WO2020217331A1 - Manufacturing system and manufacturing method for sintered compact - Google Patents

Manufacturing system and manufacturing method for sintered compact Download PDF

Info

Publication number
WO2020217331A1
WO2020217331A1 PCT/JP2019/017351 JP2019017351W WO2020217331A1 WO 2020217331 A1 WO2020217331 A1 WO 2020217331A1 JP 2019017351 W JP2019017351 W JP 2019017351W WO 2020217331 A1 WO2020217331 A1 WO 2020217331A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
powder
robot
sintering
manufacturing system
Prior art date
Application number
PCT/JP2019/017351
Other languages
French (fr)
Japanese (ja)
Inventor
真 野口
達司 山本
林 哲也
Original Assignee
住友電工焼結合金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工焼結合金株式会社 filed Critical 住友電工焼結合金株式会社
Priority to DE112019007258.7T priority Critical patent/DE112019007258T5/en
Priority to US17/603,346 priority patent/US20220176448A1/en
Priority to PCT/JP2019/017351 priority patent/WO2020217331A1/en
Priority to CN201980094991.5A priority patent/CN113646112A/en
Priority to JP2021515367A priority patent/JPWO2020217331A1/en
Publication of WO2020217331A1 publication Critical patent/WO2020217331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/005Loading or unloading powder metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a sintered body manufacturing system and manufacturing method.
  • Patent Documents 1 and 2 describe a preparatory step for preparing a raw material powder containing a metal powder, a molding step for producing a powder compact by uniaxially pressing the raw material powder using a mold, and a powder compact.
  • a method for manufacturing a sintered body including a processing step of manufacturing a processed molded body by machining the above and a sintering step of sintering the processed molded body to obtain a sintered body is described.
  • Patent Document 2 it is recommended that the average relative density of the entire compact compact is 93% or more in the above molding step.
  • the production system includes a molding apparatus for producing a powder compact having a relative density of 93% or more in whole or a part by uniaxially pressing a raw material powder containing a metal powder, and the powder.
  • a robot processing device having an articulated robot that produces a processed molded body by machining the molded body, and induced heating sintering that produces a sintered body by sintering the processed molded body by high-frequency induction heating. It is equipped with a furnace.
  • the manufacturing system comprises a processing apparatus for producing a processed molded product by machining a powder compact according to 3D data of an object product as a reference for the shape, and the processed molded product.
  • a sintering device for producing a sintered body by sintering is provided.
  • the sintered body manufacturer will manufacture and manufacture the sintered body that follows the customer's current product as soon as possible. It is preferable to present the united product as a sample to the customer.
  • Patent Documents 1 and 2 the delivery date of the sintered body presented to the customer as a sample is not assumed.
  • An object of the present disclosure is to make it possible to shorten the delivery time of a sintered body in view of such conventional problems. Further, it is desired that the equipment for manufacturing the sintered body presented to the customer as a sample is compact (miniaturized). An object of the present disclosure is to make it possible to make a sintered body manufacturing facility compact in view of such conventional problems.
  • the delivery time of the sintered body can be shortened.
  • the manufacturing equipment for the sintered body can be made compact.
  • the production system of the present embodiment includes a molding apparatus for producing a powder compact having a relative density of 93% or more in whole or a part by uniaxially pressing a raw material powder containing a metal powder, and the powder.
  • a robot processing device having an articulated robot that produces a processed molded body by machining the molded body, and induced heating sintering that produces a sintered body by sintering the processed molded body by high-frequency induction heating. It is equipped with a furnace.
  • the induction heating sintering furnace capable of producing the sintered body in a shorter time as compared with the belt type continuous sintering furnace is provided, the delivery time of the sintered body can be shortened.
  • a robot processing apparatus having a smaller installation space than a 5-axis machining center and an induction heating sintering furnace having a smaller installation space than a belt-type continuous sintering furnace are provided. Manufacturing equipment can be made compact.
  • the manufacturing system of the present embodiment it is preferable to further include an acquisition unit for acquiring 3D data of the target product as a reference for the shape.
  • the acquisition unit acquires the 3D data of the target product as the reference of the shape. Therefore, as described later, the inspection of the sintered body and the creation of the processing program based on the acquired 3D data are performed. Will be able to execute.
  • the manufacturing system of the present embodiment is further provided with an inspection device that executes at least one inspection of the dimensional accuracy of the sintered body and the presence or absence of defects based on the 3D data of the target product. preferable. According to the manufacturing system of the present embodiment, since the inspection device performs the above inspection, it is possible to manufacture a high-precision sintered body that is comparable to the target product.
  • a computer device for creating a machining program for controlling the operation of the robot machining device based on the 3D data of the target product is further provided, and the robot machining device is provided. It is preferable to prepare the processed molded product based on the processing program.
  • the computer device creates the above-mentioned machining program, and the robot machining device prepares the machined molded product based on the above-mentioned machining program, so that the shape is substantially the same as that of the target product.
  • the robot processing apparatus can be controlled so as to process the powder compact.
  • the robot processing apparatus has a plurality of the articulated robots, and the plurality of articulated robots hold a tool for processing the powder compact. It is preferable to include a robot and a second robot that holds the powder compact.
  • the relative density of the powder compact is 93% or more, even if the powder compact held by the second robot is cut with the tool held by the first robot. , The powder compact does not break. Therefore, the powder compact can be processed quickly. In addition, the tool can be brought into contact with the powder compact at an arbitrary angle, and complicated machining can be performed quickly.
  • a processing device for producing a processed molded product by machining a powder compact according to the 3D data of the target product as a reference for the shape, and the processed molded product are used.
  • a sintering device for producing a sintered body by sintering is provided.
  • the processing apparatus manufactures the processed molded product by machining the powder compact according to the 3D data of the target product, and the sintering apparatus sintered the processed molded product.
  • a sintered body is produced, so that a sintered body having substantially the same shape as the target product can be produced in a short time. Therefore, the delivery time of the sintered body can be shortened.
  • the manufacturing system of the present embodiment it is preferable to further include a 3D scanner that acquires 3D data of the target product in a non-contact manner. According to the manufacturing system of the present embodiment, since the 3D scanner acquires the 3D data of the target product in a non-contact manner, the 3D data of the target product can be quickly acquired even if the 3D data of the target product does not exist. ..
  • the processing device is a robot processing device having an articulated robot, in order to control the operation of the robot processing device based on the 3D data of the target product. It is preferable to further provide a computer device for creating the machining program of.
  • the manufacturing equipment for the sintered body can be made compact.
  • the robot processing device since the computer device creates the above-mentioned processing program, the robot processing device can be controlled so as to process the powder compact into substantially the same shape as the target product. ..
  • the manufacturing system of the present embodiment is further provided with an inspection device that executes at least one inspection of the dimensional accuracy of the sintered body and the presence or absence of defects based on the 3D data of the target product. preferable. According to the manufacturing system of the present embodiment, since the inspection device performs the above inspection, it is possible to manufacture a high-precision sintered body that is comparable to the target product.
  • a molding apparatus for producing the powder compact having a relative density of 93% or more in whole or a part by uniaxially pressing the raw material powder containing the metal powder is further provided.
  • the molding apparatus uniaxially pressurizes the raw material powder containing the metal powder to produce the powder compact having the above relative density, so that the powder compact with high precision can be quickly produced. can get. Therefore, the delivery time of the sintered body can be shortened.
  • the sintering apparatus is preferably an induction heating sintering furnace that sinters the processed molded product by high frequency induction heating.
  • the induction heating sintering furnace can produce the sintered body in a shorter time than the belt type continuous sintering furnace, so that the delivery time of the sintered body can be shortened. Further, since the installation space of the induction heating sintering furnace is smaller than that of the belt type continuous sintering furnace, the equipment for manufacturing the sintered body can be made compact.
  • the processing device is a robot processing device having an articulated robot, and the sintering device is the processing molding. It is an induction heating sintering furnace that sinters a body by high frequency induction heating, and the device mounted on the moving device preferably includes the robot processing device and the induction heating sintering furnace.
  • the mobile device since the mobile device is equipped with a robot processing device and an induction heating sintering furnace, these devices can be transported to a point near the customer's residence. Therefore, the sintered body can be manufactured at a point near the customer's residence. Therefore, the sintered body can be delivered to the customer in a shorter time than when the sintered body is manufactured in a factory far from the customer's residence.
  • the device mounted on the mobile device includes a 3D scanner that acquires 3D data of the target product in a non-contact manner. According to the manufacturing system of the present embodiment, since the 3D scanner acquires the 3D data of the target product in a non-contact manner, the 3D data of the target product is obtained even if the customer or a third party does not store the 3D data of the target product. Can be obtained quickly.
  • the relative density of the whole or a part of the powder compact is 96% or more.
  • the strength of the sintered body is higher than that when the relative density is less than that, and the powder compact is processed by a robot processing device. This is because it becomes hard to break.
  • the manufacturing method of the present embodiment is a manufacturing method of a sintered body for manufacturing the sintered body by using the manufacturing system according to any one of (1) to (14) described above. Therefore, the manufacturing method of the present embodiment has the same effect as the manufacturing system according to any one of (1) to (14) described above.
  • FIG. 1 is an explanatory diagram showing an outline of a method for manufacturing the sintered body S.
  • the customer provides the manufacturer with the current product C, which is a current component to be incorporated into, for example, the company's product (finished product).
  • the manufacturer manufactures the sintered body S according to the current product C, and provides the manufactured sintered body S to the customer as a sample.
  • the method for producing the sintered body S according to the present embodiment includes the procedures from step 1 to step 5.
  • the manufacturer manufactures the sintered body S having substantially the same shape as the current product C through steps 1 to 5.
  • the outline of each step 1 to 5 will be described below.
  • the combination of all or part of the devices used in the manufacturing method shown in FIG. 1 is referred to as a "manufacturing system" of the sintered body S.
  • Step 1 Acquisition of 3D data
  • Step 1 is a step of acquiring 3D CAD (Computer Aided Design) data of the target product (customer's current product C in this embodiment) which is a reference for the shape of the sintered body S. ..
  • 3D CAD Computer Aided Design
  • the three-dimensional CAD data is also referred to as "3D data”.
  • 3D data is acquired by reading the actual product C of the current product C with the 3D scanner 1.
  • the 3D scanner becomes the 3D data acquisition unit.
  • the 3D data specified by the customer, etc. is transmitted by e-mail or data is transferred using a USB memory.
  • the data may be directly input to the computer device 2 in step 2.
  • the 3D scanner 1 becomes unnecessary or non-use, and the computer device 2 becomes a 3D data acquisition unit.
  • Step 2 is a step of creating a molded body processing program (setting manufacturing conditions)
  • Step 2 is a step of creating a molded body machining program (hereinafter, also referred to as “machining program”) from the 3D data acquired in step 1.
  • the machining program is a computer program for controlling the operation of the molded body machining apparatus 32 used in step 3.
  • the creation of the machining program is executed by, for example, the computer device 2 that stores the CAD / CAM (Computer Aided Manufacturing) software.
  • CAD / CAM Computer Aided Manufacturing
  • Step 3 Manufacture of the sintered body by processing the molded body
  • Step 3 is a step of manufacturing the sintered body S by the manufacturing equipment 3.
  • the manufacturing equipment 3 used in step 3 includes a step P2 in which the molded body processing device (hereinafter, also referred to as “processing device”) 32 processes the powder compact M before sintering.
  • the processing apparatus 32 performs a predetermined processing on the powder compact M according to the processing program created in step 2.
  • Step 4 Modify the part processing program (optimize manufacturing conditions)
  • Step 4 is a step of modifying the machining program based on the 3D data of the accepted product S sintered body S manufactured in step 3.
  • the modification of the machining program is executed by, for example, a computer device 4 that stores CAD / CAT (Computer Aided Testing) software.
  • the modification result of the machining program is fed back to the machining apparatus 32 in step 3.
  • the modification result of the machining program may be fed back to the computer device 2 that creates the machining program (step 2).
  • Step 5 Provision of Sintered Body (Sample Product)
  • one or a plurality of sintered bodies S manufactured by the modification program of Step 4 are determined as the sample product, and the sintered body determined as the test product is used.
  • This is a step of providing the body S to the customer.
  • Customers who are provided with the sintered body S, which is a sample product can compare the performance of the current product C and the sintered body S, for example, by using their own test equipment. If the performance of the sintered body S provided as the sample product is equal to or higher than the performance of the current product C, the customer may replace the current product C with the sintered body S.
  • the manufacturing equipment 3 (see FIG. 3) for processing the unsintered powder compact M is used in step 3, processing such as cutting is easy and the productivity is excellent. Therefore, the sintered body S can be manufactured at a lower cost and in a shorter delivery time than, for example, a cast product or a forged product. Therefore, when the current product C is a cast or forged product, the customer can expect to suppress the manufacturing cost and shorten the procurement period by replacing the current product C with the sintered body S.
  • a sintered body S such as a sprocket, a rotor, a gear, a ring, a flange, a pulley, a vane, or a bearing, which is incorporated in a machine such as an automobile, can be manufactured.
  • the sintered body S is not limited to products in the automobile field.
  • a sintered body S such as an aircraft turbine blade, an artificial bone and an artificial joint used in the medical field, or a radiation shielding component used in the nuclear field can be manufactured. Wide range of applications.
  • FIG. 2 is an explanatory diagram showing an example of the apparatus used in step 1 and step 2.
  • the apparatus used in step 1 comprises a non-contact three-dimensional shape measuring machine (hereinafter, referred to as “3D scanner”) 1.
  • the non-contact type 3D scanner 1 is a device that detects surface irregularities (distance to an arbitrary point on the surface) without touching an object, converts the detection result into three-dimensional CAD data, and captures it in the computer device 2. is there.
  • the 3D scanner 1 acquires three-dimensional coordinate data (X, Y, Z) of each point on the surface of the object while irradiating the object with light.
  • the 3D scanner 1 converts the acquired point cloud data into polygon data to generate a mesh-like three-dimensional figure.
  • the 3D scanner 1 converts the point cloud data constituting the three-dimensional figure into three-dimensional CAD data in a predetermined file format, and transmits the converted three-dimensional CAD data to the computer device 2 connected to the own machine.
  • the non-contact type 3D scanner 1 is roughly classified into a "laser light type” and a "pattern light type".
  • the laser light type scans an object while irradiating it with a laser beam, identifies the reflected light from the object with a light receiving sensor, and measures the distance to the object by trigonometry.
  • the pattern light type measures the distance from the own machine to the object by scanning while irradiating the object with the pattern light and identifying the line of the striped pattern.
  • the pattern light type can perform measurement faster than the laser light type. Therefore, in the example of FIG. 2, the pattern light type 3D scanner 1 is adopted.
  • the 3D scanner 1 illustrated in FIG. 2 is a stationary type, but the 3D scanner 1 may be a handy type scanner that can be held and measured by the user.
  • the file of the data may be read directly into the computer device 2.
  • the work of scanning the actual current product C becomes unnecessary.
  • the acquisition destination of the 3D CAD data of the current product C may be a third party other than the customer.
  • a third party for example, a manufacturer of the current product C outsourced by a customer, or a manufacturer who disassembles the finished product and specializes in reading the 3D data of the current product C can be considered.
  • the device used in step 2 comprises a computer device 2.
  • the computer device 2 includes, for example, a desktop personal computer (PC).
  • the type of the computer device 2 is not particularly limited.
  • the type of the computer device 2 may be, for example, a notebook type or a tablet type.
  • the computer device 2 is composed of an information processing device including a CPU (Central Processing Unit) and a volatile memory, and a storage device including a non-volatile memory for storing a computer program executed by the CPU and data necessary for its execution. Will be done.
  • the computer device 2 also includes an input device and a display.
  • the computer device 2 functions as a predetermined control device when the CPU reads the computer program into the volatile memory and executes it.
  • the CAD / CAM software is installed in the computer device 2.
  • the CAD / CAM software is software that realizes the creation of a machining program for operating the molded body machining device 32 in response to a user's operation input to the GUI (Graphical User Interface) of the computer device 2.
  • GUI Graphic User Interface
  • the CAD / CAM software for example, software such as "MasterCam” or "Robotmater” (both are registered trademarks) can be adopted. These softwares can generate a machining program according to the type of the molded body machining device 32 (for example, an articulated robot or a 5-axis machining center). Further, these softwares may be capable of generating the processing program described in JP-A-2009-226562.
  • the settings required for creating the machining program include setting the shape of the workpiece (compacted compact M in this embodiment), setting the tool used for machining, setting the tool path, and the like.
  • the computer device 2 creates a molded body processing program including, for example, an NC (Numerical Control) program based on the three-dimensional CAD data of the current product C and the setting information operated and input by the user.
  • the computer device 2 transmits the machining program created by the CAD / CAM software to the molded body machining device 32 used in step 3.
  • the molding apparatus 31 manufactures a powder compact M having a simple shape such as a cylinder or a cylinder, and the processing apparatus 32 (see FIGS. 3 and 5).
  • the powder compact M is cut to produce a processed compact P having the same shape as the current product C. Therefore, the machining program created by the computer device 2 includes a program for causing the machining device 32 to perform cutting on the dust compact M having a predetermined shape.
  • the three-dimensional CAD data of the powder compact M, which is the work piece, is registered in advance in the computer device 2.
  • the machining program uses different tools for each type of work.
  • Articulated robots 201, 202 It is preferable to include a code instructing.
  • the tool used may be an end mill.
  • the tool used may be a side cutter.
  • the tool used When cutting so as to widen the middle of the groove formed in the powder compact M, the tool used may be a T-slot cutter.
  • the tool used When cutting a through hole in the powder compact M, the tool used may be a drill.
  • the drill used for drilling is a rounded tip drill having an arc-shaped cutting edge at the tip (see, for example, JP-A-2016-113657) or a candle-shaped drill (see, for example, JP-A-2016-113658). Is preferable. By adopting these drills, it is possible to suppress the occurrence of edge chipping at the hole outlet of the powder compact M.
  • the preferable rotation speed of the tool used when cutting the dust compact M is, for example, 500 to 50,000 rpm. More preferably, it is 1000 to 15000 rpm.
  • the preferred feed rate of the tool used when cutting the dust compact M is, for example, 20 to 6000 mm / min. More preferably, it is 200 to 2000 mm / min.
  • the cutting depth and cutting position of the dust compact M are determined by the three-dimensional CAD data of the dust compact M manually input by the user in step 2 and the three-dimensional CAD data of the current product C acquired in step 1. Calculated based on.
  • FIG. 3 is an overall configuration diagram showing an example of the manufacturing equipment 3 used in step 3.
  • the manufacturing facility 3 of the present embodiment is a facility in which devices 31 to 35 for individually executing the steps P1 to P5 are installed in order.
  • the manufacturing facility 3 is installed in the factory of the manufacturer of the sintered body S.
  • the manufacturing equipment 3 illustrated in FIG. 3 includes devices 31 to 35 corresponding to steps P1 to P5, a conveyor 36 passing in the vicinity of each device 31 to 35, and a work for each device 31 to 35. It comprises a production line including a robot arm 37 for carrying in and out (such as a dust compact M). The robot arm 37 executes the loading of the work from the conveyor 36 to the devices 32 to 35 and the loading and unloading of the work from the devices 31 to 35 to the conveyor 36 in units of one.
  • each process P1 to P5 executed in the manufacturing facility 3 is as follows.
  • P1) Molding step By uniaxially pressing the raw material powder using a mold, a powder compact M having a relative density of 93% or more in whole or part is produced.
  • P2) Processing step The powder compact M is machined to produce a processed compact P.
  • P4) Finishing process Finishing is performed so that the actual size of the sintered body S approaches the design size.
  • P5) Inspection step Inspect the sintered body S for dimensional accuracy and / or the presence or absence of defects.
  • the metal powder that is the raw material of the molding step P1 is the main material that constitutes the sintered body S.
  • the metal powder include iron or iron alloy powder containing iron as a main component.
  • the metal powder typically, pure iron powder or iron alloy powder is used.
  • the "iron alloy containing iron as a main component” means that an iron element is contained in an amount of more than 50% by mass, preferably 80% by mass or more, and further 90% by mass or more as a constituent component.
  • the iron alloy include those containing at least one alloying element selected from Cu, Ni, Sn, Cr, Mo, Mn and C.
  • the above alloying elements contribute to the improvement of the mechanical properties of the iron-based sintered body.
  • the total contents of Cu, Ni, Sn, Cr, Mn and Mo are 0.5% by mass or more and 5.0% by mass or less, and further 1.0% by mass or more and 3.0% by mass or less. Is mentioned.
  • the content of C may be 0.2% by mass or more and 2.0% by mass or less, and further 0.4% by mass or more and 1.0% by mass or less.
  • iron powder may be used as the metal powder, and the above-mentioned alloying element powder (alloyed powder) may be added thereto.
  • iron is a constituent component of the metal powder at the stage of the raw material powder, but iron is alloyed by reacting with the alloying element by sintering in the sintering step P3.
  • the content of the metal powder (including the alloyed powder) in the raw material powder may be, for example, 90% by mass or more, and further 95% by mass or more.
  • the metal powder for example, those prepared by a water atomization method, a gas atomization method, a carbonyl method, a reduction method or the like can be used.
  • the average particle size of the metal powder is, for example, 20 ⁇ m or more and 200 ⁇ m or less, and further 50 ⁇ m or more and 150 ⁇ m or less.
  • the average particle size of the metal powder is easy to handle and pressure molding.
  • the average particle size of the metal powder is easy to secure the fluidity of the raw material powder.
  • the average particle size of the metal powder is easy to obtain a sintered body S having a dense structure.
  • the average particle size of the metal powder is the average particle size of the particles that make up the metal powder.
  • the average particle size of the particles is, for example, a particle size (D50) at which the cumulative volume in the volume particle size distribution measured by a laser diffraction type particle size distribution measuring device is 50%.
  • Example of raw material powder 2 Induction heating
  • Fe powder and Fe alloy powder may be collectively referred to as Fe-based powder.
  • Fe powder, Fe alloy powder The Fe powder is pure iron powder.
  • the Fe alloy powder has a plurality of Fe alloy particles containing iron as a main component and containing one or more additive elements selected from, for example, Ni and Mo. Fe alloys allow unavoidable impurities to be included. Specific examples of the Fe alloy include Fe—Ni—Mo based alloys.
  • As the Fe-based powder for example, water atomizing powder, gas atomizing powder, carbonyl powder, and reducing powder can be used.
  • the content of the Fe-based powder in the raw material powder is, for example, 90% by mass or more, and further 95% by mass or more, when the raw material powder is 100% by mass.
  • the content of Fe in the Fe alloy is 90% by mass or more, and further 95% by mass or more, when the Fe alloy is 100% by mass.
  • the total content of the additive elements in the Fe alloy is more than 0% by mass and 10.0% by mass or less, and further, 0.1% by mass or more and 5.0% by mass or less.
  • the average particle size of the Fe-based powder is, for example, 50 ⁇ m or more and 150 ⁇ m or less. By setting the average particle size of the Fe-based powder within the above range, it is easy to handle and pressure molding. By setting the average particle size of the Fe-based powder to 50 ⁇ m or more, it is easy to secure the fluidity. By setting the average particle size of the Fe-based powder to 150 ⁇ m or less, it is easy to obtain a sintered body S having a dense structure. Further, the average particle size of the Fe-based powder is 55 ⁇ m or more and 100 ⁇ m or less.
  • the "average particle size" is a particle size (D50) at which the cumulative volume in the volume particle size distribution measured by a laser diffraction type particle size distribution measuring device is 50%. This point is the same for the average particle diameters of C powder and Cu powder described later.
  • the C powder becomes a liquid phase of Fe—C when the temperature is raised, and the corners of the pores in the sintered body S are rounded to improve the strength (annular strength) of the sintered body S.
  • the content of C powder in the raw material powder is 0.2% by mass or more and 1.2% by mass or less when the raw material powder is 100% by mass.
  • the content of the C powder is 0.2% by mass or more, the liquid phase of Fe—C appears sufficiently, and the corners of the pores can be effectively rounded and the strength can be easily improved.
  • the content of the C powder By setting the content of the C powder to 1.2% by mass or less, it is easy to suppress the excessive formation of the liquid phase of Fe—C, and it is easy to manufacture the sintered body S having high dimensional accuracy.
  • the content of the C powder is further preferably 0.4% by mass or more and 1.0% by mass or less, and particularly preferably 0.6% by mass or more and 0.8% by mass or less.
  • the average particle size of the C powder is preferably smaller than the average particle size of the Fe powder. Then, since the C particles can be easily dispersed uniformly among the Fe particles, the alloying can easily proceed.
  • the average particle size of the C powder is, for example, 1 ⁇ m or more and 30 ⁇ m or less, and further includes 10 ⁇ m or more and 25 ⁇ m or less.
  • the average particle size of the C powder is large, but if it is too large, the time for the liquid phase to appear becomes long, and the pores become too large, resulting in defects.
  • the raw material powder contains pure iron powder but does not contain C, the strength of the sintered body S is lower than that of the sintered body S manufactured by using the belt type continuous sintering furnace.
  • the raw material powder preferably further contains Cu powder.
  • the Cu powder contributes to the liquid phase of Fe—C when the temperature is raised in the sintering step described later.
  • Cu has a function of solid-solving in Fe to increase the strength, and by containing Cu powder, a high-strength sintered body S can be produced.
  • the content of Cu powder in the raw material powder is 0.1% by mass or more and 3.0% by mass or less when the raw material powder is 100% by mass. By setting the content of the Cu powder to 0.1% by mass or more, Cu diffuses into Fe at the time of temperature rise (sintering), and it is easy to suppress the diffusion of C into Fe, and the liquid phase of Fe—C. Is easy to generate.
  • the Fe particles expand by diffusing Cu into Fe when the temperature rises (sinters), and the shrinkage during sintering is offset. Since it works, it is easy to manufacture the sintered body S having high dimensional accuracy.
  • the content of Cu powder is 1.5% by mass or more and 2.5% by mass or less.
  • the average particle size of the Cu powder is preferably smaller than the average particle size of the Fe powder. By doing so, the Cu particles can be easily dispersed uniformly among the Fe particles, so that alloying can easily proceed.
  • the average particle size of the Cu powder is, for example, 1 ⁇ m or more and 30 ⁇ m or less, and further 10 ⁇ m or more and 25 ⁇ m or less.
  • Internal lubricant In press molding using a die, in order to prevent seizure of the metal powder on the die, it is common to use a raw material powder in which the metal powder and the internal lubricant are mixed. However, in the present embodiment, it is preferable that the raw material powder does not contain an internal lubricant, or even if it is contained, the content is 0.2% by mass or less of the total raw material powder. This is to suppress a decrease in the ratio of the metal powder in the raw material powder and to obtain a powder compact M having a relative density of 93% or more. However, it is permissible to include a small amount of internal lubricant in the raw material powder as long as a powder compact having a relative density of 93% or more can be produced. As the internal lubricant, metal soap such as lithium stearate and zinc stearate can be used.
  • an organic binder may be added to the raw material powder in order to prevent cracks and chips from occurring in the powder compact M.
  • the organic binder include polyethylene, polypropylene, polyolefin, polymethylmethacrylate, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyamide, polyester, polyether, polyvinyl alcohol, vinyl acetate, paraffin, and various waxes.
  • the organic binder may or may not be added as needed. When the organic binder is added, the amount must be such that the powder compact M having a relative density of 93% or more can be produced in the molding step P1.
  • the powder compact M is produced by uniaxially pressing the raw material powder using a mold.
  • the uniaxial pressurizing die is a die including a die and a pair of punches fitted into the upper and lower openings thereof.
  • the powder compact M is produced by compressing the raw material powder filled in the cavity of the die with the upper punch and the lower punch.
  • the powder compact M that can be molded with the above mold has a simple shape.
  • the simple shape include a columnar shape, a cylindrical shape, a prismatic shape, and a square tubular shape.
  • a punch having a convex portion or a concave portion on the punch surface may be used.
  • the simple-shaped dust compact M is formed with dents and protrusions corresponding to the protrusions and recesses.
  • a dust compact having such a dent or a protrusion is also included in the simple shape dust compact M.
  • the pressure (surface pressure) for uniaxial pressurization may be 600 MPa or more. By increasing the surface pressure, the relative density of the powder compact M can be increased. A preferable surface pressure is 1000 MPa or more, and a more preferable surface pressure is 1500 MPa or more. There is no particular upper limit on the surface pressure.
  • an external lubricant In uniaxial pressurization, it is preferable to apply an external lubricant to the inner peripheral surface of the die (the inner peripheral surface of the die or the pressing surface of the punch) in order to prevent seizure of the metal powder on the die.
  • an external lubricant for example, a metal soap such as lithium stearate or zinc stearate can be used.
  • fatty acid amides such as lauric acid amide, stearic acid amide and palmitate amide, and higher fatty acid amides such as ethylene bisstearic acid amide can also be used as external lubricants.
  • the overall average relative density of the powder compact M obtained by uniaxial pressurization is preferably 93% or more.
  • the average relative density is preferably 94% or more or 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 99.8% or more.
  • the portion where the average relative density becomes high density of 93% or more may be the whole or a part of the dust compact M.
  • the average relative density of the whole is preferably 93% or more. This is because if the whole is dense, chipping is unlikely to occur no matter where you grab it.
  • the sintered body S having an overall average relative density of 93% or more.
  • the overall average relative density of the sintered body S is substantially equal to the overall average relative density of the dust compact M before sintering.
  • the average relative density of the sintered body S is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, and the higher the average relative density, the higher the strength of the sintered body S.
  • the overall average relative density of the powder compact M is a cross section (preferably) intersecting the pressure axial direction at positions in the powder compact M near the center, near one end side, and near the other end side in the pressure axis direction.
  • the acquired images of each observation field of view are binarized to obtain the area ratio of the metal particles in the observation field of view, and the area ratio is regarded as the relative density of the observation field of view.
  • the relative densities obtained from each observation field of view are averaged to calculate the overall average relative density of the powder compact.
  • the vicinity of one end side may be, for example, a position within 3 mm from the surface of the powder compact M.
  • the powder compact M produced by uniaxial pressurization is machined without sintering. Machining is typically cutting.
  • a powder compact M having a predetermined shape is processed using a cutting tool.
  • the cutting process include milling and turning, and the milling includes drilling.
  • the cutting tool include drills and reamers in the case of drilling, milling cutters and end mills in the case of turning, and cutting tools and cutting tips with replaceable cutting edges in the case of turning.
  • cutting may be performed using a hob, a brooch, a pinion cutter, or the like.
  • machining is performed so that the metal particles are peeled off from the surface of the powder compact M by a cutting tool. Therefore, as compared with the case of cutting a cast body or a temporarily fired body, for example, the friction of the cutting tool is greatly reduced, and the life of the tool can be significantly shortened. Further, the machining waste generated by machining is composed of metal powder separated from the individual metal particles constituting the powder compact M. The powdered processing waste can be reused without being dissolved.
  • the processed molded body P obtained by machining the powder compact M is sintered.
  • the sintered body S in which the particles of the metal powder are in contact with each other and bonded to each other can be obtained.
  • predetermined conditions can be applied according to the composition of the metal powder.
  • the sintering temperature may be, for example, 1100 ° C. or higher and 1400 ° C. or lower, and further 1200 ° C. or higher and 1300 ° C. or lower.
  • the sintering time may be, for example, 15 minutes or more and 150 minutes or less, and further 20 minutes or more and 60 minutes or less.
  • the degree of processing in the processing step P2 may be adjusted based on the difference between the actual size and the design size of the sintered body S.
  • machining is performed by articulated robots 201 and 202 or a machining center, the degree of machining can be easily adjusted.
  • the surface roughness of the sintered body S is reduced by polishing the surface of the sintered body S, and the dimensions of the sintered body S are adjusted to the design dimensions (dimensions of the current product C).
  • the polishing finish is performed by a polishing device (not shown).
  • the three-dimensional CAD data of the current product C acquired in step 1 is input to the polishing apparatus.
  • the polishing apparatus calculates the design dimensions of the sintered body S from the input data, and polishes each part of the sintered body S so as to have the calculated design dimensions. For example, when the sintered body S is made of a gear, the tooth surface of the gear is polished.
  • inspection step P5 In the inspection step P5, at least one of whether the sintered body S conforms to the design dimensions (dimensions of the current product C) and whether there are any defects such as cracks is inspected.
  • These inspections are preferably performed by a non-contact type 3D scanner (for example, a laser light type or pattern light type 3D scanner) or a non-contact type non-destructive inspection device.
  • a non-contact type 3D scanner for example, a laser light type or pattern light type 3D scanner
  • a non-contact type non-destructive inspection device By using these inspection devices, the sintered bodies S can be inspected automatically and one by one.
  • FIG. 4 is a schematic configuration diagram showing an example of the molding apparatus 31 used in the molding step P1.
  • the molding apparatus 31 used in the molding step P1 includes, for example, a uniaxially pressurized press molding apparatus driven by a hydraulic servo system.
  • the press forming apparatus 31 was vertically and vertically supported by a rectangular base plate 101, columns 102 provided at the four corners of the base plate 101, a ceiling frame 103 fixed to the upper end of the columns 102, and an upper portion of the columns 102. It is provided with an upper plate 104.
  • a punch set 106 whose vertical position is controlled by the hydraulic cylinder mechanism 105 is provided above the base plate 101, and a punch set 108 whose vertical position is controlled by the hydraulic cylinder mechanism 107 is provided below the upper plate 104. It is provided.
  • a hydraulically driven upper cylinder 109 is provided at the center of the ceiling frame 103.
  • the lower end of the rod of the upper cylinder 109 and the upper surface of the upper plate 104 are connected via a link mechanism 110. Therefore, when the upper cylinder 109 is extended, the upper plate 104 is lowered to the preparation position of the raw material powder 116. After that, the punch set 106 and the punch set 108 are joined by driving the upper and lower hydraulic cylinder mechanisms 105 and 107, and the raw material powder 116 is pressurized.
  • the upper and lower hydraulic cylinder mechanisms 105 and 107 have a structure in which a plurality of hydraulic cylinders are multilayered in a coaxial center shape, and the axial center of each hydraulic cylinder is located at the center position of the base plate 101. Therefore, the press forming apparatus 31 has a slim structure in which there is no member protruding to the outside of the base plate 101, and can be installed without pits. Therefore, the press forming apparatus 31 has an advantage that the installation area and the installation cost are small.
  • the lower punch set 106 includes a cylindrical die 111, a core rod 112, an outer punch 113, and an inner punch 114.
  • a cavity is formed by the inner peripheral surface of the die 111 and the outer peripheral surface of the core rod 112.
  • the upper punch set 108 includes an upper punch 115.
  • the upper punch 115 has a cylindrical shape having a through hole for the core rod 112.
  • the upper end surface of the core rod 112 is projected from the upper end surface of the die 111, and the outer punch 113 is set at a position deeper than the inner punch 114.
  • the cavity is filled with the raw material powder 116.
  • the upper punch 115 is lowered while the outer punch 113 and the lower punch 114 are raised together.
  • the ascending speed is controlled so that the outer punch 113 and the inner punch 114 reach the top dead center at the same position at the same time.
  • the outer peripheral portion having a large filling amount of the raw material powder 116 is compressed at a higher pressure than the inner peripheral portion having a small filling amount.
  • a powder compact M having a uniform thickness is molded. Therefore, the powder compact M is a substantially donut-shaped tablet having a high-density region M1 on the outer peripheral portion and a low-density region M2 on the inner peripheral portion.
  • the above molding method is suitable for manufacturing a sintered body S having continuous sliding portions on the outer peripheral edge, such as an external tooth gear and a sprocket. For example, in the case of an external tooth gear, by setting the outer peripheral side of the dust compact M to the high density region M1, an external tooth having high rigidity and excellent wear resistance can be obtained.
  • the inner punch 114 is set at a position deeper than the outer punch 113 and the raw material powder 116 is press-molded, the inner peripheral portion is the high density region M1 and the outer peripheral portion is the low density region M2.
  • the powder compact M is obtained.
  • the above molding method is suitable for manufacturing a sintered body S having continuous sliding portions on the inner peripheral edge, such as an internal tooth gear.
  • an internal tooth gear by setting the inner peripheral side of the powder compact M to the high-density region M1, an internal tooth having high rigidity and excellent wear resistance can be obtained.
  • the relative density of the high density region M1 may be 93% or more, and the relative density of the low density region M2 is 93%. It may be less than. If the outer punch 113 and the inner punch 114 are set at the same depth position and the raw material powder 116 is press-molded, the powder compacted product having an overall average relative density of 93% or more using the press molding apparatus 31. M can also be molded.
  • FIG. 5 is a schematic configuration diagram showing an example of the processing apparatus 32 used in the processing step P2.
  • the processing device 32 used in the processing step P2 includes, for example, a robot processing device that processes the powder compact M using the articulated robots 201 and 202. Since the installation space of such a robot processing device 32 is smaller than that of, for example, a 5-axis machining center, it contributes to the compactification of the manufacturing equipment 3 for the sintered body S.
  • the robot processing device 32 of the present embodiment includes two articulated robots 201 and 202 and a control device 203 that controls the operation of both articulated robots 201 and 202.
  • the first robot 201 is a robot that holds a tool 204 such as a drill.
  • the other second robot 202 is a robot that holds the powder compact M.
  • the first robot 201 has a grip portion 205 of the tool 204 at the tip end portion of the arm.
  • the first robot 201 can grip different types of tools 204 by the grip portion 205 in response to a command from the control device 203.
  • the second robot 202 has a grip portion 206 of the dust compact M at the tip of the arm.
  • the second robot 202 can grip the powder compact M being conveyed to the conveyor 36 by the grip portion 206.
  • the second robot 202 can also return the processed molded product P to the conveyor 36.
  • the control device 203 includes a first communication unit 207, a second communication unit 208, a control unit 209, and a storage unit 210.
  • the first communication unit 207 includes a communication interface that communicates with an external device in accordance with a predetermined communication standard such as Ethernet (registered trademark).
  • the second communication unit 208 includes a communication interface communicably connected to the first and second arms 201 and 202.
  • the control unit 209 includes an information processing device including a CPU and a volatile memory.
  • the storage unit 210 includes a storage device including a recording medium such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • the control unit 209 outputs each extracted operation code to the second communication unit 208 in order, and causes the articulated robots 201 and 202 to transmit the code.
  • the articulated robots 201 and 202 perform a predetermined operation according to the received operation code.
  • the articulated robots 201 and 202 perform predetermined processing on the powder compact M in response to a command from the control device 203.
  • the first and second robots 201 and 202 have an arm structure having at least 6 degrees of freedom so that both the position and the posture of the work object (tool 204 and powder compact M) can be adjusted in three dimensions. Is preferable. However, when it is not necessary to adjust the position and posture with a high degree of freedom, such as holding the powder compact M at the same position during processing, a second robot 202 with a degree of freedom of less than 6 is adopted. May be good.
  • the relative density of the dust compact M is 93% or more, the dust compact M held by the second robot 202 is cut by the tool 204 of the first robot 201. However, the powder compact M is not broken. Therefore, the powder compact M can be processed quickly. Further, since the first robot 201 has at least 6 degrees of freedom, the tool 204 can be brought into contact with the powder compact M at an arbitrary angle, and complicated machining can be performed quickly.
  • FIG. 6 is a schematic configuration diagram showing an example of the sintering apparatus 33 used in the sintering step P3.
  • the sintering apparatus 33 used in the sintering step P3 is, for example, from an induction heating sintering furnace that heats a processed dust compact M (processed molded product P) by a high frequency induction method. Become. Since the heating by the high frequency guidance method can raise the temperature of the object at high speed, the processed molded product P can be raised to a predetermined temperature in a short time. Therefore, the sintered body S can be easily manufactured in a short time.
  • the induction heating sintering furnace 33 includes a vertically long chamber 301, a cylindrical heating container 302 housed in the chamber 301, and a cooling container 303 arranged below the heating container 302. It is provided with an elevating table 304 arranged below the heating container 302. An induction coil 305 is wound around the outer peripheral surface of the heating container 302, and the inside of the heating container 302 and the inside of the cooling container 303 communicate with each other in the vertical direction.
  • the elevating table 304 can raise and lower the processed molded product P to either the inside of the heating container 302 or the inside of the cooling container 303.
  • the induction heating sintering furnace 33 also includes a power source (not shown) whose output value (for example, electric power value) and frequency with respect to the induction coil 305 can be adjusted.
  • the processed molded body P is placed on the elevating table 304 by the robot arm 37.
  • the elevating table 304 positions the processed molded product P inside the heating container 302.
  • the elevating table 304 positions the processed molded product P after sintering inside the cooling container 303.
  • the induction heating sintering furnace 33 preferably includes a gas supply path for supplying an inert gas inside the heating container 302 and a gas discharge path for discharging the gas to the outside of the heating container 302.
  • the processed molded product P can be sintered under a non-oxidizing gas atmosphere.
  • the inert gas include nitrogen gas and argon gas.
  • the induction heating sintering furnace 33 can raise the temperature of the object at high speed and raise the processed molded product P to a predetermined temperature in a short time. Therefore, there is an advantage that the sintered body S can be manufactured in a short time as compared with, for example, a belt type continuous sintering furnace. Since the induction heating sintering furnace 33 has a high heating rate, there is an advantage that a narrow installation space is sufficient as compared with, for example, a belt type continuous sintering furnace. In the case of the induction heating sintering furnace 33, for example, a relatively small chamber 301 (for example, 1.5 m ⁇ 1.5 m) can be adopted.
  • the induction heating sintering furnace 33 requires only a short time to sinter the processed molded product P, and it is not necessary to keep the temperature of the sintered furnace 33 while the processed molded product P is not sintered. Therefore, there is an advantage that energy saving can be achieved as compared with, for example, a belt type continuous sintering furnace.
  • a heating process, a sintering process, and a cooling process are performed in this order.
  • a preferable temperature passage will be described when the induction heating sintering furnace 33 is used.
  • Heating process In the temperature raising process, the temperature of the processed molded product P is controlled so as to satisfy all of the following conditions (I) to (III).
  • the A1 point is about 738 ° C, and the A3 point is about 910 ° C.
  • the temperature is raised in a temperature range of A1 point or more in the Fe—C phase diagram and lower than the sintering temperature of the processed molded product P without maintaining the temperature.
  • the temperature rise rate in the temperature range from point A1 to point A3 in the Fe—C system phase diagram is set to 12 ° C./sec or more.
  • the rate of temperature rise from point A3 in the Fe—C phase diagram to the sintering temperature of the processed molded product P is set to 4 ° C./sec or more.
  • condition (ii) is satisfied from the following condition (i). This is because the condition (I) to the condition (III) and the condition (i) to the condition (iii) are substantially correlated. That is, if the condition (i) to the condition (iii) are satisfied, the temperature is controlled so as to satisfy the condition (I) to the condition (III).
  • the temperature is raised in the atmospheric temperature range corresponding to the point A1 or more of the Fe—C system phase diagram and lower than the sintering temperature of the processed molded product P without maintaining the atmospheric temperature.
  • the rate of temperature rise in the atmospheric temperature range corresponding to points A1 to A3 of the Fe—C phase diagram is set to 12 ° C./sec or more.
  • the rate of temperature rise in the atmospheric temperature range corresponding to the point A3 of the Fe—C phase diagram to the sintering temperature of the processed molded product P is set to 4 ° C./sec or more.
  • the ambient temperature is the ambient temperature inside the heating container 302, and is the temperature measured by a thermocouple (diameter ⁇ 3.5 mm) arranged within 8.5 mm from the processed molded product P. Since the atmosphere inside the heating container 302 is heated by the heat of the induction-heated processed molded product P, the ambient temperature is often slightly lower than the temperature of the induced-heated processed molded product P itself. ..
  • the atmospheric temperature corresponding to the A1 point is the temperature of the atmosphere when the temperature of the processed molded product P reaches the A1 point, and is often the temperature of the A1 point or less. The same applies to the atmospheric temperature corresponding to the A3 point and the atmospheric temperature corresponding to the sintering temperature of the processed molded product P.
  • the high-strength sintered body S can be produced.
  • the reason is considered to be as follows. In the temperature range of condition (I), C is likely to diffuse into Fe, but by not maintaining the temperature in this temperature range and setting the temperature rise rate to a high speed as in conditions (II) and (III), C Diffusion into Fe is suppressed.
  • the C particles adjacent to the Fe particles remain in a solid phase, and the adjacent interface between the Fe particles and the C particles becomes a C-rich phase (may be only C).
  • the C-rich phase remains on the surface of Fe, it becomes a liquid phase of Fe—C at the sintering temperature.
  • the Fe—C system phase diagram when C is about 0.2% by mass or more, the Fe—C system material becomes a liquid phase at 1153 ° C. or higher. Therefore, if the processed molded product P has a sintering temperature of 1153 ° C. or higher, the C-rich phase becomes a liquid phase.
  • the rate of temperature rise can be adjusted by adjusting the output and frequency of the power supply of the induction heating sintering furnace 33.
  • the output and frequency may be set, for example, to set the output and frequency that satisfy the temperature rising rate of the condition (II).
  • the output and frequency settings may be constant from the temperature range of the condition (II) to the temperature range of the condition (III), or when shifting from the temperature range of the condition (II) to the temperature range of the condition (III). You may change it to.
  • the temperature rising rate of the condition (III) can be satisfied. However, if the output and frequency are constant, the rate of temperature rise in condition (III) is slower than the rate of temperature rise in condition (II). If the output and frequency settings are changed when shifting from the temperature range of condition (II) to the temperature range of condition (III), the heating rate of condition (III) can be further increased, and by extension, the temperature range of condition (II) can be increased. It can be about the same as the rate of temperature rise.
  • the upper limit of the temperature rising rate of the condition (II) is, for example, 50 ° C./sec or less, and more preferably 15 ° C./sec or less.
  • the rate of temperature rise in the condition (III) is preferably as high as possible, for example, 5 ° C./sec or more, and further preferably 10 ° C./sec or more.
  • the upper limit of the temperature rising rate of the condition (III) is, for example, 50 ° C./sec or less, and more preferably 15 ° C./sec or less.
  • the temperature raising process it is preferable to further control the temperature of the processed molded product P so as to satisfy either the condition (IV) or the condition (V).
  • the temperature In a temperature range in which the processed molded product P is 410 ° C. or higher and lower than the A1 point in the Fe—C phase diagram, the temperature is not maintained, and the temperature rising rate in this temperature range is 12 ° C./sec or higher.
  • the temperature in the temperature range where the processed molded product P is 410 ° C. or higher and lower than the A1 point in the Fe—C system phase diagram is maintained for 30 seconds or more and 90 seconds or less.
  • the temperature is controlled so as to satisfy either the condition (IV) or the condition (V), either the following condition (iv) or the condition (v) is satisfied. This is because the condition (IV) and the condition (V) and the condition (iv) and the condition (v) are substantially correlated. That is, if either the condition (iv) or the condition (v) is satisfied, the temperature is controlled so that either the condition (IV) or the condition (V) is satisfied.
  • the temperature rise rate in this atmospheric temperature range is set to 12 ° C./sec or more without maintaining the atmospheric temperature of 400 ° C. or higher and lower than 700 ° C.
  • the atmospheric temperature of 400 ° C. or higher and lower than 700 ° C. is maintained for 30 seconds or more and 90 seconds or less.
  • the sintered body S having high strength can be produced in a short time as compared with the case where the condition (V) and the condition (v) are satisfied.
  • the temperature rise rate of the condition (IV) and the condition (iv) can be achieved, for example, by setting the output and the frequency to be the same as the output and the frequency satisfying the temperature rise rate of the condition (II) and the condition (ii). ..
  • the power output and frequency setting of the induction heating sintering furnace 33 are always constant from the start of temperature rise to the time of sintering, and the atmosphere temperature from the start of temperature rise to the atmosphere temperature at the time of sintering is set. It is mentioned not to hold.
  • the rate of temperature rise at the ambient temperature of the condition (IV) and the condition (iv) is more preferably 15 ° C./sec or more, and particularly preferably 20 ° C./sec or more.
  • the heat of the processed molded product P can be easily equalized as compared with the case where the condition (IV) and the condition (iv) are satisfied. That is, the condition (V) and the condition (v) are particularly suitable for sintering the processed molded product P having a complicated shape. Further, even if the condition (V) and the condition (v) are satisfied, a high-strength sintered body S can be obtained.
  • the temperature range of the condition (V) is more preferably 735 ° C. or lower, and particularly preferably 700 ° C. or lower.
  • the atmospheric temperature under the condition (v) is more preferably 600 ° C. or lower, and particularly preferably 500 ° C. or lower.
  • the holding time for maintaining the atmospheric temperature under the condition (V) and the condition (v) is preferably 45 seconds or more and 75 seconds or less.
  • the temperature rise rate after maintaining the temperature of the condition (V) and the atmospheric temperature of the condition (v) shall be the temperature rise rate of the condition (II), the condition (ii), the condition (III), and the condition (iii).
  • the holding time of the processed molded product P at the atmospheric temperature (sintering temperature) at the time of sintering depends on the atmospheric temperature (sintering temperature) and the size of the molded product, but is preferably 30 seconds or more and 90 seconds or less, for example.
  • the holding time is 30 seconds or more, the processed molded product P can be sufficiently heated, and a high-strength sintered body S can be easily produced.
  • the holding time is 90 seconds or less, the holding time is short, so that the sintered body S can be manufactured in a short time.
  • the holding time is further preferably less than 90 seconds, particularly preferably 60 seconds or less. In the case of a processed molded product P having a large size, it may be effective to set the holding time to 90 seconds or more.
  • the sintering temperature of the heat-molded article P may be set to a temperature equal to or higher than the temperature at which the liquid phase of Fe—C is formed, and may be 1153 ° C. or higher.
  • the sintering temperature is preferably 1250 ° C. or lower, for example. In this case, the temperature is not too high, excessive formation of the liquid phase can be suppressed, and it is easy to manufacture the sintered body S having high dimensional accuracy.
  • the sintering temperature is further preferably 1153 ° C. or higher and 1200 ° C. or lower, and particularly preferably 1155 ° C. or higher and 1185 ° C. or lower.
  • the ambient temperature of the processed molded product P during sintering is preferably 1135 ° C. or higher and lower than 1250 ° C. If the sintering temperature of the processed molded product P satisfies 1153 ° C. or higher, the atmospheric temperature of the processed molded product P at the time of sintering satisfies 1135 ° C. or higher. Similarly, if the sintering temperature of the processed molded product P is 1250 ° C. or lower, the atmospheric temperature of the processed molded product P at the time of sintering is less than 1250 ° C.
  • the ambient temperature at the time of sintering is further preferably 1135 ° C. or higher and 1185 ° C. or lower, and particularly preferably 1135 ° C. or higher and lower than 1185 ° C.
  • the temperature lowering rate in the cooling process of the sintering step P3 is preferably increased.
  • the temperature lowering rate is preferably 1 ° C./sec or higher. As a result, it can be cooled quickly.
  • the temperature lowering rate is further preferably 2 ° C./sec or higher, and particularly preferably 5 ° C./sec or higher.
  • the temperature lowering rate is, for example, 200 ° C./sec or less, further 100 ° C./sec or less, and particularly 50 ° C./sec or less.
  • the temperature range for cooling at this cooling rate may be a temperature range from the start of cooling (sintering temperature of the processed molded product P) to the completion of cooling (for example, about 200 ° C.).
  • the temperature (atmospheric temperature) of the processed molded product P is in a temperature range (atmospheric temperature range) from 750 ° C. (700 ° C.) to 230 ° C. (200 ° C.).
  • the cooling method include blowing a cooling gas onto the sintered body S.
  • the cooling gas include an inert gas such as nitrogen gas and argon gas. Due to the rapid temperature drop, the heat treatment process in the subsequent process can be omitted.
  • FIG. 7 is a schematic configuration diagram showing an example of the inspection device 35 used in the inspection step P5.
  • the inspection device 35 used in the inspection step P5 includes first and second sensor devices 501 and 502, and a computer device 503 communicatively connected to each of the sensor devices 501 and 502. .
  • the computer device 503 includes, for example, a desktop personal computer (PC).
  • the type of computer device 503 is not particularly limited.
  • the type of the computer device 503 may be, for example, a notebook type or a tablet type.
  • the computer device 503 is composed of an information processing device including a CPU and a volatile memory, and a storage device including a non-volatile memory for storing a computer program executed by the CPU and data necessary for the execution thereof.
  • the computer device 2 also includes an input device and a display.
  • the computer device 503 functions as a predetermined control device when the CPU reads the computer program into the volatile memory and executes it.
  • the first sensor device 501 comprises, for example, a non-contact 3D scanner.
  • the 3D scanner may be the pattern light type 3D scanner 1 (see FIG. 2) described above, or may be a laser light type 3D scanner.
  • the first sensor device 501 scans the sintered bodies S that have undergone the finishing step P4 one by one to generate three-dimensional CAD data, and transmits the generated data to the computer device 503.
  • the second sensor device 502 includes, for example, a digital camera capable of acquiring a digital image.
  • the second sensor device 502 photographs the sintered bodies S that have undergone the finishing step P4 one by one to generate image data, and transmits the generated image data to the computer device 503.
  • the computer device 503 stores the three-dimensional CAD data of the current product C. This data is, for example, the data received from the computer device 2 in step 2 or the data stored in the computer device 503 via a recording medium such as a USB memory.
  • the computer device 503 calculates the dimensional error of both based on the three-dimensional CAD data of the sintered body S and the three-dimensional CAD data of the current product C, and determines the pass / fail of the sintered body S based on the calculated dimensional error. .. Specifically, the sintered body S having a dimensional error of less than or equal to a predetermined value is regarded as acceptable, and the sintered body S having a dimensional error exceeding a predetermined value is regarded as rejected (defective). Further, the computer device 503 transmits the three-dimensional CAD data of the sintered body S determined to be acceptable to the computer device 4 used in step 4.
  • the computer device 503 determines the presence or absence of cracks or scratches on the surface based on the image data acquired from the second sensor device 502, and determines that the sintered body S having cracks or scratches is rejected (defective).
  • the cracked or scratched sintered body S is excluded as a defective product.
  • the determination process can be performed, for example, depending on whether or not the partial image obtained by dividing the image data into a grid pattern is included in a target event such as a scratch included in the classification model obtained by machine learning (Japanese Patent Laid-Open No. 2018-). 81629 (see).
  • the powder compact M having a simple shape and high density is produced by uniaxial pressurization, and the powder compact M is processed by the robot processing apparatus 32 having a high degree of processing freedom.
  • the processed molded product P is produced by the above method, and the processed molded product P is sintered to produce a sintered body S. Therefore, the high-precision sintered body S can be manufactured without using a mold having a complicated shape, which requires several months to manufacture. Therefore, the delivery time of the sintered body S can be shortened.
  • the induction heating sintering furnace 33 capable of producing the sintered body S in a shorter time than the belt type continuous sintering furnace is adopted. Therefore, in this respect as well, the sintered body S of the sintered body S is used. The delivery time can be shortened.
  • the robot processing device 32 which has a smaller installation space than the 5-axis machining center, and the induction heating sintering furnace 33, which has a smaller installation space than the belt-type continuous sintering furnace, are used. There is also an advantage that the manufacturing facility 3 can be made compact.
  • FIG. 8 is an explanatory diagram showing an example of the apparatus used in step 4.
  • the device used in step 4 comprises a computer device 4.
  • the computer device 2 includes, for example, a desktop personal computer (PC).
  • the type of the computer device 2 is not particularly limited.
  • the type of the computer device 2 may be, for example, a notebook type or a tablet type.
  • the computer device 4 is composed of an information processing device including a CPU and a volatile memory, a storage device including a non-volatile memory for storing a computer program executed by the CPU and data necessary for the execution thereof, and the like.
  • the computer device 2 also includes an input device and a display.
  • the computer device 4 functions as a predetermined control device when the CPU reads the computer program into the volatile memory and executes it.
  • the CAD / CAT software is installed in the computer device 4.
  • the CAD / CAT software uses the three-dimensional CAD data of the determination target (here, the sintered body S that has passed the inspection of the inspection step P5) and the sintered body S according to the user's operation input to the GUI of the computer device 4. It is software that realizes comparison processing with the design data (three-dimensional CAD data of the current product C) that is the reference of the shape of.
  • the computer device 4 receives the three-dimensional CAD data of the plurality of sintered bodies S from the computer device 503 of the inspection step P5.
  • the computer device 4 stores the three-dimensional CAD data of the current product C.
  • This data is, for example, the data received from the computer device 2 in step 2, the data received from the computer device 503 in the inspection step P5, or the data stored in the computer device 4 via a recording medium such as a USB memory.
  • the computer device 4 Based on the comparison result of the 3D data of the plurality of sintered bodies C and the 3D data of the current product C, the computer device 4 has detected as many over-cut or under-cut locations as statistically superior. Is determined.
  • the computer device 4 detects a portion that is over-cut or under-cut, it generates a modification program (for example, NC program) of a machining program.
  • the modification program includes, for example, an operation code for deepening the cut depth of the over-cut portion, or an operation code for deepening the cut depth of the under-cut portion.
  • the computer device 4 transmits the generated modification program to the processing device 32 used in the processing step P2 of step 3.
  • the molded product processing apparatus 32 that has received the modification program processes the powder compact M at the modified depth of cut.
  • the computer device 4 may transmit the modification program to the computer device 2 (see FIG. 2) in step 2.
  • the computer device 2 in step 2 may transfer the received modification program to the processing device 32.
  • the molding apparatus 31 used in the molding step P1 of step 3 may be a press molding apparatus for molding the powder compact M having an overall average relative density of less than 93%.
  • the processing apparatus 32 used in the processing step P2 of step 3 may be a robot processing apparatus including only the first robot 201. In this case, the first robot 201 performs a predetermined process on the powder compact M set on the fixed base.
  • the processing apparatus 32 used in the processing step P2 of step 3 may be a robot processing apparatus provided with at least one of the first and second robots 201 and 202. That is, the number of the first and second robots 201 and 202 may be plural.
  • the processing apparatus 32 used in the processing step P2 of step 3 may be a processing apparatus that employs a 5-axis machining center instead of the articulated robots 201 and 202.
  • the sintering apparatus 33 used in the sintering step P3 of step 3 may be a belt-type continuous sintering furnace instead of the induction heating sintering furnace.
  • the inspection step P5 in step 3 is not limited to the case where the inspection device 35 is used to perform the inspection step P5 fully automatically, and a human may perform all or part of the inspection work.
  • the inspection step P5 of step 3 may include modification of the machining program of step 4. That is, the computer device 503 in the inspection step P5 may execute the arithmetic processing and the communication processing performed by the computer device 4 in step 4. In this case, the computer device 4 in step 4 becomes unnecessary.
  • FIG. 9 is a schematic configuration diagram showing an example of a movable manufacturing system.
  • the manufacturing system according to the second modification includes a mobile device 601 that can pass through a road and a predetermined storage element that is stored in the storage 602 of the mobile device 601.
  • the predetermined storage element is a component required for manufacturing the sintered body S.
  • the moving device 601 is composed of, for example, a large truck
  • the storage 602 is composed of a container fixed to the loading platform of the large truck.
  • the predetermined storage elements include a 3D scanner 1 used in step 1, a computer device 2 used in step 2, and a robot processing device 32 used in the processing step P2 of step 3. Including the induction heating sintering furnace 33 used in the sintering step P3 of step 3.
  • the sintered body S can be manufactured by the following procedure. Therefore, it becomes possible to provide the sintered body S (test product) following the current product C to the customer in a short time (for example, several hours).
  • Step 1 The mobile device 601 is mounted to a nearby point of the customer's residence, and a predetermined storage element mounted on the storage 602 is transported to the nearby point.
  • Step 2 Get the current product C from the customer.
  • Step 3 Perform steps 1 to 3 to locally manufacture a sintered body S that follows the current product C.
  • Step 4 Provide the manufactured sintered body S (sample) to the customer.
  • the powder compact M to be processed by the robot processing device 32 may be manufactured in advance by the manufacturer at its own factory and loaded into the moving device 601.
  • the 3D scanner 1 may be excluded from the predetermined storage elements.
  • the 3D data generated by the 3D scanner 1 outside the vehicle may be transmitted to the computer device 2 inside the vehicle.
  • the 3D data of the current product C acquired from the customer or the like may be transmitted to the computer device 2 in the vehicle.
  • the computer device 2 may be excluded from the predetermined storage elements.
  • the computer device 2 outside the vehicle may generate a molded body processing program from the 3D data of the current product C, and transmit the generated program to the robot processing device 32 inside the vehicle.
  • the molding apparatus 31 used in the molding step P1 of step 3 may be included in the predetermined storage element.
  • the compaction compact M can also be molded on-site.
  • the apparatus (polishing apparatus or the like) used in the finishing step P4 of step 3 may be included in the predetermined storage element. In this case, the finishing of the sintered body S can also be performed on-site.
  • the inspection device 35 used in the inspection step P5 of step 3 may be included in the predetermined storage element. In this case, inspections such as pass / fail judgment of the sintered body S can also be performed on-site.
  • the device (computer device 4) used in step 4 may be included in a predetermined storage element. In this case, the machining program in step 4 can be modified locally.
  • the target product that serves as a reference for the shape of the sintered product S is not limited to the existing current product C, and is under planning that has not yet been commercialized. It may be an item of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

A manufacturing system according to an embodiment of the present disclosure is provided with: a molding device for fabricating a powder compression molding, the relative density of all or a portion of which is at least 93%, by uniaxially compressing a raw material powder that includes metal powder; a robot processing device that has an articulated robot and that fabricates a processed molding by mechanically processing the powder compression molding; and an induction heating sintering furnace for fabricating a sintered compact by sintering the processed molding using high-frequency induction heating.

Description

焼結体の製造システム及び製造方法Sintered body manufacturing system and manufacturing method
 本発明は、焼結体の製造システム及び製造方法に関する。 The present invention relates to a sintered body manufacturing system and manufacturing method.
 特許文献1及び2には、金属粉末を含む原料粉末を用意する準備工程と、金型を用いて原料粉末を一軸加圧することで、圧粉成形体を作製する成形工程と、圧粉成形体を機械加工して加工成形体を作製する加工工程と、加工成形体を焼結して焼結体を得る焼結工程と、を含む焼結体の製造方法が記載されている。
 特許文献2では、上記の成形工程において、圧粉成形体の全体の平均相対密度を93%以上とすることが推奨されている。
Patent Documents 1 and 2 describe a preparatory step for preparing a raw material powder containing a metal powder, a molding step for producing a powder compact by uniaxially pressing the raw material powder using a mold, and a powder compact. A method for manufacturing a sintered body including a processing step of manufacturing a processed molded body by machining the above and a sintering step of sintering the processed molded body to obtain a sintered body is described.
In Patent Document 2, it is recommended that the average relative density of the entire compact compact is 93% or more in the above molding step.
特開2004-323939号公報Japanese Unexamined Patent Publication No. 2004-323939 国際公開第2017/175772号International Publication No. 2017/175772
 本発明の一態様に係る製造システムは、金属粉末を含む原料粉末を一軸加圧することにより、全体又は一部の相対密度が93%以上の圧粉成形体を作製する成形装置と、前記圧粉成形体を機械加工することにより、加工成形体を作製する多関節ロボットを有するロボット加工装置と、前記加工成形体を高周波誘導加熱によって焼結することより、焼結体を作製する誘導加熱焼結炉と、を備える。 The production system according to one aspect of the present invention includes a molding apparatus for producing a powder compact having a relative density of 93% or more in whole or a part by uniaxially pressing a raw material powder containing a metal powder, and the powder. A robot processing device having an articulated robot that produces a processed molded body by machining the molded body, and induced heating sintering that produces a sintered body by sintering the processed molded body by high-frequency induction heating. It is equipped with a furnace.
 本発明の別態様に係る製造システムは、形状の基準となる対象品の3Dデータに倣って圧粉成形体を機械加工することにより、加工成形体を作製する加工装置と、前記加工成形体を焼結することにより、焼結体を作製する焼結装置と、を備える。 The manufacturing system according to another aspect of the present invention comprises a processing apparatus for producing a processed molded product by machining a powder compact according to 3D data of an object product as a reference for the shape, and the processed molded product. A sintering device for producing a sintered body by sintering is provided.
焼結体の製造方法の概要を示す説明図である。It is explanatory drawing which shows the outline of the manufacturing method of a sintered body. ステップ1及びステップ2に使用される装置の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus used in Step 1 and Step 2. ステップ3に使用される製造設備の一例を示す全体構成図である。It is an overall block diagram which shows an example of the manufacturing equipment used in step 3. 成形工程に使用される成形装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the molding apparatus used in a molding process. 加工工程に使用される加工装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing apparatus used in a processing process. 焼結工程に使用される焼結装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the sintering apparatus used in the sintering process. 検査工程に使用される検査装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the inspection apparatus used in an inspection process. ステップ4に使用される装置の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus used in step 4. 移動可能な製造システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the movable manufacturing system.
<本開示が解決しようとする課題>
 現行品を焼結体に置き換えることを検討中の顧客が存在する場合には、焼結体の製造業者としては、顧客の現行品に倣った焼結体をなるべく早期に製造し、製造した焼結体を供試品として顧客に提示することが好ましい。
<Problems to be solved by this disclosure>
If there is a customer who is considering replacing the current product with a sintered body, the sintered body manufacturer will manufacture and manufacture the sintered body that follows the customer's current product as soon as possible. It is preferable to present the united product as a sample to the customer.
 しかし、特許文献1及び2では、顧客に供試品として提示する焼結体の納期については、想定されていない。本開示は、かかる従来の問題点に鑑み、焼結体の納期を短縮できるようにすることを目的とする。
 また、顧客に供試品として提示する焼結体を製造する場合の設備はコンパクト化(小型化)が望まれている。本開示は、かかる従来の問題点に鑑み、焼結体の製造設備をコンパクト化できるようにすることを目的とする。
However, in Patent Documents 1 and 2, the delivery date of the sintered body presented to the customer as a sample is not assumed. An object of the present disclosure is to make it possible to shorten the delivery time of a sintered body in view of such conventional problems.
Further, it is desired that the equipment for manufacturing the sintered body presented to the customer as a sample is compact (miniaturized). An object of the present disclosure is to make it possible to make a sintered body manufacturing facility compact in view of such conventional problems.
<本開示の効果>
 本開示によれば、焼結体の納期を短縮することができる。
 本開示によれば、焼結体の製造設備をコンパクト化することができる。
<Effect of this disclosure>
According to the present disclosure, the delivery time of the sintered body can be shortened.
According to the present disclosure, the manufacturing equipment for the sintered body can be made compact.
<本発明の実施形態の概要> 
 以下、本発明の実施形態の概要を列記して説明する。
 (1) 本実施形態の製造システムは、金属粉末を含む原料粉末を一軸加圧することにより、全体又は一部の相対密度が93%以上の圧粉成形体を作製する成形装置と、前記圧粉成形体を機械加工することにより、加工成形体を作製する多関節ロボットを有するロボット加工装置と、前記加工成形体を高周波誘導加熱によって焼結することより、焼結体を作製する誘導加熱焼結炉と、を備える。
<Outline of Embodiment of the present invention>
Hereinafter, the outlines of the embodiments of the present invention will be described in a list.
(1) The production system of the present embodiment includes a molding apparatus for producing a powder compact having a relative density of 93% or more in whole or a part by uniaxially pressing a raw material powder containing a metal powder, and the powder. A robot processing device having an articulated robot that produces a processed molded body by machining the molded body, and induced heating sintering that produces a sintered body by sintering the processed molded body by high-frequency induction heating. It is equipped with a furnace.
 本実施形態の製造システムによれば、ベルト式連続焼結炉に比べて焼結体を短時間で作製できる誘導加熱焼結炉を備えるので、焼結体の納期を短縮することができる。
 本実施形態の製造システムによれば、5軸マシニングセンタに比べて設置スペースが小さいロボット加工装置と、ベルト式連続焼結炉に比べて設置スペースが小さい誘導加熱焼結炉を備えるので、焼結体の製造設備をコンパクト化することができる。
According to the manufacturing system of the present embodiment, since the induction heating sintering furnace capable of producing the sintered body in a shorter time as compared with the belt type continuous sintering furnace is provided, the delivery time of the sintered body can be shortened.
According to the manufacturing system of the present embodiment, a robot processing apparatus having a smaller installation space than a 5-axis machining center and an induction heating sintering furnace having a smaller installation space than a belt-type continuous sintering furnace are provided. Manufacturing equipment can be made compact.
 (2) 本実施形態の製造システムにおいて、形状の基準となる対象品の3Dデータを取得する取得部を、更に備えることが好ましい。
 本実施形態の製造システムによれば、取得部が、形状の基準となる対象品の3Dデータを取得するので、後述の通り、取得した3Dデータに基づく焼結体の検査及び加工プログラムの作成などを実行できるようになる。
(2) In the manufacturing system of the present embodiment, it is preferable to further include an acquisition unit for acquiring 3D data of the target product as a reference for the shape.
According to the manufacturing system of the present embodiment, the acquisition unit acquires the 3D data of the target product as the reference of the shape. Therefore, as described later, the inspection of the sintered body and the creation of the processing program based on the acquired 3D data are performed. Will be able to execute.
 (3) 本実施形態の製造システムにおいて、前記対象品の3Dデータに基づいて、前記焼結体の寸法精度及び欠陥の有無のうちの少なくとも1つの検査を実行する検査装置を、更に備えることが好ましい。
 本実施形態の製造システムによれば、検査装置が上記の検査を実行するので、対象品と遜色のない高精度の焼結体を製造することができる。
(3) The manufacturing system of the present embodiment is further provided with an inspection device that executes at least one inspection of the dimensional accuracy of the sintered body and the presence or absence of defects based on the 3D data of the target product. preferable.
According to the manufacturing system of the present embodiment, since the inspection device performs the above inspection, it is possible to manufacture a high-precision sintered body that is comparable to the target product.
 (4) 本実施形態の製造システムにおいて、前記対象品の3Dデータに基づいて、前記ロボット加工装置の動作を制御するための加工プログラムを作成するコンピュータ装置を、更に備え、前記ロボット加工装置は、前記加工プログラムに基づいて前記加工成形体を作製することが好ましい。 (4) In the manufacturing system of the present embodiment, a computer device for creating a machining program for controlling the operation of the robot machining device based on the 3D data of the target product is further provided, and the robot machining device is provided. It is preferable to prepare the processed molded product based on the processing program.
 本実施形態の製造システムによれば、コンピュータ装置が上記の加工プログラムを作成し、ロボット加工装置が上記の加工プログラムに基づいて加工成形体を作製するので、対象品と実質的に同じ形状に圧粉成形体を加工するように、ロボット加工装置を制御することができる。 According to the manufacturing system of the present embodiment, the computer device creates the above-mentioned machining program, and the robot machining device prepares the machined molded product based on the above-mentioned machining program, so that the shape is substantially the same as that of the target product. The robot processing apparatus can be controlled so as to process the powder compact.
 (5) 本実施形態の製造システムにおいて、前記ロボット加工装置は、複数の前記多関節ロボットを有し、複数の前記多関節ロボットには、前記圧粉成形体を加工する工具を保持する第1ロボットと、前記圧粉成形体を保持する第2ロボットが含まれることが好ましい。 (5) In the manufacturing system of the present embodiment, the robot processing apparatus has a plurality of the articulated robots, and the plurality of articulated robots hold a tool for processing the powder compact. It is preferable to include a robot and a second robot that holds the powder compact.
 本実施形態の製造システムによれば、圧粉成形体の相対密度が93%以上であるから、第2ロボットが保持する圧粉成形体に第1ロボットが保持する工具で切削作業を行っても、圧粉成形体が壊れない。このため、圧粉成形体を迅速に加工できる。
 また、圧粉成形体に対して任意の角度で工具を接触させることができ、複雑な加工を迅速に実行できる。
According to the manufacturing system of the present embodiment, since the relative density of the powder compact is 93% or more, even if the powder compact held by the second robot is cut with the tool held by the first robot. , The powder compact does not break. Therefore, the powder compact can be processed quickly.
In addition, the tool can be brought into contact with the powder compact at an arbitrary angle, and complicated machining can be performed quickly.
 (6) 本実施形態の製造システムは、形状の基準となる対象品の3Dデータに倣って圧粉成形体を機械加工することにより、加工成形体を作製する加工装置と、前記加工成形体を焼結することにより、焼結体を作製する焼結装置と、を備える。 (6) In the manufacturing system of the present embodiment, a processing device for producing a processed molded product by machining a powder compact according to the 3D data of the target product as a reference for the shape, and the processed molded product are used. A sintering device for producing a sintered body by sintering is provided.
 本実施形態の製造システムによれば、加工装置が、対象品の3Dデータに倣って圧粉成形体を機械加工することにより加工成形体を作製し、焼結装置が、加工成形体を焼結することにより焼結体を作製するので、対象品と実質的に同じ形状の焼結体を短時間で作製することができる。従って、焼結体の納期を短縮することができる。 According to the manufacturing system of the present embodiment, the processing apparatus manufactures the processed molded product by machining the powder compact according to the 3D data of the target product, and the sintering apparatus sintered the processed molded product. By doing so, a sintered body is produced, so that a sintered body having substantially the same shape as the target product can be produced in a short time. Therefore, the delivery time of the sintered body can be shortened.
 (7) 本実施形態の製造システムにおいて、前記対象品の3Dデータを非接触で取得する3Dスキャナを、更に備えることが好ましい。
 本実施形態の製造システムによれば、3Dスキャナが対象品の3Dデータを非接触で取得するので、対象品の3Dデータが現存しない場合でも、対象品の3Dデータを迅速に取得することができる。
(7) In the manufacturing system of the present embodiment, it is preferable to further include a 3D scanner that acquires 3D data of the target product in a non-contact manner.
According to the manufacturing system of the present embodiment, since the 3D scanner acquires the 3D data of the target product in a non-contact manner, the 3D data of the target product can be quickly acquired even if the 3D data of the target product does not exist. ..
 (8) 本実施形態の製造システムにおいて、前記加工装置が、多関節ロボットを有するロボット加工装置である場合には、前記対象品の3Dデータに基づいて、前記ロボット加工装置の動作を制御するための加工プログラムを作成するコンピュータ装置を、更に備えることが好ましい。 (8) In the manufacturing system of the present embodiment, when the processing device is a robot processing device having an articulated robot, in order to control the operation of the robot processing device based on the 3D data of the target product. It is preferable to further provide a computer device for creating the machining program of.
 本実施形態の製造システムによれば、5軸マシニングセンタに比べて設置スペースが小さいロボット加工装置を備えるので、焼結体の製造設備をコンパクト化できる。
 本実施形態の製造システムによれば、コンピュータ装置が上記の加工プログラムを作成するので、対象品と実質的に同じ形状に圧粉成形体を加工するように、ロボット加工装置を制御することができる。
According to the manufacturing system of the present embodiment, since the robot processing apparatus having a smaller installation space than the 5-axis machining center is provided, the manufacturing equipment for the sintered body can be made compact.
According to the manufacturing system of the present embodiment, since the computer device creates the above-mentioned processing program, the robot processing device can be controlled so as to process the powder compact into substantially the same shape as the target product. ..
 (9) 本実施形態の製造システムにおいて、前記対象品の3Dデータに基づいて、前記焼結体の寸法精度及び欠陥の有無のうちの少なくとも1つの検査を実行する検査装置を、更に備えることが好ましい。
 本実施形態の製造システムによれば、検査装置が上記の検査を実行するので、対象品と遜色のない高精度の焼結体を製造することができる。
(9) The manufacturing system of the present embodiment is further provided with an inspection device that executes at least one inspection of the dimensional accuracy of the sintered body and the presence or absence of defects based on the 3D data of the target product. preferable.
According to the manufacturing system of the present embodiment, since the inspection device performs the above inspection, it is possible to manufacture a high-precision sintered body that is comparable to the target product.
 (10) 本実施形態の製造システムにおいて、金属粉末を含む原料粉末を一軸加圧することにより、全体又は一部の相対密度が93%以上の前記圧粉成形体を作製する成形装置を、更に備えることが好ましい。
 本実施形態の製造システムによれば、成形装置が、金属粉末を含む原料粉末を一軸加圧することにより上記の相対密度の圧粉成形体を作製するので、高精度な圧粉成形体が迅速に得られる。従って、焼結体の納期を短縮することができる。
(10) In the production system of the present embodiment, a molding apparatus for producing the powder compact having a relative density of 93% or more in whole or a part by uniaxially pressing the raw material powder containing the metal powder is further provided. Is preferable.
According to the manufacturing system of the present embodiment, the molding apparatus uniaxially pressurizes the raw material powder containing the metal powder to produce the powder compact having the above relative density, so that the powder compact with high precision can be quickly produced. can get. Therefore, the delivery time of the sintered body can be shortened.
 (11) 本実施形態の製造システムにおいて、前記焼結装置は、前記加工成形体を高周波誘導加熱によって焼結する誘導加熱焼結炉であることが好ましい。
 この場合、誘導加熱焼結炉は、ベルト式連続焼結炉に比べて焼結体を短時間で作製できるので、焼結体の納期を短縮することができる。また、誘導加熱焼結炉は、ベルト式連続焼結炉に比べて設置スペースが小さいので、焼結体の製造設備をコンパクト化することができる。
(11) In the manufacturing system of the present embodiment, the sintering apparatus is preferably an induction heating sintering furnace that sinters the processed molded product by high frequency induction heating.
In this case, the induction heating sintering furnace can produce the sintered body in a shorter time than the belt type continuous sintering furnace, so that the delivery time of the sintered body can be shortened. Further, since the installation space of the induction heating sintering furnace is smaller than that of the belt type continuous sintering furnace, the equipment for manufacturing the sintered body can be made compact.
 (12) 本実施形態の製造システムにおいて、道路を通行可能な移動装置を更に備える場合には、前記加工装置は、多関節ロボットを有するロボット加工装置であり、前記焼結装置は、前記加工成形体を高周波誘導加熱によって焼結する誘導加熱焼結炉であり、前記移動装置に搭載される装置には、前記ロボット加工装置及び前記誘導加熱焼結炉が含まれることが好ましい。 (12) In the manufacturing system of the present embodiment, when a moving device capable of passing through a road is further provided, the processing device is a robot processing device having an articulated robot, and the sintering device is the processing molding. It is an induction heating sintering furnace that sinters a body by high frequency induction heating, and the device mounted on the moving device preferably includes the robot processing device and the induction heating sintering furnace.
 本実施形態の製造システムによれば、移動装置にロボット加工装置と誘導加熱焼結炉が搭載されているので、それらの装置を顧客の居所の近隣地点まで運搬することができる。このため、焼結体の製造を顧客の居所の近隣地点で行うことができる。
 従って、顧客の居所から遠い工場で焼結体を製造する場合に比べて、より短時間で焼結体を顧客に納品できるようになる。
According to the manufacturing system of the present embodiment, since the mobile device is equipped with a robot processing device and an induction heating sintering furnace, these devices can be transported to a point near the customer's residence. Therefore, the sintered body can be manufactured at a point near the customer's residence.
Therefore, the sintered body can be delivered to the customer in a shorter time than when the sintered body is manufactured in a factory far from the customer's residence.
 (13) 本実施形態の製造システムにおいて、前記移動装置に搭載される装置には、前記対象品の3Dデータを非接触で取得する3Dスキャナが含まれることが好ましい。
 本実施形態の製造システムによれば、3Dスキャナが対象品の3Dデータを非接触で取得するので、顧客又は第三者が対象品の3Dデータを保存していない場合でも、対象品の3Dデータを迅速に取得することができる。
(13) In the manufacturing system of the present embodiment, it is preferable that the device mounted on the mobile device includes a 3D scanner that acquires 3D data of the target product in a non-contact manner.
According to the manufacturing system of the present embodiment, since the 3D scanner acquires the 3D data of the target product in a non-contact manner, the 3D data of the target product is obtained even if the customer or a third party does not store the 3D data of the target product. Can be obtained quickly.
 (14) 本実施形態の製造システムにおいて、前記圧粉成形体は、全体又は一部の相対密度が96%以上であることが好ましい。
圧粉成形体の相対密度を96%以上にすれば、相対密度がそれ未満の場合に比べて、焼結体の強度が高くなり、かつ、ロボット加工装置で加工する場合に圧粉成形体が壊れ難くなるからである。
(14) In the production system of the present embodiment, it is preferable that the relative density of the whole or a part of the powder compact is 96% or more.
When the relative density of the powder compact is 96% or more, the strength of the sintered body is higher than that when the relative density is less than that, and the powder compact is processed by a robot processing device. This is because it becomes hard to break.
 (15) 本実施形態の製造方法は、上述の(1)~(14)のいずれかに記載の製造システムを用いて、前記焼結体を製造する焼結体の製造方法である。
 従って、本実施形態の製造方法は、上述の(1)~(14)のいずれかに記載の製造システムと同様の作用効果を奏する。
(15) The manufacturing method of the present embodiment is a manufacturing method of a sintered body for manufacturing the sintered body by using the manufacturing system according to any one of (1) to (14) described above.
Therefore, the manufacturing method of the present embodiment has the same effect as the manufacturing system according to any one of (1) to (14) described above.
<本発明の実施形態の詳細> 
 以下、図面を参照しつつ、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
<Details of Embodiments of the present invention>
Hereinafter, details of the embodiment of the present invention will be described with reference to the drawings. In addition, at least a part of the embodiments described below may be arbitrarily combined.
 〔焼結体の製造方法の概要〕
 図1は、焼結体Sの製造方法の概要を示す説明図である。
 図1に示すように、顧客は、例えば自社製品(完成品)に組み込まれる、現行の部品である現行品Cを製造業者に提供する。製造業者は、現行品Cに倣って焼結体Sを製造し、製造した焼結体Sを供試品として顧客に提供する。
[Outline of manufacturing method of sintered body]
FIG. 1 is an explanatory diagram showing an outline of a method for manufacturing the sintered body S.
As shown in FIG. 1, the customer provides the manufacturer with the current product C, which is a current component to be incorporated into, for example, the company's product (finished product). The manufacturer manufactures the sintered body S according to the current product C, and provides the manufactured sintered body S to the customer as a sample.
 本実施形態に係る焼結体Sの製造方法には、ステップ1からステップ5までの手順が含まれる。製造業者は、ステップ1からステップ5を経て、現行品Cと実質的に同じ形状の焼結体Sを製造する。以下、各ステップ1~5の概要を説明する。
 なお、図1に示す製造方法に使用される全部又は一部の装置の組み合わせを、焼結体Sの「製造システム」という。
The method for producing the sintered body S according to the present embodiment includes the procedures from step 1 to step 5. The manufacturer manufactures the sintered body S having substantially the same shape as the current product C through steps 1 to 5. The outline of each step 1 to 5 will be described below.
The combination of all or part of the devices used in the manufacturing method shown in FIG. 1 is referred to as a "manufacturing system" of the sintered body S.
 ステップ1:3Dデータの取得
 ステップ1は、焼結体Sの形状の基準となる対象品(本実施形態では顧客の現行品C)の3次元CAD(Computer Aided Design)データを取得するステップである。以下、3次元CADデータを「3Dデータ」ともいう。
 ステップ1では、例えば現行品Cの現物を3Dスキャナ1で読み取ることにより、3Dデータを取得する。この場合、3Dスキャナが3Dデータの取得部となる。
Step 1: Acquisition of 3D data Step 1 is a step of acquiring 3D CAD (Computer Aided Design) data of the target product (customer's current product C in this embodiment) which is a reference for the shape of the sintered body S. .. Hereinafter, the three-dimensional CAD data is also referred to as "3D data".
In step 1, for example, 3D data is acquired by reading the actual product C of the current product C with the 3D scanner 1. In this case, the 3D scanner becomes the 3D data acquisition unit.
 顧客又は第三者(以下、「顧客等」という。)が現行品Cの3Dデータを有する場合は、顧客等から指定された3Dデータを、電子メールによるデータ送信又はUSBメモリを用いたデータ転送などにより、ステップ2のコンピュータ装置2に直接入力すればよい。この場合、3Dスキャナ1は不要又は不使用となり、コンピュータ装置2が3Dデータの取得部となる。 When a customer or a third party (hereinafter referred to as "customer, etc.") has 3D data of the current product C, the 3D data specified by the customer, etc. is transmitted by e-mail or data is transferred using a USB memory. For example, the data may be directly input to the computer device 2 in step 2. In this case, the 3D scanner 1 becomes unnecessary or non-use, and the computer device 2 becomes a 3D data acquisition unit.
 ステップ2:成形体加工プログラムの作成(製造条件の設定)
 ステップ2は、ステップ1で取得した3Dデータから成形体加工プログラム(以下、「加工プログラム」ともいう。)を作成するステップである。
 加工プログラムは、ステップ3で用いる成形体加工装置32の動作を制御するためのコンピュータプログラムである。加工プログラムの作成は、例えばCAD/CAM(Computer Aided Manufacturing)ソフトを格納したコンピュータ装置2により実行される。
Step 2: Create a molded body processing program (setting manufacturing conditions)
Step 2 is a step of creating a molded body machining program (hereinafter, also referred to as “machining program”) from the 3D data acquired in step 1.
The machining program is a computer program for controlling the operation of the molded body machining apparatus 32 used in step 3. The creation of the machining program is executed by, for example, the computer device 2 that stores the CAD / CAM (Computer Aided Manufacturing) software.
 ステップ3:成形体加工による焼結体の製造
 ステップ3は、製造設備3により焼結体Sを製造するステップである。
 ステップ3に用いる製造設備3には、成形体加工装置(以下、「加工装置」ともいう。)32が焼結前の圧粉成形体Mを加工する工程P2が含まれる。加工装置32は、ステップ2で作成された加工プログラムに従って、圧粉成形体Mに所定の加工を行う。
Step 3: Manufacture of the sintered body by processing the molded body Step 3 is a step of manufacturing the sintered body S by the manufacturing equipment 3.
The manufacturing equipment 3 used in step 3 includes a step P2 in which the molded body processing device (hereinafter, also referred to as “processing device”) 32 processes the powder compact M before sintering. The processing apparatus 32 performs a predetermined processing on the powder compact M according to the processing program created in step 2.
 ステップ4:成形体加工プログラムの修正(製造条件の最適化)
 ステップ4は、ステップ3で製造された合格品の焼結体Sの3Dデータに基づいて、加工プログラムを修正するステップである。
 加工プログラムの修正は、例えばCAD/CAT(Computer Aided Testing)ソフトを格納したコンピュータ装置4により実行される。加工プログラムの修正結果は、ステップ3の加工装置32にフィードバックされる。加工プログラムの修正結果は、加工プログラムの作成(ステップ2)を行うコンピュータ装置2にフィードバックしてもよい。
Step 4: Modify the part processing program (optimize manufacturing conditions)
Step 4 is a step of modifying the machining program based on the 3D data of the accepted product S sintered body S manufactured in step 3.
The modification of the machining program is executed by, for example, a computer device 4 that stores CAD / CAT (Computer Aided Testing) software. The modification result of the machining program is fed back to the machining apparatus 32 in step 3. The modification result of the machining program may be fed back to the computer device 2 that creates the machining program (step 2).
 ステップ5:焼結体(供試品)の提供
 ステップ5は、ステップ4の修正プログラムにより製造された1又は複数の焼結体Sを供試品に決定し、供試品に決定した焼結体Sを顧客に提供するステップである。
 供試品である焼結体Sを提供された顧客は、例えば自社の試験設備により、現行品Cと焼結体Sの性能比較が可能となる。供試品として提供された焼結体Sの性能が現行品Cの性能と同等以上ならば、顧客は、現行品Cを焼結体Sに置き換える可能性がある。
Step 5: Provision of Sintered Body (Sample Product) In Step 5, one or a plurality of sintered bodies S manufactured by the modification program of Step 4 are determined as the sample product, and the sintered body determined as the test product is used. This is a step of providing the body S to the customer.
Customers who are provided with the sintered body S, which is a sample product, can compare the performance of the current product C and the sintered body S, for example, by using their own test equipment. If the performance of the sintered body S provided as the sample product is equal to or higher than the performance of the current product C, the customer may replace the current product C with the sintered body S.
 本実施形態では、ステップ3において、未焼結の圧粉成形体Mを加工する製造設備3(図3参照)を用いるので、切削などの加工が容易で生産性に優れる。このため、例えば鋳造品又は鍛造品に比べて、焼結体Sを安価でかつ短納期で製造できる。
 従って、現行品Cが鋳造体又は鍛造体である場合には、顧客は、現行品Cを焼結体Sに置き換えることにより、製造コストの抑制と調達期間の短縮を見込める。
In the present embodiment, since the manufacturing equipment 3 (see FIG. 3) for processing the unsintered powder compact M is used in step 3, processing such as cutting is easy and the productivity is excellent. Therefore, the sintered body S can be manufactured at a lower cost and in a shorter delivery time than, for example, a cast product or a forged product.
Therefore, when the current product C is a cast or forged product, the customer can expect to suppress the manufacturing cost and shorten the procurement period by replacing the current product C with the sintered body S.
 本実施形態の製造方法によれば、例えば、自動車などの機械に組み込まれる、スプロケット、ロータ、ギア、リング、フランジ、プーリー、ベーン、又は軸受けなどの焼結体Sを製造可能である。
 焼結体Sは、自動車分野の製品に限らない。例えば、本実施形態の製造方法によれば、航空機のタービンブレード、医療分野で利用される人工骨及び人工関節、或いは、原子力分野で利用される放射線遮蔽部品などの焼結体Sを製造でき、応用範囲が広い。
According to the manufacturing method of the present embodiment, for example, a sintered body S such as a sprocket, a rotor, a gear, a ring, a flange, a pulley, a vane, or a bearing, which is incorporated in a machine such as an automobile, can be manufactured.
The sintered body S is not limited to products in the automobile field. For example, according to the manufacturing method of the present embodiment, a sintered body S such as an aircraft turbine blade, an artificial bone and an artificial joint used in the medical field, or a radiation shielding component used in the nuclear field can be manufactured. Wide range of applications.
 〔ステップ1に使用される装置〕
 図2は、ステップ1及びステップ2に使用される装置の一例を示す説明図である。
 図2に示すように、ステップ1に使用される装置は、非接触式の3次元形状測定機(以下、「3Dスキャナ」という。)1よりなる。非接触式の3Dスキャナ1は、対象物に接触せずに表面の凹凸(表面の任意点までの距離)を感知し、感知結果を3次元CADデータに変換してコンピュータ装置2に取り込む装置である。
[Device used in step 1]
FIG. 2 is an explanatory diagram showing an example of the apparatus used in step 1 and step 2.
As shown in FIG. 2, the apparatus used in step 1 comprises a non-contact three-dimensional shape measuring machine (hereinafter, referred to as “3D scanner”) 1. The non-contact type 3D scanner 1 is a device that detects surface irregularities (distance to an arbitrary point on the surface) without touching an object, converts the detection result into three-dimensional CAD data, and captures it in the computer device 2. is there.
 具体的には、3Dスキャナ1は、対象物に光を照射しながら、対象物表面の各点の3次元座標データ(X,Y,Z)を取得する。3Dスキャナ1は、取得した点群データをポリゴンデータに変換してメッシュ状の立体図形を生成する。
 3Dスキャナ1は、立体図形を構成する点群データを、所定のファイル形式の3次元CADデータに変換し、変換した3次元CADデータを自機に接続されたコンピュータ装置2に送信する。
Specifically, the 3D scanner 1 acquires three-dimensional coordinate data (X, Y, Z) of each point on the surface of the object while irradiating the object with light. The 3D scanner 1 converts the acquired point cloud data into polygon data to generate a mesh-like three-dimensional figure.
The 3D scanner 1 converts the point cloud data constituting the three-dimensional figure into three-dimensional CAD data in a predetermined file format, and transmits the converted three-dimensional CAD data to the computer device 2 connected to the own machine.
 非接触式の3Dスキャナ1は、「レーザ光タイプ」と「パターン光タイプ」に大別される。レーザ光タイプは、対象物にレーザ光線を照射しつつスキャンし、対象物からの反射光を受光センサで識別して三角法により対象物までの距離を計測する。
 パターン光タイプは、対象物にパターン光を照射しつつスキャンし、縞模様のパターンのラインを識別することで、自機から対象物までの距離を計測する。
The non-contact type 3D scanner 1 is roughly classified into a "laser light type" and a "pattern light type". The laser light type scans an object while irradiating it with a laser beam, identifies the reflected light from the object with a light receiving sensor, and measures the distance to the object by trigonometry.
The pattern light type measures the distance from the own machine to the object by scanning while irradiating the object with the pattern light and identifying the line of the striped pattern.
 パターン光タイプは、レーザ光タイプよりも測定が高速に行える。そこで、図2の例では、パターン光タイプの3Dスキャナ1が採用されている。パターン光タイプの3Dスキャナ1の市販品としては、例えばKEYENCE VL-300シリーズがある。
 図2に例示する3Dスキャナ1は、据え置きタイプであるが、3Dスキャナ1は、ユーザが手に持って測定できるハンディタイプのスキャナであってもよい。
The pattern light type can perform measurement faster than the laser light type. Therefore, in the example of FIG. 2, the pattern light type 3D scanner 1 is adopted. As a commercially available product of the pattern light type 3D scanner 1, for example, there is a KEYENCE VL-300 series.
The 3D scanner 1 illustrated in FIG. 2 is a stationary type, but the 3D scanner 1 may be a handy type scanner that can be held and measured by the user.
 図2に示すように、顧客が現行品Cの3次元CADデータを有する場合は、当該データのファイルをコンピュータ装置2に直接読み込むことにしてもよい。この場合、現物の現行品Cをスキャンする作業は不要となる。
 現行品Cの3次元CADデータの取得先は、顧客以外の第三者でもよい。第三者としては、例えば、顧客から製造を委託された現行品Cの製造業者、或いは、完成品を解体して現行品Cの3Dデータの読み込みを専門的に行う業者などが考えられる。
As shown in FIG. 2, when the customer has the three-dimensional CAD data of the current product C, the file of the data may be read directly into the computer device 2. In this case, the work of scanning the actual current product C becomes unnecessary.
The acquisition destination of the 3D CAD data of the current product C may be a third party other than the customer. As a third party, for example, a manufacturer of the current product C outsourced by a customer, or a manufacturer who disassembles the finished product and specializes in reading the 3D data of the current product C can be considered.
 〔ステップ2に使用される装置〕
 図2に示すように、ステップ2に使用される装置は、コンピュータ装置2よりなる。コンピュータ装置2は、例えばデスクトップ型のパソコン(PC)よりなる。コンピュータ装置2のタイプは特に限定されない。コンピュータ装置2のタイプは、例えばノート型であってもよいしタブレット型であってもよい。
[Device used in step 2]
As shown in FIG. 2, the device used in step 2 comprises a computer device 2. The computer device 2 includes, for example, a desktop personal computer (PC). The type of the computer device 2 is not particularly limited. The type of the computer device 2 may be, for example, a notebook type or a tablet type.
 コンピュータ装置2は、CPU(Central Processing Unit)と揮発性メモリを含む情報処理装置、及び、CPUが実行するコンピュータプログラムとその実行に必要なデータなどを記憶する不揮発性メモリを含む記憶装置などから構成される。コンピュータ装置2には、入力装置とディスプレイも含まれる。
 コンピュータ装置2は、CPUがコンピュータプログラムを揮発性メモリに読み出して実行することにより、所定の制御装置として機能する。
The computer device 2 is composed of an information processing device including a CPU (Central Processing Unit) and a volatile memory, and a storage device including a non-volatile memory for storing a computer program executed by the CPU and data necessary for its execution. Will be done. The computer device 2 also includes an input device and a display.
The computer device 2 functions as a predetermined control device when the CPU reads the computer program into the volatile memory and executes it.
 コンピュータ装置2には、CAD/CAMソフトがインストールされている。CAD/CAMソフトは、コンピュータ装置2のGUI(Graphical User Interface)に対するユーザの操作入力に応じて、成形体加工装置32を動作させるための加工プログラムの作成を実現するソフトウェアである。
 CAD/CAMソフトとしては、例えば、「MasterCam」又は「Robotmater」(いずれも登録商標)などのソフトウェアを採用し得る。これらのソフトウェアは、成形体加工装置32の種別(例えば、多関節ロボット又は5軸マシニングセンタなど)に応じた加工プログラムを生成可能である。また、これらのソフトウェアは、特開2009-226562号公報に記載の加工プログラムを生成可能であってもよい。
CAD / CAM software is installed in the computer device 2. The CAD / CAM software is software that realizes the creation of a machining program for operating the molded body machining device 32 in response to a user's operation input to the GUI (Graphical User Interface) of the computer device 2.
As the CAD / CAM software, for example, software such as "MasterCam" or "Robotmater" (both are registered trademarks) can be adopted. These softwares can generate a machining program according to the type of the molded body machining device 32 (for example, an articulated robot or a 5-axis machining center). Further, these softwares may be capable of generating the processing program described in JP-A-2009-226562.
 加工プログラムの作成に必要な設定には、被加工物(本実施形態では圧粉成形体M)の形状の設定、加工に用いる工具の設定、及びツールパスの設定などが含まれる。
 コンピュータ装置2は、現行品Cの3次元CADデータと、ユーザが操作入力した設定情報とに基づいて、例えばNC(Numerical Control)プログラムよりなる成形体加工プログラムを作成する。コンピュータ装置2は、CAD/CAMソフトにより作成した加工プログラムを、ステップ3に用いられる成形体加工装置32に送信する。
The settings required for creating the machining program include setting the shape of the workpiece (compacted compact M in this embodiment), setting the tool used for machining, setting the tool path, and the like.
The computer device 2 creates a molded body processing program including, for example, an NC (Numerical Control) program based on the three-dimensional CAD data of the current product C and the setting information operated and input by the user. The computer device 2 transmits the machining program created by the CAD / CAM software to the molded body machining device 32 used in step 3.
 本実施形態では、ステップ3において、成形装置31(図3及び図4参照)が円柱又は円筒などの単純形状の圧粉成形体Mを製作し、加工装置32(図3及び図5参照)が圧粉成形体Mを切削して現行品Cと同じ形状の加工成形体Pを製作する。
 従って、コンピュータ装置2が作成する加工プログラムは、所定形状の圧粉成形体Mに対する切削加工を加工装置32に行わせるプログラムよりなる。被加工物である圧粉成形体Mの3次元CADデータは、コンピュータ装置2に予め登録されている。
In the present embodiment, in step 3, the molding apparatus 31 (see FIGS. 3 and 4) manufactures a powder compact M having a simple shape such as a cylinder or a cylinder, and the processing apparatus 32 (see FIGS. 3 and 5). The powder compact M is cut to produce a processed compact P having the same shape as the current product C.
Therefore, the machining program created by the computer device 2 includes a program for causing the machining device 32 to perform cutting on the dust compact M having a predetermined shape. The three-dimensional CAD data of the powder compact M, which is the work piece, is registered in advance in the computer device 2.
 (使用工具の種類)
 成形体加工装置32が、工具の交換が可能な多関節ロボット201,202(図5参照)を含む場合には、加工プログラムは、作業の種別ごとに異なる工具の使用を多関節ロボット201,202に指令するコードを含むことが好ましい。
 例えば、圧粉成形体Mの表面に比較的細かい切削が必要な場合には、使用工具をエンドミルとすればよい。圧粉成形体Mに溝部や窓部などを切削する場合には、使用工具をサイドカッターとすればよい。
(Type of tool used)
When the molded body processing apparatus 32 includes articulated robots 201, 202 (see FIG. 5) capable of exchanging tools, the machining program uses different tools for each type of work. Articulated robots 201, 202 It is preferable to include a code instructing.
For example, when relatively fine cutting is required on the surface of the powder compact M, the tool used may be an end mill. When cutting a groove or a window in the powder compact M, the tool used may be a side cutter.
 圧粉成形体Mに形成された溝部の途中を拡幅するように切削する場合には、使用工具をTスロットカッターとすればよい。圧粉成形体Mに貫通穴を切削する場合には、使用工具をドリルとすればよい。
 穴あけに使用するドリルは、先端部に円弧状の切れ刃を有する先丸ドリル(例えば、特開2016-113657号公報参照)、或いは、ローソク型ドリル(例えば、特開2016-113658号公報参照)であることが好ましい。これらのドリルを採用すれば、圧粉成形体Mの穴出口にコバ欠けが発生するのを抑制することができる。
When cutting so as to widen the middle of the groove formed in the powder compact M, the tool used may be a T-slot cutter. When cutting a through hole in the powder compact M, the tool used may be a drill.
The drill used for drilling is a rounded tip drill having an arc-shaped cutting edge at the tip (see, for example, JP-A-2016-113657) or a candle-shaped drill (see, for example, JP-A-2016-113658). Is preferable. By adopting these drills, it is possible to suppress the occurrence of edge chipping at the hole outlet of the powder compact M.
 (圧粉成形体の加工条件)
 圧粉成形体Mを切削加工する場合の使用工具の好ましい回転数は、例えば500~50000rpmである。より好ましくは、1000~15000rpmである。
 圧粉成形体Mを切削加工する場合の使用工具の好ましい送り速度は、例えば20~6000mm/minである。より好ましくは、200~2000mm/minである。
 圧粉成形体Mの切り込み深さ及び切り込み位置は、ステップ2においてユーザが操作入力した圧粉成形体Mの3次元CADデータと、ステップ1において取得された現行品Cの3次元CADデータとに基づいて算出される。
(Processing conditions for powder compact)
The preferable rotation speed of the tool used when cutting the dust compact M is, for example, 500 to 50,000 rpm. More preferably, it is 1000 to 15000 rpm.
The preferred feed rate of the tool used when cutting the dust compact M is, for example, 20 to 6000 mm / min. More preferably, it is 200 to 2000 mm / min.
The cutting depth and cutting position of the dust compact M are determined by the three-dimensional CAD data of the dust compact M manually input by the user in step 2 and the three-dimensional CAD data of the current product C acquired in step 1. Calculated based on.
 〔ステップ3に使用される製造設備〕
 図3は、ステップ3に使用される製造設備3の一例を示す全体構成図である。
 図3に示すように、本実施形態の製造設備3は、工程P1から工程P5をそれぞれ個別に実行する装置31~35が順番に設置された設備である。製造設備3は、焼結体Sの製造業者の工場内に設置されている。
[Manufacturing equipment used in step 3]
FIG. 3 is an overall configuration diagram showing an example of the manufacturing equipment 3 used in step 3.
As shown in FIG. 3, the manufacturing facility 3 of the present embodiment is a facility in which devices 31 to 35 for individually executing the steps P1 to P5 are installed in order. The manufacturing facility 3 is installed in the factory of the manufacturer of the sintered body S.
 図3に例示する製造設備3は、具体的には、工程P1~P5にそれぞれ対応する装置31~35と、各装置31~35の近傍を通過するコンベア36と、各装置31~35に対するワーク(圧粉成形体Mなど)の搬入及び搬出を行うロボットアーム37と、を備える製造ラインよりなる。
 ロボットアーム37は、コンベア36から各装置32~35へのワークの搬入と、各装置31~35からコンベア36へのワークの搬出とを、1個単位で実行する。
Specifically, the manufacturing equipment 3 illustrated in FIG. 3 includes devices 31 to 35 corresponding to steps P1 to P5, a conveyor 36 passing in the vicinity of each device 31 to 35, and a work for each device 31 to 35. It comprises a production line including a robot arm 37 for carrying in and out (such as a dust compact M).
The robot arm 37 executes the loading of the work from the conveyor 36 to the devices 32 to 35 and the loading and unloading of the work from the devices 31 to 35 to the conveyor 36 in units of one.
 製造設備3で実行される各工程P1~P5の概要は、次の通りである。
 P1)成形工程:金型を用いて原料粉末を一軸加圧することで、全体又は一部の相対密度が93%以上の圧粉成形体Mを作製する。
 P2)加工工程:圧粉成形体Mを機械加工して加工成形体Pを作製する。
 P3)焼結工程:加工成形体Pを焼結して焼結体Sを得る。
 P4)仕上げ工程:焼結体Sの実寸法を設計寸法に近づける仕上げ加工を行う。
 P5)検査工程:焼結体Sの寸法精度及び/又は欠陥の有無などの検査を行う。
 以下、工程P1~P5の好ましい具体例を説明する。
The outline of each process P1 to P5 executed in the manufacturing facility 3 is as follows.
P1) Molding step: By uniaxially pressing the raw material powder using a mold, a powder compact M having a relative density of 93% or more in whole or part is produced.
P2) Processing step: The powder compact M is machined to produce a processed compact P.
P3) Sintering step: The processed molded product P is sintered to obtain a sintered body S.
P4) Finishing process: Finishing is performed so that the actual size of the sintered body S approaches the design size.
P5) Inspection step: Inspect the sintered body S for dimensional accuracy and / or the presence or absence of defects.
Hereinafter, preferred specific examples of steps P1 to P5 will be described.
 〔成形工程P1〕
 (原料粉末の例1)
 成形工程P1の原材料となる金属粉末は、焼結体Sを構成する主たる材料である。金属粉末としては、例えば、鉄又は鉄を主成分とする鉄合金の粉末が挙げられる。金属粉末には、代表的には、純鉄粉や鉄合金粉を用いることが挙げられる。
 「鉄を主成分とする鉄合金」とは、構成成分として、鉄元素を50質量%超、好ましくは80質量%以上、更に90質量%以上含有することを意味する。鉄合金としては、Cu,Ni,Sn,Cr,Mo,Mn及びCから選択される少なくとも1種の合金化元素を含有するものが挙げられる。
[Molding step P1]
(Example 1 of raw material powder)
The metal powder that is the raw material of the molding step P1 is the main material that constitutes the sintered body S. Examples of the metal powder include iron or iron alloy powder containing iron as a main component. As the metal powder, typically, pure iron powder or iron alloy powder is used.
The "iron alloy containing iron as a main component" means that an iron element is contained in an amount of more than 50% by mass, preferably 80% by mass or more, and further 90% by mass or more as a constituent component. Examples of the iron alloy include those containing at least one alloying element selected from Cu, Ni, Sn, Cr, Mo, Mn and C.
 上記の合金化元素は、鉄系焼結体の機械的特性の向上に寄与する。合金化元素のうち、Cu,Ni,Sn,Cr,Mn及びMoの含有量は、合計で0.5質量%以上5.0質量%以下、更に1.0質量%以上3.0質量%以下とすることが挙げられる。
 Cの含有量は、0.2質量%以上2.0質量%以下、更に0.4質量%以上1.0質量以下とすることが挙げられる。また、金属粉末に鉄粉を用い、これに上記の合金化元素の粉末(合金化粉末)を添加してもよい。
The above alloying elements contribute to the improvement of the mechanical properties of the iron-based sintered body. Of the alloying elements, the total contents of Cu, Ni, Sn, Cr, Mn and Mo are 0.5% by mass or more and 5.0% by mass or less, and further 1.0% by mass or more and 3.0% by mass or less. Is mentioned.
The content of C may be 0.2% by mass or more and 2.0% by mass or less, and further 0.4% by mass or more and 1.0% by mass or less. Further, iron powder may be used as the metal powder, and the above-mentioned alloying element powder (alloyed powder) may be added thereto.
 この場合、原料粉末の段階では金属粉末の構成成分が鉄であるが、焼結工程P3で焼結することによって鉄が合金化元素と反応して合金化される。
 原料粉末における金属粉末(合金化粉末を含む。)の含有量は、例えば、90質量%以上、更に95質量%以上とすることが挙げられる。金属粉末には、例えば、水アトマイズ法、ガスアトマイズ法、カルボニル法、還元法などにより作製したものを利用できる。
In this case, iron is a constituent component of the metal powder at the stage of the raw material powder, but iron is alloyed by reacting with the alloying element by sintering in the sintering step P3.
The content of the metal powder (including the alloyed powder) in the raw material powder may be, for example, 90% by mass or more, and further 95% by mass or more. As the metal powder, for example, those prepared by a water atomization method, a gas atomization method, a carbonyl method, a reduction method or the like can be used.
 金属粉末の平均粒径は、例えば、20μm以上200μm以下、更に50μm以上150μm以下とすることが挙げられる。金属粉末の平均粒径を上記の範囲内とすることで、取り扱い易く、かつ加圧成形し易い。更に、金属粉末の平均粒径を20μm以上とすることで、原料粉末の流動性を確保し易い。金属粉末の平均粒径を200μm以下とすることで、緻密な組織の焼結体Sを得易い。 The average particle size of the metal powder is, for example, 20 μm or more and 200 μm or less, and further 50 μm or more and 150 μm or less. By setting the average particle size of the metal powder within the above range, it is easy to handle and pressure molding. Further, by setting the average particle size of the metal powder to 20 μm or more, it is easy to secure the fluidity of the raw material powder. By setting the average particle size of the metal powder to 200 μm or less, it is easy to obtain a sintered body S having a dense structure.
 金属粉末の平均粒径は、金属粉末を構成する粒子の平均粒径のことである。粒子の平均粒径は、例えば、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒径(D50)である。微粒の金属粉末を利用することで、焼結体Sの表面粗さを小さくしたり、コーナーエッジをシャープにしたりすることができる。 The average particle size of the metal powder is the average particle size of the particles that make up the metal powder. The average particle size of the particles is, for example, a particle size (D50) at which the cumulative volume in the volume particle size distribution measured by a laser diffraction type particle size distribution measuring device is 50%. By using the fine metal powder, the surface roughness of the sintered body S can be reduced and the corner edges can be sharpened.
 (原料粉末の例2:誘導加熱の場合)
 焼結工程P3が高周波誘導加熱により行われる場合、Fe粉末又はFe合金粉末と、C粉末とを含む原料粉末とすることが好ましい。この原料粉末は、Fe粉末又はFe合金粉末を主体とする。以下、Fe粉末とFe合金粉末を纏めてFe系粉末ということがある。
(Example of raw material powder 2: Induction heating)
When the sintering step P3 is performed by high frequency induction heating, it is preferable to use a raw material powder containing Fe powder or Fe alloy powder and C powder. This raw material powder is mainly Fe powder or Fe alloy powder. Hereinafter, Fe powder and Fe alloy powder may be collectively referred to as Fe-based powder.
 Fe粉末、Fe合金粉末:
 Fe粉末は、純鉄粉である。Fe合金粉末は、鉄を主成分とし、例えばNi、及びMoの中から選択される1種以上の添加元素を含有するFe合金粒子を複数有する。Fe合金は、不可避的不純物を含むことを許容する。
 具体的なFe合金としては、Fe-Ni-Mo系合金が挙げられる。Fe系粉末は、例えば、水アトマイズ粉、ガスアトマイズ粉、カルボニル粉、還元粉を使用できる。原料粉末におけるFe系粉末の含有量は、原料粉末を100質量%とするとき、例えば、90質量%以上が挙げられ、更に95質量%以上が挙げられる。Fe合金におけるFeの含有量は、Fe合金を100質量%とするとき、90質量%以上、更に95質量%以上が挙げられる。Fe合金における添加元素の含有量は、合計で0質量%超10.0質量%以下、更に0.1質量%以上5.0質量%以下が挙げられる。
Fe powder, Fe alloy powder:
The Fe powder is pure iron powder. The Fe alloy powder has a plurality of Fe alloy particles containing iron as a main component and containing one or more additive elements selected from, for example, Ni and Mo. Fe alloys allow unavoidable impurities to be included.
Specific examples of the Fe alloy include Fe—Ni—Mo based alloys. As the Fe-based powder, for example, water atomizing powder, gas atomizing powder, carbonyl powder, and reducing powder can be used. The content of the Fe-based powder in the raw material powder is, for example, 90% by mass or more, and further 95% by mass or more, when the raw material powder is 100% by mass. The content of Fe in the Fe alloy is 90% by mass or more, and further 95% by mass or more, when the Fe alloy is 100% by mass. The total content of the additive elements in the Fe alloy is more than 0% by mass and 10.0% by mass or less, and further, 0.1% by mass or more and 5.0% by mass or less.
 Fe系粉末の平均粒径は、例えば、50μm以上150μm以下が挙げられる。Fe系粉末の平均粒径を上記範囲内とすることで、取り扱い易く、加圧成形し易い。Fe系粉末の平均粒径を50μm以上とすることで、流動性を確保し易い。Fe系粉末の平均粒径を150μm以下とすることで、緻密な組織の焼結体Sを得易い。Fe系粉末の平均粒径は、更に55μm以上100μm以下が挙げられる。
 「平均粒径」は、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒径(D50)のことである。この点は、後述のC粉末及びCu粉末の平均粒径でも同様である。
The average particle size of the Fe-based powder is, for example, 50 μm or more and 150 μm or less. By setting the average particle size of the Fe-based powder within the above range, it is easy to handle and pressure molding. By setting the average particle size of the Fe-based powder to 50 μm or more, it is easy to secure the fluidity. By setting the average particle size of the Fe-based powder to 150 μm or less, it is easy to obtain a sintered body S having a dense structure. Further, the average particle size of the Fe-based powder is 55 μm or more and 100 μm or less.
The "average particle size" is a particle size (D50) at which the cumulative volume in the volume particle size distribution measured by a laser diffraction type particle size distribution measuring device is 50%. This point is the same for the average particle diameters of C powder and Cu powder described later.
 C粉末:
 C粉末は、昇温時にFe-Cの液相となり、焼結体S中の空孔の角を丸くして焼結体Sの強度(圧環強度)を向上させる。原料粉末におけるC粉末の含有量は、原料粉末を100質量%とするとき、0.2質量%以上1.2質量%以下が挙げられる。
 C粉末の含有量を0.2質量%以上とすることで、Fe-Cの液相が十分出現して、空孔の角部を効果的に丸くし易くて強度を向上し易い。C粉末の含有量を1.2質量%以下とすることで、Fe-Cの液相が過度に生成されることを抑制し易く、寸法精度の高い焼結体Sを製造し易い。
C powder:
The C powder becomes a liquid phase of Fe—C when the temperature is raised, and the corners of the pores in the sintered body S are rounded to improve the strength (annular strength) of the sintered body S. The content of C powder in the raw material powder is 0.2% by mass or more and 1.2% by mass or less when the raw material powder is 100% by mass.
When the content of the C powder is 0.2% by mass or more, the liquid phase of Fe—C appears sufficiently, and the corners of the pores can be effectively rounded and the strength can be easily improved. By setting the content of the C powder to 1.2% by mass or less, it is easy to suppress the excessive formation of the liquid phase of Fe—C, and it is easy to manufacture the sintered body S having high dimensional accuracy.
 C粉末の含有量は、更に0.4質量%以上1.0質量%以下が好ましく、特に0.6質量%以上0.8質量%以下が好ましい。C粉末の平均粒径は、Fe粉末の平均粒径よりも小さくすることが好ましい。そうすれば、C粒子をFe粒子間に均一に分散させ易いため、合金化を進行し易い。
 C粉末の平均粒径は、例えば、1μm以上30μm以下が挙げられ、更に10μm以上25μm以下が挙げられる。Fe-Cの液相を生成させるという観点ではC粉末の平均粒径は大きい方が好ましいが、大きすぎると液相の出現する時間が長くなることで空孔が大きくなりすぎて欠陥となる。なお、原料粉末が純鉄粉を含むがCを含まない場合、焼結体Sの強度は、ベルト式連続焼結炉を用いて製造された焼結体Sよりも低くなる。
The content of the C powder is further preferably 0.4% by mass or more and 1.0% by mass or less, and particularly preferably 0.6% by mass or more and 0.8% by mass or less. The average particle size of the C powder is preferably smaller than the average particle size of the Fe powder. Then, since the C particles can be easily dispersed uniformly among the Fe particles, the alloying can easily proceed.
The average particle size of the C powder is, for example, 1 μm or more and 30 μm or less, and further includes 10 μm or more and 25 μm or less. From the viewpoint of forming a liquid phase of Fe—C, it is preferable that the average particle size of the C powder is large, but if it is too large, the time for the liquid phase to appear becomes long, and the pores become too large, resulting in defects. When the raw material powder contains pure iron powder but does not contain C, the strength of the sintered body S is lower than that of the sintered body S manufactured by using the belt type continuous sintering furnace.
 Cu粉末:
 原料粉末は、更にCu粉末を含むことが好ましい。Cu粉末は、後述の焼結工程の昇温時にFe-Cの液相化に寄与する。その上、CuはFe中に固溶して強度を高める働きがあり、Cu粉末を含むことで高強度な焼結体Sを製造できる。
 原料粉末におけるCu粉末の含有量は、原料粉末を100質量%とするとき、0.1質量%以上3.0質量%以下である。Cu粉末の含有量を0.1質量%以上とすることで、昇温(焼結)時にCuがFe中に拡散してCのFe中への拡散を抑制し易く、Fe-Cの液相を生成させ易い。
Cu powder:
The raw material powder preferably further contains Cu powder. The Cu powder contributes to the liquid phase of Fe—C when the temperature is raised in the sintering step described later. In addition, Cu has a function of solid-solving in Fe to increase the strength, and by containing Cu powder, a high-strength sintered body S can be produced.
The content of Cu powder in the raw material powder is 0.1% by mass or more and 3.0% by mass or less when the raw material powder is 100% by mass. By setting the content of the Cu powder to 0.1% by mass or more, Cu diffuses into Fe at the time of temperature rise (sintering), and it is easy to suppress the diffusion of C into Fe, and the liquid phase of Fe—C. Is easy to generate.
 Cu粉末の含有量を3.0質量%以下とすることで、Cuが昇温(焼結)時にFe中に拡散することでFe粒子が膨張して、焼結時の収縮を相殺するように作用するため、寸法精度の高い焼結体Sを製造し易い。
 Cu粉末の含有量は、更に1.5質量%以上2.5質量%以下が挙げられる。Cu粉末の平均粒径は、C粉末と同様、Fe粉末の平均粒径よりも小さくすることが好ましい。そうすれば、Cu粒子をFe粒子間に均一に分散させ易いため、合金化を進行し易い。Cu粉末の平均粒径は、例えば、1μm以上30μm以下が挙げられ、更に10μm以上25μm以下が挙げられる。
By setting the content of the Cu powder to 3.0% by mass or less, the Fe particles expand by diffusing Cu into Fe when the temperature rises (sinters), and the shrinkage during sintering is offset. Since it works, it is easy to manufacture the sintered body S having high dimensional accuracy.
Further, the content of Cu powder is 1.5% by mass or more and 2.5% by mass or less. Like the C powder, the average particle size of the Cu powder is preferably smaller than the average particle size of the Fe powder. By doing so, the Cu particles can be easily dispersed uniformly among the Fe particles, so that alloying can easily proceed. The average particle size of the Cu powder is, for example, 1 μm or more and 30 μm or less, and further 10 μm or more and 25 μm or less.
 (内部潤滑剤)
 金型を用いたプレス成形では、金型への金属粉末の焼き付きを防止するために、金属粉末と内部潤滑剤とを混合した原料粉末を用いることが一般的である。しかし、本実施形態では、原料粉末に内部潤滑剤を含ませないか、含ませても原料粉末全体の0.2質量%以下とすることが好ましい。原料粉末における金属粉末の割合が低下することを抑制し、相対密度が93%以上の圧粉成形体Mを得るためである。
 ただし、相対密度が93%以上の圧粉成形体を作製できる範囲で、微量の内部潤滑剤を原料粉末に含ませることは許容される。内部潤滑剤として、ステアリン酸リチウム、ステアリン酸亜鉛などの金属石鹸を利用することができる。
(Internal lubricant)
In press molding using a die, in order to prevent seizure of the metal powder on the die, it is common to use a raw material powder in which the metal powder and the internal lubricant are mixed. However, in the present embodiment, it is preferable that the raw material powder does not contain an internal lubricant, or even if it is contained, the content is 0.2% by mass or less of the total raw material powder. This is to suppress a decrease in the ratio of the metal powder in the raw material powder and to obtain a powder compact M having a relative density of 93% or more.
However, it is permissible to include a small amount of internal lubricant in the raw material powder as long as a powder compact having a relative density of 93% or more can be produced. As the internal lubricant, metal soap such as lithium stearate and zinc stearate can be used.
 (有機バインダー)
 後の加工工程P2において、圧粉成形体Mに割れや欠けが生じることを抑制するため、原料粉末に有機バインダーを添加しても構わない。
 有機バインダーとしては、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリエステル、ポリエーテル、ポリビニルアルコール、酢酸ビニル、パラフィン、各種ワックスなどが挙げられる。有機バインダーは、必要に応じて添加すればよく、添加しなくてもよい。有機バインダーを添加する場合、成形工程P1で相対密度が93%以上の圧粉成形体Mを作製できる程度の添加量とする必要がある。
(Organic binder)
In the subsequent processing step P2, an organic binder may be added to the raw material powder in order to prevent cracks and chips from occurring in the powder compact M.
Examples of the organic binder include polyethylene, polypropylene, polyolefin, polymethylmethacrylate, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyamide, polyester, polyether, polyvinyl alcohol, vinyl acetate, paraffin, and various waxes. The organic binder may or may not be added as needed. When the organic binder is added, the amount must be such that the powder compact M having a relative density of 93% or more can be produced in the molding step P1.
 (圧粉成形体の加圧方式)
 成形工程P1では、金型を用いて原料粉末を一軸加圧することで、圧粉成形体Mを作製する。一軸加圧を行う金型は、ダイと、その上下の開口部に嵌め込まれる一対のパンチと、を備える金型である。ダイのキャビティに充填された原料粉末を上パンチと下パンチとで圧縮することにより、圧粉成形体Mが作製される。
(Pressurization method for powder compact)
In the molding step P1, the powder compact M is produced by uniaxially pressing the raw material powder using a mold. The uniaxial pressurizing die is a die including a die and a pair of punches fitted into the upper and lower openings thereof. The powder compact M is produced by compressing the raw material powder filled in the cavity of the die with the upper punch and the lower punch.
 上記の金型で成形できる圧粉成形体Mは単純な形状となる。単純な形状としては、例えば、円柱状、円筒状、角柱状、角筒状などを挙げることができる。
 パンチ面に凸部や凹部を備えるパンチを利用してもよい。この場合、単純形状の圧粉成形体Mに、凸部や凹部に対応した凹みや出っ張りが形成される。このような凹みや出っ張りを有する圧粉成形体も、単純形状の圧粉成形体Mに含まれる。
The powder compact M that can be molded with the above mold has a simple shape. Examples of the simple shape include a columnar shape, a cylindrical shape, a prismatic shape, and a square tubular shape.
A punch having a convex portion or a concave portion on the punch surface may be used. In this case, the simple-shaped dust compact M is formed with dents and protrusions corresponding to the protrusions and recesses. A dust compact having such a dent or a protrusion is also included in the simple shape dust compact M.
 一軸加圧の圧力(面圧)は、600MPa以上とすることが挙げられる。面圧を大きくすることで、圧粉成形体Mの相対密度を高くすることができる。好ましい面圧は、1000MPa以上、より好ましい面圧は1500MPa以上である。面圧の上限は特にない。 The pressure (surface pressure) for uniaxial pressurization may be 600 MPa or more. By increasing the surface pressure, the relative density of the powder compact M can be increased. A preferable surface pressure is 1000 MPa or more, and a more preferable surface pressure is 1500 MPa or more. There is no particular upper limit on the surface pressure.
 (外部潤滑剤) 
 一軸加圧において、金型への金属粉末の焼き付きを防止するために、金型の内周面(ダイの内周面やパンチの押圧面)に外部潤滑剤を塗布することが好ましい。
 外部潤滑剤としては、例えば、ステアリン酸リチウム、ステアリン酸亜鉛などの金属石鹸などを利用することができる。その他、ラウリン酸アミド、ステアリン酸アミド、パルミチン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどの高級脂肪酸アミドを外部潤滑剤として利用することもできる。
(External lubricant)
In uniaxial pressurization, it is preferable to apply an external lubricant to the inner peripheral surface of the die (the inner peripheral surface of the die or the pressing surface of the punch) in order to prevent seizure of the metal powder on the die.
As the external lubricant, for example, a metal soap such as lithium stearate or zinc stearate can be used. In addition, fatty acid amides such as lauric acid amide, stearic acid amide and palmitate amide, and higher fatty acid amides such as ethylene bisstearic acid amide can also be used as external lubricants.
 (圧粉成形体の相対密度)
 一軸加圧によって得られる圧粉成形体Mの全体の平均相対密度は、93%以上であることが好ましい。平均相対密度は、好ましくは94%以上又は95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらに好ましくは99.8%以上である。
 平均相対密度が93%以上の高密度になる部分は、圧粉成形体Mの全体であってもよいし一部であってもよい。もっとも、後述の加工工程P2において、多関節ロボット202(図5参照)で圧粉成形体Mを掴む場合は、全体の平均相対密度が93%以上とすることが好ましい。全体が高密度であれば、どこを掴んでも欠けが生じ難いからである。
(Relative density of powder compact)
The overall average relative density of the powder compact M obtained by uniaxial pressurization is preferably 93% or more. The average relative density is preferably 94% or more or 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 99.8% or more.
The portion where the average relative density becomes high density of 93% or more may be the whole or a part of the dust compact M. However, in the processing step P2 described later, when the powder compact M is gripped by the articulated robot 202 (see FIG. 5), the average relative density of the whole is preferably 93% or more. This is because if the whole is dense, chipping is unlikely to occur no matter where you grab it.
 上記の通り、本実施形態の製造設備3によれば、全体の平均相対密度が93%以上である焼結体Sを得ることができる。
 焼結体Sの全体の平均相対密度は、焼結前の圧粉成形体Mの全体の平均相対密度にほぼ等しい。焼結体Sの平均相対密度は、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上であり、当該平均相対密度が高くなるほど焼結体Sの強度が高くなる。
As described above, according to the manufacturing equipment 3 of the present embodiment, it is possible to obtain the sintered body S having an overall average relative density of 93% or more.
The overall average relative density of the sintered body S is substantially equal to the overall average relative density of the dust compact M before sintering. The average relative density of the sintered body S is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, and the higher the average relative density, the higher the strength of the sintered body S.
 圧粉成形体Mの全体の平均相対密度は、圧粉成形体Mにおける加圧軸方向の中央近傍、一端側近傍、および他端側近傍の位置で、加圧軸方向に交差する断面(好ましくは直交する断面)をとり、各断面を画像解析することで求めることができる。
 より具体的には、まず各断面において複数の観察視野の画像、例えば各断面において500μm×600μm=300000μmの面積を有する観察視野の画像を10個以上取得する。各観察視野の画像は、断面における極力均等に分散した位置から取得することが好ましい。
The overall average relative density of the powder compact M is a cross section (preferably) intersecting the pressure axial direction at positions in the powder compact M near the center, near one end side, and near the other end side in the pressure axis direction. Is an orthogonal cross section), and each cross section can be obtained by image analysis.
More specifically, first, 10 or more images of an observation field of view having an area of 500 μm × 600 μm = 300,000 μm 2 in each cross section are acquired. It is preferable that the image of each observation field is acquired from the positions dispersed as evenly as possible in the cross section.
 次いで、取得した各観察視野の画像を二値化処理して、観察視野に占める金属粒子の面積割合を求め、その面積割合を観察視野の相対密度と見做す。
 そして、各観察視野から求めた相対密度を平均し、圧粉成形体の全体の平均相対密度を算出する。ここで、上記一端側近傍(他端側近傍)とは、例えば圧粉成形体Mの表面から3mm以内の位置とすることが挙げられる。
Next, the acquired images of each observation field of view are binarized to obtain the area ratio of the metal particles in the observation field of view, and the area ratio is regarded as the relative density of the observation field of view.
Then, the relative densities obtained from each observation field of view are averaged to calculate the overall average relative density of the powder compact. Here, the vicinity of one end side (near the other end side) may be, for example, a position within 3 mm from the surface of the powder compact M.
 〔加工工程P2〕
 加工工程P2では、一軸加圧によって作製された圧粉成形体Mに対して、焼結を行うことなく機械加工を行う。
 機械加工は、代表的には切削加工である。この場合、切削工具を用いて所定形状の圧粉成形体Mが加工される。切削加工としては、例えば、転削加工、旋削加工などが挙げられ、転削加工には、穴あけ加工が含まれる。切削工具には、穴あけ加工の場合、ドリルやリーマ、転削加工の場合、フライスやエンドミル、旋削加工の場合、バイトや刃先交換型切削チップなどを用いることが挙げられる。その他、ホブ、ブローチ、ピニオンカッタなどを用いて切削加工を行なっても構わない。
[Processing process P2]
In the processing step P2, the powder compact M produced by uniaxial pressurization is machined without sintering.
Machining is typically cutting. In this case, a powder compact M having a predetermined shape is processed using a cutting tool. Examples of the cutting process include milling and turning, and the milling includes drilling. Examples of the cutting tool include drills and reamers in the case of drilling, milling cutters and end mills in the case of turning, and cutting tools and cutting tips with replaceable cutting edges in the case of turning. In addition, cutting may be performed using a hob, a brooch, a pinion cutter, or the like.
 金属粒子が押し固まった圧粉成形体Mの場合、切削工具によって圧粉成形体Mの表面から金属粒子が引き剥がされるように機械加工が施される。
 このため、例えば鋳造体や仮焼成体などを切削する場合に比べて、切削工具の摩擦が非常に少なくなり、工具の寿命を大幅に短縮できる。また、機械加工によって生じる加工屑は、圧粉成形体Mを構成する個々の金属粒子から分離された金属粉末で構成される。粉末状の加工屑は、溶解することなく再利用することができる。
In the case of the powder compact M in which the metal particles are compacted, machining is performed so that the metal particles are peeled off from the surface of the powder compact M by a cutting tool.
Therefore, as compared with the case of cutting a cast body or a temporarily fired body, for example, the friction of the cutting tool is greatly reduced, and the life of the tool can be significantly shortened. Further, the machining waste generated by machining is composed of metal powder separated from the individual metal particles constituting the powder compact M. The powdered processing waste can be reused without being dissolved.
 〔焼結工程P3〕 
 焼結工程P3では、圧粉成形体Mを機械加工して得られた加工成形体Pを焼結させる。加工成形体Pを焼結することにより、金属粉末の粒子同士が接触して結合された焼結体Sが得られる。焼結工程P3では、金属粉末の組成に応じた所定の条件を適用できる。
 金属粉末が鉄粉又は鉄合金粉の場合、焼結温度は、例えば、1100℃以上1400℃以下、更に1200℃以上1300℃以下とすることが挙げられる。焼結時間は、例えば、15分以上150分以下、更に20分以上60分以下とすることが挙げられる。
[Sintering step P3]
In the sintering step P3, the processed molded body P obtained by machining the powder compact M is sintered. By sintering the processed molded product P, the sintered body S in which the particles of the metal powder are in contact with each other and bonded to each other can be obtained. In the sintering step P3, predetermined conditions can be applied according to the composition of the metal powder.
When the metal powder is iron powder or iron alloy powder, the sintering temperature may be, for example, 1100 ° C. or higher and 1400 ° C. or lower, and further 1200 ° C. or higher and 1300 ° C. or lower. The sintering time may be, for example, 15 minutes or more and 150 minutes or less, and further 20 minutes or more and 60 minutes or less.
 焼結体Sの実寸法と設計寸法との差に基づいて、加工工程P2における加工度合いを調整してもよい。相対密度が93%以上である高密度の圧粉成形体Mを加工して得られる加工成形体Pは、焼結時にほぼ均等に収縮する。
 このため、焼結後の実寸法と設計寸法との差に基づいて、加工工程P2の加工度合いを調整することで、焼結体Sの実寸法を設計寸法に近づけることができる。その結果、次の仕上げ工程P4の手間と時間を少なくできる。機械加工を多関節ロボット201,202やマシニングセンタで行う場合、加工度合いの調整は容易に行なえる。
The degree of processing in the processing step P2 may be adjusted based on the difference between the actual size and the design size of the sintered body S. The processed molded product P obtained by processing a high-density powder compact M having a relative density of 93% or more shrinks substantially evenly during sintering.
Therefore, the actual size of the sintered body S can be brought closer to the design size by adjusting the processing degree in the processing step P2 based on the difference between the actual size after sintering and the design size. As a result, the labor and time of the next finishing step P4 can be reduced. When machining is performed by articulated robots 201 and 202 or a machining center, the degree of machining can be easily adjusted.
 〔仕上げ工程P4〕 
 仕上げ工程P4では、焼結体Sの表面を研磨するなどして、焼結体Sの表面粗さを小さくするとともに、焼結体Sの寸法を設計寸法(現行品Cの寸法)に合わせる。
 研磨仕上げは、図示しない研磨装置により実行される。研磨装置には、ステップ1で取得した現行品Cの3次元CADデータが入力される。研磨装置は、焼結体Sの設計寸法を入力データから算出し、算出した設計寸法となるように焼結体Sの各部を研磨する。例えば、焼結体Sがギアよりなる場合には、ギアの歯面の研磨などが行われる。
[Finishing process P4]
In the finishing step P4, the surface roughness of the sintered body S is reduced by polishing the surface of the sintered body S, and the dimensions of the sintered body S are adjusted to the design dimensions (dimensions of the current product C).
The polishing finish is performed by a polishing device (not shown). The three-dimensional CAD data of the current product C acquired in step 1 is input to the polishing apparatus. The polishing apparatus calculates the design dimensions of the sintered body S from the input data, and polishes each part of the sintered body S so as to have the calculated design dimensions. For example, when the sintered body S is made of a gear, the tooth surface of the gear is polished.
 〔検査工程P5〕 
 検査工程P5では、焼結体Sが設計寸法(現行品Cの寸法)に適合するか、及び、ひび割れなどの欠陥がないかの少なくとも1つを検査する。
 これらの検査は、非接触式の3Dスキャナ(例えば、レーザ光タイプ又はパターン光タイプの3Dスキャナ)や、非接触式の非破壊検査装置で行われることが好ましい。これらの検査装置を使用すれば、焼結体Sを自動的にかつ1個ずつ検査することができる。
[Inspection step P5]
In the inspection step P5, at least one of whether the sintered body S conforms to the design dimensions (dimensions of the current product C) and whether there are any defects such as cracks is inspected.
These inspections are preferably performed by a non-contact type 3D scanner (for example, a laser light type or pattern light type 3D scanner) or a non-contact type non-destructive inspection device. By using these inspection devices, the sintered bodies S can be inspected automatically and one by one.
 〔成形工程P1に使用される装置〕
 図4は、成形工程P1に使用される成形装置31の一例を示す概略構成図である。
 図4に示すように、成形工程P1に使用される成形装置31は、例えば、油圧サーボ方式で駆動される一軸加圧のプレス成形装置よりなる。
[Device used in molding process P1]
FIG. 4 is a schematic configuration diagram showing an example of the molding apparatus 31 used in the molding step P1.
As shown in FIG. 4, the molding apparatus 31 used in the molding step P1 includes, for example, a uniaxially pressurized press molding apparatus driven by a hydraulic servo system.
 プレス成形装置31は、矩形状のベースプレート101と、ベースプレート101の四隅に設けられた支柱102と、支柱102の上端に固定された天井フレーム103と、支柱102の上部に上下動自在に支持された上部プレート104とを備える。
 ベースプレート101の上方には、油圧シリンダ機構105によって上下方向位置が制御されるパンチセット106が設けられ、上部プレート104の下方には、油圧シリンダ機構107によって上下方向位置が制御されるパンチセット108が設けられている。
The press forming apparatus 31 was vertically and vertically supported by a rectangular base plate 101, columns 102 provided at the four corners of the base plate 101, a ceiling frame 103 fixed to the upper end of the columns 102, and an upper portion of the columns 102. It is provided with an upper plate 104.
A punch set 106 whose vertical position is controlled by the hydraulic cylinder mechanism 105 is provided above the base plate 101, and a punch set 108 whose vertical position is controlled by the hydraulic cylinder mechanism 107 is provided below the upper plate 104. It is provided.
 天井フレーム103の中央部には、油圧駆動の上部シリンダ109が設けられている。上部シリンダ109のロッド下端と上部プレート104の上面はリンク機構110を介して連結されている。
 従って、上部シリンダ109が伸張すると、上部プレート104が原料粉末116の準備位置まで下降する。その後、上下の油圧シリンダ機構105,107を駆動することによりパンチセット106とパンチセット108が接合し、原料粉末116が加圧される。
A hydraulically driven upper cylinder 109 is provided at the center of the ceiling frame 103. The lower end of the rod of the upper cylinder 109 and the upper surface of the upper plate 104 are connected via a link mechanism 110.
Therefore, when the upper cylinder 109 is extended, the upper plate 104 is lowered to the preparation position of the raw material powder 116. After that, the punch set 106 and the punch set 108 are joined by driving the upper and lower hydraulic cylinder mechanisms 105 and 107, and the raw material powder 116 is pressurized.
 上下の油圧シリンダ機構105,107は、複数の油圧シリンダを同軸心状に多層化した構造であり、各油圧シリンダの軸心はベースプレート101の中心位置にある。
 従って、プレス成形装置31は、ベースプレート101の外側にはみ出る部材が存在しないスリムな構造であり、かつピットなしで設置できる。このため、プレス成形装置31は、設置面積及び設置コストが少ないという利点がある。
The upper and lower hydraulic cylinder mechanisms 105 and 107 have a structure in which a plurality of hydraulic cylinders are multilayered in a coaxial center shape, and the axial center of each hydraulic cylinder is located at the center position of the base plate 101.
Therefore, the press forming apparatus 31 has a slim structure in which there is no member protruding to the outside of the base plate 101, and can be installed without pits. Therefore, the press forming apparatus 31 has an advantage that the installation area and the installation cost are small.
 図4に示すように、下側のパンチセット106は、円筒状のダイ111、コアロッド112、外パンチ113、及び内パンチ114を備える。ダイ111の内周面とコアロッド112の外周面とでキャビティが形成される。
 上側のパンチセット108は、上パンチ115を備える。上パンチ115は、コアロッド112の通過孔を有する円筒状である。
As shown in FIG. 4, the lower punch set 106 includes a cylindrical die 111, a core rod 112, an outer punch 113, and an inner punch 114. A cavity is formed by the inner peripheral surface of the die 111 and the outer peripheral surface of the core rod 112.
The upper punch set 108 includes an upper punch 115. The upper punch 115 has a cylindrical shape having a through hole for the core rod 112.
 プレス前の段階では、コアロッド112の上端面をダイ111の上端面から突出させ、かつ、内パンチ114よりも外パンチ113を深い位置にセットした状態とする。この状態で、キャビティに原料粉末116を充填する。
 プレスに際しては、外パンチ113と下パンチ114を一緒に上昇させつつ、上パンチ115を下降させる。この際、外パンチ113と内パンチ114が同時に同じ位置で上死点に達するように上昇速度を制御する。
In the stage before pressing, the upper end surface of the core rod 112 is projected from the upper end surface of the die 111, and the outer punch 113 is set at a position deeper than the inner punch 114. In this state, the cavity is filled with the raw material powder 116.
At the time of pressing, the upper punch 115 is lowered while the outer punch 113 and the lower punch 114 are raised together. At this time, the ascending speed is controlled so that the outer punch 113 and the inner punch 114 reach the top dead center at the same position at the same time.
 上記の圧縮成形により、原料粉末116の充填量が多い外周部は、充填量が少ない内周部に比べて高圧力で圧縮される。また、図4の例では、厚みが均一な圧粉成形体Mが成形される。従って、圧粉成形体Mは、外周部に高密度領域M1を有し、内周部に低密度領域M2を有するほぼドーナツ形状のタブレットとなる。
 上記の成形方法は、外歯ギアやスプロケットのように、外周縁に摺動箇所が連続する焼結体Sの製造に適している。例えば、外歯ギアの場合、圧粉成形体Mの外周側を高密度領域M1とすることにより、高剛性で耐摩耗性に優れる外歯が得られる。
By the above compression molding, the outer peripheral portion having a large filling amount of the raw material powder 116 is compressed at a higher pressure than the inner peripheral portion having a small filling amount. Further, in the example of FIG. 4, a powder compact M having a uniform thickness is molded. Therefore, the powder compact M is a substantially donut-shaped tablet having a high-density region M1 on the outer peripheral portion and a low-density region M2 on the inner peripheral portion.
The above molding method is suitable for manufacturing a sintered body S having continuous sliding portions on the outer peripheral edge, such as an external tooth gear and a sprocket. For example, in the case of an external tooth gear, by setting the outer peripheral side of the dust compact M to the high density region M1, an external tooth having high rigidity and excellent wear resistance can be obtained.
 図4の場合とは逆に、外パンチ113よりも内パンチ114を深い位置にセットして原料粉末116をプレス成形すれば、内周部が高密度領域M1であり外周部が低密度領域M2である圧粉成形体Mが得られる。
 上記の成形方法は、内歯ギアのように、内周縁に摺動箇所が連続する焼結体Sの製造に適している。例えば、内歯ギアの場合、圧粉成形体Mの内周側を高密度領域M1とすることにより、高剛性で耐摩耗性に優れる内歯が得られる。
Contrary to the case of FIG. 4, if the inner punch 114 is set at a position deeper than the outer punch 113 and the raw material powder 116 is press-molded, the inner peripheral portion is the high density region M1 and the outer peripheral portion is the low density region M2. The powder compact M is obtained.
The above molding method is suitable for manufacturing a sintered body S having continuous sliding portions on the inner peripheral edge, such as an internal tooth gear. For example, in the case of an internal tooth gear, by setting the inner peripheral side of the powder compact M to the high-density region M1, an internal tooth having high rigidity and excellent wear resistance can be obtained.
 以上の通り、相対密度が異なる領域M1,M2を有する圧粉成形体Mの場合には、高密度領域M1の相対密度を93%以上とすればよく、低密度領域M2の相対密度は93%未満であってもよい。
 なお、外パンチ113と内パンチ114を同じ深さ位置にセットして原料粉末116をプレス成形すれば、プレス成形装置31を用いて、全体の平均相対密度が93%以上である圧粉成形体Mを成形することもできる。
As described above, in the case of the powder compact M having the regions M1 and M2 having different relative densities, the relative density of the high density region M1 may be 93% or more, and the relative density of the low density region M2 is 93%. It may be less than.
If the outer punch 113 and the inner punch 114 are set at the same depth position and the raw material powder 116 is press-molded, the powder compacted product having an overall average relative density of 93% or more using the press molding apparatus 31. M can also be molded.
 〔加工工程P2に使用される装置〕
 図5は、加工工程P2に使用される加工装置32の一例を示す概略構成図である。
 図5に示すように、加工工程P2に使用される加工装置32は、例えば、多関節ロボット201,202を用いて圧粉成形体Mを加工するロボット加工装置よりなる。
 かかるロボット加工装置32は、例えば5軸マシニングセンタに比べて設置スペースが小さいので、焼結体Sの製造設備3のコンパクト化に寄与する。
[Equipment used in processing process P2]
FIG. 5 is a schematic configuration diagram showing an example of the processing apparatus 32 used in the processing step P2.
As shown in FIG. 5, the processing device 32 used in the processing step P2 includes, for example, a robot processing device that processes the powder compact M using the articulated robots 201 and 202.
Since the installation space of such a robot processing device 32 is smaller than that of, for example, a 5-axis machining center, it contributes to the compactification of the manufacturing equipment 3 for the sintered body S.
 本実施形態のロボット加工装置32は、2つの多関節ロボット201,202と、双方の多関節ロボット201,202の動作を制御する制御装置203とを備える。
 2つの多関節ロボット201,202のうち、一方の第1ロボット201は、ドリルなどの工具204を保持するロボットである。他方の第2ロボット202は、圧粉成形体Mを保持するロボットである。
The robot processing device 32 of the present embodiment includes two articulated robots 201 and 202 and a control device 203 that controls the operation of both articulated robots 201 and 202.
Of the two articulated robots 201 and 202, the first robot 201 is a robot that holds a tool 204 such as a drill. The other second robot 202 is a robot that holds the powder compact M.
 第1ロボット201は、アーム先端部に工具204の把持部205を有する。第1ロボット201は、制御装置203からの指令に応じて、異なる種類の工具204を把持部205によって掴むことができる。
 第2ロボット202は、アーム先端部に圧粉成形体Mの把持部206を有する。第2ロボット202は、コンベア36に搬送中の圧粉成形体Mを把持部206で掴むことができる。第2ロボット202は、加工成形体Pをコンベア36に戻すこともできる。
The first robot 201 has a grip portion 205 of the tool 204 at the tip end portion of the arm. The first robot 201 can grip different types of tools 204 by the grip portion 205 in response to a command from the control device 203.
The second robot 202 has a grip portion 206 of the dust compact M at the tip of the arm. The second robot 202 can grip the powder compact M being conveyed to the conveyor 36 by the grip portion 206. The second robot 202 can also return the processed molded product P to the conveyor 36.
 制御装置203は、第1通信部207、第2通信部208、制御部209、及び記憶部210を備える。
 第1通信部207は、イーサネット(登録商標)などの所定の通信規格に則って外部装置と通信する通信インタフェースよりなる。第2通信部208は、第1及び第2アーム201,202と通信可能に接続された通信インタフェースよりなる。
The control device 203 includes a first communication unit 207, a second communication unit 208, a control unit 209, and a storage unit 210.
The first communication unit 207 includes a communication interface that communicates with an external device in accordance with a predetermined communication standard such as Ethernet (registered trademark). The second communication unit 208 includes a communication interface communicably connected to the first and second arms 201 and 202.
 制御部209は、CPU及び揮発性メモリなどを含む情報処理装置よりなる。記憶部210は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)などの記録媒体を含む記憶装置よりなる。
 第1通信部207は、ステップ2のコンピュータ装置2から加工プログラムを受信すると、受信したプログラムを制御部209に提供する。制御部209は、受信した加工プログラムから動作コード(例えばGコード又はMコードなど)を抽出する。
The control unit 209 includes an information processing device including a CPU and a volatile memory. The storage unit 210 includes a storage device including a recording medium such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
When the first communication unit 207 receives the machining program from the computer device 2 in step 2, the first communication unit 207 provides the received program to the control unit 209. The control unit 209 extracts an operation code (for example, G code or M code) from the received machining program.
 制御部209は、抽出した各動作コードを順に第2通信部208に出力し、多関節ロボット201,202に送信させる。多関節ロボット201,202は、受信した動作コードに従って所定の作業を実行する。
 これにより、多関節ロボット201,202は、制御装置203からの指令に応じて圧粉成形体Mに所定の加工を行う。
The control unit 209 outputs each extracted operation code to the second communication unit 208 in order, and causes the articulated robots 201 and 202 to transmit the code. The articulated robots 201 and 202 perform a predetermined operation according to the received operation code.
As a result, the articulated robots 201 and 202 perform predetermined processing on the powder compact M in response to a command from the control device 203.
 作業対象物(工具204及び圧粉成形体M)の位置及び姿勢の双方を3次元で調整可能とするため、第1及び第2ロボット201,202は、少なくとも6自由度のアーム構造を有することが好ましい。
 もっとも、圧粉成形体Mについては、加工時には同じ位置に保持するなど、高い自由度の位置及び姿勢の調整が不要である場合には、自由度が6未満の第2ロボット202を採用してもよい。
The first and second robots 201 and 202 have an arm structure having at least 6 degrees of freedom so that both the position and the posture of the work object (tool 204 and powder compact M) can be adjusted in three dimensions. Is preferable.
However, when it is not necessary to adjust the position and posture with a high degree of freedom, such as holding the powder compact M at the same position during processing, a second robot 202 with a degree of freedom of less than 6 is adopted. May be good.
 本実施形態の製造設備3では、圧粉成形体Mの相対密度が93%以上であるから、第2ロボット202が保持する圧粉成形体Mに第1ロボット201の工具204で切削作業を行っても、圧粉成形体Mが壊れない。このため、圧粉成形体Mを迅速に加工できる。
 また、少なくとも第1ロボット201が6自由度であるため、圧粉成形体Mに対して任意の角度で工具204を接触させることができ、複雑な加工を迅速に実行できる。
In the manufacturing equipment 3 of the present embodiment, since the relative density of the dust compact M is 93% or more, the dust compact M held by the second robot 202 is cut by the tool 204 of the first robot 201. However, the powder compact M is not broken. Therefore, the powder compact M can be processed quickly.
Further, since the first robot 201 has at least 6 degrees of freedom, the tool 204 can be brought into contact with the powder compact M at an arbitrary angle, and complicated machining can be performed quickly.
 〔焼結工程P3に使用される装置〕
 図6は、焼結工程P3に使用される焼結装置33の一例を示す概略構成図である。
 図6に示すように、焼結工程P3に使用される焼結装置33は、例えば、加工済みの圧粉成形体M(加工成形体P)を高周波誘導方式により加熱する誘導加熱焼結炉よりなる。
 高周波誘導方式による加熱は、対象物を高速で昇温できるため、加工成形体Pを短時間で所定温度にまで高められる。このため、焼結体Sを短時間で製造し易い。
[Equipment used for sintering step P3]
FIG. 6 is a schematic configuration diagram showing an example of the sintering apparatus 33 used in the sintering step P3.
As shown in FIG. 6, the sintering apparatus 33 used in the sintering step P3 is, for example, from an induction heating sintering furnace that heats a processed dust compact M (processed molded product P) by a high frequency induction method. Become.
Since the heating by the high frequency guidance method can raise the temperature of the object at high speed, the processed molded product P can be raised to a predetermined temperature in a short time. Therefore, the sintered body S can be easily manufactured in a short time.
 図6に示すように、誘導加熱焼結炉33は、縦長のチャンバ301と、チャンバ301内に収容された円筒状の加熱容器302と、加熱容器302の下方に配置された冷却容器303と、加熱容器302の下方に配置された昇降台304とを備える。
 加熱容器302の外周面には誘導コイル305が巻き付けられ、加熱容器302の内部と冷却容器303の内部は、上下方向で連通している。昇降台304は、加熱容器302の内部及び冷却容器303の内部いずれかの高さに加工成形体Pを昇降可能である。
As shown in FIG. 6, the induction heating sintering furnace 33 includes a vertically long chamber 301, a cylindrical heating container 302 housed in the chamber 301, and a cooling container 303 arranged below the heating container 302. It is provided with an elevating table 304 arranged below the heating container 302.
An induction coil 305 is wound around the outer peripheral surface of the heating container 302, and the inside of the heating container 302 and the inside of the cooling container 303 communicate with each other in the vertical direction. The elevating table 304 can raise and lower the processed molded product P to either the inside of the heating container 302 or the inside of the cooling container 303.
 誘導加熱焼結炉33は、誘導コイル305に対する出力値(例えば電力値)や周波数を調整可能な電源(図示省略)も備える。
 加工成形体Pは、ロボットアーム37により昇降台304に載せられる。加工成形体Pを加熱する場合は、昇降台304は、加工成形体Pを加熱容器302の内部に位置決めする。焼結後の加工成形体P(焼結体S)を冷却する場合は、昇降台304は、焼結後の加工成形体Pを冷却容器303の内部に位置決めする。
The induction heating sintering furnace 33 also includes a power source (not shown) whose output value (for example, electric power value) and frequency with respect to the induction coil 305 can be adjusted.
The processed molded body P is placed on the elevating table 304 by the robot arm 37. When the processed molded product P is heated, the elevating table 304 positions the processed molded product P inside the heating container 302. When the processed molded product P (sintered body S) after sintering is cooled, the elevating table 304 positions the processed molded product P after sintering inside the cooling container 303.
 誘導加熱焼結炉33は、加熱容器302の内部に不活性ガスを供給するガス供給路と、加熱容器302の外部にガスを排出するガス排出路を備えることが好ましい。この場合、非酸化性のガス雰囲気の下で加工成形体Pを焼結することができる。不活性ガスは、窒素ガスやアルゴンガスなどが挙げられる。 The induction heating sintering furnace 33 preferably includes a gas supply path for supplying an inert gas inside the heating container 302 and a gas discharge path for discharging the gas to the outside of the heating container 302. In this case, the processed molded product P can be sintered under a non-oxidizing gas atmosphere. Examples of the inert gas include nitrogen gas and argon gas.
 誘導加熱焼結炉33は、対象物を高速で昇温できしかも加工成形体Pを短時間で所定温度にまで高められる。従って、例えばベルト式連続焼結炉に比べて、焼結体Sを短時間で製造できるという利点がある。
 誘導加熱焼結炉33は、昇温速度が速いので、例えばベルト式連続焼結炉に比べて、狭小な設置スペースで足りるという利点もある。誘導加熱焼結炉33の場合、例えば比較的小型のチャンバ301(例えば1.5m×1.5m)を採用できる。
The induction heating sintering furnace 33 can raise the temperature of the object at high speed and raise the processed molded product P to a predetermined temperature in a short time. Therefore, there is an advantage that the sintered body S can be manufactured in a short time as compared with, for example, a belt type continuous sintering furnace.
Since the induction heating sintering furnace 33 has a high heating rate, there is an advantage that a narrow installation space is sufficient as compared with, for example, a belt type continuous sintering furnace. In the case of the induction heating sintering furnace 33, for example, a relatively small chamber 301 (for example, 1.5 m × 1.5 m) can be adopted.
 誘導加熱焼結炉33は、加工成形体Pを焼結するのに短時間で済み、加工成形体Pを焼結しない間は、焼結炉33の温度を保持し続ける必要がない。従って、例えばベルト式連続焼結炉に比べて、省エネルギー化を図れるという利点もある。
 焼結工程P3では、昇温過程、焼結過程、冷却過程を順に経る。以下、誘導加熱焼結炉33を用いる場合に好ましい温度経過について説明する。
The induction heating sintering furnace 33 requires only a short time to sinter the processed molded product P, and it is not necessary to keep the temperature of the sintered furnace 33 while the processed molded product P is not sintered. Therefore, there is an advantage that energy saving can be achieved as compared with, for example, a belt type continuous sintering furnace.
In the sintering step P3, a heating process, a sintering process, and a cooling process are performed in this order. Hereinafter, a preferable temperature passage will be described when the induction heating sintering furnace 33 is used.
 (昇温過程)
 昇温過程では、以下の条件(I)から条件(III)の全てを満たすように加工成形体Pの温度を制御する。A1点は、738℃程度であり、A3点は、910℃程度である。
 (I)Fe-C系状態図のA1点以上加工成形体Pの焼結温度未満の温度域で、温度を保持することなく昇温する。
 (II)Fe-C系状態図のA1点からA3点までの温度域での昇温速度を、12℃/秒以上とする。
 (III)Fe-C系状態図のA3点から加工成形体Pの焼結温度までの昇温速度を、4℃/秒以上とする。
(Heating process)
In the temperature raising process, the temperature of the processed molded product P is controlled so as to satisfy all of the following conditions (I) to (III). The A1 point is about 738 ° C, and the A3 point is about 910 ° C.
(I) The temperature is raised in a temperature range of A1 point or more in the Fe—C phase diagram and lower than the sintering temperature of the processed molded product P without maintaining the temperature.
(II) The temperature rise rate in the temperature range from point A1 to point A3 in the Fe—C system phase diagram is set to 12 ° C./sec or more.
(III) The rate of temperature rise from point A3 in the Fe—C phase diagram to the sintering temperature of the processed molded product P is set to 4 ° C./sec or more.
 条件(I)から条件(III)を満たすように温度制御すれば、以下の条件(i)から条件(iii)を満たす。条件(I)から条件(III)と条件(i)から条件(iii)とは実質的に相関関係があるからである。
 すなわち、条件(i)から条件(iii)を満たせば、条件(I)から条件(III)を満たすように温度制御していることになる。
If the temperature is controlled so as to satisfy the condition (I) to the condition (III), the condition (ii) is satisfied from the following condition (i). This is because the condition (I) to the condition (III) and the condition (i) to the condition (iii) are substantially correlated.
That is, if the condition (i) to the condition (iii) are satisfied, the temperature is controlled so as to satisfy the condition (I) to the condition (III).
 (i)Fe-C系状態図のA1点以上加工成形体Pの焼結温度未満に対応する雰囲気温度域で、雰囲気温度を保持することなく昇温する。
 (ii)Fe-C系状態図のA1点からA3点までに対応する雰囲気温度域での昇温速度を、12℃/秒以上とする。
 (iii)Fe-C系状態図のA3点から加工成形体Pの焼結温度までに対応する雰囲気温度域での昇温速度を、4℃/秒以上とする。
(I) The temperature is raised in the atmospheric temperature range corresponding to the point A1 or more of the Fe—C system phase diagram and lower than the sintering temperature of the processed molded product P without maintaining the atmospheric temperature.
(Ii) The rate of temperature rise in the atmospheric temperature range corresponding to points A1 to A3 of the Fe—C phase diagram is set to 12 ° C./sec or more.
(Iii) The rate of temperature rise in the atmospheric temperature range corresponding to the point A3 of the Fe—C phase diagram to the sintering temperature of the processed molded product P is set to 4 ° C./sec or more.
 雰囲気温度とは、加熱容器302内の雰囲気温度であり、加工成形体Pから8.5mm以内に配置した熱電対(直径φ3.5mm)で測定した温度とする。
 加熱容器302内の雰囲気は、誘導加熱された加工成形体Pの熱で温められるため、雰囲気温度は、誘導加熱された加工成形体P自体の温度に比較して少し低い温度となることが多い。例えば、A1点に対応する雰囲気温度とは、加工成形体Pの温度がA1点となったときの雰囲気の温度であり、A1点以下の温度となることが多い。A3点に対応する雰囲気温度や加工成形体Pの焼結温度に対応する雰囲気温度も同様である。
The ambient temperature is the ambient temperature inside the heating container 302, and is the temperature measured by a thermocouple (diameter φ3.5 mm) arranged within 8.5 mm from the processed molded product P.
Since the atmosphere inside the heating container 302 is heated by the heat of the induction-heated processed molded product P, the ambient temperature is often slightly lower than the temperature of the induced-heated processed molded product P itself. .. For example, the atmospheric temperature corresponding to the A1 point is the temperature of the atmosphere when the temperature of the processed molded product P reaches the A1 point, and is often the temperature of the A1 point or less. The same applies to the atmospheric temperature corresponding to the A3 point and the atmospheric temperature corresponding to the sintering temperature of the processed molded product P.
 条件(I)から条件(III)の全て(すなわち、条件(i)から条件(iii)の全て)を満たすことで、高強度な焼結体Sを製造できる。その理由は、次の通りであると考えられる。
 条件(I)の温度域ではCがFe中へ拡散し易いが、この温度域で温度を保持せず、昇温速度を条件(II)及び(III)のような高速とすることで、CのFe中への拡散が抑制される。
By satisfying all of the conditions (I) to (III) (that is, all of the conditions (i) to (iii)), the high-strength sintered body S can be produced. The reason is considered to be as follows.
In the temperature range of condition (I), C is likely to diffuse into Fe, but by not maintaining the temperature in this temperature range and setting the temperature rise rate to a high speed as in conditions (II) and (III), C Diffusion into Fe is suppressed.
 そうすると、例えば、Fe粒子に隣接したC粒子が固相のまま残存し、そのFe粒子とC粒子との隣接界面などがCリッチ相(Cのみの場合もある)となる。
 Cリッチ相がFeの表面に残存すると、焼結温度においてFe-Cの液相になる。Fe-C系状態図から明らかなように、Cが約0.2質量%以上であれば、1153℃以上でFe-C系材料は液相になる。このため、加工成形体Pを1153℃以上の焼結温度とすれば、Cリッチ相が液相になる。
Then, for example, the C particles adjacent to the Fe particles remain in a solid phase, and the adjacent interface between the Fe particles and the C particles becomes a C-rich phase (may be only C).
When the C-rich phase remains on the surface of Fe, it becomes a liquid phase of Fe—C at the sintering temperature. As is clear from the Fe—C system phase diagram, when C is about 0.2% by mass or more, the Fe—C system material becomes a liquid phase at 1153 ° C. or higher. Therefore, if the processed molded product P has a sintering temperature of 1153 ° C. or higher, the C-rich phase becomes a liquid phase.
 すなわち、CがFe中へ拡散し易い温度域で温度を保持せずに高速昇温すると、Fe-Cの液相が生成され易い。このFe-Cの液相が、粒子間に形成される空孔の角を丸め、強度の低下の原因(破壊の起点)となる空孔の鋭角部を低減する。その結果、焼結体Sの強度、特に圧環強度を高められる。 That is, when the temperature is raised at a high speed without maintaining the temperature in the temperature range where C is likely to diffuse into Fe, a liquid phase of Fe—C is likely to be generated. The liquid phase of Fe—C rounds the corners of the pores formed between the particles and reduces the acute angles of the pores that cause a decrease in strength (starting point of fracture). As a result, the strength of the sintered body S, particularly the annular strength, can be increased.
 昇温速度は、誘導加熱焼結炉33の電源の出力や周波数を調整することで調整できる。出力や周波数の設定は、例えば、条件(II)の昇温速度を満たす出力や周波数の設定とすることが挙げられる。
 出力や周波数の設定は、条件(II)の温度域から条件(III)の温度域に亘って一定としてもよいし、条件(II)の温度域から条件(III)の温度域に移行する際に変えてもよい。
The rate of temperature rise can be adjusted by adjusting the output and frequency of the power supply of the induction heating sintering furnace 33. The output and frequency may be set, for example, to set the output and frequency that satisfy the temperature rising rate of the condition (II).
The output and frequency settings may be constant from the temperature range of the condition (II) to the temperature range of the condition (III), or when shifting from the temperature range of the condition (II) to the temperature range of the condition (III). You may change it to.
 出力や周波数の設定を条件(II)の温度域から条件(III)の温度域に亘って一定とすれば、条件(III)の昇温速度を満たすことができる。
 ただし、出力や周波数を一定とすれば、条件(III)の昇温速度は、条件(II)の昇温速度よりも遅くなる。出力や周波数の設定を条件(II)の温度域から条件(III)の温度域に移行する際に変えれば、条件(III)の昇温速度を更に速められ、延いては条件(II)の昇温速度と同等程度とすることもできる。
If the output and frequency settings are constant from the temperature range of the condition (II) to the temperature range of the condition (III), the temperature rising rate of the condition (III) can be satisfied.
However, if the output and frequency are constant, the rate of temperature rise in condition (III) is slower than the rate of temperature rise in condition (II). If the output and frequency settings are changed when shifting from the temperature range of condition (II) to the temperature range of condition (III), the heating rate of condition (III) can be further increased, and by extension, the temperature range of condition (II) can be increased. It can be about the same as the rate of temperature rise.
 条件(II)の昇温速度は、速いほど好ましく、例えば、更に12.5℃/秒以上が好ましい。条件(II)の昇温速度の上限は、例えば、50℃/秒以下が挙げられ、更に15℃/秒以下が好ましい。
 条件(III)の昇温速度は、上記条件(II)と同様、速いほど好ましく、例えば、5℃/秒以上が好ましく、更に10℃/秒以上が好ましい。条件(III)の昇温速度の上限は、例えば、50℃/秒以下が挙げられ、更に15℃/秒以下が好ましい。
The faster the rate of temperature rise under the condition (II) is, the more preferable it is. The upper limit of the temperature rising rate of the condition (II) is, for example, 50 ° C./sec or less, and more preferably 15 ° C./sec or less.
As in the case of the above condition (II), the rate of temperature rise in the condition (III) is preferably as high as possible, for example, 5 ° C./sec or more, and further preferably 10 ° C./sec or more. The upper limit of the temperature rising rate of the condition (III) is, for example, 50 ° C./sec or less, and more preferably 15 ° C./sec or less.
 昇温過程では、更に、条件(IV)及び条件(V)のいずれか一方を満たすように加工成形体Pの温度を制御することが好ましい。
 (IV)加工成形体Pが410℃以上Fe-C系状態図のA1点未満となる温度域で、温度を保持せず、この温度域での昇温速度を12℃/秒以上とする。
 (V)加工成形体Pが410℃以上Fe-C系状態図のA1点未満となる温度域の温度を、30秒以上90秒以下保持する。
In the temperature raising process, it is preferable to further control the temperature of the processed molded product P so as to satisfy either the condition (IV) or the condition (V).
(IV) In a temperature range in which the processed molded product P is 410 ° C. or higher and lower than the A1 point in the Fe—C phase diagram, the temperature is not maintained, and the temperature rising rate in this temperature range is 12 ° C./sec or higher.
(V) The temperature in the temperature range where the processed molded product P is 410 ° C. or higher and lower than the A1 point in the Fe—C system phase diagram is maintained for 30 seconds or more and 90 seconds or less.
 条件(IV)及び条件(V)のいずれか一方を満たすように温度制御すれば、以下の条件(iv)及び条件(v)のいずれか一方を満たす。条件(IV)及び条件(V)と条件(iv)及び条件(v)とは実質的に相関関係があるからである。
 すなわち、条件(iv)及び条件(v)のいずれか一方を満たせば、条件(IV)及び条件(V)のいずれか一方を満たすように温度制御している。
 (iv)400℃以上700℃未満の雰囲気温度を保持せず、この雰囲気温度域での昇温速度を12℃/秒以上とする。
 (v)400℃以上700℃未満の雰囲気温度を30秒以上90秒以下保持する。
If the temperature is controlled so as to satisfy either the condition (IV) or the condition (V), either the following condition (iv) or the condition (v) is satisfied. This is because the condition (IV) and the condition (V) and the condition (iv) and the condition (v) are substantially correlated.
That is, if either the condition (iv) or the condition (v) is satisfied, the temperature is controlled so that either the condition (IV) or the condition (V) is satisfied.
(Iv) The temperature rise rate in this atmospheric temperature range is set to 12 ° C./sec or more without maintaining the atmospheric temperature of 400 ° C. or higher and lower than 700 ° C.
(V) The atmospheric temperature of 400 ° C. or higher and lower than 700 ° C. is maintained for 30 seconds or more and 90 seconds or less.
 条件(IV)、条件(iv)を満たせば、条件(V)、条件(v)を満たす場合に比較して、高強度な焼結体Sを短時間で製造できる。条件(IV)、条件(iv)の昇温速度は、例えば、出力や周波数の設定を条件(II)、条件(ii)の昇温速度を満たす出力や周波数と同じ設定とすることで達成できる。
 この場合、誘導加熱焼結炉33の電源の出力や周波数の設定を昇温開始時から焼結時まで常時一定とし、昇温開始時の雰囲気温度から焼結時の雰囲気温度までの雰囲気温度を保持しないことが挙げられる。焼結時の雰囲気温度未満の雰囲気温度を保持しないため、短時間で焼結体Sを製造できる。条件(IV)、条件(iv)の雰囲気温度での昇温速度は、更に15℃/秒以上が好ましく、特に20℃/秒以上が好ましい。
If the condition (IV) and the condition (iv) are satisfied, the sintered body S having high strength can be produced in a short time as compared with the case where the condition (V) and the condition (v) are satisfied. The temperature rise rate of the condition (IV) and the condition (iv) can be achieved, for example, by setting the output and the frequency to be the same as the output and the frequency satisfying the temperature rise rate of the condition (II) and the condition (ii). ..
In this case, the power output and frequency setting of the induction heating sintering furnace 33 are always constant from the start of temperature rise to the time of sintering, and the atmosphere temperature from the start of temperature rise to the atmosphere temperature at the time of sintering is set. It is mentioned not to hold. Since the ambient temperature lower than the ambient temperature at the time of sintering is not maintained, the sintered body S can be manufactured in a short time. The rate of temperature rise at the ambient temperature of the condition (IV) and the condition (iv) is more preferably 15 ° C./sec or more, and particularly preferably 20 ° C./sec or more.
 条件(V)、条件(v)を満たせば、条件(IV)、条件(iv)を満たす場合に比較して、加工成形体Pを均熱化し易い。すなわち、条件(V)、条件(v)は、複雑形状の加工成形体Pを焼結する場合に特に好適である。
 また、条件(V)、条件(v)を満たしても、高強度な焼結体Sが得られる。条件(V)の温度域は、更に735℃以下が好ましく、特に700℃以下が好ましい。条件(v)の雰囲気温度は、更に600℃以下が好ましく、特に500℃以下が好ましい。
 条件(V)、条件(v)の雰囲気温度を保持する保持時間は、更に45秒以上75秒以下が好ましい。条件(V)の温度、条件(v)の雰囲気温度を保持した後の昇温速度は、条件(II)、条件(ii)及び条件(III)、条件(iii)の昇温速度とする。
If the condition (V) and the condition (v) are satisfied, the heat of the processed molded product P can be easily equalized as compared with the case where the condition (IV) and the condition (iv) are satisfied. That is, the condition (V) and the condition (v) are particularly suitable for sintering the processed molded product P having a complicated shape.
Further, even if the condition (V) and the condition (v) are satisfied, a high-strength sintered body S can be obtained. The temperature range of the condition (V) is more preferably 735 ° C. or lower, and particularly preferably 700 ° C. or lower. The atmospheric temperature under the condition (v) is more preferably 600 ° C. or lower, and particularly preferably 500 ° C. or lower.
The holding time for maintaining the atmospheric temperature under the condition (V) and the condition (v) is preferably 45 seconds or more and 75 seconds or less. The temperature rise rate after maintaining the temperature of the condition (V) and the atmospheric temperature of the condition (v) shall be the temperature rise rate of the condition (II), the condition (ii), the condition (III), and the condition (iii).
 (焼結過程)
 加工成形体Pの焼結時の雰囲気温度(焼結温度)での保持時間は、その雰囲気温度(焼結温度)や成形体サイズにもよるが、例えば、30秒以上90秒以下が好ましい。
 保持時間を30秒以上とすれば、加工成形体Pを十分に加熱できて、高強度な焼結体Sを製造し易い。保持時間を90秒以下とすれば、保持時間が短いため、短時間で焼結体Sを製造できる。保持時間は、更に90秒未満が好ましく、特に60秒以下が好ましい。なお、サイズの大きな加工成形体Pなどの場合、保持時間を90秒以上とすることが効果的な場合もある。
(Sintering process)
The holding time of the processed molded product P at the atmospheric temperature (sintering temperature) at the time of sintering depends on the atmospheric temperature (sintering temperature) and the size of the molded product, but is preferably 30 seconds or more and 90 seconds or less, for example.
When the holding time is 30 seconds or more, the processed molded product P can be sufficiently heated, and a high-strength sintered body S can be easily produced. When the holding time is 90 seconds or less, the holding time is short, so that the sintered body S can be manufactured in a short time. The holding time is further preferably less than 90 seconds, particularly preferably 60 seconds or less. In the case of a processed molded product P having a large size, it may be effective to set the holding time to 90 seconds or more.
 加熱成形体Pの焼結温度は、Fe-Cの液相が生成される温度以上とすることが挙げられ、1153℃以上が挙げられる。焼結温度を1153℃以上とすれば、液相を生成できて空孔の角を丸め易く、高強度な焼結体Sを製造し易い。
 焼結温度は、例えば、1250℃以下が好ましい。この場合、温度が高すぎず液相の過度な生成を抑制でき、寸法精度の高い焼結体Sを製造し易い。焼結温度は、更に1153℃以上1200℃以下が好ましく、特に1155℃以上1185℃以下が好ましい。
The sintering temperature of the heat-molded article P may be set to a temperature equal to or higher than the temperature at which the liquid phase of Fe—C is formed, and may be 1153 ° C. or higher. When the sintering temperature is 1153 ° C. or higher, a liquid phase can be generated, the corners of the pores can be easily rounded, and a high-strength sintered body S can be easily produced.
The sintering temperature is preferably 1250 ° C. or lower, for example. In this case, the temperature is not too high, excessive formation of the liquid phase can be suppressed, and it is easy to manufacture the sintered body S having high dimensional accuracy. The sintering temperature is further preferably 1153 ° C. or higher and 1200 ° C. or lower, and particularly preferably 1155 ° C. or higher and 1185 ° C. or lower.
 加工成形体Pの焼結時の雰囲気温度は、1135℃以上1250℃未満が好ましい。加工成形体Pの焼結温度が1153℃以上を満たせば、加工成形体Pの焼結時の雰囲気温度は、1135℃以上を満たす。
 同様に、加工成形体Pの焼結温度が1250℃以下を満たせば、加工成形体Pの焼結時の雰囲気温度は、1250℃未満を満たす。焼結時の雰囲気温度は、更に1135℃以上1185℃以下が好ましく、特に1135℃以上1185℃未満が好ましい。
The ambient temperature of the processed molded product P during sintering is preferably 1135 ° C. or higher and lower than 1250 ° C. If the sintering temperature of the processed molded product P satisfies 1153 ° C. or higher, the atmospheric temperature of the processed molded product P at the time of sintering satisfies 1135 ° C. or higher.
Similarly, if the sintering temperature of the processed molded product P is 1250 ° C. or lower, the atmospheric temperature of the processed molded product P at the time of sintering is less than 1250 ° C. The ambient temperature at the time of sintering is further preferably 1135 ° C. or higher and 1185 ° C. or lower, and particularly preferably 1135 ° C. or higher and lower than 1185 ° C.
 (冷却過程)
 焼結工程P3の冷却過程における降温速度は、速くすることが好ましい。降温速度を速めることで、ベイナイト組織を形成し易く、更にはマルテンサイト組織を形成し易いため、焼結体Sの強度を高め易い。
 降温速度は、1℃/秒以上が好ましい。それにより、素速く冷却できる。降温速度は、更に2℃/秒以上が好ましく、特に5℃/秒以上が好ましい。降温速度は、例えば、200℃/秒以下が挙げられ、更に100℃/秒以下が挙げられ、特に50℃/秒以下が挙げられる。
(Cooling process)
The temperature lowering rate in the cooling process of the sintering step P3 is preferably increased. By increasing the temperature lowering rate, a bainite structure is easily formed, and further, a martensite structure is easily formed, so that the strength of the sintered body S is easily increased.
The temperature lowering rate is preferably 1 ° C./sec or higher. As a result, it can be cooled quickly. The temperature lowering rate is further preferably 2 ° C./sec or higher, and particularly preferably 5 ° C./sec or higher. The temperature lowering rate is, for example, 200 ° C./sec or less, further 100 ° C./sec or less, and particularly 50 ° C./sec or less.
 この降温速度で冷却する温度域は、冷却開始(加工成形体Pの焼結温度)から冷却完了(例えば200℃程度)までの温度域としてもよい。特に、加工成形体Pの温度(雰囲気温度)が750℃(700℃)から230℃(200℃)までの温度域(雰囲気温度域)とすることが好ましい。
 冷却方法は、冷却ガスを焼結体Sに吹き付けることが挙げられる。冷却ガスの種類は、窒素ガスやアルゴンガスなどの不活性ガスが挙げられる。急速降温により後工程の熱処理工程を省略できる。
The temperature range for cooling at this cooling rate may be a temperature range from the start of cooling (sintering temperature of the processed molded product P) to the completion of cooling (for example, about 200 ° C.). In particular, it is preferable that the temperature (atmospheric temperature) of the processed molded product P is in a temperature range (atmospheric temperature range) from 750 ° C. (700 ° C.) to 230 ° C. (200 ° C.).
Examples of the cooling method include blowing a cooling gas onto the sintered body S. Examples of the cooling gas include an inert gas such as nitrogen gas and argon gas. Due to the rapid temperature drop, the heat treatment process in the subsequent process can be omitted.
 〔検査工程P5に使用される装置〕
 図7は、検査工程P5に使用される検査装置35の一例を示す概略構成図である。
 図7に示すように、検査工程P5に使用される検査装置35は、第1及び第2センサ装置501,502と、各センサ装置501,502と通信可能に接続されたコンピュータ装置503とを備える。
 コンピュータ装置503は、例えばデスクトップ型のパソコン(PC)よりなる。コンピュータ装置503のタイプは特に限定されない。コンピュータ装置503のタイプは、例えばノート型であってもよいしタブレット型であってもよい。
[Device used in inspection process P5]
FIG. 7 is a schematic configuration diagram showing an example of the inspection device 35 used in the inspection step P5.
As shown in FIG. 7, the inspection device 35 used in the inspection step P5 includes first and second sensor devices 501 and 502, and a computer device 503 communicatively connected to each of the sensor devices 501 and 502. ..
The computer device 503 includes, for example, a desktop personal computer (PC). The type of computer device 503 is not particularly limited. The type of the computer device 503 may be, for example, a notebook type or a tablet type.
 コンピュータ装置503は、CPUと揮発性メモリを含む情報処理装置、及び、CPUが実行するコンピュータプログラムとその実行に必要なデータなどを記憶する不揮発性メモリを含む記憶装置などから構成される。コンピュータ装置2には、入力装置とディスプレイも含まれる。
 コンピュータ装置503は、CPUがコンピュータプログラムを揮発性メモリに読み出して実行することにより、所定の制御装置として機能する。
The computer device 503 is composed of an information processing device including a CPU and a volatile memory, and a storage device including a non-volatile memory for storing a computer program executed by the CPU and data necessary for the execution thereof. The computer device 2 also includes an input device and a display.
The computer device 503 functions as a predetermined control device when the CPU reads the computer program into the volatile memory and executes it.
 第1センサ装置501は、例えば非接触式の3Dスキャナよりなる。3Dスキャナは、前述のパターン光タイプの3Dスキャナ1(図2参照)であってもよいし、レーザ光タイプの3Dスキャナであってもよい。
 第1センサ装置501は、仕上げ工程P4を経た焼結体Sを1つずつスキャンして3次元CADデータを生成し、生成したデータをコンピュータ装置503に送信する。
The first sensor device 501 comprises, for example, a non-contact 3D scanner. The 3D scanner may be the pattern light type 3D scanner 1 (see FIG. 2) described above, or may be a laser light type 3D scanner.
The first sensor device 501 scans the sintered bodies S that have undergone the finishing step P4 one by one to generate three-dimensional CAD data, and transmits the generated data to the computer device 503.
 第2センサ装置502は、例えばデジタル画像を取得可能なデジタルカメラよりなる。第2センサ装置502は、仕上げ工程P4を経た焼結体Sを1つずつ撮影して画像データを生成し、生成した画像データをコンピュータ装置503に送信する。
 コンピュータ装置503は、現行品Cの3次元CADデータを記憶している。このデータは、例えばステップ2のコンピュータ装置2から受信したデータ、或いは、USBメモリなどの記録媒体を介してコンピュータ装置503に記憶させたデータである。
The second sensor device 502 includes, for example, a digital camera capable of acquiring a digital image. The second sensor device 502 photographs the sintered bodies S that have undergone the finishing step P4 one by one to generate image data, and transmits the generated image data to the computer device 503.
The computer device 503 stores the three-dimensional CAD data of the current product C. This data is, for example, the data received from the computer device 2 in step 2 or the data stored in the computer device 503 via a recording medium such as a USB memory.
 コンピュータ装置503は、焼結体Sの3次元CADデータと現行品Cの3次元CADデータに基づいて両者の寸法誤差を算出し、算出した寸法誤差に基づいて焼結体Sの合否を判定する。具体的には、寸法誤差が所定値以下の焼結体Sを合格とし、所定値を超える焼結体Sを不合格(不良)とする。
 また、コンピュータ装置503は、合格と判定された焼結体Sの3次元CADデータを、ステップ4に使用されるコンピュータ装置4に送信する。
The computer device 503 calculates the dimensional error of both based on the three-dimensional CAD data of the sintered body S and the three-dimensional CAD data of the current product C, and determines the pass / fail of the sintered body S based on the calculated dimensional error. .. Specifically, the sintered body S having a dimensional error of less than or equal to a predetermined value is regarded as acceptable, and the sintered body S having a dimensional error exceeding a predetermined value is regarded as rejected (defective).
Further, the computer device 503 transmits the three-dimensional CAD data of the sintered body S determined to be acceptable to the computer device 4 used in step 4.
 コンピュータ装置503は、第2センサ装置502から取得した画像データに基づいて、表面のひび割れや傷の有無を判定し、ひび割れや傷のある焼結体Sを不合格(不良)と判定する。ひび割れや傷のある焼結体Sは、不良品として排除される。
 判定処理は、例えば、画像データを格子状に分割した部分画像に、機械学習によって得られた分類モデルに含まれる傷などの対象事象に含まれるか否かによって行うことができる(特開2018-81629号公報参照)。
The computer device 503 determines the presence or absence of cracks or scratches on the surface based on the image data acquired from the second sensor device 502, and determines that the sintered body S having cracks or scratches is rejected (defective). The cracked or scratched sintered body S is excluded as a defective product.
The determination process can be performed, for example, depending on whether or not the partial image obtained by dividing the image data into a grid pattern is included in a target event such as a scratch included in the classification model obtained by machine learning (Japanese Patent Laid-Open No. 2018-). 81629 (see).
 〔本実施形態の製造設備の効果〕
 本実施形態の製造設備3によれば、単純形状でかつ高密度の圧粉成形体Mを一軸加圧により作製し、圧粉成形体Mを加工自由度の高いロボット加工装置32で加工することにより加工成形体Pを作製し、加工成形体Pを焼結して焼結体Sを作製する。
 従って、製作に数ヶ月を要する複雑な形状の金型を使用しなくても、高精度の焼結体Sを作製できる。従って、焼結体Sの納期を短縮することができる。
[Effect of manufacturing equipment of this embodiment]
According to the manufacturing equipment 3 of the present embodiment, the powder compact M having a simple shape and high density is produced by uniaxial pressurization, and the powder compact M is processed by the robot processing apparatus 32 having a high degree of processing freedom. The processed molded product P is produced by the above method, and the processed molded product P is sintered to produce a sintered body S.
Therefore, the high-precision sintered body S can be manufactured without using a mold having a complicated shape, which requires several months to manufacture. Therefore, the delivery time of the sintered body S can be shortened.
 本実施形態の製造設備3によれば、ベルト式連続焼結炉に比べて焼結体Sを短時間で作製できる誘導加熱焼結炉33を採用するので、この点においても焼結体Sの納期を短縮することができる。
 本実施形態の製造システムによれば、5軸マシニングセンタに比べて設置スペースが小さいロボット加工装置32と、ベルト式連続焼結炉に比べて設置スペースが小さい誘導加熱焼結炉33を採用するので、製造設備3をコンパクト化できるという利点もある。
According to the manufacturing equipment 3 of the present embodiment, the induction heating sintering furnace 33 capable of producing the sintered body S in a shorter time than the belt type continuous sintering furnace is adopted. Therefore, in this respect as well, the sintered body S of the sintered body S is used. The delivery time can be shortened.
According to the manufacturing system of the present embodiment, the robot processing device 32, which has a smaller installation space than the 5-axis machining center, and the induction heating sintering furnace 33, which has a smaller installation space than the belt-type continuous sintering furnace, are used. There is also an advantage that the manufacturing facility 3 can be made compact.
 〔ステップ4に使用される装置〕
 図8は、ステップ4に使用される装置の一例を示す説明図である。
 図8に示すように、ステップ4に使用される装置は、コンピュータ装置4よりなる。コンピュータ装置2は、例えばデスクトップ型のパソコン(PC)よりなる。コンピュータ装置2のタイプは特に限定されない。コンピュータ装置2のタイプは、例えばノート型であってもよいしタブレット型であってもよい。
[Device used in step 4]
FIG. 8 is an explanatory diagram showing an example of the apparatus used in step 4.
As shown in FIG. 8, the device used in step 4 comprises a computer device 4. The computer device 2 includes, for example, a desktop personal computer (PC). The type of the computer device 2 is not particularly limited. The type of the computer device 2 may be, for example, a notebook type or a tablet type.
 コンピュータ装置4は、CPUと揮発性メモリを含む情報処理装置、及び、CPUが実行するコンピュータプログラムとその実行に必要なデータなどを記憶する不揮発性メモリを含む記憶装置などから構成される。コンピュータ装置2には、入力装置とディスプレイも含まれる。
 コンピュータ装置4は、CPUがコンピュータプログラムを揮発性メモリに読み出して実行することにより、所定の制御装置として機能する。
The computer device 4 is composed of an information processing device including a CPU and a volatile memory, a storage device including a non-volatile memory for storing a computer program executed by the CPU and data necessary for the execution thereof, and the like. The computer device 2 also includes an input device and a display.
The computer device 4 functions as a predetermined control device when the CPU reads the computer program into the volatile memory and executes it.
 コンピュータ装置4には、CAD/CATソフトがインストールされている。CAD/CATソフトは、コンピュータ装置4のGUIに対するユーザの操作入力に応じて、判定対象(ここでは、検査工程P5の検査を合格した焼結体S)の3次元CADデータと、焼結体Sの形状の基準となる設計データ(現行品Cの3次元CADデータ)との比較処理を実現するソフトウェアである。 CAD / CAT software is installed in the computer device 4. The CAD / CAT software uses the three-dimensional CAD data of the determination target (here, the sintered body S that has passed the inspection of the inspection step P5) and the sintered body S according to the user's operation input to the GUI of the computer device 4. It is software that realizes comparison processing with the design data (three-dimensional CAD data of the current product C) that is the reference of the shape of.
 コンピュータ装置4は、複数の焼結体Sの3次元CADデータを、検査工程P5のコンピュータ装置503から受信する。
 コンピュータ装置4は、現行品Cの3次元CADデータを記憶している。このデータは、例えばステップ2のコンピュータ装置2から受信したデータ、検査工程P5のコンピュータ装置503から受信したデータ、或いは、USBメモリなどの記録媒体を介してコンピュータ装置4に記憶させたデータである。
The computer device 4 receives the three-dimensional CAD data of the plurality of sintered bodies S from the computer device 503 of the inspection step P5.
The computer device 4 stores the three-dimensional CAD data of the current product C. This data is, for example, the data received from the computer device 2 in step 2, the data received from the computer device 503 in the inspection step P5, or the data stored in the computer device 4 via a recording medium such as a USB memory.
 コンピュータ装置4は、複数の焼結体Cの3Dデータと現行品Cの3Dデータの比較結果に基づいて、削り過ぎ又は削り不足の箇所が、統計的に優位性のある数だけ検出されたか否かを判定する。
 コンピュータ装置4は、削り過ぎ又は削り不足の箇所を検出した場合には、加工プログラムの修正プログラム(例えばNCプログラム)を生成する。修正プログラムには、例えば、削り過ぎの箇所の切り込み深さを深くする動作コード、或いは、削り不足の箇所の切り込み深さを深くする動作コードが含まれる。
Based on the comparison result of the 3D data of the plurality of sintered bodies C and the 3D data of the current product C, the computer device 4 has detected as many over-cut or under-cut locations as statistically superior. Is determined.
When the computer device 4 detects a portion that is over-cut or under-cut, it generates a modification program (for example, NC program) of a machining program. The modification program includes, for example, an operation code for deepening the cut depth of the over-cut portion, or an operation code for deepening the cut depth of the under-cut portion.
 コンピュータ装置4は、生成した修正プログラムを、ステップ3の加工工程P2に使用される加工装置32に送信する。これにより、修正プログラムを受信した成形体加工装置32は、修正後の切り込み深さで圧粉成形体Mの加工を行うことになる。
 なお、コンピュータ装置4は、ステップ2のコンピュータ装置2(図2参照)に修正プログラムを送信してもよい。この場合、ステップ2のコンピュータ装置2は、受信した修正プログラムを加工装置32に転送すればよい。
The computer device 4 transmits the generated modification program to the processing device 32 used in the processing step P2 of step 3. As a result, the molded product processing apparatus 32 that has received the modification program processes the powder compact M at the modified depth of cut.
The computer device 4 may transmit the modification program to the computer device 2 (see FIG. 2) in step 2. In this case, the computer device 2 in step 2 may transfer the received modification program to the processing device 32.
 〔第1の変形例:ステップ3に使用される装置のバリエーション〕
 ステップ3の成形工程P1に用いる成形装置31は、全体の平均相対密度が93%未満である圧粉成形体Mを成形するプレス成形装置であってもよい。
 ステップ3の加工工程P2に用いる加工装置32は、第1ロボット201のみを備えるロボット加工装置であってもよい。この場合、第1ロボット201は、固定台にセットされた圧粉成形体Mに所定の加工を行う。
[First modification: Variation of the device used in step 3]
The molding apparatus 31 used in the molding step P1 of step 3 may be a press molding apparatus for molding the powder compact M having an overall average relative density of less than 93%.
The processing apparatus 32 used in the processing step P2 of step 3 may be a robot processing apparatus including only the first robot 201. In this case, the first robot 201 performs a predetermined process on the powder compact M set on the fixed base.
 ステップ3の加工工程P2に用いる加工装置32は、第1及び第2ロボット201,202のうちの少なくとも1つを、複数台備えたロボット加工装置であってもよい。すなわち、第1及び第2ロボット201,202の台数は複数であってもよい。
 ステップ3の加工工程P2に用いる加工装置32は、多関節ロボット201,202の代わりに、5軸マシニングセンタを採用する加工装置であってもよい。
The processing apparatus 32 used in the processing step P2 of step 3 may be a robot processing apparatus provided with at least one of the first and second robots 201 and 202. That is, the number of the first and second robots 201 and 202 may be plural.
The processing apparatus 32 used in the processing step P2 of step 3 may be a processing apparatus that employs a 5-axis machining center instead of the articulated robots 201 and 202.
 ステップ3の焼結工程P3に用いる焼結装置33は、誘導加熱焼結炉の代わりに、ベルト式連続焼結炉であってもよい。
 ステップ3の検査工程P5は、検査装置35を用いて全自動で行う場合に限定されるものではなく、全部又は一部又の検査作業を人間が行うことにしてもよい。
The sintering apparatus 33 used in the sintering step P3 of step 3 may be a belt-type continuous sintering furnace instead of the induction heating sintering furnace.
The inspection step P5 in step 3 is not limited to the case where the inspection device 35 is used to perform the inspection step P5 fully automatically, and a human may perform all or part of the inspection work.
 ステップ3の検査工程P5は、ステップ4の加工プログラムの修正を含んでいてもよい。すなわち、ステップ4のコンピュータ装置4が行う演算処理及び通信処理を、検査工程P5のコンピュータ装置503が実行してもよい。この場合、ステップ4のコンピュータ装置4は不要となる。 The inspection step P5 of step 3 may include modification of the machining program of step 4. That is, the computer device 503 in the inspection step P5 may execute the arithmetic processing and the communication processing performed by the computer device 4 in step 4. In this case, the computer device 4 in step 4 becomes unnecessary.
 〔第2の変形例:移動可能な製造システム〕
 図9は、移動可能な製造システムの一例を示す概略構成図である。
 図9に示すように、第2の変形例に係る製造システムは、道路を通行可能な移動装置601と、移動装置601の収納庫602に収納される所定の収納要素とを備える。所定の収納要素とは、焼結体Sの製造に必要となる構成要素のことである。
[Second variant: mobile manufacturing system]
FIG. 9 is a schematic configuration diagram showing an example of a movable manufacturing system.
As shown in FIG. 9, the manufacturing system according to the second modification includes a mobile device 601 that can pass through a road and a predetermined storage element that is stored in the storage 602 of the mobile device 601. The predetermined storage element is a component required for manufacturing the sintered body S.
 図9に示すように、移動装置601は、例えば大型トラックよりなり、収納庫602は、大型トラックの荷台に固定されたコンテナよりなる。
 図9に示す製造システムでは、所定の収納要素には、ステップ1に使用される3Dスキャナ1、ステップ2に使用されるコンピュータ装置2、ステップ3の加工工程P2に使用されるロボット加工装置32、及び、ステップ3の焼結工程P3に使用される誘導加熱焼結炉33が含まれる。
As shown in FIG. 9, the moving device 601 is composed of, for example, a large truck, and the storage 602 is composed of a container fixed to the loading platform of the large truck.
In the manufacturing system shown in FIG. 9, the predetermined storage elements include a 3D scanner 1 used in step 1, a computer device 2 used in step 2, and a robot processing device 32 used in the processing step P2 of step 3. Including the induction heating sintering furnace 33 used in the sintering step P3 of step 3.
 第2の変形例によれば、所定の収納要素が移動装置601の収納庫602に搭載されているので、次の手順で焼結体Sを製造できる。従って、現行品Cに倣った焼結体S(供試品)を短時間(例えば数時間)で顧客に提供できるようになる。
 手順1:移動装置601を顧客の居所の近隣地点まで乗り付けて、収納庫602に搭載された所定の収納要素を当該近隣地点まで運搬する。
 手順2:顧客から現行品Cを貸与して貰う。
 手順3:ステップ1~3を実行して現行品Cに倣った焼結体Sを現地で製造する。
 手順4:製造した焼結体S(供試品)を顧客に提供する。
According to the second modification, since the predetermined storage element is mounted in the storage 602 of the moving device 601, the sintered body S can be manufactured by the following procedure. Therefore, it becomes possible to provide the sintered body S (test product) following the current product C to the customer in a short time (for example, several hours).
Step 1: The mobile device 601 is mounted to a nearby point of the customer's residence, and a predetermined storage element mounted on the storage 602 is transported to the nearby point.
Step 2: Get the current product C from the customer.
Step 3: Perform steps 1 to 3 to locally manufacture a sintered body S that follows the current product C.
Step 4: Provide the manufactured sintered body S (sample) to the customer.
 なお、手順3の焼結体Cの製造において、ロボット加工装置32に加工させる圧粉成形体Mについては、製造業者が自社工場で予め製作しておき、移動装置601に積み込んでおけばよい。 In the production of the sintered body C in step 3, the powder compact M to be processed by the robot processing device 32 may be manufactured in advance by the manufacturer at its own factory and loaded into the moving device 601.
 第2の変形例において、3Dスキャナ1を所定の収納要素から除外してもよい。この場合、車外の3Dスキャナ1が生成した3Dデータを、車内のコンピュータ装置2に送信すればよい。顧客等から取得した現行品Cの3Dデータを、車内のコンピュータ装置2に送信してもよい。
 第2の変形例において、コンピュータ装置2を所定の収納要素から除外してもよい。この場合、車外のコンピュータ装置2が、現行品Cの3Dデータから成形体加工プログラムを生成し、生成したプログラムを車内のロボット加工装置32に送信すればよい。
In the second modification, the 3D scanner 1 may be excluded from the predetermined storage elements. In this case, the 3D data generated by the 3D scanner 1 outside the vehicle may be transmitted to the computer device 2 inside the vehicle. The 3D data of the current product C acquired from the customer or the like may be transmitted to the computer device 2 in the vehicle.
In the second modification, the computer device 2 may be excluded from the predetermined storage elements. In this case, the computer device 2 outside the vehicle may generate a molded body processing program from the 3D data of the current product C, and transmit the generated program to the robot processing device 32 inside the vehicle.
 第2の変形例において、ステップ3の成形工程P1に用いる成形装置31を、所定の収納要素に含めてもよい。この場合、圧粉成形体Mの成形についても現地で行うことができる。
 第2の変形例において、ステップ3の仕上げ工程P4に用いる装置(研磨装置など)を、所定の収納要素に含めてもよい。この場合、焼結体Sの仕上げについても現地で行うことができる。
In the second modification, the molding apparatus 31 used in the molding step P1 of step 3 may be included in the predetermined storage element. In this case, the compaction compact M can also be molded on-site.
In the second modification, the apparatus (polishing apparatus or the like) used in the finishing step P4 of step 3 may be included in the predetermined storage element. In this case, the finishing of the sintered body S can also be performed on-site.
 第2の変形例において、ステップ3の検査工程P5に用いる検査装置35を、所定の収納要素に含めてもよい。この場合、焼結体Sの合否判定などの検査についても現地で行うことができる。
 第2の変形例において、ステップ4に用いる装置(コンピュータ装置4)を、所定の収納要素に含めてもよい。この場合、ステップ4の加工プログラムの修正についても現地で行うことができる。
In the second modification, the inspection device 35 used in the inspection step P5 of step 3 may be included in the predetermined storage element. In this case, inspections such as pass / fail judgment of the sintered body S can also be performed on-site.
In the second modification, the device (computer device 4) used in step 4 may be included in a predetermined storage element. In this case, the machining program in step 4 can be modified locally.
 〔その他〕
 上述の実施形態(変形例を含む。)は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 例えば、上述の実施形態(変形例を含む。)において、焼結品Sの形状の基準となる対象品は、現存する現行品Cに限定されるものではなく、未だ製品化されていない企画中の品物であってもよい。
[Other]
It should be considered that the above-described embodiments (including variations) are exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
For example, in the above-described embodiment (including a modified example), the target product that serves as a reference for the shape of the sintered product S is not limited to the existing current product C, and is under planning that has not yet been commercialized. It may be an item of.
 1 3次元形状測定機(3Dスキャナ、取得部)
 2 コンピュータ装置(取得部)
 3 製造設備(製造ライン)
 4 コンピュータ装置
 31 成形装置(成形装置)
 32 加工装置(成形体加工装置、ロボット加工装置)
 33 焼結装置(誘導加熱焼結炉)
 35 検査装置
 36 コンベア
 37 ロボットアーム
 101 ベースプレート
 102 支柱
 103 天井フレーム
 104 上部プレート
 105 油圧シリンダ機構(下側)
 106 パンチセット(下側)
 107 油圧シリンダ機構(上側)
 108 パンチセット(上側)
 109 上部シリンダ
 110 リンク機構
 111 ダイ
 112 コアロッド
 113 外パンチ
 114 内パンチ
 114 下パンチ
 115 上パンチ
 116 原料粉末
 201 多関節ロボット(第1ロボット)
 201 多関節ロボット(第2ロボット)
 203 制御装置
 204 工具
 205 把持部
 206 把持部
 207 第1通信部
 208 第2通信部
 209 制御部
 210 記憶部
 301 チャンバ
 302 加熱容器
 303 冷却容器
 304 昇降台
 305 誘導コイル
 501 第1センサ装置(3Dスキャナ)
 502 第2センサ装置(デジタルカメラ)
 503 コンピュータ装置
 601 移動装置
 602 収納庫
 C 現行品(対象品)
 M 圧粉成型体
 P 加工成形体
 S 焼結体
1 3D shape measuring machine (3D scanner, acquisition unit)
2 Computer device (acquisition section)
3 Manufacturing equipment (manufacturing line)
4 Computer equipment 31 Molding equipment (molding equipment)
32 Processing equipment (mold processing equipment, robot processing equipment)
33 Sintering equipment (induction heating sintering furnace)
35 Inspection equipment 36 Conveyor 37 Robot arm 101 Base plate 102 Strut 103 Ceiling frame 104 Upper plate 105 Hydraulic cylinder mechanism (lower side)
106 Punch set (lower side)
107 Hydraulic cylinder mechanism (upper side)
108 punch set (upper side)
109 Upper cylinder 110 Link mechanism 111 Die 112 Core rod 113 Outer punch 114 Inner punch 114 Lower punch 115 Upper punch 116 Raw material powder 201 Articulated robot (first robot)
201 Articulated robot (second robot)
203 Control device 204 Tool 205 Grip part 206 Grip part 207 1st communication part 208 2nd communication part 209 Control part 210 Storage part 301 Chamber 302 Heating container 303 Cooling container 304 Elevator 305 Induction coil 501 1st sensor device (3D scanner)
502 Second sensor device (digital camera)
503 Computer device 601 Mobile device 602 Storage C Current product (target product)
M compaction molded body P processed molded body S sintered body

Claims (15)

  1.  金属粉末を含む原料粉末を一軸加圧することにより、全体又は一部の相対密度が93%以上の圧粉成形体を作製する成形装置と、
     前記圧粉成形体を機械加工することにより、加工成形体を作製する多関節ロボットを有するロボット加工装置と、
     前記加工成形体を高周波誘導加熱によって焼結することより、焼結体を作製する誘導加熱焼結炉と、を備える焼結体の製造システム。
    A molding apparatus for producing a powder compact having a relative density of 93% or more in whole or in part by uniaxially pressurizing a raw material powder containing a metal powder.
    A robot processing apparatus having an articulated robot that produces a processed molded body by machining the powder compact.
    A system for producing a sintered body, comprising an induction heating sintering furnace for producing the sintered body by sintering the processed molded product by high frequency induction heating.
  2.  形状の基準となる対象品の3Dデータを取得する取得部を、更に備える請求項1に記載の焼結体の製造システム。 The sintered body manufacturing system according to claim 1, further comprising an acquisition unit for acquiring 3D data of the target product as a reference for the shape.
  3.  前記対象品の3Dデータに基づいて、前記焼結体の寸法精度及び欠陥の有無のうちの少なくとも1つの検査を実行する検査装置を、更に備える請求項2に記載の焼結体の製造システム。 The sintered body manufacturing system according to claim 2, further comprising an inspection device that executes at least one inspection of the dimensional accuracy of the sintered body and the presence or absence of defects based on the 3D data of the target product.
  4.  前記対象品の3Dデータに基づいて、前記ロボット加工装置の動作を制御するための加工プログラムを作成するコンピュータ装置を、更に備え、
     前記ロボット加工装置は、前記加工プログラムに基づいて前記加工成形体を作製する請求項2又は請求項3に記載の焼結体の製造システム。
    A computer device for creating a machining program for controlling the operation of the robot machining device based on the 3D data of the target product is further provided.
    The sintered body manufacturing system according to claim 2 or 3, wherein the robot processing device manufactures the processed molded product based on the processing program.
  5.  前記ロボット加工装置は、複数の前記多関節ロボットを有し、
     複数の前記多関節ロボットには、前記圧粉成形体を加工する工具を保持する第1ロボットと、前記圧粉成形体を保持する第2ロボットが含まれる請求項1から請求項4のいずれか1項に記載の焼結体の製造システム。
    The robot processing apparatus has a plurality of the articulated robots.
    One of claims 1 to 4, wherein the plurality of articulated robots include a first robot that holds a tool for processing the dust compact and a second robot that holds the dust compact. The sintered body manufacturing system according to item 1.
  6.  形状の基準となる対象品の3Dデータに倣って圧粉成形体を機械加工することにより、加工成形体を作製する加工装置と、
     前記加工成形体を焼結することにより、焼結体を作製する焼結装置と、を備える焼結体の製造システム。
    A processing device that manufactures a processed compact by machining a powder compact according to the 3D data of the target product that is the reference for the shape.
    A system for manufacturing a sintered body, comprising a sintering device for producing the sintered body by sintering the processed molded body.
  7.  前記対象品の3Dデータを非接触で取得する3Dスキャナを、更に備える請求項6に記載の焼結体の製造システム。 The sintered body manufacturing system according to claim 6, further comprising a 3D scanner that acquires 3D data of the target product in a non-contact manner.
  8.  前記加工装置は、多関節ロボットを有するロボット加工装置であり、
     前記対象品の3Dデータに基づいて、前記ロボット加工装置の動作を制御するための加工プログラムを作成するコンピュータ装置を、更に備える請求項6又は請求項7に記載の焼結体の製造システム。
    The processing device is a robot processing device having an articulated robot.
    The sintered body manufacturing system according to claim 6 or 7, further comprising a computer device for creating a machining program for controlling the operation of the robot machining device based on the 3D data of the target product.
  9.  前記対象品の3Dデータに基づいて、前記焼結体の寸法精度及び欠陥の有無のうちの少なくとも1つの検査を実行する検査装置を、更に備える請求項6から請求項8のいずれか1項に記載の焼結体の製造システム。 Claim 6 to any one of claims 8 further comprising an inspection device that performs at least one inspection of the dimensional accuracy of the sintered body and the presence or absence of defects based on the 3D data of the target product. The sintered body manufacturing system described.
  10.  金属粉末を含む原料粉末を一軸加圧することにより、全体又は一部の相対密度が93%以上の前記圧粉成形体を作製する成形装置を、更に備える請求項6から請求項9のいずれか1項に記載の焼結体の製造システム。 Any one of claims 6 to 9, further comprising a molding apparatus for producing the powder compact having a relative density of 93% or more as a whole or a part by uniaxially pressurizing a raw material powder containing a metal powder. The sintered body manufacturing system according to the section.
  11.  前記焼結装置は、前記加工成形体を高周波誘導加熱によって焼結する誘導加熱焼結炉である請求項6から請求項10のいずれか1項に記載の焼結体の製造システム。 The sintered body manufacturing system according to any one of claims 6 to 10, wherein the sintering device is an induction heating sintering furnace that sinters the processed molded product by high frequency induction heating.
  12.  道路を通行可能な移動装置を更に備え、
     前記加工装置は、多関節ロボットを有するロボット加工装置であり、
     前記焼結装置は、前記加工成形体を高周波誘導加熱によって焼結する誘導加熱焼結炉であり、
     前記移動装置に搭載される装置には、前記ロボット加工装置及び前記誘導加熱焼結炉が含まれる請求項6に記載の焼結体の製造システム。
    Equipped with a mobile device that can pass through the road
    The processing device is a robot processing device having an articulated robot.
    The sintering apparatus is an induction heating sintering furnace that sinters the processed molded product by high frequency induction heating.
    The sintered body manufacturing system according to claim 6, wherein the apparatus mounted on the moving apparatus includes the robot processing apparatus and the induction heating sintering furnace.
  13.  前記移動装置に搭載される装置には、前記対象品の3Dデータを非接触で取得する3Dスキャナが含まれる請求項12に記載の焼結体の製造システム。 The sintered body manufacturing system according to claim 12, wherein the device mounted on the mobile device includes a 3D scanner that acquires 3D data of the target product in a non-contact manner.
  14.  前記圧粉成形体は、全体又は一部の相対密度が96%以上である請求項1から請求項13のいずれか1項に記載の焼結体の製造システム。 The sintered body manufacturing system according to any one of claims 1 to 13, wherein the powder compact has a relative density of 96% or more in whole or in part.
  15.  請求項1から請求項14のいずれか1項に記載の製造システムを用いて、前記焼結体を製造する焼結体の製造方法。 A method for manufacturing a sintered body, which manufactures the sintered body by using the manufacturing system according to any one of claims 1 to 14.
PCT/JP2019/017351 2019-04-24 2019-04-24 Manufacturing system and manufacturing method for sintered compact WO2020217331A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019007258.7T DE112019007258T5 (en) 2019-04-24 2019-04-24 Production system and production method for a sintered product
US17/603,346 US20220176448A1 (en) 2019-04-24 2019-04-24 Manufacturing system and manufacturing method of sintered product
PCT/JP2019/017351 WO2020217331A1 (en) 2019-04-24 2019-04-24 Manufacturing system and manufacturing method for sintered compact
CN201980094991.5A CN113646112A (en) 2019-04-24 2019-04-24 Sintered body manufacturing system and manufacturing method
JP2021515367A JPWO2020217331A1 (en) 2019-04-24 2019-04-24 Sintered body manufacturing system and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017351 WO2020217331A1 (en) 2019-04-24 2019-04-24 Manufacturing system and manufacturing method for sintered compact

Publications (1)

Publication Number Publication Date
WO2020217331A1 true WO2020217331A1 (en) 2020-10-29

Family

ID=72941133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017351 WO2020217331A1 (en) 2019-04-24 2019-04-24 Manufacturing system and manufacturing method for sintered compact

Country Status (5)

Country Link
US (1) US20220176448A1 (en)
JP (1) JPWO2020217331A1 (en)
CN (1) CN113646112A (en)
DE (1) DE112019007258T5 (en)
WO (1) WO2020217331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560783B1 (en) * 2022-12-16 2023-07-27 (주)이에프씨 Artificial graphite production automation apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964702A (en) * 1982-09-30 1984-04-12 Toyota Motor Corp High-frequency sintering method of compressed body of metal powder
JPH02200703A (en) * 1989-01-27 1990-08-09 Tokin Corp Manufacture of metal powder sintered body
JPH07197104A (en) * 1994-01-10 1995-08-01 Janome Sewing Mach Co Ltd Production of precision powder sintered parts
WO2008103209A1 (en) * 2007-02-21 2008-08-28 Lockheed Martin Corporation Articulated robot for laser ultrasonic inspection
JP2012218192A (en) * 2011-04-05 2012-11-12 Nippon Shoryoku Kikai Kk Workpiece removal and finishing device
JP2015001017A (en) * 2013-06-17 2015-01-05 一般財団法人ファインセラミックスセンター Carbonitride-dispersed sintered compact and method for producing the same
JP2016113659A (en) * 2014-12-12 2016-06-23 住友電工焼結合金株式会社 Method for producing sintered component, and sintered component
WO2017146202A1 (en) * 2016-02-25 2017-08-31 大日本印刷株式会社 Three-dimensional shape data and texture information generation system, photographing control program, and three-dimensional shape data and texture information generation method
WO2018163436A1 (en) * 2017-03-10 2018-09-13 飯田グループホールディングス株式会社 In-vehicle building material processing system and building material processing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656416B2 (en) * 2000-09-12 2003-12-02 Sumitomo Special Metals Co., Ltd. Powder feeding apparatus, pressing apparatus using the same, powder feeding method and sintered magnet manufacturing method
WO2011024936A1 (en) * 2009-08-28 2011-03-03 インターメタリックス株式会社 NdFeB SINTERED MAGNET PRODUCTION METHOD AND PRODUCTION DEVICE, AND NdFeB SINTERED MAGNET PRODUCED WITH SAID PRODUCTION METHOD
JP6306929B2 (en) * 2013-04-22 2018-04-04 住友化学株式会社 Method for manufacturing sintered body
JP6149718B2 (en) * 2013-12-16 2017-06-21 株式会社豊田中央研究所 Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JP6346521B2 (en) * 2014-08-07 2018-06-20 住友電気工業株式会社 Powder core and coil parts
JP6395217B2 (en) 2014-12-12 2018-09-26 住友電工焼結合金株式会社 Method for manufacturing sintered parts
JP6445858B2 (en) * 2014-12-12 2018-12-26 住友電工焼結合金株式会社 Sintered part manufacturing method and drill
JP6502765B2 (en) * 2015-06-29 2019-04-17 住友電工焼結合金株式会社 Apparatus for producing sintered body, and method for producing sintered body
JP6509771B2 (en) 2016-04-07 2019-05-08 住友電気工業株式会社 Method of manufacturing sintered body
JP6106323B1 (en) * 2016-07-07 2017-03-29 Jfe精密株式会社 Sintered tungsten-based alloy and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964702A (en) * 1982-09-30 1984-04-12 Toyota Motor Corp High-frequency sintering method of compressed body of metal powder
JPH02200703A (en) * 1989-01-27 1990-08-09 Tokin Corp Manufacture of metal powder sintered body
JPH07197104A (en) * 1994-01-10 1995-08-01 Janome Sewing Mach Co Ltd Production of precision powder sintered parts
WO2008103209A1 (en) * 2007-02-21 2008-08-28 Lockheed Martin Corporation Articulated robot for laser ultrasonic inspection
JP2012218192A (en) * 2011-04-05 2012-11-12 Nippon Shoryoku Kikai Kk Workpiece removal and finishing device
JP2015001017A (en) * 2013-06-17 2015-01-05 一般財団法人ファインセラミックスセンター Carbonitride-dispersed sintered compact and method for producing the same
JP2016113659A (en) * 2014-12-12 2016-06-23 住友電工焼結合金株式会社 Method for producing sintered component, and sintered component
WO2017146202A1 (en) * 2016-02-25 2017-08-31 大日本印刷株式会社 Three-dimensional shape data and texture information generation system, photographing control program, and three-dimensional shape data and texture information generation method
WO2018163436A1 (en) * 2017-03-10 2018-09-13 飯田グループホールディングス株式会社 In-vehicle building material processing system and building material processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560783B1 (en) * 2022-12-16 2023-07-27 (주)이에프씨 Artificial graphite production automation apparatus

Also Published As

Publication number Publication date
DE112019007258T5 (en) 2022-01-13
JPWO2020217331A1 (en) 2021-12-23
US20220176448A1 (en) 2022-06-09
CN113646112A (en) 2021-11-12

Similar Documents

Publication Publication Date Title
Leach et al. Geometrical metrology for metal additive manufacturing
Malekipour et al. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review
US11813791B2 (en) Method and system for producing a workpiece using additive manufacturing techniques
CN108746616B (en) Coaxial powder feeding and laser forging composite material increasing and decreasing manufacturing method and device
WO2013089279A4 (en) Machining data generation method for ultraprecise combined machining device, and ultraprecise combined machining device
JP2006521842A (en) Method for manufacturing a dental prosthesis
CN107127583A (en) Ultrasonic cutting is applied to the equipment and processing method in powder feeding formula increase and decrease material composite manufacturing
Sharratt Non-destructive techniques and technologies for qualification of additive manufactured parts and processes
Kelbassa et al. Equipment and process windows for laser metal deposition with coaxial wire feeding
KR20240051135A (en) Systems and methods for performing dissimilar tasks on a single machine device
CN107876771A (en) A kind of metal laser melting increasing material manufacturing method
Parenti et al. Implementation of hybrid additive manufacturing based on extrusion of feedstock and milling
CN104815979A (en) Manufacturing method of compact, manufacturing method of structure, and cutting processed material
CN109514181B (en) Method and machine device for producing a cutting tool
Rodríguez et al. Maximal reduction of steps for iron casting one-of-a-kind parts
WO2020217331A1 (en) Manufacturing system and manufacturing method for sintered compact
Borrelli et al. Ti6Al4V parts produced by electron beam melting: analysis of dimensional accuracy and surface roughness
KR20170048954A (en) laser cladding system and method of using the same
Milewski et al. Application of a manufacturing model for the optimization of additive processing of Inconel alloy 690
Girdwood et al. Investigating components affecting the resource efficiency of incorporating metal additive manufacturing in process chains
CN116900334A (en) Manufacturing device and manufacturing method for low-stress three-laser forging increase and decrease material
CN110091250A (en) PCD bistrique and its processing method
CN111890522B (en) Method for processing spherical cover optical element
Dabwan et al. Effects of milling process parameters on cutting forces and surface roughness when finishing Ti6al4v produced by electron beam melting
Lackey Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515367

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19926387

Country of ref document: EP

Kind code of ref document: A1