WO2020217541A1 - Light source unit - Google Patents

Light source unit Download PDF

Info

Publication number
WO2020217541A1
WO2020217541A1 PCT/JP2019/018163 JP2019018163W WO2020217541A1 WO 2020217541 A1 WO2020217541 A1 WO 2020217541A1 JP 2019018163 W JP2019018163 W JP 2019018163W WO 2020217541 A1 WO2020217541 A1 WO 2020217541A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
unit
detection unit
emitted
Prior art date
Application number
PCT/JP2019/018163
Other languages
French (fr)
Japanese (ja)
Inventor
達 齋藤
悠介 吉田
寛之 高田
清水 正己
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2019/018163 priority Critical patent/WO2020217541A1/en
Publication of WO2020217541A1 publication Critical patent/WO2020217541A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres

Definitions

  • the present invention relates to a light source unit.
  • an endoscope system has been used for observing the inside of a subject.
  • An endoscope generally inserts a flexible insertion portion having an elongated shape into a subject such as a patient, and illuminates the inside of the subject with illumination light supplied by a light source device from the tip of the insertion portion (for example,). , Patent Document 1).
  • the illumination light is supplied from the light source device to the tip of the insertion portion via the light guide.
  • an internal image is captured by receiving the reflected light of the illumination light at the imaging unit at the tip of the insertion unit.
  • the internal image captured by the imaging unit of the endoscope is displayed on the display of the endoscope system after being subjected to predetermined image processing in the processing device of the endoscope system.
  • a user such as a doctor observes the organ of the subject based on the internal image displayed on the display.
  • FIG. 10 is a partial cross-sectional view showing a schematic configuration of a conventional light source device.
  • the light source device includes a plurality of light sources (first light source 501G, second light source 501B, third light source 501R) that emit light in different wavelength bands, and a first dichroic that bends a part of the light emitted by the first light source 501G.
  • the mirror 502, the second dichroic mirror 503 that bends a part of the light emitted by the second light source 501B, and a part of the light emitted by the first light source 501G are taken in to detect the intensity of the light emitted by the first light source 501G.
  • the first detection unit 504G and the second detection unit 504B that captures a part of the light emitted by the second light source 501B and detects the intensity of the light emitted by the second light source 501B, and the light emitted by the third light source 501R.
  • the first light source 501G emits light of, for example, 450 nm to 600 nm.
  • the second light source 501B emits light of, for example, 430 nm to 520 nm.
  • the third light source 501R emits light of, for example, 580 nm to 670 nm.
  • the first dichroic mirror 502 reflects light of, for example, 600 nm or less, and transmits light having a wavelength larger than 600 nm.
  • the second dichroic mirror 503 reflects light having a wavelength of, for example, 500 nm or less, and transmits light having a wavelength larger than 500 nm.
  • a portion of the light L B of the second light source 501B is emitted is folded on the second dichroic mirror 503. Also, part of the light L G of the first light source 501G is emitted is folded on the first dichroic mirror 502.
  • the light L R of the third light source 501R is emitted passes through the first dichroic mirror 502 and the second dichroic mirror 503,.
  • the light L R that has passed through the first dichroic mirror 502 mixes with the light L G that is bent by the first dichroic mirror 502.
  • Light L GR was mixed and the light L R and the light L G passes through the second dichroic mirror 503, mixes with the light L B.
  • a light L GR was mixed and the light L R and the light L G, light mix of the light L B is the white light L W becomes incident on the light guide.
  • the second dichroic mirror 503 transmits a part of the light emitted by the second light source 501B.
  • the second dichroic mirror 503 among the light emitted by the second light source 501B, light larger than 500 nm and 520 nm or less is transmitted.
  • the light transmitted through the second dichroic mirror 503 reaches the inner wall of the housing 505 and is reflected by the wall surface.
  • the light reflected by the wall surface passes through the second dichroic mirror 503 again and is incident on the second light source 501B.
  • a part of the light emitted by the third light source 501R specifically, the light of 580 nm or more and 600 nm or less is reflected by the first dichroic mirror 502, passes through the wall surface of the housing 505, and is incident on the first dichroic mirror 502 again. To do.
  • the light incident on the first dichroic mirror 502 is reflected by the first dichroic mirror 502 and is incident on the third light source 501R.
  • reflection occurs on the surface of the light source.
  • the amount of the reflected light is also detected, which may reduce the accuracy of the detection result.
  • the first dichroic mirror 502 is a part of the light first light source 501G is emitted, transmitted part of the light of a wavelength within the reflection band of interest (light L G ').
  • Light L G ' is transmitted through the first dichroic mirror 502 and reaches the wall surface of the housing 505.
  • Light L RG light L G ' is reflected by the wall surface is incident on the first dichroic mirror 502 again. At this time, the light L RG is reflected by the first dichroic mirror 502 or passes through the first dichroic mirror 502.
  • a part of the light L RG reflected on the first dichroic mirror 502 is incident on the third light source 501R.
  • the other part of the light L RG transmitted through the first dichroic mirror 502 is incident on the first light source 501G.
  • the second dichroic mirror 503, a portion of the light second light source 501B is emitted, transmitted part of the light of a wavelength within the reflection band of interest (light L B ').
  • Light L B ' is transmitted through the second dichroic mirror 503, and reaches the wall surface of the housing 505, it is reflected by the wall surface.
  • a part of the light L R B whose light L B'is reflected on the wall surface passes through the second dichroic mirror 503 again and is incident on the second light source 501 B.
  • the light L RB is incident on the first light source 501G. Due to the reflection or transmission of light, for example, the light of the first light source 501G or the light of the second light source 501B is incident on the first light source 501G.
  • the second dichroic mirror 503 reflects the 450nm or 500nm or less of light among the light L GR (light L GR ').
  • the light (light L GR ') reflected by the second dichroic mirror 503 is further reflected by the wall surface of the housing 505, a part of the reflected light L R-GR is transmitted through the second dichroic mirror 503. Then, it may be incident on the second light source 501B. Therefore, in addition to the light of the second light source 501B, the light of the first light source 501G and the light of the third light source 501R may be incident on the second light source 501B. Even when light in a wavelength band different from the light emitted by the light source is incident, the accuracy of the detection result is lowered.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a light source unit capable of detecting the intensity of light emitted by a light source with high accuracy.
  • the light source unit travels in the same direction as the first light source that emits the first light and the first light, and the first light is emitted.
  • a first optical member that reflects a part of the first light emitted from the first light source, and the first light source.
  • a second light path through which the emitted light is passed and a part of the second light emitted from the second light source is connected to a first optical path in which the first light reflected by the first optical member travels.
  • the second optical member that reflects in the direction of traveling in the optical path is different from the part of the first light emitted from the first light source that is reflected by the first optical member.
  • a first detection unit that detects a part and a part of the second light emitted from the second light source that is different from the part reflected by the second optical member are detected.
  • the body includes a reflection control unit provided on an inner wall that intersects a straight line extending an optical path connecting the first light source and the first optical member to control the reflection of the first light.
  • the light source unit according to the present invention is characterized in that, in the above invention, the reflection control unit controls the reflection of the second light.
  • the light source unit according to the present invention is characterized in that, in the above invention, the reflection control unit absorbs light.
  • the light source unit according to the present invention is characterized in that, in the above invention, the reflection suppression unit reflects the first light in an optical path different from the optical path toward the first detection unit.
  • the light source unit according to the present invention is characterized in that, in the above invention, the reflection control unit diffusely reflects light.
  • the light source unit according to the present invention is characterized in that, in the above invention, the first detection unit is arranged at a position different from that on the optical path connecting the first light source to the first optical member.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view showing a configuration of a light source unit of a light source device included in the endoscope system according to the first embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view showing the configuration of the light source unit corresponding to the cross section taken along the line AA of FIG.
  • FIG. 5 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the second embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention
  • FIG. 6 is a partial cross-sectional view showing the configuration of the light source portion of the light source device included in the endoscope system according to the modified example of the second embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the third embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a main part of a light source portion of a light source device included in the endoscope system according to the fourth embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of a main part of a light source portion of a light source device included in an endoscope system according to a modified example of the fourth embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view showing a schematic configuration of a conventional light source device.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the endoscope system according to the first embodiment.
  • the endoscope system 1 shown in FIGS. 1 and 2 includes an endoscope 2 that captures an image in a subject by inserting a tip into the subject, and illumination light emitted from the tip of the endoscope 2.
  • a processing device 3 and a processing device 3 that have an illumination unit 3a for generating light, perform predetermined signal processing on the imaging signal captured by the endoscope 2, and collectively control the operation of the entire endoscope system 1. It is provided with a display device 4 for displaying an in-vivo image generated by the signal processing of.
  • the endoscope 2 has a flexible and elongated insertion portion 21, an operation portion 22 connected to the base end side of the insertion portion 21 and receiving input of various operation signals, and an insertion portion from the operation unit 22.
  • a universal cord 23 that extends in a direction different from the extending direction of 21 and incorporates various cables that connect to the processing device 3 (including the illumination unit 3a) is provided.
  • the insertion portion 21 is a bendable portion composed of a tip portion 24 having a built-in image pickup element 244 in which pixels that generate a signal by receiving light and performing photoelectric conversion are arranged in a two-dimensional manner, and a plurality of bending pieces. It has a curved portion 25 and a long flexible tube portion 26 connected to the proximal end side of the curved portion 25 and having flexibility.
  • the insertion unit 21 is inserted into the body cavity of the subject and images a subject such as a biological tissue at a position where outside light does not reach by the image sensor 244.
  • the tip portion 24 includes a light guide 241 configured by using a glass fiber or the like and forming a light guide path for light emitted by the illumination portion 3a, an illumination lens 242 provided at the tip of the light guide 241, and optics for condensing light. It has a system 243 and an image pickup element 244 (imaging unit) provided at an imaging position of the optical system 243 and receiving light collected by the optical system 243 and photoelectrically converting it into an electric signal to perform predetermined signal processing. ..
  • the optical system 243 is configured by using one or more lenses, and has an optical zoom function for changing the angle of view and a focus function for changing the focus.
  • the image sensor 244 photoelectrically converts the light from the optical system 243 to generate an electric signal (image signal). Specifically, in the image sensor 244, a plurality of pixels each having a photodiode that stores an electric charge according to the amount of light, a capacitor that converts the electric charge transferred from the photodiode into a voltage level, and the like are arranged in a matrix.
  • the light receiving unit 244a in which each pixel photoelectrically converts the light from the optical system 243 to generate an electric signal, and the electric signal generated by the pixel arbitrarily set as the reading target among the plurality of pixels of the light receiving unit 244a are sequentially read out. It also has a readout unit 244b that outputs as an image signal.
  • the image sensor 244 is realized by using, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the endoscope 2 may include an execution program and a control program for the image sensor 244 to execute various operations, and a memory (not shown) for storing data including identification information of the endoscope 2. ..
  • the identification information includes the unique information (ID) of the endoscope 2, the model year, the spec information, the transmission method, and the like.
  • the operation unit 22 includes a bending knob 221 that bends the curved part 25 in the vertical and horizontal directions, and a treatment tool insertion part 222 that inserts a treatment tool such as a biopsy forceps, an electric knife, and an examination probe into the body cavity of the subject.
  • a treatment tool such as a biopsy forceps, an electric knife, and an examination probe into the body cavity of the subject.
  • the treatment tool inserted from the treatment tool insertion portion 222 is exposed from the opening (not shown) via the treatment tool channel (not shown) of the tip portion 24.
  • the universal cord 23 has at least a built-in light guide 241 and a collective cable 245 that bundles a plurality of signal lines.
  • the collecting cable 245 includes information including a signal line for transmitting an image pickup signal, a signal line for transmitting a drive signal for driving the image pickup element 244, and unique information about the endoscope 2 (image pickup element 244). Includes signal lines for transmitting and receiving.
  • the electric signal is transmitted using the signal line, but the optical signal may be transmitted, or the endoscope 2 and the processing device 3 are connected by wireless communication. Signals may be transmitted between them.
  • FIG. 3 is a partial cross-sectional view showing a configuration of a light source unit of a light source device included in the endoscope system according to the first embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view showing the configuration of the light source unit corresponding to the cross section taken along the line AA of FIG.
  • the processing device 3 includes an illumination unit 3a and a processor unit 3b.
  • the illumination unit 3a includes a light source unit 300, a light source driver 310, and an illumination control unit 320.
  • the light source unit 300 bends a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a part of the light emitted by the first light source 301G.
  • the intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G.
  • the reflection control member 306 corresponds to a reflection control unit.
  • the first light source 301G is configured by using, for example, a light source that emits light of 450 nm to 600 nm.
  • the second light source 301B is configured by using, for example, a light source that emits light of 430 nm to 520 nm.
  • the third light source 301R is configured by using, for example, a light source that emits light of 580 nm to 670 nm.
  • the optical axis of the first light source 301G and the optical axis of the second light source 301B are parallel.
  • the optical axis of the first light source 301G and the optical axis of the second light source 301B emit light traveling in the same direction between the light source and the dichroic mirror.
  • optical axis of the first light source 301G and the optical axis of the second light source 301B are orthogonal to the optical axis of the third light source 301R.
  • the "optical axis" as used herein refers to an axis through which the portion of the light emitted from the light source having the highest light intensity passes, or an axis through which the center of gravity of the light irradiation region passes.
  • the first light source 301G, the second light source 301B, and the third light source 301R may have an optical system that passes through a light guide to the dichroic mirror in addition to the light source.
  • the first dichroic mirror 302 reflects a part of the light emitted by the first light source 301G, for example, light of 600 nm or less, and passes light having a wavelength larger than 600 nm.
  • the second dichroic mirror 303 reflects a part of the light emitted by the second light source 301B, for example, light having a wavelength of 500 nm or less, and passes light having a wavelength larger than 500 nm.
  • the first detection unit 304G, the second detection unit 304B, and the third detection unit 304R are respectively configured by using a phototransistor, a photodiode, a device in which a photodiode and an amplifier circuit are combined, and the like.
  • the first detection unit 304G, the second detection unit 304B, and the third detection unit 304R convert the received light into an electric signal and output it as a signal value.
  • the signal value generated by each detection unit is output to the lighting control unit 320.
  • First detector 304G, a second detection unit 304B and the third detector 304R is a position away from the optical path of the light emitted from the light source (e.g., an optical path which the light L G progresses as shown in FIG.
  • the detection unit is arranged between the maximum light distribution angle of the light source and the maximum incident angle of the light of the light source in the optical system. The light detected by each detection unit is a part of the light emitted by the light source and is different from the light incident on the dichroic mirror.
  • the reflection control member 306 is made of, for example, a plate material painted in black.
  • the reflection control member 306 is provided on the inner wall of the housing 305, which faces the wall surface on which the first light source 301G (and the second light source 301B) is arranged. Reflecting the control member 306 linearly Q B shown in the straight line (FIG. 3 by extending the optical path connecting the first light source 301G and the first dichroic mirror 302 linearly or second light sources 301B and the second dichroic mirror 303 and the optical path extending connecting, It is installed on the wall surface that intersects with Q G ).
  • the reflection control member 306 is not limited to a plate material painted in black, and can be applied to any member that does not reflect incident light, for example, a member made of black resin or a member whose surface is plated black.
  • the light source unit 300 a part of the light L B of the second light source 301B is emitted it is folded on the second dichroic mirror 303. Also, part of the light L G of the first light source 301G is emitted is folded on the first dichroic mirror 302. On the other hand, the light L R of the third light source 301R is emitted passes through the first dichroic mirror 302, and a second dichroic mirror 303. The light L R that has passed through the first dichroic mirror 302 is mixed with the light L G that is bent by the first dichroic mirror 302. Light L GR was mixed and the light L R and the light L G passes through the second dichroic mirror 303, mixes with the light L B. A light L GR was mixed and the light L R and the light L G, light mix of the light L B is the white light L W becomes incident on the light guide.
  • the second dichroic mirror 303 transmits a part of the light emitted by the second light source 301R.
  • the first dichroic mirror 302 transmits a part of the light emitted by the first light source 301G.
  • Transmitted light L B ', L G' reaches the reflection control member 306, it is absorbed.
  • the dichroic mirror transmitted light L B ', L G' is never again return to the light source is reflected by the inner wall of the housing 305.
  • the light source driver 310 emits light to the light source by supplying a current to each light source under the control of the illumination control unit 320.
  • the lighting control unit 320 controls the amount of power supplied to each light source and controls the drive timing of each light source based on the control signal (dimming signal) from the control unit 33. Further, the lighting control unit 320 outputs the detection value (signal value) input from the first detection unit 304G, the second detection unit 304B, and the third detection unit 304R to the control unit 33, or uses the detection value. Controls the amount of light emitted by the light source.
  • the processor unit 3b includes an image processing unit 31, an input unit 32, a control unit 33, and a storage unit 34.
  • the image processing unit 31 receives image data of illumination light of each color captured by the image sensor 244 from the endoscope 2. When the image processing unit 31 receives analog image data from the endoscope 2, it performs A / D conversion to generate a digital image pickup signal. When the image processing unit 31 receives the image data as an optical signal from the endoscope 2, it performs photoelectric conversion to generate digital image data.
  • the image processing unit 31 performs predetermined image processing on the image data received from the endoscope 2 to generate an image and outputs the image to the display device 4.
  • the predetermined image processing includes simultaneous processing, gradation correction processing, color correction processing, and the like.
  • R image data based on the image data generated by the image pickup element 244 when the light source unit 300 is irradiated with the R illumination light
  • G based on the image data generated by the image pickup element 244 when the light source unit 300 is irradiated with the G illumination light.
  • This is a process of simultaneously synchronizing the image data and the B image data based on the image data generated by the image pickup element 244 when the light source unit 300 irradiates the B illumination light.
  • the gradation correction process is a process for correcting gradation on image data.
  • the color correction process is a process for performing color tone correction on image data.
  • the image processing unit 31 generates a processed imaging signal (hereinafter, also simply referred to as an imaging signal) including the internal image generated by the above-mentioned image processing.
  • the image processing unit 31 may adjust the gain according to the brightness of the image.
  • the image processing unit 31 is configured by using a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor such as various arithmetic circuits that execute a specific function such as an ASIC (Application Specific Integrated Circuit).
  • the image processing unit 31 may include a frame memory or the like that holds R image data, G image data, and B image data.
  • the input unit 32 is realized by using a keyboard, a mouse, a switch, and a touch panel, and receives inputs of various signals such as an operation instruction signal for instructing the operation of the endoscope system 1.
  • the input unit 32 may include a switch provided in the operation unit 22 and a portable terminal such as an external tablet computer.
  • the control unit 33 performs drive control of each component including the image sensor 244 and the illumination unit 3a, and input / output control of information to each component.
  • the control unit 33 refers to the control information data for image pickup control (for example, read timing) stored in the storage unit 34, and takes an image as a drive signal via a predetermined signal line included in the collective cable 245. It transmits to the element 244.
  • the control unit 33 is configured by using a general-purpose processor such as a CPU or a dedicated processor such as various arithmetic circuits that execute a specific function such as an ASIC.
  • the storage unit 34 stores data including various programs for operating the endoscope system 1 and various parameters necessary for the operation of the endoscope system 1.
  • the storage unit 34 stores the identification information of the processing device 3.
  • the identification information includes unique information (ID) of the processing device 3, year and specification information, and the like.
  • the storage unit 34 stores various programs including an image acquisition processing program for executing the image acquisition processing method of the processing device 3.
  • Various programs can be recorded on a computer-readable recording medium such as a hard disk, flash memory, CD-ROM, DVD-ROM, or flexible disk and widely distributed.
  • the various programs described above can also be acquired by downloading them via a communication network.
  • the communication network referred to here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), etc., and may be wired or wireless.
  • the storage unit 34 having the above configuration is realized by using a ROM (Read Only Memory) in which various programs and the like are pre-installed, and a RAM, a hard disk, and the like that store calculation parameters and data of each process.
  • ROM Read Only Memory
  • the display device 4 displays a display image corresponding to the image signal received from the processing device 3 (image processing unit 31) via the video cable.
  • the display device 4 is configured by using a monitor such as a liquid crystal or an organic EL (Electro Luminescence).
  • the light emitted from the light source, dichroic mirrors and transmitted light (e.g., L B ', L G') is absorbed and reaches the reflection control member 306.
  • the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 It does not enter the detection unit via a light source or the like.
  • the intensity of the light emitted by the light source can be detected with high accuracy.
  • FIG. 5 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the second embodiment of the present invention.
  • the endoscope system according to the second embodiment has the same configuration except that the light source unit 300 of the endoscope system 1 described above is changed to the light source unit 300A.
  • the light source unit 300A having a configuration different from that of the first embodiment will be described.
  • the light source unit 300A has a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a first light source that bends a part of the light emitted by the first light source 301G.
  • the intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G.
  • the first reflection control member 308G and the second reflection control member 308B correspond to the reflection control unit.
  • a reflection control member having a configuration different from that of the first embodiment will be described.
  • the first reflection control member 308G and the second reflection control member 308B include, for example, a mirror that totally reflects light.
  • the first reflection control member 308G and the second reflection control member 308B are provided on the inner wall of the housing 305 on the wall surface side facing the wall surface on which the first light source 301G and the second light source 301B are arranged.
  • the first reflection control member 308G is an optical path of light emitted from the first light source 301G, and is provided on the optical path passing through the first dichroic mirror 302.
  • the second reflection control member 308B is an optical path of light emitted from the second light source 301B, and is provided on the optical path passing through the second dichroic mirror 303. None of the first light source 301G, the second light source 301B, and the third light source 301R are arranged in the optical path after the light reflected by the first reflection control member 308G and the second reflection control member 308B.
  • Light L B ' is transmitted through the second dichroic mirror 303, is reflected by the second reflecting control member 308B (arrow L B'' in Figure 5).
  • the optical path of the light reflected by the second reflection control member 308B is an optical path different from the optical path toward the light source.
  • the light L G ' is transmitted through the first dichroic mirror 302, it is reflected on the first reflecting control member 308G (arrow L G'' in Figure 5).
  • the dichroic mirror transmitted light L B ', L G' is never again return to the light source is reflected by the inner wall of the housing 305.
  • the light emitted from the light source, dichroic light transmitted through the dichroic mirror (e.g., L B ', L G') is, the optical path is reflected on the first reflecting control member 308G and the second reflecting control member 308B Changes.
  • the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 It does not enter the detection unit via a light source or the like.
  • the intensity of the light emitted by the light source can be detected with high accuracy.
  • FIG. 5 is a partial cross-sectional view showing a configuration of a light source unit of a light source device included in an endoscope system according to a modified example of the second embodiment of the present invention.
  • the endoscope system according to this modification has the same configuration except that the light source unit 300 of the endoscope system 1 described above is changed to the light source unit 300B.
  • the light source unit 300B having a configuration different from that of the first embodiment will be described.
  • the light source unit 300B has a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a first light source that bends a part of the light emitted by the first light source 301G.
  • the intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G.
  • the first reflection control unit 308G'and the second reflection control unit 308B' correspond to the reflection control unit.
  • a reflection control member having a configuration different from that of the second embodiment will be described.
  • the first reflection control unit 308G'and the second reflection control unit 308B' are provided integrally with the housing 305, for example, and have a shape protruding with respect to other parts of the inner wall of the housing 305 to emit light. It has an inclined surface that reflects in a predetermined direction.
  • the first reflection control unit 308G'and the second reflection control unit 308B' are provided on the inner wall of the housing 305 on the wall surface side facing the wall surface on which the first light source 301G and the second light source 301B are arranged.
  • the first reflection control unit 308G' is an optical path of light emitted from the first light source 301G, and is provided on the optical path passing through the first dichroic mirror 302.
  • the second reflection control unit 308B' is an optical path of light emitted from the second light source 301B, and is provided on the optical path passing through the second dichroic mirror 303. None of the first light source 301G, the second light source 301B, and the third light source 301R are arranged in the optical path after the light reflected by the first reflection control unit 308G'and the second reflection control unit 308R'.
  • Light L B ' is transmitted through the second dichroic mirror 303, it is reflected by the second reflecting controller 308B' (arrow L B'' in FIG. 6).
  • the optical path of the light reflected by the second reflection control unit 308B' is an optical path different from the optical path toward the light source.
  • the light L G ' is transmitted through the first dichroic mirror 302, (arrow L G'' in FIG. 6) which is reflected on the first reflecting controller 308G'.
  • the dichroic mirror transmitted light L B ', L G' is never again return to the light source is reflected by the inner wall of the housing 305.
  • dichroic light transmitted through the dichroic mirror (e.g., L B ', L G') is, the optical path is reflected on the first reflecting controller 308G' and second reflective controller 308B' Changes.
  • the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 is a light source such as It does not enter the detection unit via.
  • the intensity of the light emitted by the light source can be detected with high accuracy.
  • FIG. 7 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the third embodiment of the present invention.
  • the endoscope system according to the third embodiment has the same configuration except that the light source unit 300 of the endoscope system 1 described above is changed to the light source unit 300C.
  • the light source unit 300C having a configuration different from that of the first embodiment will be described.
  • the light source unit 300C has a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a first light source that bends a part of the light emitted by the first light source 301G.
  • the intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G.
  • a reflection control member having a configuration different from that of the first embodiment will be described.
  • the reflection control unit 309 has, for example, a minute uneven shape formed on the reflection surface.
  • the reflection control unit 309 is formed on the inner wall of the housing 305, which faces the wall surface on which the first light source 301G and the second light source 301B are arranged. In other words, the reflection control unit 309 is provided on the wall surface intersecting the optical axes of the first light source 301G and the second light source 301B.
  • the light emitted from the light source, dichroic mirrors and transmitted light (e.g., L B ', L G') is, the optical path is changed by diffused reflection by the reflection control unit 309.
  • the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 It does not enter the detection unit via a light source or the like.
  • the intensity of the light emitted by the light source can be detected with high accuracy.
  • FIG. 8 is a diagram showing a configuration of a main part of a light source portion of a light source device included in the endoscope system according to the fourth embodiment of the present invention.
  • the configuration of the first light source 301G will be described as an example of the light source.
  • the same configuration can be applied to the second light source 301B and the third light source 301R.
  • the first light source 301G has an LED chip 301a and a holding unit 301b that holds the LED chip 301a.
  • the holding portion 301b has a bottomed recess 301c for accommodating the LED chip 301a.
  • a notch 301d is formed at the open end of the recess.
  • the cutout portion 301d is arranged at an end portion located on the side far from the first detection unit 304G when the light source unit is assembled (see FIG. 8).
  • First detector 304G is receiving a part of the light emitted from the LED chip 301a is emitted (light L G indicated by the broken line arrows in FIG. 8).
  • the light from the LED chip 301a is reflected at the open end (end portion 301e) of the recess 301c, so that the reflected light is transmitted to the first detection unit 304G. In some cases, it was incident (light L N indicated by a dotted arrow).
  • the fourth embodiment by forming the notch 301d and arranging it on the side far from the second detection unit 304G, the light from the LED chip 301a is reflected and the first detection unit 304G. Incident is suppressed.
  • FIG. 9 is a diagram showing a configuration of a main part of a light source portion of a light source device included in an endoscope system according to a modified example of the fourth embodiment of the present invention.
  • the configuration of the first light source 301G will be described as an example of the light source, as in the case of the fourth embodiment described above.
  • the same configuration can be applied to the second light source 301B and the third light source 301R.
  • the first light source 301G has an LED chip 301a and a holding unit 301b that holds the LED chip 301a.
  • the antireflection portion 301f is provided at the end portion (end portion 301e) located on the side far from the first detection unit 304G.
  • the antireflection portion 310f is formed by using a paint that absorbs light, a member that does not reflect incident light, for example, a member made of the black resin described above, or a member whose surface is plated black.
  • the antireflection unit 310f is provided on the inner peripheral surface of the recess 301c on the side opposite to the first detection unit 304G side, and is the light from the LED chip 301a that is directly incident on the first detection unit 304G. absorbing the (light L N 'shown by a dotted line arrow) different light.
  • the antireflection portion 301f in the recess 301c the light from the LED chip 301a is suppressed from being reflected and incident on the first detection unit 304G.
  • the lighting unit 3a is integrated with the processing device 3
  • the lighting unit 3a and the processing device 3 are separate bodies, for example, the processing device 3.
  • a light source unit 300 and a lighting control unit 320 may be provided externally.
  • the reflection control unit may be provided at least in the irradiation region of the light that has passed through the dichroic mirror.
  • the reflection control unit may be configured to control the reflection of the light passing through the.
  • a reflection control unit is provided in the irradiation region of the light passing through the dichroic mirror to be controlled.
  • the endoscope system according to the present invention is an endoscope system 1 using a flexible endoscope 2 whose observation target is a living tissue in a subject or the like.
  • a rigid endoscope an industrial endoscope for observing the characteristics of a material
  • a fiberscope an optical endoscope
  • other optical endoscopes with a camera head connected to the eyepiece are used. It can also be applied to the endoscopic system used.
  • the light source unit according to the present invention is useful for detecting the intensity of the light emitted by the light source with high accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

A light source unit according to the present invention comprises: a first light source that emits first light; a second light source that emits second light traveling in the same direction as the first light; a first optical member that reflects a portion of the first light emitted from the first light source; a second optical member that reflects a portion of the second light emitted from the second light source in a direction in which the portion of the second light travels in a second optical path that is continuous with a first optical path in which the first light reflected by the first optical member travels; a first detection unit that detects a portion of the first light emitted from the first light source, which is different from the portion of the first light reflected by the first optical member; a second detection unit that detects a portion of the second light emitted from the second light source, which is different from the portion of the second light reflected by the second optical member; a housing that accommodates the first light source, the second light source, the first optical member, the second optical member, the first detection unit, and the second detection unit; and a reflection control unit that is provided in an inner wall intersecting a straight line extending from an optical path connecting the first light source and the first optical member and controls the reflection of the first light.

Description

光源ユニットLight source unit
 本発明は、光源ユニットに関する。 The present invention relates to a light source unit.
 従来、医療分野においては、被検体内部の観察のために内視鏡システムが用いられている。内視鏡は、一般に、患者等の被検体内に細長形状をなす可撓性の挿入部を挿入し、この挿入部先端から光源装置によって供給された照明光によって被検体内部を照明する(例えば、特許文献1を参照)。照明光は、光源装置から挿入部先端へ、ライトガイドを経て供給される。内視鏡では、照明光の反射光を挿入部先端の撮像部で受光することによって体内画像を撮像する。内視鏡の撮像部によって撮像された体内画像は、内視鏡システムの処理装置において所定の画像処理を施された後に、内視鏡システムのディスプレイに表示される。医師等のユーザは、ディスプレイに表示される体内画像に基づいて、被検体の臓器を観察する。 Conventionally, in the medical field, an endoscope system has been used for observing the inside of a subject. An endoscope generally inserts a flexible insertion portion having an elongated shape into a subject such as a patient, and illuminates the inside of the subject with illumination light supplied by a light source device from the tip of the insertion portion (for example,). , Patent Document 1). The illumination light is supplied from the light source device to the tip of the insertion portion via the light guide. In an endoscope, an internal image is captured by receiving the reflected light of the illumination light at the imaging unit at the tip of the insertion unit. The internal image captured by the imaging unit of the endoscope is displayed on the display of the endoscope system after being subjected to predetermined image processing in the processing device of the endoscope system. A user such as a doctor observes the organ of the subject based on the internal image displayed on the display.
 図10は、従来の光源装置の概略構成を示す部分断面図である。光源装置は、互いに異なる波長帯域の光を出射する複数の光源(第1光源501G、第2光源501B、第3光源501R)と、第1光源501Gが出射した光の一部を折り曲げる第1ダイクロイックミラー502と、第2光源501Bが出射した光の一部を折り曲げる第2ダイクロイックミラー503と、第1光源501Gが出射する光の一部を取り込んで第1光源501Gが出射した光の強度を検出する第1検出部504Gと、第2光源501Bが出射する光の一部を取り込んで第2光源501Bが出射した光の強度を検出する第2検出部504Bと、第3光源501Rが出射する光の一部を取り込んで第3光源501Rが出射した光の強度を検出する第3検出部504Rと、上述した各構成要素を収容する筐体505とを備える。各構成要素を筐体505内に収容することによって、装置外への光の漏れを防止するとともに、外部からの光の入り込みを防止する。
 第1光源501Gは、例えば450nm~600nmの光を出射する。
 第2光源501Bは、例えば430nm~520nmの光を出射する。
 第3光源501Rは、例えば580nm~670nmの光を出射する。
 第1ダイクロイックミラー502は、例えば600nm以下の光を反射し、600nmより大きい波長の光を透過する。
 第2ダイクロイックミラー503は、例えば500nm以下の光を反射し、500nmより大きい波長の光を透過する。
FIG. 10 is a partial cross-sectional view showing a schematic configuration of a conventional light source device. The light source device includes a plurality of light sources (first light source 501G, second light source 501B, third light source 501R) that emit light in different wavelength bands, and a first dichroic that bends a part of the light emitted by the first light source 501G. The mirror 502, the second dichroic mirror 503 that bends a part of the light emitted by the second light source 501B, and a part of the light emitted by the first light source 501G are taken in to detect the intensity of the light emitted by the first light source 501G. The first detection unit 504G and the second detection unit 504B that captures a part of the light emitted by the second light source 501B and detects the intensity of the light emitted by the second light source 501B, and the light emitted by the third light source 501R. A third detection unit 504R for detecting the intensity of light emitted by the third light source 501R by incorporating a part of the above, and a housing 505 for accommodating each of the above-mentioned components are provided. By accommodating each component in the housing 505, it is possible to prevent light from leaking to the outside of the device and prevent light from entering from the outside.
The first light source 501G emits light of, for example, 450 nm to 600 nm.
The second light source 501B emits light of, for example, 430 nm to 520 nm.
The third light source 501R emits light of, for example, 580 nm to 670 nm.
The first dichroic mirror 502 reflects light of, for example, 600 nm or less, and transmits light having a wavelength larger than 600 nm.
The second dichroic mirror 503 reflects light having a wavelength of, for example, 500 nm or less, and transmits light having a wavelength larger than 500 nm.
 図10に示す光源装置では、第2光源501Bが出射した光LBの一部が第2ダイクロイックミラー503に折り曲げられる。また、第1光源501Gが出射した光LGの一部が第1ダイクロイックミラー502に折り曲げられる。一方、第3光源501Rが出射した光LRは、第1ダイクロイックミラー502、および第2ダイクロイックミラー503を通過する。第1ダイクロイックミラー502を通過した光LRは、第1ダイクロイックミラー502に折り曲げられた光LGと混ざる。光LRと光LGとが混ざった光LGRは、第2ダイクロイックミラー503を通過し、光LBと混ざる。光LRと光LGとが混ざった光LGRと、光LBとが混ざった光は、白色光LWとなり、ライトガイドに入射する。 In the light source device shown in FIG. 10, a portion of the light L B of the second light source 501B is emitted is folded on the second dichroic mirror 503. Also, part of the light L G of the first light source 501G is emitted is folded on the first dichroic mirror 502. On the other hand, the light L R of the third light source 501R is emitted passes through the first dichroic mirror 502 and the second dichroic mirror 503,. The light L R that has passed through the first dichroic mirror 502 mixes with the light L G that is bent by the first dichroic mirror 502. Light L GR was mixed and the light L R and the light L G passes through the second dichroic mirror 503, mixes with the light L B. A light L GR was mixed and the light L R and the light L G, light mix of the light L B is the white light L W becomes incident on the light guide.
国際公開第2016/170823号International Publication No. 2016/170823
 ここで、第2ダイクロイックミラー503は、第2光源501Bが出射した光の一部を透過する。例えば、第2ダイクロイックミラー503では、第2光源501Bが出射した光のうち、500nmより大きく520nm以下の光を透過する。第2ダイクロイックミラー503を透過した光は、筐体505の内壁に到達し、壁面で反射される。壁面で反射された光は、再度第2ダイクロイックミラー503を透過して第2光源501Bに入射する。
 また、第3光源501Rが出射した光の一部、具体的には580nm以上600nm以下の光は、第1ダイクロイックミラー502に反射され、筐体505の壁面を経て再び第1ダイクロイックミラー502に入射する。第1ダイクロイックミラー502に入射した光は、この第1ダイクロイックミラー502に反射され、第3光源501Rに入射する。
 光が光源に入射すると、光源の表面で反射が起こる。光源で反射した光が検出部に入射すると、この反射光の光量も検出され、検出結果の精度が低下するおそれがあった。
Here, the second dichroic mirror 503 transmits a part of the light emitted by the second light source 501B. For example, in the second dichroic mirror 503, among the light emitted by the second light source 501B, light larger than 500 nm and 520 nm or less is transmitted. The light transmitted through the second dichroic mirror 503 reaches the inner wall of the housing 505 and is reflected by the wall surface. The light reflected by the wall surface passes through the second dichroic mirror 503 again and is incident on the second light source 501B.
Further, a part of the light emitted by the third light source 501R, specifically, the light of 580 nm or more and 600 nm or less is reflected by the first dichroic mirror 502, passes through the wall surface of the housing 505, and is incident on the first dichroic mirror 502 again. To do. The light incident on the first dichroic mirror 502 is reflected by the first dichroic mirror 502 and is incident on the third light source 501R.
When light enters a light source, reflection occurs on the surface of the light source. When the light reflected by the light source is incident on the detection unit, the amount of the reflected light is also detected, which may reduce the accuracy of the detection result.
 また、ダイクロイックミラーの特性として、反射対象範囲内の波長であっても、すべてが反射されずに、一部が透過することがある。例えば、第1ダイクロイックミラー502は、第1光源501Gが出射した光の一部であって、反射対象帯域内の波長の光の一部(光LG´)を透過する。第1ダイクロイックミラー502を透過した光LG´は、筐体505の壁面に到達する。光LG´が壁面で反射した光LR-Gは、再び第1ダイクロイックミラー502に入射する。この際、光LR-Gは、第1ダイクロイックミラー502に反射されるか、第1ダイクロイックミラー502を透過する。ここで、第1ダイクロイックミラー502に反射された光LR-Gの一部は、第3光源501Rに入射する。また、第1ダイクロイックミラー502を透過した光LR-Gの他の一部は、第1光源501Gに入射する。
 同様に、第2ダイクロイックミラー503は、第2光源501Bが出射した光の一部であって、反射対象帯域内の波長の光の一部(光LB´)を透過する。第2ダイクロイックミラー503を透過した光LB´は、筐体505の壁面に到達し、壁面で反射される。光LB´が壁面で反射された光LR-Bの一部は、再度第2ダイクロイックミラー503を透過して第2光源501Bに入射する。一方、光LR-Bの他の一部が第2ダイクロイックミラー503で反射され、さらに第1ダイクロイックミラー502で反射されると、この光LR-Bが第1光源501Gに入射する。光の反射または透過によって、例えば、第1光源501Gには、第1光源501Gの光や、第2光源501Bの光が入射する。
 さらに、第2ダイクロイックミラー503は、光LGRのうち450nm以上500nm以下の光(光LGR´)を反射する。第2ダイクロイックミラー503に反射された光(光LGR´)がさらに筐体505の壁面で反射されると、この反射された光LR-GRの一部は、第2ダイクロイックミラー503を透過して第2光源501Bに入射することがある。そのため、第2光源501Bには、第2光源501Bの光のほか、第1光源501Gの光と、第3光源501Rの光とが入射し得る。
 光源が出射した光とは異なる波長帯域の光が入射した場合にも、検出結果の精度低下が生じる。
Further, as a characteristic of the dichroic mirror, even if the wavelength is within the reflection target range, not all of the wavelengths are reflected and some of them may be transmitted. For example, the first dichroic mirror 502 is a part of the light first light source 501G is emitted, transmitted part of the light of a wavelength within the reflection band of interest (light L G '). Light L G 'is transmitted through the first dichroic mirror 502 and reaches the wall surface of the housing 505. Light L RG light L G 'is reflected by the wall surface is incident on the first dichroic mirror 502 again. At this time, the light L RG is reflected by the first dichroic mirror 502 or passes through the first dichroic mirror 502. Here, a part of the light L RG reflected on the first dichroic mirror 502, is incident on the third light source 501R. Also, the other part of the light L RG transmitted through the first dichroic mirror 502, is incident on the first light source 501G.
Similarly, the second dichroic mirror 503, a portion of the light second light source 501B is emitted, transmitted part of the light of a wavelength within the reflection band of interest (light L B '). Light L B 'is transmitted through the second dichroic mirror 503, and reaches the wall surface of the housing 505, it is reflected by the wall surface. A part of the light L R B whose light L B'is reflected on the wall surface passes through the second dichroic mirror 503 again and is incident on the second light source 501 B. On the other hand, when another part of the light L RB is reflected by the second dichroic mirror 503 and further reflected by the first dichroic mirror 502, the light L RB is incident on the first light source 501G. Due to the reflection or transmission of light, for example, the light of the first light source 501G or the light of the second light source 501B is incident on the first light source 501G.
Further, the second dichroic mirror 503 reflects the 450nm or 500nm or less of light among the light L GR (light L GR '). When the light (light L GR ') reflected by the second dichroic mirror 503 is further reflected by the wall surface of the housing 505, a part of the reflected light L R-GR is transmitted through the second dichroic mirror 503. Then, it may be incident on the second light source 501B. Therefore, in addition to the light of the second light source 501B, the light of the first light source 501G and the light of the third light source 501R may be incident on the second light source 501B.
Even when light in a wavelength band different from the light emitted by the light source is incident, the accuracy of the detection result is lowered.
 本発明は、上記に鑑みてなされたものであって、光源が出射した光の強度を高精度に検出することができる光源ユニットを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a light source unit capable of detecting the intensity of light emitted by a light source with high accuracy.
 上述した課題を解決し、目的を達成するために、本発明にかかる光源ユニットは、第1の光を出射する第1光源と、前記第1の光と同じ方向に進行し、該第1の光とは波長帯域が異なる第2の光を出射する第2光源と、前記第1光源から出射された前記第1の光の一部を反射する第1の光学部材と、前記第1光源から出射された光を通過させ、前記第2光源から出射された前記第2の光の一部を、前記第1の光学部材が反射した第1の光が進行する第1の光路に連なる第2の光路を進行する向きに反射する第2の光学部材と、前記第1光源から出射された前記第1の光の一部であって、前記第1の光学部材が反射する一部とは異なる一部を検出する第1検出部と、前記第2光源から出射された前記第2の光の一部であって、前記第2の光学部材が反射する一部とは異なる一部を検出する第2検出部と、前記第1光源、前記第2光源、前記第1の光学部材、前記第2の光学部材、前記第1検出部および前記第2検出部を収容する筐体と、前記筐体において、前記第1光源および前記第1の光学部材を繋ぐ光路を延長した直線と交差する内壁に設けられ、前記第1の光の反射を制御する反射制御部と、を備える。 In order to solve the above-mentioned problems and achieve the object, the light source unit according to the present invention travels in the same direction as the first light source that emits the first light and the first light, and the first light is emitted. From a second light source that emits a second light having a wavelength band different from that of light, a first optical member that reflects a part of the first light emitted from the first light source, and the first light source. A second light path through which the emitted light is passed and a part of the second light emitted from the second light source is connected to a first optical path in which the first light reflected by the first optical member travels. The second optical member that reflects in the direction of traveling in the optical path is different from the part of the first light emitted from the first light source that is reflected by the first optical member. A first detection unit that detects a part and a part of the second light emitted from the second light source that is different from the part reflected by the second optical member are detected. A second detection unit, a housing that houses the first light source, the second light source, the first optical member, the second optical member, the first detection unit, and the second detection unit, and the housing. The body includes a reflection control unit provided on an inner wall that intersects a straight line extending an optical path connecting the first light source and the first optical member to control the reflection of the first light.
