WO2020203968A1 - Control unit - Google Patents

Control unit Download PDF

Info

Publication number
WO2020203968A1
WO2020203968A1 PCT/JP2020/014546 JP2020014546W WO2020203968A1 WO 2020203968 A1 WO2020203968 A1 WO 2020203968A1 JP 2020014546 W JP2020014546 W JP 2020014546W WO 2020203968 A1 WO2020203968 A1 WO 2020203968A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
cooperative
control
external environment
automatic
Prior art date
Application number
PCT/JP2020/014546
Other languages
French (fr)
Japanese (ja)
Inventor
啓二 西村
村松 啓且
裕二 平松
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/014441 external-priority patent/WO2020202426A1/en
Priority claimed from PCT/JP2019/014442 external-priority patent/WO2020202427A1/en
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2020203968A1 publication Critical patent/WO2020203968A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a control unit used in an automatic operation device (Autonomous Operation Machine).
  • Patent Document 1 discloses an automatic guided vehicle with a robot arm.
  • the transport vehicle is a self-propelled vehicle.
  • the automatic guided vehicle includes an AGV (Automatic Guided Vehicle), an AGV control unit, a robot arm, and a robot controller.
  • the AGV control unit controls the movement of the AGV.
  • the robot controller controls the robot arm.
  • the robot controller notifies the AGV control unit of a signal indicating that the robot arm can be connected to the power source and can work. This regulates the movement of the AGV.
  • the detachment control unit of the robot controller notifies the AGV control unit of a signal indicating that the work is completed. As a result, the movement of the AGV starts. In this way, the robot controller controls the movement of the AGV.
  • control unit used in the automatic operation device is required to increase the degree of freedom of combination with the control device of other working machines and improve the versatility.
  • An object of the present invention is to provide a control unit capable of increasing the degree of freedom of combination with other devices and improving versatility.
  • the present inventor conducted a study in view of the above-mentioned problems and obtained the following findings.
  • the above-mentioned automatic operation device may want to perform work other than the work by the robot arm.
  • the types of work required for the work machine include, for example, relatively simple work that operates simply according to the position of the autonomous vehicle.
  • the work machines that perform such work for example, there is a work machine configured so as not to output a signal for traveling to an autonomous driving vehicle. In this case, it is not easy to link the work machine and the autonomous driving vehicle. As a result, the types of work machines that can be combined with autonomous vehicles are limited.
  • the present inventor has a configuration in which the automatic operation device operates based on the command when the work machine outputs a command, and outputs the command when the automatic operation device needs to output the command to the work machine.
  • the automatic operation device can be applied to a form in which a working machine that does not output a command is combined in addition to a form in which a working machine that outputs a command is combined.
  • the working machine to be attached can be arbitrarily selected from the above two types of working machines while suppressing the modification of the hardware configuration and the software configuration in the automatic operation device.
  • the work machine attached to the automatic operation device can be easily replaced with another type of work machine. Therefore, the degree of freedom of combination can be increased and the versatility can be improved.
  • control unit has the following configuration.
  • the control unit is An external environment information connector for inputting external environment data indicating the detection result from the external environment sensing unit, and An operation control connector for outputting an operation control signal for controlling the operation of the actuator, and an operation control connector. It is configured to be communicably connected to the cooperative control unit that controls the cooperative operation device that outputs physical or non-physical output by wire or wirelessly, and controls the automatic operation device transmitted from the cooperative control unit.
  • An external communication connection unit that outputs an operation command for controlling the control unit and transmits an operation command for controlling the linked operation device output from the control unit to the linked control unit.
  • the operation control signal When an operation command is received from the cooperative operation device, the operation control signal is generated based on the operation command received from the cooperative control unit, and the operation control signal is output to the actuator via the operation control connector. Then, when the cooperative operation device is operated based on the processing result of the external environment data, the operation control signal is generated based on the processing result of the external environment data and the cooperative operation device is controlled. It is provided with an operation control device that generates an operation command and transmits an operation command for controlling the cooperative operation device to the cooperative control unit via the external communication connection unit.
  • the operation control device controls the actuator of the automatic operation device at least based on the operation command from the cooperative operation device.
  • the motion control device generates an motion control signal at least based on the motion command, and outputs the motion control signal to the actuator.
  • the operation control device may generate an operation control signal based only on the operation command, or may generate an operation control signal based on the operation command and the external environment data. In this way, the actuator of the automatic operation device is controlled based on the operation command of the cooperative control unit. Therefore, the operation of the automatically operating device and the operation of the linked operating device can be precisely linked.
  • the operation control device when operating the cooperative operation device based on the processing result of the external environment data, transmits an operation command generated based on the processing result of the external environment data to the cooperative control unit. Therefore, the cooperative operation device is controlled based on the external environment of the automatic operation device. Therefore, the operation of the automatically operating device and the operation of the linked operating device can be precisely linked. In this way, regardless of whether the linked control unit connected to the control unit used for the automatic operating device belongs to the type that outputs a command or the type that does not output a command, the operation of the automatic operating device and the linked operating device The operation of can be precisely linked.
  • the linked operating device to be attached can be arbitrarily selected and attached from any of the two types of devices.
  • the cooperative operation device attached to the automatic operation device can be easily replaced with a different type of device. Therefore, it is possible to increase the degree of freedom of combination with the automatically operating device and improve the versatility.
  • control unit can adopt the following configuration.
  • the control unit of (1) The external environment sensing unit is a camera.
  • the external environment information connector inputs image data output from the camera as the external environment data.
  • control unit having the above configuration, by using the image data from the camera, it is possible to execute the operation while recognizing the complicated external environment.
  • the control unit can cause the cooperative control unit to operate with high accuracy based on the image data from the camera. Further, the control unit can operate the actuator with high accuracy based on the operation command from the cooperative control unit and the image data from the camera. Therefore, while improving the versatility of the control unit, it is possible to make the connected linked control unit operate with high accuracy.
  • control unit can adopt the following configuration.
  • the actuator mounted on the automatic operation device is a traveling device for traveling the automatic operation device.
  • the motion control device is When an operation command is received from the cooperative control unit, an operation control signal for instructing the traveling of the automatic operation device based on the operation command received from the cooperative control unit and the processing result of the external environment data.
  • an operation control signal for instructing the running of the automatic operation device is generated based on the processing result of the external environment data.
  • the operation command for controlling the cooperative operation device is generated, and the operation command for controlling the cooperative operation device is transmitted to the cooperation control unit via the external communication connection unit.
  • the automatic operation device functions as an automatic traveling vehicle.
  • the autonomous vehicle makes the cooperative control unit operate with high accuracy while traveling based on external environmental data such as image data from a camera. be able to.
  • the cooperative operation device is operated based on the processing result of the external environment data
  • the autonomous driving vehicle has high accuracy based on the operation command from the cooperation control unit and the external environment data such as the image data from the camera. You can drive with. Therefore, it is possible to make the cooperative control unit operate with high accuracy while improving the versatility of the autonomous driving vehicle.
  • control unit can adopt the following configuration.
  • the control unit of any one of (1) to (3) The operation control device generates the operation control signal based on the operation command received from the cooperation control unit and outputs the operation control signal to the actuator, and connects the operation command to the cooperation control unit by the external communication.
  • the process of transmitting via the unit is executed in sequence.
  • the operation control device sequentially executes the process based on the operation command received from the cooperative control unit and the process of transmitting the operation command to the cooperative control unit. Therefore, the operation of the actuator can be controlled according to the type of the constant cooperation control unit immediately after being connected to the cooperation control unit. Therefore, the versatility of the control unit can be improved.
  • control unit can adopt the following configuration.
  • the external communication connection unit includes a plurality of connectors corresponding to a plurality of different types of transmission formats.
  • the linked control unit to be connected can be selected from the candidates of a plurality of units having various functions. Therefore, the versatility of the control unit can be further improved.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related enumerated components.
  • the use of the terms “including, including,””comprising,” or “having,” and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “connected”, “combined” and / or their equivalents are widely used, direct and indirect attachment, connection and Includes both bonds.
  • connection and “coupled” are not limited to physical or mechanical connections or connections, but can include direct or indirect electrical connections or connections.
  • all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense. It is understood that a plurality of techniques and processes are disclosed in the description of the present invention. Each of these has its own benefit and each can be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
  • the detection of the external environment is to detect the external environment of the automatically operating device.
  • the external environment is an external condition that determines the operation of an automatically operating device.
  • the external environment is the environment around the automatically operating device.
  • the external environment data as a result of being detected by the external environment sensing unit is, for example, an image taken of the outside of the automatically operating device.
  • the external environment sensing unit in this case is a camera.
  • the external environment data and the external environment sensing unit are not particularly limited.
  • the external environment data is, for example, the distance to an external object of the automatic operation device.
  • the external environment sensing unit in this case is, for example, a distance sensor.
  • the distance sensor is, for example, a sonar (SONAR: sound navigation ranking) that uses ultrasonic waves.
  • the distance sensor is, for example, a distance measuring device using a laser.
  • the external environment data is, for example, a laser scan image of an object outside the automatic operation device.
  • the external environment sensing unit in this case is, for example, LIDAR (Laser Imaging Detection and Ranking).
  • the external environment data is, for example, position information in the work area of the automatic operation device.
  • the external environment sensing unit in this case is, for example, GNSS (Global Navigation Satellite System).
  • An automatically operating device is a device that can operate automatically regardless of human operation.
  • the automatic operation device does not exclude human operation.
  • the automatic operation device may perform some operations by human operation and automatically perform some operations regardless of human operation.
  • the automatic operation device may be instructed about a rough upper level operation by human operation, and may determine and execute a more detailed lower level operation for realizing the upper level operation.
  • the automatic operation device may perform an operation in a certain range according to a human operation, and may perform the above-mentioned operation or an operation similar to the above-mentioned operation in a range different from the above-mentioned certain range.
  • the autonomous driving device is, for example, an autonomous driving vehicle.
  • the automatic operation device is not particularly limited, and may be, for example, an automatic work robot.
  • the cooperative operation device that cooperates with the automatic operation device is, for example, an automatic work robot mounted on an automatic driving vehicle.
  • the cooperative operation device is not limited to this, and for example, an autonomous driving vehicle equipped with an automatic work robot may be used.
  • the actuator is, for example, a motor.
  • the actuator causes the automatic operation device to perform physical output.
  • the actuator provided in the cooperative operation device causes the cooperative operation device to perform physical output.
  • the actuator may be, for example, an electromagnetic solenoid.
  • the actuator is controlled by the motion control device.
  • the actuator may be directly controlled by the motion control device.
  • the actuator and the motion control device may be indirectly controlled via a control means different from the motion control device. In this case, the motion control device controls the control means, and the control means controls the actuator.
  • the control unit is, for example, a navigation device for controlling the automatic driving of an autonomous driving vehicle.
  • the control unit is not particularly limited, and may be configured to control, for example, a robot that does not travel.
  • the control unit used in the automatic operation device is mounted on the automatic operation device, for example.
  • the mounting position of the control unit is not particularly limited, and for example, the control unit may be installed at a position away from the automatic operation device and may be communicably connected to the peripheral device via each connector.
  • the external communication connection part is, for example, a connector to which an electric wire is connected.
  • the external communication connection unit may be a wireless communication device connected by wireless communication. That is, the communicable connection is, for example, directly electrically connected via a connector and an electric wire.
  • the means of connection capable of communicating is not particularly limited, and may be, for example, a state in which communication is possible via a wireless communication device, which is arranged at physically distant positions. Further, the communicable connection may be in a state in which communication is possible via a central communication relay device capable of communicating with a large number of devices.
  • the cooperative operation device is, for example, a device that operates in cooperation with an automatic operation device.
  • the cooperative operation device operates, for example, in cooperation with the automatic operation device to achieve a common work purpose.
  • the cooperative operation device realizes parallel execution for the operation of the automatic operation device by, for example, executing the same type of operation as the automatic operation device.
  • the cooperative operation device completes one operation in cooperation with the automatic operation device, for example, by complementing the operation of the automatic operation device.
  • the cooperative operation device is, for example, a device connected to an automatic operation device.
  • the cooperative operation device is, for example, an automatic work robot connected to an automatic driving vehicle as an automatic operation device.
  • the cooperative operation device is not particularly limited, and may be, for example, a second automatic driving vehicle that travels at a position away from the automatic driving vehicle as the automatic driving device.
  • the cooperative control unit is, for example, a navigation device for controlling the automatic driving of the autonomous driving vehicle as a cooperative operation device.
  • a plurality of autonomous driving vehicles can travel in cooperation with each other.
  • the physical output is an action that involves the physical movement of at least some of the members.
  • the physical output of the linked operating device is, for example, the movement of the entire linked operating device. However, the physical output is not particularly limited, and for example, a part of the linked operating device may be physically moved.
  • the physical output is, for example, the operation of the robot arm when the cooperative operation device includes the robot arm.
  • the physical output is, for example, the operation of a valve when the coordinated operating device includes a valve that opens and closes a flow path.
  • the physical output is, for example, the rotation of the fan when the cooperating device includes a blower fan.
  • Non-physical output is an action that does not involve physical movement.
  • the non-physical output is, for example, the output of information.
  • the non-physical output is, for example, the output of captured image data when the cooperative operating device is equipped with a camera.
  • the non-physical output is, for example, a display when the cooperative operating device is equipped with an image display device.
  • the operation command is a command exchanged between the automatic operation device and the cooperative operation device. More specifically, the operation command is a signal exchanged between the control unit of the automatic operation device and the cooperative control unit of the cooperative operation device.
  • the operation command can also be referred to as an operation command signal.
  • the type of operation command sent by the automatic operation device to the cooperative operation device may be different from the type of operation command sent by the cooperative operation device to the automatic operation device. Moreover, these types may be common.
  • the operation command sent by the automatic operation device to the cooperative operation device and the operation command sent by the cooperative operation device to the automatic operation device may be distinguished from each other.
  • an operation command sent from a control unit of an automatic operation device to a cooperative control unit of a cooperative operation device is called an active operation command
  • an operation command sent from a cooperative control unit of a cooperative operation device to a control unit of an automatic operation device is a passive operation. It can also be called a directive.
  • a device other than the linked operating device linked with the automatic operating device may be further linked to the automatic operating device. That is, a plurality of devices may cooperate with the automatically operating device.
  • the operation control signal for instructing the traveling is, for example, a signal for instructing the traveling route.
  • the operation control signal for instructing the running may be a signal for instructing the start or stop of the running.
  • a plurality of transmission formats supported by a plurality of connectors are, for example, CAN (Control Area Network) (registered trademark) Bus or Ethernet (registered trademark).
  • control unit capable of increasing the degree of freedom of combination with other devices and improving versatility.
  • FIG. 7 It is a flowchart explaining the control of the image in the operation control device of the control unit shown in FIG. 7. It is a block diagram which shows the 3rd application example of the control unit shown in FIG. It is a block diagram which shows the structure of the automatic operation system which includes the control unit which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram showing a configuration of a control unit and its peripheral devices according to the first embodiment of the present invention.
  • the control unit 10 is used for the automatic operation device 1.
  • the automatic operation device 1 is equipped with an external environment sensing unit 11 and an actuator 121.
  • the automatic operation device 1 can operate automatically regardless of human operation. However, the automatic operation device 1 does not exclude human operation.
  • the automatic operation device 1 may perform some operations by human operation.
  • the automatic operation device is, for example, an automatic driving vehicle or an automatic work robot.
  • the external environment sensing unit 11 detects the external environment of the automatic operation device 1.
  • the external environment sensing unit 11 outputs external environment data indicating the detection result.
  • the external environment sensing unit 11 is, for example, a camera that photographs the external environment of the automatically operating device 1.
  • the external environment sensing unit 11 may be, for example, a distance sensor that measures the distance to an external object of the automatic operation device 1.
  • the actuator 121 is a device that operates mechanically by electrical control.
  • the actuator 121 drives a device mounted on the automatic operation device 1 or the automatic operation device 1 itself.
  • the actuator 121 is, for example,
  • the control unit 10 includes an external environment information connector 110, an operation control connector 130, an external communication connection unit 140, and an operation control device 160.
  • External environment data indicating the detection result is input from the external environment sensing unit 11 to the external environment information connector 110.
  • the motion control connector 130 outputs an motion control signal for controlling the motion of the actuator 121.
  • the external communication connection unit 140 is communicably connected to the cooperation control unit 20.
  • the cooperation control unit 20 controls the cooperation operation device 2 that outputs physical or non-physical output.
  • the cooperative operation device 2 is a device provided separately from the automatic operation device 1.
  • the cooperative operation device 2 is physically connected to, for example, the automatic operation device 1. However, the cooperative operation device 2 may be separated from the automatic operation device 1, for example.
  • the cooperative operation device 2 may include its own sensing unit and its own actuator.
  • the cooperative control unit 20 can transmit an operation command for controlling the automatic operation device 1 to the control unit 10. Further, the cooperation control unit 20 can receive an operation command for controlling the cooperation operation device 2 from the control unit 10.
  • the external communication connection unit 140 is, for example, a communication device for communicating with the cooperation control unit 20 according to a specific agreement.
  • the external communication connection unit 140 is, for example, a communication device for wired communication.
  • the external communication connection unit 140 is, for example, an Ethernet (registered trademark, the same applies hereinafter) communication device.
  • the external communication connection unit 140 includes, for example, an Ethernet connector.
  • the external communication connection unit 140 may be physically connected to a device other than the cooperation control unit 20 via a connector and a cable.
  • the external communication connection unit 140 may be physically connected to the cooperation control unit 20 via a hub or router, for example.
  • the external communication connection unit 140 may be a device that performs communication based on an agreement different from Ethernet.
  • the external communication connection unit 140 may perform communication based on Wi-Fi (registered trademark, the same shall apply hereinafter) or Bluetooth (registered trademark, the same shall apply hereinafter), for example.
  • the external communication connection unit 140 may be a connector for communicating simple serial communication data.
  • the external communication connection unit 140 may perform communication based on the Controller Area Network (CAN) (registered trademark, the same shall apply hereinafter) Bus.
  • CAN Controller Area Network
  • the external communication connection unit 140 may communicate in accordance with an agreement other than an international standard.
  • the motion control device 160 controls the motion of the actuator 121.
  • the motion control device 160 generates an motion control signal for controlling the motion of the actuator 121.
  • the operation control device 160 outputs an operation control signal via the operation control connector 130.
  • the operation control device 160 generates, for example, an operation control signal based on the processing result of the external environment data.
  • the operation control device 160 can also generate an operation control signal based on an operation command received from the cooperative operation device 2.
  • the operation control device 160 when the operation control device 160 receives an operation command from the cooperative operation device 2, the operation control device 160 generates an operation control signal based on the operation command received from the cooperative operation device 2.
  • the motion control device 160 outputs a motion control signal to the actuator 121 via the motion control connector 130.
  • the operation control device 160 when the operation control device 160 operates the cooperative operation device 2 based on the processing result of the external environment data, the operation control device 160 generates an operation control signal based on the processing result of the external environment data and controls the cooperative operation device 2. Generate an operation command for.
  • the operation control device 160 transmits an operation command to the cooperative operation device via the external communication connection unit 140.
  • the operation control device 160 controls the actuator 121 of the automatic operation device 1 at least based on the operation command from the cooperative operation device 2. At this time, the operation control device 160 generates an operation control signal at least based on the operation command, and outputs the operation control signal to the actuator 121.
  • the operation control device 160 may generate an operation control signal based only on the operation command, or may generate an operation control signal based on the operation command and the external environment data. In this way, the actuator 121 of the automatic operation device 1 is controlled based on the operation command of the cooperative operation device 2. Therefore, the operation of the automatic operation device 1 and the operation of the cooperative operation device 2 can be precisely linked.
  • the operation control device 160 transmits an operation command generated based on the processing result of the external environment data to the cooperative control unit 20. Therefore, the cooperative operation device 2 is controlled based on the external environment of the automatic operation device 1. Therefore, the operation of the automatic operation device 1 and the operation of the cooperative operation device 2 can be precisely linked. In this way, the operation of the automatic operation device 1 is performed regardless of whether the cooperative operation device 2 connected to the control unit 10 used for the automatic operation device 1 is a type that outputs a command or a type that does not output a command. And cooperation operation The operation of the device 2 can be precisely linked.
  • the linked operation device 2 to be attached can be arbitrarily selected and attached from any of the two types of devices while suppressing the modification of the hardware configuration and the software configuration in the automatic operation device 1.
  • the cooperative operation device 2 attached to the automatic operation device 1 can be easily replaced with a different type of device. Therefore, the degree of freedom of combination with the automatic operation device 1 can be increased and the versatility can be improved.
  • FIG. 2 is a block diagram showing a configuration of an automatic operation system including a control unit according to a second embodiment of the present invention.
  • the entire automatic operation system S including the automatic operation device 1 will be described.
  • a functional unit is further added to the automatic operation device 1 of the first embodiment.
  • the parts common to the parts described in the first embodiment will be described with the same reference numerals.
  • the automatic operation system S is an operator H, that is, a system capable of automatically operating regardless of the operation of a person.
  • the automatic operation system S detects the external environment of the automatic operation system S by itself. Then, the automatic operation system S recognizes the content of the detection result, and controls the operation of the automatic operation system S based on the recognition result.
  • the automatic operation system S also has a function of operating according to the operation of the operator H.
  • the automatic operation system S operates in response to the operation of the remote control device 3.
  • the remote control device 3 is a device for remotely controlling the automatic operation system S.
  • the remote control device 3 can communicate with the automatic operation system S by wireless communication.
  • the remote control device 3 transmits operation information to the automatic operation system S.
  • the remote control device 3 receives an image from the automatic operation system S and displays the image.
  • the automatic operation system S can start or stop the automatic operation in response to the operation of starting or stopping the automatic operation with respect to the remote control device 3.
  • the automatic operation system S can select one pattern from a plurality of automatic operation patterns according to the operation of the selection operation for the remote control device 3.
  • the automatic operation system S can perform sequential operations in response to sequential operations on the remote control device 3. Sequential operations are operations typified by, for example, forward, backward, and stop.
  • the automatic operation system S includes an automatic operation device 1 and a cooperative operation device 2.
  • the automatic operation device 1 shown in FIG. 2 is a system capable of performing automatic operation.
  • the automatic operation device 1 detects the external environment. Then, the automatic operation device 1 recognizes the detection result and controls the operation based on the recognition result.
  • the automatic operation device 1 also has a function of operating according to the operation of the operator H. The operation according to the operation is the same as the operation for the automatic operation system S described above.
  • the cooperative operation device 2 is also a system capable of performing automatic operation.
  • the cooperative operation device 2 detects the external environment. Then, the cooperative operation device 2 recognizes the detection result and controls the operation based on the recognition result.
  • the cooperative operation device 2 also has a function of operating according to the operation of the operator H.
  • the cooperative operation device 2 it is also possible to adopt a configuration in which the automatic operation device 1 does not detect the external environment by itself, but operates by receiving the detection result of the external environment in the automatic operation device 1 or the instruction from the automatic operation device 1.
  • a configuration for detecting the external environment as the cooperative operation device 2 will be described.
  • the cooperative operation device 2 shown in FIG. 2 operates in cooperation with the automatic operation device 1. That is, the automatic operation device 1 and the cooperative operation device 2 cooperate with each other to complete the work expected by the operator H.
  • the cooperative operation device 2 can cooperate by performing the same type of operation as the automatic operation device 1, for example. As an example of this, there is a case where the automatic operation device 1 and the cooperative operation device 2 are a pair of robot arms. Further, for example, the cooperative operation device 2 and the automatic operation device 1 can complete the desired operation by performing different types of operations from each other. That is, the cooperative operation device 2 and the automatic operation device 1 can cooperate with each other. As an example of this, there is a case where the automatic operation device 1 is an automatic traveling vehicle and the cooperative operation device 2 is a robot arm mounted on the automatic traveling vehicle.
  • the automatic operation device 1 and the cooperative operation device 2 shown in FIG. 2 are mechanically connected. However, the automatic operation device 1 and the cooperative operation device 2 may be separated from each other. As an example of this, there is a case where the automatic operation device 1 and the cooperative operation device 2 are two vehicles that travel in a common area or share a plurality of adjacent areas.
  • the linked operation device 2 shown in FIG. 2 is communicably connected to the automatic operation device 1.
  • the automatic operation device 1 and the cooperative operation device 2 shown in FIG. 2 are electrically connected to each other by electric wires.
  • a configuration for wireless communication can be adopted as the automatic operation device 1 and the cooperative operation device 2.
  • the automatic operation device 1 includes a control unit 10, an external environment sensing unit 11, an operation unit 12, a remote communication device 13, and a power supply unit 14.
  • the external environment sensing unit 11 detects the external environment of the automatic operation device 1.
  • the external environment sensing unit 11 outputs external environment data indicating the detection result.
  • the external environment sensing unit 11 is, for example, a camera that photographs the external environment of the automatically operating device 1.
  • the camera as the external environment sensing unit 11 outputs external image data indicating the shooting result.
  • the control unit 10 can operate the actuator 121 while recognizing the complicated external environment.
  • the operation unit 12 is controlled based on the external environment.
  • the operation unit 12 includes an actuator 121.
  • the actuator 121 is mechanically operated by electric control to drive a device mounted on the automatic operation device 1 or the automatic operation device 1 itself.
  • the control unit 10 is connected to the external environment sensing unit 11, the operation unit 12, and the remote communication device 13.
  • the control unit 10 controls the actuator 121 of the operation unit 12 based on the external environment detected by the external environment sensing unit 11. More specifically, the control unit 10 recognizes the contents of the external environment by processing the external environment data output from the external environment sensing unit 11. The control unit 10 determines the control content based on the recognized content. Then, the control unit 10 controls the actuator 121 based on the determined control content.
  • the control unit 10 may receive a control command corresponding to the operation of the remote control device 3 from the remote communication device 13 and control the actuator 121 based on the control command.
  • the internal configuration of the control unit 10 will be described later.
  • the power supply unit 14 supplies electric power to the control unit 10, the external environment sensing unit 11, the operating unit 12, and the remote communication device 13.
  • the power supply unit 14 has a battery (not shown).
  • the power supply unit 14 supplies the electric power stored in the battery to each unit.
  • the power supply unit 14 supplies electric power to meet the demand of each unit.
  • the power source used by the power supply unit 14 is not limited to the battery, and various power sources can be used.
  • As the power supply unit 14, a configuration having an engine generator or a fuel cell instead of the battery can be adopted.
  • An engine generator includes, for example, an engine that operates on liquid fuel and a generator that is driven by the engine to generate electricity.
  • the power supply unit 14 shown in FIG. 2 also supplies electric power to the cooperative operation device 2.
  • the linked operation device 2 may be provided with a power supply independent of, for example, the automatic operation device 1.
  • the remote communication device 13 is communicably connected to the remote control device 3.
  • the remote communication device 13 is communicably connected to the remote control device 3 by wireless communication.
  • the remote communication device 13 relays communication data between the remote control device 3 and the control unit 10.
  • the remote communication device 13 outputs a control command output from the remote control device 3 to the control unit 10 in response to the operation of the remote control device 3.
  • the control command from the remote control device 3 is supplied to the control unit 10.
  • the remote communication device 13 supplies data based on the data output from the external environment sensing unit 11 to the remote control device 3.
  • the remote communication device 13 transmits data based on the external image data output from the camera to the remote control device 3.
  • the remote control device 3 transmits an image command to the remote communication device 13.
  • the image command is a command for designating the content of the image and the amount of image data transmitted to the remote control device 3.
  • the remote communication device 13 sends an image command to the control unit 10.
  • the data exchange between the remote communication device 13 and the control unit 10 described above is the same as the data exchange between the remote communication device 13 and the cooperative control unit 20.
  • the cooperative operation device 2 includes a cooperative control unit 20, a cooperative sensing unit 21, and a cooperative operation unit 22.
  • the roles of the cooperation control unit 20, the cooperation sensing unit 21, and the cooperation operation unit 22 in the cooperation operation device 2 are the same as the roles of the control unit 10, the external environment sensing unit 11, and the operation unit 12 in the above-mentioned automatic operation device 1. are doing. However, the type of environment detected by the cooperative sensing unit 21, the detailed content of the determination of the cooperative control unit 20, and the output of the cooperative operation unit 22 differ depending on the function of the cooperative operation device 2.
  • the cooperation control unit 20 controls the cooperation operation unit 22 that performs physical output.
  • the physical output of the cooperative operation unit 22 is, for example, the operation of the actuator 221.
  • the cooperative control unit 20 corresponds to an example of the control unit referred to in the present invention, like the control unit 10.
  • the control unit 10 is, for example, an automatic navigation unit.
  • the actuator 121 of the operation unit 12 is a traveling device for traveling the automatic operation device 1.
  • the traveling device is, for example, a motor.
  • the control unit 10 recognizes the content of the image of the traveling region taken by the camera as the external environment sensing unit 11, determines the traveling route based on the recognition result, and instructs the operation unit 12 of the determined traveling route. That is, the control unit 10 controls the operation unit 12 based on the determined travel path. As a result, the automatically operating device 1 automatically travels.
  • control unit 10 can also adopt a configuration in which, for example, the control unit 10 does not determine the route itself, but determines the start or stop of traveling on a preset traveling route.
  • An example of the function of the cooperative operation device 2 shown in FIG. 2 is a work device mounted on an autonomous vehicle.
  • An example of working equipment is a fruit-picking device that picks fruits on a farm.
  • the cooperative control unit 20 recognizes the content of the fruit tree photographed by the camera as the cooperative sensing unit 21, determines the state and position of the fruit based on the recognition result, and based on the determined position of the fruit, A running command (running position command) is transmitted to the automatic operation device 1.
  • the travel command is an example of an operation command.
  • the actuator 221 of the fruit-picking device as the cooperative operation unit 22 is controlled based on the determined position of the fruit.
  • the function of picking the fruits on the farm is realized.
  • the cooperative operation device 2 mounted on the automatic operation device 1 can be replaced with a cooperative operation device having a function different from that of the cooperative operation device 2 shown in FIG.
  • FIG. 3 is a block diagram showing the configuration of the control unit 10 shown in FIG.
  • the control unit 10 is a unit covered with one housing, and is incorporated in the automatic operation device 1 (see FIG. 2).
  • the control unit 10 is electrically connected to each part of the automatic operation device 1.
  • the control unit 10 is a commercial unit.
  • the control unit 10 is a mass production type.
  • the control unit 10 includes an external environment information connector 110, an operation control connector 130, an external communication connection unit 140, and an operation control device 160.
  • the external environment information connector 110 is electrically connected to the external environment sensing unit 11 shown in FIG. External environment data indicating the detection result is input to the control unit 10 from the external environment sensing unit 11 via the external environment information connector 110.
  • the external environment sensing unit 11 is, for example, a camera
  • the external environment information connector 110 functions as an external image connector.
  • the external environment information connector 110 will also be referred to as an external image connector 110.
  • the operation control connector 130 is electrically connected to the operation unit 12 shown in FIG.
  • An operation control signal for controlling the operation of the actuator 121 is output from the control unit 10 to the operation unit 12 via the operation control connector 130.
  • the external communication connection unit 140 is electrically connected to the remote communication device 13 shown in FIG.
  • the remote communication device 13 is connected to the cooperation control unit 20.
  • the remote communication device 13 in this embodiment functions as a hub. That is, the remote communication device 13 outputs the signal output from the external communication connection unit 140 to the cooperation control unit 20, and outputs the signal output from the cooperation control unit 20 to the external communication connection unit 140. Therefore, the external communication connection unit 140 is communicably connected to the cooperation control unit 20 shown in FIG.
  • the external communication connection unit 140 in the example shown in FIG. 2 is an external communication connector that is electrically connected to the remote communication device 13. As described above, the remote communication device 13 functions as a hub. That is, when viewed from the external communication connection unit 140, the cooperation control unit 20 can be identified with the remote communication device 13.
  • the external communication connection unit 140 can be said to be an external communication connector that is electrically connected to the cooperation control unit 20.
  • the external communication connection unit 140 is also referred to as an external communication connector 140.
  • the external communication connector 140 physically includes a plurality of connectors corresponding to a plurality of types of transmission formats.
  • the types of transmission formats are, for example, Controller Area Network (CAN) (registered trademark) and Ethernet (registered trademark).
  • CAN Controller Area Network
  • Ethernet registered trademark
  • the external communication connector 140 is an example of an external communication connection unit that is communicably connected to the cooperation control unit 20.
  • As the external communication connection unit for example, a configuration in which a wireless communication device is used instead of the external communication connector 140 can be adopted.
  • the external communication connection unit 140 is electrically connected to the remote communication device 13 shown in FIG.
  • a control command signal is input to the control unit 10 from the remote control device 3 (see FIG. 2) and the remote control device 13 via the external communication connection unit 140. That is, in response to the request for transmission of the image being input from the remote control device 3 to the remote communication device 13, the control command signal is output from the remote control device 13 and input via the external communication connection unit 140. It is input to the control unit 10. Further, a signal indicating the external environment and the state of the control unit 10 is output from the control unit 10 to the remote communication device 13 via the external communication connection unit 140. This signal is supplied from the remote communication device 13 to the remote control device 3.
  • the motion control device 160 controls the actuator 121 of the motion unit 12 based on the external environment detected by the external environment sensing unit 11 shown in FIG. More specifically, the motion control device 160 processes the external environment data output from the external environment sensing unit 11. The motion control device 160 controls the actuator 121 based on the processing result of the external environment data. Further, the motion control device 160 receives a control command corresponding to the operation of the remote control device 3 from the remote communication device 13, and controls the motion unit 12 based on the control command. Further, the operation control device 160 communicates with the cooperation control unit 20 connected via the external communication connector 140. As described above, various devices can be selected as the collaborative operation device 2 that can be combined with the automatic operation device 1. In a certain situation, the cooperative operation device 2 transmits an operation command to the operation control device 160. Further, the cooperative operation device 2 is a cooperative control unit 20 configured to receive an operation command from the operation control device 160 in a situation different from the above. The operation control device 160 switches the type of operation according to the situation of the cooperative control unit 20.
  • the operation control device 160 When the operation control device 160 receives an operation command from the cooperation control unit 20, the operation control device 160 generates an operation control signal based on the operation command. The motion control device 160 outputs the generated motion control signal to the actuator 121 of the motion unit 12 via the motion control connector 130. On the other hand, when the operation command is not received from the cooperation control unit 20, the operation control device 160 controls the cooperation operation device 2 based on the processing result of the external environment data input from the external environment sensing unit 11. Generate an operation command. The operation control device 160 transmits the generated operation command to the cooperation control unit 20 via the external communication connector 140.
  • the external communication connector 140 of the control unit 10 is linked as the linked control unit 20, regardless of whether the device whose input / output of the operation command changes according to the situation or the device whose input / output is fixed is connected. Precise work can be performed in cooperation with the control unit 20. Therefore, the versatility of the control unit 10 can be improved.
  • the motion control device 160 includes an automatic control circuit 170 and a monitoring circuit 180.
  • the automatic control circuit 170 and the monitoring circuit 180 are provided in the housing of the control unit 10.
  • the automatic control circuit 170 carries out basic control processing in the motion control device 160. More specifically, the automatic control circuit 170 controls the actuator 121 based on the external environment signal from the external environment sensing unit 11. More specifically, the automatic control circuit 170 outputs an operation control signal based on an external environment signal by executing a software process. The automatic control circuit 170 also outputs a status index signal by executing a software process.
  • the automatic control circuit 170 includes a Graphics Processing Unit (GPU) 171.
  • GPU 171 is a processor having a multi-core capable of parallel processing.
  • the GPU 171 includes 100 or more arithmetic cores that can operate in parallel.
  • the GPU 171 executes a SIMD (single-instruction multiple-data stream) operation by 100 or more arithmetic cores.
  • the automatic control circuit 170 includes a non-volatile memory 172, a RAM 173, a control input / output (control IO) 174, and a CPU 175.
  • the non-volatile memory 172 is, for example, a mask ROM flash memory or an EEPROM.
  • the CPU 175 is a Central Processing Unit. The CPU 175 controls the entire automatic control circuit 170.
  • the GPU 171 and the CPU 175 share and execute the control of the automatic control circuit 170. More specifically, the CPU 175 causes the GPU 171 to perform some of the functions of the automatic control circuit 170. The functions executed by the GPU 171 will be described later.
  • the non-volatile memory 172 stores a program executed by the CPU 175 and the GPU 171.
  • the CPU 175 sequentially reads and executes the programs stored in the non-volatile memory 172. As a result, control by the automatic control circuit 170 is executed. Further, the program of the GPU 171 stored in the non-volatile memory 172 is read by the CPU 175 and supplied to the GPU 171.
  • the RAM 173 holds the result of the processing by the CPU 175 and the result of the processing by the GPU 171.
  • the CPU 175 and the GPU 171 read / write data to / from the RAM 173.
  • the RAM 173 stores data input to the CPU 175 and the GPU 171, data indicating the processing status, and data indicating the operation control signal output from the automatic control circuit 170 as a result of the processing.
  • the data input to the GPU 171 is, for example, data representing an external environment signal.
  • the data indicating the processing status is, for example, one of the parameters indicating the operating status of the automatic control circuit 170.
  • the control IO 174 relays signals input / output to the CPU 175 and the GPU 171.
  • the CPU 175 and the GPU 171 output a status index signal indicating the operating status of the control model via the control IO 174.
  • the status indicator signal is, for example, a pulse indicating the period and time during which the process of processing the control model is executed.
  • the status index signal is one of the parameters indicating the operating status of the automatic control circuit 170.
  • the stored contents of the RAM 173 can be read out to the FPGA 181 of the monitoring circuit 180 via the control IO 174.
  • the CPU 175 supplies the program stored in the non-volatile memory 172 to the GPU 171. Further, the CPU 175 outputs a command to execute the program to the GPU 171.
  • the automatic control circuit 170 is configured with the control model 171a constructed by machine learning.
  • the control model 171a is a model showing the relationship between the external environment detected by the external environment sensing unit 11 and the control of the operation unit 12 to be controlled.
  • the control model 171a is a machine learning model using a neural network.
  • the GPU 171 can execute SIMD operations on 100 or more arithmetic cores, it is possible to execute the processing of the control model 171a accompanied by the iterative arithmetic of a large-scale matrix at high speed.
  • the CPU 175 determines the operation of the control unit 10 based on the information of the object obtained as a result of applying the data of the external environment to the machine learning model.
  • the CPU 175 controls the operation unit 12 based on the result of the determination. More specifically, the CPU 175 outputs a command to the operation control connector 130 via, for example, the control IO 174 and the communication IF 183 of the monitoring circuit 180. Further, the CPU 175 transmits a command to the cooperation control unit 20 based on the result of the determination.
  • the CPU 175 transmits data to the remote communication device 13.
  • the division of control between the CPU 175 and the GPU 171 and the input / output of the model executed by the GPU 171 are not limited to those described above.
  • the machine learning model may be a model that directly shows, for example, the relationship between the external image data and the optimum traveling path or the motion trajectory of the arm or the like.
  • the CPU 175 controls the operation unit 12 based on the travel path or operation locus output as the processing result of the GPU 171.
  • the monitoring circuit 180 constitutes the control unit 10 integrally with the automatic control circuit 170.
  • the monitoring circuit 180 includes a field programmable gate array (FPGA) 181 and a non-volatile memory 182. Further, the monitoring circuit 180 includes a communication interface (communication IF) 183, a relay 184, and a memory 185 for a program.
  • FPGA field programmable gate array
  • communication interface communication IF
  • the FPGA 181 has a reprogrammable logic circuit.
  • the non-volatile memory 182 stores the connection information of the logic circuit for monitoring constructed by the FPGA 181.
  • the FPGA 181 reads the connection information from the non-volatile memory 182 in the initialization process after the power is turned on or after the reset.
  • the FPGA 181 constructs a logic circuit based on connection information. After constructing the logic circuit, the FPGA 181 starts the processing by the logic circuit.
  • the monitoring circuit 180 the monitoring conditions can be changed by changing the connection information, which is software stored in the non-volatile memory 182, and the hardware based on the connection information.
  • the FPGA 181 may have a fixed logic circuit other than the reprogrammable logic circuit.
  • the FPGA 181 has a processor 181p and a memory as logic circuits.
  • the processor 181p executes processing while sequentially reading the programs stored in the memory 185, for example. This allows for more advanced processing.
  • the memory 185 read by the processor 181p is non-volatile. However, unlike the non-volatile memory 182 for the FPGA 181, the memory 185 stores not the connection information but the programs that are sequentially read by the processor. By dividing the memory according to the application, the reliability of the logic circuit composed of the FPGA 181 is improved.
  • the communication IF183 is an interface for the FPGA 181 and the automatic control circuit 170 to communicate with the operation unit 12.
  • the communication IF 183 provides, for example, a physical interface for communicating with the operating unit 12.
  • the physical interface is, for example, CAN.
  • the automatic control circuit 170 outputs an operation control signal via the communication IF 183.
  • the relay 184 cuts off the power supply of the power supply unit 14 (see FIG. 2) to the operating unit 12. More specifically, the relay 184 transmits a supply signal for supplying electric power to the power supply unit 14 by energizing under the control of the FPGA 181. When the energization of the relay 184 is stopped by the control of the FPGA 181, the transmission of the supply signal is stopped. As a result, the power supply from the power supply unit 14 is cut off. By shutting off the power supply, the operation can be reliably stopped.
  • the supply signal from the relay 184 can pass through a relay (not shown) provided in each part of the automatic operation device 1 and the cooperative operation device 2 outside the monitoring circuit 180. As a result, the power supply is immediately cut off by some cutoff control. Therefore, the operation can be reliably stopped.
  • the logic circuit composed of FPGA181 of the monitoring circuit 180 detects an abnormality in the operation of the automatic control circuit 170 by rule-based logic.
  • the monitoring circuit 180 controls the automatic control circuit 170 so that the image of the camera is forcibly displayed on the remote control device 3 when an abnormality is detected. As a result, the operator can immediately perform the corresponding maneuver.
  • the output by the monitoring circuit 180 is not limited to the above combination.
  • the monitoring circuit 180 detects an abnormality of at least one parameter related to at least one type of signal
  • the monitoring circuit 180 also adopts a configuration in which the output of the operation control signal by the automatic control circuit 170 is prohibited instead of outputting the operation command. It is possible. In this case, the monitoring circuit 180 stops the operation of the communication IF 183 that outputs the signal from the automatic control circuit 170. As a result, the situation in which an abnormal operation control signal is continuously output is suppressed.
  • the basic hardware structure of the control unit 10 described above is also applied to the cooperative control unit 20. However, when the output content based on the abnormality detection result of the cooperative sensing unit 21 is different from that of the control unit 10, a part of the hardware and the software are different from the control unit 10 according to the difference.
  • the control unit 10 having the above-described configuration operates in cooperation with the cooperative control unit 20.
  • the control unit 10 cooperates with the cooperation control unit 20 regardless of whether the device whose input / output of the operation command changes according to the situation or the device whose input / output is fixed is connected. Works. Subsequently, the details of the cooperation operation with the cooperation control unit 20 will be described.
  • FIG. 4 is a flowchart illustrating a cooperative operation among the operations of the control unit shown in FIG.
  • the operation control device 160 executes the determination of the type of the cooperation control unit 20 and the cooperation operation according to the type.
  • the type determination and the cooperative operation according to the type are mainly executed by the automatic control circuit 170 shown in FIG.
  • a configuration in which the type of the cooperative control unit 20 is determined by the processor 181p provided in the monitoring circuit 180 can also be adopted.
  • the configuration instructed by the remote control device 3 can also be adopted for the type determination and the cooperative operation according to the type.
  • the cooperative operation will be described as the operation of the operation control device 160.
  • the motion control device 160 first determines whether or not it is connected to the linked control unit 20 (S11). For example, the operation control device 160 determines whether or not it is possible to communicate with the cooperation control unit 20 via the external communication connection unit 140. When the cooperative control unit 20 is connected, the cooperative control unit 20 can communicate with the operation control device 160 of the control unit 10. In this case, the operation control device 160 determines that it is connected to the cooperation control unit 20.
  • the operation control device 160 determines whether or not an operation command has been received from the cooperative control unit 20 (S13).
  • the operation control device 160 recognizes the content of the external environment data by processing the external environment data (S14). More specifically, for example, when the automatic operation device 1 is an automatic traveling vehicle, the operation control device 160 performs a process for recognizing the content of image data representing an external image based on the constructed control model.
  • the motion control device 160 determines the motion based on the recognition result of the content of the external environment data (S15). More specifically, for example, the motion control device 160 grasps the current position of the automatic motion device 1 and determines the optimum travel route based on the recognition of the content of the image data.
  • the operation control device 160 generates an operation control signal based on the processing result of the external environment data (S16).
  • the operation control device 160 outputs the generated operation control signal to the actuator 121 of the operation unit 12 via the operation control connector 130. More specifically, for example, the motion control device 160 generates an motion control signal including a travel and steering command based on the determined travel path, and outputs the motion control signal to the motion unit 12.
  • the operation unit 12 operates the actuator 121.
  • the automatic operation device 1 operates based on the external environment.
  • the operation control device 160 transmits an operation command for controlling the linked operation device 2 based on the processing result of the external environment data (S17). More specifically, for example, the operation control device 160 generates an operation command for the cooperative control unit 20 to perform an operation according to the position of the automatic operation device 1 on the traveling path. The operation control device 160 transmits an operation command to the cooperation control unit 20 via the external communication connection unit 140.
  • the operation control device 160 recognizes the content of the external environment data by processing the external environment data (S21). Further, the motion control device 160 determines the motion based on the recognition result of the content of the external environment data (S22). These operations are the same as in steps S14 and S15 described above.
  • the operation control device 160 performs processing based on the operation command from the cooperation control unit 20 (S23).
  • the cooperative control unit 20 transmits an operation command to the control unit 10 via the external communication connection unit 140.
  • the operation control device 160 performs processing based on the operation command. More specifically, for example, the cooperative control unit 20 transmits an operation command indicating whether the automatic operation device 1 moves forward or backward according to the position of the work target to the operation control device 160 of the control unit 10.
  • the operation control device 160 transmits an operation control signal for controlling the cooperative operation device 2 based on the operation command received via the external communication connection unit 140 (S24).
  • the motion control device 160 generates an motion control signal based on the external environment data recognized in step S21 and the motion command. More specifically, for example, the motion control device 160 generates an motion control signal so as to move forward or backward along the determined travel path, and outputs the motion control signal to the motion unit 12.
  • the operation unit 12 operates the actuator 121.
  • the automatic operation device 1 operates based on the operation command of the cooperation control unit 20.
  • FIG. 5 is a block diagram showing a first application example of the control unit shown in FIG.
  • An application example shown in FIG. 5 is a case where the automatic operation device 1 is an automatic traveling vehicle and the cooperation control unit 20 outputs an operation command with high frequency.
  • the cooperative operation device 2 is an autonomous operation robot mounted on an autonomous vehicle.
  • the cooperation control unit 20 recognizes the position of the work target of the robot based on the image of the cooperation operation device camera (robot camera) as the cooperation sensing unit 21.
  • the cooperative control unit 20 transmits an operation command including forward / backward movement to the operation control device 160 of the control unit 10 according to the position of the work target.
  • the operation control device 160 generates an operation control signal from the cooperation control unit 20 based on the operation command received.
  • the motion control device 160 outputs the generated motion control signal to the actuator 121 of the motion unit 12 via the motion control connector 130.
  • the automatic operation device 1 and the cooperative operation device 2 can cooperate with each other to perform precise work.
  • FIG. 6 is a block diagram showing a second application example of the control unit shown in FIG.
  • An application example shown in FIG. 6 is a case where the automatic operation device 1 is an automatic traveling vehicle and the cooperation control unit 20 outputs an operation command at a low frequency or does not output.
  • the cooperative operation device 2' is a simple work device mounted on the automatic operation device 1.
  • the cooperative operation device 2' is, for example, a sprayer that sprays a chemical or the like toward a work target.
  • the operation control device 160 generates an operation command for controlling the cooperative operation device 2'based on the processing result of the image data of the external photographing camera as the external environment sensing unit 11.
  • the motion control device 160 generates, for example, an motion command for causing the cooperative motion device 2 to start or stop a work motion based on the position of the autonomous driving vehicle acquired as a result of processing the image data of the external camera. , Transmit to the cooperation control unit 20.
  • the cooperative operation device 2 can operate appropriately according to the traveling of the automatic traveling vehicle as the automatic operation device 1.
  • the external communication connector 140 of the control unit 10 is used as the linked control unit 20, and the input / output of the operation command changes depending on the situation. Regardless of which device has a fixed input / output, it is possible to perform precise work in cooperation with the cooperation control unit 20. Therefore, the versatility of the control unit 10 can be improved.
  • the automatic operation system S operates in response to the operation of the remote control device 3 by the operator H.
  • the remote control device 3 shows both or one of an image based on the image data of the external photographing camera 11 and an image based on the image data of the cooperative operation device camera 21.
  • FIG. 7 is a block diagram showing an image flow in the automatic operation system shown in FIG.
  • the solid arrow in FIG. 7 shows the flow of the image when the automatic operation system S is remotely controlled.
  • the broken line arrow in FIG. 7 indicates the flow of the image request signal from the remote control device 3.
  • an external photographing camera is shown as an example of the external environment sensing unit 11.
  • a linked operation device camera is shown as the linked sensing unit 21.
  • the external environment sensing unit 11 will also be referred to as an external photographing camera 11.
  • the linked sensing unit 21 is also referred to as a linked operating device camera 21.
  • the flow of the image request signal toward the cooperative control unit 20 (dashed line) and the flow of the image request signal toward the control unit 10 (broken line).
  • a configuration that enables both of the above can also be adopted.
  • the image of the external photographing camera 11 and the image of the cooperative operation device camera 21 are displayed at the same time.
  • the content of the image command for each of the cooperative control unit 20 and the control unit 10 is determined according to the state of wireless communication between the remote communication device 13 and the remote control device 3.
  • a configuration that can be adjusted can also be adopted.
  • the automatic operation device 1 is equipped with an external photographing camera 11 and an actuator 121 for photographing the external environment. Further, the cooperative operation device 2 is provided with a cooperative operation device camera 21 for photographing the external environment.
  • the control unit 10 of the automatic operation device 1 is connected to one remote communication device 13.
  • the control unit 10 of the automatic operation device 1 and the cooperation control unit 20 of the cooperation operation device 2 are connected to one remote communication device 13. That is, the control unit 10 and the cooperative control unit 20 jointly use one remote communication device 13.
  • the control unit 10 includes an external image connector 110, an operation control connector 130, and an operation control device 160 (see FIG. 3).
  • the external image connector 110 (external environment information connector 110) is a connector for inputting external image data indicating a shooting result from the external shooting camera 11 to the control unit 10.
  • the operation control connector 130 is a connector for the control unit 10 to output an operation control signal for controlling the operation of the actuator 121.
  • the external communication connection unit 140 functions as a remote data connector for inputting / outputting data to / from one remote communication device 13 communicably connected to the remote control device 3.
  • the external communication connection unit 140 also functions as a connector for inputting / outputting data to / from the cooperation control unit 20.
  • the operation control device 160 (see FIG. 3) of the control unit 10 is also responsible for image control including image command signal acquisition.
  • the operation control device 160 (see FIG. 3) of the control unit 10 transfers monitor image data based on the external image data input via the external image connector 110 to one remote from the external communication connection unit 140 that functions as a remote data connector. It is output to the remote control device 3 via the communication device 13.
  • the operation control device 160 outputs monitor image data based on an image command signal from the outside of the control unit 10.
  • the cooperative control unit 20 also executes the same processing as the control unit 10 for the image data of the linked operation device camera 21.
  • the operation of the control unit 10 in the operation control device 160 will be described as a representative.
  • FIG. 8 is a flowchart illustrating control of an image in the operation control device 160 of the control unit 10 shown in FIG. 7.
  • the operation control device 160 determines whether or not an image command signal has been received from the outside (S31).
  • the image command signal is transmitted from the remote communication device 13 via the external communication connection unit 140.
  • the image command signal may be transmitted from the cooperation control unit 20 via the external communication connector 140.
  • the operation control device 160 discriminates about the image command signal transmitted through both connectors.
  • the operation control device 160 determines whether the content of the image command signal indicates the start of image transmission (S32).
  • the motion control device 160 transmits the monitor image data to the remote control device 3 (S33). That is, the motion control device 160 outputs the monitor image data to the remote control device 3.
  • the monitor image data is data obtained by processing the external image data input via the external image connector 110.
  • the operation control device 160 generates monitor image data having a smaller amount of data than the external image data by performing image compression processing on the external image data. However, external image data that has not been substantially processed may be used as the monitor image data.
  • the operation control device 160 outputs monitor image data from the external communication connection unit 140 to one remote communication device 13.
  • the monitor image data is transmitted to the remote control device 3 via the remote communication device 13.
  • the operation control device 160 determines whether the content of the image command signal indicates that the image transmission is stopped (S34). When the image transmission is stopped (Yes in S34), the operation control device 160 stops the transmission of the monitor image data (S35). That is, the operation control device 160 stops the output of the monitor image data. As a result, the transmission of the monitor image data to the remote control device 3 is stopped.
  • the image command signal indicating that the image transmission is stopped may be output from the cooperation control unit 20.
  • the cooperative control unit 20 that has received a command to transmit only the image of the cooperative operation device camera 21 from the remote control device 3 sends an image command signal indicating that the image transmission is stopped to the control unit 10.
  • the remote control device 3 can display the image that the operator H wants to pay attention to during maneuvering while reducing the amount of data to be transmitted.
  • the operation control device 160 determines whether the content of the image command signal indicates frame thinning (S36). In the case of frame thinning (Yes in S36), the operation control device 160 executes the frame thinning process on the monitor image data (S37). As a result, the amount of monitor image data transmitted to the remote control device 3 is reduced.
  • the operation control device 160 determines whether the content of the image command signal indicates the image compression rate (S38). In the case of the image compression rate (Yes in S38), the operation control device 160 specifies the compression rate of the image compression process (S39). As a result, the amount of monitor image data transmitted to the remote control device 3 is reduced.
  • the operation control device 160 determines whether the content of the image command signal indicates a cutout of a part of the image (S41). In the case of area clipping (Yes in S41), the operation control device 160 executes the area clipping process on the monitor image data (S42). That is, the motion control device 160 extracts an image of a part of the area designated by the image command from the images captured by the external photographing camera 11 to generate monitor image data. More specifically, for example, when the range captured by the external photographing camera 11 is wide, only an image of a part of the traveling direction necessary for maneuvering is transmitted / displayed. As a result, the amount of monitor image data transmitted to the remote control device 3 is reduced.
  • a plurality of external photographing cameras 11 are connected to the control unit 10, and the motion control device 160 processes the images of the plurality of areas photographed by the plurality of external photographing cameras 11. It also applies if you have one. In the case of cropping a region (Yes in S41), the motion control device 160 uses only the image of the designated region as monitor image data. Also in this case, the amount of monitor image data transmitted to the remote control device 3 is reduced.
  • step S31 If it is determined in step S31 that the image command signal has not been received (No in S31), the operation control device 160 stops transmitting the monitor image data (S45). That is, the operation control device 160 stops the output of the monitor image data.
  • the operation control device 160 determines whether or not an abnormal state has occurred in the control unit 10 (S46).
  • the abnormal state of the control unit 10 is detected by, for example, a logic circuit composed of FPGA 181 of the monitoring circuit 180.
  • the operation control device 160 determines that an abnormal state has occurred, for example, when any of the parameters to be monitored is not within the range defined by the rule.
  • the motion control device 160 transmits monitor image data to the remote control device 3 (S47).
  • the motion control device 160 outputs the monitor image data to the remote control device 3.
  • the monitor image data is transmitted to the remote control device 3 via the remote communication device 13.
  • the operator H can recognize the occurrence of the abnormal state at an early stage by the display screen of the remote control device 3.
  • the operator H can recognize the cause of the abnormal state at an early stage from the display screen.
  • FIG. 9 is a block diagram showing a third application example of the control unit shown in FIG.
  • the cooperative operation device 4 of the automatic operation system S is not connected to the automatic operation device 1.
  • the cooperative operation device 4 operates away from the automatic operation device 1.
  • the cooperative operation device 4 is, for example, an automatic traveling vehicle having substantially the same configuration as the automatic operation device 1.
  • the external communication connection unit 140 included in the control unit 10 of the automatic operation device 1 includes an external communication connector 141 and a wireless communication unit.
  • the cooperative operation device 4 includes an external communication connection unit 440 that performs wireless communication with the external communication connection unit 140.
  • the control unit 10 of the automatic operation device 1 communicates with the cooperation control unit 40 of the cooperation operation device 4 via wireless communication.
  • the cooperation control unit 40 controls the cooperation operation unit 42.
  • the control unit 10 of the automatic operation device 1 outputs an operation control signal based on an operation command from the cooperative control unit 40.
  • the control unit 10 travels in response to an operation command from the cooperation control unit 40.
  • the control unit 10 photographs the outside of the automatic operation device 1 with the external photography camera 11, determines the traveling route by itself based on the image data of the external photography camera 11, and controls the cooperation of the cooperation operation device 4.
  • the start or stop of running of the automatic operation device 1 is determined according to the operation command received from the unit 40. In this way, the automatic operation device 1 can also travel in cooperation with the cooperative operation device 4.
  • control unit 10 generates an operation command for controlling the linked operation device 4 based on the image data of the external photographing camera 11.
  • the control unit 10 transmits an operation command to the cooperative control unit 40.
  • the cooperative operation device 4 photographs the outside of the cooperative operation device 4 with the cooperative operation device camera 41, determines the traveling route by itself based on the image data of the cooperative operation device camera 41, and controls the automatic operation device 1.
  • the start or stop of running of the cooperative operation device 4 is determined according to the operation command received from 10. In this way, the cooperative operation device 4 operates in cooperation with the automatic operation device 1.
  • FIG. 10 is a block diagram showing a configuration of an automatic operation system including a control unit according to a third embodiment of the present invention.
  • the automatic operation device 1 in the present embodiment is different from the second embodiment in that it has a hub 13a. Further, the automatic operation device 1 in the present embodiment is connected to the cooperation control unit 20 via the hub 13a instead of directly. Since other points in this embodiment are the same as those in the second embodiment, each part is designated by the same reference numerals as those in the second embodiment.
  • the control unit 10 and the cooperation control unit 20 in FIG. 10 are connected to one remote communication device 13 via the hub 13a.
  • the hub 13a relays data between the control unit 10, the cooperative control unit 20, and the remote communication device 13.
  • the control unit 10 and the cooperative control unit 20 connected to the hub 13a transmit data in a common transmission format.
  • the automatic operation device 1 in FIG. 10 communicates with the cooperation control unit 20 via the hub 13a.
  • the hub 13a in the present embodiment has an independent data mixing function in the remote communication device 13 of the first embodiment. That is, the hub 13a has a part of the functions of the remote communication device 13. Therefore, even in this embodiment, it can be said that the control unit 10 of the automatic operation device 1 and the cooperation control unit 20 of the cooperation operation device 2 are connected to one remote communication device 13.
  • the embodiment is not limited to this, and the automatic operation device 1 may be, for example, a robot that does not travel.

Abstract

The present invention addresses the problem of providing a control unit with which it is possible to enhance the degree of freedom for being combined with other equipment, to improve the versatility of the control unit. This control unit is provided with an external environment information connector, an operation control connector, an external communication connecting portion, and an operation control device, wherein, if the operation control device receives an operation command from a collaborative operation machine, the operation control device generates an operation control signal on the basis of the operation command received from the collaborative operation machine, and outputs the operation control signal to an actuator via the operation control connector, and if the collaborative operation machine is caused to operate on the basis of a result obtained by processing external environment data, the operation control device generates the operation control signal on the basis of the result obtained by processing the external environment data, generates an operation command for controlling the collaborative operation machine, and sends the operation command to the collaborative operation machine via the external communication connecting portion.

Description

制御ユニットController unit
 本発明は、自動動作機器(Autonomous Operation Machine)に用いられる制御ユニットに関する。 The present invention relates to a control unit used in an automatic operation device (Autonomous Operation Machine).
 制御ユニットに制御されて動作する自動動作機器が知られている。
 例えば、特許文献1には、ロボットアーム付き自動搬送車が示されている。搬送車は、自走運転車両である。搬送車は、AGV(Automatic Guided Vehicle)と、AGV制御部と、ロボットアームと、ロボットコントローラとを備える。AGV制御部は、AGVの移動を制御する。ロボットコントローラは、ロボットアームを制御する。
 ロボットコントローラは、ロボットアームが動力源に接続し作業できることを示す信号をAGV制御部に通知する。これによりAGVの移動が規制される。また、ロボットコントローラの離脱制御部は、作業が完了したことを示す信号をAGV制御部に通知する。これによりAGVの移動が開始する。このように、ロボットコントローラがAGVの移動を制御する。
There are known automatic operation devices that operate under the control of a control unit.
For example, Patent Document 1 discloses an automatic guided vehicle with a robot arm. The transport vehicle is a self-propelled vehicle. The automatic guided vehicle includes an AGV (Automatic Guided Vehicle), an AGV control unit, a robot arm, and a robot controller. The AGV control unit controls the movement of the AGV. The robot controller controls the robot arm.
The robot controller notifies the AGV control unit of a signal indicating that the robot arm can be connected to the power source and can work. This regulates the movement of the AGV. Further, the detachment control unit of the robot controller notifies the AGV control unit of a signal indicating that the work is completed. As a result, the movement of the AGV starts. In this way, the robot controller controls the movement of the AGV.
特開2017-132002号公報Japanese Unexamined Patent Publication No. 2017-132002
 作業機に求められる作業の種類は多岐にわたる。自動動作機器に用いられる制御ユニットには、他の作業機の制御装置との組合せの自由度を高めて汎用性を向上することが求められる。 There are a wide variety of types of work required for work machines. The control unit used in the automatic operation device is required to increase the degree of freedom of combination with the control device of other working machines and improve the versatility.
 本発明の目的は、他の機器との組合せの自由度を高め汎用性を向上することができる制御ユニットを提供することである。 An object of the present invention is to provide a control unit capable of increasing the degree of freedom of combination with other devices and improving versatility.
 本発明者は、上述した課題に鑑みて検討を行い、以下の知見を得た。 The present inventor conducted a study in view of the above-mentioned problems and obtained the following findings.
 上述した自動動作機器には、ロボットアームによる作業以外の作業を行わせたい場合がある。このような要求に対し、搬送車に取り付けられる作業機を他の種類の作業機に交換することが考えられる。
 作業機に要求される作業の種類には、例えば、単に自動運転車両の位置に応じて動作する比較的単純な作業がある。このような作業を行う作業機の中には、例えば、自動運転車両に走行のための信号を出力することができないように構成された作業機がある。この場合、作業機と自動運転車両の連携が容易でない。この結果、自動運転車両に組合せることができる作業機の種類が限られる。
The above-mentioned automatic operation device may want to perform work other than the work by the robot arm. In response to such a request, it is conceivable to replace the working machine attached to the transport vehicle with another type of working machine.
The types of work required for the work machine include, for example, relatively simple work that operates simply according to the position of the autonomous vehicle. Among the work machines that perform such work, for example, there is a work machine configured so as not to output a signal for traveling to an autonomous driving vehicle. In this case, it is not easy to link the work machine and the autonomous driving vehicle. As a result, the types of work machines that can be combined with autonomous vehicles are limited.
 そこで、本発明者は、作業機が指令を出力する場合、自動動作機器が指令に基づいて動作し、自動動作機器が作業機に指令を出力する必要がある場合、指令を出力するような構成を考えた。
 この場合、自動動作機器は、指令を出力するタイプの作業機と結合されている形態に加えて、指令を出力しないタイプの作業機とが結合されている形態にも適用可能である。また、自動動作機器におけるハードウェア構成やソフトウェア構成の改変を抑制しつつ、取付けられる作業機は、上記の2つのタイプの作業機から任意に選んで取付けることができる。また、自動動作機器に取付けられる作業機を別のタイプの作業機に容易に交換することができる。従って、組合せの自由度を高め汎用性を向上することができる。
Therefore, the present inventor has a configuration in which the automatic operation device operates based on the command when the work machine outputs a command, and outputs the command when the automatic operation device needs to output the command to the work machine. I thought.
In this case, the automatic operation device can be applied to a form in which a working machine that does not output a command is combined in addition to a form in which a working machine that outputs a command is combined. Further, the working machine to be attached can be arbitrarily selected from the above two types of working machines while suppressing the modification of the hardware configuration and the software configuration in the automatic operation device. In addition, the work machine attached to the automatic operation device can be easily replaced with another type of work machine. Therefore, the degree of freedom of combination can be increased and the versatility can be improved.
 以上の目的を達成するために、本発明の一つの観点によれば、制御ユニットは、次の構成を備える。 In order to achieve the above object, according to one viewpoint of the present invention, the control unit has the following configuration.
 (1) 外部環境を検出する外部環境センシングユニットと前記外部環境に基づいて制御されるアクチュエータとが搭載される自動動作機器に用いられる制御ユニットであって、
 前記制御ユニットは、
 前記外部環境センシングユニットから検出の結果を示す外部環境データを入力するための外部環境情報コネクタと、
 前記アクチュエータの動作を制御するための動作制御信号を出力するための動作制御コネクタと、
 物理的又は非物理的な出力を行う連携動作機器を制御する連携制御ユニットと有線又は無線により通信可能に接続されるように構成され、前記連携制御ユニットから送信された前記自動動作機器を制御するための動作指令を前記制御ユニットへ出力するとともに、前記制御ユニットから出力された前記連携動作機器を制御するための動作指令を前記連携制御ユニットへ送信する、外部通信接続部と、
 前記連携動作機器から動作指令を受信した場合には、前記連携制御ユニットから受信する動作指令に基づいて前記動作制御信号を生成し、前記動作制御信号を前記アクチュエータに前記動作制御コネクタを介して出力し、前記外部環境データの処理結果に基づいて前記連携動作機器を動作させる場合には、前記外部環境データの処理結果に基づいて前記動作制御信号を生成するとともに前記連携動作機器を制御するための動作指令を生成し、前記連携動作機器を制御するための動作指令を前記連携制御ユニットに前記外部通信接続部を介して送信する動作制御装置と
を備える。
(1) A control unit used in an automatically operating device equipped with an external environment sensing unit that detects an external environment and an actuator that is controlled based on the external environment.
The control unit is
An external environment information connector for inputting external environment data indicating the detection result from the external environment sensing unit, and
An operation control connector for outputting an operation control signal for controlling the operation of the actuator, and an operation control connector.
It is configured to be communicably connected to the cooperative control unit that controls the cooperative operation device that outputs physical or non-physical output by wire or wirelessly, and controls the automatic operation device transmitted from the cooperative control unit. An external communication connection unit that outputs an operation command for controlling the control unit and transmits an operation command for controlling the linked operation device output from the control unit to the linked control unit.
When an operation command is received from the cooperative operation device, the operation control signal is generated based on the operation command received from the cooperative control unit, and the operation control signal is output to the actuator via the operation control connector. Then, when the cooperative operation device is operated based on the processing result of the external environment data, the operation control signal is generated based on the processing result of the external environment data and the cooperative operation device is controlled. It is provided with an operation control device that generates an operation command and transmits an operation command for controlling the cooperative operation device to the cooperative control unit via the external communication connection unit.
 連携制御ユニットから動作指令を受信した場合、動作制御装置は、少なくとも連携動作機器からの動作指令に基づいて自動動作機器のアクチュエータを制御する。このとき、動作制御装置は、少なくとも当該動作指令に基づいて動作制御信号を生成し、動作制御信号をアクチュエータに出力する。動作制御装置は、動作指令のみに基づいて動作制御信号を生成してもよく、動作指令及び外部環境データに基づいて動作制御信号を生成してもよい。このように、自動動作機器のアクチュエータが、連携制御ユニットの動作指令に基づいて制御される。従って、自動動作機器の動作と連携動作機器の動作が精密に連携できる。
 また、外部環境データの処理結果に基づいて連携動作機器を動作させる場合、動作制御装置は、外部環境データの処理結果に基づいて生成した動作指令を連携制御ユニットに送信する。このため、連携動作機器が、自動動作機器の外部環境に基づいて制御される。従って、自動動作機器の動作と連携動作機器の動作が精密に連携できる。
 このように、自動動作機器に用いられる制御ユニットに接続される連携制御ユニットが指令を出力するタイプ、又は、指令を出力しないタイプのいずれに属していても、自動動作機器の動作と連携動作機器の動作が精密に連携できる。また、自動動作機器におけるハードウェア構成やソフトウェア構成の改変を抑制しつつ、取付けられる連携動作機器は2つのタイプのいずれに属する機器からでも任意に選んで取付けることができる。また、自動動作機器に取付けられる連携動作機器を、異なるタイプの機器と容易に交換することができる。従って、自動動作機器に対する組合せの自由度を高め汎用性を向上することができる。
When the operation command is received from the cooperative control unit, the operation control device controls the actuator of the automatic operation device at least based on the operation command from the cooperative operation device. At this time, the motion control device generates an motion control signal at least based on the motion command, and outputs the motion control signal to the actuator. The operation control device may generate an operation control signal based only on the operation command, or may generate an operation control signal based on the operation command and the external environment data. In this way, the actuator of the automatic operation device is controlled based on the operation command of the cooperative control unit. Therefore, the operation of the automatically operating device and the operation of the linked operating device can be precisely linked.
Further, when operating the cooperative operation device based on the processing result of the external environment data, the operation control device transmits an operation command generated based on the processing result of the external environment data to the cooperative control unit. Therefore, the cooperative operation device is controlled based on the external environment of the automatic operation device. Therefore, the operation of the automatically operating device and the operation of the linked operating device can be precisely linked.
In this way, regardless of whether the linked control unit connected to the control unit used for the automatic operating device belongs to the type that outputs a command or the type that does not output a command, the operation of the automatic operating device and the linked operating device The operation of can be precisely linked. Further, while suppressing modification of the hardware configuration and software configuration in the automatically operating device, the linked operating device to be attached can be arbitrarily selected and attached from any of the two types of devices. In addition, the cooperative operation device attached to the automatic operation device can be easily replaced with a different type of device. Therefore, it is possible to increase the degree of freedom of combination with the automatically operating device and improve the versatility.
 本発明の一つの観点によれば、制御ユニットは、以下の構成を採用できる。 According to one viewpoint of the present invention, the control unit can adopt the following configuration.
 (2) (1)の制御ユニットであって、
 前記外部環境センシングユニットはカメラであり、
 前記外部環境情報コネクタは、前記外部環境データとして、前記カメラから出力された画像データを入力する。
(2) The control unit of (1)
The external environment sensing unit is a camera.
The external environment information connector inputs image data output from the camera as the external environment data.
 上記構成の制御ユニットによれば、カメラからの画像データを利用することで、複雑な外部環境を認知しつつ動作を実行することができる。
 制御ユニットは、カメラからの画像データに基づいて、連携制御ユニットに高い精度で動作を行わせることができる。また、制御ユニットは、連携制御ユニットからの動作指令とカメラからの画像データに基づいて、高い精度でアクチュエータを動作させることができる。従って、制御ユニットの汎用性を向上しつつ、接続される連携制御ユニットに高い精度で動作を行わせることができる。
According to the control unit having the above configuration, by using the image data from the camera, it is possible to execute the operation while recognizing the complicated external environment.
The control unit can cause the cooperative control unit to operate with high accuracy based on the image data from the camera. Further, the control unit can operate the actuator with high accuracy based on the operation command from the cooperative control unit and the image data from the camera. Therefore, while improving the versatility of the control unit, it is possible to make the connected linked control unit operate with high accuracy.
 本発明の一つの観点によれば、制御ユニットは、以下の構成を採用できる。 According to one viewpoint of the present invention, the control unit can adopt the following configuration.
 (3) (1)又は(2)の制御ユニットであって、
 前記自動動作機器に搭載された前記アクチュエータは、前記自動動作機器を走行させる走行装置であり、
 前記動作制御装置は、
前記連携制御ユニットから動作指令を受信した場合には、前記連携制御ユニットから受信する動作指令と、前記外部環境データの処理結果とに基づいて、前記自動動作機器の走行指示するための動作制御信号を生成し、
前記外部環境データの処理結果に基づいて前記連携動作機器を動作させる場合には、前記外部環境データの処理結果に基づいて、前記自動動作機器の走行を指示するための動作制御信号を生成するとともに、前記連携動作機器を制御するための動作指令を生成し、前記連携動作機器を制御するための動作指令を前記連携制御ユニットに前記外部通信接続部を介して送信する。
(3) The control unit of (1) or (2).
The actuator mounted on the automatic operation device is a traveling device for traveling the automatic operation device.
The motion control device is
When an operation command is received from the cooperative control unit, an operation control signal for instructing the traveling of the automatic operation device based on the operation command received from the cooperative control unit and the processing result of the external environment data. To generate
When operating the cooperative operation device based on the processing result of the external environment data, an operation control signal for instructing the running of the automatic operation device is generated based on the processing result of the external environment data. , The operation command for controlling the cooperative operation device is generated, and the operation command for controlling the cooperative operation device is transmitted to the cooperation control unit via the external communication connection unit.
 上記構成の制御ユニットによれば、自動動作機器は、自動走行車両として機能する。例えば、制御ユニットが連携制御ユニットから動作指令を受信した場合、自動走行車両が、カメラからの画像データのような外部環境データに基づいて走行しつつ、連携制御ユニットに高い精度で動作を行わせることができる。また、外部環境データの処理結果に基づいて連携動作機器を動作させる場合、自動走行車両は、連携制御ユニットからの動作指令と、カメラからの画像データのような外部環境データに基づいて、高い精度で走行することができる。従って、自動走行車両の汎用性を向上しつつ、連携制御ユニットに高い精度で動作を行わせることができる。 According to the control unit having the above configuration, the automatic operation device functions as an automatic traveling vehicle. For example, when the control unit receives an operation command from the cooperative control unit, the autonomous vehicle makes the cooperative control unit operate with high accuracy while traveling based on external environmental data such as image data from a camera. be able to. Further, when the cooperative operation device is operated based on the processing result of the external environment data, the autonomous driving vehicle has high accuracy based on the operation command from the cooperation control unit and the external environment data such as the image data from the camera. You can drive with. Therefore, it is possible to make the cooperative control unit operate with high accuracy while improving the versatility of the autonomous driving vehicle.
 本発明の一つの観点によれば、制御ユニットは、以下の構成を採用できる。 According to one viewpoint of the present invention, the control unit can adopt the following configuration.
 (4) (1)から(3)いずれか1の制御ユニットであって、
 前記動作制御装置は、前記連携制御ユニットから受信する動作指令に基づいて前記動作制御信号を生成し前記動作制御信号を前記アクチュエータに出力する処理と、動作指令を前記連携制御ユニットに前記外部通信接続部を介して送信する処理とを順次実行する。
(4) The control unit of any one of (1) to (3).
The operation control device generates the operation control signal based on the operation command received from the cooperation control unit and outputs the operation control signal to the actuator, and connects the operation command to the cooperation control unit by the external communication. The process of transmitting via the unit is executed in sequence.
 上記構成の制御ユニットによれば、動作制御装置は、連携制御ユニットから受信する動作指令に基づく処理と、動作指令を連携制御ユニットに送信する処理とを、順次実行する。このため、連携制御ユニットと接続された直後から、常時連携制御ユニットの種類に応じてアクチュエータの動作を制御することができる。このため、制御ユニットの汎用性を向上することができる。 According to the control unit having the above configuration, the operation control device sequentially executes the process based on the operation command received from the cooperative control unit and the process of transmitting the operation command to the cooperative control unit. Therefore, the operation of the actuator can be controlled according to the type of the constant cooperation control unit immediately after being connected to the cooperation control unit. Therefore, the versatility of the control unit can be improved.
 本発明の一つの観点によれば、制御ユニットは、以下の構成を採用できる。 According to one viewpoint of the present invention, the control unit can adopt the following configuration.
 (5) (1)から(4)いずれか1の制御ユニットであって、
 前記外部通信接続部は、互いに異なる複数種類の伝送形式に対応した複数のコネクタを含む。
(5) The control unit of any one of (1) to (4).
The external communication connection unit includes a plurality of connectors corresponding to a plurality of different types of transmission formats.
 上記構成の制御ユニットによれば、接続される連携制御ユニットを、種々の機能を有する複数のユニットの候補から選択することができる。従って、制御ユニットの汎用性を更に向上することができる。 According to the control unit having the above configuration, the linked control unit to be connected can be selected from the candidates of a plurality of units having various functions. Therefore, the versatility of the control unit can be further improved.
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。
 本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
 本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。
 本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」および/またはそれらの等価物は広く使用され、直接的および間接的な取り付け、接続および結合の両方を包含する。更に、「接続された」および「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。
 一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
 本発明の説明においては、複数の技術および工程が開示されていると理解される。
 これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。
 従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。
 それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい制御ユニットについて説明する。
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。
 しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。
 本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
The terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
As used herein, the term "and / or" includes any or all combinations of one or more related enumerated components.
As used herein, the use of the terms "including, including,""comprising," or "having," and variations thereof, is a feature, process, operation, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
As used herein, the terms "attached", "connected", "combined" and / or their equivalents are widely used, direct and indirect attachment, connection and Includes both bonds. Further, "connected" and "coupled" are not limited to physical or mechanical connections or connections, but can include direct or indirect electrical connections or connections.
Unless otherwise defined, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.
Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense.
It is understood that a plurality of techniques and processes are disclosed in the description of the present invention.
Each of these has its own benefit and each can be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
Therefore, for clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps.
Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention and claims.
This specification describes a new control unit.
In the following description, for purposes of illustration, a number of specific details are given to provide a complete understanding of the present invention.
However, it will be apparent to those skilled in the art that the present invention can be practiced without these particular details.
The present disclosure should be considered as an example of the invention and is not intended to limit the invention to the particular embodiments set forth in the drawings or description below.
 外部環境の検出は、自動動作機器の外部の環境を検出することである。外部環境は、自動動作機器の動作を決定づける外的条件である。外部環境は、自動動作機器の周囲の環境である。
 外部環境センシングユニットで検出された結果の外部環境データは、例えば自動動作機器の外部を撮影した画像である。この場合の外部環境センシングユニットは、カメラである。但し、外部環境データ及び外部環境センシングユニットは特に限定されない。外部環境データは、例えば自動動作機器の外部の物体までの距離である。この場合の外部環境センシングユニットは、例えば距離センサである。距離センサは、例えば超音波を用いるソナー(SONAR:sound navigation ranging)である。距離センサは、例えばレーザを用いる測距装置である。また、外部環境データは、例えば自動動作機器の外部の物体に対するレーザスキャン像である。この場合の外部環境センシングユニットは、例えばLIDAR(Laser Imaging Detection and Ranging)である。外部環境データは、例えば自動動作機器の作業エリアにおける位置情報である。この場合の外部環境センシングユニットは、例えばGNSS(Global Navigation Satellite System)である。
The detection of the external environment is to detect the external environment of the automatically operating device. The external environment is an external condition that determines the operation of an automatically operating device. The external environment is the environment around the automatically operating device.
The external environment data as a result of being detected by the external environment sensing unit is, for example, an image taken of the outside of the automatically operating device. The external environment sensing unit in this case is a camera. However, the external environment data and the external environment sensing unit are not particularly limited. The external environment data is, for example, the distance to an external object of the automatic operation device. The external environment sensing unit in this case is, for example, a distance sensor. The distance sensor is, for example, a sonar (SONAR: sound navigation ranking) that uses ultrasonic waves. The distance sensor is, for example, a distance measuring device using a laser. Further, the external environment data is, for example, a laser scan image of an object outside the automatic operation device. The external environment sensing unit in this case is, for example, LIDAR (Laser Imaging Detection and Ranking). The external environment data is, for example, position information in the work area of the automatic operation device. The external environment sensing unit in this case is, for example, GNSS (Global Navigation Satellite System).
 自動動作機器は、人間の操作によらず自動で動作することが可能な機器である。但し、自動動作機器は人間の操作を排除するものでない。例えば、自動動作機器は、一部の動作を人間の操作によって実施し、一部の動作を人間の操作によらず自動で実施してもよい。例えば、自動動作機器は、人間の操作による大まかな上位レベルの動作について指示を受け、上位レベルの動作を実現するためのより詳細な下位レベルの動作を自ら決定及び実行してもよい。また例えば、自動動作機器は、人間の操作に応じて一定の範囲について動作を実施し、前記の動作、又は前記の動作と類似する動作を前記一定の範囲とは別の範囲について実施してもよい。自動動作機器は、例えば、自動運転車両である。但し、自動動作機器は、特に限定されず、例えば自動作業ロボットでもよい。
 また、自動動作機器と連携する連携動作機器は、例えば、自動運転車両に搭載される自動作業ロボットである。但し、連携動作機器もこれに限定されず、例えば、自動作業ロボットを搭載する自動運転車両でもよい。
An automatically operating device is a device that can operate automatically regardless of human operation. However, the automatic operation device does not exclude human operation. For example, the automatic operation device may perform some operations by human operation and automatically perform some operations regardless of human operation. For example, the automatic operation device may be instructed about a rough upper level operation by human operation, and may determine and execute a more detailed lower level operation for realizing the upper level operation. Further, for example, the automatic operation device may perform an operation in a certain range according to a human operation, and may perform the above-mentioned operation or an operation similar to the above-mentioned operation in a range different from the above-mentioned certain range. Good. The autonomous driving device is, for example, an autonomous driving vehicle. However, the automatic operation device is not particularly limited, and may be, for example, an automatic work robot.
Further, the cooperative operation device that cooperates with the automatic operation device is, for example, an automatic work robot mounted on an automatic driving vehicle. However, the cooperative operation device is not limited to this, and for example, an autonomous driving vehicle equipped with an automatic work robot may be used.
 連携動作機器にアクチュエータが備えられる場合、アクチュエータは、例えば、モータである。アクチュエータは、自動動作機器に物理的な出力を行わせる。連携動作機器に設けられるアクチュエータは、当該連携動作機器に物理的な出力を行わせる。アクチュエータは例えば電磁ソレノイドでもよい。アクチュエータは、動作制御装置により制御される。アクチュエータは、動作制御装置により直接的に制御されてもよい。アクチュエータと動作制御装置とは、動作制御装置と異なる制御手段を介して間接的に制御されてもよい。この場合、動作制御装置は、制御手段を制御し、制御手段が、アクチュエータを制御する。 When the cooperative operating device is equipped with an actuator, the actuator is, for example, a motor. The actuator causes the automatic operation device to perform physical output. The actuator provided in the cooperative operation device causes the cooperative operation device to perform physical output. The actuator may be, for example, an electromagnetic solenoid. The actuator is controlled by the motion control device. The actuator may be directly controlled by the motion control device. The actuator and the motion control device may be indirectly controlled via a control means different from the motion control device. In this case, the motion control device controls the control means, and the control means controls the actuator.
 制御ユニットは、例えば、自動運転車両の自動運転を制御するためのナビゲーション装置である。但し、制御ユニットは、特に限定されず、例えば、走行しないロボットを制御するように構成されていてもよい。
 自動動作機器に用いられる制御ユニットは、例えば自動動作機器に搭載される。但し、制御ユニットの搭載位置は特に限られず、例えば、自動動作機器から離れた位置に設置され、周辺機器と各コネクタを介して通信可能に接続されてもよい。
The control unit is, for example, a navigation device for controlling the automatic driving of an autonomous driving vehicle. However, the control unit is not particularly limited, and may be configured to control, for example, a robot that does not travel.
The control unit used in the automatic operation device is mounted on the automatic operation device, for example. However, the mounting position of the control unit is not particularly limited, and for example, the control unit may be installed at a position away from the automatic operation device and may be communicably connected to the peripheral device via each connector.
 外部通信接続部は、例えば、電線が接続されるコネクタである。但し、外部通信接続部は、無線通信によって接続する無線通信機でもよい。つまり、通信可能な接続は、例えば、コネクタ及び電線を介して、電気的に直接接続されることである。但し、通信可能な接続の手段は、特に限定されず、例えば物理的に離れた位置で配置され無線通信機を介して通信可能な状態でもよい。また、通信可能な接続は、多数の装置と通信可能な中央通信中継装置を介して通信可能な状態でもよい。 The external communication connection part is, for example, a connector to which an electric wire is connected. However, the external communication connection unit may be a wireless communication device connected by wireless communication. That is, the communicable connection is, for example, directly electrically connected via a connector and an electric wire. However, the means of connection capable of communicating is not particularly limited, and may be, for example, a state in which communication is possible via a wireless communication device, which is arranged at physically distant positions. Further, the communicable connection may be in a state in which communication is possible via a central communication relay device capable of communicating with a large number of devices.
 連携動作機器は、例えば、自動動作機器と連携して動作する機器である。連携動作機器は、例えば、自動動作機器と連携して共通の作業目的を達成するよう動作する。連携動作機器は、例えば、自動動作機器と同じ種類の動作を実行することにより、自動動作機器の動作に対する並列実行を実現する。連携動作機器は、例えば、自動動作機器の動作を補完することにより、自動動作機器と協働で1つの動作を完遂する。連携動作機器は、例えば、自動動作機器に連結される機器である。連携動作機器は、例えば、自動動作機器としての自動運転車両に連結される自動作業ロボットである。但し、連携動作機器は、特に限定されず、例えば、自動動作機器としての自動運転車両から離れた位置で走行する第2の自動運転車両でもよい。この場合、連携制御ユニットは、例えば、連携動作機器としての自動運転車両の自動運転を制御するためのナビゲーション装置である。この場合、複数の自動運転車両が連携して走行できる。 The cooperative operation device is, for example, a device that operates in cooperation with an automatic operation device. The cooperative operation device operates, for example, in cooperation with the automatic operation device to achieve a common work purpose. The cooperative operation device realizes parallel execution for the operation of the automatic operation device by, for example, executing the same type of operation as the automatic operation device. The cooperative operation device completes one operation in cooperation with the automatic operation device, for example, by complementing the operation of the automatic operation device. The cooperative operation device is, for example, a device connected to an automatic operation device. The cooperative operation device is, for example, an automatic work robot connected to an automatic driving vehicle as an automatic operation device. However, the cooperative operation device is not particularly limited, and may be, for example, a second automatic driving vehicle that travels at a position away from the automatic driving vehicle as the automatic driving device. In this case, the cooperative control unit is, for example, a navigation device for controlling the automatic driving of the autonomous driving vehicle as a cooperative operation device. In this case, a plurality of autonomous driving vehicles can travel in cooperation with each other.
 物理的な出力は、少なくとも一部の部材の物理的な移動を伴う作用である。連携動作機器が物理的な出力を行うことは、例えば連携動作機器全体が移動することである。但し、物理的な出力は特に限定されず、例えば連携動作機器の一部が物理的に移動してもよい。物理的な出力は、例えば、連携動作機器がロボットアームを備える場合におけるロボットアームの動作である。物理的な出力は、例えば、連携動作機器が流通路を開閉するバルブを備える場合におけるバルブの動作である。物理的な出力は、例えば、連携動作機器が送風ファンを備える場合におけるファンの回転である。
 非物理的な出力は、物理的な移動を伴わない作用である。非物理的な出力は、例えば、情報の出力である。非物理的な出力は、例えば、連携動作機器がカメラを備えている場合における撮影画像データの出力である。非物理的な出力は、例えば、連携動作機器が画像表示装置を備えている場合における表示である。
The physical output is an action that involves the physical movement of at least some of the members. The physical output of the linked operating device is, for example, the movement of the entire linked operating device. However, the physical output is not particularly limited, and for example, a part of the linked operating device may be physically moved. The physical output is, for example, the operation of the robot arm when the cooperative operation device includes the robot arm. The physical output is, for example, the operation of a valve when the coordinated operating device includes a valve that opens and closes a flow path. The physical output is, for example, the rotation of the fan when the cooperating device includes a blower fan.
Non-physical output is an action that does not involve physical movement. The non-physical output is, for example, the output of information. The non-physical output is, for example, the output of captured image data when the cooperative operating device is equipped with a camera. The non-physical output is, for example, a display when the cooperative operating device is equipped with an image display device.
 動作指令は、自動動作機器と連携動作機器との間でやり取りされる指令である。より詳細には、動作指令は、自動動作機器の制御ユニットと連携動作機器の連携制御ユニットとの間でやり取りされる信号である。動作指令は、動作指令信号と称することもできる。自動動作機器が連携動作機器に送る動作指令の種類と、連携動作機器が自動動作機器に送る動作指令の種類とは異なってもよい。また、これらの種類は、共通でもよい。
 自動動作機器が連携動作機器に送る動作指令と、連携動作機器が自動動作機器に送る動作指令とは、互いに区別されてもよい。例えば、自動動作機器の制御ユニットから連携動作機器の連携制御ユニットへ送られる動作指令を能動動作指令と称し、連携動作機器の連携制御ユニットから自動動作機器の制御ユニットへ送られる動作指令を受動動作指令と称することも可能である。
 自動動作機器には、この自動動作機器と連携する連携動作機器以外の機器がさらに連携してもよい。つまり、自動動作機器には、複数の機器が連携してもよい。
 走行を指示するための動作制御信号は、例えば、走行経路を指示するための信号である。但し、走行を指示するための動作制御信号は、走行開始又は停止を指示するための信号であってもよい。
The operation command is a command exchanged between the automatic operation device and the cooperative operation device. More specifically, the operation command is a signal exchanged between the control unit of the automatic operation device and the cooperative control unit of the cooperative operation device. The operation command can also be referred to as an operation command signal. The type of operation command sent by the automatic operation device to the cooperative operation device may be different from the type of operation command sent by the cooperative operation device to the automatic operation device. Moreover, these types may be common.
The operation command sent by the automatic operation device to the cooperative operation device and the operation command sent by the cooperative operation device to the automatic operation device may be distinguished from each other. For example, an operation command sent from a control unit of an automatic operation device to a cooperative control unit of a cooperative operation device is called an active operation command, and an operation command sent from a cooperative control unit of a cooperative operation device to a control unit of an automatic operation device is a passive operation. It can also be called a directive.
A device other than the linked operating device linked with the automatic operating device may be further linked to the automatic operating device. That is, a plurality of devices may cooperate with the automatically operating device.
The operation control signal for instructing the traveling is, for example, a signal for instructing the traveling route. However, the operation control signal for instructing the running may be a signal for instructing the start or stop of the running.
 複数のコネクタで対応する複数の伝送形式は、例えば、CAN(Controller Area Network)(登録商標) Bus又はイーサネット(登録商標)である。 A plurality of transmission formats supported by a plurality of connectors are, for example, CAN (Control Area Network) (registered trademark) Bus or Ethernet (registered trademark).
 本発明によれば、他の機器との組合せの自由度を高め汎用性を向上することができる制御ユニットが実現できる。 According to the present invention, it is possible to realize a control unit capable of increasing the degree of freedom of combination with other devices and improving versatility.
本発明の第一実施形態に係る制御ユニットを含む自動動作システムの構成を示すブロック図である。It is a block diagram which shows the structure of the automatic operation system including the control unit which concerns on 1st Embodiment of this invention. 本発明の第二実施形態に係る制御ユニットを含む自動動作システムの構成を示すブロック図である。It is a block diagram which shows the structure of the automatic operation system which includes the control unit which concerns on 2nd Embodiment of this invention. 図2に示す制御ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of the control unit shown in FIG. 図2に示す制御ユニットの連携動作を説明するフローチャートである。It is a flowchart explaining the cooperation operation of the control unit shown in FIG. 図2に示す制御ユニットの第1の適用例を示すブロック図である。It is a block diagram which shows the 1st application example of the control unit shown in FIG. 図2に示す制御ユニットの第2の適用例を示すブロック図である。It is a block diagram which shows the 2nd application example of the control unit shown in FIG. 図2に示す自動動作システムにおける画像の流れを示すブロック図である。It is a block diagram which shows the flow of an image in the automatic operation system shown in FIG. 図7に示す制御ユニットの動作制御装置における画像の制御を説明するフローチャートである。It is a flowchart explaining the control of the image in the operation control device of the control unit shown in FIG. 7. 図2に示す制御ユニットの第3の適用例を示すブロック図である。It is a block diagram which shows the 3rd application example of the control unit shown in FIG. 本発明の第三実施形態に係る制御ユニットを含む自動動作システムの構成を示すブロック図である。It is a block diagram which shows the structure of the automatic operation system which includes the control unit which concerns on 3rd Embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第一実施形態]
 図1は、本発明の第一実施形態に係る制御ユニット及びその周辺装置の構成を示すブロック図である。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration of a control unit and its peripheral devices according to the first embodiment of the present invention.
 制御ユニット10は、自動動作機器1に用いられる。自動動作機器1には、外部環境センシングユニット11とアクチュエータ121とが搭載される。
 自動動作機器1は、人間の操作によらず自動で動作することが可能である。但し、自動動作機器1は、人間の操作を排除しない。例えば自動動作機器1は、一部の動作を人間の操作によって実施してもよい。自動動作機器は、例えば、自動運転車両又は自動作業ロボットである。
 外部環境センシングユニット11は、自動動作機器1の外部環境を検出する。外部環境センシングユニット11は、検出の結果を示す外部環境データを出力する。外部環境センシングユニット11は、例えば、自動動作機器1の外部環境を撮影するカメラである。外部環境センシングユニット11は、例えば自動動作機器1の外部の物体までの距離を計測する距離センサでもよい。
 アクチュエータ121は、電気制御によって機械的に動作する装置である。アクチュエータ121は、自動動作機器1に搭載された装置又は自動動作機器1自体を駆動する。アクチュエータ121は、例えばモータ又は電磁ソレノイドである。
The control unit 10 is used for the automatic operation device 1. The automatic operation device 1 is equipped with an external environment sensing unit 11 and an actuator 121.
The automatic operation device 1 can operate automatically regardless of human operation. However, the automatic operation device 1 does not exclude human operation. For example, the automatic operation device 1 may perform some operations by human operation. The automatic operation device is, for example, an automatic driving vehicle or an automatic work robot.
The external environment sensing unit 11 detects the external environment of the automatic operation device 1. The external environment sensing unit 11 outputs external environment data indicating the detection result. The external environment sensing unit 11 is, for example, a camera that photographs the external environment of the automatically operating device 1. The external environment sensing unit 11 may be, for example, a distance sensor that measures the distance to an external object of the automatic operation device 1.
The actuator 121 is a device that operates mechanically by electrical control. The actuator 121 drives a device mounted on the automatic operation device 1 or the automatic operation device 1 itself. The actuator 121 is, for example, a motor or an electromagnetic solenoid.
 制御ユニット10は、外部環境情報コネクタ110と、動作制御コネクタ130と、外部通信接続部140と、動作制御装置160とを備える。 The control unit 10 includes an external environment information connector 110, an operation control connector 130, an external communication connection unit 140, and an operation control device 160.
 外部環境情報コネクタ110には、外部環境センシングユニット11から検出の結果を示す外部環境データが入力される。
 動作制御コネクタ130は、アクチュエータ121の動作を制御するための動作制御信号を出力する。
External environment data indicating the detection result is input from the external environment sensing unit 11 to the external environment information connector 110.
The motion control connector 130 outputs an motion control signal for controlling the motion of the actuator 121.
 外部通信接続部140は、連携制御ユニット20と通信可能に接続される。連携制御ユニット20は、物理的又は非物理的な出力を行う連携動作機器2を制御する。連携動作機器2は、自動動作機器1とは別個に設けられた機器である。連携動作機器2は、例えば、自動動作機器1と物理的に連結される。但し、連携動作機器2は、例えば、自動動作機器1と離れていてもよい。連携動作機器2は、独自のセンシングユニット及び独自のアクチュエータを備えていてもよい。連携制御ユニット20は、自動動作機器1を制御する動作指令を制御ユニット10へ送信することができる。また、連携制御ユニット20は、連携動作機器2を制御するための動作指令を制御ユニット10から受信することができる。
 外部通信接続部140は、例えば、連携制御ユニット20と特定の取決めに則って通信するための通信装置である。外部通信接続部140は、例えば、有線通信のための通信装置である。外部通信接続部140は、例えば、イーサネット(登録商標、以下同じ。)の通信装置である。外部通信接続部140は、例えば、イーサネットのコネクタを含む。外部通信接続部140は、物理的には、コネクタ及びケーブルを介して、連携制御ユニット20以外の機器と接続されてもよい。外部通信接続部140は、例えば、物理的にはハブやルータを介して、連携制御ユニット20と接続されてもよい。外部通信接続部140は、イーサネットとは異なる取決めに基づく通信を行なう装置でもよい。外部通信接続部140は、例えば、Wi-Fi(登録商標、以下同じ。)に基づく通信、又は、Bluetooth(登録商標、以下同じ。)に基づく通信を行なってもよい。また、外部通信接続部140は、単純なシリアル通信のデータを通信するためのコネクタでもよい。例えば、外部通信接続部140は、Controller Area Network(CAN)(登録商標、以下同じ。)Busに基づく通信を行なってもよい。外部通信接続部140は、国際規格以外の取決めに則って通信してもよい。
The external communication connection unit 140 is communicably connected to the cooperation control unit 20. The cooperation control unit 20 controls the cooperation operation device 2 that outputs physical or non-physical output. The cooperative operation device 2 is a device provided separately from the automatic operation device 1. The cooperative operation device 2 is physically connected to, for example, the automatic operation device 1. However, the cooperative operation device 2 may be separated from the automatic operation device 1, for example. The cooperative operation device 2 may include its own sensing unit and its own actuator. The cooperative control unit 20 can transmit an operation command for controlling the automatic operation device 1 to the control unit 10. Further, the cooperation control unit 20 can receive an operation command for controlling the cooperation operation device 2 from the control unit 10.
The external communication connection unit 140 is, for example, a communication device for communicating with the cooperation control unit 20 according to a specific agreement. The external communication connection unit 140 is, for example, a communication device for wired communication. The external communication connection unit 140 is, for example, an Ethernet (registered trademark, the same applies hereinafter) communication device. The external communication connection unit 140 includes, for example, an Ethernet connector. The external communication connection unit 140 may be physically connected to a device other than the cooperation control unit 20 via a connector and a cable. The external communication connection unit 140 may be physically connected to the cooperation control unit 20 via a hub or router, for example. The external communication connection unit 140 may be a device that performs communication based on an agreement different from Ethernet. The external communication connection unit 140 may perform communication based on Wi-Fi (registered trademark, the same shall apply hereinafter) or Bluetooth (registered trademark, the same shall apply hereinafter), for example. Further, the external communication connection unit 140 may be a connector for communicating simple serial communication data. For example, the external communication connection unit 140 may perform communication based on the Controller Area Network (CAN) (registered trademark, the same shall apply hereinafter) Bus. The external communication connection unit 140 may communicate in accordance with an agreement other than an international standard.
 動作制御装置160は、アクチュエータ121の動作を制御する。動作制御装置160は、アクチュエータ121の動作を制御するための動作制御信号を生成する。動作制御装置160は、動作制御コネクタ130を介して動作制御信号を出力する。
 動作制御装置160は、例えば、外部環境データの処理結果に基づいて動作制御信号を生成する。動作制御装置160は、連携動作機器2から受信する動作指令に基づいて動作制御信号を生成することもできる。
The motion control device 160 controls the motion of the actuator 121. The motion control device 160 generates an motion control signal for controlling the motion of the actuator 121. The operation control device 160 outputs an operation control signal via the operation control connector 130.
The operation control device 160 generates, for example, an operation control signal based on the processing result of the external environment data. The operation control device 160 can also generate an operation control signal based on an operation command received from the cooperative operation device 2.
 より具体的には、動作制御装置160は、連携動作機器2から動作指令を受信した場合には、連携動作機器2から受信する動作指令に基づいて動作制御信号を生成する。動作制御装置160は、動作制御信号をアクチュエータ121に動作制御コネクタ130を介して出力する。
 また、動作制御装置160は、外部環境データの処理結果に基づいて連携動作機器2を動作させる場合、外部環境データの処理結果に基づいて動作制御信号を生成するとともに連携動作機器2を制御するための動作指令を生成する。動作制御装置160は、動作指令を連携動作機器に外部通信接続部140を介して送信する。
More specifically, when the operation control device 160 receives an operation command from the cooperative operation device 2, the operation control device 160 generates an operation control signal based on the operation command received from the cooperative operation device 2. The motion control device 160 outputs a motion control signal to the actuator 121 via the motion control connector 130.
Further, when the operation control device 160 operates the cooperative operation device 2 based on the processing result of the external environment data, the operation control device 160 generates an operation control signal based on the processing result of the external environment data and controls the cooperative operation device 2. Generate an operation command for. The operation control device 160 transmits an operation command to the cooperative operation device via the external communication connection unit 140.
 連携動作機器2から動作指令を受信した場合、動作制御装置160は、少なくとも連携動作機器2からの動作指令に基づいて自動動作機器1のアクチュエータ121を制御する。このとき、動作制御装置160は、少なくとも当該動作指令に基づいて動作制御信号を生成し、動作制御信号をアクチュエータ121に出力する。動作制御装置160は、動作指令のみに基づいて動作制御信号を生成してもよく、動作指令及び外部環境データに基づいて動作制御信号を生成してもよい。このように、自動動作機器1のアクチュエータ121が、連携動作機器2の動作指令に基づいて制御される。従って、自動動作機器1の動作と連携動作機器2の動作が精密に連携できる。
 また、外部環境データの処理結果に基づいて連携動作機器2を動作させる場合、動作制御装置160は、外部環境データの処理結果に基づいて生成した動作指令を連携制御ユニット20に送信する。このため、連携動作機器2が、自動動作機器1の外部環境に基づいて制御される。従って、自動動作機器1の動作と連携動作機器2の動作が精密に連携できる。
 このように、自動動作機器1に用いられる制御ユニット10に接続される連携動作機器2が、指令を出力するタイプ、又は、指令を出力しないタイプのいずれであっても、自動動作機器1の動作と連携動作機器2の動作が精密に連携できる。また、自動動作機器1におけるハードウェア構成やソフトウェア構成の改変を抑制しつつ、取付けられる連携動作機器2は2つのタイプのいずれに属する機器からでも任意に選んで取付けることができる。また、自動動作機器1に取付けられる連携動作機器2を異なるタイプの機器と容易に交換することができる。従って、自動動作機器1に対する組合せの自由度を高め汎用性を向上することができる。
When the operation command is received from the cooperative operation device 2, the operation control device 160 controls the actuator 121 of the automatic operation device 1 at least based on the operation command from the cooperative operation device 2. At this time, the operation control device 160 generates an operation control signal at least based on the operation command, and outputs the operation control signal to the actuator 121. The operation control device 160 may generate an operation control signal based only on the operation command, or may generate an operation control signal based on the operation command and the external environment data. In this way, the actuator 121 of the automatic operation device 1 is controlled based on the operation command of the cooperative operation device 2. Therefore, the operation of the automatic operation device 1 and the operation of the cooperative operation device 2 can be precisely linked.
Further, when the cooperative operation device 2 is operated based on the processing result of the external environment data, the operation control device 160 transmits an operation command generated based on the processing result of the external environment data to the cooperative control unit 20. Therefore, the cooperative operation device 2 is controlled based on the external environment of the automatic operation device 1. Therefore, the operation of the automatic operation device 1 and the operation of the cooperative operation device 2 can be precisely linked.
In this way, the operation of the automatic operation device 1 is performed regardless of whether the cooperative operation device 2 connected to the control unit 10 used for the automatic operation device 1 is a type that outputs a command or a type that does not output a command. And cooperation operation The operation of the device 2 can be precisely linked. Further, the linked operation device 2 to be attached can be arbitrarily selected and attached from any of the two types of devices while suppressing the modification of the hardware configuration and the software configuration in the automatic operation device 1. Further, the cooperative operation device 2 attached to the automatic operation device 1 can be easily replaced with a different type of device. Therefore, the degree of freedom of combination with the automatic operation device 1 can be increased and the versatility can be improved.
[第二実施形態]
 図2は、本発明の第二実施形態に係る制御ユニットを含む自動動作システムの構成を示すブロック図である。
 本実施形態では、制御ユニット10の適用例として、自動動作機器1を含む自動動作システムSの全体についても説明する。また、本実施形態で、第1実施形態の自動動作機器1に対し更に機能部が追加された例を説明する。なお、第1実施形態で説明した部分と共通の部分については同じ符号を付して説明する。
[Second Embodiment]
FIG. 2 is a block diagram showing a configuration of an automatic operation system including a control unit according to a second embodiment of the present invention.
In the present embodiment, as an application example of the control unit 10, the entire automatic operation system S including the automatic operation device 1 will be described. Further, in the present embodiment, an example in which a functional unit is further added to the automatic operation device 1 of the first embodiment will be described. The parts common to the parts described in the first embodiment will be described with the same reference numerals.
[自動動作システム]
 自動動作システムSは、操作者H、即ち人の操作によらず自動動作することができるシステムである。自動動作システムSは、自ら自動動作システムSの外部環境を検出する。そして、自動動作システムSは、検出結果の内容を認知し、そして認知結果に基づき自動動作システムSの動作を制御する。
[Automatic operation system]
The automatic operation system S is an operator H, that is, a system capable of automatically operating regardless of the operation of a person. The automatic operation system S detects the external environment of the automatic operation system S by itself. Then, the automatic operation system S recognizes the content of the detection result, and controls the operation of the automatic operation system S based on the recognition result.
 自動動作システムSは、操作者Hの操作に応じて動作する機能も有する。例えば、自動動作システムSは、遠隔操縦装置3の操作に応じて動作する。遠隔操縦装置3は、自動動作システムSを遠隔操縦するための装置である。遠隔操縦装置3は、自動動作システムSと無線通信により通信可能である。遠隔操縦装置3は、自動動作システムSに操作の情報を送信する。また、遠隔操縦装置3は、自動動作システムSから画像を受信し、画像を表示する。
 例えば、自動動作システムSは、遠隔操縦装置3に対する自動動作開始の操作又は停止の操作に応じて、自動動作を開始又は停止することができる。また、例えば、自動動作システムSは、遠隔操縦装置3に対する選択動作の操作に応じて、複数ある自動動作のパターンから1つのパターンを選択することができる。また、例えば、自動動作システムSは、遠隔操縦装置3に対する逐次操作に応じて、逐次動作を行うことができる。逐次操作は、例えば、前進、後退、及び停止に代表される操作である。
The automatic operation system S also has a function of operating according to the operation of the operator H. For example, the automatic operation system S operates in response to the operation of the remote control device 3. The remote control device 3 is a device for remotely controlling the automatic operation system S. The remote control device 3 can communicate with the automatic operation system S by wireless communication. The remote control device 3 transmits operation information to the automatic operation system S. Further, the remote control device 3 receives an image from the automatic operation system S and displays the image.
For example, the automatic operation system S can start or stop the automatic operation in response to the operation of starting or stopping the automatic operation with respect to the remote control device 3. Further, for example, the automatic operation system S can select one pattern from a plurality of automatic operation patterns according to the operation of the selection operation for the remote control device 3. Further, for example, the automatic operation system S can perform sequential operations in response to sequential operations on the remote control device 3. Sequential operations are operations typified by, for example, forward, backward, and stop.
 自動動作システムSは、自動動作機器1及び連携動作機器2を備える。図2に示す自動動作機器1は、自動動作を行うことができるシステムである。
 自動動作機器1は、外部環境を検出する。そして、自動動作機器1は、検出結果を認知し、そして認知結果に基づき動作を制御する。但し、自動動作機器1は、操作者Hの操作に応じて動作する機能も有する。操作に応じた動作は、上述した自動動作システムSについての動作と同じである。
 なお、図2に示す例において、連携動作機器2もまた、自動動作を行うことができるシステムである。連携動作機器2は、外部環境を検出する。そして、連携動作機器2は、検出結果を認知し、そして認知結果に基づき動作を制御する。また、連携動作機器2は、操作者Hの操作に応じて動作する機能も有する。
 なお、連携動作機器2としては、自ら外部環境の検出を行わず、自動動作機器1における外部環境の検出結果又は自動動作機器1からの指示を受けて動作する構成も採用可能である。ここでは、まず、連携動作機器2として外部環境を検出する構成を説明する。
The automatic operation system S includes an automatic operation device 1 and a cooperative operation device 2. The automatic operation device 1 shown in FIG. 2 is a system capable of performing automatic operation.
The automatic operation device 1 detects the external environment. Then, the automatic operation device 1 recognizes the detection result and controls the operation based on the recognition result. However, the automatic operation device 1 also has a function of operating according to the operation of the operator H. The operation according to the operation is the same as the operation for the automatic operation system S described above.
In the example shown in FIG. 2, the cooperative operation device 2 is also a system capable of performing automatic operation. The cooperative operation device 2 detects the external environment. Then, the cooperative operation device 2 recognizes the detection result and controls the operation based on the recognition result. Further, the cooperative operation device 2 also has a function of operating according to the operation of the operator H.
As the cooperative operation device 2, it is also possible to adopt a configuration in which the automatic operation device 1 does not detect the external environment by itself, but operates by receiving the detection result of the external environment in the automatic operation device 1 or the instruction from the automatic operation device 1. Here, first, a configuration for detecting the external environment as the cooperative operation device 2 will be described.
 図2に示す連携動作機器2は、自動動作機器1と連携して動作する。即ち、自動動作機器1及び連携動作機器2は、互いに協働して操作者Hが期待する作業を完遂するよう動作する。連携動作機器2は、例えば、自動動作機器1と同一の種類の動作を行うことによって連携することができる。この一例としては、自動動作機器1及び連携動作機器2が、一対のロボットアームである場合が挙げられる。
 また、例えば連携動作機器2と自動動作機器1は、互いに異なる種類の動作を行うことによって、所期の動作を完遂することができる。即ち、連携動作機器2と自動動作機器1は、連携することができる。この一例として、自動動作機器1が自動走行車両であり、連携動作機器2が自動走行車両に搭載されたロボットアームである場合が挙げられる。
 図2に示す自動動作機器1及び連携動作機器2は、機械的に連結されている。
 但し、自動動作機器1及び連携動作機器2は、離れていてもよい。この一例としては、自動動作機器1及び連携動作機器2が、共通の領域を走行したり、隣接する複数の領域を分担して走行したりする2台の車両である場合が挙げられる。
The cooperative operation device 2 shown in FIG. 2 operates in cooperation with the automatic operation device 1. That is, the automatic operation device 1 and the cooperative operation device 2 cooperate with each other to complete the work expected by the operator H. The cooperative operation device 2 can cooperate by performing the same type of operation as the automatic operation device 1, for example. As an example of this, there is a case where the automatic operation device 1 and the cooperative operation device 2 are a pair of robot arms.
Further, for example, the cooperative operation device 2 and the automatic operation device 1 can complete the desired operation by performing different types of operations from each other. That is, the cooperative operation device 2 and the automatic operation device 1 can cooperate with each other. As an example of this, there is a case where the automatic operation device 1 is an automatic traveling vehicle and the cooperative operation device 2 is a robot arm mounted on the automatic traveling vehicle.
The automatic operation device 1 and the cooperative operation device 2 shown in FIG. 2 are mechanically connected.
However, the automatic operation device 1 and the cooperative operation device 2 may be separated from each other. As an example of this, there is a case where the automatic operation device 1 and the cooperative operation device 2 are two vehicles that travel in a common area or share a plurality of adjacent areas.
 図2に示す連携動作機器2は、自動動作機器1と通信可能に接続されている。図2に示す自動動作機器1及び連携動作機器2は、互いに電線によって電気的に接続されている。但し、自動動作機器1及び連携動作機器2として、例えば無線通信する構成も採用可能である。 The linked operation device 2 shown in FIG. 2 is communicably connected to the automatic operation device 1. The automatic operation device 1 and the cooperative operation device 2 shown in FIG. 2 are electrically connected to each other by electric wires. However, as the automatic operation device 1 and the cooperative operation device 2, for example, a configuration for wireless communication can be adopted.
[自動動作機器]
 自動動作機器1は、制御ユニット10と、外部環境センシングユニット11と、動作ユニット12と、遠隔通信装置13と、電源ユニット14とを備えている。
[Automatic operation device]
The automatic operation device 1 includes a control unit 10, an external environment sensing unit 11, an operation unit 12, a remote communication device 13, and a power supply unit 14.
 外部環境センシングユニット11は、自動動作機器1の外部環境を検出する。外部環境センシングユニット11は、検出の結果を示す外部環境データを出力する。
 外部環境センシングユニット11は、例えば、自動動作機器1の外部環境を撮影するカメラである。外部環境センシングユニット11としてのカメラは、撮影結果を示す外部画像データを出力する。カメラを用いることで、制御ユニット10が複雑な外部環境を認知しつつ、アクチュエータ121を動作させることができる。
The external environment sensing unit 11 detects the external environment of the automatic operation device 1. The external environment sensing unit 11 outputs external environment data indicating the detection result.
The external environment sensing unit 11 is, for example, a camera that photographs the external environment of the automatically operating device 1. The camera as the external environment sensing unit 11 outputs external image data indicating the shooting result. By using the camera, the control unit 10 can operate the actuator 121 while recognizing the complicated external environment.
 動作ユニット12は、外部環境に基づいて制御される。動作ユニット12は、アクチュエータ121を備える。アクチュエータ121は、電気制御によって機械的に動作し、自動動作機器1に搭載された装置又は自動動作機器1自体を駆動する。 The operation unit 12 is controlled based on the external environment. The operation unit 12 includes an actuator 121. The actuator 121 is mechanically operated by electric control to drive a device mounted on the automatic operation device 1 or the automatic operation device 1 itself.
 制御ユニット10は、外部環境センシングユニット11、動作ユニット12、及び遠隔通信装置13と接続される。
 制御ユニット10は、外部環境センシングユニット11で検出された外部環境に基づいて動作ユニット12のアクチュエータ121を制御する。より詳細には、制御ユニット10は、外部環境センシングユニット11から出力された外部環境データを処理することによって、外部環境の内容を認知する。制御ユニット10は、認知した内容に基づき制御内容を判断する。そして、制御ユニット10は、判断した制御内容に基づきアクチュエータ121を制御する。
The control unit 10 is connected to the external environment sensing unit 11, the operation unit 12, and the remote communication device 13.
The control unit 10 controls the actuator 121 of the operation unit 12 based on the external environment detected by the external environment sensing unit 11. More specifically, the control unit 10 recognizes the contents of the external environment by processing the external environment data output from the external environment sensing unit 11. The control unit 10 determines the control content based on the recognized content. Then, the control unit 10 controls the actuator 121 based on the determined control content.
 制御ユニット10は、遠隔操縦装置3の操作に応じた操縦指令を遠隔通信装置13から受け、操縦指令に基づいてアクチュエータ121を制御する場合もある。制御ユニット10の内部構成については後述する。 The control unit 10 may receive a control command corresponding to the operation of the remote control device 3 from the remote communication device 13 and control the actuator 121 based on the control command. The internal configuration of the control unit 10 will be described later.
 電源ユニット14は、制御ユニット10と、外部環境センシングユニット11と、動作ユニット12と、遠隔通信装置13とに電力を供給する。
 電源ユニット14は、図示しないバッテリを有している。電源ユニット14は、バッテリに蓄えられた電力を各ユニットに供給する。電源ユニット14は、各ユニットの需要に対して電力を供給する。電源ユニット14が用いる電源としては、バッテリに限られず種々の電源が使用可能である。例えば、電源ユニット14として、バッテリの代わりにエンジン発電機、又は燃料電池を有する構成も採用可能である。エンジン発電機は、例えば液体燃料で動作するエンジン、及び、そのエンジンで駆動されて電気を発生する発電機を有する。
 図2に示す電源ユニット14は、連携動作機器2にも電力を供給する。但し、連携動作機器2が、例えば、自動動作機器1から独立した電源を備えることも可能である。
The power supply unit 14 supplies electric power to the control unit 10, the external environment sensing unit 11, the operating unit 12, and the remote communication device 13.
The power supply unit 14 has a battery (not shown). The power supply unit 14 supplies the electric power stored in the battery to each unit. The power supply unit 14 supplies electric power to meet the demand of each unit. The power source used by the power supply unit 14 is not limited to the battery, and various power sources can be used. For example, as the power supply unit 14, a configuration having an engine generator or a fuel cell instead of the battery can be adopted. An engine generator includes, for example, an engine that operates on liquid fuel and a generator that is driven by the engine to generate electricity.
The power supply unit 14 shown in FIG. 2 also supplies electric power to the cooperative operation device 2. However, the linked operation device 2 may be provided with a power supply independent of, for example, the automatic operation device 1.
 遠隔通信装置13は、遠隔操縦装置3と通信可能に接続されている。遠隔通信装置13は、遠隔操縦装置3と無線通信によって通信可能に接続されている。
 遠隔通信装置13は、遠隔操縦装置3と制御ユニット10との間で、通信データを中継する。例えば遠隔通信装置13は、遠隔操縦装置3の操作に応じて遠隔操縦装置3から出力される操縦指令を制御ユニット10に出力する。これによって、遠隔操縦装置3からの操縦指令が制御ユニット10に供給される。また、例えば遠隔通信装置13は、外部環境センシングユニット11から出力されたデータに基づくデータを遠隔操縦装置3に供給する。例えば遠隔通信装置13は、外部環境センシングユニット11がカメラである場合に、カメラから出力された外部画像データに基づくデータを遠隔操縦装置3に送信する。これによって、遠隔操縦装置3にカメラの画像が表示される。この場合、遠隔操縦装置3は、遠隔通信装置13に画像指令を送信する。画像指令は、遠隔操縦装置3に送信される画像の内容及び画像データの量を指定するための指令である。遠隔通信装置13は、画像指令を制御ユニット10に送る。
The remote communication device 13 is communicably connected to the remote control device 3. The remote communication device 13 is communicably connected to the remote control device 3 by wireless communication.
The remote communication device 13 relays communication data between the remote control device 3 and the control unit 10. For example, the remote communication device 13 outputs a control command output from the remote control device 3 to the control unit 10 in response to the operation of the remote control device 3. As a result, the control command from the remote control device 3 is supplied to the control unit 10. Further, for example, the remote communication device 13 supplies data based on the data output from the external environment sensing unit 11 to the remote control device 3. For example, when the external environment sensing unit 11 is a camera, the remote communication device 13 transmits data based on the external image data output from the camera to the remote control device 3. As a result, the image of the camera is displayed on the remote control device 3. In this case, the remote control device 3 transmits an image command to the remote communication device 13. The image command is a command for designating the content of the image and the amount of image data transmitted to the remote control device 3. The remote communication device 13 sends an image command to the control unit 10.
 上述した、遠隔通信装置13と制御ユニット10とのデータのやりとりは、遠隔通信装置13と連携制御ユニット20とのデータのやりとりについても同様である。 The data exchange between the remote communication device 13 and the control unit 10 described above is the same as the data exchange between the remote communication device 13 and the cooperative control unit 20.
[連携動作機器]
 連携動作機器2は、連携制御ユニット20と、連携センシングユニット21と、連携動作ユニット22とを備えている。連携動作機器2における連携制御ユニット20、連携センシングユニット21、及び連携動作ユニット22の役割は、上述した自動動作機器1における、制御ユニット10、外部環境センシングユニット11、及び動作ユニット12の役割と共通している。但し、連携センシングユニット21が検出する環境の種類、及び連携制御ユニット20の判断の詳細な内容、及び連携動作ユニット22の出力は、連携動作機器2の機能に応じて異なる。
 連携制御ユニット20は、物理的な出力を行う連携動作ユニット22を制御する。連携動作ユニット22の物理的な出力は、例えば、アクチュエータ221の動作である。
[Collaboration operation device]
The cooperative operation device 2 includes a cooperative control unit 20, a cooperative sensing unit 21, and a cooperative operation unit 22. The roles of the cooperation control unit 20, the cooperation sensing unit 21, and the cooperation operation unit 22 in the cooperation operation device 2 are the same as the roles of the control unit 10, the external environment sensing unit 11, and the operation unit 12 in the above-mentioned automatic operation device 1. are doing. However, the type of environment detected by the cooperative sensing unit 21, the detailed content of the determination of the cooperative control unit 20, and the output of the cooperative operation unit 22 differ depending on the function of the cooperative operation device 2.
The cooperation control unit 20 controls the cooperation operation unit 22 that performs physical output. The physical output of the cooperative operation unit 22 is, for example, the operation of the actuator 221.
 連携制御ユニット20は、制御ユニット10と同じく、本発明にいう制御ユニットの一例に相当する。 The cooperative control unit 20 corresponds to an example of the control unit referred to in the present invention, like the control unit 10.
 図2に示す自動動作機器1の機能の一例として、例えば自動走行車両が挙げられる。この場合、制御ユニット10は、例えば、自動ナビゲーションユニットである。動作ユニット12のアクチュエータ121は、自動動作機器1を走行させる走行装置である。走行装置は、例えば、モータである。制御ユニット10は、外部環境センシングユニット11としてのカメラで撮影された走行領域の画像の内容を認知し、認知結果に基づいて走行経路を判断し、判断した走行経路を動作ユニット12に指示する。即ち、制御ユニット10は、判断した走行経路に基づいて動作ユニット12を制御する。これにより、自動動作機器1が自動走行する。なお、制御ユニット10として、経路そのものを判断せず、例えば予め設定された走行経路上で走行の開始又は停止を判断する構成も採用可能である。
 図2に示す連携動作機器2の機能の一例として、自動走行車両に搭載される作業機器が挙げられる。作業機器の一例として、農場で果実を摘果する摘果装置が挙げられる。この場合、連携制御ユニット20は、連携センシングユニット21としてのカメラで撮影された果樹の内容を認知し、認知結果に基づいて果実の状態及び位置を判断し、判断した果実の位置に基づいて、自動動作機器1に走行指令(走行位置指令)を送信する。走行指令は、動作指令の一例である。また、判断した果実の位置に基づいて、連携動作ユニット22としての摘果装置のアクチュエータ221を制御する。自動動作機器1と連携動作機器2の連携によって、農場内の果実を摘果するという機能が実現する。
 また、自動動作機器1に搭載される連携動作機器2は、図2に示す連携動作機器2と異なる機能を有する連携動作機器と交換されることが可能である。
As an example of the function of the automatic operation device 1 shown in FIG. 2, for example, an automatic traveling vehicle can be mentioned. In this case, the control unit 10 is, for example, an automatic navigation unit. The actuator 121 of the operation unit 12 is a traveling device for traveling the automatic operation device 1. The traveling device is, for example, a motor. The control unit 10 recognizes the content of the image of the traveling region taken by the camera as the external environment sensing unit 11, determines the traveling route based on the recognition result, and instructs the operation unit 12 of the determined traveling route. That is, the control unit 10 controls the operation unit 12 based on the determined travel path. As a result, the automatically operating device 1 automatically travels. It should be noted that the control unit 10 can also adopt a configuration in which, for example, the control unit 10 does not determine the route itself, but determines the start or stop of traveling on a preset traveling route.
An example of the function of the cooperative operation device 2 shown in FIG. 2 is a work device mounted on an autonomous vehicle. An example of working equipment is a fruit-picking device that picks fruits on a farm. In this case, the cooperative control unit 20 recognizes the content of the fruit tree photographed by the camera as the cooperative sensing unit 21, determines the state and position of the fruit based on the recognition result, and based on the determined position of the fruit, A running command (running position command) is transmitted to the automatic operation device 1. The travel command is an example of an operation command. Further, the actuator 221 of the fruit-picking device as the cooperative operation unit 22 is controlled based on the determined position of the fruit. By linking the automatic operation device 1 and the cooperative operation device 2, the function of picking the fruits on the farm is realized.
Further, the cooperative operation device 2 mounted on the automatic operation device 1 can be replaced with a cooperative operation device having a function different from that of the cooperative operation device 2 shown in FIG.
[制御ユニット]
 図3は、図2に示す制御ユニット10の構成を示すブロック図である。
 制御ユニット10は、1つの筐体で覆われたユニットであり、自動動作機器1(図2参照)に組み込まれる。制御ユニット10は、自動動作機器1の各部と電気的に接続される。
 制御ユニット10は、商用のユニットである。また、制御ユニット10は、量産型である。
[Controller unit]
FIG. 3 is a block diagram showing the configuration of the control unit 10 shown in FIG.
The control unit 10 is a unit covered with one housing, and is incorporated in the automatic operation device 1 (see FIG. 2). The control unit 10 is electrically connected to each part of the automatic operation device 1.
The control unit 10 is a commercial unit. The control unit 10 is a mass production type.
 制御ユニット10は、外部環境情報コネクタ110と、動作制御コネクタ130と、外部通信接続部140と、動作制御装置160とを備える。 The control unit 10 includes an external environment information connector 110, an operation control connector 130, an external communication connection unit 140, and an operation control device 160.
 外部環境情報コネクタ110は、図2に示す外部環境センシングユニット11と電気的に接続される。外部環境情報コネクタ110を介して、外部環境センシングユニット11から、検出の結果を示す外部環境データが制御ユニット10に入力される。
 外部環境センシングユニット11が例えばカメラの場合、外部環境情報コネクタ110は、外部画像コネクタとして機能する。以降、外部環境情報コネクタ110を、外部画像コネクタ110とも称する。
The external environment information connector 110 is electrically connected to the external environment sensing unit 11 shown in FIG. External environment data indicating the detection result is input to the control unit 10 from the external environment sensing unit 11 via the external environment information connector 110.
When the external environment sensing unit 11 is, for example, a camera, the external environment information connector 110 functions as an external image connector. Hereinafter, the external environment information connector 110 will also be referred to as an external image connector 110.
 動作制御コネクタ130は、図2に示す動作ユニット12と電気的に接続される。動作制御コネクタ130を介して、制御ユニット10から、動作ユニット12にアクチュエータ121の動作を制御するための動作制御信号が出力される。 The operation control connector 130 is electrically connected to the operation unit 12 shown in FIG. An operation control signal for controlling the operation of the actuator 121 is output from the control unit 10 to the operation unit 12 via the operation control connector 130.
 外部通信接続部140は、図2に示す遠隔通信装置13と電気的に接続される。遠隔通信装置13は、連携制御ユニット20と接続される。本実施形態における遠隔通信装置13は、ハブとして機能する。つまり、遠隔通信装置13は、外部通信接続部140から出力される信号を連携制御ユニット20に出力し、連携制御ユニット20から出力される信号を外部通信接続部140に出力する。従って、外部通信接続部140は、図2に示す連携制御ユニット20と通信可能に接続される。図2に示す例における外部通信接続部140は、遠隔通信装置13と電気的に接続される外部通信コネクタである。上述したように遠隔通信装置13はハブとして機能する。つまり、外部通信接続部140から見て、連携制御ユニット20は遠隔通信装置13と同一視することができる。従って、外部通信接続部140は、連携制御ユニット20と電気的に接続される外部通信コネクタと言うこともできる。以降、外部通信接続部140を外部通信コネクタ140とも称する。外部通信コネクタ140は、物理的には、複数種類の伝送形式に対応した複数のコネクタを含む。伝送形式の種類は、例えば、Controller Area Network(CAN)(登録商標)、及び、イーサネット(登録商標)である。複数のコネクタを有することによって、種々の機能を有する複数のユニットの候補から連携制御ユニット20を選択することができる。制御ユニット10の汎用性が向上する。外部通信コネクタ140は、連携制御ユニット20と通信可能に接続される外部通信接続部の一例である。外部通信接続部として、例えば、外部通信コネクタ140の代わりに無線通信機を用いる構成も採用可能である。 The external communication connection unit 140 is electrically connected to the remote communication device 13 shown in FIG. The remote communication device 13 is connected to the cooperation control unit 20. The remote communication device 13 in this embodiment functions as a hub. That is, the remote communication device 13 outputs the signal output from the external communication connection unit 140 to the cooperation control unit 20, and outputs the signal output from the cooperation control unit 20 to the external communication connection unit 140. Therefore, the external communication connection unit 140 is communicably connected to the cooperation control unit 20 shown in FIG. The external communication connection unit 140 in the example shown in FIG. 2 is an external communication connector that is electrically connected to the remote communication device 13. As described above, the remote communication device 13 functions as a hub. That is, when viewed from the external communication connection unit 140, the cooperation control unit 20 can be identified with the remote communication device 13. Therefore, the external communication connection unit 140 can be said to be an external communication connector that is electrically connected to the cooperation control unit 20. Hereinafter, the external communication connection unit 140 is also referred to as an external communication connector 140. The external communication connector 140 physically includes a plurality of connectors corresponding to a plurality of types of transmission formats. The types of transmission formats are, for example, Controller Area Network (CAN) (registered trademark) and Ethernet (registered trademark). By having a plurality of connectors, the cooperation control unit 20 can be selected from the candidates of a plurality of units having various functions. The versatility of the control unit 10 is improved. The external communication connector 140 is an example of an external communication connection unit that is communicably connected to the cooperation control unit 20. As the external communication connection unit, for example, a configuration in which a wireless communication device is used instead of the external communication connector 140 can be adopted.
 外部通信接続部140は、図2に示す遠隔通信装置13と電気的に接続される。外部通信接続部140を介して、遠隔操縦装置3(図2参照)及び遠隔通信装置13から、制御ユニット10に操縦指令の信号が入力される。つまり、画像の送信についての要求が遠隔操縦装置3から遠隔通信装置13へ入力されたことに応じて、操縦指令の信号が、遠隔通信装置13から出力され且つ外部通信接続部140を介し入力され制御ユニット10に入力される。また、外部通信接続部140を介して、制御ユニット10から、遠隔通信装置13に外部環境や制御ユニット10の状態を表す信号が出力される。この信号は、遠隔通信装置13から遠隔操縦装置3に供給される。 The external communication connection unit 140 is electrically connected to the remote communication device 13 shown in FIG. A control command signal is input to the control unit 10 from the remote control device 3 (see FIG. 2) and the remote control device 13 via the external communication connection unit 140. That is, in response to the request for transmission of the image being input from the remote control device 3 to the remote communication device 13, the control command signal is output from the remote control device 13 and input via the external communication connection unit 140. It is input to the control unit 10. Further, a signal indicating the external environment and the state of the control unit 10 is output from the control unit 10 to the remote communication device 13 via the external communication connection unit 140. This signal is supplied from the remote communication device 13 to the remote control device 3.
 動作制御装置160は、図2に示す外部環境センシングユニット11で検出された外部環境に基づいて動作ユニット12のアクチュエータ121を制御する。より詳細には、動作制御装置160は、外部環境センシングユニット11から出力された外部環境データを処理する。動作制御装置160は、外部環境データの処理結果に基づきアクチュエータ121を制御する。また、動作制御装置160は、遠隔操縦装置3の操作に応じた操縦指令を遠隔通信装置13から受け、操縦指令に基づいて動作ユニット12を制御する。
 また、動作制御装置160は、外部通信コネクタ140を介して接続される連携制御ユニット20と通信する。上述したように、自動動作機器1には、組合せ可能な連携動作機器2として種々の機器が選択可能である。
 連携動作機器2は、ある状況では、動作制御装置160に対し動作指令を送信する。また、連携動作機器2は、上記と異なる状況では、前記動作制御装置160から動作指令を受信するように構成された連携制御ユニット20である。
 動作制御装置160は連携制御ユニット20の状況に応じて、動作の種類を切替える。
The motion control device 160 controls the actuator 121 of the motion unit 12 based on the external environment detected by the external environment sensing unit 11 shown in FIG. More specifically, the motion control device 160 processes the external environment data output from the external environment sensing unit 11. The motion control device 160 controls the actuator 121 based on the processing result of the external environment data. Further, the motion control device 160 receives a control command corresponding to the operation of the remote control device 3 from the remote communication device 13, and controls the motion unit 12 based on the control command.
Further, the operation control device 160 communicates with the cooperation control unit 20 connected via the external communication connector 140. As described above, various devices can be selected as the collaborative operation device 2 that can be combined with the automatic operation device 1.
In a certain situation, the cooperative operation device 2 transmits an operation command to the operation control device 160. Further, the cooperative operation device 2 is a cooperative control unit 20 configured to receive an operation command from the operation control device 160 in a situation different from the above.
The operation control device 160 switches the type of operation according to the situation of the cooperative control unit 20.
 動作制御装置160は、連携制御ユニット20から動作指令を受信する場合、動作指令に基づいて動作制御信号を生成する。動作制御装置160は、生成した動作制御信号を、動作ユニット12のアクチュエータ121に動作制御コネクタ130を介して出力する。
 これに対し、連携制御ユニット20から動作指令を受信しない場合、動作制御装置160は、外部環境センシングユニット11から入力された外部環境データの処理結果に基づいて、連携動作機器2を制御するための動作指令を生成する。動作制御装置160は、生成した動作指令を連携制御ユニット20に外部通信コネクタ140を介して送信する。
 これによって、制御ユニット10の外部通信コネクタ140に連携制御ユニット20として、状況に応じて動作指令の入出力が変化する機器、及び、入力/出力が固定の機器のいずれが接続されても、連携制御ユニット20と連携して精密な作業を行うことができる。従って、制御ユニット10の汎用性を向上することができる。
When the operation control device 160 receives an operation command from the cooperation control unit 20, the operation control device 160 generates an operation control signal based on the operation command. The motion control device 160 outputs the generated motion control signal to the actuator 121 of the motion unit 12 via the motion control connector 130.
On the other hand, when the operation command is not received from the cooperation control unit 20, the operation control device 160 controls the cooperation operation device 2 based on the processing result of the external environment data input from the external environment sensing unit 11. Generate an operation command. The operation control device 160 transmits the generated operation command to the cooperation control unit 20 via the external communication connector 140.
As a result, the external communication connector 140 of the control unit 10 is linked as the linked control unit 20, regardless of whether the device whose input / output of the operation command changes according to the situation or the device whose input / output is fixed is connected. Precise work can be performed in cooperation with the control unit 20. Therefore, the versatility of the control unit 10 can be improved.
[動作制御装置の構成]
 図3に示すように、動作制御装置160は、自動制御回路170及び監視回路180を備えている。
 自動制御回路170及び監視回路180は、制御ユニット10の筐体内に設けられている。
[Configuration of operation control device]
As shown in FIG. 3, the motion control device 160 includes an automatic control circuit 170 and a monitoring circuit 180.
The automatic control circuit 170 and the monitoring circuit 180 are provided in the housing of the control unit 10.
 自動制御回路170は、動作制御装置160における基本的な制御処理を実施する。より詳細には、自動制御回路170は、外部環境センシングユニット11からの外部環境信号に基づいてアクチュエータ121を制御する。より詳細には、自動制御回路170は、ソフトウェアプロセスを実行することにより、外部環境信号に基づく動作制御信号を出力する。自動制御回路170は、ソフトウェアプロセスを実行することにより状況指標信号も出力する。 The automatic control circuit 170 carries out basic control processing in the motion control device 160. More specifically, the automatic control circuit 170 controls the actuator 121 based on the external environment signal from the external environment sensing unit 11. More specifically, the automatic control circuit 170 outputs an operation control signal based on an external environment signal by executing a software process. The automatic control circuit 170 also outputs a status index signal by executing a software process.
 自動制御回路170は、Graphics Processing Unit(GPU)171を備える。
 GPU171は、並列処理が可能なマルチコアを有するプロセッサである。GPU171は、並列に動作可能な100以上の演算コアを備える。GPU171は、100以上の演算コアによってSIMD(single-instruction multiple-data stream)演算を実行する。
 また、自動制御回路170は、不揮発性メモリ172、RAM173、制御入出力(制御IO)174、及びCPU175を備えている。不揮発性メモリ172は、例えば、マスクROMフラッシュメモリ、又はEEPROMである。
 CPU175は、Central Processing Unitである。CPU175は、自動制御回路170全体の制御を行う。GPU171とCPU175は、自動制御回路170の制御を分担して実行する。より詳細には、CPU175は、GPU171に、自動制御回路170の機能の一部を実行させる。GPU171が実行する機能については後述する。
 不揮発性メモリ172は、CPU175及びGPU171で実行されるプログラムを記憶している。CPU175は、不揮発性メモリ172に記憶されたプログラムを順次読み出し実行する。これにより、自動制御回路170による制御が実行される。
 また、不揮発性メモリ172に記憶されたGPU171のプログラムは、CPU175によって読み出され、GPU171に供給される。
 RAM173は、CPU175での処理の結果、及びGPU171での処理の結果を保持する。CPU175及びGPU171は、RAM173に対しデータを読み書きする。RAM173には、CPU175及びGPU171に入力されるデータ、処理の状況を示すデータ、及び処理の結果、自動制御回路170から出力される動作制御信号を示すデータが記憶される。GPU171に入力されるデータは、例えば外部環境信号を表すデータである。処理の状況を示すデータは、例えば、自動制御回路170の動作状況を示すパラメータの一つである。
 制御IO174は、CPU175及びGPU171に対し入出力される信号を中継する。CPU175及びGPU171は、制御IO174を介して、制御モデルの動作状況を示す状況指標信号を出力する。状況指標信号は、例えば、制御モデルの処理を行うプロセスが実行される周期及び時間を示すパルスである。状況指標信号は、自動制御回路170の動作状況を示すパラメータの一つである。RAM173の記憶内容は、制御IO174を介して、監視回路180のFPGA181に読み出されることができる。
The automatic control circuit 170 includes a Graphics Processing Unit (GPU) 171.
GPU 171 is a processor having a multi-core capable of parallel processing. The GPU 171 includes 100 or more arithmetic cores that can operate in parallel. The GPU 171 executes a SIMD (single-instruction multiple-data stream) operation by 100 or more arithmetic cores.
Further, the automatic control circuit 170 includes a non-volatile memory 172, a RAM 173, a control input / output (control IO) 174, and a CPU 175. The non-volatile memory 172 is, for example, a mask ROM flash memory or an EEPROM.
The CPU 175 is a Central Processing Unit. The CPU 175 controls the entire automatic control circuit 170. The GPU 171 and the CPU 175 share and execute the control of the automatic control circuit 170. More specifically, the CPU 175 causes the GPU 171 to perform some of the functions of the automatic control circuit 170. The functions executed by the GPU 171 will be described later.
The non-volatile memory 172 stores a program executed by the CPU 175 and the GPU 171. The CPU 175 sequentially reads and executes the programs stored in the non-volatile memory 172. As a result, control by the automatic control circuit 170 is executed.
Further, the program of the GPU 171 stored in the non-volatile memory 172 is read by the CPU 175 and supplied to the GPU 171.
The RAM 173 holds the result of the processing by the CPU 175 and the result of the processing by the GPU 171. The CPU 175 and the GPU 171 read / write data to / from the RAM 173. The RAM 173 stores data input to the CPU 175 and the GPU 171, data indicating the processing status, and data indicating the operation control signal output from the automatic control circuit 170 as a result of the processing. The data input to the GPU 171 is, for example, data representing an external environment signal. The data indicating the processing status is, for example, one of the parameters indicating the operating status of the automatic control circuit 170.
The control IO 174 relays signals input / output to the CPU 175 and the GPU 171. The CPU 175 and the GPU 171 output a status index signal indicating the operating status of the control model via the control IO 174. The status indicator signal is, for example, a pulse indicating the period and time during which the process of processing the control model is executed. The status index signal is one of the parameters indicating the operating status of the automatic control circuit 170. The stored contents of the RAM 173 can be read out to the FPGA 181 of the monitoring circuit 180 via the control IO 174.
 CPU175は、不揮発性メモリ172に記憶されたプログラムをGPU171に供給する。また、CPU175は、GPU171に、プログラムを実行の指令を出力する。
 GPU171が不揮発性メモリ172に記憶されたプログラムを実行することによって、自動制御回路170には、機械学習により構築された制御モデル171aが構成される。制御モデル171aは、外部環境センシングユニット11で検出される外部環境と制御対象である動作ユニット12の制御の関係を示すモデルである。制御モデル171aは、ニューラルネットワークによる機械学習モデルである。
 GPU171は、100以上の演算コアに対しSIMD演算を実行できるので、大規模な行列の繰返し演算を伴う制御モデル171aの処理を高速に実行することができる。
 CPU175は、外部環境のデータを機械学習モデルに適用した結果得られる物体の情報に基づいて、制御ユニット10の動作を判断する。CPU175は、判断の結果に基づいて、動作ユニット12を制御する。より詳細には、CPU175は、例えば制御IO174及び監視回路180の通信IF183を介して動作制御コネクタ130に指令を出力する。
 また、CPU175は、判断の結果に基づいて、連携制御ユニット20に指令を送信する。また、CPU175は、遠隔通信装置13にデータを送信する。
 なお、CPU175とGPU171の制御の分担、及びGPU171が実行するモデルの入出力は、上述したことに限られない。例えば機械学習モデルは、例えば、外部画像データと、最適な走行経路又はアーム等の動作軌跡の関係とを直接に示すようなモデルであってもよい。この場合、CPU175は、GPU171の処理結果として出力される走行経路又は動作軌跡に基づいて、動作ユニット12を制御する。
The CPU 175 supplies the program stored in the non-volatile memory 172 to the GPU 171. Further, the CPU 175 outputs a command to execute the program to the GPU 171.
When the GPU 171 executes the program stored in the non-volatile memory 172, the automatic control circuit 170 is configured with the control model 171a constructed by machine learning. The control model 171a is a model showing the relationship between the external environment detected by the external environment sensing unit 11 and the control of the operation unit 12 to be controlled. The control model 171a is a machine learning model using a neural network.
Since the GPU 171 can execute SIMD operations on 100 or more arithmetic cores, it is possible to execute the processing of the control model 171a accompanied by the iterative arithmetic of a large-scale matrix at high speed.
The CPU 175 determines the operation of the control unit 10 based on the information of the object obtained as a result of applying the data of the external environment to the machine learning model. The CPU 175 controls the operation unit 12 based on the result of the determination. More specifically, the CPU 175 outputs a command to the operation control connector 130 via, for example, the control IO 174 and the communication IF 183 of the monitoring circuit 180.
Further, the CPU 175 transmits a command to the cooperation control unit 20 based on the result of the determination. Further, the CPU 175 transmits data to the remote communication device 13.
The division of control between the CPU 175 and the GPU 171 and the input / output of the model executed by the GPU 171 are not limited to those described above. For example, the machine learning model may be a model that directly shows, for example, the relationship between the external image data and the optimum traveling path or the motion trajectory of the arm or the like. In this case, the CPU 175 controls the operation unit 12 based on the travel path or operation locus output as the processing result of the GPU 171.
 監視回路180は、自動制御回路170と一体で制御ユニット10を構成する。
 監視回路180は、フィールドプログラマブルゲートアレイ(FPGA)181及び不揮発性メモリ182を備える。また、監視回路180は、通信インターフェース(通信IF)183、リレー184、及び、プログラム用のメモリ185を備える。
The monitoring circuit 180 constitutes the control unit 10 integrally with the automatic control circuit 170.
The monitoring circuit 180 includes a field programmable gate array (FPGA) 181 and a non-volatile memory 182. Further, the monitoring circuit 180 includes a communication interface (communication IF) 183, a relay 184, and a memory 185 for a program.
 FPGA181は、再プログラミング可能な論理回路を有する。不揮発性メモリ182は、FPGA181で構築される、監視のための論理回路の接続情報を記憶している。FPGA181は、電源投入後又はリセット後の初期化処理で、不揮発性メモリ182から接続情報を読み出す。FPGA181は、接続情報に基づく論理回路を構築する。FPGA181は、論理回路を構築した後、論理回路による処理を開始する。
 不揮発性メモリ182に記憶されるデータを変更することにより、論理回路で構築される機能を変更することが可能である。従って、監視回路180では、不揮発性メモリ182に記憶されたソフトウェアである接続情報及び、接続情報に基づくハードウェアの変更によって監視の条件が変更されることができる。
The FPGA 181 has a reprogrammable logic circuit. The non-volatile memory 182 stores the connection information of the logic circuit for monitoring constructed by the FPGA 181. The FPGA 181 reads the connection information from the non-volatile memory 182 in the initialization process after the power is turned on or after the reset. The FPGA 181 constructs a logic circuit based on connection information. After constructing the logic circuit, the FPGA 181 starts the processing by the logic circuit.
By changing the data stored in the non-volatile memory 182, it is possible to change the function constructed by the logic circuit. Therefore, in the monitoring circuit 180, the monitoring conditions can be changed by changing the connection information, which is software stored in the non-volatile memory 182, and the hardware based on the connection information.
 FPGA181は、再プログラミング可能な論理回路以外に固定された論理回路を有していてもよい。例えば、FPGA181は、論理回路としてのプロセッサ181p及びメモリを有する。このプロセッサ181pは、例えば、メモリ185に記憶されたプログラムを順次読み出しながら処理を実行する。これによって、より高度な処理が可能になる。プロセッサ181pが読み出すメモリ185は、不揮発性である。但し、メモリ185は、FPGA181用の不揮発性メモリ182とは異なり、接続情報ではなく、プロセッサに順次読み出されるプログラムを記憶している。用途に応じてメモリが分かれることによって、FPGA181で構成される論理回路の信頼性が向上する。 The FPGA 181 may have a fixed logic circuit other than the reprogrammable logic circuit. For example, the FPGA 181 has a processor 181p and a memory as logic circuits. The processor 181p executes processing while sequentially reading the programs stored in the memory 185, for example. This allows for more advanced processing. The memory 185 read by the processor 181p is non-volatile. However, unlike the non-volatile memory 182 for the FPGA 181, the memory 185 stores not the connection information but the programs that are sequentially read by the processor. By dividing the memory according to the application, the reliability of the logic circuit composed of the FPGA 181 is improved.
 通信IF183は、FPGA181及び自動制御回路170が動作ユニット12と通信するためのインターフェースである。通信IF183は、例えば、動作ユニット12と通信するための物理インターフェースを提供する。物理インターフェースは例えばCANである。自動制御回路170は、通信IF183を介して動作制御信号を出力する。 The communication IF183 is an interface for the FPGA 181 and the automatic control circuit 170 to communicate with the operation unit 12. The communication IF 183 provides, for example, a physical interface for communicating with the operating unit 12. The physical interface is, for example, CAN. The automatic control circuit 170 outputs an operation control signal via the communication IF 183.
 リレー184は、動作ユニット12に対する電源ユニット14(図2参照)の電力供給を遮断する。より詳細には、リレー184は、FPGA181の制御により通電することによって、電源ユニット14に電力供給させるための供給信号を送信する。FPGA181の制御によりリレー184の通電が停止すると、供給信号の送信が停止する。この結果、電源ユニット14からの電力供給が遮断される。電力供給の遮断によって、動作停止を確実に行える。
 リレー184からの供給信号は、監視回路180の外部で自動動作機器1及び連携動作機器2の各部に配備された図示しないリレーを経由することができる。これにより、一部の遮断制御により、電力供給が直ちに遮断される。従って、動作停止を確実に行える。
The relay 184 cuts off the power supply of the power supply unit 14 (see FIG. 2) to the operating unit 12. More specifically, the relay 184 transmits a supply signal for supplying electric power to the power supply unit 14 by energizing under the control of the FPGA 181. When the energization of the relay 184 is stopped by the control of the FPGA 181, the transmission of the supply signal is stopped. As a result, the power supply from the power supply unit 14 is cut off. By shutting off the power supply, the operation can be reliably stopped.
The supply signal from the relay 184 can pass through a relay (not shown) provided in each part of the automatic operation device 1 and the cooperative operation device 2 outside the monitoring circuit 180. As a result, the power supply is immediately cut off by some cutoff control. Therefore, the operation can be reliably stopped.
 監視回路180のFPGA181で構成される論理回路は、自動制御回路170の動作の異常を、ルールベースの論理で検出する。 The logic circuit composed of FPGA181 of the monitoring circuit 180 detects an abnormality in the operation of the automatic control circuit 170 by rule-based logic.
 例えば、監視回路180は、異常を検出した場合、カメラの画像を強制的に遠隔操縦装置3に表示させるよう自動制御回路170を制御する。これにより、作業者が直ちに対応の操縦を行うことができる。 For example, the monitoring circuit 180 controls the automatic control circuit 170 so that the image of the camera is forcibly displayed on the remote control device 3 when an abnormality is detected. As a result, the operator can immediately perform the corresponding maneuver.
 また、監視回路180による出力は、上述の組合せに限られない。例えば、監視回路180は、少なくとも1種の信号に関連する少なくとも1つのパラメータの異常を検出した場合、動作指令を出力する代わりに、自動制御回路170による動作制御信号の出力を禁止する構成も採用可能である。この場合、監視回路180は、自動制御回路170からの信号を出力する通信IF183の動作を停止する。これによって、異常な動作制御信号が継続して出力される事態が抑制される。 Further, the output by the monitoring circuit 180 is not limited to the above combination. For example, when the monitoring circuit 180 detects an abnormality of at least one parameter related to at least one type of signal, the monitoring circuit 180 also adopts a configuration in which the output of the operation control signal by the automatic control circuit 170 is prohibited instead of outputting the operation command. It is possible. In this case, the monitoring circuit 180 stops the operation of the communication IF 183 that outputs the signal from the automatic control circuit 170. As a result, the situation in which an abnormal operation control signal is continuously output is suppressed.
 上述した制御ユニット10の基本的なハードウェア構造は、連携制御ユニット20にも適用される。但し、連携センシングユニット21の異常の検出結果に基づく出力内容が制御ユニット10と異なる場合、差異に応じて、ハードウェアの一部及びソフトウェアが制御ユニット10と異なる。 The basic hardware structure of the control unit 10 described above is also applied to the cooperative control unit 20. However, when the output content based on the abnormality detection result of the cooperative sensing unit 21 is different from that of the control unit 10, a part of the hardware and the software are different from the control unit 10 according to the difference.
[連携制御ユニットとの連携動作]
 上述した構成の制御ユニット10は、連携制御ユニット20と連携して動作する。
 制御ユニット10は、連携制御ユニット20として、状況に応じて動作指令の入出力が変化する機器、及び、入力/出力が固定の機器のいずれが接続される場合でも、連携制御ユニット20と連携して動作する。
 続いて、連携制御ユニット20との連携動作の詳細について説明する。
[Linked operation with linked control unit]
The control unit 10 having the above-described configuration operates in cooperation with the cooperative control unit 20.
As the cooperation control unit 20, the control unit 10 cooperates with the cooperation control unit 20 regardless of whether the device whose input / output of the operation command changes according to the situation or the device whose input / output is fixed is connected. Works.
Subsequently, the details of the cooperation operation with the cooperation control unit 20 will be described.
 図4は、図2に示す制御ユニットの動作のうち連携動作を説明するフローチャートである。
 連携制御ユニット20の種類の判別、及び種類に応じた連携動作は、動作制御装置160で実行される。
 種類の判別、及び種類に応じた連携動作は、主に図3に示す自動制御回路170によって実行される。但し、例えば、連携制御ユニット20の種類の判別は、監視回路180に備えられたプロセッサ181pによって実行される構成も採用可能である。また、種類の判別、及び種類に応じた連携動作は、遠隔操縦装置3により指示される構成も採用可能である。
 ここでは、動作制御装置160の動作として連携動作を説明する。
FIG. 4 is a flowchart illustrating a cooperative operation among the operations of the control unit shown in FIG.
The operation control device 160 executes the determination of the type of the cooperation control unit 20 and the cooperation operation according to the type.
The type determination and the cooperative operation according to the type are mainly executed by the automatic control circuit 170 shown in FIG. However, for example, a configuration in which the type of the cooperative control unit 20 is determined by the processor 181p provided in the monitoring circuit 180 can also be adopted. Further, the configuration instructed by the remote control device 3 can also be adopted for the type determination and the cooperative operation according to the type.
Here, the cooperative operation will be described as the operation of the operation control device 160.
 連携動作において、動作制御装置160は、まず、連携制御ユニット20と接続されているか否かを判別する(S11)。例えば、動作制御装置160は、外部通信接続部140を介して連携制御ユニット20と通信できるか否かを判別する。
 連携制御ユニット20が接続されると、連携制御ユニット20は、制御ユニット10の動作制御装置160と通信可能になる。この場合、動作制御装置160は、連携制御ユニット20と接続されていると判別する。
In the linked operation, the motion control device 160 first determines whether or not it is connected to the linked control unit 20 (S11). For example, the operation control device 160 determines whether or not it is possible to communicate with the cooperation control unit 20 via the external communication connection unit 140.
When the cooperative control unit 20 is connected, the cooperative control unit 20 can communicate with the operation control device 160 of the control unit 10. In this case, the operation control device 160 determines that it is connected to the cooperation control unit 20.
 次に、動作制御装置160は、連携制御ユニット20から動作指令を受信したか否かを判別する(S13)。 Next, the operation control device 160 determines whether or not an operation command has been received from the cooperative control unit 20 (S13).
 連携動作機器2から動作指令を受信しない場合(S13でNo)、動作制御装置160は、外部環境データを処理することによって、外部環境データの内容を認知する(S14)。
 より詳細には、例えば、自動動作機器1が自動走行車両の場合、動作制御装置160は、構築された制御モデルに基づいて、外部画像を表す画像データの内容を認知するための処理を行う。
When the operation command is not received from the linked operation device 2 (No in S13), the operation control device 160 recognizes the content of the external environment data by processing the external environment data (S14).
More specifically, for example, when the automatic operation device 1 is an automatic traveling vehicle, the operation control device 160 performs a process for recognizing the content of image data representing an external image based on the constructed control model.
 動作制御装置160は、外部環境データの内容の認知結果に基づいて、動作についての判断を行う(S15)。
 より詳細には、例えば、動作制御装置160は、画像データの内容の認知に基づいて、自動動作機器1の現在位置の把握と、最適な走行経路の決定を行う。
The motion control device 160 determines the motion based on the recognition result of the content of the external environment data (S15).
More specifically, for example, the motion control device 160 grasps the current position of the automatic motion device 1 and determines the optimum travel route based on the recognition of the content of the image data.
 動作制御装置160は、外部環境データの処理結果に基づいて動作制御信号を生成する(S16)。動作制御装置160は、生成した動作制御信号を、動作制御コネクタ130を介して動作ユニット12のアクチュエータ121に出力する。
 より詳細には、例えば、動作制御装置160は、決定された走行経路に基づいて、走行及び操舵の指令からなる動作制御信号を生成し、動作ユニット12に出力する。動作ユニット12はアクチュエータ121を動作させる。これによって、自動動作機器1が外部環境に基づいて動作する。
The operation control device 160 generates an operation control signal based on the processing result of the external environment data (S16). The operation control device 160 outputs the generated operation control signal to the actuator 121 of the operation unit 12 via the operation control connector 130.
More specifically, for example, the motion control device 160 generates an motion control signal including a travel and steering command based on the determined travel path, and outputs the motion control signal to the motion unit 12. The operation unit 12 operates the actuator 121. As a result, the automatic operation device 1 operates based on the external environment.
 また、動作制御装置160は、外部環境データの処理結果に基づいて、連携動作機器2を制御するための動作指令を送信する(S17)。
 より詳細には、例えば、動作制御装置160は、連携制御ユニット20に対し、走行経路における自動動作機器1の位置に応じた動作を行うための動作指令を生成する。動作制御装置160は、外部通信接続部140を介して連携制御ユニット20に動作指令を送信する。
Further, the operation control device 160 transmits an operation command for controlling the linked operation device 2 based on the processing result of the external environment data (S17).
More specifically, for example, the operation control device 160 generates an operation command for the cooperative control unit 20 to perform an operation according to the position of the automatic operation device 1 on the traveling path. The operation control device 160 transmits an operation command to the cooperation control unit 20 via the external communication connection unit 140.
 連携動作機器2から動作指令を受信した場合(S13でYes)、動作制御装置160は、外部環境データを処理することによって、外部環境データの内容を認知する(S21)。また、動作制御装置160は、外部環境データの内容の認知結果に基づいて、動作についての判断を行う(S22)。これらの動作は、上述したステップS14及びS15と同じである。 When an operation command is received from the linked operation device 2 (Yes in S13), the operation control device 160 recognizes the content of the external environment data by processing the external environment data (S21). Further, the motion control device 160 determines the motion based on the recognition result of the content of the external environment data (S22). These operations are the same as in steps S14 and S15 described above.
 次に、動作制御装置160は、連携制御ユニット20からの動作指令に基づく処理を行なう(S23)。連携制御ユニット20は、外部通信接続部140を介して制御ユニット10に動作指令を送信する。動作制御装置160は、動作指令に基づく処理を行なう。
 より詳細には、例えば、連携制御ユニット20は、作業対象の位置に応じて自動動作機器1が前進するか、後退するかを示す動作指令を制御ユニット10の動作制御装置160に送信する。
Next, the operation control device 160 performs processing based on the operation command from the cooperation control unit 20 (S23). The cooperative control unit 20 transmits an operation command to the control unit 10 via the external communication connection unit 140. The operation control device 160 performs processing based on the operation command.
More specifically, for example, the cooperative control unit 20 transmits an operation command indicating whether the automatic operation device 1 moves forward or backward according to the position of the work target to the operation control device 160 of the control unit 10.
 次に、動作制御装置160は、外部通信接続部140を介して受信した動作指令に基づき、連携動作機器2を制御するための動作制御信号を送信する(S24)。動作制御装置160は、ステップS21で認知した外部環境データと、動作指令に基づき動作制御信号を生成する。
 より詳細には、例えば、動作制御装置160は、決定した走行経路に沿って前進又は後退するよう、動作制御信号を生成し、動作ユニット12に出力する。動作ユニット12はアクチュエータ121を動作させる。これによって、自動動作機器1が連携制御ユニット20の動作指令に基づいて動作する。
 連携制御ユニット20から受信する動作指令に基づいて動作制御信号をアクチュエータ121に出力する処理と、この逆に、動作指令を連携制御ユニット20に外部通信接続部140を介して送信する処理との順次実行が可能である。
Next, the operation control device 160 transmits an operation control signal for controlling the cooperative operation device 2 based on the operation command received via the external communication connection unit 140 (S24). The motion control device 160 generates an motion control signal based on the external environment data recognized in step S21 and the motion command.
More specifically, for example, the motion control device 160 generates an motion control signal so as to move forward or backward along the determined travel path, and outputs the motion control signal to the motion unit 12. The operation unit 12 operates the actuator 121. As a result, the automatic operation device 1 operates based on the operation command of the cooperation control unit 20.
A process of outputting an operation control signal to the actuator 121 based on an operation command received from the cooperative control unit 20 and a process of transmitting an operation command to the cooperative control unit 20 via the external communication connection unit 140 in sequence. It is possible to execute.
[連携の第1の適用例]
 図5は、図2に示す制御ユニットの第1の適用例を示すブロック図である。
 図5に示す適用例は、自動動作機器1が自動走行車両であり、連携制御ユニット20が動作指令を高い頻度で出力する場合である。連携動作機器2は、自動走行車両に搭載された自律動作ロボットである。
 例えば、連携制御ユニット20は、連携センシングユニット21としての連携動作機器カメラ(ロボット用カメラ)の画像に基づいてロボットの作業対象の位置を認知する。連携制御ユニット20は作業対象の位置に応じて、前進・後退を含む動作指令を制御ユニット10の動作制御装置160に送信する。動作制御装置160は、連携制御ユニット20から、受信する動作指令に基づいて動作制御信号を生成する。動作制御装置160は、生成した動作制御信号を、動作ユニット12のアクチュエータ121に動作制御コネクタ130を介して出力する。自動動作機器1と連携動作機器2が互いに連携して精密な作業を行うことができる。
[First application example of cooperation]
FIG. 5 is a block diagram showing a first application example of the control unit shown in FIG.
An application example shown in FIG. 5 is a case where the automatic operation device 1 is an automatic traveling vehicle and the cooperation control unit 20 outputs an operation command with high frequency. The cooperative operation device 2 is an autonomous operation robot mounted on an autonomous vehicle.
For example, the cooperation control unit 20 recognizes the position of the work target of the robot based on the image of the cooperation operation device camera (robot camera) as the cooperation sensing unit 21. The cooperative control unit 20 transmits an operation command including forward / backward movement to the operation control device 160 of the control unit 10 according to the position of the work target. The operation control device 160 generates an operation control signal from the cooperation control unit 20 based on the operation command received. The motion control device 160 outputs the generated motion control signal to the actuator 121 of the motion unit 12 via the motion control connector 130. The automatic operation device 1 and the cooperative operation device 2 can cooperate with each other to perform precise work.
[連携の第2の適用例]
 図6は、図2に示す制御ユニットの第2の適用例を示すブロック図である。
 図6に示す適用例は、自動動作機器1が自動走行車両であり、連携制御ユニット20が動作指令を低い頻度で出力するか又は出力しない場合である。連携動作機器2’は、自動動作機器1に搭載された単純作業器である。連携動作機器2’は、例えば作業対象に向け薬剤等を噴霧する噴霧器である。
 動作制御装置160は、外部環境センシングユニット11としての外部撮影カメラの画像データの処理結果に基づいて連携動作機器2’を制御するための動作指令を生成する。動作制御装置160は、例えば、外部撮影カメラの画像データの処理結果取得される自動走行車両の位置に基づいて、連携動作機器2に作業動作の開始又は停止を行わせるための動作指令を生成し、連携制御ユニット20に送信する。
 これによって連携動作機器2は、自動動作機器1としての自動走行車両の走行に応じて適切に動作することができる。
 図5の例、及び図6の例を参照して説明したように、制御ユニット10の外部通信コネクタ140に連携制御ユニット20として、状況に応じて動作指令の入出力が変化する機器、及び、入力/出力が固定の機器のいずれが接続されても、連携制御ユニット20と連携して精密な作業を行うことができる。従って、制御ユニット10の汎用性を向上することができる。
[Second application example of cooperation]
FIG. 6 is a block diagram showing a second application example of the control unit shown in FIG.
An application example shown in FIG. 6 is a case where the automatic operation device 1 is an automatic traveling vehicle and the cooperation control unit 20 outputs an operation command at a low frequency or does not output. The cooperative operation device 2'is a simple work device mounted on the automatic operation device 1. The cooperative operation device 2'is, for example, a sprayer that sprays a chemical or the like toward a work target.
The operation control device 160 generates an operation command for controlling the cooperative operation device 2'based on the processing result of the image data of the external photographing camera as the external environment sensing unit 11. The motion control device 160 generates, for example, an motion command for causing the cooperative motion device 2 to start or stop a work motion based on the position of the autonomous driving vehicle acquired as a result of processing the image data of the external camera. , Transmit to the cooperation control unit 20.
As a result, the cooperative operation device 2 can operate appropriately according to the traveling of the automatic traveling vehicle as the automatic operation device 1.
As described with reference to the example of FIG. 5 and the example of FIG. 6, the external communication connector 140 of the control unit 10 is used as the linked control unit 20, and the input / output of the operation command changes depending on the situation. Regardless of which device has a fixed input / output, it is possible to perform precise work in cooperation with the cooperation control unit 20. Therefore, the versatility of the control unit 10 can be improved.
[遠隔操縦時の画像送信]
 例えば、走行経路上に障害物があり自動動作のみによる作業が困難な場合、また、動作試験や確認の場合、自動動作システムSは、操作者Hによる遠隔操縦装置3の操作に応じて動作する。
[Image transmission during remote control]
For example, when there is an obstacle on the traveling path and it is difficult to work only by automatic operation, or in the case of operation test or confirmation, the automatic operation system S operates in response to the operation of the remote control device 3 by the operator H. ..
 この場合に、自動動作システムSは、操作者Hによる遠隔操縦装置3の操作に応じて動作する。遠隔操縦装置3には、外部撮影カメラ11の画像データに基づく画像、及び連携動作機器カメラ21の画像データに基づく画像の双方又は片方が示される。 In this case, the automatic operation system S operates in response to the operation of the remote control device 3 by the operator H. The remote control device 3 shows both or one of an image based on the image data of the external photographing camera 11 and an image based on the image data of the cooperative operation device camera 21.
 図7は、図2に示す自動動作システムにおける画像の流れを示すブロック図である。
 図7における実線の矢印は、自動動作システムSが遠隔操縦される場合の画像の流れを示している。図7における破線の矢印は、遠隔操縦装置3からの画像要求信号の流れを示している。図7では、外部環境センシングユニット11の例として外部撮影カメラが示されている。また、連携センシングユニット21として連携動作機器カメラが示されている。以降、外部環境センシングユニット11を外部撮影カメラ11とも称する。また、連携センシングユニット21を連携動作機器カメラ21とも称する。
 遠隔操縦装置3からの画像要求信号の流れが、図7における一点鎖線のように連携制御ユニット20に向かう構成も採用可能である。このような構成において、例えばあるタイミングにおいて、連携制御ユニット20に向かう画像要求信号の流れ(一点鎖線)、及び、制御ユニット10に向かう画像要求信号の流れ(破線)の一方を有効にする構成が採用可能である。これによって、例えば、遠隔操縦装置3において、外部撮影カメラ11の画像と連携動作機器カメラ21の画像が切替えられる。
 また、上記の一方を有効にする構成に加えて更に、あるタイミングでは、連携制御ユニット20に向かう画像要求信号の流れ(一点鎖線)、及び、制御ユニット10に向かう画像要求信号の流れ(破線)の両方を有効とする構成も採用可能である。例えば、遠隔操縦装置3において、外部撮影カメラ11の画像と連携動作機器カメラ21の画像が同時に表示される。
 また更に、上記の両方も有効とする構成では、例えば、遠隔通信装置13と遠隔操縦装置3間の無線通信の状態に応じて、連携制御ユニット20及び制御ユニット10のそれぞれに対する画像指令の内容が調整されるような構成も採用可能である。
FIG. 7 is a block diagram showing an image flow in the automatic operation system shown in FIG.
The solid arrow in FIG. 7 shows the flow of the image when the automatic operation system S is remotely controlled. The broken line arrow in FIG. 7 indicates the flow of the image request signal from the remote control device 3. In FIG. 7, an external photographing camera is shown as an example of the external environment sensing unit 11. Further, a linked operation device camera is shown as the linked sensing unit 21. Hereinafter, the external environment sensing unit 11 will also be referred to as an external photographing camera 11. Further, the linked sensing unit 21 is also referred to as a linked operating device camera 21.
It is also possible to adopt a configuration in which the flow of the image request signal from the remote control device 3 is directed to the cooperative control unit 20 as shown by the alternate long and short dash line in FIG. 7. In such a configuration, for example, at a certain timing, one of the flow of the image request signal toward the cooperative control unit 20 (dashed line) and the flow of the image request signal toward the control unit 10 (broken line) is enabled. It can be adopted. As a result, for example, in the remote control device 3, the image of the external photographing camera 11 and the image of the cooperative operation device camera 21 are switched.
Further, in addition to the configuration in which one of the above is enabled, at a certain timing, the flow of the image request signal toward the cooperative control unit 20 (dashed line) and the flow of the image request signal toward the control unit 10 (broken line). A configuration that enables both of the above can also be adopted. For example, in the remote control device 3, the image of the external photographing camera 11 and the image of the cooperative operation device camera 21 are displayed at the same time.
Furthermore, in a configuration in which both of the above are valid, for example, the content of the image command for each of the cooperative control unit 20 and the control unit 10 is determined according to the state of wireless communication between the remote communication device 13 and the remote control device 3. A configuration that can be adjusted can also be adopted.
 自動動作機器1には、外部環境を撮影する外部撮影カメラ11とアクチュエータ121が搭載されている。また、連携動作機器2には、外部環境を撮影する連携動作機器カメラ21が備えられている。
 自動動作機器1の制御ユニット10は、1つの遠隔通信装置13と接続されている。
 自動動作機器1の制御ユニット10と、連携動作機器2の連携制御ユニット20は、1つの遠隔通信装置13に接続されている。つまり、制御ユニット10と連携制御ユニット20は1つの遠隔通信装置13を共同で使用している。
The automatic operation device 1 is equipped with an external photographing camera 11 and an actuator 121 for photographing the external environment. Further, the cooperative operation device 2 is provided with a cooperative operation device camera 21 for photographing the external environment.
The control unit 10 of the automatic operation device 1 is connected to one remote communication device 13.
The control unit 10 of the automatic operation device 1 and the cooperation control unit 20 of the cooperation operation device 2 are connected to one remote communication device 13. That is, the control unit 10 and the cooperative control unit 20 jointly use one remote communication device 13.
 制御ユニット10は、先に説明したように、外部画像コネクタ110、動作制御コネクタ130、及び、動作制御装置160(図3参照)を備えている。
 外部画像コネクタ110(外部環境情報コネクタ110)は、外部撮影カメラ11から撮影結果を示す外部画像データを制御ユニット10に入力するためのコネクタである。
 動作制御コネクタ130は、制御ユニット10がアクチュエータ121の動作を制御するための動作制御信号を出力するためのコネクタである。
 外部通信接続部140は、遠隔操縦装置3と通信可能に接続された1つの遠隔通信装置13に対しデータを入出力するための遠隔データコネクタとして機能する。外部通信接続部140は、また、連携制御ユニット20に対しデータを入出力するためのコネクタとして機能する。
As described above, the control unit 10 includes an external image connector 110, an operation control connector 130, and an operation control device 160 (see FIG. 3).
The external image connector 110 (external environment information connector 110) is a connector for inputting external image data indicating a shooting result from the external shooting camera 11 to the control unit 10.
The operation control connector 130 is a connector for the control unit 10 to output an operation control signal for controlling the operation of the actuator 121.
The external communication connection unit 140 functions as a remote data connector for inputting / outputting data to / from one remote communication device 13 communicably connected to the remote control device 3. The external communication connection unit 140 also functions as a connector for inputting / outputting data to / from the cooperation control unit 20.
 制御ユニット10の動作制御装置160(図3参照)は、画像指令信号取得を含めた画像の制御も担う。
 制御ユニット10の動作制御装置160(図3参照)は、外部画像コネクタ110を介して入力された外部画像データに基づくモニタ画像データを、遠隔データコネクタとして機能する外部通信接続部140から1つの遠隔通信装置13を介して遠隔操縦装置3へ出力する。動作制御装置160は、制御ユニット10の外部からの画像指令信号に基づいて、モニタ画像データを出力する。
 連携制御ユニット20でも、連携動作機器カメラ21の画像データに対し、制御ユニット10と同様の処理が実行される。ここでは、代表として制御ユニット10の動作制御装置160における動作を説明する。
The operation control device 160 (see FIG. 3) of the control unit 10 is also responsible for image control including image command signal acquisition.
The operation control device 160 (see FIG. 3) of the control unit 10 transfers monitor image data based on the external image data input via the external image connector 110 to one remote from the external communication connection unit 140 that functions as a remote data connector. It is output to the remote control device 3 via the communication device 13. The operation control device 160 outputs monitor image data based on an image command signal from the outside of the control unit 10.
The cooperative control unit 20 also executes the same processing as the control unit 10 for the image data of the linked operation device camera 21. Here, the operation of the control unit 10 in the operation control device 160 will be described as a representative.
[画像の流れの制御]
 図8は、図7に示す制御ユニット10の動作制御装置160における画像の制御を説明するフローチャートである。
[Control of image flow]
FIG. 8 is a flowchart illustrating control of an image in the operation control device 160 of the control unit 10 shown in FIG. 7.
 動作制御装置160は、外部から画像指令信号を受信したか否か判別する(S31)。画像指令信号は、外部通信接続部140を介して遠隔通信装置13から送信される。但し、画像指令信号は、外部通信コネクタ140を介して連携制御ユニット20から送信される場合もある。動作制御装置160は、双方のコネクタを介して送信される画像指令信号について判別する。 The operation control device 160 determines whether or not an image command signal has been received from the outside (S31). The image command signal is transmitted from the remote communication device 13 via the external communication connection unit 140. However, the image command signal may be transmitted from the cooperation control unit 20 via the external communication connector 140. The operation control device 160 discriminates about the image command signal transmitted through both connectors.
 画像指令信号を受信した場合(S31でYes)、動作制御装置160は、画像指令信号の内容が画像送信開始を示しているか判別する(S32)。
 画像送信開始の場合(S32でYes)、動作制御装置160は、モニタ画像データを遠隔操縦装置3へ送信する(S33)。即ち、動作制御装置160は、モニタ画像データを遠隔操縦装置3へ出力する。モニタ画像データは、外部画像コネクタ110を介して入力された外部画像データを加工したデータである。動作制御装置160は、外部画像データを画像圧縮処理することによって、外部画像データよりもデータ量が少ないモニタ画像データを生成する。但し、モニタ画像データとして、実質的に加工されていない外部画像データが利用されてもよい。動作制御装置160は、モニタ画像データを、外部通信接続部140から1つの遠隔通信装置13へ出力する。モニタ画像データは、遠隔通信装置13を介して遠隔操縦装置3へ送信される。
When the image command signal is received (Yes in S31), the operation control device 160 determines whether the content of the image command signal indicates the start of image transmission (S32).
When the image transmission is started (Yes in S32), the motion control device 160 transmits the monitor image data to the remote control device 3 (S33). That is, the motion control device 160 outputs the monitor image data to the remote control device 3. The monitor image data is data obtained by processing the external image data input via the external image connector 110. The operation control device 160 generates monitor image data having a smaller amount of data than the external image data by performing image compression processing on the external image data. However, external image data that has not been substantially processed may be used as the monitor image data. The operation control device 160 outputs monitor image data from the external communication connection unit 140 to one remote communication device 13. The monitor image data is transmitted to the remote control device 3 via the remote communication device 13.
 動作制御装置160は、画像指令信号の内容が画像送信停止を示しているか判別する(S34)。
 画像送信停止の場合(S34でYes)、動作制御装置160は、モニタ画像データの送信を停止する(S35)。即ち、動作制御装置160は、モニタ画像データの出力を停止する。これにより、遠隔操縦装置3へのモニタ画像データの送信が停止する。
The operation control device 160 determines whether the content of the image command signal indicates that the image transmission is stopped (S34).
When the image transmission is stopped (Yes in S34), the operation control device 160 stops the transmission of the monitor image data (S35). That is, the operation control device 160 stops the output of the monitor image data. As a result, the transmission of the monitor image data to the remote control device 3 is stopped.
 画像送信停止を示す画像指令信号は、連携制御ユニット20から出力される場合もある。例えば、連携動作機器カメラ21の画像のみを送信する指令を遠隔操縦装置3から受信した連携制御ユニット20が、制御ユニット10に、画像送信停止を示す画像指令信号する場合である。外部撮影カメラ11の画像データに基づくデータの送信が停止することによって、送信のデータ量を削減しつつ、操作者Hが操縦の際に注目したい画像を遠隔操縦装置3に表示することができる。 The image command signal indicating that the image transmission is stopped may be output from the cooperation control unit 20. For example, the cooperative control unit 20 that has received a command to transmit only the image of the cooperative operation device camera 21 from the remote control device 3 sends an image command signal indicating that the image transmission is stopped to the control unit 10. By stopping the transmission of data based on the image data of the external photographing camera 11, the remote control device 3 can display the image that the operator H wants to pay attention to during maneuvering while reducing the amount of data to be transmitted.
 動作制御装置160は、画像指令信号の内容がフレーム間引きを示しているか判別する(S36)。
 フレーム間引きの場合(S36でYes)、動作制御装置160は、モニタ画像データに対し、フレーム間引き処理を実行する(S37)。これにより、遠隔操縦装置3へ送信されるモニタ画像データのデータ量が減少する。
The operation control device 160 determines whether the content of the image command signal indicates frame thinning (S36).
In the case of frame thinning (Yes in S36), the operation control device 160 executes the frame thinning process on the monitor image data (S37). As a result, the amount of monitor image data transmitted to the remote control device 3 is reduced.
 動作制御装置160は、画像指令信号の内容が画像圧縮率を示しているか判別する(S38)。
 画像圧縮率の場合(S38でYes)、動作制御装置160は、画像圧縮処理の圧縮率を指定する(S39)。これにより、遠隔操縦装置3へ送信されるモニタ画像データのデータ量が減少する。
The operation control device 160 determines whether the content of the image command signal indicates the image compression rate (S38).
In the case of the image compression rate (Yes in S38), the operation control device 160 specifies the compression rate of the image compression process (S39). As a result, the amount of monitor image data transmitted to the remote control device 3 is reduced.
 動作制御装置160は、画像指令信号の内容が画像の一部領域の切抜きを示しているか判別する(S41)。
 領域の切抜きの場合(S41でYes)、動作制御装置160は、モニタ画像データに対し、領域の切抜き処理を実行する(S42)。即ち、動作制御装置160は、外部撮影カメラ11で撮影された画像のうち、画像指令で指定された一部の領域の画像を抽出してモニタ画像データを生成する。より詳細には、例えば、外部撮影カメラ11で撮影される範囲が広い場合に、操縦に必要な進行方向の一部の領域の画像のみが送信・表示される。これにより、遠隔操縦装置3へ送信されるモニタ画像データのデータ量が減少する。
 なお、画像の一部領域の切抜きは、例えば、制御ユニット10に複数の外部撮影カメラ11が接続され、動作制御装置160が複数の外部撮影カメラ11で撮影された複数領域の画像を処理している場合にも適用される。領域の切抜きの場合(S41でYes)、動作制御装置160は、指定された領域の画像のみをモニタ画像データとする。この場合にも、遠隔操縦装置3へ送信されるモニタ画像データのデータ量が減少する。
The operation control device 160 determines whether the content of the image command signal indicates a cutout of a part of the image (S41).
In the case of area clipping (Yes in S41), the operation control device 160 executes the area clipping process on the monitor image data (S42). That is, the motion control device 160 extracts an image of a part of the area designated by the image command from the images captured by the external photographing camera 11 to generate monitor image data. More specifically, for example, when the range captured by the external photographing camera 11 is wide, only an image of a part of the traveling direction necessary for maneuvering is transmitted / displayed. As a result, the amount of monitor image data transmitted to the remote control device 3 is reduced.
To cut out a part of the image, for example, a plurality of external photographing cameras 11 are connected to the control unit 10, and the motion control device 160 processes the images of the plurality of areas photographed by the plurality of external photographing cameras 11. It also applies if you have one. In the case of cropping a region (Yes in S41), the motion control device 160 uses only the image of the designated region as monitor image data. Also in this case, the amount of monitor image data transmitted to the remote control device 3 is reduced.
 上記ステップS31で、画像指令信号を受信していないと判別した場合(S31でNo)、動作制御装置160は、モニタ画像データの送信を停止する(S45)。即ち、動作制御装置160は、モニタ画像データの出力を停止する。
 次に、動作制御装置160は、制御ユニット10に異常状態が生じているか判別する(S46)。制御ユニット10の異常状態は、例えば、監視回路180のFPGA181で構成される論理回路によって検出される。
 動作制御装置160は、例えば、監視対象のパラメータのいずれかが、ルールで定められた範囲内にない場合、異常状態が生じていると判別する。
 異常状態が生じている場合(S46でYes)、動作制御装置160は、モニタ画像データを遠隔操縦装置3へ送信する(S47)。即ち、動作制御装置160は、モニタ画像データを遠隔操縦装置3へ出力する。モニタ画像データは、遠隔通信装置13を介して遠隔操縦装置3へ送信される。
 これによって、操作者Hは、遠隔操縦装置3の表示画面によって異常状態の発生を早期に認知することができる。また、操作者Hは、表示画面によって異常状態の原因を早期に認知することができる。
If it is determined in step S31 that the image command signal has not been received (No in S31), the operation control device 160 stops transmitting the monitor image data (S45). That is, the operation control device 160 stops the output of the monitor image data.
Next, the operation control device 160 determines whether or not an abnormal state has occurred in the control unit 10 (S46). The abnormal state of the control unit 10 is detected by, for example, a logic circuit composed of FPGA 181 of the monitoring circuit 180.
The operation control device 160 determines that an abnormal state has occurred, for example, when any of the parameters to be monitored is not within the range defined by the rule.
When an abnormal state has occurred (Yes in S46), the motion control device 160 transmits monitor image data to the remote control device 3 (S47). That is, the motion control device 160 outputs the monitor image data to the remote control device 3. The monitor image data is transmitted to the remote control device 3 via the remote communication device 13.
As a result, the operator H can recognize the occurrence of the abnormal state at an early stage by the display screen of the remote control device 3. In addition, the operator H can recognize the cause of the abnormal state at an early stage from the display screen.
[連携動作機器の離隔動作例]
 これまで、連携動作機器2が自動動作機器1に連結された例を説明した。しかし、本実施形態の制御ユニット10は、自動動作機器1と連結されず、離れて動作する連携動作機器4にも対応するように構成可能である。
 図9は、図2に示す制御ユニットの第3の適用例を示すブロック図である。
 図9に示す適用例では、自動動作システムSの連携動作機器4が、自動動作機器1に連結されていない。連携動作機器4は、自動動作機器1から離れて動作する。連携動作機器4は、例えば自動動作機器1と実質的に同じ構成を有する自動走行車両である。
 自動動作機器1の制御ユニット10が備える外部通信接続部140は、外部通信コネクタ141と無線通信部を含んでいる。また、連携動作機器4は、外部通信接続部140と無線通信を行う外部通信接続部440を備える。自動動作機器1の制御ユニット10は、連携動作機器4の連携制御ユニット40と、無線通信を介して通信する。連携制御ユニット40は連携動作ユニット42を制御する。
[Example of separation operation of linked operation device]
So far, an example in which the cooperative operation device 2 is connected to the automatic operation device 1 has been described. However, the control unit 10 of the present embodiment can be configured to correspond to the cooperative operation device 4 which is not connected to the automatic operation device 1 and operates separately.
FIG. 9 is a block diagram showing a third application example of the control unit shown in FIG.
In the application example shown in FIG. 9, the cooperative operation device 4 of the automatic operation system S is not connected to the automatic operation device 1. The cooperative operation device 4 operates away from the automatic operation device 1. The cooperative operation device 4 is, for example, an automatic traveling vehicle having substantially the same configuration as the automatic operation device 1.
The external communication connection unit 140 included in the control unit 10 of the automatic operation device 1 includes an external communication connector 141 and a wireless communication unit. Further, the cooperative operation device 4 includes an external communication connection unit 440 that performs wireless communication with the external communication connection unit 140. The control unit 10 of the automatic operation device 1 communicates with the cooperation control unit 40 of the cooperation operation device 4 via wireless communication. The cooperation control unit 40 controls the cooperation operation unit 42.
 自動動作機器1の制御ユニット10は、連携制御ユニット40からの動作指令に基づいて動作制御信号を出力する。例えば、制御ユニット10は、連携制御ユニット40からの動作指令に応じて走行する。この場合、制御ユニット10は、例えば、外部撮影カメラ11で自動動作機器1の外部を撮影するとともに、外部撮影カメラ11の画像データに基づき走行経路を自ら判断するとともに、連携動作機器4の連携制御ユニット40から受信する動作指令に応じて自動動作機器1の走行開始又は停止を判断する。このようにして、自動動作機器1は、連携動作機器4と協調して走行することも可能である。 The control unit 10 of the automatic operation device 1 outputs an operation control signal based on an operation command from the cooperative control unit 40. For example, the control unit 10 travels in response to an operation command from the cooperation control unit 40. In this case, for example, the control unit 10 photographs the outside of the automatic operation device 1 with the external photography camera 11, determines the traveling route by itself based on the image data of the external photography camera 11, and controls the cooperation of the cooperation operation device 4. The start or stop of running of the automatic operation device 1 is determined according to the operation command received from the unit 40. In this way, the automatic operation device 1 can also travel in cooperation with the cooperative operation device 4.
 また、制御ユニット10は、外部撮影カメラ11の画像データに基づき、連携動作機器4を制御するための動作指令を生成する。制御ユニット10は、動作指令を連携制御ユニット40に送信する。連携動作機器4は、例えば、連携動作機器カメラ41で連携動作機器4の外部を撮影するとともに、連携動作機器カメラ41の画像データに基づき走行経路を自ら判断するとともに、自動動作機器1の制御ユニット10から受信する動作指令に応じて連携動作機器4の走行開始又は停止を判断する。このようにして、連携動作機器4は、自動動作機器1と協調して動作する。 Further, the control unit 10 generates an operation command for controlling the linked operation device 4 based on the image data of the external photographing camera 11. The control unit 10 transmits an operation command to the cooperative control unit 40. For example, the cooperative operation device 4 photographs the outside of the cooperative operation device 4 with the cooperative operation device camera 41, determines the traveling route by itself based on the image data of the cooperative operation device camera 41, and controls the automatic operation device 1. The start or stop of running of the cooperative operation device 4 is determined according to the operation command received from 10. In this way, the cooperative operation device 4 operates in cooperation with the automatic operation device 1.
[第三実施形態]
 上述した実施形態では、例えば図2を参照して、自動動作機器1の制御ユニット10と、連携動作機器2の連携制御ユニット20が、1つの遠隔通信装置13に直接接続されている例を説明した。
 図10は、本発明の第三実施形態に係る制御ユニットを含む自動動作システムの構成を示すブロック図である。
 本実施形態における自動動作機器1は、ハブ13aを有する点が第二実施形態と異なる。また、本実施形態における自動動作機器1は、連携制御ユニット20に対し、直接ではなく、ハブ13aを介して接続される。
本実施形態における他の点は、第二実施形態と同じであるので、各部には第二実施形態と同じ符号を付している。
 図10における制御ユニット10と連携制御ユニット20は、ハブ13aを介して、1つの遠隔通信装置13に接続されている。ハブ13aは、制御ユニット10、連携制御ユニット20、及び遠隔通信装置13の間で、データを中継する。ハブ13aに接続される制御ユニット10及び連携制御ユニット20は、共通の伝送形式でデータを送信する。
 また、図10における自動動作機器1は、ハブ13aを介して連携制御ユニット20と通信を行う。
 本実施形態におけるハブ13aは、第1実施形態の遠隔通信装置13におけるデータ混合機能が独立したものである。つまり、ハブ13aは、遠隔通信装置13の一部の機能を担っている。従って、本実施形態でも、自動動作機器1の制御ユニット10と、連携動作機器2の連携制御ユニット20が、1つの遠隔通信装置13に接続されているということができる。
[Third Embodiment]
In the above-described embodiment, for example, with reference to FIG. 2, an example in which the control unit 10 of the automatic operation device 1 and the cooperation control unit 20 of the cooperation operation device 2 are directly connected to one remote communication device 13 will be described. did.
FIG. 10 is a block diagram showing a configuration of an automatic operation system including a control unit according to a third embodiment of the present invention.
The automatic operation device 1 in the present embodiment is different from the second embodiment in that it has a hub 13a. Further, the automatic operation device 1 in the present embodiment is connected to the cooperation control unit 20 via the hub 13a instead of directly.
Since other points in this embodiment are the same as those in the second embodiment, each part is designated by the same reference numerals as those in the second embodiment.
The control unit 10 and the cooperation control unit 20 in FIG. 10 are connected to one remote communication device 13 via the hub 13a. The hub 13a relays data between the control unit 10, the cooperative control unit 20, and the remote communication device 13. The control unit 10 and the cooperative control unit 20 connected to the hub 13a transmit data in a common transmission format.
Further, the automatic operation device 1 in FIG. 10 communicates with the cooperation control unit 20 via the hub 13a.
The hub 13a in the present embodiment has an independent data mixing function in the remote communication device 13 of the first embodiment. That is, the hub 13a has a part of the functions of the remote communication device 13. Therefore, even in this embodiment, it can be said that the control unit 10 of the automatic operation device 1 and the cooperation control unit 20 of the cooperation operation device 2 are connected to one remote communication device 13.
 以上説明した第二から第三の実施形態では、説明を分かりやすくするため、自動動作機器1として走行する装置の例を挙げた。しかし、実施形態はこれに限られるものではなく、自動動作機器1は、例えば、走行しないロボットでもよい。 In the second to third embodiments described above, in order to make the explanation easier to understand, an example of a device traveling as an automatic operation device 1 is given. However, the embodiment is not limited to this, and the automatic operation device 1 may be, for example, a robot that does not travel.
1  自動動作機器
2,2’,4  連携動作機器
3  遠隔操縦装置
10  制御ユニット
11  外部環境センシングユニット(外部撮影カメラ)
12  動作ユニット
13  遠隔通信装置
14  電源ユニット
20,40  連携制御ユニット
21,41  連携センシングユニット(連携動作機器カメラ)
22、42  連携動作ユニット
40  連携制御ユニット
110  外部環境情報コネクタ(外部画像コネクタ)
121  アクチュエータ
130  動作制御コネクタ
140,440  外部通信接続部(外部通信コネクタ)
160  動作制御装置
170  自動制御回路
171  GPU
171a  制御モデル
172  不揮発性メモリ
180  監視回路
181  FPGA
182  不揮発性メモリ
184  リレー
185  メモリ
221  アクチュエータ
S   自動動作システム
1 Automatic operation device 2, 2', 4 Cooperative operation device 3 Remote control device 10 Control unit 11 External environment sensing unit (external camera)
12 Operation unit 13 Remote communication device 14 Power supply unit 20, 40 Coordination control unit 21, 41 Coordination sensing unit (cooperation operation device camera)
22, 42 Cooperative operation unit 40 Cooperative control unit 110 External environment information connector (external image connector)
121 Actuator 130 Operation control connector 140,440 External communication connection (external communication connector)
160 Operation control device 170 Automatic control circuit 171 GPU
171a Control model 172 Non-volatile memory 180 Monitoring circuit 181 FPGA
182 Non-volatile memory 184 Relay 185 Memory 221 Actuator S Automatic operation system

Claims (5)

  1.  外部環境を検出する外部環境センシングユニットと前記外部環境に基づいて制御されるアクチュエータとが搭載される自動動作機器に用いられる制御ユニットであって、
     前記制御ユニットは、
     前記外部環境センシングユニットから検出の結果を示す外部環境データを入力するための外部環境情報コネクタと、
     前記アクチュエータの動作を制御するための動作制御信号を出力するための動作制御コネクタと、
     物理的又は非物理的な出力を行う連携動作機器を制御する連携制御ユニットと有線又は無線により通信可能に接続されるように構成され、前記連携制御ユニットから送信された前記自動動作機器を制御するための動作指令を前記制御ユニットへ出力するとともに、前記制御ユニットから出力された前記連携動作機器を制御するための動作指令を前記連携制御ユニットへ送信する、外部通信接続部と、
     前記連携動作機器から動作指令を受信した場合には、前記連携制御ユニットから受信する動作指令に基づいて前記動作制御信号を生成し、前記動作制御信号を前記アクチュエータに前記動作制御コネクタを介して出力し、前記外部環境データの処理結果に基づいて前記連携動作機器を動作させる場合には、前記外部環境データの処理結果に基づいて前記動作制御信号を生成するとともに前記連携動作機器を制御するための動作指令を生成し、前記連携動作機器を制御するための動作指令を前記連携制御ユニットに前記外部通信接続部を介して送信する動作制御装置と
    を備える。
    A control unit used in an automatically operating device equipped with an external environment sensing unit that detects an external environment and an actuator that is controlled based on the external environment.
    The control unit is
    An external environment information connector for inputting external environment data indicating the detection result from the external environment sensing unit, and
    An operation control connector for outputting an operation control signal for controlling the operation of the actuator, and an operation control connector.
    It is configured to be communicably connected to the cooperative control unit that controls the cooperative operation device that outputs physical or non-physical output by wire or wirelessly, and controls the automatic operation device transmitted from the cooperative control unit. An external communication connection unit that outputs an operation command for controlling the control unit and transmits an operation command for controlling the linked operation device output from the control unit to the linked control unit.
    When an operation command is received from the cooperative operation device, the operation control signal is generated based on the operation command received from the cooperative control unit, and the operation control signal is output to the actuator via the operation control connector. Then, when the cooperative operation device is operated based on the processing result of the external environment data, the operation control signal is generated based on the processing result of the external environment data and the cooperative operation device is controlled. It is provided with an operation control device that generates an operation command and transmits an operation command for controlling the cooperative operation device to the cooperative control unit via the external communication connection unit.
  2.  請求項1記載の制御ユニットであって、
     前記外部環境センシングユニットはカメラであり、
     前記外部環境情報コネクタは、前記外部環境データとして、前記カメラから出力された画像データを入力する。
    The control unit according to claim 1.
    The external environment sensing unit is a camera.
    The external environment information connector inputs image data output from the camera as the external environment data.
  3.  請求項1又は2に記載の制御ユニットであって、
     前記自動動作機器に搭載された前記アクチュエータは、前記自動動作機器を走行させる走行装置であり、
     前記動作制御装置は、
    前記連携制御ユニットから動作指令を受信した場合には、前記連携制御ユニットから受信する動作指令と、前記外部環境データの処理結果とに基づいて、前記自動動作機器の走行を指示するための動作制御信号を生成し、
    前記外部環境データの処理結果に基づいて前記連携動作機器を動作させる場合には、前記外部環境データの処理結果に基づいて、前記自動動作機器の走行を指示するための動作制御信号を生成するとともに、前記連携動作機器を制御するための動作指令を生成し、前記連携動作機器を制御するための動作指令を前記連携制御ユニットに前記外部通信接続部を介して送信する。
    The control unit according to claim 1 or 2.
    The actuator mounted on the automatic operation device is a traveling device for traveling the automatic operation device.
    The motion control device is
    When an operation command is received from the cooperation control unit, operation control for instructing the running of the automatic operation device based on the operation command received from the cooperation control unit and the processing result of the external environment data. Generate a signal,
    When operating the cooperative operation device based on the processing result of the external environment data, an operation control signal for instructing the running of the automatic operation device is generated based on the processing result of the external environment data. , The operation command for controlling the cooperative operation device is generated, and the operation command for controlling the cooperative operation device is transmitted to the cooperation control unit via the external communication connection unit.
  4.  請求項1から3いずれか1項に記載の制御ユニットであって、
     前記動作制御装置は、前記連携制御ユニットから受信する動作指令に基づいて前記動作制御信号を生成し前記動作制御信号を前記アクチュエータに出力する処理と、動作指令を前記連携制御ユニットに前記外部通信接続部を介して送信する処理とを順次実行する。
    The control unit according to any one of claims 1 to 3.
    The operation control device generates the operation control signal based on the operation command received from the cooperation control unit and outputs the operation control signal to the actuator, and connects the operation command to the cooperation control unit by the external communication. The process of transmitting via the unit is executed in sequence.
  5.  請求項1から4いずれか1項に記載の制御ユニットであって、
     前記外部通信接続部は、互いに異なる複数種類の伝送形式に対応した複数のコネクタを含む。
    The control unit according to any one of claims 1 to 4.
    The external communication connection unit includes a plurality of connectors corresponding to a plurality of different types of transmission formats.
PCT/JP2020/014546 2019-04-01 2020-03-30 Control unit WO2020203968A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/014441 WO2020202426A1 (en) 2019-04-01 2019-04-01 Control unit and automatic operation system
JPPCT/JP2019/014441 2019-04-01
JPPCT/JP2019/014442 2019-04-01
PCT/JP2019/014442 WO2020202427A1 (en) 2019-04-01 2019-04-01 Control unit

Publications (1)

Publication Number Publication Date
WO2020203968A1 true WO2020203968A1 (en) 2020-10-08

Family

ID=72666532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014546 WO2020203968A1 (en) 2019-04-01 2020-03-30 Control unit

Country Status (1)

Country Link
WO (1) WO2020203968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262378A (en) * 2004-03-18 2005-09-29 Oki Electric Ind Co Ltd Autonomous robot and its control method
US20140031977A1 (en) * 2012-07-27 2014-01-30 Engineering Services Inc. Modular mobile robot
JP2017030093A (en) * 2015-07-31 2017-02-09 株式会社東芝 Multiple robot coordination moving system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262378A (en) * 2004-03-18 2005-09-29 Oki Electric Ind Co Ltd Autonomous robot and its control method
US20140031977A1 (en) * 2012-07-27 2014-01-30 Engineering Services Inc. Modular mobile robot
JP2017030093A (en) * 2015-07-31 2017-02-09 株式会社東芝 Multiple robot coordination moving system and method

Similar Documents

Publication Publication Date Title
CN108345299B (en) Wireless management system for operation vehicle
US20200141755A1 (en) Navigation processing method, apparatus, and control device
JP6605241B2 (en) Remote control system
TWI488015B (en) Communication device for maneuvering, communication device for maneuvered body and communication system for maneuvering
JP6689126B2 (en) Work vehicle control system
WO2019208060A1 (en) Pivot control device for pivoting-type working machine
CN107450556A (en) A kind of independent navigation intelligent wheel chair based on ROS
JP7287262B2 (en) Remote control system and remote control server
WO2020203968A1 (en) Control unit
US20220019219A1 (en) Control unit and autonomous functioning system
AU2018201213B2 (en) Command for underground
AU2017261609B2 (en) Command for underground
WO2020202427A1 (en) Control unit
US20220207882A1 (en) Working Vehicle, Obstacle Detection Method, and Obstacle Detection Program
JP2019151211A (en) Driving support device, and driving support method
WO2020202428A1 (en) Control unit
JP6608176B2 (en) Information processing apparatus, environmental information collection method, and environmental information collection program
US20220297821A1 (en) Control device, control method, unmanned aircraft, information processing device, information processing method, and program
KR20190091870A (en) Robot control system using motion sensor and VR
JP7264395B2 (en) REMOTE CONTROL SYSTEM FOR WORK VEHICLE, REMOTE CONTROL DEVICE, AND REMOTE CONTROL METHOD
US11586225B2 (en) Mobile device, mobile body control system, mobile body control method, and program
WO2021153187A1 (en) Work assisting server and work assisting system
CN114867921B (en) Remote control system of engineering machinery
CN210835725U (en) Cleaning equipment
JP2021099017A (en) Remote operation device and remote operation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP