WO2020211033A1 - Configuring a variable guard band - Google Patents

Configuring a variable guard band Download PDF

Info

Publication number
WO2020211033A1
WO2020211033A1 PCT/CN2019/083172 CN2019083172W WO2020211033A1 WO 2020211033 A1 WO2020211033 A1 WO 2020211033A1 CN 2019083172 W CN2019083172 W CN 2019083172W WO 2020211033 A1 WO2020211033 A1 WO 2020211033A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarriers
band
condition
service type
reference signals
Prior art date
Application number
PCT/CN2019/083172
Other languages
French (fr)
Inventor
Yiqing Cao
Lu Gao
Yan Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/083172 priority Critical patent/WO2020211033A1/en
Publication of WO2020211033A1 publication Critical patent/WO2020211033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • aspects of the technology described below generally relate to wireless communication and to techniques and apparatuses for configuring a variable guard band. Some techniques and apparatuses described herein enable and provide wireless communication devices and systems configured for improved spectral efficiency and reduced interference.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G
  • 3GPP Third Generation Partnership Project
  • variable guard band may include a fixed guard band that includes a first set of subcarriers (e.g., frequency sub-bands) and a second set of subcarriers that can be dynamically configured to act as part of the variable guard band or to be used for communications (e.g., eMBB communications) by activating or deactivating one or more subcarriers, included in the second set of subcarriers, for scheduling of communications (e.g., data communications) .
  • first set of subcarriers e.g., frequency sub-bands
  • eMBB communications e.g., eMBB communications
  • a base station e.g., an eMBB base station
  • network conditions e.g., cross-band interference
  • a method of wireless communication may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and refraining from scheduling data communications in the set of subcarriers based at least in part on the determination.
  • a base station for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and refrain from scheduling data communications in the set of subcarriers based at least in part on the determination.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a base station, may cause the one or more processors to: determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and refrain from scheduling data communications in the set of subcarriers based at least in part on the determination.
  • an apparatus for wireless communication may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and means for refraining from scheduling data communications in the set of subcarriers based at least in part on the determination.
  • a method of wireless communication may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and transmitting, to a base station, an indication that the interference level satisfies the condition.
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and transmit, to a base station, an indication that the interference level satisfies the condition.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and transmit, to a base station, an indication that the interference level satisfies the condition.
  • an apparatus for wireless communication may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and means for transmitting, to a base station, an indication that the interference level satisfies the condition.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Figs. 3-6 are diagrams illustrating examples of configuring a variable guard band, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including one or more antennas, RF-chains, power amplifiers, modulators, buffers, processors, interleavers, adders/summers, and/or the like) .
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular area (e.g., a fixed or changing geographical area) .
  • BSs 110 may be stationary or non-stationary. In some non-stationary scenarios, mobile BSs 110 may move with varying speeds, direction, and/or heights.
  • the term “cell” can refer to a coverage area of a BS 110 and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. Additionally, or alternatively, a BS may support access to an unlicensed RF band (e.g., a Wi-Fi band and/or the like) .
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • the terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • BSs may be implemented in a software defined network (SDN) manner or via network function virtualization (NFV) manner.
  • SDN software defined network
  • NFV network function virtualization
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, robotics, drones, implantable devices, augmented reality devices, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. These components may be integrated in a variety of combinations and/or may be stand-alone, distributed components considering design constraints and/or operational preferences.
  • CPE Customer Premises Equipment
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • a UE performing scheduling operations can include or perform base-station-like functions in these deployment scenarios.
  • Fig. 1 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • the T and R antennas may be configured with multiple antenna elements formed in an array for MIMO or massive MIMO deployments that can occur in millimeter wave (mmWave or mmW) communication systems.
  • mmWave or mmW millimeter wave
  • a transmit processor 220 can carry out a number of functions associated with communications. For example, transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • reference signals e.g., the cell-specific reference signal (CRS)
  • synchronization signals e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive downlink RF signals.
  • the downlink RF signals may be received from and/or may be transmitted by one or more base stations 110.
  • the signals can be provided to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a UE 120 may transmit control information and/or data to another device, such as one or more base stations 110.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with configuring a variable guard band, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • the UE 120 may include a variety of means or components for implementing communication functions.
  • the variety of means may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; means for transmitting, to a base station, an indication that the interference level satisfies the condition; and/or the like.
  • the UE 120 may include a variety of structural components for carrying out functions of the various means.
  • structural components that carry out functions of such means may include one or more components of UE 120 described in connection with Fig. 2, such as antenna 252, DEMOD 254, MOD 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, and/or the like.
  • the base station 110 may include a variety of means or components for implementing communication functions.
  • the variety of means may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; means for refraining from scheduling data communications in the set of subcarriers based at least in part on the determination; and/or the like.
  • the base station 110 may include a variety of structural components for carrying out functions of the various means.
  • structural components that carry out functions of such means may include one or more components of base station 110 described in connection with Fig. 2, such as transmit processor 220, TX MIMO processor 230, DEMOD 232, MOD 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like.
  • Fig. 2 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of configuring a variable guard band, in accordance with various aspects of the present disclosure.
  • different portions of radiofrequency (RF) spectrum e.g., different bands
  • RATs radio access technologies
  • spectrum from 703 MHz to 733 MHz may be allocated to enhanced mobile broadband (eMBB) uplink (UL) communications
  • spectrum from 733 MHz to 748 MHz may be allocated to another service type (shown as blank /reserved)
  • spectrum from 748 MHz to 758 MHz may be allocated to a gap between different spectrum uses (e.g., a guard band)
  • spectrum from 758 MHz to 788 MHz may be allocated to eMBB downlink (DL) communications
  • spectrum from 788 MHz to 793 MHz may be allocated to a guard band (GB) between service types
  • spectrum from 793 MHz to 803 MHz may be allocated to enhanced television (EnTV) communications and/or a high power high tower service type.
  • eMBB enhanced mobile broadband
  • UL uplink
  • spectrum from 733 MHz to 748 MHz may be allocated to another service type (shown as blank /reserved)
  • spectrum from 748 MHz to 758 MHz may be allocated to a gap between
  • the spectrum allocations shown in Fig. 3 are provided as an example, and other examples may differ from what is shown.
  • the portions of spectrum may start or end at different frequencies than what is shown, the service types and/or uses to which the portions of spectrum are allocated may differ from what is shown, and/or the like.
  • the band allocated for EnTV service is separated from the band allocated for eMBB DL service by a guard band.
  • a service type may refer to a type of RF communication to which a portion of RF spectrum (e.g., a band) can be allocated, and/or may refer to a use for the portion of RF spectrum.
  • Example service types include an eMBB service type, an EnTV service type, an ultra-reliable low latency communication (URLLC) service type, and/or the like.
  • Different service types may be associated with different RF transmission characteristics. For example, eMBB communications may be transmitted with a transmit (TX) power of about 40 watts, while EnTV communications may be transmitted with a TX power of about 1000 watts.
  • TX transmit
  • eMBB communications and EnTV communications may be transmitted with different antenna gains, different equivalent isotropically radiated power (EIRP) levels (e.g., which may be calculated as a product of TX power and antenna gain) , from base stations with different antenna heights, and/or the like.
  • EIRP equivalent isotropically radiated power
  • EnTV communications may be transmitted with a relatively higher power (e.g., than eMBB communications) and from a base station (e.g., an EnTV base station) that is relatively taller (e.g., than an eMBB base station)
  • an EnTV service type may be referred to as, and is one example of, a high power high tower service type or a high power high tower broadcasting service type.
  • a guard band may be used to reduce the impact of such interference.
  • the guard band may be placed between a first band used for a first service type and a second band used for a second service type to prevent communications that use the first service type from interfering with communications that use the second service type, and vice versa. Since interference is higher on frequencies that are closer to a frequency with which a communication is transmitted, the guard band may reduce cross-band interference.
  • the distance between base stations may be larger than a distance between base stations that provide a different service type, such as eMBB.
  • eMBB a different service type
  • different eMBB base stations may be located at different distances from an EnTV base station.
  • a receive (RX) power of EnTV communications received in different coverage areas corresponding to different eMBB base stations may vary widely, causing various levels of interference.
  • a larger guard band may be required for eMBB base stations located near an EnTV base station, while a smaller guard band may be sufficient to protect eMBB communications of eMBB base stations located farther from the EnTV base station.
  • a guard band is typically configured with a fixed size (e.g., a fixed bandwidth) .
  • a fixed bandwidth for a guard band between an EnTV band (or another high power and/or high tower service type) and an eMBB band (or another low power and/or low tower service type) may waste spectrum in some cases and/or may fail to prevent interference in other cases.
  • a relatively large fixed guard band e.g., as shown in Fig. 4
  • a relatively large fixed guard band which may be required to protect eMBB base stations located near an EnTV base station, may be unnecessary for eMBB base stations located far from the EnTV base station. This would waste spectral resources that could otherwise be used for eMBB communications and/or EnTV communications.
  • a relatively small fixed guard band (e.g., as shown in Fig. 3) , which may be sufficient to protect eMBB base stations located far from an EnTV base station, may not sufficiently protect eMBB communications of eMBB base stations located near the EnTV base station. This would result in interference for the lower-power eMBB communications and reduce system performance for eMBB communications (e.g., due to failed eMBB communications, retransmissions of eMBB communications, and/or the like) .
  • variable guard band may include a fixed guard band that includes a first set of subcarriers (e.g., frequency sub-bands) , shown as GB, and a second set of subcarriers (e.g., shown as eMBB DL /GB) that can be dynamically configured to act as part of the variable guard band or to be used for communications (e.g., eMBB communications) by activating or deactivating one or more subcarriers, included in the second set of subcarriers, for scheduling of communications (e.g., data communications) .
  • first set of subcarriers e.g., frequency sub-bands
  • eMBB DL /GB a second set of subcarriers
  • a base station e.g., an eMBB base station
  • network conditions e.g., cross-band interference
  • Fig. 3 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating another example 400 of configuring a variable guard band, in accordance with various aspects of the present disclosure. As shown in Fig. 4, different portions of RF spectrum (e.g., different bands) may be allocated to different service types, use cases, and/or RATs.
  • different portions of RF spectrum e.g., different bands
  • spectrum in a 6XX MHz band may be allocated to EnTV communications and/or a high power high tower service type; spectrum starting in the 6XX MHz band (e.g., starting somewhere between 600 MHz and 699 MHz, inclusive) and ending at 703 MHz may be allocated to a guard band between service types; spectrum from 703 MHz to 748 MHz may be allocated to eMBB UL communications; spectrum from 748 MHz to 758 MHz may be allocated to a gap between different spectrum uses (e.g., a guard band) ; and spectrum from 758 MHz to 803 MHz may be allocated to eMBB DL communications.
  • 6XX MHz band e.g., somewhere between 600 MHz and 699 MHz, inclusive, where XX represents variable digits
  • Spectrum starting in the 6XX MHz band e.g., starting somewhere between 600 MHz and 699 MHz, inclusive
  • 703 MHz may be allocated to a guard band between service types
  • the spectrum allocations shown in Fig. 4 are provided as an example, and other examples may differ from what is shown.
  • the portions of spectrum may start or end at different frequencies than what is shown, the service types and/or uses to which the portions of spectrum are allocated may differ from what is shown, and/or the like.
  • the band allocated for EnTV service is separated from the band allocated for eMBB UL service by a guard band.
  • the guard band may protect eMBB DL communications from interference from EnTV communications because high power EnTV communications may block and/or interfere with reception of eMBB DL communications by a UE due to the large power imbalance between EnTV base station transmissions and eMBB downlink transmissions.
  • the guard band may protect eMBB UL communications from interference from EnTV communications because high power EnTV communications may block and/or interfere with reception of eMBB UL communications by an eMBB base station due to the large power imbalance between EnTV base station transmissions and UE uplink transmissions.
  • the eMBB base station may protect eMBB communications from interference while improving spectrum utilization by configuring a variable guard band.
  • variable guard band may include a fixed guard band that includes a first set of subcarriers (e.g., frequency sub-bands) , shown as GB, and a second set of subcarriers (e.g., shown as eMBB UL /GB) that can be dynamically configured to act as part of the variable guard band or to be used for communications (e.g., eMBB communications) .
  • a first set of subcarriers e.g., frequency sub-bands
  • eMBB UL /GB eMBB UL /GB
  • a base station e.g., an eMBB base station
  • network conditions e.g., cross-band interference
  • Fig. 4 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating another example 500 of configuring a variable guard band, in accordance with various aspects of the present disclosure.
  • a base station 110 e.g., an eMBB base station
  • a UE 120 may communicate with one another.
  • a first band of RF spectrum may be reserved for a first service type, such as eMBB.
  • the first band may be reserved for downlink communications of the first service type (e.g., eMBB downlink communications) or for uplink communications of the first service type (e.g., eMBB uplink communications) .
  • a second band of RF spectrum may be reserved for a second service type, such as EnTV, a high power and/or high tower service type, a broadcasting service type, and/or the like.
  • the first band and the second band may be separated by a guard band.
  • the guard band is a portion of a band that experiences interference due to communications on the second band (e.g., communications of the second service type) .
  • the first band may include a set of subcarriers that borders the guard band.
  • a first subcarrier in the set that borders the guard band may be adjacent to the guard band
  • a second subcarrier in the set may be adjacent to the first subcarrier
  • a third subcarrier in the set may be adjacent to the second subcarrier, and so on.
  • the set as a whole may border the guard band, but only a single subcarrier in the set may border the guard band.
  • the set of subcarriers includes subcarriers in the first band that are less than or equal to a threshold frequency distance from an edge of the guard band that borders the first band.
  • the set of subcarriers may include subcarriers in the first band that have a center frequency greater than or equal to a threshold.
  • the set of subcarriers may include subcarriers in the first band that have a center frequency less than or equal to a threshold.
  • the base station 110 may determine that the set of subcarriers is associated with an interference level that satisfies a condition.
  • the interference level may be represented by a received signal strength indicator (RSSI) .
  • RSSI received signal strength indicator
  • the base station 110 may determine that the condition is satisfied when an RSSI associated with the set of subcarriers satisfies a threshold (e.g., is greater than a threshold or is greater than or equal to a threshold) .
  • the RSSI may be measured by the base station 110. Additionally, or alternatively, the RSSI may be measured by the UE 120 and reported to the base station 110.
  • the base station 110 may determine that the condition is satisfied when the base station 110 detects that a failure rate of communications (e.g., downlink communications and/or uplink communications) in the set of subcarriers satisfies a threshold.
  • a failure rate of communications e.g., downlink communications and/or uplink communications
  • the failure rate may be measured by the base station 110.
  • the failure rate may be measured by the UE 120 and reported to the base station 110.
  • the UE 120 may determine that the set of subcarriers is associated with an interference level that satisfies a condition. For example, the UE 120 may determine that an RSSI measured for the set of subcarriers satisfies a threshold (e.g., is greater than a threshold or is greater than or equal to a threshold) , may determine that a failure rate (e.g., a BLER) for the set of subcarriers satisfies a threshold (e.g., is greater than a threshold or is greater than or equal to a threshold) , and/or the like.
  • a threshold e.g., is greater than a threshold or is greater than or equal to a threshold
  • a failure rate e.g., a BLER
  • the UE 120 may transmit, and the base station 110 may receive, an indication that the interference level satisfies the condition.
  • the base station 110 may determine that a condition is satisfied for the set of subcarriers (and may refrain from scheduling on the set of subcarriers as a result, as described below) based at least in part on the indication from the UE 120, without the base station 110 monitoring the set of subcarriers for the condition (e.g., without measuring RSSI, a failure rate, and/or the like) .
  • activation and deactivation of the set of subcarriers may be UE-specific, to allow for flexible configuration of the set of subcarriers when different UEs 120 in a cell may experience different levels of interference from communications on the second band (e.g., EnTV communications) .
  • activation and deactivation of the set of subcarriers may be UE group-specific, such as when UEs 120 are grouped according to a location within the cell.
  • activation e.g., by scheduling
  • deactivation e.g., by refraining from scheduling
  • activation e.g., by refraining from scheduling
  • activation e.g., by scheduling
  • deactivation e.g., by refraining from scheduling
  • the set of subcarriers for a specific UE 120 may be based at least in part on an indication received from that UE 120 (or one or more UEs 120 included in the group) .
  • activation or deactivation of the set of subcarriers for a specific UE 120 may be based at least in part on measurements by the base station 110 specific to that UE 120 (or specific to that group of UEs 120) , such as by measuring a failure rate of communications scheduled for the UE 120 (or one or more UEs 120 included in the group) .
  • the base station 110 may determine that the condition is satisfied for the set of subcarriers based at least in part on monitoring the set of subcarriers for the condition, without receiving or using the indication from the UE 120 to determine whether the condition is satisfied.
  • activation and deactivation of the set of subcarriers may be cell-specific to reduce complexity when different UEs 120 in a cell experience roughly the same level of interference from communications on the second band. In this case, activation or deactivation of the set of subcarriers may be based at least in part on measurements of the base station 110, which may be performed for multiple UEs 120.
  • the base station 110 may determine that the condition is satisfied based at least in part on measuring a failure rate of communications in the set of subcarriers across multiple UEs 120 for cell-specific deactivation of the set of subcarriers (e.g., as opposed to a single UE 120 for UE-specific deactivation of the set of subcarriers) .
  • the base station 110 may use both the indication from the UE 120 and monitoring of the set of subcarriers by the base station 110 to determine whether the condition is satisfied. In this way, the determination of whether the condition is satisfied may be more robust.
  • the UE 120 may transmit, and the base station 110 may receive, one or more uplink reference signals (RSs) or one or more downlink RS measurements for the set of subcarriers.
  • the base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the uplink RS (s) or the downlink RS measurement (s) .
  • the uplink reference signal (s) and/or the downlink reference signal (s) may be wideband reference signals (e.g., transmitted on a full system bandwidth) .
  • the uplink reference signal (s) and/or the downlink reference signal (s) may be narrowband reference signals (e.g., transmitted on a subset of the full system bandwidth, such as on one or more sub-bands) .
  • the sub-band (s) may be configured by the base station 110. In some aspects, the sub-band (s) are larger than or equal to the minimum bandwidth occupied by reference signals (e.g., CSI-RS or SRS) .
  • the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to perform measurement and reporting of one or more downlink reference signals (e.g., one or more channel state information reference signals (CSI-RSs) and/or the like) to be transmitted by the base station 110 in the set of subcarriers.
  • the base station 110 may transmit the one or more downlink reference signals in the set of subcarriers (e.g., according to the configuration) , and the UE 120 may monitor for and/or measure the one or more downlink reference signals according to the configuration.
  • CSI-RSs channel state information reference signals
  • the UE 120 may transmit one or more measurements corresponding to the one or more downlink reference signals (e.g., in a measurement report) .
  • the base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the one or more measurements. For example, if the one or more measurements indicate poor channel quality for the set of subcarriers, then the base station 110 may determine that the condition is satisfied.
  • the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to transmit one or more uplink reference signals (e.g., one or more sounding reference signals (SRSs) ) in the set of subcarriers.
  • the UE 120 may transmit the one or more uplink reference signals according to the configuration, and the base station 110 may monitor for and/or measure the one or more uplink reference signals according to the configuration.
  • the base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on measuring the one or more uplink reference signals. For example, if the measurement (s) of the uplink reference signal (s) indicate poor channel quality for the set of subcarriers, then the base station 110 may determine that the condition is satisfied.
  • the base station 110 may transmit a configuration (e.g., for uplink RSs or downlink RSs in the set of subcarriers) based at least in part on determining that one or more other conditions described above are satisfied for the set of subcarriers. For example, transmission of the configuration may be triggered based at least in part on an indication from a UE 120, a determination that a failure rate satisfies a threshold for the set of subcarriers, a determination that an RSSI satisfies a threshold for the set of subcarriers, and/or the like.
  • a configuration e.g., for uplink RSs or downlink RSs in the set of subcarriers
  • transmission of the configuration may be triggered based at least in part on an indication from a UE 120, a determination that a failure rate satisfies a threshold for the set of subcarriers, a determination that an RSSI satisfies a threshold for the set of subcarriers, and/
  • a first condition may indicate interference at a cell level, which may trigger the base station 110 to transmit configurations to UEs 120 to determine interference at a UE level.
  • a second condition is satisfied for a UE 120 (e.g., measured uplink RSs and/or measurement reports for downlink RSs that indicate poor channel quality)
  • the base station 110 may deactivate the set of subcarriers for the UE 120 (e.g., by refraining from scheduling communications for the UE 120 in the set of subcarriers) .
  • the base station 110 may refrain from scheduling communications in the set of subcarriers based at least in part on determining that the condition is satisfied for the set of subcarriers.
  • the base station 110 may refrain from scheduling data communications, but may schedule one or more reference signals (e.g., downlink reference signals or uplink reference signals) to permit the base station 110 to determine when the condition is no longer satisfied for the set of subcarriers (e.g., when channel quality is good for the set of subcarriers, which may trigger the base station 110 to start scheduling data communications in the set of subcarriers, as described in more detail below in connection with Fig. 6) .
  • reference signals e.g., downlink reference signals or uplink reference signals
  • the base station 110 may refrain from scheduling communications (e.g., data communications or any communications) in the set of subcarriers for a threshold period of time, which may be tracked using a timer.
  • the base station 110 may start scheduling communications in the set of subcarriers (but may later refrain from scheduling in the set of subcarriers if the base station 110 makes an additional determination that the condition is satisfied for the set of subcarriers) .
  • variable guard band may include a fixed guard band that includes a first set of subcarriers (represented by reference number 515 in Fig. 5) , and a second set of subcarriers (represented by reference number 520 in Fig. 5) .
  • the second set of subcarriers can be dynamically configured for communications with the UE 120 (e.g., when the second set of subcarriers is activated for scheduling) or to act as part of the variable guard band (e.g., when the second set of subcarriers is deactivated for scheduling) .
  • a maximum size of the variable guard band may be fixed, and may include the fixed guard band with a minimum size and a set of subcarriers (e.g., the second set of subcarriers) that are dynamically configurable to achieve the maximum size of the variable guard band.
  • the base station 110 and/or the UE 120 may monitor the entire set of subcarriers that are capable of being dynamically configured (e.g., which may be a subset of all subcarriers included in the first band) .
  • the base station 110 may activate or deactivate the entire set of subcarriers together (e.g., based at least in part on whether the condition is satisfied) .
  • the base station 110 may activate or deactivate individual subcarriers included in the set (e.g., the subcarriers for which the condition is satisfied) .
  • the entire set of subcarriers that are capable of being dynamically configured may be partitioned into multiple subsets of subcarriers, and the base station 110 may activate or deactivate individual subsets (e.g., the subsets for which the condition is satisfied) .
  • the base station 110 can dynamically configure a size of the guard band between the first band and the second band based at least in part on network conditions (e.g., cross-band interference) , thereby improving spectral efficiency while protecting against cross-band interference.
  • network conditions e.g., cross-band interference