 また、本発明にかかる光源ユニットは、上記発明において、前記反射制御部は、前記第2の光の反射を制御することを特徴とする。 Further, the light source unit according to the present invention is characterized in that, in the above invention, the reflection control unit controls the reflection of the second light.
 また、本発明にかかる光源ユニットは、上記発明において、前記反射制御部は、光を吸収することを特徴とする。 Further, the light source unit according to the present invention is characterized in that, in the above invention, the reflection control unit absorbs light.
 また、本発明にかかる光源ユニットは、上記発明において、前記反射抑制部は、前記第1検出部に向かう光路とは異なる光路に前記第1の光を反射することを特徴とする。 Further, the light source unit according to the present invention is characterized in that, in the above invention, the reflection suppression unit reflects the first light in an optical path different from the optical path toward the first detection unit.
 また、本発明にかかる光源ユニットは、上記発明において、前記反射制御部は、光を乱反射させることを特徴とする。 Further, the light source unit according to the present invention is characterized in that, in the above invention, the reflection control unit diffusely reflects light.
 また、本発明にかかる光源ユニットは、上記発明において、前記第1検出部は、第1光源から第1の光学部材までを繋ぐ光路上とは異なる位置に配置されることを特徴とする。 Further, the light source unit according to the present invention is characterized in that, in the above invention, the first detection unit is arranged at a position different from that on the optical path connecting the first light source to the first optical member.
 本発明によれば、光源が出射した光の強度を高精度に検出することができるという効果を奏する。 According to the present invention, there is an effect that the intensity of the light emitted from the light source can be detected with high accuracy.
図1は、本発明の実施の形態1にかかる内視鏡システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention. 図2は、本発明の実施の形態1にかかる内視鏡システムの概略構成を示すブロック図である。FIG. 2 is a block diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention. 図3は、本発明の実施の形態1にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a configuration of a light source unit of a light source device included in the endoscope system according to the first embodiment of the present invention. 図4は、図3のA-A線断面に対応する光源部の構成を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the configuration of the light source unit corresponding to the cross section taken along the line AA of FIG. 図5は、本発明の実施の形態2にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the second embodiment of the present invention. 図6は、本発明の実施の形態2の変形例にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing the configuration of the light source portion of the light source device included in the endoscope system according to the modified example of the second embodiment of the present invention. 図7は、本発明の実施の形態3にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the third embodiment of the present invention. 図8は、本発明の実施の形態4にかかる内視鏡システムが備える光源装置の光源部の要部の構成を示す図である。FIG. 8 is a diagram showing a configuration of a main part of a light source portion of a light source device included in the endoscope system according to the fourth embodiment of the present invention. 図9は、本発明の実施の形態4の変形例にかかる内視鏡システムが備える光源装置の光源部の要部の構成を示す図である。FIG. 9 is a diagram showing a configuration of a main part of a light source portion of a light source device included in an endoscope system according to a modified example of the fourth embodiment of the present invention. 図10は、従来の光源装置の概略構成を示す部分断面図である。FIG. 10 is a partial cross-sectional view showing a schematic configuration of a conventional light source device.
 以下、本発明を実施するための形態(以下、「実施の形態」という)を説明する。実施の形態では、本発明にかかる画像処理装置を含むシステムの一例として、患者等の被検体内の画像を撮像して表示する医療用の内視鏡システムについて説明する。また、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付して説明する。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “embodiments”) will be described. In the embodiment, as an example of the system including the image processing apparatus according to the present invention, a medical endoscope system that captures and displays an image in a subject such as a patient will be described. Further, the present invention is not limited to this embodiment. Further, in the description of the drawings, the same parts will be described with the same reference numerals.
(実施の形態1)
 図1は、本発明の実施の形態1にかかる内視鏡システムの概略構成を示す図である。図2は、本実施の形態1にかかる内視鏡システムの概略構成を示すブロック図である。
(Embodiment 1)
FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention. FIG. 2 is a block diagram showing a schematic configuration of the endoscope system according to the first embodiment.
 図1および図2に示す内視鏡システム1は、被検体内に先端部を挿入することによって被検体内の画像を撮像する内視鏡2と、内視鏡2の先端から出射する照明光を発生する照明部3aを有し、内視鏡2が撮像した撮像信号に所定の信号処理を施すとともに、内視鏡システム1全体の動作を統括的に制御する処理装置3と、処理装置3の信号処理により生成された体内画像を表示する表示装置4と、を備える。 The endoscope system 1 shown in FIGS. 1 and 2 includes an endoscope 2 that captures an image in a subject by inserting a tip into the subject, and illumination light emitted from the tip of the endoscope 2. A processing device 3 and a processing device 3 that have an illumination unit 3a for generating light, perform predetermined signal processing on the imaging signal captured by the endoscope 2, and collectively control the operation of the entire endoscope system 1. It is provided with a display device 4 for displaying an in-vivo image generated by the signal processing of.
 内視鏡2は、可撓性を有する細長形状をなす挿入部21と、挿入部21の基端側に接続され、各種の操作信号の入力を受け付ける操作部22と、操作部22から挿入部21が延びる方向と異なる方向に延び、処理装置3(照明部3aを含む)に接続する各種ケーブルを内蔵するユニバーサルコード23と、を備える。 The endoscope 2 has a flexible and elongated insertion portion 21, an operation portion 22 connected to the base end side of the insertion portion 21 and receiving input of various operation signals, and an insertion portion from the operation unit 22. A universal cord 23 that extends in a direction different from the extending direction of 21 and incorporates various cables that connect to the processing device 3 (including the illumination unit 3a) is provided.
 挿入部21は、光を受光して光電変換することにより信号を生成する画素が2次元状に配列された撮像素子244を内蔵した先端部24と、複数の湾曲駒によって構成された湾曲自在な湾曲部25と、湾曲部25の基端側に接続され、可撓性を有する長尺状の可撓管部26と、を有する。挿入部21は、被検体の体腔内に挿入され、外光の届かない位置にある生体組織などの被写体を撮像素子244によって撮像する。 The insertion portion 21 is a bendable portion composed of a tip portion 24 having a built-in image pickup element 244 in which pixels that generate a signal by receiving light and performing photoelectric conversion are arranged in a two-dimensional manner, and a plurality of bending pieces. It has a curved portion 25 and a long flexible tube portion 26 connected to the proximal end side of the curved portion 25 and having flexibility. The insertion unit 21 is inserted into the body cavity of the subject and images a subject such as a biological tissue at a position where outside light does not reach by the image sensor 244.
 先端部24は、グラスファイバ等を用いて構成されて照明部3aが発光した光の導光路をなすライトガイド241と、ライトガイド241の先端に設けられた照明レンズ242と、集光用の光学系243と、光学系243の結像位置に設けられ、光学系243が集光した光を受光して電気信号に光電変換して所定の信号処理を施す撮像素子244(撮像部)とを有する。 The tip portion 24 includes a light guide 241 configured by using a glass fiber or the like and forming a light guide path for light emitted by the illumination portion 3a, an illumination lens 242 provided at the tip of the light guide 241, and optics for condensing light. It has a system 243 and an image pickup element 244 (imaging unit) provided at an imaging position of the optical system 243 and receiving light collected by the optical system 243 and photoelectrically converting it into an electric signal to perform predetermined signal processing. ..
 光学系243は、一または複数のレンズを用いて構成され、画角を変化させる光学ズーム機能および焦点を変化させるフォーカス機能を有する。 The optical system 243 is configured by using one or more lenses, and has an optical zoom function for changing the angle of view and a focus function for changing the focus.
 撮像素子244は、光学系243からの光を光電変換して電気信号(画像信号)を生成する。具体的には、撮像素子244は、光量に応じた電荷を蓄積するフォトダイオードや、フォトダイオードから転送される電荷を電圧レベルに変換するコンデンサなどをそれぞれ有する複数の画素がマトリックス状に配列され、各画素が光学系243からの光を光電変換して電気信号を生成する受光部244aと、受光部244aの複数の画素のうち読み出し対象として任意に設定された画素が生成した電気信号を順次読み出して、画像信号として出力する読み出し部244bとを有する。撮像素子244は、例えばCCD(Charge Coupled Device)イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いて実現される。 The image sensor 244 photoelectrically converts the light from the optical system 243 to generate an electric signal (image signal). Specifically, in the image sensor 244, a plurality of pixels each having a photodiode that stores an electric charge according to the amount of light, a capacitor that converts the electric charge transferred from the photodiode into a voltage level, and the like are arranged in a matrix. The light receiving unit 244a, in which each pixel photoelectrically converts the light from the optical system 243 to generate an electric signal, and the electric signal generated by the pixel arbitrarily set as the reading target among the plurality of pixels of the light receiving unit 244a are sequentially read out. It also has a readout unit 244b that outputs as an image signal. The image sensor 244 is realized by using, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 なお、内視鏡2は、撮像素子244が各種動作を実行するための実行プログラム及び制御プログラムや、内視鏡2の識別情報を含むデータを記憶するメモリ(図示せず)を備えてもよい。識別情報には、内視鏡2の固有情報(ID)、年式、スペック情報、および伝送方式等が含まれる。 The endoscope 2 may include an execution program and a control program for the image sensor 244 to execute various operations, and a memory (not shown) for storing data including identification information of the endoscope 2. .. The identification information includes the unique information (ID) of the endoscope 2, the model year, the spec information, the transmission method, and the like.
 操作部22は、湾曲部25を上下方向および左右方向に湾曲させる湾曲ノブ221と、被検体の体腔内に生検鉗子、電気メスおよび検査プローブ等の処置具を挿入する処置具挿入部222と、処理装置3に加えて、送気手段、送水手段、画面表示制御等の周辺機器の操作指示信号を入力する操作入力部である複数のスイッチ223と、を有する。処置具挿入部222から挿入される処置具は、先端部24の処置具チャンネル(図示せず)を経由して開口部(図示せず)から表出する。 The operation unit 22 includes a bending knob 221 that bends the curved part 25 in the vertical and horizontal directions, and a treatment tool insertion part 222 that inserts a treatment tool such as a biopsy forceps, an electric knife, and an examination probe into the body cavity of the subject. In addition to the processing device 3, there are a plurality of switches 223, which are operation input units for inputting operation instruction signals of peripheral devices such as air supply means, water supply means, and screen display control. The treatment tool inserted from the treatment tool insertion portion 222 is exposed from the opening (not shown) via the treatment tool channel (not shown) of the tip portion 24.
 ユニバーサルコード23は、ライトガイド241と、複数の信号線をまとめた集合ケーブル245と、を少なくとも内蔵している。集合ケーブル245は、撮像信号を伝送するための信号線や、撮像素子244を駆動するための駆動信号を伝送するための信号線、内視鏡2(撮像素子244)に関する固有情報などを含む情報を送受信するための信号線を含む。なお、本実施の形態では、信号線を用いて電気信号を伝送するものとして説明するが、光信号を伝送するものであってもよいし、無線通信により内視鏡2と処理装置3との間で信号を伝送するものであってもよい。 The universal cord 23 has at least a built-in light guide 241 and a collective cable 245 that bundles a plurality of signal lines. The collecting cable 245 includes information including a signal line for transmitting an image pickup signal, a signal line for transmitting a drive signal for driving the image pickup element 244, and unique information about the endoscope 2 (image pickup element 244). Includes signal lines for transmitting and receiving. In the present embodiment, the electric signal is transmitted using the signal line, but the optical signal may be transmitted, or the endoscope 2 and the processing device 3 are connected by wireless communication. Signals may be transmitted between them.
 次に、処理装置3の構成について説明する。図3は、本発明の実施の形態1にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。図4は、図3のA-A線断面に対応する光源部の構成を示す部分断面図である。処理装置3は、照明部3aと、プロセッサ部3bとを備える。 Next, the configuration of the processing device 3 will be described. FIG. 3 is a partial cross-sectional view showing a configuration of a light source unit of a light source device included in the endoscope system according to the first embodiment of the present invention. FIG. 4 is a partial cross-sectional view showing the configuration of the light source unit corresponding to the cross section taken along the line AA of FIG. The processing device 3 includes an illumination unit 3a and a processor unit 3b.
 まず、照明部3aの構成について説明する。照明部3aは、光源部300と、光源ドライバ310と、照明制御部320とを備える。 First, the configuration of the lighting unit 3a will be described. The illumination unit 3a includes a light source unit 300, a light source driver 310, and an illumination control unit 320.
 光源部300は、互いに異なる波長帯域の光を出射する複数の光源(第1光源301G、第2光源301B、第3光源301R)と、第1光源301Gが出射した光の一部を折り曲げる第1ダイクロイックミラー302と、第2光源301Bが出射した光の一部を折り曲げる第2ダイクロイックミラー303と、第1光源301Gが出射する光の一部を取り込んで第1光源301Gが出射した光の強度を検出する第1検出部304Gと、第2光源301Bが出射する光の一部を取り込んで第2光源301Bが出射した光の強度を検出する第2検出部304Bと、第3光源301Rが出射する光の一部を取り込んで第3光源301Rが出射した光の強度を検出する第3検出部304Rと、上述した各構成要素を収容する筐体305と、筐体305の内壁の一部に設けられ、光を吸収する反射制御部材306とを備える。反射制御部材306は、反射制御部に相当する。 The light source unit 300 bends a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a part of the light emitted by the first light source 301G. The intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G. The first detection unit 304G to detect, the second detection unit 304B that captures a part of the light emitted by the second light source 301B and detects the intensity of the light emitted by the second light source 301B, and the third light source 301R emits light. A third detection unit 304R that captures a part of the light and detects the intensity of the light emitted by the third light source 301R, a housing 305 that houses each of the above-mentioned components, and a part of the inner wall of the housing 305. It is provided with a reflection control member 306 that absorbs light. The reflection control member 306 corresponds to a reflection control unit.
 第1光源301Gは、例えば450nm~600nmの光を出射する光源を用いて構成される。
 第2光源301Bは、例えば430nm~520nmの光を出射する光源を用いて構成される。
 第3光源301Rは、例えば580nm~670nmの光を出射する光源を用いて構成される。
 本実施の形態1において、第1光源301Gの光軸と、第2光源301Bの光軸とは平行である。第1光源301Gの光軸と、第2光源301Bの光軸とは、光源からダイクロイックミラーまでの間において同じ方向に進行する光を出射する。
 また、第1光源301Gの光軸、および第2光源301Bの光軸と、第3光源301Rの光軸とは直交する。ここでいう「光軸」とは、光源から出射される光のうち光強度が最も高い部分が通過する軸、または光の照射領域の重心を通過する軸をさす。
 なお、第1光源301G、第2光源301Bおよび第3光源301Rは、光源のほか、ダイクロイックミラーへの導光を経由する光学系を有する構成としてもよい。
The first light source 301G is configured by using, for example, a light source that emits light of 450 nm to 600 nm.
The second light source 301B is configured by using, for example, a light source that emits light of 430 nm to 520 nm.
The third light source 301R is configured by using, for example, a light source that emits light of 580 nm to 670 nm.
In the first embodiment, the optical axis of the first light source 301G and the optical axis of the second light source 301B are parallel. The optical axis of the first light source 301G and the optical axis of the second light source 301B emit light traveling in the same direction between the light source and the dichroic mirror.
Further, the optical axis of the first light source 301G and the optical axis of the second light source 301B are orthogonal to the optical axis of the third light source 301R. The "optical axis" as used herein refers to an axis through which the portion of the light emitted from the light source having the highest light intensity passes, or an axis through which the center of gravity of the light irradiation region passes.
The first light source 301G, the second light source 301B, and the third light source 301R may have an optical system that passes through a light guide to the dichroic mirror in addition to the light source.
 第1ダイクロイックミラー302は、第1光源301Gが出射した光の一部、例えば600nm以下の光を反射し、600nmより大きい波長の光を通過させる。
 第2ダイクロイックミラー303は、第2光源301Bが出射した光の一部、例えば500nm以下の光を反射し、500nmより大きい波長の光を通過させる。
The first dichroic mirror 302 reflects a part of the light emitted by the first light source 301G, for example, light of 600 nm or less, and passes light having a wavelength larger than 600 nm.
The second dichroic mirror 303 reflects a part of the light emitted by the second light source 301B, for example, light having a wavelength of 500 nm or less, and passes light having a wavelength larger than 500 nm.
 第1検出部304G、第2検出部304B、第3検出部304Rは、それぞれ、フォトトランジスタや、フォトダイオード、フォトダイオードとアンプ回路とを組み合わせた機器等を用いて構成される。第1検出部304G、第2検出部304Bおよび第3検出部304Rは、受光した光を電気信号に変換して、信号値として出力する。各検出部で生成された信号値は、照明制御部320に出力される。第1検出部304G、第2検出部304Bおよび第3検出部304Rは、光源から出射される光の光路(例えば図4に示す光LGが進行する光路)から離れた位置であって、光源の最大配光角(図4に示す最大配光角θMAX)内の、該最大配光角θMAXの端部近傍の光(例えば、図4に示す光LG-S)を受光する位置に配置される。例えば、光源が、光学系を経てダイクロイックミラーに光を入射させる構成の場合、検出部は、光源の最大配光角と、光学系における光源の光の最大入射角との間に配置される。各検出部が検出する光は、光源が出射する光の一部であって、ダイクロイックミラーに入射する光とは異なる光である。 The first detection unit 304G, the second detection unit 304B, and the third detection unit 304R are respectively configured by using a phototransistor, a photodiode, a device in which a photodiode and an amplifier circuit are combined, and the like. The first detection unit 304G, the second detection unit 304B, and the third detection unit 304R convert the received light into an electric signal and output it as a signal value. The signal value generated by each detection unit is output to the lighting control unit 320. First detector 304G, a second detection unit 304B and the third detector 304R is a position away from the optical path of the light emitted from the light source (e.g., an optical path which the light L G progresses as shown in FIG. 4), the light source Is arranged at a position within the maximum light distribution angle (maximum light distribution angle θ MAX shown in FIG. 4) near the end of the maximum light distribution angle θ MAX (for example, the light L GS shown in FIG. 4). Will be done. For example, when the light source has a configuration in which light is incident on the dichroic mirror via the optical system, the detection unit is arranged between the maximum light distribution angle of the light source and the maximum incident angle of the light of the light source in the optical system. The light detected by each detection unit is a part of the light emitted by the light source and is different from the light incident on the dichroic mirror.
 反射制御部材306は、例えば、黒色に塗装された板材からなる。反射制御部材306は、筐体305の内壁のうち、第1光源301G(および第2光源301B)が配設される壁面と対向する壁面に設けられる。反射制御部材306は、第1光源301Gおよび第1ダイクロイックミラー302を繋ぐ光路を延長した直線または第2光源301Bおよび第2ダイクロイックミラー303を繋ぐ光路を延長した直線(図3に示す直線QB、QG)と交差する壁面に設けられる。なお、反射制御部材306は、黒色に塗装された板材に限らず、入射した光を反射しない部材、例えば、黒色の樹脂からなる部材、表面が黒色にメッキされた部材であれば適用できる。 The reflection control member 306 is made of, for example, a plate material painted in black. The reflection control member 306 is provided on the inner wall of the housing 305, which faces the wall surface on which the first light source 301G (and the second light source 301B) is arranged. Reflecting the control member 306 linearly Q B shown in the straight line (FIG. 3 by extending the optical path connecting the first light source 301G and the first dichroic mirror 302 linearly or second light sources 301B and the second dichroic mirror 303 and the optical path extending connecting, It is installed on the wall surface that intersects with Q G ). The reflection control member 306 is not limited to a plate material painted in black, and can be applied to any member that does not reflect incident light, for example, a member made of black resin or a member whose surface is plated black.
 光源部300では、第2光源301Bが出射した光LBの一部が第2ダイクロイックミラー303に折り曲げられる。また、第1光源301Gが出射した光LGの一部が第1ダイクロイックミラー302に折り曲げられる。一方、第3光源301Rが出射した光LRは、第1ダイクロイックミラー302、および第2ダイクロイックミラー303を通過する。第1ダイクロイックミラー302を通過した光LRは、第1ダイクロイックミラー302に折り曲げられた光LGと混ざる。光LRと光LGとが混ざった光LGRは、第2ダイクロイックミラー303を通過し、光LBと混ざる。光LRと光LGとが混ざった光LGRと、光LBとが混ざった光は、白色光LWとなり、ライトガイドに入射する。 In the light source unit 300, a part of the light L B of the second light source 301B is emitted it is folded on the second dichroic mirror 303. Also, part of the light L G of the first light source 301G is emitted is folded on the first dichroic mirror 302. On the other hand, the light L R of the third light source 301R is emitted passes through the first dichroic mirror 302, and a second dichroic mirror 303. The light L R that has passed through the first dichroic mirror 302 is mixed with the light L G that is bent by the first dichroic mirror 302. Light L GR was mixed and the light L R and the light L G passes through the second dichroic mirror 303, mixes with the light L B. A light L GR was mixed and the light L R and the light L G, light mix of the light L B is the white light L W becomes incident on the light guide.
 ここで、第2ダイクロイックミラー303は、第2光源301Rが出射した光の一部を透過する。同様に、第1ダイクロイックミラー302は、第1光源301Gが出射した光の一部を透過する。透過した光LB´、LG´は、反射制御部材306に到達し、吸収される。本実施の形態1では、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることはない。 Here, the second dichroic mirror 303 transmits a part of the light emitted by the second light source 301R. Similarly, the first dichroic mirror 302 transmits a part of the light emitted by the first light source 301G. Transmitted light L B ', L G' reaches the reflection control member 306, it is absorbed. In the first embodiment, the dichroic mirror transmitted light L B ', L G' is never again return to the light source is reflected by the inner wall of the housing 305.
 光源ドライバ310は、照明制御部320の制御のもと、各光源に対して電流を供給することによって、光源に光を出射させる。 The light source driver 310 emits light to the light source by supplying a current to each light source under the control of the illumination control unit 320.
 照明制御部320は、制御部33からの制御信号(調光信号)に基づいて、各光源に供給する電力量を制御するとともに、各光源の駆動タイミングを制御する。また、照明制御部320は、第1検出部304G、第2検出部304Bおよび第3検出部304Rから入力された検出値(信号値)を制御部33に出力するか、またはその検出値を用いて光源が出射する光量を制御する。 The lighting control unit 320 controls the amount of power supplied to each light source and controls the drive timing of each light source based on the control signal (dimming signal) from the control unit 33. Further, the lighting control unit 320 outputs the detection value (signal value) input from the first detection unit 304G, the second detection unit 304B, and the third detection unit 304R to the control unit 33, or uses the detection value. Controls the amount of light emitted by the light source.
 プロセッサ部3bは、画像処理部31と、入力部32と、制御部33と、記憶部34とを備える。 The processor unit 3b includes an image processing unit 31, an input unit 32, a control unit 33, and a storage unit 34.
 画像処理部31は、内視鏡2から、撮像素子244が撮像した各色の照明光の画像データを受信する。画像処理部31は、内視鏡2からアナログの画像データを受信した場合はA/D変換を行ってデジタルの撮像信号を生成する。また、画像処理部31は、内視鏡2から光信号として画像データを受信した場合は光電変換を行ってデジタルの画像データを生成する。 The image processing unit 31 receives image data of illumination light of each color captured by the image sensor 244 from the endoscope 2. When the image processing unit 31 receives analog image data from the endoscope 2, it performs A / D conversion to generate a digital image pickup signal. When the image processing unit 31 receives the image data as an optical signal from the endoscope 2, it performs photoelectric conversion to generate digital image data.
 画像処理部31は、内視鏡2から受信した画像データに対して所定の画像処理を施して画像を生成して表示装置4へ出力する。ここで、所定の画像処理とは、同時化処理、階調補正処理および色補正処理等である。同時化処理は、光源部300がR照明光の照射時に撮像素子244が生成した画像データに基づくR画像データ、光源部300がG照明光の照射時に撮像素子244が生成した画像データに基づくG画像データ、および光源部300がB照明光の照射時に撮像素子244が生成した画像データに基づくB画像データの各々を同時化する処理である。階調補正処理は、画像データに対して階調の補正を行う処理である。色補正処理は、画像データに対して色調補正を行う処理である。画像処理部31は、上述した画像処理により生成された体内画像を含む処理後の撮像信号(以下、単に撮像信号ともいう)を生成する。なお、画像処理部31は、画像の明るさに応じてゲイン調整してもよい。画像処理部31は、CPU(Central Processing Unit)等の汎用プロセッサやASIC(Application Specific Integrated Circuit)等の特定の機能を実行する各種演算回路等の専用プロセッサを用いて構成される。
 なお、画像処理部31は、R画像データ、G画像データおよびB画像データを保持するフレームメモリ等を備えてもよい。
The image processing unit 31 performs predetermined image processing on the image data received from the endoscope 2 to generate an image and outputs the image to the display device 4. Here, the predetermined image processing includes simultaneous processing, gradation correction processing, color correction processing, and the like. In the simultaneous processing, R image data based on the image data generated by the image pickup element 244 when the light source unit 300 is irradiated with the R illumination light, and G based on the image data generated by the image pickup element 244 when the light source unit 300 is irradiated with the G illumination light. This is a process of simultaneously synchronizing the image data and the B image data based on the image data generated by the image pickup element 244 when the light source unit 300 irradiates the B illumination light. The gradation correction process is a process for correcting gradation on image data. The color correction process is a process for performing color tone correction on image data. The image processing unit 31 generates a processed imaging signal (hereinafter, also simply referred to as an imaging signal) including the internal image generated by the above-mentioned image processing. The image processing unit 31 may adjust the gain according to the brightness of the image. The image processing unit 31 is configured by using a general-purpose processor such as a CPU (Central Processing Unit) or a dedicated processor such as various arithmetic circuits that execute a specific function such as an ASIC (Application Specific Integrated Circuit).
The image processing unit 31 may include a frame memory or the like that holds R image data, G image data, and B image data.
 入力部32は、キーボード、マウス、スイッチ、タッチパネルを用いて実現され、内視鏡システム1の動作を指示する動作指示信号等の各種信号の入力を受け付ける。なお、入力部32は、操作部22に設けられたスイッチや、外部のタブレット型のコンピュータなどの可搬型端末を含んでいてもよい。 The input unit 32 is realized by using a keyboard, a mouse, a switch, and a touch panel, and receives inputs of various signals such as an operation instruction signal for instructing the operation of the endoscope system 1. The input unit 32 may include a switch provided in the operation unit 22 and a portable terminal such as an external tablet computer.
 制御部33は、撮像素子244および照明部3aを含む各構成部の駆動制御、および各構成部に対する情報の入出力制御などを行う。制御部33は、記憶部34に記憶されている撮像制御のための制御情報データ(例えば、読み出しタイミングなど)を参照し、集合ケーブル245に含まれる所定の信号線を経由して駆動信号として撮像素子244へ送信する。制御部33は、CPU等の汎用プロセッサやASIC等の特定の機能を実行する各種演算回路等の専用プロセッサを用いて構成される。 The control unit 33 performs drive control of each component including the image sensor 244 and the illumination unit 3a, and input / output control of information to each component. The control unit 33 refers to the control information data for image pickup control (for example, read timing) stored in the storage unit 34, and takes an image as a drive signal via a predetermined signal line included in the collective cable 245. It transmits to the element 244. The control unit 33 is configured by using a general-purpose processor such as a CPU or a dedicated processor such as various arithmetic circuits that execute a specific function such as an ASIC.
 記憶部34は、内視鏡システム1を動作させるための各種プログラム、および内視鏡システム1の動作に必要な各種パラメータ等を含むデータを記憶する。また、記憶部34は、処理装置3の識別情報を記憶する。ここで、識別情報には、処理装置3の固有情報(ID)、年式およびスペック情報等が含まれる。 The storage unit 34 stores data including various programs for operating the endoscope system 1 and various parameters necessary for the operation of the endoscope system 1. In addition, the storage unit 34 stores the identification information of the processing device 3. Here, the identification information includes unique information (ID) of the processing device 3, year and specification information, and the like.
 また、記憶部34は、処理装置3の画像取得処理方法を実行するための画像取得処理プログラムを含む各種プログラムを記憶する。各種プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。なお、上述した各種プログラムは、通信ネットワークを経由してダウンロードすることによって取得することも可能である。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)などによって実現されるものであり、有線、無線を問わない。 Further, the storage unit 34 stores various programs including an image acquisition processing program for executing the image acquisition processing method of the processing device 3. Various programs can be recorded on a computer-readable recording medium such as a hard disk, flash memory, CD-ROM, DVD-ROM, or flexible disk and widely distributed. The various programs described above can also be acquired by downloading them via a communication network. The communication network referred to here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), etc., and may be wired or wireless.
 以上の構成を有する記憶部34は、各種プログラム等が予めインストールされたROM(Read Only Memory)、および各処理の演算パラメータやデータ等を記憶するRAMやハードディスク等を用いて実現される。 The storage unit 34 having the above configuration is realized by using a ROM (Read Only Memory) in which various programs and the like are pre-installed, and a RAM, a hard disk, and the like that store calculation parameters and data of each process.
 表示装置4は、映像ケーブルを経由して処理装置3(画像処理部31)から受信した画像信号に対応する表示画像を表示する。表示装置4は、液晶または有機EL(Electro Luminescence)等のモニタを用いて構成される。 The display device 4 displays a display image corresponding to the image signal received from the processing device 3 (image processing unit 31) via the video cable. The display device 4 is configured by using a monitor such as a liquid crystal or an organic EL (Electro Luminescence).
 以上説明した実施の形態1では、光源から出射され、ダイクロイックミラーを透過した光(例えばLB´、LG´)が、反射制御部材306に到達して吸収される。本実施の形態1では、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることがないため、筐体305の内壁で反射した光が光源等を経て検出部に入射することはない。本実施の形態1によれば、筐体305の内壁で反射した光が検出部に入射しないため、光源が出射した光の強度を高精度に検出することができる。 In the first embodiment described above, the light emitted from the light source, dichroic mirrors and transmitted light (e.g., L B ', L G') is absorbed and reaches the reflection control member 306. In the first embodiment, the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 It does not enter the detection unit via a light source or the like. According to the first embodiment, since the light reflected by the inner wall of the housing 305 does not enter the detection unit, the intensity of the light emitted by the light source can be detected with high accuracy.
(実施の形態2)
 次に、本発明の実施の形態2について、図5を参照して説明する。図5は、本発明の実施の形態2にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。本実施の形態2にかかる内視鏡システムは、上述した内視鏡システム1の光源部300を光源部300Aに変えた以外は、同じ構成である。以下、実施の形態1とは構成が異なる光源部300Aについて説明する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the second embodiment of the present invention. The endoscope system according to the second embodiment has the same configuration except that the light source unit 300 of the endoscope system 1 described above is changed to the light source unit 300A. Hereinafter, the light source unit 300A having a configuration different from that of the first embodiment will be described.
 光源部300Aは、互いに異なる波長帯域の光を出射する複数の光源(第1光源301G、第2光源301B、第3光源301R)と、第1光源301Gが出射した光の一部を折り曲げる第1ダイクロイックミラー302と、第2光源301Bが出射した光の一部を折り曲げる第2ダイクロイックミラー303と、第1光源301Gが出射する光の一部を取り込んで第1光源301Gが出射した光の強度を検出する第1検出部304Gと、第2光源301Bが出射する光の一部を取り込んで第2光源301Bが出射した光の強度を検出する第2検出部304Bと、第3光源301Rが出射する光の一部を取り込んで第3光源301Rが出射した光の強度を検出する第3検出部304Rと、上述した各構成要素を収容する筐体305と、筐体305の内壁の一部に設けられ、光を反射して、光源への戻りを防止する反射制御部材(第1反射制御部材308G、第2反射制御部材308B)とを備える。第1反射制御部材308Gおよび第2反射制御部材308Bは、反射制御部に相当する。以下、実施の形態1とは構成が異なる反射制御部材について説明する。 The light source unit 300A has a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a first light source that bends a part of the light emitted by the first light source 301G. The intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G. The first detection unit 304G to detect, the second detection unit 304B that captures a part of the light emitted by the second light source 301B and detects the intensity of the light emitted by the second light source 301B, and the third light source 301R emits light. A third detection unit 304R that captures a part of the light and detects the intensity of the light emitted by the third light source 301R, a housing 305 that houses each of the above-mentioned components, and a part of the inner wall of the housing 305. It is provided with a reflection control member (first reflection control member 308G, second reflection control member 308B) that reflects light and prevents the light from returning to the light source. The first reflection control member 308G and the second reflection control member 308B correspond to the reflection control unit. Hereinafter, a reflection control member having a configuration different from that of the first embodiment will be described.
 第1反射制御部材308Gおよび第2反射制御部材308Bは、例えば、光を全反射するミラーからなる。第1反射制御部材308Gおよび第2反射制御部材308Bは、筐体305の内壁のうち、第1光源301Gおよび第2光源301Bが配設される壁面と対向する壁面側に設けられる。具体的に、第1反射制御部材308Gは、第1光源301Gから出射された光の光路であって、第1ダイクロイックミラー302を通過する光路上に設けられる。第2反射制御部材308Bは、第2光源301Bから出射された光の光路であって、第2ダイクロイックミラー303を通過する光路上に設けられる。第1反射制御部材308Gおよび第2反射制御部材308Bによって反射された光の反射後の光路には、第1光源301G、第2光源301B、第3光源301Rのいずれも配置されていない。 The first reflection control member 308G and the second reflection control member 308B include, for example, a mirror that totally reflects light. The first reflection control member 308G and the second reflection control member 308B are provided on the inner wall of the housing 305 on the wall surface side facing the wall surface on which the first light source 301G and the second light source 301B are arranged. Specifically, the first reflection control member 308G is an optical path of light emitted from the first light source 301G, and is provided on the optical path passing through the first dichroic mirror 302. The second reflection control member 308B is an optical path of light emitted from the second light source 301B, and is provided on the optical path passing through the second dichroic mirror 303. None of the first light source 301G, the second light source 301B, and the third light source 301R are arranged in the optical path after the light reflected by the first reflection control member 308G and the second reflection control member 308B.
 第2ダイクロイックミラー303を透過した光LB´は、第2反射制御部材308Bによって反射される(図5の矢印LB´´)。第2反射制御部材308Bによって反射された光の光路は、光源に向かう光路とは異なる光路である。また、第1ダイクロイックミラー302を透過した光LG´は、第1反射制御部材308Gに反射される(図5の矢印LG´´)。本実施の形態2においても、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることはない。 Light L B 'is transmitted through the second dichroic mirror 303, is reflected by the second reflecting control member 308B (arrow L B'' in Figure 5). The optical path of the light reflected by the second reflection control member 308B is an optical path different from the optical path toward the light source. Further, the light L G 'is transmitted through the first dichroic mirror 302, it is reflected on the first reflecting control member 308G (arrow L G'' in Figure 5). Also in the second embodiment, the dichroic mirror transmitted light L B ', L G' is never again return to the light source is reflected by the inner wall of the housing 305.
 以上説明した実施の形態2では、光源から出射され、ダイクロイックミラーを透過した光(例えばLB´、LG´)が、第1反射制御部材308Gおよび第2反射制御部材308Bに反射して光路が変わる。本実施の形態2では、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることがないため、筐体305の内壁で反射した光が光源等を経て検出部に入射することはない。本実施の形態2によれば、筐体305の内壁で反射した光が検出部に入射しないため、光源が出射した光の強度を高精度に検出することができる。 In the second embodiment described above, the light emitted from the light source, dichroic light transmitted through the dichroic mirror (e.g., L B ', L G') is, the optical path is reflected on the first reflecting control member 308G and the second reflecting control member 308B Changes. In the second embodiment, the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 It does not enter the detection unit via a light source or the like. According to the second embodiment, since the light reflected by the inner wall of the housing 305 does not enter the detection unit, the intensity of the light emitted by the light source can be detected with high accuracy.
(実施の形態2の変形例)
 次に、本発明の実施の形態2の変形例について、図6を参照して説明する。図5は、本発明の実施の形態2の変形例にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。本変形例にかかる内視鏡システムは、上述した内視鏡システム1の光源部300を光源部300Bに変えた以外は、同じ構成である。以下、実施の形態1とは構成が異なる光源部300Bについて説明する。
(Modified Example of Embodiment 2)
Next, a modified example of the second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a partial cross-sectional view showing a configuration of a light source unit of a light source device included in an endoscope system according to a modified example of the second embodiment of the present invention. The endoscope system according to this modification has the same configuration except that the light source unit 300 of the endoscope system 1 described above is changed to the light source unit 300B. Hereinafter, the light source unit 300B having a configuration different from that of the first embodiment will be described.
 光源部300Bは、互いに異なる波長帯域の光を出射する複数の光源(第1光源301G、第2光源301B、第3光源301R)と、第1光源301Gが出射した光の一部を折り曲げる第1ダイクロイックミラー302と、第2光源301Bが出射した光の一部を折り曲げる第2ダイクロイックミラー303と、第1光源301Gが出射する光の一部を取り込んで第1光源301Gが出射した光の強度を検出する第1検出部304Gと、第2光源301Bが出射する光の一部を取り込んで第2光源301Bが出射した光の強度を検出する第2検出部304Bと、第3光源301Rが出射する光の一部を取り込んで第3光源301Rが出射した光の強度を検出する第3検出部304Rと、上述した各構成要素を収容する筐体305と、筐体305の内壁の一部に設けられ、光を反射して、光源への戻りを防止する反射制御部(第1反射制御部308G´、第2反射制御部308B´)とを備える。第1反射制御部308G´および第2反射制御部308B´は、反射制御部に相当する。以下、実施の形態2とは構成が異なる反射制御部材について説明する。 The light source unit 300B has a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a first light source that bends a part of the light emitted by the first light source 301G. The intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G. The first detection unit 304G to detect, the second detection unit 304B that captures a part of the light emitted by the second light source 301B and detects the intensity of the light emitted by the second light source 301B, and the third light source 301R emits light. A third detection unit 304R that captures a part of the light and detects the intensity of the light emitted by the third light source 301R, a housing 305 that houses each of the above-mentioned components, and a part of the inner wall of the housing 305. It is provided with a reflection control unit (first reflection control unit 308G', second reflection control unit 308B') that reflects light and prevents the light from returning to the light source. The first reflection control unit 308G'and the second reflection control unit 308B' correspond to the reflection control unit. Hereinafter, a reflection control member having a configuration different from that of the second embodiment will be described.
 第1反射制御部308G´および第2反射制御部308B´は、例えば、筐体305と一体的に設けられ、該筐体305の内壁の他の部分に対して突出した形状をなし、光を所定の方向に反射する傾斜面を有する。第1反射制御部308G´および第2反射制御部308B´は、筐体305の内壁のうち、第1光源301Gおよび第2光源301Bが配設される壁面と対向する壁面側に設けられる。具体的に、第1反射制御部308G´は、第1光源301Gから出射された光の光路であって、第1ダイクロイックミラー302を通過する光路上に設けられる。第2反射制御部308B´は、第2光源301Bから出射された光の光路であって、第2ダイクロイックミラー303を通過する光路上に設けられる。第1反射制御部308G´および第2反射制御部308R´によって反射された光の反射後の光路には、第1光源301G、第2光源301B、第3光源301Rのいずれも配置されていない。 The first reflection control unit 308G'and the second reflection control unit 308B' are provided integrally with the housing 305, for example, and have a shape protruding with respect to other parts of the inner wall of the housing 305 to emit light. It has an inclined surface that reflects in a predetermined direction. The first reflection control unit 308G'and the second reflection control unit 308B' are provided on the inner wall of the housing 305 on the wall surface side facing the wall surface on which the first light source 301G and the second light source 301B are arranged. Specifically, the first reflection control unit 308G'is an optical path of light emitted from the first light source 301G, and is provided on the optical path passing through the first dichroic mirror 302. The second reflection control unit 308B'is an optical path of light emitted from the second light source 301B, and is provided on the optical path passing through the second dichroic mirror 303. None of the first light source 301G, the second light source 301B, and the third light source 301R are arranged in the optical path after the light reflected by the first reflection control unit 308G'and the second reflection control unit 308R'.
 第2ダイクロイックミラー303を透過した光LB´は、第2反射制御部308B´によって反射される(図6の矢印LB´´)。第2反射制御部308B´によって反射された光の光路は、光源に向かう光路とは異なる光路である。また、第1ダイクロイックミラー302を透過した光LG´は、第1反射制御部308G´に反射される(図6の矢印LG´´)。本実施の形態2においても、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることはない。 Light L B 'is transmitted through the second dichroic mirror 303, it is reflected by the second reflecting controller 308B' (arrow L B'' in FIG. 6). The optical path of the light reflected by the second reflection control unit 308B'is an optical path different from the optical path toward the light source. Further, the light L G 'is transmitted through the first dichroic mirror 302, (arrow L G'' in FIG. 6) which is reflected on the first reflecting controller 308G'. Also in the second embodiment, the dichroic mirror transmitted light L B ', L G' is never again return to the light source is reflected by the inner wall of the housing 305.
 以上説明した変形例では、光源から出射され、ダイクロイックミラーを透過した光(例えばLB´、LG´)が、第1反射制御部308G´および第2反射制御部308B´に反射して光路が変わる。本変形例では、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることがないため、筐体305の内壁で反射した光が光源等を経て検出部に入射することはない。本変形例によれば、筐体305の内壁で反射した光が検出部に入射しないため、光源が出射した光の強度を高精度に検出することができる。 In the above modified example described, is emitted from the light source, dichroic light transmitted through the dichroic mirror (e.g., L B ', L G') is, the optical path is reflected on the first reflecting controller 308G' and second reflective controller 308B' Changes. In this modification, the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 is a light source such as It does not enter the detection unit via. According to this modification, since the light reflected by the inner wall of the housing 305 does not enter the detection unit, the intensity of the light emitted by the light source can be detected with high accuracy.
(実施の形態3)
 次に、本発明の実施の形態3について、図7を参照して説明する。図7は、本発明の実施の形態3にかかる内視鏡システムが備える光源装置の光源部の構成を示す部分断面図である。本実施の形態3にかかる内視鏡システムは、上述した内視鏡システム1の光源部300を光源部300Cに変えた以外は、同じ構成である。以下、実施の形態1とは構成が異なる光源部300Cについて説明する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 7 is a partial cross-sectional view showing a configuration of a light source portion of a light source device included in the endoscope system according to the third embodiment of the present invention. The endoscope system according to the third embodiment has the same configuration except that the light source unit 300 of the endoscope system 1 described above is changed to the light source unit 300C. Hereinafter, the light source unit 300C having a configuration different from that of the first embodiment will be described.
 光源部300Cは、互いに異なる波長帯域の光を出射する複数の光源(第1光源301G、第2光源301B、第3光源301R)と、第1光源301Gが出射した光の一部を折り曲げる第1ダイクロイックミラー302と、第2光源301Bが出射した光の一部を折り曲げる第2ダイクロイックミラー303と、第1光源301Gが出射する光の一部を取り込んで第1光源301Gが出射した光の強度を検出する第1検出部304Gと、第2光源301Bが出射する光の一部を取り込んで第2光源301Bが出射した光の強度を検出する第2検出部304Bと、第3光源301Rが出射する光の一部を取り込んで第3光源301Rが出射した光の強度を検出する第3検出部304Rと、上述した各構成要素を収容する筐体305と、筐体305の内壁の一部に設けられ、光を散乱させて、光源への戻りを防止する反射制御部309とを備える。以下、実施の形態1とは構成が異なる反射制御部材について説明する。 The light source unit 300C has a plurality of light sources (first light source 301G, second light source 301B, third light source 301R) that emit light in different wavelength bands, and a first light source that bends a part of the light emitted by the first light source 301G. The intensity of the light emitted by the first light source 301G by taking in a part of the light emitted by the dichroic mirror 302, the second dichroic mirror 303 that bends a part of the light emitted by the second light source 301B, and the light emitted by the first light source 301G. The first detection unit 304G to detect, the second detection unit 304B that captures a part of the light emitted by the second light source 301B and detects the intensity of the light emitted by the second light source 301B, and the third light source 301R emits light. A third detection unit 304R that captures a part of the light and detects the intensity of the light emitted by the third light source 301R, a housing 305 that houses each of the above-mentioned components, and a part of the inner wall of the housing 305. It is provided with a reflection control unit 309 which scatters light and prevents the light from returning to the light source. Hereinafter, a reflection control member having a configuration different from that of the first embodiment will be described.
 反射制御部309は、例えば、反射面に微小な凹凸形状が形成されてなる。反射制御部309は、筐体305の内壁のうち、第1光源301Gおよび第2光源301Bが配設される壁面と対向する壁面に形成される。換言すれば、反射制御部309は、第1光源301Gおよび第2光源301Bの光軸と交差する壁面に設けられる。 The reflection control unit 309 has, for example, a minute uneven shape formed on the reflection surface. The reflection control unit 309 is formed on the inner wall of the housing 305, which faces the wall surface on which the first light source 301G and the second light source 301B are arranged. In other words, the reflection control unit 309 is provided on the wall surface intersecting the optical axes of the first light source 301G and the second light source 301B.
 第2ダイクロイックミラー303を透過した光LB´は、反射制御部309によって乱反射する(図7の矢印LB´´´)。反射制御部309によって乱反射した光は、ほとんどが光源側とは異なる方向に進む。また、第1ダイクロイックミラー302を透過した光LG´も、反射制御部309に乱反射する(図7の矢印LG´´´)。本実施の形態3では、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻る光が抑制される。 Light L B 'is transmitted through the second dichroic mirror 303, it is reflected diffusely by the reflection control unit 309 (arrow L B''' in Figure 7). Most of the light diffusely reflected by the reflection control unit 309 travels in a direction different from that on the light source side. Further, the light L G that has passed through the first dichroic mirror 302 'is also diffusely on the reflection control unit 309 (arrow L G''' in Figure 7). In the third embodiment, the dichroic light transmitted through the dichroic mirror L B ', L G' is, the light returns to the light source is reflected by the inner wall of the casing 305 is inhibited.
 以上説明した実施の形態3では、光源から出射され、ダイクロイックミラーを透過した光(例えばLB´、LG´)が、反射制御部309で乱反射して光路が変わる。本実施の形態3では、ダイクロイックミラーを透過した光LB´、LG´が、筐体305の内壁で反射されて再び光源に戻ることがないため、筐体305の内壁で反射した光が光源等を経て検出部に入射することはない。本実施の形態3によれば、筐体305の内壁で反射した光が検出部に入射しないため、光源が出射した光の強度を高精度に検出することができる。 In the third embodiment described above, the light emitted from the light source, dichroic mirrors and transmitted light (e.g., L B ', L G') is, the optical path is changed by diffused reflection by the reflection control unit 309. In the third embodiment, the dichroic optical mirror has been transmitted through the L B ', L G' is, because never again return to the light source is reflected by the inner wall of the casing 305, light reflected by the inner wall of the housing 305 It does not enter the detection unit via a light source or the like. According to the third embodiment, since the light reflected by the inner wall of the housing 305 does not enter the detection unit, the intensity of the light emitted by the light source can be detected with high accuracy.
(実施の形態4)
 次に、本発明の実施の形態4について、図8を参照して説明する。図8は、本発明の実施の形態4にかかる内視鏡システムが備える光源装置の光源部の要部の構成を示す図である。本実施の形態4では、光源の一例として、第1光源301Gの構成を説明する。なお、第2光源301Bおよび第3光源301Rについても同様の構成とすることができる。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a diagram showing a configuration of a main part of a light source portion of a light source device included in the endoscope system according to the fourth embodiment of the present invention. In the fourth embodiment, the configuration of the first light source 301G will be described as an example of the light source. The same configuration can be applied to the second light source 301B and the third light source 301R.
 第1光源301Gは、LEDチップ301aと、LEDチップ301aを保持する保持部301bと有する。 The first light source 301G has an LED chip 301a and a holding unit 301b that holds the LED chip 301a.
 保持部301bは、LEDチップ301aを収容する有底の凹部301cを有する。凹部の開口端には、切欠き部301dが形成されている。切欠き部301dは、光源部を組み立てた際に、第1検出部304Gから遠い側に位置する端部に配置される(図8参照)。
 第1検出部304Gは、LEDチップ301aが出射する光の一部(図8において破線矢印で示す光LG)を受光する。
The holding portion 301b has a bottomed recess 301c for accommodating the LED chip 301a. A notch 301d is formed at the open end of the recess. The cutout portion 301d is arranged at an end portion located on the side far from the first detection unit 304G when the light source unit is assembled (see FIG. 8).
First detector 304G is receiving a part of the light emitted from the LED chip 301a is emitted (light L G indicated by the broken line arrows in FIG. 8).
 この際、切欠き部301dが形成されていない構成では、凹部301cの開口端(端部301e)において、LEDチップ301aからの光が反射されることによって、この反射光が第1検出部304Gに入射する場合があった(点線矢印で示す光LN)。これに対し、本実施の形態4では、切欠き部301dを形成し、第2検出部304Gから遠い側に配置することによって、LEDチップ301aからの光が反射して、第1検出部304Gに入射することが抑制される。 At this time, in the configuration in which the notch portion 301d is not formed, the light from the LED chip 301a is reflected at the open end (end portion 301e) of the recess 301c, so that the reflected light is transmitted to the first detection unit 304G. In some cases, it was incident (light L N indicated by a dotted arrow). On the other hand, in the fourth embodiment, by forming the notch 301d and arranging it on the side far from the second detection unit 304G, the light from the LED chip 301a is reflected and the first detection unit 304G. Incident is suppressed.
(実施の形態4の変形例)
 次に、本発明の実施の形態4の変形例について、図9を参照して説明する。図9は、本発明の実施の形態4の変形例にかかる内視鏡システムが備える光源装置の光源部の要部の構成を示す図である。本変形例では、上述した実施の形態4と同様に、光源の一例として、第1光源301Gの構成を説明する。なお、第2光源301Bおよび第3光源301Rについても同様の構成とすることができる。
(Modified Example of Embodiment 4)
Next, a modified example of the fourth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a diagram showing a configuration of a main part of a light source portion of a light source device included in an endoscope system according to a modified example of the fourth embodiment of the present invention. In this modification, the configuration of the first light source 301G will be described as an example of the light source, as in the case of the fourth embodiment described above. The same configuration can be applied to the second light source 301B and the third light source 301R.
 第1光源301Gは、LEDチップ301aと、LEDチップ301aを保持する保持部301bと有する。本変形例では、凹部301cにおいて、光源部を組み立てた際に、第1検出部304Gから遠い側に位置する端部(端部301e)に、反射防止部301fを設ける。 The first light source 301G has an LED chip 301a and a holding unit 301b that holds the LED chip 301a. In this modification, when the light source portion is assembled in the recess 301c, the antireflection portion 301f is provided at the end portion (end portion 301e) located on the side far from the first detection unit 304G.
 反射防止部310fは、光を吸収する塗料や、入射した光を反射しない部材、例えば、上述した黒色の樹脂からなる部材、表面が黒色にメッキされた部材を用いて形成される。反射防止部310fは、凹部301cの、第1検出部304G側とは反対側の、内周面に設けられ、LEDチップ301aからの光であって、第1検出部304Gに直接入射する光とは異なる光(点線矢印で示す光LN´)を吸収する。本変形例では、凹部301cに反射防止部301fを形成することによって、LEDチップ301aからの光が反射して、第1検出部304Gに入射することが抑制される。 The antireflection portion 310f is formed by using a paint that absorbs light, a member that does not reflect incident light, for example, a member made of the black resin described above, or a member whose surface is plated black. The antireflection unit 310f is provided on the inner peripheral surface of the recess 301c on the side opposite to the first detection unit 304G side, and is the light from the LED chip 301a that is directly incident on the first detection unit 304G. absorbing the (light L N 'shown by a dotted line arrow) different light. In this modification, by forming the antireflection portion 301f in the recess 301c, the light from the LED chip 301a is suppressed from being reflected and incident on the first detection unit 304G.
 なお、上述した実施の形態1~4では、照明部3aが、処理装置3とは一体である例を説明したが、照明部3aおよび処理装置3が別体であって、例えば処理装置3の外部に光源部300および照明制御部320が設けられているものであってもよい。 In the above-described first to fourth embodiments, the example in which the lighting unit 3a is integrated with the processing device 3 has been described, but the lighting unit 3a and the processing device 3 are separate bodies, for example, the processing device 3. A light source unit 300 and a lighting control unit 320 may be provided externally.
 また、上述した実施の形態1~4において、反射制御部は、少なくとも、ダイクロイックミラーを通過した光の照射領域に設けられていればよい。 Further, in the above-described first to fourth embodiments, the reflection control unit may be provided at least in the irradiation region of the light that has passed through the dichroic mirror.
 また、上述した実施の形態1~4では、第1ダイクロイックミラー302および第2ダイクロイックミラー303をそれぞれ通過した光の反射を、反射制御部によって制御する例を説明したが、いずれか一方のダイクロイックミラーを通過した光の反射を制御する構成としてもよい。この場合、制御対象のダイクロイックミラーを通過する光の照射領域に、反射制御部が設けられる。 Further, in the above-described first to fourth embodiments, an example in which the reflection of light passing through the first dichroic mirror 302 and the second dichroic mirror 303 is controlled by the reflection control unit has been described, but one of the dichroic mirrors has been described. It may be configured to control the reflection of the light passing through the. In this case, a reflection control unit is provided in the irradiation region of the light passing through the dichroic mirror to be controlled.
 また、上述した実施の形態1~4では、本発明にかかる内視鏡システムが、観察対象が被検体内の生体組織などである軟性の内視鏡2を用いた内視鏡システム1であるものとして説明したが、硬性の内視鏡や、材料の特性を観測する工業用の内視鏡、ファイバースコープ、光学視管などの光学内視鏡の接眼部にカメラヘッドを接続したものを用いた内視鏡システムであっても適用できる。 Further, in the above-described embodiments 1 to 4, the endoscope system according to the present invention is an endoscope system 1 using a flexible endoscope 2 whose observation target is a living tissue in a subject or the like. Although it was explained as a thing, a rigid endoscope, an industrial endoscope for observing the characteristics of a material, a fiberscope, an optical endoscope, and other optical endoscopes with a camera head connected to the eyepiece are used. It can also be applied to the endoscopic system used.
 以上のように、本発明にかかる光源ユニットは、光源が出射した光の強度を高精度に検出するのに有用である。 As described above, the light source unit according to the present invention is useful for detecting the intensity of the light emitted by the light source with high accuracy.
 1 内視鏡システム
 2 内視鏡
 3 処理装置
 3a 照明部
 4 表示装置
 21 挿入部
 22 操作部
 23 ユニバーサルコード
 24 先端部
 25 湾曲部
 26 可撓管部
 31 画像処理部
 32 入力部
 33 制御部
 34 記憶部
 300 光源部
 301G 第1光源
 301B 第2光源
 301R 第3光源
 302 第1ダイクロイックミラー
 303 第2ダイクロイックミラー
 304G 第1検出部
 304B 第2検出部
 304R 第3検出部
 305 筐体
 306 反射制御部材
 308G 第1反射制御部材
 308B 第2反射制御部材
 308G´ 第1反射制御部
 308B´ 第2反射制御部
 309 反射制御部
 310 光源ドライバ
 320 照明制御部
1 Endoscope system 2 Endoscope 3 Processing device 3a Lighting unit 4 Display device 21 Insertion unit 22 Operation unit 23 Universal cord 24 Tip part 25 Curved part 26 Flexible tube part 31 Image processing unit 32 Input unit 33 Control unit 34 Storage Part 300 Light source unit 301G 1st light source 301B 2nd light source 301R 3rd light source 302 1st dichroic mirror 303 2nd dichroic mirror 304G 1st detection unit 304B 2nd detection unit 304R 3rd detection unit 305 Housing 306 Reflection control member 308G 1 Reflection control member 308B Second reflection control member 308G'First reflection control unit 308B' Second reflection control unit 309 Reflection control unit 310 Light source driver 320 Lighting control unit

Claims (6)

  1.  第1の光を出射する第1光源と、
     前記第1の光と同じ方向に進行し、該第1の光とは波長帯域が異なる第2の光を出射する第2光源と、
     前記第1光源から出射された前記第1の光の一部を反射する第1の光学部材と、
     前記第1光源から出射された光を通過させ、前記第2光源から出射された前記第2の光の一部を、前記第1の光学部材が反射した第1の光が進行する第1の光路に連なる第2の光路を進行する向きに反射する第2の光学部材と、
     前記第1光源から出射された前記第1の光の一部であって、前記第1の光学部材が反射する一部とは異なる一部を検出する第1検出部と、
     前記第2光源から出射された前記第2の光の一部であって、前記第2の光学部材が反射する一部とは異なる一部を検出する第2検出部と、
     前記第1光源、前記第2光源、前記第1の光学部材、前記第2の光学部材、前記第1検出部および前記第2検出部を収容する筐体と、
     前記筐体において、前記第1光源および前記第1の光学部材を繋ぐ光路を延長した直線と交差する内壁に設けられ、前記第1の光の反射を制御する反射制御部と、
     を備える光源ユニット。
    The first light source that emits the first light and
    A second light source that travels in the same direction as the first light and emits a second light having a wavelength band different from that of the first light.
    A first optical member that reflects a part of the first light emitted from the first light source, and
    A first light traveling through the light emitted from the first light source and reflecting a part of the second light emitted from the second light source by the first optical member. A second optical member that reflects in the direction of travel along the second optical path connected to the optical path,
    A first detection unit that detects a part of the first light emitted from the first light source that is different from the part reflected by the first optical member.
    A second detection unit that detects a part of the second light emitted from the second light source, which is different from the part reflected by the second optical member.
    A housing that houses the first light source, the second light source, the first optical member, the second optical member, the first detection unit, and the second detection unit.
    In the housing, a reflection control unit provided on an inner wall intersecting a straight line extending an optical path connecting the first light source and the first optical member and controlling the reflection of the first light.
    Light source unit equipped with.
  2.  前記反射制御部は、前記第2の光の反射を制御する
     請求項1に記載の光源ユニット。
    The light source unit according to claim 1, wherein the reflection control unit controls the reflection of the second light.
  3.  前記反射制御部は、光を吸収する
     請求項1に記載の光源ユニット。
    The light source unit according to claim 1, wherein the reflection control unit absorbs light.
  4.  前記反射制御部は、前記第1検出部に向かう光路とは異なる光路に前記第1の光を反射する
     請求項1に記載の光源ユニット。
    The light source unit according to claim 1, wherein the reflection control unit reflects the first light in an optical path different from the optical path toward the first detection unit.
  5.  前記反射制御部は、光を乱反射させる
     請求項1に記載の光源ユニット。
    The light source unit according to claim 1, wherein the reflection control unit diffusely reflects light.
  6.  前記第1検出部は、第1光源から第1の光学部材までを繋ぐ光路上とは異なる位置に配置される
     請求項1に記載の光源ユニット。
    The light source unit according to claim 1, wherein the first detection unit is arranged at a position different from that on an optical path connecting the first light source to the first optical member.
PCT/JP2019/018163 2019-04-26 2019-04-26 Light source unit WO2020217541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018163 WO2020217541A1 (en) 2019-04-26 2019-04-26 Light source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018163 WO2020217541A1 (en) 2019-04-26 2019-04-26 Light source unit

Publications (1)

Publication Number Publication Date
WO2020217541A1 true WO2020217541A1 (en) 2020-10-29

Family

ID=72941416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018163 WO2020217541A1 (en) 2019-04-26 2019-04-26 Light source unit

Country Status (1)

Country Link
WO (1) WO2020217541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168942A1 (en) * 2021-02-05 2022-08-11 古河電気工業株式会社 Optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154067A (en) * 1999-12-01 2001-06-08 Nec Corp Optical transmitting/receiving module using optical waveguide
WO2016170823A1 (en) * 2015-04-24 2016-10-27 オリンパス株式会社 Light source device
WO2017187830A1 (en) * 2016-04-27 2017-11-02 オリンパス株式会社 Cooling device and light source device for endoscope
WO2018151101A1 (en) * 2017-02-14 2018-08-23 古河電気工業株式会社 Optical module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154067A (en) * 1999-12-01 2001-06-08 Nec Corp Optical transmitting/receiving module using optical waveguide
WO2016170823A1 (en) * 2015-04-24 2016-10-27 オリンパス株式会社 Light source device
WO2017187830A1 (en) * 2016-04-27 2017-11-02 オリンパス株式会社 Cooling device and light source device for endoscope
WO2018151101A1 (en) * 2017-02-14 2018-08-23 古河電気工業株式会社 Optical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168942A1 (en) * 2021-02-05 2022-08-11 古河電気工業株式会社 Optical device

Similar Documents

Publication Publication Date Title
EP3085300A1 (en) Endoscope device
US7476197B2 (en) Scanned beam imagers and endoscopes utilizing multiple light collectors
US9414739B2 (en) Imaging apparatus for controlling fluorescence imaging in divided imaging surface
US10264948B2 (en) Endoscope device
JP6329715B1 (en) Endoscope system and endoscope
US20190082936A1 (en) Image processing apparatus
JP2010012102A (en) Light source device and endoscope apparatus using the same
WO2017115442A1 (en) Image processing apparatus, image processing method, and image processing program
US20190387964A1 (en) Endoscope apparatus
WO2020178962A1 (en) Endoscope system and image processing device
WO2020217541A1 (en) Light source unit
US10462440B2 (en) Image processing apparatus
US20220378284A1 (en) Endoscope light source device and light quantity adjusting method
KR20200021708A (en) Endoscope apparatus capable of visualizing both visible light and near-infrared light
US10188266B2 (en) Endoscopic imaging device for reducing data amount of image signal
JP7454417B2 (en) Medical control device and medical observation system
JP6937902B2 (en) Endoscope system
JP5948191B2 (en) Endoscope probe device and endoscope system
JP2017123997A (en) Imaging system and processing device
US20190290113A1 (en) Endoscope apparatus and medical imaging device
JP6663692B2 (en) Image processing apparatus, endoscope system, and control method for image processing apparatus
WO2022208629A1 (en) Fluorescence observation device, photoimmunotherapy system, and fluorescence endoscope
JP7213245B2 (en) Endoscope light source device, endoscope light source control method, and endoscope system
US20230389777A1 (en) Sterile Calibrating Cap and Methods for Using the Same on an Endoscope
WO2021100186A1 (en) Light source device for endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP