されることを特徴とする、請求項2~3のいずれか1項に記載の方法。 The method according to any one of claims 2 to 3, wherein the gel capsule is formed from agarose, acrylamide, PEG, gelatin, sodium alginate, matrigel, collagen or a photocurable resin.
  5.  前記溶解用試薬がリゾチーム、ラビアーゼ、ヤタラーゼ、アクロモペプチダーゼ、プロテアーゼ、ヌクレアーゼ、ザイモリアーゼ、キチナーゼ、リソスタフィン、ムタノライシン、ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、水酸化カリウム、水酸化ナトリウム、フェノール、クロロホルム、グアニジン塩酸塩、尿素、2-メルカプトエタノール、ジチオトレイトール、TCEP-HCl、コール酸ナトリウム、デオキシコール酸ナトリウム、Triton X-100、Triton X-114、NP-40、Brij-35、Brij-58、Tween 20、Tween 80、オ
    クチルグルコシド、オクチルチオグルコシド、CHAPS、CHAPSO、ドデシル-β-D-マルトシ
    ド、Nonidet P-40、およびZwittergent 3-12からなる群から少なくとも1種選択されることを特徴とする、請求項2~4のいずれか1項に記載の方法。
    The solubilizing reagents are lysoteam, labiase, yatarase, achromopeptidase, protease, nuclease, zymolyase, chitinase, lysostaphin, mutanolaicin, sodium dodecyl sulfate, sodium lauryl sulfate, potassium hydroxide, sodium hydroxide, phenol, chloroform, guanidine hydrochloride. , Urea, 2-mercaptoethanol, dithioreagent, TCEP-HCl, sodium cholate, sodium deoxycholate, Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, Claimed, wherein at least one is selected from the group consisting of Tween 80, octyl glucoside, octyl thioglucoside, CHAPS, CHAPSO, dodecyl-β-D-maltoside, Nonidet P-40, and Zwittergent 3-12. The method according to any one of 2 to 4.
  6.  前記ゲルカプセルがヒドロゲルカプセルであることを特徴とする、請求項2~5のいずれか1項に記載の方法。 The method according to any one of claims 2 to 5, wherein the gel capsule is a hydrogel capsule.
  7.  前記1つずつの細胞由来の増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択する工程をさらに含む、請求項1~6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, further comprising a step of selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each cell.
  8.  前記1つずつの細胞由来の増幅核酸を含む試料において、特定の配列を有する核酸を検出する工程を含む、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, which comprises a step of detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells.
  9.  前記特定の配列を有する核酸を検出する工程が、特定の配列を有する核酸を増幅および配列解読することを含む、請求項8に記載の方法。 The method of claim 8, wherein the step of detecting the nucleic acid having the specific sequence comprises amplifying and sequencing the nucleic acid having the specific sequence.
  10.  前記微生物叢組成を評価する工程が、微生物叢中の各種微生物の絶対数を特定することを含む、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the step of evaluating the microbiota composition comprises specifying the absolute number of various microorganisms in the microbiota.
  11.  前記微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、該1つずつの細胞のゲノム配列データを得る工程をさらに含む、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, further comprising a step of obtaining genomic sequence data of each cell from a sample containing amplified nucleic acid derived from each cell in the microbiota. ..
  12.  前記1つずつの細胞のゲノム配列データから、分析するゲノム配列データを選択する工程をさらに含む、請求項11に記載の方法。 The method according to claim 11, further comprising a step of selecting genome sequence data to be analyzed from the genome sequence data of each cell.
  13.  前記微生物叢組成を評価する工程が、各微生物におけるDe novoアセンブリデータより抽出した遺伝子配列を比較することを含む、請求項1~12のいずれか1項に記載の方法。 The method according to any one of claims 1 to 12, wherein the step of evaluating the microbiota composition comprises comparing gene sequences extracted from De novo assembly data in each microorganism.
  14.  前記微生物叢が、細菌叢である、請求項1~13のいずれか1項に記載の方法。 The method according to any one of claims 1 to 13, wherein the microbiota is a bacterial flora.
  15.  前記微生物叢が、腸内細菌叢である、請求項14に記載の方法。 The method according to claim 14, wherein the microbiota is an intestinal flora.
  16.  請求項1~15の方法において用いるためのキットであって、保存液を含む検体採取容器を備える、キット。 A kit for use in the methods of claims 1 to 15, which includes a sample collection container containing a storage solution.
  17.  前記保存液が、グアニジンまたはエタノールを含む、請求項16に記載のキット。 The kit according to claim 16, wherein the preservation solution contains guanidine or ethanol.
  18.  微生物叢組成を分析するためのシステムであって、
     該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料を提供する試料提供部と、
     該微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、微生物叢組成を評価する組成評価部と
    を含む、システム。
    A system for analyzing microbiota composition
    A sample providing unit that provides a sample containing an amplified nucleic acid derived from each cell in the microflora, and a sample providing unit.
    A system comprising a composition evaluation unit for evaluating the microbiota composition from a sample containing each cell-derived amplified nucleic acid in the microbiota.
  19.  前記試料提供部は、
     微生物叢を含む試料を用い、細胞を1細胞ずつ液滴中に封入する液滴封入部と、
     該液滴をゲル化してゲルカプセルを生成するゲルカプセル生成部と、
     細胞を溶解するための1種以上の溶解用試薬が格納された、該ゲルカプセルを1種以上の溶解用試薬に浸漬して前記細胞を溶解する細胞溶解部であって、該細胞溶解部は、該細胞のゲノムDNAまたはその部分を含むポリヌクレオチドが該ゲルカプセル内に溶出し該ゲノムDNAまたはその部分に結合する物質が除去された状態で前記ゲルカプセル内に保持されるように構成されている、細胞溶解部と、
     該ポリヌクレオチドをゲルカプセル内で増幅するための該ポリヌクレオチド増幅用試薬と
    を含む、請求項18に記載のシステム。
    The sample providing unit
    A droplet encapsulation part that encloses cells one by one in a droplet using a sample containing a microflora,
    A gel capsule generation unit that gels the droplet to generate a gel capsule,
    A cell lysate that lyses the cells by immersing the gel capsule in one or more lysis reagents, which contains one or more lysis reagents for lysing cells. , The polynucleotide containing the genomic DNA of the cell or a portion thereof is eluted in the gel capsule and retained in the gel capsule with the substance binding to the genomic DNA or the portion removed. There is a cell lysate and
    The system of claim 18, comprising a reagent for amplifying the polynucleotide for amplifying the polynucleotide in a gel capsule.
  20.  さらに、保存液を含む検体採取容器を含む、請求項18または19に記載のシステム。 The system according to claim 18 or 19, further comprising a sample collection container containing a storage solution.
  21.  前記1つずつの細胞由来の増幅核酸を含む試料から、分析する増幅核酸を含む試料を選択するための試料選択部をさらに含む、請求項18~20のいずれか一項に記載のシステム。 The system according to any one of claims 18 to 20, further comprising a sample selection unit for selecting a sample containing the amplified nucleic acid to be analyzed from the sample containing the amplified nucleic acid derived from each of the cells.
  22.  前記組成評価部は、前記1つずつの細胞由来の増幅核酸を含む試料において特定の配列を有する核酸を検出するための検出試薬または検出装置を含む、請求項18~21のいずれか一項に記載のシステム。 The composition evaluation unit comprises any one of claims 18 to 21, which includes a detection reagent or a detection device for detecting a nucleic acid having a specific sequence in a sample containing the amplified nucleic acid derived from each of the cells. Described system.
  23.  前記検出試薬または検出装置が、核酸を増幅および配列解読するための核酸増幅配列決定装置を含む、請求項22に記載のシステム。 22. The system of claim 22, wherein the detection reagent or device comprises a nucleic acid amplification sequencing device for amplifying and sequencing nucleic acids.
  24.  前記組成評価部は、微生物叢中の各種微生物の絶対数を特定する手順を実行する計算部を含む、請求項18~23のいずれか一項に記載のシステム。 The system according to any one of claims 18 to 23, wherein the composition evaluation unit includes a calculation unit that executes a procedure for specifying the absolute number of various microorganisms in the microbiota.
  25.  前記組成評価部は、前記微生物叢中の1つずつの細胞由来の増幅核酸を含む試料から、該1つずつの細胞のゲノム配列データをゲノム配列データ取得部をさらに含む、請求項18~24のいずれか一項に記載のシステム。 The composition evaluation unit further includes a genome sequence data acquisition unit for collecting genome sequence data of each cell from a sample containing an amplified nucleic acid derived from each cell in the microbiota, claims 18 to 24. The system according to any one of the above.
  26.  前記組成評価部は、前記1つずつの細胞のゲノム配列データから、分析するゲノム配列データを選択するデータ選択部をさらに含む、請求項25に記載のシステム。 The system according to claim 25, wherein the composition evaluation unit further includes a data selection unit that selects genome sequence data to be analyzed from the genome sequence data of each cell.
  27.  前記組成評価部は、各微生物におけるDe novoアセンブリデータより抽出した遺伝子配列を含むまたは導入し、比較する機能を有する、請求項18~26のいずれか一項に記載のシステム。 The system according to any one of claims 18 to 26, wherein the composition evaluation unit has a function of including or introducing a gene sequence extracted from De novo assembly data in each microorganism and comparing them.
PCT/JP2020/017792 2019-04-26 2020-04-24 Digital analysis of microbial flora WO2020218553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516285A JPWO2020218553A1 (en) 2019-04-26 2020-04-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085836 2019-04-26
JP2019085836 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218553A1 true WO2020218553A1 (en) 2020-10-29

Family

ID=72942172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017792 WO2020218553A1 (en) 2019-04-26 2020-04-24 Digital analysis of microbial flora

Country Status (2)

Country Link
JP (1) JPWO2020218553A1 (en)
WO (1) WO2020218553A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068899A1 (en) * 2013-03-14 2016-03-10 The Broad Institute Inc. Methods for quantitating dna using digital multiple displacment amplification
US20180371525A1 (en) * 2017-06-20 2018-12-27 Bio-Rad Laboratories, Inc. Mda using bead oligonucleotide
WO2019216271A1 (en) * 2018-05-07 2019-11-14 bitBiome株式会社 Method for performing single-cell analysis and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068899A1 (en) * 2013-03-14 2016-03-10 The Broad Institute Inc. Methods for quantitating dna using digital multiple displacment amplification
US20180371525A1 (en) * 2017-06-20 2018-12-27 Bio-Rad Laboratories, Inc. Mda using bead oligonucleotide
WO2019216271A1 (en) * 2018-05-07 2019-11-14 bitBiome株式会社 Method for performing single-cell analysis and device therefor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KOGAWA, MASATO ET AL.: "Obtaining high-quality draft genomes from uncultured microbes by cleaning and co-assembly of single- cell amplified genomes", SCIENTIFIC REPORTS, vol. 8, no. 2059, 1 February 2018 (2018-02-01), pages 1 - 11, XP002785526, DOI: 10.1038/s41598-018-20384-3 *
LAN FREEMAN ET AL: "Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. (includes Online Methods)", NATURE BIOTECHNOLOGY, vol. 35, no. 7, 1 July 2017 (2017-07-01), pages 640 - 646+4pp, XP002785526, ISSN: 1546-1696, DOI: 10.1038/nbt.3880 *
MASAHITO HOSOKAWA, YOHEI NISHIKAWA, MASATO KOGAWA, HARUKO TAKEYAMA: "Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics", SCIENTIFIC REPORTS, vol. 7, no. 1, 1 December 2017 (2017-12-01), XP055672497, DOI: 10.1038/s41598-017-05436-4 *
NISHIKAWA, YOHEI ET AL., DROPLET MICROFLUIDICS TOWARD ACCURATE GENOME SEQUENCING OF ENVIRONMENTAL BACTERIA AT THE SINGLE- CELL LEVEL, vol. 98, March 2018 (2018-03-01) *
RIEKA CHIJIIWA, HOSOKAWA MASAHITO, KOGAWA MASATO, NISHIKAWA YOHEI, IDE KEIGO, SAKANASHI CHIKAKO, TAKAHASHI KAI, TAKEYAMA HARUKO: "Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota", MICROBIOME, vol. 8, no. 1, 1 December 2020 (2020-12-01), XP055759172, DOI: 10.1186/s40168-019-0779-2 *
TAMMINEN, MANU V. ET AL.: "Single gene -based distinction of individual microbial genomes from a mixed population of microbial cells", FRONTIERS IN MICROBIOLOGY, vol. 6, no. 195, 11 March 2015 (2015-03-11), pages 1 - 10, XP055672497, DOI: 10.3389/ fmicb.2015.00195 *
YOHEI NISHIKAWA, KOGAWA MASATO, HOSOKAWA MASAHITO, MINETA KATSUHIKO, TAKAHASHI KAI, SAKANASHI CHIKAKO, BEHZAD HAYEDEH, GOJOBORI TA: "Massively parallel single-cell genome sequencing enables high-resolution analysis of soil and marine microbiome", BIORXIV, 6 March 2020 (2020-03-06), XP055759176, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.03.05.962001v1.full.pdf> [retrieved on 20201211], DOI: 10.1101/2020.03.05.962001 *

Also Published As

Publication number Publication date
JPWO2020218553A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US10351900B2 (en) Method for identifying pathogens of bacterial infectious diseases by using bacteria-derived nanovesicles
US11142787B2 (en) Method for performing single-cell analysis and device therefor
JP5763919B2 (en) Methods for analyzing microbial populations
Timms et al. How accurately can we detect Mycobacterium avium subsp. paratuberculosis infection?
CN111440886A (en) Primer group, kit and detection method for rapidly detecting carbapenemase gene
JP5714291B2 (en) Extraction and purification of mycobacterial DNA
US11525164B2 (en) Spatial metagenomic characterization of microbial biogeography
WO2022262491A1 (en) Bacterial 16s rrna gene sequence-based bacterial &#34;species&#34; level detection and analysis method
WO2020218553A1 (en) Digital analysis of microbial flora
RU2684314C2 (en) Method of identification of mycobacteria of tuberculosis of the beijing genotype b0 cluster in real time format
JP3194943B2 (en) Nucleic acid probe and method for detecting Cryptococcus neoformans
WO2020218551A1 (en) Sequence-screening method from single-cell genome library using gel encapsulation technique
WO2020218549A1 (en) Method for screening sample using heredity information pertaining to single organism or other information pertaining to biomolecules
JPWO2018212288A1 (en) Parkinson&#39;s disease determination marker and determination method
WO2020218557A1 (en) Selective detection, counting, and genomic analysis of living bacterium-derived nucleic acid on single-organism basis
PL228161B1 (en) Method for simultaneous detection of bacteria and fungi in a biological preparation by PCR primers and a set for the detection of bacteria and fungi
US11898210B2 (en) Tools for assessing FimH blockers therapeutic efficiency
JP2017189166A (en) Method for diagnosing chronic pyoderma and diagnostic kit for chronic pyoderma
RU2776163C1 (en) Method for identifying the dna of bacterium mycobacterium tuberculosis using isothermal loop-mediated amplification
RU2393211C2 (en) Anaplasma speciosus omsk strain of new genotype used for identifying anaplasma and making diagnostic preparations
WO2024010465A1 (en) Methods for quantifying microorganisms and cells and uses thereof
Gifvars Optimization of a sampling and analysis process to study the effects of skin care products on the microbial skin flora.
MATEI et al. Intestinal Microbiota, the Advantages and Disadvantages of Different Methods Established for Assessing the Resident Bacterial Populations.
US20230167510A1 (en) Universal primers for detection of bacteria, fungi and eukaryotic microorganisms
JP2015077098A (en) Gene detection method of johne&#39;s disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795810

Country of ref document: EP

Kind code of ref document: A1