  • Fig. 5 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating another example 600 of configuring a variable guard band, in accordance with various aspects of the present disclosure.
  • a base station 110 e.g., an eMBB base station
  • a UE 120 may communicate with one another.
  • the base station 110 may have performed one or more operations to deactivate a set of subcarriers that borders a guard band between a first band and a second band, as described above in connection with Fig. 5.
  • the base station 110 may determine that a condition is not satisfied for the set of subcarriers. For example, the base station 110 may determine that an interference level associated with the set of subcarriers does not satisfy a condition. As described elsewhere herein, in some aspects, the interference level may be represented by an RSSI. In this case, the base station 110 may determine that the condition is not satisfied when an RSSI associated with the set of subcarriers does not satisfy a threshold (e.g., is less than a threshold or is less than or equal to a threshold) .
  • a threshold e.g., is less than a threshold or is less than or equal to a threshold
  • the RSSI may be measured by the base station 110. Additionally, or alternatively, the RSSI may be measured by the UE 120 and reported to the base station 110. In some aspects, the base station 110 may determine that the condition is not satisfied based at least in part on one or more uplink reference signals and/or one or more downlink measurement reports received from the UE 120 for the set of subcarriers, as described below.
  • the base station 110 may transmit, and the UE 120 may receive, a configuration that instructs the UE 120 to transmit one or more uplink reference signals or to perform measurement and reporting for one or more downlink reference signals.
  • the base station 110 may transmit the configuration based at least in part on determining that the condition is satisfied for the set of subcarriers (e.g., as described above in connection with Fig. 5) and/or after refraining from scheduling communications (e.g., data communications) in the set of subcarriers.
  • the UE 120 may transmit, and the base station 110 may receive, one or more uplink RSs or one or more downlink RS measurements for the set of subcarriers.
  • the uplink RS (s) and/or the downlink RS (s) may be wideband reference signals (e.g., transmitted on a full system bandwidth) .
  • the uplink RS (s) and/or the downlink RS (s) may be narrowband reference signals (e.g., transmitted on a subset of the full system bandwidth, such as on one or more sub-bands) .
  • the sub-band (s) may be configured by the base station 110. In some aspects, the sub-band (s) are larger than or equal to the minimum bandwidth occupied by reference signals (e.g., CSI-RS or SRS) .
  • the base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the uplink RS (s) or the downlink RS measurement (s) .
  • the base station 110 may be capable of determining a channel quality associated with the set of subcarriers, which may otherwise be difficult to determine without using reference signals because data communications are no longer being scheduled in the set of subcarriers, and thus cannot be monitored to determine whether the condition is no longer satisfied for the set of subcarriers.
  • the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to perform measurement and reporting of one or more downlink reference signals (e.g., one or more CSI-RSs and/or the like) to be transmitted by the base station 110 in the set of subcarriers.
  • the base station 110 may transmit the one or more downlink reference signals in the set of subcarriers (e.g., according to the configuration) , and the UE 120 may monitor for and/or measure the one or more downlink reference signals according to the configuration.
  • the UE 120 may transmit one or more measurements corresponding to the one or more downlink reference signals (e.g., in a measurement report) .
  • the base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the one or more measurements. For example, if the one or more measurements indicate good channel quality for the set of subcarriers, then the base station 110 may determine that the condition is not satisfied, and may reactivate the set of subcarriers (e.g., by scheduling data communications in the set of subcarriers, as described below) .
  • the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to transmit one or more uplink reference signals (e.g., one or more SRSs) in the set of subcarriers.
  • the UE 120 may transmit the one or more uplink reference signals according to the configuration, and the base station 110 may monitor for and/or measure the one or more uplink reference signals according to the configuration.
  • the base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on measuring the one or more uplink reference signals.
  • the base station 110 may determine that the condition is not satisfied, and may reactivate the set of subcarriers (e.g., by scheduling data communications in the set of subcarriers, as described below) .
  • the base station 110 may schedule one or more communications (e.g., data communications) in the set of subcarriers based at least in part on determining that the condition is not satisfied for the set of subcarriers. For example, the base station 110 may schedule the one or more communications based at least in part on a determination that an interference level, associated with the set of subcarriers, does not satisfy a condition. Such scheduling may include transmitting scheduling information to the UE 120 (e.g., an uplink grant, a downlink grant, downlink control information (DCI) , and/or the like) . Additionally, or alternatively, the base station 110 may transmit and/or receive one or more communications (e.g., downlink data communications, uplink data communications, and/or the like) scheduled by the scheduling information.
  • scheduling information e.g., an uplink grant, a downlink grant, downlink control information (DCI) , and/or the like
  • DCI downlink control information
  • the base station 110 may transmit and/or receive one or more communications (
  • the condition described herein in connection with Figs. 5 and 6 may be the same condition for activating and deactivating a set of subcarriers.
  • a channel condition e.g., represented by RSSI, RSRP, RSRQ, and/or the like
  • the base station 110 may deactivate the set of subcarriers, and when the channel condition rises above the threshold, then the base station 110 may activate the set of subcarriers.
  • this may result in ping-ponging or hysteresis between subcarrier activation and deactivation.
  • the condition described herein in connection with Figs. 5 and 6 may include a first condition for deactivating a set of subcarriers (e.g., a deactivation condition) and a second condition for activating a set of subcarriers (e.g., an activation condition) .
  • a deactivation condition e.g., a deactivation condition
  • an activation condition e.g., an activation condition
  • different thresholds may be used for activation and deactivation (e.g., after deactivating based at least in part on a threshold, a higher threshold may be used for reactivation) .
  • different parameters or sets of parameters may be used for activation versus deactivation. For example, a failure rate of data communications may be used for deactivation, whereas the failure rate may be unavailable for activation because data communications are not scheduled on the set of subcarriers when the set of subcarriers is deactivated.
  • a set of subcarriers that is reactivated as described in connection with Fig. 6 may be different from a set of subcarriers that is deactivated as described in connection with Fig. 5.
  • the base station 110 may deactivate a larger set of subcarriers by performing one or more operations described in connection with Fig. 5, and may reactivate a smaller set of subcarriers (e.g., a subset of the subcarriers that were deactivated) by performing one or more operations described in connection with Fig. 6.
  • a condition for reactivation may be satisfied for a first set of deactivated subcarriers, but may not be satisfied for a second set of deactivated subcarriers.
  • the base station 110 can improve spectral efficiency while protecting against cross-band interference.
  • Fig. 6 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where a base station (e.g., base station 110 and/or the like) performs operations associated with configuring a variable guard band.
  • a base station e.g., base station 110 and/or the like
  • process 700 may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type (block 710) .
  • the base station e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type.
  • process 700 may include refraining from scheduling data communications in the set of subcarriers based at least in part on the determination (block 720) .
  • the base station e.g., using controller/processor 240, memory 242, scheduler 246, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 700 includes determining that the interference level does not satisfy the condition after refraining from scheduling the data communications in the set of subcarriers; and scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
  • determining that the interference level satisfies the condition comprises receiving an indication, from a user equipment, that the interference level satisfies the condition.
  • determining that the interference level satisfies the condition comprises detecting that a failure rate of a plurality of communications in the set of subcarriers satisfies a threshold.
  • the plurality of communications includes at least one of: a plurality of downlink communications, a plurality of uplink communications, or a combination thereof.
  • process 700 includes transmitting, to a user equipment, a configuration that instructs the user equipment to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; transmitting the one or more reference signals in the set of subcarriers based at least in part on the configuration; receiving, from the user equipment, one or more measurements corresponding to the one or more reference signals; and determining that the interference level satisfies the condition based at least in part on the one or more measurements.
  • the one or more reference signals are one or more wideband reference signals or one or more narrowband reference signals.
  • process 700 includes transmitting, to a user equipment, a configuration that instructs the user equipment to transmit one or more reference signals in the set of subcarriers; receiving the one or more reference signals from the user equipment based at least in part on the configuration; and determining that the interference level satisfies the condition based at least in part on the one or more reference signals.
  • process 700 includes transmitting, to a user equipment and based at least in part on the determination, a configuration that instructs the user equipment to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; and transmitting the one or more reference signals in the set of subcarriers based at least in part on the configuration.
  • process 700 includes receiving, from a user equipment, one or more measurements corresponding to one or more reference signals transmitted in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers; determining that the interference level does not satisfy the condition based at least in part on the one or more measurements; and scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
  • process 700 includes transmitting, to a user equipment and based at least in part on the determination, a configuration that instructs the user equipment to transmit one or more reference signals in the set of subcarriers; and receiving the one or more reference signals from the user equipment based at least in part on the configuration.
  • process 700 includes receiving, from a user equipment, one or more reference signals in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers; determining that the interference level does not satisfy the condition based at least in part on the one or more reference signals; and scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
  • the first band is reserved for downlink communications of the first service type.
  • the first band is reserved for uplink communications of the first service type.
  • the first service type is an eMBB service type.
  • the second service type is a high power high tower broadcasting service type.
  • the condition includes a received signal strength indicator satisfying a threshold.
  • the guard band is a portion of a band that experiences interference due to communications on the second band.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with configuring a variable guard band.
  • a UE e.g., UE 120 and/or the like
  • process 800 may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type (block 810) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type.
  • process 800 may include transmitting, to a base station, an indication that the interference level satisfies the condition (block 820) .
  • the UE e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • determining that the interference level satisfies the condition comprises detecting that a failure rate of a plurality of communications in the set of subcarriers satisfies a threshold.
  • process 700 includes receiving, after transmitting the indication, a configuration that instructs the UE to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; and receiving the one or more reference signals in the set of subcarriers based at least in part on the configuration.
  • process 700 includes transmitting one or more measurements corresponding to the one or more reference signals; and receiving scheduling information for one or more data communications in the set of subcarriers based at least in part on transmitting the one or more measurements.
  • the one or more reference signals are one or more wideband reference signals or one or more narrowband reference signals.
  • process 700 includes receiving, after transmitting the indication, a configuration that instructs the UE to transmit one or more reference signals in the set of subcarriers; and transmitting the one or more reference signals based at least in part on the configuration.
  • process 700 includes receiving scheduling information for one or more data communications in the set of subcarriers based at least in part on transmitting the one or more reference signals.
  • the first band is reserved for downlink communications of the first service type.
  • the first band is reserved for uplink communications of the first service type.
  • the first service type is an eMBB service type.
  • the second service type is a high power high tower broadcasting service type.
  • determining that the interference level satisfies the condition comprises determining that a received signal strength indicator satisfies a threshold.
  • the guard band is a portion of a band that experiences interference due to communications on the second band.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type. The base station may refrain from scheduling data communications in the set of subcarriers based at least in part on the determination. Numerous other aspects are provided.

Description

CONFIGURING A VARIABLE GUARD BAND TECHNICAL FIELD
Aspects of the technology described below generally relate to wireless communication and to techniques and apparatuses for configuring a variable guard band. Some techniques and apparatuses described herein enable and provide wireless communication devices and systems configured for improved spectral efficiency and reduced interference.
INTRODUCTION
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. A BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
Multiple access technologies have been adopted in various telecommunication standards. Wireless communication standards provide common protocols to enable different devices (e.g., user equipment) to communicate on a  municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . As demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. These improvements can apply to other multiple access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. The purpose of the summary is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
Some techniques and apparatuses described herein enable configuration of a variable guard band between bands reserved for different service types (e.g., enhanced television (EnTV) and enhanced mobile broadband (eMBB) ) . For example, the variable guard band may include a fixed guard band that includes a first set of subcarriers (e.g., frequency sub-bands) and a second set of subcarriers that can be dynamically configured to act as part of the variable guard band or to be used for communications (e.g., eMBB communications) by activating or deactivating one or more subcarriers, included in the second set of subcarriers, for scheduling of communications (e.g., data communications) . In this way, a base station (e.g., an eMBB base station) can dynamically configure a size of the guard band based on network conditions (e.g., cross-band interference) , thereby improving spectral efficiency while protecting against cross-band interference.
In some aspects, a method of wireless communication, performed by a base station, may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and refraining from scheduling data communications in the set of subcarriers based at least in part on the determination.
In some aspects, a base station for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and refrain from scheduling data communications in the set of subcarriers based at least in part on the determination.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a base station, may cause the one or more processors to: determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and refrain from scheduling data communications in the set of subcarriers based at least in part on the determination.
In some aspects, an apparatus for wireless communication may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and means for refraining from scheduling data communications in the set of subcarriers based at least in part on the determination.
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and transmitting, to a base station, an indication that the interference level satisfies the condition.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine that a set of subcarriers is associated  with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and transmit, to a base station, an indication that the interference level satisfies the condition.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and transmit, to a base station, an indication that the interference level satisfies the condition.
In some aspects, an apparatus for wireless communication may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and means for transmitting, to a base station, an indication that the interference level satisfies the condition.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with  the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description is provided herein, with some aspects of the disclosure being illustrated in the appended drawings. However, the appended drawings illustrate only some aspects of this disclosure and are therefore not to be considered limiting of the scope of the disclosure. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Figs. 3-6 are diagrams illustrating examples of configuring a variable guard band, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In  addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” or “features” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While some aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and/or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, and/or the like) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. For example, transmission and reception of wireless  signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including one or more antennas, RF-chains, power amplifiers, modulators, buffers, processors, interleavers, adders/summers, and/or the like) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular area (e.g., a fixed or changing geographical area) . In some scenarios, BSs 110 may be stationary or non-stationary. In some non-stationary scenarios, mobile BSs 110 may move with varying speeds, direction, and/or heights. In 3GPP, the term “cell” can refer to a coverage area of a BS 110 and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. Additionally, or alternatively, a BS may support access to an unlicensed RF band (e.g., a Wi-Fi band and/or the like) . A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network. In other scenarios, BSs may be implemented in a software defined network (SDN) manner or via network function virtualization (NFV) manner.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or  equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, robotics, drones, implantable devices, augmented reality devices, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. These components may be integrated in a variety of combinations and/or may be stand-alone, distributed components considering design constraints and/or operational preferences.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE  120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110. A UE performing scheduling operations can include or perform base-station-like functions in these deployment scenarios.
As indicated above, Fig. 1 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1. The T and R antennas may be configured with multiple antenna elements formed in an array for MIMO or massive MIMO deployments that can occur in millimeter wave (mmWave or mmW) communication systems.
At base station 110, a transmit processor 220 can carry out a number of functions associated with communications. For example, transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to  various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive downlink RF signals. The downlink RF signals may be received from and/or may be transmitted by one or more base stations 110. The signals can be provided to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
For uplink communications, a UE 120 may transmit control information and/or data to another device, such as one or more base stations 110. For example, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with configuring a variable guard band, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, the UE 120 may include a variety of means or components for implementing communication functions. For example, the variety of means may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; means for transmitting, to a base station, an indication that the interference level satisfies the condition; and/or the like.
In some aspects, the UE 120 may include a variety of structural components for carrying out functions of the various means. For example, structural components that carry out functions of such means may include one or more components of UE 120 described in connection with Fig. 2, such as antenna 252, DEMOD 254, MOD 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, and/or the like.
In some aspects, the base station 110 may include a variety of means or components for implementing communication functions. For example, the variety of means may include means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; means for refraining from scheduling data communications in the set of subcarriers based at least in part on the determination; and/or the like.
In some aspects, the base station 110 may include a variety of structural components for carrying out functions of the various means. For example, structural components that carry out functions of such means may include one or more  components of base station 110 described in connection with Fig. 2, such as transmit processor 220, TX MIMO processor 230, DEMOD 232, MOD 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, and/or the like.
As indicated above, Fig. 2 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of configuring a variable guard band, in accordance with various aspects of the present disclosure. As shown in Fig. 3, different portions of radiofrequency (RF) spectrum (e.g., different bands) may be allocated to different service types, use cases, and/or radio access technologies (RATs) .
As shown by reference number 305, for the example RF spectrum allocation of example 300, spectrum from 703 MHz to 733 MHz may be allocated to enhanced mobile broadband (eMBB) uplink (UL) communications, spectrum from 733 MHz to 748 MHz may be allocated to another service type (shown as blank /reserved) , spectrum from 748 MHz to 758 MHz may be allocated to a gap between different spectrum uses (e.g., a guard band) , spectrum from 758 MHz to 788 MHz may be allocated to eMBB downlink (DL) communications, spectrum from 788 MHz to 793 MHz may be allocated to a guard band (GB) between service types, and spectrum from 793 MHz to 803 MHz may be allocated to enhanced television (EnTV) communications and/or a high power high tower service type. The spectrum allocations shown in Fig. 3 are provided as an example, and other examples may differ from what is shown. For example, the portions of spectrum may start or end at different frequencies than what is shown, the service types and/or uses to which the portions of spectrum are allocated may differ from what is shown, and/or the like. In example 300, the band allocated for EnTV service is separated from the band allocated for eMBB DL service by a guard band.
A service type, as used herein, may refer to a type of RF communication to which a portion of RF spectrum (e.g., a band) can be allocated, and/or may refer to a use for the portion of RF spectrum. Example service types include an eMBB service type, an EnTV service type, an ultra-reliable low latency communication (URLLC) service type, and/or the like. Different service types may be associated with different RF transmission characteristics. For example, eMBB communications may be transmitted with a transmit (TX) power of about 40 watts, while EnTV communications may be transmitted with a TX power of about 1000 watts. Additionally, or alternatively, eMBB communications and EnTV communications may be transmitted with different antenna  gains, different equivalent isotropically radiated power (EIRP) levels (e.g., which may be calculated as a product of TX power and antenna gain) , from base stations with different antenna heights, and/or the like. Because EnTV communications may be transmitted with a relatively higher power (e.g., than eMBB communications) and from a base station (e.g., an EnTV base station) that is relatively taller (e.g., than an eMBB base station) , an EnTV service type may be referred to as, and is one example of, a high power high tower service type or a high power high tower broadcasting service type.
Due to RF filter limitations and RF leakage (e.g., unwanted emissions) , communications that are transmitted with a high transmit power may cause interference with communications on other frequencies. To account for this, a guard band may be used to reduce the impact of such interference. The guard band may be placed between a first band used for a first service type and a second band used for a second service type to prevent communications that use the first service type from interfering with communications that use the second service type, and vice versa. Since interference is higher on frequencies that are closer to a frequency with which a communication is transmitted, the guard band may reduce cross-band interference.
For a high power high tower service type like EnTV, the distance between base stations may be larger than a distance between base stations that provide a different service type, such as eMBB. Thus, different eMBB base stations may be located at different distances from an EnTV base station. As a result, a receive (RX) power of EnTV communications received in different coverage areas corresponding to different eMBB base stations may vary widely, causing various levels of interference. To protect eMBB communications from interference caused by EnTV communications, a larger guard band may be required for eMBB base stations located near an EnTV base station, while a smaller guard band may be sufficient to protect eMBB communications of eMBB base stations located farther from the EnTV base station.
In spectrum engineering, a guard band is typically configured with a fixed size (e.g., a fixed bandwidth) . However, using a fixed bandwidth for a guard band between an EnTV band (or another high power and/or high tower service type) and an eMBB band (or another low power and/or low tower service type) may waste spectrum in some cases and/or may fail to prevent interference in other cases. For example, a relatively large fixed guard band (e.g., as shown in Fig. 4) , which may be required to protect eMBB base stations located near an EnTV base station, may be unnecessary for eMBB base stations located far from the EnTV base station. This would waste spectral  resources that could otherwise be used for eMBB communications and/or EnTV communications. On the other hand, a relatively small fixed guard band (e.g., as shown in Fig. 3) , which may be sufficient to protect eMBB base stations located far from an EnTV base station, may not sufficiently protect eMBB communications of eMBB base stations located near the EnTV base station. This would result in interference for the lower-power eMBB communications and reduce system performance for eMBB communications (e.g., due to failed eMBB communications, retransmissions of eMBB communications, and/or the like) .
As shown by reference number 310, some techniques and apparatuses described herein enable configuration of a variable guard band between bands reserved for different service types (e.g., EnTV and eMBB in example 300) . For example, the variable guard band may include a fixed guard band that includes a first set of subcarriers (e.g., frequency sub-bands) , shown as GB, and a second set of subcarriers (e.g., shown as eMBB DL /GB) that can be dynamically configured to act as part of the variable guard band or to be used for communications (e.g., eMBB communications) by activating or deactivating one or more subcarriers, included in the second set of subcarriers, for scheduling of communications (e.g., data communications) . In this way, a base station (e.g., an eMBB base station) can dynamically configure a size of the guard band based on network conditions (e.g., cross-band interference) , thereby improving spectral efficiency while protecting against cross-band interference.
As indicated above, Fig. 3 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating another example 400 of configuring a variable guard band, in accordance with various aspects of the present disclosure. As shown in Fig. 4, different portions of RF spectrum (e.g., different bands) may be allocated to different service types, use cases, and/or RATs.
As shown by reference number 405, for the example RF spectrum allocation of example 400, spectrum in a 6XX MHz band (e.g., somewhere between 600 MHz and 699 MHz, inclusive, where XX represents variable digits) may be allocated to EnTV communications and/or a high power high tower service type; spectrum starting in the 6XX MHz band (e.g., starting somewhere between 600 MHz and 699 MHz, inclusive) and ending at 703 MHz may be allocated to a guard band between service types; spectrum from 703 MHz to 748 MHz may be allocated to eMBB UL communications; spectrum from 748 MHz to 758 MHz may be allocated to a gap between different  spectrum uses (e.g., a guard band) ; and spectrum from 758 MHz to 803 MHz may be allocated to eMBB DL communications. The spectrum allocations shown in Fig. 4 are provided as an example, and other examples may differ from what is shown. For example, the portions of spectrum may start or end at different frequencies than what is shown, the service types and/or uses to which the portions of spectrum are allocated may differ from what is shown, and/or the like. In example 400, the band allocated for EnTV service is separated from the band allocated for eMBB UL service by a guard band.
In example 300, described above, the guard band may protect eMBB DL communications from interference from EnTV communications because high power EnTV communications may block and/or interfere with reception of eMBB DL communications by a UE due to the large power imbalance between EnTV base station transmissions and eMBB downlink transmissions. In example 400, the guard band may protect eMBB UL communications from interference from EnTV communications because high power EnTV communications may block and/or interfere with reception of eMBB UL communications by an eMBB base station due to the large power imbalance between EnTV base station transmissions and UE uplink transmissions. In either case, the eMBB base station may protect eMBB communications from interference while improving spectrum utilization by configuring a variable guard band.
As shown by reference number 410, some techniques and apparatuses described herein enable configuration of a variable guard band between bands reserved for different service types in a similar manner as described above in connection with Fig. 3. For example, the variable guard band may include a fixed guard band that includes a first set of subcarriers (e.g., frequency sub-bands) , shown as GB, and a second set of subcarriers (e.g., shown as eMBB UL /GB) that can be dynamically configured to act as part of the variable guard band or to be used for communications (e.g., eMBB communications) . In this way, a base station (e.g., an eMBB base station) can dynamically configure a size of the guard band based on network conditions (e.g., cross-band interference) , thereby improving spectral efficiency while protecting against cross-band interference.
As indicated above, Fig. 4 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating another example 500 of configuring a variable guard band, in accordance with various aspects of the present disclosure. As shown in  Fig. 5, a base station 110 (e.g., an eMBB base station) and a UE 120 may communicate with one another.
As shown by reference number 505, a first band of RF spectrum may be reserved for a first service type, such as eMBB. As described above in connection with Figs. 3 and 4, the first band may be reserved for downlink communications of the first service type (e.g., eMBB downlink communications) or for uplink communications of the first service type (e.g., eMBB uplink communications) . As shown by reference number 510, a second band of RF spectrum may be reserved for a second service type, such as EnTV, a high power and/or high tower service type, a broadcasting service type, and/or the like. As shown by reference number 515, the first band and the second band may be separated by a guard band. In some aspects, the guard band is a portion of a band that experiences interference due to communications on the second band (e.g., communications of the second service type) .
As shown by reference number 520, the first band may include a set of subcarriers that borders the guard band. For example, as shown, a first subcarrier in the set that borders the guard band may be adjacent to the guard band, a second subcarrier in the set may be adjacent to the first subcarrier, a third subcarrier in the set may be adjacent to the second subcarrier, and so on. Thus, the set as a whole may border the guard band, but only a single subcarrier in the set may border the guard band. In some aspects, the set of subcarriers includes subcarriers in the first band that are less than or equal to a threshold frequency distance from an edge of the guard band that borders the first band. When the guard band borders an upper frequency of the first band, as shown, the set of subcarriers may include subcarriers in the first band that have a center frequency greater than or equal to a threshold. When the guard band borders a lower frequency of the first band, the set of subcarriers may include subcarriers in the first band that have a center frequency less than or equal to a threshold.
As shown by reference number 525, the base station 110 may determine that the set of subcarriers is associated with an interference level that satisfies a condition. In some aspects, the interference level may be represented by a received signal strength indicator (RSSI) . In this case, the base station 110 may determine that the condition is satisfied when an RSSI associated with the set of subcarriers satisfies a threshold (e.g., is greater than a threshold or is greater than or equal to a threshold) . In some aspects, the RSSI may be measured by the base station 110. Additionally, or alternatively, the RSSI may be measured by the UE 120 and reported to the base station 110.
Additionally, or alternatively, the base station 110 may determine that the condition is satisfied when the base station 110 detects that a failure rate of communications (e.g., downlink communications and/or uplink communications) in the set of subcarriers satisfies a threshold. In some aspects, the failure rate (e.g., a block error rate (BLER) and/or the like) may be measured by the base station 110. Additionally, or alternatively, the failure rate may be measured by the UE 120 and reported to the base station 110.
As shown by reference number 530, in some aspects, the UE 120 may determine that the set of subcarriers is associated with an interference level that satisfies a condition. For example, the UE 120 may determine that an RSSI measured for the set of subcarriers satisfies a threshold (e.g., is greater than a threshold or is greater than or equal to a threshold) , may determine that a failure rate (e.g., a BLER) for the set of subcarriers satisfies a threshold (e.g., is greater than a threshold or is greater than or equal to a threshold) , and/or the like.
As shown by reference number 535, the UE 120 may transmit, and the base station 110 may receive, an indication that the interference level satisfies the condition. In some aspects, the base station 110 may determine that a condition is satisfied for the set of subcarriers (and may refrain from scheduling on the set of subcarriers as a result, as described below) based at least in part on the indication from the UE 120, without the base station 110 monitoring the set of subcarriers for the condition (e.g., without measuring RSSI, a failure rate, and/or the like) . For example, in some aspects, activation and deactivation of the set of subcarriers (e.g., by scheduling or refraining from scheduling on the set of subcarriers) may be UE-specific, to allow for flexible configuration of the set of subcarriers when different UEs 120 in a cell may experience different levels of interference from communications on the second band (e.g., EnTV communications) . Alternatively, activation and deactivation of the set of subcarriers may be UE group-specific, such as when UEs 120 are grouped according to a location within the cell. In these cases, activation (e.g., by scheduling) or deactivation (e.g., by refraining from scheduling) of the set of subcarriers for a specific UE 120 (or a specific group of UEs 120) may be based at least in part on an indication received from that UE 120 (or one or more UEs 120 included in the group) . Additionally, or alternatively, activation or deactivation of the set of subcarriers for a specific UE 120 (or a specific group of UEs 120) may be based at least in part on measurements by the base station 110 specific to that UE 120 (or specific to that group of UEs 120) , such as by measuring  a failure rate of communications scheduled for the UE 120 (or one or more UEs 120 included in the group) .
In some aspects, the base station 110 may determine that the condition is satisfied for the set of subcarriers based at least in part on monitoring the set of subcarriers for the condition, without receiving or using the indication from the UE 120 to determine whether the condition is satisfied. For example, in some aspects, activation and deactivation of the set of subcarriers may be cell-specific to reduce complexity when different UEs 120 in a cell experience roughly the same level of interference from communications on the second band. In this case, activation or deactivation of the set of subcarriers may be based at least in part on measurements of the base station 110, which may be performed for multiple UEs 120. For example, the base station 110 may determine that the condition is satisfied based at least in part on measuring a failure rate of communications in the set of subcarriers across multiple UEs 120 for cell-specific deactivation of the set of subcarriers (e.g., as opposed to a single UE 120 for UE-specific deactivation of the set of subcarriers) .
In some aspects, the base station 110 may use both the indication from the UE 120 and monitoring of the set of subcarriers by the base station 110 to determine whether the condition is satisfied. In this way, the determination of whether the condition is satisfied may be more robust.
As shown by reference number 540, in some aspects, the UE 120 may transmit, and the base station 110 may receive, one or more uplink reference signals (RSs) or one or more downlink RS measurements for the set of subcarriers. The base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the uplink RS (s) or the downlink RS measurement (s) . In some aspects, the uplink reference signal (s) and/or the downlink reference signal (s) may be wideband reference signals (e.g., transmitted on a full system bandwidth) . In some aspects, the uplink reference signal (s) and/or the downlink reference signal (s) may be narrowband reference signals (e.g., transmitted on a subset of the full system bandwidth, such as on one or more sub-bands) . The sub-band (s) may be configured by the base station 110. In some aspects, the sub-band (s) are larger than or equal to the minimum bandwidth occupied by reference signals (e.g., CSI-RS or SRS) .
For example, when the first band is used for downlink communications (e.g., eMBB downlink communications, as described above in connection with Fig. 3) , the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120  to perform measurement and reporting of one or more downlink reference signals (e.g., one or more channel state information reference signals (CSI-RSs) and/or the like) to be transmitted by the base station 110 in the set of subcarriers. The base station 110 may transmit the one or more downlink reference signals in the set of subcarriers (e.g., according to the configuration) , and the UE 120 may monitor for and/or measure the one or more downlink reference signals according to the configuration. The UE 120 may transmit one or more measurements corresponding to the one or more downlink reference signals (e.g., in a measurement report) . The base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the one or more measurements. For example, if the one or more measurements indicate poor channel quality for the set of subcarriers, then the base station 110 may determine that the condition is satisfied.
As another example, when the first band is used for uplink communications (e.g., eMBB uplink communications, as described above in connection with Fig. 4) , the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to transmit one or more uplink reference signals (e.g., one or more sounding reference signals (SRSs) ) in the set of subcarriers. The UE 120 may transmit the one or more uplink reference signals according to the configuration, and the base station 110 may monitor for and/or measure the one or more uplink reference signals according to the configuration. The base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on measuring the one or more uplink reference signals. For example, if the measurement (s) of the uplink reference signal (s) indicate poor channel quality for the set of subcarriers, then the base station 110 may determine that the condition is satisfied.
In some aspects, the base station 110 may transmit a configuration (e.g., for uplink RSs or downlink RSs in the set of subcarriers) based at least in part on determining that one or more other conditions described above are satisfied for the set of subcarriers. For example, transmission of the configuration may be triggered based at least in part on an indication from a UE 120, a determination that a failure rate satisfies a threshold for the set of subcarriers, a determination that an RSSI satisfies a threshold for the set of subcarriers, and/or the like. In some aspects, a first condition (e.g., RSSI, failure rate across multiple UEs 120, and/or the like) may indicate interference at a cell level, which may trigger the base station 110 to transmit configurations to UEs 120 to determine interference at a UE level. If a second condition  is satisfied for a UE 120 (e.g., measured uplink RSs and/or measurement reports for downlink RSs that indicate poor channel quality) , then the base station 110 may deactivate the set of subcarriers for the UE 120 (e.g., by refraining from scheduling communications for the UE 120 in the set of subcarriers) .
As shown by reference number 545, the base station 110 may refrain from scheduling communications in the set of subcarriers based at least in part on determining that the condition is satisfied for the set of subcarriers. In some aspects, the base station 110 may refrain from scheduling data communications, but may schedule one or more reference signals (e.g., downlink reference signals or uplink reference signals) to permit the base station 110 to determine when the condition is no longer satisfied for the set of subcarriers (e.g., when channel quality is good for the set of subcarriers, which may trigger the base station 110 to start scheduling data communications in the set of subcarriers, as described in more detail below in connection with Fig. 6) . Additionally, or alternatively, the base station 110 may refrain from scheduling communications (e.g., data communications or any communications) in the set of subcarriers for a threshold period of time, which may be tracked using a timer. When the timer expires, the base station 110 may start scheduling communications in the set of subcarriers (but may later refrain from scheduling in the set of subcarriers if the base station 110 makes an additional determination that the condition is satisfied for the set of subcarriers) .
As described above in connection with Figs. 3 and 4, some techniques and apparatuses described herein enable configuration of a variable guard band between a first band reserved for a first service type and a second band reserved for a second service type. In some aspects, the variable guard band may include a fixed guard band that includes a first set of subcarriers (represented by reference number 515 in Fig. 5) , and a second set of subcarriers (represented by reference number 520 in Fig. 5) . The second set of subcarriers can be dynamically configured for communications with the UE 120 (e.g., when the second set of subcarriers is activated for scheduling) or to act as part of the variable guard band (e.g., when the second set of subcarriers is deactivated for scheduling) .
In some aspects, a maximum size of the variable guard band may be fixed, and may include the fixed guard band with a minimum size and a set of subcarriers (e.g., the second set of subcarriers) that are dynamically configurable to achieve the maximum size of the variable guard band. In some aspects, the base station 110 and/or  the UE 120 may monitor the entire set of subcarriers that are capable of being dynamically configured (e.g., which may be a subset of all subcarriers included in the first band) . In some aspects, the base station 110 may activate or deactivate the entire set of subcarriers together (e.g., based at least in part on whether the condition is satisfied) . In some aspects, the base station 110 may activate or deactivate individual subcarriers included in the set (e.g., the subcarriers for which the condition is satisfied) . In some aspects, the entire set of subcarriers that are capable of being dynamically configured may be partitioned into multiple subsets of subcarriers, and the base station 110 may activate or deactivate individual subsets (e.g., the subsets for which the condition is satisfied) . In this way, the base station 110 can dynamically configure a size of the guard band between the first band and the second band based at least in part on network conditions (e.g., cross-band interference) , thereby improving spectral efficiency while protecting against cross-band interference.
As indicated above, Fig. 5 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating another example 600 of configuring a variable guard band, in accordance with various aspects of the present disclosure. As shown in Fig. 6, a base station 110 (e.g., an eMBB base station) and a UE 120 may communicate with one another. For the purposes of Fig. 6, the base station 110 may have performed one or more operations to deactivate a set of subcarriers that borders a guard band between a first band and a second band, as described above in connection with Fig. 5.
As shown by reference number 605, after refraining from scheduling communications (e.g., data communications) on the set of subcarriers (e.g., after deactivating the set of subcarriers) , the base station 110 may determine that a condition is not satisfied for the set of subcarriers. For example, the base station 110 may determine that an interference level associated with the set of subcarriers does not satisfy a condition. As described elsewhere herein, in some aspects, the interference level may be represented by an RSSI. In this case, the base station 110 may determine that the condition is not satisfied when an RSSI associated with the set of subcarriers does not satisfy a threshold (e.g., is less than a threshold or is less than or equal to a threshold) . In some aspects, the RSSI may be measured by the base station 110. Additionally, or alternatively, the RSSI may be measured by the UE 120 and reported to the base station 110. In some aspects, the base station 110 may determine that the condition is not satisfied based at least in part on one or more uplink reference signals  and/or one or more downlink measurement reports received from the UE 120 for the set of subcarriers, as described below.
As shown by reference number 610, the base station 110 may transmit, and the UE 120 may receive, a configuration that instructs the UE 120 to transmit one or more uplink reference signals or to perform measurement and reporting for one or more downlink reference signals. The base station 110 may transmit the configuration based at least in part on determining that the condition is satisfied for the set of subcarriers (e.g., as described above in connection with Fig. 5) and/or after refraining from scheduling communications (e.g., data communications) in the set of subcarriers. As shown by reference number 615, the UE 120 may transmit, and the base station 110 may receive, one or more uplink RSs or one or more downlink RS measurements for the set of subcarriers. In some aspects, the uplink RS (s) and/or the downlink RS (s) may be wideband reference signals (e.g., transmitted on a full system bandwidth) . In some aspects, the uplink RS (s) and/or the downlink RS (s) may be narrowband reference signals (e.g., transmitted on a subset of the full system bandwidth, such as on one or more sub-bands) . The sub-band (s) may be configured by the base station 110. In some aspects, the sub-band (s) are larger than or equal to the minimum bandwidth occupied by reference signals (e.g., CSI-RS or SRS) .
The base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the uplink RS (s) or the downlink RS measurement (s) . By configuring reference signals in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers, the base station 110 may be capable of determining a channel quality associated with the set of subcarriers, which may otherwise be difficult to determine without using reference signals because data communications are no longer being scheduled in the set of subcarriers, and thus cannot be monitored to determine whether the condition is no longer satisfied for the set of subcarriers.
As an example, when the first band is used for downlink communications (e.g., eMBB downlink communications, as described above in connection with Fig. 3) , the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to perform measurement and reporting of one or more downlink reference signals (e.g., one or more CSI-RSs and/or the like) to be transmitted by the base station 110 in the set of subcarriers. The base station 110 may transmit the one or more downlink reference signals in the set of subcarriers (e.g., according to the configuration) , and the  UE 120 may monitor for and/or measure the one or more downlink reference signals according to the configuration. The UE 120 may transmit one or more measurements corresponding to the one or more downlink reference signals (e.g., in a measurement report) . The base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on the one or more measurements. For example, if the one or more measurements indicate good channel quality for the set of subcarriers, then the base station 110 may determine that the condition is not satisfied, and may reactivate the set of subcarriers (e.g., by scheduling data communications in the set of subcarriers, as described below) .
As another example, when the first band is used for uplink communications (e.g., eMBB uplink communications, as described above in connection with Fig. 4) , the base station 110 may transmit, to the UE 120, a configuration that instructs the UE 120 to transmit one or more uplink reference signals (e.g., one or more SRSs) in the set of subcarriers. The UE 120 may transmit the one or more uplink reference signals according to the configuration, and the base station 110 may monitor for and/or measure the one or more uplink reference signals according to the configuration. The base station 110 may determine whether the condition is satisfied for the set of subcarriers based at least in part on measuring the one or more uplink reference signals. For example, if the measurement (s) of the uplink reference signal (s) indicate good channel quality for the set of subcarriers, then the base station 110 may determine that the condition is not satisfied, and may reactivate the set of subcarriers (e.g., by scheduling data communications in the set of subcarriers, as described below) .
As shown by reference number 620, the base station 110 may schedule one or more communications (e.g., data communications) in the set of subcarriers based at least in part on determining that the condition is not satisfied for the set of subcarriers. For example, the base station 110 may schedule the one or more communications based at least in part on a determination that an interference level, associated with the set of subcarriers, does not satisfy a condition. Such scheduling may include transmitting scheduling information to the UE 120 (e.g., an uplink grant, a downlink grant, downlink control information (DCI) , and/or the like) . Additionally, or alternatively, the base station 110 may transmit and/or receive one or more communications (e.g., downlink data communications, uplink data communications, and/or the like) scheduled by the scheduling information.
In some aspects, the condition described herein in connection with Figs. 5 and 6 may be the same condition for activating and deactivating a set of subcarriers. For example, when a channel condition (e.g., represented by RSSI, RSRP, RSRQ, and/or the like) for a set of subcarriers falls below a threshold, then the base station 110 may deactivate the set of subcarriers, and when the channel condition rises above the threshold, then the base station 110 may activate the set of subcarriers. However, in some cases this may result in ping-ponging or hysteresis between subcarrier activation and deactivation. To prevent such ping-ponging or hysteresis, the condition described herein in connection with Figs. 5 and 6 may include a first condition for deactivating a set of subcarriers (e.g., a deactivation condition) and a second condition for activating a set of subcarriers (e.g., an activation condition) . For example, different thresholds may be used for activation and deactivation (e.g., after deactivating based at least in part on a threshold, a higher threshold may be used for reactivation) . Additionally, or alternatively, different parameters or sets of parameters may be used for activation versus deactivation. For example, a failure rate of data communications may be used for deactivation, whereas the failure rate may be unavailable for activation because data communications are not scheduled on the set of subcarriers when the set of subcarriers is deactivated.
Additionally, or alternatively, a set of subcarriers that is reactivated as described in connection with Fig. 6 may be different from a set of subcarriers that is deactivated as described in connection with Fig. 5. For example, the base station 110 may deactivate a larger set of subcarriers by performing one or more operations described in connection with Fig. 5, and may reactivate a smaller set of subcarriers (e.g., a subset of the subcarriers that were deactivated) by performing one or more operations described in connection with Fig. 6. For example, a condition for reactivation may be satisfied for a first set of deactivated subcarriers, but may not be satisfied for a second set of deactivated subcarriers.
As described elsewhere herein, by dynamically configuring a size of the guard band between the first band and the network band, the base station 110 can improve spectral efficiency while protecting against cross-band interference.
As indicated above, Fig. 6 is provided merely as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a base station, in accordance with various aspects of the present disclosure.  Example process 700 is an example where a base station (e.g., base station 110 and/or the like) performs operations associated with configuring a variable guard band.
As shown in Fig. 7, in some aspects, process 700 may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type (block 710) . For example, the base station (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may determine that a set of subcarriers is associated with an interference level that satisfies a condition, as described above. In some aspects, the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type.
As further shown in Fig. 7, in some aspects, process 700 may include refraining from scheduling data communications in the set of subcarriers based at least in part on the determination (block 720) . For example, the base station (e.g., using controller/processor 240, memory 242, scheduler 246, and/or the like) may refrain from scheduling data communications in the set of subcarriers based at least in part on the determination, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 700 includes determining that the interference level does not satisfy the condition after refraining from scheduling the data communications in the set of subcarriers; and scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
In a second aspect, alone or in combination with the first aspect, determining that the interference level satisfies the condition comprises receiving an indication, from a user equipment, that the interference level satisfies the condition.
In a third aspect, alone or in combination with one or more of the first and second aspects, determining that the interference level satisfies the condition comprises detecting that a failure rate of a plurality of communications in the set of subcarriers satisfies a threshold.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the plurality of communications includes at least one of: a plurality of downlink communications, a plurality of uplink communications, or a combination thereof.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 700 includes transmitting, to a user equipment, a configuration that instructs the user equipment to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; transmitting the one or more reference signals in the set of subcarriers based at least in part on the configuration; receiving, from the user equipment, one or more measurements corresponding to the one or more reference signals; and determining that the interference level satisfies the condition based at least in part on the one or more measurements.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the one or more reference signals are one or more wideband reference signals or one or more narrowband reference signals.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 700 includes transmitting, to a user equipment, a configuration that instructs the user equipment to transmit one or more reference signals in the set of subcarriers; receiving the one or more reference signals from the user equipment based at least in part on the configuration; and determining that the interference level satisfies the condition based at least in part on the one or more reference signals.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 700 includes transmitting, to a user equipment and based at least in part on the determination, a configuration that instructs the user equipment to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; and transmitting the one or more reference signals in the set of subcarriers based at least in part on the configuration.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 700 includes receiving, from a user equipment, one or more measurements corresponding to one or more reference signals transmitted in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers; determining that the interference level does not satisfy the condition based  at least in part on the one or more measurements; and scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 700 includes transmitting, to a user equipment and based at least in part on the determination, a configuration that instructs the user equipment to transmit one or more reference signals in the set of subcarriers; and receiving the one or more reference signals from the user equipment based at least in part on the configuration.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, process 700 includes receiving, from a user equipment, one or more reference signals in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers; determining that the interference level does not satisfy the condition based at least in part on the one or more reference signals; and scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the first band is reserved for downlink communications of the first service type.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the first band is reserved for uplink communications of the first service type.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the first service type is an eMBB service type.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the second service type is a high power high tower broadcasting service type.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the condition includes a received signal strength indicator satisfying a threshold.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the guard band is a portion of a band that experiences interference due to communications on the second band.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 800 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with configuring a variable guard band.
As shown in Fig. 8, in some aspects, process 800 may include determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type (block 810) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine that a set of subcarriers is associated with an interference level that satisfies a condition, as described above. In some aspects, the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to a base station, an indication that the interference level satisfies the condition (block 820) . For example, the UE (e.g., using transmit processor 264, controller/processor 280, memory 282, and/or the like) may transmit, to a base station, an indication that the interference level satisfies the condition, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, determining that the interference level satisfies the condition comprises detecting that a failure rate of a plurality of communications in the set of subcarriers satisfies a threshold.
In a second aspect, alone or in combination with the first aspect, process 700 includes receiving, after transmitting the indication, a configuration that instructs the UE to perform measurement and reporting of one or more reference signals to be  transmitted by the base station in the set of subcarriers; and receiving the one or more reference signals in the set of subcarriers based at least in part on the configuration.
In a third aspect, alone or in combination with one or more of the first and second aspects, process 700 includes transmitting one or more measurements corresponding to the one or more reference signals; and receiving scheduling information for one or more data communications in the set of subcarriers based at least in part on transmitting the one or more measurements.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the one or more reference signals are one or more wideband reference signals or one or more narrowband reference signals.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 700 includes receiving, after transmitting the indication, a configuration that instructs the UE to transmit one or more reference signals in the set of subcarriers; and transmitting the one or more reference signals based at least in part on the configuration.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 700 includes receiving scheduling information for one or more data communications in the set of subcarriers based at least in part on transmitting the one or more reference signals.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the first band is reserved for downlink communications of the first service type.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first band is reserved for uplink communications of the first service type.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the first service type is an eMBB service type.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the second service type is a high power high tower broadcasting service type.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, determining that the interference level satisfies the condition comprises determining that a received signal strength indicator satisfies a threshold.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the guard band is a portion of a band that experiences interference due to communications on the second band.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software.
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers  to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (40)

  1. A method of wireless communication performed by a base station, comprising:
    determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    refraining from scheduling data communications in the set of subcarriers based at least in part on the determination.
  2. The method of claim 1, further comprising:
    determining that the interference level does not satisfy the condition after refraining from scheduling the data communications in the set of subcarriers; and
    scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
  3. The method of claim 1, wherein determining that the interference level satisfies the condition comprises receiving an indication, from a user equipment, that the interference level satisfies the condition.
  4. The method of claim 1, wherein determining that the interference level satisfies the condition comprises detecting that a failure rate of a plurality of communications in the set of subcarriers satisfies a threshold.
  5. The method of claim 4, wherein the plurality of communications includes at least one of:
    a plurality of downlink communications,
    a plurality of uplink communications, or
    a combination thereof.
  6. The method of claim 1, further comprising:
    transmitting, to a user equipment, a configuration that instructs the user equipment to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers;
    transmitting the one or more reference signals in the set of subcarriers based at least in part on the configuration;
    receiving, from the user equipment, one or more measurements corresponding to the one or more reference signals; and
    determining that the interference level satisfies the condition based at least in part on the one or more measurements.
  7. The method of claim 6, wherein the one or more reference signals are one or more wideband reference signals or one or more narrowband reference signals.
  8. The method of claim 1, further comprising:
    transmitting, to a user equipment, a configuration that instructs the user equipment to transmit one or more reference signals in the set of subcarriers;
    receiving the one or more reference signals from the user equipment based at least in part on the configuration; and
    determining that the interference level satisfies the condition based at least in part on the one or more reference signals.
  9. The method of claim 1, further comprising:
    transmitting, to a user equipment and based at least in part on the determination, a configuration that instructs the user equipment to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; and
    transmitting the one or more reference signals in the set of subcarriers based at least in part on the configuration.
  10. The method of claim 1, further comprising:
    receiving, from a user equipment, one or more measurements corresponding to one or more reference signals transmitted in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers;
    determining that the interference level does not satisfy the condition based at least in part on the one or more measurements; and
    scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
  11. The method of claim 1, further comprising:
    transmitting, to a user equipment and based at least in part on the determination, a configuration that instructs the user equipment to transmit one or more reference signals in the set of subcarriers; and
    receiving the one or more reference signals from the user equipment based at least in part on the configuration.
  12. The method of claim 1, further comprising:
    receiving, from a user equipment, one or more reference signals in the set of subcarriers after refraining from scheduling data communications in the set of subcarriers;
    determining that the interference level does not satisfy the condition based at least in part on the one or more reference signals; and
    scheduling one or more data communications in the set of subcarriers based at least in part on determining that the interference level does not satisfy the condition.
  13. The method of claim 1, wherein the first band is reserved for downlink communications of the first service type.
  14. The method of claim 1, wherein the first band is reserved for uplink communications of the first service type.
  15. The method of claim 1, wherein the first service type is an enhanced mobile broadband (eMBB) service type.
  16. The method of claim 1, wherein the second service type is a high power high tower broadcasting service type.
  17. The method of claim 1, wherein the condition includes a received signal strength indicator satisfying a threshold.
  18. The method of claim 1, wherein the guard band is a portion of a band that experiences interference due to communications on the second band.
  19. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    transmitting, to a base station, an indication that the interference level satisfies the condition.
  20. The method of claim 19, wherein determining that the interference level satisfies the condition comprises detecting that a failure rate of a plurality of communications in the set of subcarriers satisfies a threshold.
  21. The method of claim 19, further comprising:
    receiving, after transmitting the indication, a configuration that instructs the UE to perform measurement and reporting of one or more reference signals to be transmitted by the base station in the set of subcarriers; and
    receiving the one or more reference signals in the set of subcarriers based at least in part on the configuration.
  22. The method of claim 21, further comprising:
    transmitting one or more measurements corresponding to the one or more reference signals; and
    receiving scheduling information for one or more data communications in the set of subcarriers based at least in part on transmitting the one or more measurements.
  23. The method of claim 21, wherein the one or more reference signals are one or more wideband reference signals or one or more narrowband reference signals.
  24. The method of claim 19, further comprising:
    receiving, after transmitting the indication, a configuration that instructs the UE to transmit one or more reference signals in the set of subcarriers; and
    transmitting the one or more reference signals based at least in part on the configuration.
  25. The method of claim 24, further comprising receiving scheduling information for one or more data communications in the set of subcarriers based at least in part on transmitting the one or more reference signals.
  26. The method of claim 19, wherein the first band is reserved for downlink communications of the first service type.
  27. The method of claim 19, wherein the first band is reserved for uplink communications of the first service type.
  28. The method of claim 19, wherein the first service type is an enhanced mobile broadband (eMBB) service type.
  29. The method of claim 19, wherein the second service type is a high power high tower broadcasting service type.
  30. The method of claim 19, wherein determining that the interference level satisfies the condition comprises determining that a received signal strength indicator satisfies a threshold.
  31. The method of claim 1, wherein the guard band is a portion of a band that experiences interference due to communications on the second band.
  32. A base station for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band  that separates the first band and a second band reserved for a second service type; and
    refrain from scheduling data communications in the set of subcarriers based at least in part on the determination.
  33. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    transmit, to a base station, an indication that the interference level satisfies the condition.
  34. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station, cause the one or more processors to:
    determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    refrain from scheduling data communications in the set of subcarriers based at least in part on the determination.
  35. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    determine that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    transmit, to a base station, an indication that the interference level satisfies the condition.
  36. An apparatus for wireless communication, comprising:
    means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    means for refraining from scheduling data communications in the set of subcarriers based at least in part on the determination.
  37. An apparatus for wireless communication, comprising:
    means for determining that a set of subcarriers is associated with an interference level that satisfies a condition, wherein the set of subcarriers is included in a first band reserved for a first service type and the set of subcarriers borders a guard band that separates the first band and a second band reserved for a second service type; and
    means for transmitting, to a base station, an indication that the interference level satisfies the condition.
  38. A wireless communication device, comprising:
    a communication interface configured to transmit and receive wireless communication signals; and
    a processor configured to:
    determine that interference, associated with one or more wireless communication signals received via the communication interface, satisfies a condition; and
    transmit, via the communication interface and based at least in part on the determination, an indication that at least a portion of the one or more  wireless communication signals were received in one or more subcarriers that are to be configured for a variable band guard.
  39. The wireless communication device of claim 38, wherein the processor is further configured to transmit, via the communication interface, an indication of the one or more subcarriers.
  40. A wireless communication device, comprising:
    a communication interface configured to transmit and receive wireless communication signals; and
    a processor configured to:
    determine that interference, associated with one or more subcarriers used to transmit one or more wireless communication signals, satisfies a condition; and
    configure the one or more subcarriers for a variable band guard based at least in part on the determination.
PCT/CN2019/083172 2019-04-18 2019-04-18 Configuring a variable guard band WO2020211033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083172 WO2020211033A1 (en) 2019-04-18 2019-04-18 Configuring a variable guard band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083172 WO2020211033A1 (en) 2019-04-18 2019-04-18 Configuring a variable guard band

Publications (1)

Publication Number Publication Date
WO2020211033A1 true WO2020211033A1 (en) 2020-10-22

Family

ID=72837644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083172 WO2020211033A1 (en) 2019-04-18 2019-04-18 Configuring a variable guard band

Country Status (1)

Country Link
WO (1) WO2020211033A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388591A (en) * 2009-02-16 2012-03-21 三星电子株式会社 Method and apparatus for transmitting and receiving downlink signal for which guard band is configured in cellular radio communication system supporting band scalability
US20150011233A1 (en) * 2012-03-09 2015-01-08 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus enabling information exchange between network nodes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388591A (en) * 2009-02-16 2012-03-21 三星电子株式会社 Method and apparatus for transmitting and receiving downlink signal for which guard band is configured in cellular radio communication system supporting band scalability
US20150011233A1 (en) * 2012-03-09 2015-01-08 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus enabling information exchange between network nodes

Similar Documents

Publication Publication Date Title
WO2020112336A1 (en) Management of multiple antenna panels
EP4136773A1 (en) Cross-link interference (cli) enhancements
WO2021226619A1 (en) Full duplex downlink and uplink beam pair selection
EP4122228B1 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2020232291A1 (en) Capability-based bandwidth part switching
WO2021041119A1 (en) Sounding reference signal and downlink reference signal association in a power saving mode
WO2020063503A1 (en) Triggering mechanism for remote interference management
WO2020167774A1 (en) Reduced monitoring state
WO2022251808A1 (en) Synchronization signal block beam switching
US20210360575A1 (en) Coexistence between downlink (dl) positioning reference signal (prs) and uplink (ul) transmission in a full duplex user equipment (ue)
WO2021225766A1 (en) Demodulation reference signal based self-interference measurement
WO2021183248A1 (en) Frequency allocation for channel state information reference signals
WO2021119649A1 (en) Local interference management in an integrated access backhaul network
WO2019157762A1 (en) Techniques and apparatuses for channel state determination or reference signaling with traffic preemption
WO2022077159A1 (en) Techniques for adding new radio cell for multi-subscription user equipment
WO2021189293A1 (en) Techniques for uplink beam management reporting
EP4098003A1 (en) Techniques for indicating a user equipment capability for layer 1 signal to interference plus noise ratio measurement
WO2021226326A2 (en) Beam pair selection using uplink and downlink measurements
WO2021120083A1 (en) Beam indication for downlink control information scheduled sidelink transmission
WO2021003660A1 (en) Data transfer for integrated access and backhaul system using full-duplex
WO2020211033A1 (en) Configuring a variable guard band
WO2022041101A1 (en) Cross-link interference measurement using sounding reference signal resources
US11924140B2 (en) Subband channel quality information
WO2022232970A1 (en) Techniques for excluding signal measurements from a measurement report
WO2022170609A1 (en) Resource signal reception capability for multiple component carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924747

Country of ref document: EP

Kind code of ref document: A1