WO2020196580A1 - Radar device and signal processing method for radar signal - Google Patents

Radar device and signal processing method for radar signal Download PDF

Info

Publication number
WO2020196580A1
WO2020196580A1 PCT/JP2020/013206 JP2020013206W WO2020196580A1 WO 2020196580 A1 WO2020196580 A1 WO 2020196580A1 JP 2020013206 W JP2020013206 W JP 2020013206W WO 2020196580 A1 WO2020196580 A1 WO 2020196580A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
antenna elements
radar
peak
Prior art date
Application number
PCT/JP2020/013206
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 由比
四方 英邦
健太 岩佐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020196580A1 publication Critical patent/WO2020196580A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present disclosure relates to a radar device and a signal processing method for radar signals.
  • radar devices In recent years, the utilization of radar devices has been in full swing, mainly in advanced driver assistance systems for automobiles and autonomous vehicles. Radar devices are required not only to detect moving object information such as vehicles, motorcycles, bicycles, and pedestrians, but also to detect environmental information such as roads, bollards, and curbs, and the need for radar devices that can achieve high resolution is increasing. ing. As a configuration of a radar device capable of realizing high resolution, there is a MIMO (Multiple-Input and Multiple-Output) radar.
  • MIMO Multiple-Input and Multiple-Output
  • a virtual reception array antenna (hereinafter referred to as a virtual array) that is equal to the product of the number of transmission antenna elements and the number of reception antenna elements is configured. it can. As a result, the effective aperture length of the array antenna can be increased with a small number of elements.
  • the non-limiting examples of the present disclosure contribute to the provision of an improved radar device and a signal processing method for radar signals with improved detection accuracy of a detection target.
  • the radar device periodically performs the first phase rotation on each of the plurality of transmitting antenna elements, and produces a plurality of radar signals having a phase difference according to the transmitting antenna element.
  • the transmission circuit that transmits from the plurality of transmitting antenna elements, the receiving circuit that receives the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of receiving antenna elements, and the receiving circuit that receives the reflected wave signals by the plurality of receiving antenna elements.
  • Each of the reflected wave signals has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and a second phase rotation amount corresponding to the first phase rotation and the phase difference.
  • the removal circuit for removing the Doppler frequency component whose power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is provided. Take the composition.
  • a plurality of radars are periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and have a phase difference according to the transmitting antenna element.
  • Each of the reflected wave signals received by the transmission antenna element has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and a number of rotation amounts corresponding to the first phase rotation and the phase difference.
  • the process of removing the Doppler frequency component in which the power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is performed. Take a configuration that includes.
  • Block diagram showing an example of the configuration of the radar device according to the first embodiment The figure explaining an example of the virtual image which concerns on Embodiment 1.
  • the figure explaining an example of the phase difference of the signal arriving at a virtual reception array antenna The figure explaining an example of the relationship between the position of a virtual receiving antenna element and the phase difference of an incident signal.
  • MIMO radar in order to distinguish the transmitting antenna that transmitted the received radio wave, for example, a method of distinguishing the transmitting antenna by switching the transmitting antenna in time division is used.
  • MIMO radar may detect the distance to an object by using a chirp signal that linearly raises or lowers the frequency according to the passage of time. For example, the chirp signal transmitted by the MIMO radar is reflected by the object to be detected. Next, the distance to the object to be detected is detected based on the signal obtained by synthesizing the received signal including the reflected wave by the object to be detected and the transmitted signal received by the MIMO radar with a mixer. In addition, the MIMO radar detects the relative velocity of the object with respect to the MIMO radar by executing a transmission sequence in which the chirp signal is transmitted in a time-division manner for each transmission antenna a plurality of times.
  • the number of transmitting antennas may be increased.
  • the transmission sequence period may increase and the relative speed that can be detected may decrease.
  • shortening the chirp signal period can reduce the distance resolution.
  • the following two techniques are considered as alternative technologies for switching the transmitting antenna in a time-division manner.
  • the first technique enables simultaneous transmission by diffusing each transmitting antenna with a different orthogonal code.
  • simultaneous transmission is enabled by Doppler shifting each transmitting antenna by a frequency larger than the Doppler bandwidth.
  • the first technique when backdiffusion is performed using the orthogonal code assigned to each transmitting antenna in the receiving circuit of the radar device, interference caused by the periodicity of the code or the like is caused by multiplying different codes. Ingredients are generated, leading to false detection. Further, in the second technique, since the transmitting antenna is separated on the Doppler frequency axis, the relative speed that can be detected is limited.
  • deterioration of distance detection performance and speed detection performance is prevented or suppressed when the number of transmitting antennas increases. This makes it possible to provide a MIMO radar that improves the azimuth resolution and suppresses false detection due to the orthogonal code.
  • FIG. 1 is a block diagram showing an example of the configuration of the radar device 10 according to the first embodiment.
  • the radar device 10 includes, for example, a transmission control unit 100, a transmission signal generation unit 101, a phase rotation unit 102, a transmission high frequency unit 103, and a transmission array antenna 104.
  • the transmission control unit 100, the transmission signal generation unit 101, the phase rotation unit 102, the transmission high frequency unit 103, and the transmission array antenna 104 form a transmission circuit.
  • the radar device 10 transmits a radar signal a plurality of times at predetermined intervals of several microseconds to several tens of microseconds, detects the Doppler frequency of the received signal, and thereby reflects the radar signal (reflecting object).
  • the detection target detects the relative velocity with respect to the radar device 10.
  • the transmission interval of the radar signal (chirp signal) is Td
  • the number of transmissions is Nd.
  • the maximum value fdmax of the Doppler frequency that can be detected is equal to 1 / (2 ⁇ Td).
  • the transmission control unit 100 controls the radar transmission timing for transmitting at a predetermined transmission interval and the radar signal phase to be transmitted at the transmission timing for each transmission system.
  • the transmission control unit 100 notifies the transmission signal generation unit 101 of the radar transmission timing.
  • the radar transmission timing is the transmission interval Td.
  • the radar signal phase is determined based on Ntx codes (code length Nd bits) orthogonal to each other.
  • Ntx is an arbitrary integer of 2 or more.
  • the Ntx codes that are orthogonal to each other are, for example, Walsh codes.
  • the sign bit value 0 is assigned a phase of 0 radians (0 degrees) and the bit value 1 is assigned a phase of ⁇ radians (180 degrees).
  • the transmission control unit 100 notifies the phase rotation unit 102 of a phase control signal indicating the phase assigned to one bit in the code for each transmission interval Td.
  • the transmission signal generation unit 101 generates a radar transmission signal at the radar transmission timing notified from the transmission control unit 100.
  • the radar transmission signal is, for example, a chirp signal or a coded pulse signal used in the FCM (Fast Chip Modulation) method.
  • the phase rotation unit 102 phase-rotates the radar transmission signal generated by the transmission signal generation unit 101 for each transmission system based on the phase control signal generated by the transmission control unit 100.
  • the phase rotation amount of the ncth transmission in the transmission antenna Ntj is defined as ⁇ j (nc).
  • the transmission high frequency unit 103 adjusts the radar signal phase-rotated for each transmission system by the phase rotation unit 102 to a preset transmission power, and outputs the radar signal to each of the plurality of transmission antenna elements of the transmission array antenna 104.
  • the transmission array antenna 104 transmits the radar signal generated by the transmission high frequency unit 103 as radio waves in the air.
  • the present disclosure will be described with respect to the case where the transmitting array antenna 104 includes two transmitting antenna elements At1 and At2.
  • Reference numeral 115 indicates a location where a phase error can occur in the transmission radar signal (a location where a phase error occurs). The phase error can occur for each transmission system.
  • the radar device 10 includes, for example, a reception array antenna 105, a reception high frequency unit 106, and an A / D converter (ADC) 107.
  • the receiving array antenna 105, the receiving high frequency unit 106, and the ADC 107 form a receiving circuit.
  • the receiving array antenna 105 receives the reflected wave transmitted from the transmitting array antenna 104, reflected by the reflecting object, and returned to the radar device 10.
  • the receiving array antenna 105 includes Nrx transmitting antenna elements.
  • the present disclosure will be described with respect to the case where the receiving array antenna 105 includes two receiving antenna elements Ar1 and Ar2.
  • the receiving antenna elements Ar1 and Ar2 receive the reflected waves of the radio waves transmitted from the transmitting antenna elements At1 and At2, respectively.
  • the receiving antenna elements Ar1 and Ar2 passed through the path of At1 ⁇ reflective object ⁇ Ar1, the path of At2 ⁇ reflective object ⁇ Ar1, the path of At1 ⁇ reflective object ⁇ Ar2, and the path of At2 ⁇ reflective object ⁇ Ar2.
  • Ntx ⁇ Nrx system radar signal is received.
  • the orientation of the reflecting object is detected based on these plurality of path differences (phase differences caused by the arrival time difference) and the relative positions between the transmitting antenna element and the receiving antenna element.
  • the beamformer method or the MUSIC (MUSIC Signal Classification) method is used to detect the orientation of the reflecting object.
  • the MIMO radar by appropriately arranging the transmission / reception antenna spacing, the effective aperture length of the array antenna can be virtually expanded with a small number of elements, and the angular resolution can be improved.
  • the reception high frequency unit 106 performs demodulation processing by multiplying the signal received by the reception antenna elements Ar1 and Ar2 of the reception array antenna 105 with the transmission signal, and generates a reception signal (beat signal) for each reception system.
  • the ADC 107 converts the received signal received by the receiving high frequency unit 106 into analog / digital for each receiving system.
  • the radar device 10 further includes, for example, a distance detection processing unit 108, a phase reverse rotation unit 109, a speed detection processing unit 110, a peak detection processing unit 111, a virtual image removal processing unit (removal circuit) 112, and an azimuth detection.
  • a processing unit (detection circuit) 113 and an object detection processing unit 114 are provided.
  • the distance detection processing unit 108 detects the distance (arrival distance) from the beat signal to the reflecting object for each receiving system.
  • an FFT Fast Fourier Transform
  • the frequency difference between the transmitted chirp signal and the received chirp signal is obtained based on the output of the FFT calculation, and the arrival time is calculated based on the frequency difference and converted into the arrival distance.
  • the input beat signal of the relative time t within the ncth transmission interval Td in the receiving antenna element Ari is represented by r (t, nc; i).
  • the distance detection FFT calculation result for the input beat signal r (t, nc; i) is represented by Fr (nr, nc; i).
  • the distance index nr corresponds to the arrival distance.
  • the phase reverse rotation unit 109 performs phase reverse rotation on the reception signal of each reception system based on the phase control signal generated for each transmission system by the transmission control unit 100.
  • the number of systems of this output is Ntx ⁇ Nrx, and the signal of each output system is a signal Frot (nr) obtained by performing a phase rotation of the FFT calculation result Fr (nr, nc; i) for distance detection by ⁇ j (nc). , Nc; i, j).
  • the velocity detection processing unit 110 estimates the Doppler frequency for each distance based on the plurality of beat signals generated by receiving the reflected waves of the chirp signals transmitted a plurality of times, and estimates the relative velocity of the reflecting object.
  • the Doppler frequency can be obtained by performing an FFT calculation on the Nd signal Frot (nr, nc; i, j) over the chirp index nc for the signal of each distance index. Doppler frequency is converted to relative velocity.
  • the speed detection FFT calculation result at the distance index nr between the receiving antenna element Ari and the transmitting antenna element Atj is represented by Fv (nr, nv; i, j).
  • the velocity index nv corresponds to the relative velocity of the reflecting object.
  • the peak detection processing unit 111 extracts the peak signal of the speed detection FFT calculation result Fv (nr, nv; i, j), removes the noise component, and generates information (peak information) for specifying the peak signal.
  • the peak information is, for example, a cell (peak cell) corresponding to the peak (maximum value) of the speed detection FFT calculation result Fv (nr, nv; i, j).
  • the cell is a pair (nr, nv) of the distance index nr and the velocity index nv.
  • the peak detection processing unit 111 extracts a peak signal by, for example, extracting a peak cell of a speed detection FFT calculation result Fv (nr, nv; i, j) by a CFAR (Constant False Allarm Rate) algorithm.
  • the output signal of the peak detection processing unit 111 includes, for example, the speed detection FFT calculation result Fv (nr, nv; i, j) and the generated peak information.
  • the virtual image removal processing unit 112 removes the interference component between the codes generated when the received signal is separated for each signal component of the transmission system by the phase reverse rotation unit 109, that is, the virtual image component.
  • the virtual image removal processing unit 112 includes, for example, a phase correction unit 1121, a simple arrival direction estimation unit 1122, a frequency axis power comparison unit 1123, and a virtual image peak mask processing unit 1124.
  • the phase correction unit 1121 corrects the phase error of the received signal by performing a phase rotation preset for each transmission system.
  • the phase error to be corrected is, for example, a phase error generated at the phase error occurrence location 115.
  • the processing content of the phase correction unit 1121 will be described later with reference to FIGS. 3A, 3B, and 4.
  • the simple arrival direction estimation unit 1122 simply estimates the arrival direction of the reflected wave and outputs the power (maximum power) in the direction having the maximum likelihood.
  • the simple arrival direction estimation for example, an FFT calculation for azimuth detection with coarse azimuth accuracy or a DFT (Discrete Fourier Transform) calculation for azimuth detection is used.
  • the processing content of the simple arrival direction estimation unit 1122 will be described later with reference to FIG.
  • the frequency axis power comparison unit 1123 compares the maximum powers of the corresponding reflected wave components in the estimated arrival direction of the peak cell and the peak cell deviated by the velocity index offset value at which the virtual image peak appears, and determines the virtual image peak. To detect.
  • the velocity index offset value is a preset value. The processing content of the frequency axis power comparison unit 1123 will be described later with reference to FIG.
  • the virtual image peak mask processing unit 1124 removes (masks) the component corresponding to the virtual image peak in the speed detection FFT calculation result Fv. As a result, erroneous detection of the radar device 10 due to the virtual image is suppressed or reduced.
  • the azimuth detection processing unit 113 estimates the azimuth of the reflecting object based on the speed detection FFT calculation result Fv masked by the virtual image peak mask processing unit 1124. For example, the beamformer method or the MUSIC method is used to estimate the azimuth.
  • the object detection processing unit 114 estimates at least one of the position, size, orientation, and speed of the reflecting object based on the speed detection FFT calculation result Fv after the mask processing and the estimated azimuth. For example, the object detection processing unit 114 determines the distance to the reflective object and the relative velocity of the reflective object shown in the masked speed detection FFT calculation result Fv, and the orientation of the reflective object estimated by the orientation detection processing unit 113. Clustering processing and tracking processing are performed on the point group information of the object indicating.
  • FIG. 2 is a diagram illustrating an example of a virtual image according to the first embodiment.
  • Example 201 of a radar signal (chirp signal) transmission pattern shows an example of a chirp transmission having a transmission interval of Td and a number of repeated transmissions of Nd.
  • the transmission signal for the transmission antenna element At1 is phase-rotated using a code having Nd bit values of 0.
  • bit value 0 and bit value 1 are alternately repeated, and phase rotation is performed using a code that continues Nd in total.
  • the transmitting antenna element At1 and the transmitting antenna element At2 transmit these transmission signals.
  • r1 (t, nc) be the beat signal of the reflected wave at the time t and the chirp index nc of the chirp signal transmitted independently from the transmitting antenna element At1 without phase rotation.
  • r2 (t, nc) be the beat signal of the reflected wave at the time t and the chirp index nc of the chirp signal transmitted independently from the transmitting antenna element At2 without phase rotation.
  • the received signal r (t, nc) of the receiving antenna element Ar1 is the reflected wave of the chirp signal transmitted from the transmitting antenna element At1: And the reflected wave of the chirp signal transmitted from the transmitting antenna element At2: And, including, Will be.
  • the received signal Is obtained.
  • the distance index nr is an index corresponding to the distance r.
  • the received signal Fr (nr, nc ) is multiplied by ej ⁇ ( ⁇ 1 (nc)) and rotated in the opposite phase. Is obtained.
  • the signal Frot (nr, nc; 1) includes the received signal component Fr2 (nr, nc) from the transmitting antenna element At2 and ej ⁇ ( ⁇ 2 (n) - ⁇ 1 (n)). The component multiplied by is left.
  • the received signal Fr (nr, nc ) is multiplied by ej ⁇ ( ⁇ 2 (nc)) and rotated in opposite phase.
  • the signal Frot (nr, nc; 2) includes the received signal component Fr1 (nr, nc) from the transmitting antenna element At1 and ej ⁇ ( ⁇ 1 (nc) ⁇ 2 (nc)). The component multiplied by is left.
  • the horizontal axis represents the time represented by the chirp index nc
  • the vertical axis represents the phase of the received signal.
  • Graph 202 shows the result of anti-phase rotation by multiplying the received signal component Fr1 (nr, nc) from the transmitting antenna element At1 by ej ⁇ ( ⁇ 1 (nc)) (signal Frot (nr, nc; 1)). The phase change of the first term) of) is shown.
  • the received signal component Fr1 (nr, nc) is correctly subjected to anti-phase rotation based on the phase rotation amount ⁇ 1 (nc) for the same transmitting antenna element At1, and has a Doppler frequency fd of the reflecting object.
  • the resulting phase change can be confirmed.
  • the correct phase reverse rotation is the phase rotation of the phase rotation amount that cancels the phase rotation amount of the transmission signal.
  • the graph 203 shows the result of anti-phase rotation by multiplying the received signal component Fr2 (nr, nc) from the transmitting antenna element At2 by ej ⁇ ( ⁇ 1 (nc)) (signal Frot (nr, nc;; The phase change of the second term) of 1) is shown.
  • the received signal component Fr2 (nr, nc) is erroneously subjected to anti-phase rotation based on the phase rotation amount ⁇ 1 (nc) for different transmitting antenna elements At1.
  • the erroneous phase reverse rotation is a phase rotation of a phase rotation amount that does not cancel the phase rotation amount of the transmitted signal.
  • the phase change caused by the Doppler frequency fd of the reflecting object indicated by the white circle has a phase change shifted by a phase ⁇ radian, which is a difference in the amount of phase rotation between the transmitting antenna element At1 and the transmitting antenna element At2.
  • Graph 204 shows the result of FFT processing for speed detection of the signal Frot (nr, nc; 1).
  • a peak indicating the existence of a reflecting object is formed at the Doppler frequency fd, and a peak of an object that does not actually exist is also formed at the Doppler frequency fd + fs / 2. This peak of an object that does not actually exist is called a virtual image peak.
  • FIG. 3A is a diagram illustrating an example of the phase difference of the signal arriving at the virtual reception array antenna.
  • the virtual receiving array antenna is obtained by superimposing all the transmitting antenna elements At1 and At2 in which the receiving antenna elements Ar1 and Ar2 are shifted according to the deviation from the reference position of the transmitting antenna elements At1 and At2. It is a receiving array antenna.
  • the reference position is, for example, the position of the transmitting antenna element At1.
  • the transmitting antenna elements At1 and At2 and the receiving antenna elements Ar1 and Ar2 are configured.
  • a 2x2 virtual receive array antenna is configured.
  • the antenna elements (virtual receiving antenna elements) of the virtual receiving array antenna are arranged in a horizontal row with an antenna interval d.
  • Example 301 of the incident of the reflected wave on the virtual receiving antenna element shown in FIG. 3A when the reflected wave from the reflecting object in the orientation ⁇ is incident on the virtual receiving antenna element, the incident of the virtual receiving antenna element A phase difference that is an integral multiple of the phase difference ⁇ occurs between the signals.
  • the orientation of the reflecting object that generates the reflected wave can be detected by using the phase difference of the incident signal.
  • the azimuth detection is, for example, a beamformer method using a Fourier transform.
  • the beamformer method is a method of calculating the phase difference of the ideal incident signal of each virtual receiving antenna element in each direction ⁇ , calculating the correlation with the actual received signal, and estimating the direction based on the correlation.
  • FIG. 3B is a diagram illustrating an example of the relationship between the position of the virtual receiving antenna element and the phase difference of the incident signal.
  • the virtual receiving antenna element is arranged on a straight line
  • the horizontal axis represents the relative position of the virtual receiving antenna element with respect to a certain position on the straight line
  • the vertical axis represents the phase difference of the incident signal. ..
  • the ideal phase difference of the incident signal is proportional to the length of the spacing between the virtual receiving antenna elements. Therefore, as shown in the graph 302 of FIG. 3B, the positions of the white circles indicating the phase difference with respect to the relative position of the virtual receiving antenna element are aligned on a straight line.
  • a phase error may occur in the power supply line between the radar transmission / reception integrated circuit and the transmission / reception antenna element in terms of design, manufacturing, or mounting.
  • a phase error ⁇ 1 occurs in the combination of the transmitting antenna element At1 and the receiving antenna element Ar1.
  • a phase error ⁇ 2 occurs in the combination of the transmitting antenna element At2 and the receiving antenna element Ar1.
  • a phase error ⁇ 3 occurs in the combination of the transmitting antenna element At1 and the receiving antenna element Ar2.
  • a phase error ⁇ 4 occurs in the combination of the transmitting antenna element At2 and the receiving antenna element Ar2.
  • the received signal (beat signal) r'(t, nc; i) in the receiving antenna element Ari input by the distance detection processing unit 108 is expressed by the following equation: When, Can be expressed by.
  • t time and nc represents the chirp index.
  • r (t, nc; i, j) represents a component of the ideal incident signal r (t, nc; i) of the receiving antenna element Ari that corresponds to the transmitting signal of the transmitting antenna element Atj.
  • the distance detection processing unit 108 performs the distance detection FFT process on the received signal r'for a time t, and the distance detection FFT signal: When, And get.
  • the distance index nr is an index corresponding to the distance r.
  • the phase reverse rotation unit 109 rotates the distance detection FFT signal Fr'in a reverse phase (phase rotation corresponding to the first phase rotation of the second phase rotation) to obtain a signal: When, When, When, And get.
  • the speed detection processing unit 110 performs speed detection FFT processing over the chirp index nc on the signal Frot', and the speed detection FFT calculation result: When, When, When, And get.
  • nv represents a speed index.
  • the phase rotation based on the phase rotation before transmission and the anti-phase rotation after reception of the radar signal is included in the FFT calculation result Fv1 and is not included in the FFT calculation result Fv2.
  • the peak detection processing unit 111 extracts a peak signal from the speed detection FFT calculation result Fv'.
  • the first term of the signal Fv'(nr, nv; 1,1) includes a peak (real image peak) signal at the velocity index nv corresponding to the Doppler frequency fd. Exists.
  • the second term of the signal Fv'(nr, nv; 1,1) there is a peak (virtual image peak) signal at the velocity index nv + Nv / 2 corresponding to the Doppler frequency fd + fs / 2.
  • Nv is the number of points of the speed detection FFT.
  • FIG. 4 is a diagram for explaining the influence of the residual error in the arrival direction estimation according to the first embodiment.
  • An example of the processing result 405 is a speed detection FFT processing result Fv'(nr, nv; 1,1) in which the received signal received by the receiving antenna element Ar1 is rotated in the opposite phase assuming the phase rotation of the transmitting antenna element At1.
  • An example of the processing result 406 is a speed detection FFT processing result Fv'(nr, nv; 1, 2) in which the received signal received by the receiving antenna element Ar1 is rotated in the opposite phase assuming the phase rotation of the transmitting antenna element At2. This is an example.
  • An example of the processing result 407 is a speed detection FFT processing result Fv'(nr, nv; 2, 1) in which the received signal received by the receiving antenna element Ar2 is rotated in the reverse phase assuming the phase rotation of the transmitting antenna element At1.
  • An example of the processing result 408 is a speed detection FFT processing result Fv'(nr, nv; 2, 2) in which the received signal received by the receiving antenna element Ar2 is rotated in the opposite phase assuming the phase rotation of the transmitting antenna element At2. This is an example.
  • peaks 401 and 402 appear in the distance index nr corresponding to the distance to the reflecting object, respectively.
  • the peak 401 is a peak (real image peak) generated by performing a phase reverse rotation in which the phase reverse rotation in the phase reverse rotation unit 109 is correct, that is, a phase reverse rotation that cancels the phase rotation in the phase rotation unit 102, and is reflected. It corresponds to the Doppler frequency of the object, that is, the velocity of the reflecting object.
  • the peak 402 is a peak generated by performing a phase reverse rotation in which the phase reverse rotation in the phase reverse rotation unit 109 is erroneous, that is, a phase reverse rotation that does not cancel the phase rotation in the phase rotation unit 102, and is a virtual image component (virtual image). Peak).
  • the phase correction unit 1121 corrects the phase error (phase difference according to the transmitting antenna element) ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 for the signals shown in Examples 405, 406, 407, and 408 of the processing result (No. 1). Of the two phase rotations, the phase rotation corresponds to the phase difference according to the transmitting antenna element).
  • the phase-corrected signals Fv1'' to Fv4'' of the processing results example 405, 406, 407, and 408 have the following equations, respectively: When, When, When, Is represented by.
  • phase error ( ⁇ 2- ⁇ 1) remains in the virtual image peak represented by the second term of Fv1 ′′.
  • a phase error ( ⁇ 1- ⁇ 2) remains in the virtual image peak indicated by the first term of Fv2 ′′.
  • a phase error ( ⁇ 4- ⁇ 3) remains in the virtual image peak indicated by the second term of Fv3 ′′.
  • a phase error ( ⁇ 3- ⁇ 4) remains in the virtual image peak indicated by the first term of Fv4 ′′.
  • Example 409 of the phase difference between the virtual receiving antennas is an example of the phase difference of the signals Fv1 ′′ to Fv4 ′′ after the phase correction in the speed index corresponding to the peak 401.
  • the absolute value of the component for which the phase error remains becomes small, so the phase difference indicated by the white circle in Example 409 of the phase difference is a straight line corresponding to the arrival direction of the component corresponding to peak 401 in the reflected wave. Asymptote to.
  • the example 410 of the phase difference between the virtual receiving antennas is an example of the phase difference of the signals Fv1 ′′ to Fv4 ′′ after the phase correction in the speed index corresponding to the peak 402.
  • the absolute value of the component with residual phase error becomes large, so the phase difference indicated by the white circle in Example 410 of the phase difference is a straight line corresponding to the arrival direction of the component corresponding to peak 402 in the reflected wave. Deviation from.
  • the simple arrival direction estimation unit 1122 uses the phase-corrected signals Fv1'' to Fv4'' to reach the peak cell (nr, nv) via the FFT calculation for azimuth detection represented by the following equation.
  • ⁇ (nr) represents the wavelength of the beat signal corresponding to the distance index nr
  • d (i-1) represents the distance from the reference antenna position to the position of the antenna i.
  • the simple arrival direction estimation unit 1122 sets the direction ⁇ in which the power P ( ⁇ ; nr, nv) takes the maximum power Pmax (nr, nv) to the reflected wave component (Doppler frequency component) corresponding to the peak cell (nr, nv). ) Is the arrival direction (estimated arrival direction) (simple arrival direction estimation).
  • Example 403 of the simple arrival direction estimation result is an example of the result of performing simple arrival direction estimation in the velocity index corresponding to the peak 401 which is the real image peak.
  • Example 404 of the simple arrival direction estimation result is an example of the result of performing simple arrival direction estimation in the velocity index corresponding to the peak 402 which is the virtual image peak.
  • the maximum power P2 is lower than the power P1.
  • the difference between the maximum power P1 and the maximum power P2 depends on the magnitude (error amount) of the residual phase error components ⁇ ( ⁇ 2- ⁇ 1) and ⁇ ( ⁇ 4- ⁇ 3). In the example shown in FIG. 4, the power difference becomes maximum in the case where the error amount is 45 degrees.
  • the design of the feeding line on the substrate may be adjusted so that the amount of error is controlled to an optimum value (for example, 45 degrees), or the phase rotating unit 102 may adjust the phase of the radar signal.
  • the frequency axis power comparison unit 1123 detects a real image peak corresponding to the maximum power P1 and a virtual image peak corresponding to the maximum power P2 based on the difference appearing between the maximum powers P1 and P2. Of the two maximum powers P1 and P2, the frequency axis power comparison unit 1123 detects the peak corresponding to the lower maximum power P2 as a virtual image peak. In one example, the frequency axis power comparison unit 1123 detects a peak corresponding to a lower maximum power as a virtual image peak when the difference in maximum power is larger than a predetermined threshold value. This makes it possible to prevent one peak from being mistakenly detected as a virtual image peak when a reflecting object actually exists at both peak positions.
  • the virtual image peak mask processing unit 1124 masks the detected virtual image peak from the output signal of the peak detection processing unit 111.
  • FIG. 5 is a flowchart illustrating an example of the operation of the virtual image removal processing unit 112 according to the first embodiment.
  • the virtual image removal processing unit 112 initializes the candidate peak list.
  • the candidate peak list is a list containing peak information that identifies a real or virtual peak and the corresponding maximum power.
  • the peak information is information for specifying the peak of the signal after phase correction, and is, for example, information indicating a peak cell corresponding to the peak.
  • the virtual image removal processing unit 112 sets a flag indicating that the peak is an unprocessed peak for all the peak cells included in the peak information generated by the peak detection processing unit 111.
  • step S104 the virtual image removal processing unit 112 determines whether or not an unprocessed peak exists.
  • the virtual image removal processing unit 112 searches for a peak cell in which a flag indicating that it is an unprocessed peak is set.
  • step S106 the virtual image removal processing unit 112 sets the peak information and the corresponding maximum power for the unprocessed peak in the candidate peak list. Details of the process in step S106 will be described later with reference to FIG.
  • step S108 the virtual image removal processing unit 112 determines whether or not there is an unprocessed peak at the pseudo peak generation position.
  • the virtual image removal processing unit 112 searches for a peak cell that is at a pseudo-peak generation position with respect to the peak cell searched in step S106 and has a flag indicating that it is an unprocessed peak.
  • the cell searched in step S108 is a cell at a pseudo peak generation position corresponding to the distance index nr and the speed index nv + Nv / 2, with respect to the distance index nr and the speed index nv of the peak cell searched in step S106. ..
  • Nv is the number of points of the speed detection FFT.
  • step S110 the virtual image removal processing unit 112 adds peak information and the corresponding maximum power for the pseudo peak to the candidate peak list.
  • the details of the process in step S110 will be described later with reference to FIG.
  • the virtual image removal processing unit 112 repeatedly executes steps S108 to S110 while the unprocessed peak at the pseudo peak generation position exists.
  • step S112 When there is no unprocessed peak at the pseudo peak generation position (step S108: No), in step S112, the frequency axis power comparison unit 1123 sets this peak list based on the candidate peak list.
  • This peak list is a list used by the virtual image peak mask processing unit 1124 when masking a virtual image peak from the output signal of the peak detection processing unit 111. Details of the process in step S112 will be described later with reference to FIG. After that, the virtual image removal processing unit 112 returns the processing to step S104.
  • step S114 the virtual image peak mask processing unit 1124 masks the virtual image peak from the output signal of the peak detection processing unit 111 based on this peak list. For example, the virtual image peak mask processing unit 1124 sets the value of the speed detection FFT calculation result Fv'in the peak cell indicated by the peak information not included in the peak list to 0. After that, the virtual image removal processing unit 112 ends the processing.
  • FIG. 6 is a flowchart illustrating an example of the operation of the virtual image removal processing unit 112 in steps S106 and S110 of FIG.
  • step S202 the virtual image removal processing unit 112 acquires a peak.
  • the peak is, for example, an unprocessed peak in step S106 and a pseudo-peak candidate in step S110.
  • the virtual image removal processing unit 112 resets the unprocessed flag of the peak cell corresponding to the acquired peak.
  • step S204 the phase correction unit 1121 performs phase correction processing on the peak cell corresponding to the acquired peak.
  • step S206 the simple arrival direction estimation unit 1122 estimates the simple arrival direction for the data after phase correction.
  • step S208 the simple arrival direction estimation unit 1122 calculates the maximum power corresponding to the direction estimated in the simple arrival direction estimation result.
  • step S210 the virtual image removal processing unit 112 stores the peak information acquired in step S202 and the maximum power calculated in step S208 as a pair in the candidate peak list. After that, the virtual image removal processing unit 112 ends the processing of step S106 or step S110.
  • FIG. 7 is a flowchart illustrating an example of the operation of the frequency axis power comparison unit 1123 in step S112 of FIG.
  • step S302 the frequency axis power comparison unit 1123 searches for the top two maximum powers from the candidate peak list.
  • step S304 the frequency axis power comparison unit 1123 determines whether or not the difference between the two maximum powers searched in step S302 is larger than a predetermined threshold value.
  • step S306 the frequency axis power comparison unit 1123 has peak information corresponding to the larger maximum power of the two maximum powers. Is added to this peak list. After that, the virtual image peak mask processing unit 1124 ends the processing in step S112.
  • step S308 the frequency axis power comparison unit 1123 sets all the peak information included in the candidate peak list as the current peak. Add to list. After that, the virtual image removal processing unit 112 ends the process of step S112.
  • the first embodiment by detecting and suppressing the virtual image component caused by the interference between the orthogonal codes, it is possible to prevent the deterioration of the speed detection performance and reduce the false detection of the reflecting object. Further, by removing the virtual image component before the orientation detection processing having a relatively large amount of processing, the candidate points of the reflecting object can be reduced, and the calculation amount and power consumption of the orientation detection processing can be reduced.
  • the anti-phase rotating unit 109 rotates the distance detection FFT signal in anti-phase rotation.
  • the phase reverse rotation unit 109 performs the reverse phase rotation on the signal before the distance detection FFT process is also conceivable.
  • an embodiment in which the order of the distance detection processing unit 108 and the phase reverse rotation unit 109 is reversed can be considered.
  • the notation "... part” used for each component is “... circuitry”, “... device”, “... unit”, or “... unit”. It may be replaced with another notation such as "... module”.
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • the present disclosure may be realized as digital processing or analog processing. Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is natural that the functional blocks may be integrated using that technology. There is a possibility of applying biotechnology.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (automobiles, airplanes, ships, etc.), and combinations of the above-mentioned various devices can be mentioned.
  • communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (
  • Communication devices are not limited to those that are portable or mobile, but are not portable or fixed, any type of device, device, system, such as a smart home device (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • a smart home device home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc.
  • Communication devices also include devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure. For example, it includes controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • a plurality of radar signals each of which is periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and has a phase difference corresponding to the transmitting antenna element, are produced.
  • a second phase rotation of a rotation amount corresponding to the first phase rotation and the phase difference which is a phase rotation opposite to the first phase rotation of each transmitting antenna element, is performed.
  • the removal circuit for removing the Doppler frequency component whose power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is provided.
  • the radar device includes a detection circuit that detects the direction of the detection target based on the signal output by the removal circuit.
  • the difference between the Doppler frequency corresponding to the Doppler frequency component removed by the removal circuit and the Doppler frequency corresponding to any of the remaining Doppler frequency components is a predetermined frequency. is there.
  • the removal circuit removes the Doppler frequency component whose power is relatively small when the difference in power is larger than a predetermined threshold value.
  • the plurality of transmitting antenna elements and the plurality of receiving antenna elements constitute a virtual receiving array antenna.
  • the first phase rotation is performed based on patterns different from each other among the plurality of transmitting antenna elements.
  • the different patterns constitute an orthogonal code.
  • the rotational phase amount of the first phase rotation is 0 radians, and the bit value included in the orthogonal code is 1.
  • the rotational phase amount of the first phase rotation is ⁇ radians.
  • the radar signal is a periodic chirp signal.
  • a plurality of radar signals which are periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and have a phase difference according to the transmitting antenna element are processed.
  • Each of the reflected wave signals has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and a second phase of a rotation amount corresponding to the first phase rotation and the phase difference.
  • the process of removing the Doppler frequency component in which the power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is included.
  • This disclosure is useful for radar systems.
  • Transmission control unit 101 Transmission signal generation unit 102 Phase rotation unit 103 Transmission high frequency unit 104 Transmission array antenna 105 Reception array antenna 106 Reception high frequency unit 107 ADC 108 Distance detection processing unit 109 Phase reverse rotation unit 110 Speed detection processing unit 111 Peak detection processing unit 112 Phantom image removal processing unit 1121 Phase correction unit 1122 Simple arrival direction estimation unit 1123 Frequency axis power comparison unit 1124 Phantom image peak mask processing unit 113 Direction detection Processing unit 114 Object detection processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This radar device is provided with: a transmission circuit for transmitting, from a plurality of transmission antenna elements, each of a plurality of radar signals in which a first phase rotation is cyclically applied to each of the plurality of transmission antenna elements and in which said plurality of radar signals have a phase difference corresponding to the transmission antenna elements; a reception circuit that receives, by means of a plurality of reception antenna elements, reflected wave signals resulting from the plurality of radar signals being reflected at an object to be detected; and a removal circuit for removing a Doppler frequency component in which the power in an estimated direction of arrival of Doppler frequency components has decreased relatively with respect to the phase differences from among Doppler frequency components remaining in signals in which second phase rotations that are the inverse of the first phase rotations of each of the transmission antenna elements and that are of a rotation amount corresponding to the first phase rotations and the phase differences are applied in each of the reflected wave signals received by the plurality of reception antenna elements.

Description

レーダ装置およびレーダ信号の信号処理方法Radar device and signal processing method of radar signal
 本開示は、レーダ装置およびレーダ信号の信号処理方法に関する。 The present disclosure relates to a radar device and a signal processing method for radar signals.
 近年、自動車の先進運転支援システムや自動運転車を中心にレーダ装置の活用が本格化している。レーダ装置には、車両、バイク、自転車、歩行者といった移動物体情報の検出だけでなく、道路、車止め、縁石といった環境情報の検出も求められており、高分解能を実現できるレーダ装置のニーズが高まっている。高分解能を実現できるレーダ装置の構成として、MIMO(Multiple-Input and Multiple-Output)レーダがある。 In recent years, the utilization of radar devices has been in full swing, mainly in advanced driver assistance systems for automobiles and autonomous vehicles. Radar devices are required not only to detect moving object information such as vehicles, motorcycles, bicycles, and pedestrians, but also to detect environmental information such as roads, bollards, and curbs, and the need for radar devices that can achieve high resolution is increasing. ing. As a configuration of a radar device capable of realizing high resolution, there is a MIMO (Multiple-Input and Multiple-Output) radar.
 MIMOレーダでは、送受信アレイアンテナにおけるアンテナ素子の配置を工夫することにより、最大で送信アンテナ素子数と受信アンテナ素子数との積に等しい仮想的な受信アレイアンテナ(以下、仮想アレイと呼ぶ)を構成できる。これにより、少ない素子数によってアレイアンテナの実効的な開口長を増大できる。 In MIMO radar, by devising the arrangement of antenna elements in the transmission / reception array antenna, a virtual reception array antenna (hereinafter referred to as a virtual array) that is equal to the product of the number of transmission antenna elements and the number of reception antenna elements is configured. it can. As a result, the effective aperture length of the array antenna can be increased with a small number of elements.
特開2013-7756号公報Japanese Unexamined Patent Publication No. 2013-7756 特開2014-119344号公報Japanese Unexamined Patent Publication No. 2014-119344
 本開示の非限定的な実施例は、検出対象の検出精度を向上した、改善されたレーダ装置およびレーダ信号の信号処理方法の提供に資する。 The non-limiting examples of the present disclosure contribute to the provision of an improved radar device and a signal processing method for radar signals with improved detection accuracy of a detection target.
 本開示の一態様に係るレーダ装置は、複数の送信アンテナ素子毎に周期的に第1の位相回転を施され、かつ、前記送信アンテナ素子に応じた位相差を有する複数のレーダ信号を、それぞれ、前記複数の送信アンテナ素子から送信する送信回路と、前記複数のレーダ信号が検出対象において反射した反射波信号を、複数の受信アンテナ素子によって受信する受信回路と、前記複数の受信アンテナ素子によって受信された前記反射波信号のそれぞれに前記送信アンテナ素子毎の前記第1の位相回転とは逆の位相回転であって前記第1の位相回転と前記位相差とに応じた回転量の第2の位相回転を与えた信号に残留するドップラー周波数成分のうち、前記ドップラー周波数成分の推定到来方向における電力が前記位相差に応じて相対的に低下した前記ドップラー周波数成分を除去する除去回路と、を備える構成を採る。 The radar device according to one aspect of the present disclosure periodically performs the first phase rotation on each of the plurality of transmitting antenna elements, and produces a plurality of radar signals having a phase difference according to the transmitting antenna element. The transmission circuit that transmits from the plurality of transmitting antenna elements, the receiving circuit that receives the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of receiving antenna elements, and the receiving circuit that receives the reflected wave signals by the plurality of receiving antenna elements. Each of the reflected wave signals has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and a second phase rotation amount corresponding to the first phase rotation and the phase difference. Among the Doppler frequency components remaining in the signal to which the phase rotation is applied, the removal circuit for removing the Doppler frequency component whose power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is provided. Take the composition.
 本開示の一態様に係るレーダ信号の信号処理方法は、複数の送信アンテナ素子毎に周期的に第1の位相回転を施され、かつ、前記送信アンテナ素子に応じた位相差を有する複数のレーダ信号を、それぞれ、前記複数の送信アンテナ素子から送信する処理と、前記複数のレーダ信号が検出対象において反射した反射波信号を、複数の受信アンテナ素子によって受信する処理と、前記複数の受信アンテナ素子によって受信された前記反射波信号のそれぞれに前記送信アンテナ素子毎の前記第1の位相回転とは逆の位相回転であって前記第1の位相回転と前記位相差とに応じた回転量の第2の位相回転を与えた信号に残留するドップラー周波数成分のうち、前記ドップラー周波数成分の推定到来方向における電力が前記位相差に応じて相対的に低下した前記ドップラー周波数成分を除去する処理と、を含む構成を採る。 In the signal processing method of the radar signal according to one aspect of the present disclosure, a plurality of radars are periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and have a phase difference according to the transmitting antenna element. The process of transmitting signals from the plurality of transmitting antenna elements, the process of receiving the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of receiving antenna elements, and the processing of receiving the plurality of receiving antenna elements. Each of the reflected wave signals received by the transmission antenna element has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and a number of rotation amounts corresponding to the first phase rotation and the phase difference. Of the Doppler frequency components remaining in the signal given the phase rotation of 2, the process of removing the Doppler frequency component in which the power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is performed. Take a configuration that includes.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific embodiments may be realized in a system, device, method, integrated circuit, computer program, or recording medium, and the system, device, method, integrated circuit, computer program, and recording medium. It may be realized by any combination of.
 本開示の非限定的な実施例によれば、検出対象の検出精度を向上した、改善されたレーダ装置およびレーダ信号の信号処理方法を提供できる。 According to the non-limiting embodiment of the present disclosure, it is possible to provide an improved radar device and a signal processing method of a radar signal with improved detection accuracy of a detection target.
 本開示の非限定的な実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and effects in the non-limiting examples of the present disclosure will be apparent from the specification and drawings. Such advantages and / or effects are provided by some embodiments and features described in the specification and drawings, respectively, but not all need to be provided in order to obtain one or more identical features. There is no.
実施の形態1に係るレーダ装置の構成の一例を示すブロック図Block diagram showing an example of the configuration of the radar device according to the first embodiment 実施の形態1に係る虚像の一例を説明する図The figure explaining an example of the virtual image which concerns on Embodiment 1. 仮想受信アレイアンテナに到来する信号の位相差の一例を説明する図The figure explaining an example of the phase difference of the signal arriving at a virtual reception array antenna 仮想受信アンテナ素子の位置と入射信号の位相差との関係の一例を説明する図The figure explaining an example of the relationship between the position of a virtual receiving antenna element and the phase difference of an incident signal. 実施の形態1に係る到来方向推定における残留誤差の影響を説明する図The figure explaining the influence of the residual error in the arrival direction estimation which concerns on Embodiment 1. 実施の形態1に係る虚像除去処理部の動作の一例を説明するフローチャートA flowchart illustrating an example of the operation of the virtual image removal processing unit according to the first embodiment. 図5のステップS106およびステップS110における虚像除去処理部の動作の一例を説明するフローチャートA flowchart illustrating an example of the operation of the virtual image removal processing unit in steps S106 and S110 of FIG. 図5のステップS112における虚像ピークマスク処理部の動作の一例を説明するフローチャートA flowchart illustrating an example of the operation of the virtual image peak mask processing unit in step S112 of FIG.
 MIMOレーダにおいては、受信された電波を送信した送信アンテナを区別するために、例えば、時分割に送信アンテナを切り替えることにより送信アンテナを区別する方式が使用される。 In MIMO radar, in order to distinguish the transmitting antenna that transmitted the received radio wave, for example, a method of distinguishing the transmitting antenna by switching the transmitting antenna in time division is used.
 また、MIMOレーダにおいては、時間の経過に応じて直線的に周波数を上げる、もしくは下げるチャープ信号を利用して、物体までの距離を検出することがある。例えば、MIMOレーダが送信したチャープ信号は、検出対象の物体において反射する。次いで、MIMOレーダが受信した、検出対象の物体による反射波を含む受信信号と送信信号とをミキサで合成することによって得られた信号に基づいて、検出対象の物体までの距離を検出する。また、MIMOレーダは、チャープ信号を送信アンテナ毎に時分割で送信する送信シーケンスを複数回実施することにより、MIMOレーダに対する物体の相対速度を検出する。 In addition, MIMO radar may detect the distance to an object by using a chirp signal that linearly raises or lowers the frequency according to the passage of time. For example, the chirp signal transmitted by the MIMO radar is reflected by the object to be detected. Next, the distance to the object to be detected is detected based on the signal obtained by synthesizing the received signal including the reflected wave by the object to be detected and the transmitted signal received by the MIMO radar with a mixer. In addition, the MIMO radar detects the relative velocity of the object with respect to the MIMO radar by executing a transmission sequence in which the chirp signal is transmitted in a time-division manner for each transmission antenna a plurality of times.
 MIMOレーダの分解能を高める場合、または、水平方向に加えて垂直方向も検出可能な3次元レーダを実現する場合、送信アンテナ数を増やすことがある。しかし、時分割で切り替える方式においては、送信アンテナ数の増大に伴い、送信シーケンス期間が増加し、検出できる相対速度が低下しうる。また、チャープ信号期間を短くすることによって、距離分解能が低下しうる。 When increasing the resolution of the MIMO radar, or when realizing a 3D radar that can detect not only the horizontal direction but also the vertical direction, the number of transmitting antennas may be increased. However, in the time-division switching method, as the number of transmitting antennas increases, the transmission sequence period may increase and the relative speed that can be detected may decrease. Also, shortening the chirp signal period can reduce the distance resolution.
 時分割に送信アンテナを切り替える方式の代替技術として、例えば、次の2つの技法が検討される。第1の技法では、送信アンテナ毎に異なる直交符号で拡散することにより同時送信を可能にする。また、第2の技法では、送信アンテナ毎にドップラー帯域幅よりも大きい周波数分ドップラーシフトさせることにより同時送信を可能にする。 For example, the following two techniques are considered as alternative technologies for switching the transmitting antenna in a time-division manner. The first technique enables simultaneous transmission by diffusing each transmitting antenna with a different orthogonal code. In the second technique, simultaneous transmission is enabled by Doppler shifting each transmitting antenna by a frequency larger than the Doppler bandwidth.
 しかしながら、第1の技法においては、レーダ装置の受信回路で送信アンテナ毎に割り当てられた直交符号を使って逆拡散を行う際に、異なる符号を掛け合わせることによって符号の周期性等に起因する干渉成分が発生し誤検出につながる。また、第2の技法においては、ドップラー周波数軸で送信アンテナを分離するため、検出できる相対速度が限定的になる。 However, in the first technique, when backdiffusion is performed using the orthogonal code assigned to each transmitting antenna in the receiving circuit of the radar device, interference caused by the periodicity of the code or the like is caused by multiplying different codes. Ingredients are generated, leading to false detection. Further, in the second technique, since the transmitting antenna is separated on the Doppler frequency axis, the relative speed that can be detected is limited.
 以下に説明する実施の形態では、直交符号を用いた同時送信可能なレーダ装置において、送信アンテナ数が増加した場合に、距離検出性能および速度検出性能の劣化を防止または抑制する。これにより、方位分解能を向上し、直交符号による誤検出を抑制する、MIMOレーダを提供できる。 In the embodiment described below, in a radar device capable of simultaneous transmission using an orthogonal code, deterioration of distance detection performance and speed detection performance is prevented or suppressed when the number of transmitting antennas increases. This makes it possible to provide a MIMO radar that improves the azimuth resolution and suppresses false detection due to the orthogonal code.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、以下に説明する実施の形態は一例であり、本開示は以下の実施の形態により限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below are examples, and the present disclosure is not limited to the following embodiments.
(実施の形態1)
 図1は、実施の形態1に係るレーダ装置10の構成の一例を示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing an example of the configuration of the radar device 10 according to the first embodiment.
 レーダ装置10は、例えば、送信制御部100と、送信信号生成部101と、位相回転部102と、送信用高周波部103と、送信アレイアンテナ104と、を備える。送信制御部100と、送信信号生成部101と、位相回転部102と、送信用高周波部103と、送信アレイアンテナ104と、は、送信回路を構成する。 The radar device 10 includes, for example, a transmission control unit 100, a transmission signal generation unit 101, a phase rotation unit 102, a transmission high frequency unit 103, and a transmission array antenna 104. The transmission control unit 100, the transmission signal generation unit 101, the phase rotation unit 102, the transmission high frequency unit 103, and the transmission array antenna 104 form a transmission circuit.
 レーダ装置10は、数マイクロ秒~数十マイクロ秒程度のある予め決められた間隔で複数回レーダ信号を送信し、受信信号のドップラー周波数を検出することによって、レーダ信号を反射する物体(反射物体、検出対象)の、レーダ装置10に対する相対速度を検出する。ここで、レーダ信号(チャープ信号)の送信間隔をTdとし、送信回数をNdとする。この場合、検出できるドップラー周波数の最大値fdmaxは、1/(2×Td)に等しい。 The radar device 10 transmits a radar signal a plurality of times at predetermined intervals of several microseconds to several tens of microseconds, detects the Doppler frequency of the received signal, and thereby reflects the radar signal (reflecting object). , The detection target) detects the relative velocity with respect to the radar device 10. Here, the transmission interval of the radar signal (chirp signal) is Td, and the number of transmissions is Nd. In this case, the maximum value fdmax of the Doppler frequency that can be detected is equal to 1 / (2 × Td).
 送信制御部100は、予め定められた送信間隔で送信するためのレーダ送信タイミングと、その送信タイミングで送信するレーダ信号位相と、を送信系統毎に制御する。送信制御部100は、レーダ送信タイミングを送信信号生成部101に通知する。一例において、レーダ送信タイミングは、送信間隔Tdである。また、一例において、レーダ信号位相は、互いに直交するNtx個の符号(符号長Ndビット)に基づいて決定される。ここで、Ntxは、2以上の任意の整数である。互いに直交するNtx個の符号は、例えば、Walsh符号である。一例において、符号のビット値0に0ラジアン(0度)の位相が割り当てられ、ビット値1にπラジアン(180度)の位相が割り当てられる。送信制御部100は、送信間隔Td毎に、符号内の1ビットに割り当てられた位相を示す位相制御信号を位相回転部102に通知する。 The transmission control unit 100 controls the radar transmission timing for transmitting at a predetermined transmission interval and the radar signal phase to be transmitted at the transmission timing for each transmission system. The transmission control unit 100 notifies the transmission signal generation unit 101 of the radar transmission timing. In one example, the radar transmission timing is the transmission interval Td. Further, in one example, the radar signal phase is determined based on Ntx codes (code length Nd bits) orthogonal to each other. Here, Ntx is an arbitrary integer of 2 or more. The Ntx codes that are orthogonal to each other are, for example, Walsh codes. In one example, the sign bit value 0 is assigned a phase of 0 radians (0 degrees) and the bit value 1 is assigned a phase of π radians (180 degrees). The transmission control unit 100 notifies the phase rotation unit 102 of a phase control signal indicating the phase assigned to one bit in the code for each transmission interval Td.
 送信信号生成部101は、送信制御部100から通知されたレーダ送信タイミングで、レーダ送信信号を生成する。レーダ送信信号は、例えば、FCM(Fast Chirp Modulation)方式で用いられるチャープ信号または符号化パルス信号である。 The transmission signal generation unit 101 generates a radar transmission signal at the radar transmission timing notified from the transmission control unit 100. The radar transmission signal is, for example, a chirp signal or a coded pulse signal used in the FCM (Fast Chip Modulation) method.
 位相回転部102は、送信制御部100によって生成された位相制御信号に基づいて、送信信号生成部101によって生成されたレーダ送信信号を、送信系統毎に位相回転する。以下、送信アンテナNtjにおけるnc回目送信の位相回転量をθj(nc)とする。 The phase rotation unit 102 phase-rotates the radar transmission signal generated by the transmission signal generation unit 101 for each transmission system based on the phase control signal generated by the transmission control unit 100. Hereinafter, the phase rotation amount of the ncth transmission in the transmission antenna Ntj is defined as θj (nc).
 送信用高周波部103は、位相回転部102によって送信系統毎に位相回転されたレーダ信号を、予め設定された送信パワーに調整し、送信アレイアンテナ104の複数の送信アンテナ素子のそれぞれに出力する。 The transmission high frequency unit 103 adjusts the radar signal phase-rotated for each transmission system by the phase rotation unit 102 to a preset transmission power, and outputs the radar signal to each of the plurality of transmission antenna elements of the transmission array antenna 104.
 送信アレイアンテナ104は、送信用高周波部103によって生成されたレーダ信号を、電波として空中に送出する。送信アレイアンテナ104は、Ntx個の送信アンテナ素子を備える。図1に示される一例においては、Ntx=2である。以下、簡単の為に、送信アレイアンテナ104が2つの送信アンテナ素子At1,At2を備える場合について、本開示を説明する。 The transmission array antenna 104 transmits the radar signal generated by the transmission high frequency unit 103 as radio waves in the air. The transmission array antenna 104 includes Ntx transmission antenna elements. In the example shown in FIG. 1, Ntx = 2. Hereinafter, for the sake of simplicity, the present disclosure will be described with respect to the case where the transmitting array antenna 104 includes two transmitting antenna elements At1 and At2.
 符号115は、送信レーダ信号に位相誤差が発生しうる箇所(位相誤差発生箇所)を示す。位相誤差は、送信系統毎に発生しうる。 Reference numeral 115 indicates a location where a phase error can occur in the transmission radar signal (a location where a phase error occurs). The phase error can occur for each transmission system.
 さらに、レーダ装置10は、例えば、受信アレイアンテナ105と、受信用高周波部106と、A/Dコンバータ(ADC)107と、を備える。受信アレイアンテナ105と、受信用高周波部106と、ADC107と、は、受信回路を構成する。 Further, the radar device 10 includes, for example, a reception array antenna 105, a reception high frequency unit 106, and an A / D converter (ADC) 107. The receiving array antenna 105, the receiving high frequency unit 106, and the ADC 107 form a receiving circuit.
 受信アレイアンテナ105は、送信アレイアンテナ104から送出され、反射物体に反射してレーダ装置10に戻ってきた反射波を受信する。受信アレイアンテナ105は、Nrx個の送信アンテナ素子を備える。ここで、Nrxは、2以上の任意の整数である。図1に示される一例においては、Nrx=2である。以下、簡単の為に、受信アレイアンテナ105が2つの受信アンテナ素子Ar1,Ar2を備える場合について、本開示を説明する。 The receiving array antenna 105 receives the reflected wave transmitted from the transmitting array antenna 104, reflected by the reflecting object, and returned to the radar device 10. The receiving array antenna 105 includes Nrx transmitting antenna elements. Here, Nrx is an arbitrary integer of 2 or more. In the example shown in FIG. 1, Nrx = 2. Hereinafter, for the sake of simplicity, the present disclosure will be described with respect to the case where the receiving array antenna 105 includes two receiving antenna elements Ar1 and Ar2.
 受信アンテナ素子Ar1,Ar2は、それぞれ、送信アンテナ素子At1,At2から送出された電波の反射波を受信する。換言すると、受信アンテナ素子Ar1,Ar2は、At1→反射物体→Ar1の経路、At2→反射物体→Ar1の経路、At1→反射物体→Ar2の経路、およびAt2→反射物体→Ar2の経路を通った、Ntx×Nrx系統のレーダ信号を受信する。レーダ装置10において、これらの複数の経路差(到達時間差によって生じる位相差)と、送信アンテナ素子および受信アンテナ素子の間の相対位置に基づいて、反射物体の方位が検出される。反射物体の方位の検出には、例えば、ビームフォーマ法またはMUSIC(MUltiple SIgnal Classification)法が用いられる。MIMOレーダにおいては、送受信アンテナ間隔を適切に配置することで、少ない素子数によってアレイアンテナの実効的な開口長を仮想的に拡大し、角度分解能の向上を図ることができる。 The receiving antenna elements Ar1 and Ar2 receive the reflected waves of the radio waves transmitted from the transmitting antenna elements At1 and At2, respectively. In other words, the receiving antenna elements Ar1 and Ar2 passed through the path of At1 → reflective object → Ar1, the path of At2 → reflective object → Ar1, the path of At1 → reflective object → Ar2, and the path of At2 → reflective object → Ar2. , Ntx × Nrx system radar signal is received. In the radar device 10, the orientation of the reflecting object is detected based on these plurality of path differences (phase differences caused by the arrival time difference) and the relative positions between the transmitting antenna element and the receiving antenna element. For example, the beamformer method or the MUSIC (MUSIC Signal Classification) method is used to detect the orientation of the reflecting object. In the MIMO radar, by appropriately arranging the transmission / reception antenna spacing, the effective aperture length of the array antenna can be virtually expanded with a small number of elements, and the angular resolution can be improved.
 受信用高周波部106は、受信アレイアンテナ105の受信アンテナ素子Ar1,Ar2で受信された信号に送信信号を掛け合わせることにより復調処理を行い、受信系統毎に受信信号(ビート信号)を生成する。 The reception high frequency unit 106 performs demodulation processing by multiplying the signal received by the reception antenna elements Ar1 and Ar2 of the reception array antenna 105 with the transmission signal, and generates a reception signal (beat signal) for each reception system.
 ADC107は、受信用高周波部106で受信された受信信号を、受信系統毎にアナログ/デジタル変換する。 The ADC 107 converts the received signal received by the receiving high frequency unit 106 into analog / digital for each receiving system.
 レーダ装置10は、さらに、例えば、距離検出処理部108と、位相逆回転部109と、速度検出処理部110と、ピーク検出処理部111と、虚像除去処理部(除去回路)112と、方位検出処理部(検出回路)113と、物体検出処理部114と、を備える。 Further, the radar device 10 further includes, for example, a distance detection processing unit 108, a phase reverse rotation unit 109, a speed detection processing unit 110, a peak detection processing unit 111, a virtual image removal processing unit (removal circuit) 112, and an azimuth detection. A processing unit (detection circuit) 113 and an object detection processing unit 114 are provided.
 距離検出処理部108は、受信系統毎にビート信号から反射物体までの距離(到来距離)を検出する。反射物体までの距離の検出には、例えば、1送信間隔Td内のビート信号を入力としたFFT(Fast Fourier Transformation)演算が用いられる。FFT演算の出力に基づいて送信チャープ信号と受信チャープ信号の周波数差が求められ、その周波数差に基づいて、到来時間が算出され、到来距離に換算される。受信アンテナ素子Ariにおけるnc回目の送信間隔Td内の相対時間tの入力ビート信号をr(t,nc;i)で表す。また、入力ビート信号r(t,nc;i)に対する距離検出用FFT演算結果をFr(nr,nc;i)で表す。ここで、距離インデックスnrは、到来距離に対応する。 The distance detection processing unit 108 detects the distance (arrival distance) from the beat signal to the reflecting object for each receiving system. For detecting the distance to the reflecting object, for example, an FFT (Fast Fourier Transform) calculation using a beat signal within one transmission interval Td as an input is used. The frequency difference between the transmitted chirp signal and the received chirp signal is obtained based on the output of the FFT calculation, and the arrival time is calculated based on the frequency difference and converted into the arrival distance. The input beat signal of the relative time t within the ncth transmission interval Td in the receiving antenna element Ari is represented by r (t, nc; i). Further, the distance detection FFT calculation result for the input beat signal r (t, nc; i) is represented by Fr (nr, nc; i). Here, the distance index nr corresponds to the arrival distance.
 位相逆回転部109は、送信制御部100で送信系統毎に生成された位相制御信号に基づいて、各受信系統の受信信号に位相逆回転を施す。この出力の系統数は、Ntx×Nrxであり、各出力系統の信号は、距離検出用FFT演算結果Fr(nr,nc;i)を-θj(nc)の位相回転を施した信号Frot(nr,nc;i,j)である。 The phase reverse rotation unit 109 performs phase reverse rotation on the reception signal of each reception system based on the phase control signal generated for each transmission system by the transmission control unit 100. The number of systems of this output is Ntx × Nrx, and the signal of each output system is a signal Frot (nr) obtained by performing a phase rotation of the FFT calculation result Fr (nr, nc; i) for distance detection by −θj (nc). , Nc; i, j).
 速度検出処理部110は、複数回送信されたチャープ信号の反射波を受信して生成された複数のビート信号に基づいて、距離毎のドップラー周波数を推定し、反射物体の相対速度を推定する。例えば、各距離インデックスの信号に対して、Nd回の信号Frot(nr,nc;i,j)を、チャープインデックスncに亘ってFFT演算することにより、ドップラー周波数を求めることができる。ドップラー周波数は、相対速度に換算される。受信アンテナ素子Ariおよび送信アンテナ素子Atjの間の距離インデックスnrにおける速度検出用FFT演算結果をFv(nr,nv;i,j)で表す。ここで、速度インデックスnvは、反射物体の相対速度に対応する。 The velocity detection processing unit 110 estimates the Doppler frequency for each distance based on the plurality of beat signals generated by receiving the reflected waves of the chirp signals transmitted a plurality of times, and estimates the relative velocity of the reflecting object. For example, the Doppler frequency can be obtained by performing an FFT calculation on the Nd signal Frot (nr, nc; i, j) over the chirp index nc for the signal of each distance index. Doppler frequency is converted to relative velocity. The speed detection FFT calculation result at the distance index nr between the receiving antenna element Ari and the transmitting antenna element Atj is represented by Fv (nr, nv; i, j). Here, the velocity index nv corresponds to the relative velocity of the reflecting object.
 ピーク検出処理部111は、速度検出用FFT演算結果Fv(nr,nv;i,j)のピーク信号を抽出し、ノイズ成分を除去し、ピーク信号を特定する情報(ピーク情報)を生成する。ピーク情報は、例えば、速度検出用FFT演算結果Fv(nr,nv;i,j)のピーク(極大値)に対応するセル(ピークセル)である。ここで、セルは、距離インデックスnrと速度インデックスnvとの対(nr,nv)である。ピーク検出処理部111は、例えば、CFAR(Constant False Alarm Rate)アルゴリズムにより速度検出用FFT演算結果Fv(nr,nv;i,j)のピークセルを抽出することにより、ピーク信号を抽出する。ピーク検出処理部111の出力信号は、例えば、速度検出用FFT演算結果Fv(nr,nv;i,j)と生成したピーク情報とを含む。 The peak detection processing unit 111 extracts the peak signal of the speed detection FFT calculation result Fv (nr, nv; i, j), removes the noise component, and generates information (peak information) for specifying the peak signal. The peak information is, for example, a cell (peak cell) corresponding to the peak (maximum value) of the speed detection FFT calculation result Fv (nr, nv; i, j). Here, the cell is a pair (nr, nv) of the distance index nr and the velocity index nv. The peak detection processing unit 111 extracts a peak signal by, for example, extracting a peak cell of a speed detection FFT calculation result Fv (nr, nv; i, j) by a CFAR (Constant False Allarm Rate) algorithm. The output signal of the peak detection processing unit 111 includes, for example, the speed detection FFT calculation result Fv (nr, nv; i, j) and the generated peak information.
 虚像除去処理部112は、位相逆回転部109により受信信号を送信系統の信号成分毎に分離した際に発生する符号間の干渉成分、即ち、虚像成分を除去する。 The virtual image removal processing unit 112 removes the interference component between the codes generated when the received signal is separated for each signal component of the transmission system by the phase reverse rotation unit 109, that is, the virtual image component.
 虚像除去処理部112は、例えば、位相補正部1121と、簡易到来方向推定部1122と、周波数軸電力比較部1123と、虚像ピークマスク処理部1124と、を備える。 The virtual image removal processing unit 112 includes, for example, a phase correction unit 1121, a simple arrival direction estimation unit 1122, a frequency axis power comparison unit 1123, and a virtual image peak mask processing unit 1124.
 位相補正部1121は、送信系統毎に予め設定された位相回転を行うことによって、受信信号の位相誤差を補正する。補正する位相誤差は、例えば、位相誤差発生箇所115で発生する位相誤差である。位相補正部1121の処理内容については、図3A、図3B、および図4を参照して後述する。 The phase correction unit 1121 corrects the phase error of the received signal by performing a phase rotation preset for each transmission system. The phase error to be corrected is, for example, a phase error generated at the phase error occurrence location 115. The processing content of the phase correction unit 1121 will be described later with reference to FIGS. 3A, 3B, and 4.
 簡易到来方向推定部1122は、反射波の到来方向を簡易到来方向推定し、最大尤度を有する方位の電力(最大電力)を出力する。簡易到来方向推定には、例えば、粗い方位精度での方位検出用FFT演算、もしくは、方位検出用DFT(Discrete Fourier Transformation)演算を用いる。簡易到来方向推定部1122の処理内容については、図4を参照して後述する。 The simple arrival direction estimation unit 1122 simply estimates the arrival direction of the reflected wave and outputs the power (maximum power) in the direction having the maximum likelihood. For the simple arrival direction estimation, for example, an FFT calculation for azimuth detection with coarse azimuth accuracy or a DFT (Discrete Fourier Transform) calculation for azimuth detection is used. The processing content of the simple arrival direction estimation unit 1122 will be described later with reference to FIG.
 周波数軸電力比較部1123は、ピークセルと、虚像ピークが出現する速度インデックスオフセット値分ずれたピークセルと、について、対応する反射波成分の推定された到来方向における最大電力を比較して、虚像ピークを検出する。速度インデックスオフセット値は、予め設定された値である。周波数軸電力比較部1123の処理内容については、図7を参照して後述する。 The frequency axis power comparison unit 1123 compares the maximum powers of the corresponding reflected wave components in the estimated arrival direction of the peak cell and the peak cell deviated by the velocity index offset value at which the virtual image peak appears, and determines the virtual image peak. To detect. The velocity index offset value is a preset value. The processing content of the frequency axis power comparison unit 1123 will be described later with reference to FIG.
 虚像ピークマスク処理部1124は、速度検出用FFT演算結果Fvにおける虚像ピークに対応する成分を除去(マスク処理)する。これにより、虚像に起因するレーダ装置10の誤検出を、抑制または低減する。 The virtual image peak mask processing unit 1124 removes (masks) the component corresponding to the virtual image peak in the speed detection FFT calculation result Fv. As a result, erroneous detection of the radar device 10 due to the virtual image is suppressed or reduced.
 方位検出処理部113は、虚像ピークマスク処理部1124によってマスク処理された速度検出用FFT演算結果Fvに基づいて、反射物体の方位を推定する。方位の推定には、例えば、ビームフォーマ法またはMUSIC法を用いる。 The azimuth detection processing unit 113 estimates the azimuth of the reflecting object based on the speed detection FFT calculation result Fv masked by the virtual image peak mask processing unit 1124. For example, the beamformer method or the MUSIC method is used to estimate the azimuth.
 物体検出処理部114は、マスク処理後の速度検出用FFT演算結果Fvと推定された方位とに基づいて、反射物体の位置、大きさ、向き、および速度の少なくとも1つを推定する。例えば、物体検出処理部114は、マスク処理された速度検出用FFT演算結果Fvに示される反射物体までの距離および反射物体の相対速度と、方位検出処理部113が推定した反射物体の方位と、を示す物体の点群情報に対して、クラスタリング処理およびトラッキング処理を行う。 The object detection processing unit 114 estimates at least one of the position, size, orientation, and speed of the reflecting object based on the speed detection FFT calculation result Fv after the mask processing and the estimated azimuth. For example, the object detection processing unit 114 determines the distance to the reflective object and the relative velocity of the reflective object shown in the masked speed detection FFT calculation result Fv, and the orientation of the reflective object estimated by the orientation detection processing unit 113. Clustering processing and tracking processing are performed on the point group information of the object indicating.
 図2は、実施の形態1に係る虚像の一例を説明する図である。 FIG. 2 is a diagram illustrating an example of a virtual image according to the first embodiment.
 レーダ信号(チャープ信号)の送信パターンの一例201は、送信間隔Td、繰り返し送信回数Nd回のチャープ送信の一例を示す。例えば、送信アンテナ素子At1用の送信信号には、ビット値0がNd個続く符号を用いて位相回転を施す。送信アンテナ素子At2用の送信信号には、ビット値0とビット値1とが交互に繰り返されて、全部でNd個続く符号を用いて位相回転を施す。送信アンテナ素子At1および送信アンテナ素子At2は、これらの送信信号を送信する。 Example 201 of a radar signal (chirp signal) transmission pattern shows an example of a chirp transmission having a transmission interval of Td and a number of repeated transmissions of Nd. For example, the transmission signal for the transmission antenna element At1 is phase-rotated using a code having Nd bit values of 0. In the transmission signal for the transmission antenna element At2, bit value 0 and bit value 1 are alternately repeated, and phase rotation is performed using a code that continues Nd in total. The transmitting antenna element At1 and the transmitting antenna element At2 transmit these transmission signals.
 例えば、ドップラー周波数fdの速度を有する反射物体が存在し、その反射物体による反射波が受信アンテナ素子Ar1で受信されることを想定する。位相回転なしで送信アンテナ素子At1から単独で送信されたチャープ信号の、時刻tおよびチャープインデックスncにおける反射波のビート信号をr1(t,nc)とする。位相回転なしで送信アンテナ素子At2から単独で送信されたチャープ信号の、時刻tおよびチャープインデックスncにおける反射波のビート信号をr2(t,nc)とする。 For example, it is assumed that there is a reflecting object having a velocity of the Doppler frequency fd, and the reflected wave by the reflecting object is received by the receiving antenna element Ar1. Let r1 (t, nc) be the beat signal of the reflected wave at the time t and the chirp index nc of the chirp signal transmitted independently from the transmitting antenna element At1 without phase rotation. Let r2 (t, nc) be the beat signal of the reflected wave at the time t and the chirp index nc of the chirp signal transmitted independently from the transmitting antenna element At2 without phase rotation.
 この場合、受信アンテナ素子Ar1での受信信号r(t,nc)には、送信アンテナ素子At1から送信されたチャープ信号の反射波:
Figure JPOXMLDOC01-appb-M000001
と、送信アンテナ素子At2から送信されたチャープ信号の反射波:
Figure JPOXMLDOC01-appb-M000002
と、が含まれ、
Figure JPOXMLDOC01-appb-M000003
となる。ここで、jは、虚数単位を表す。図2に示される一例においては、θ1(nc)=0であり、
Figure JPOXMLDOC01-appb-M000004
である。
In this case, the received signal r (t, nc) of the receiving antenna element Ar1 is the reflected wave of the chirp signal transmitted from the transmitting antenna element At1:
Figure JPOXMLDOC01-appb-M000001
And the reflected wave of the chirp signal transmitted from the transmitting antenna element At2:
Figure JPOXMLDOC01-appb-M000002
And, including,
Figure JPOXMLDOC01-appb-M000003
Will be. Here, j represents an imaginary unit. In the example shown in FIG. 2, θ1 (nc) = 0, and
Figure JPOXMLDOC01-appb-M000004
Is.
 受信信号r(t,nc)に対して、時間tに亘って距離検出用FFT処理を実施することによって、受信信号:
Figure JPOXMLDOC01-appb-M000005
が得られる。ここで、距離インデックスnrは、距離rに対応するインデックスである。
By performing the distance detection FFT process on the received signal r (t, nc) over a time t, the received signal:
Figure JPOXMLDOC01-appb-M000005
Is obtained. Here, the distance index nr is an index corresponding to the distance r.
 次いで、送信アンテナ素子At1からの受信信号成分を抽出するために、受信信号Fr(nr,nc)にej×(-θ1(nc))を乗じて逆位相回転することによって、信号:
Figure JPOXMLDOC01-appb-M000006
が得られる。この式に示されるように、信号Frot(nr,nc;1)には、送信アンテナ素子At2からの受信信号成分Fr2(nr,nc)にej×(θ2(n)-θ1(n))を乗じた成分が残留する。
Next, in order to extract the received signal component from the transmitting antenna element At1, the received signal Fr (nr, nc ) is multiplied by ej × (−θ1 (nc)) and rotated in the opposite phase.
Figure JPOXMLDOC01-appb-M000006
Is obtained. As shown in this equation, the signal Frot (nr, nc; 1) includes the received signal component Fr2 (nr, nc) from the transmitting antenna element At2 and ej × (θ2 (n) -θ1 (n)). The component multiplied by is left.
 同様に、送信アンテナ素子At2からの受信信号成分Fr2(nr,nc)を抽出するために、受信信号Fr(nr,nc)にej×(-θ2(nc))を乗じて逆位相回転することによって、信号:
Figure JPOXMLDOC01-appb-M000007
が得られる。この式に示されるように、信号Frot(nr,nc;2)には、送信アンテナ素子At1からの受信信号成分Fr1(nr,nc)にej×(θ1(nc)-θ2(nc))を乗じた成分が残留する。
Similarly, in order to extract the received signal component Fr2 (nr, nc) from the transmitting antenna element At2, the received signal Fr (nr, nc ) is multiplied by ej × (−θ2 (nc)) and rotated in opposite phase. By the signal:
Figure JPOXMLDOC01-appb-M000007
Is obtained. As shown in this equation, the signal Frot (nr, nc; 2) includes the received signal component Fr1 (nr, nc) from the transmitting antenna element At1 and ej × (θ1 (nc) −θ2 (nc)). The component multiplied by is left.
 ここで、反射物体までの距離に対応する距離インデックスnrにおける受信信号の値に着目する。受信信号の位相の時間に伴う変化の一例を示す図2のグラフ202,203において、横軸は、チャープインデックスncで表される時間を表し、縦軸は、受信信号の位相を表す。 Here, pay attention to the value of the received signal at the distance index nr corresponding to the distance to the reflecting object. In graphs 202 and 203 of FIG. 2 showing an example of the change in the phase of the received signal with time, the horizontal axis represents the time represented by the chirp index nc, and the vertical axis represents the phase of the received signal.
 グラフ202は、送信アンテナ素子At1からの受信信号成分Fr1(nr,nc)に対してej×(-θ1(nc))を乗じて逆位相回転した結果(信号Frot(nr,nc;1)の第1項)の位相変化を示す。グラフ202において、受信信号成分Fr1(nr,nc)は、同じ送信アンテナ素子At1用の位相回転量θ1(nc)に基づいて正しく逆位相回転を実施されており、反射物体が有するドップラー周波数fdに起因する位相変化が確認できる。ここで、正しい位相逆回転とは、送信信号の位相回転量を相殺する位相回転量の位相回転である。 Graph 202 shows the result of anti-phase rotation by multiplying the received signal component Fr1 (nr, nc) from the transmitting antenna element At1 by ej × (−θ1 (nc)) (signal Frot (nr, nc; 1)). The phase change of the first term) of) is shown. In the graph 202, the received signal component Fr1 (nr, nc) is correctly subjected to anti-phase rotation based on the phase rotation amount θ1 (nc) for the same transmitting antenna element At1, and has a Doppler frequency fd of the reflecting object. The resulting phase change can be confirmed. Here, the correct phase reverse rotation is the phase rotation of the phase rotation amount that cancels the phase rotation amount of the transmission signal.
 一方、グラフ203は、送信アンテナ素子At2からの受信信号成分Fr2(nr,nc)に対してej×(-θ1(nc))を乗じて逆位相回転した結果(信号Frot(nr,nc;1)の第2項)の位相変化を示す。グラフ203において、受信信号成分Fr2(nr,nc)は、異なる送信アンテナ素子At1用の位相回転量θ1(nc)に基づいて誤って逆位相回転を実施されている。誤った位相逆回転とは、送信信号の位相回転量を相殺しない位相回転量の位相回転である。 On the other hand, the graph 203 shows the result of anti-phase rotation by multiplying the received signal component Fr2 (nr, nc) from the transmitting antenna element At2 by ej × (−θ1 (nc)) (signal Frot (nr, nc;; The phase change of the second term) of 1) is shown. In graph 203, the received signal component Fr2 (nr, nc) is erroneously subjected to anti-phase rotation based on the phase rotation amount θ1 (nc) for different transmitting antenna elements At1. The erroneous phase reverse rotation is a phase rotation of a phase rotation amount that does not cancel the phase rotation amount of the transmitted signal.
 グラフ203においては、白丸で示される反射物体のドップラー周波数fdに起因する位相変化に、送信アンテナ素子At1および送信アンテナ素子At2における位相回転量の差分である位相πラジアンずれた位相変化が確認できる。送信アンテナ素子At2における位相回転を取り除いていない結果、グラフ203において、ドップラー周波数fdにfs/2(fs=1/Td)を加えたドップラー周波数fd+fs/2に起因する位相変化が確認できる。 In the graph 203, it can be confirmed that the phase change caused by the Doppler frequency fd of the reflecting object indicated by the white circle has a phase change shifted by a phase π radian, which is a difference in the amount of phase rotation between the transmitting antenna element At1 and the transmitting antenna element At2. As a result of not removing the phase rotation in the transmitting antenna element At2, it can be confirmed in the graph 203 that the phase change caused by the Doppler frequency fd + fs / 2 obtained by adding fs / 2 (fs = 1 / Td) to the Doppler frequency fd.
 グラフ204は、信号Frot(nr,nc;1)を速度検出用FFT処理した結果を示す。グラフ204には、ドップラー周波数fdに反射物体の存在を表すピークが形成され、ドップラー周波数fd+fs/2にも実際には存在しない物体のピークが形成される。この実際には存在しない物体のピークを虚像ピークという。 Graph 204 shows the result of FFT processing for speed detection of the signal Frot (nr, nc; 1). In the graph 204, a peak indicating the existence of a reflecting object is formed at the Doppler frequency fd, and a peak of an object that does not actually exist is also formed at the Doppler frequency fd + fs / 2. This peak of an object that does not actually exist is called a virtual image peak.
 図3Aは、仮想受信アレイアンテナに到来する信号の位相差の一例を説明する図である。 FIG. 3A is a diagram illustrating an example of the phase difference of the signal arriving at the virtual reception array antenna.
 仮想受信アレイアンテナとは、送信アンテナ素子At1,At2毎に、送信アンテナ素子At1,At2の基準位置からのずれの分に応じて受信アンテナ素子Ar1,Ar2をずらしたものを、全て重ねて得られる受信アレイアンテナである。基準位置は、例えば、送信アンテナ素子At1の位置である。例えば、送信アンテナ素子At1,At2の間隔が長さ2×dであり、受信アンテナ素子Ar1,Ar2の間隔が長さdである場合、送信アンテナ素子At1,At2および受信アンテナ素子Ar1,Ar2で構成される2×2の仮想受信アレイアンテナが構成される。仮想受信アレイアンテナのアンテナ素子(仮想受信アンテナ素子)は、アンテナ間隔dで水平一列に配置されている。 The virtual receiving array antenna is obtained by superimposing all the transmitting antenna elements At1 and At2 in which the receiving antenna elements Ar1 and Ar2 are shifted according to the deviation from the reference position of the transmitting antenna elements At1 and At2. It is a receiving array antenna. The reference position is, for example, the position of the transmitting antenna element At1. For example, when the distance between the transmitting antenna elements At1 and At2 is a length of 2 × d and the distance between the receiving antenna elements Ar1 and Ar2 is a length d, the transmitting antenna elements At1 and At2 and the receiving antenna elements Ar1 and Ar2 are configured. A 2x2 virtual receive array antenna is configured. The antenna elements (virtual receiving antenna elements) of the virtual receiving array antenna are arranged in a horizontal row with an antenna interval d.
 図3Aに示される反射波の仮想受信アンテナ素子への入射の一例301に示されるように、方位θにある反射物体からの反射波が仮想受信アンテナ素子に入射する場合、仮想受信アンテナ素子の入射信号の間には、位相差αの整数倍の位相差が生じる。 As shown in Example 301 of the incident of the reflected wave on the virtual receiving antenna element shown in FIG. 3A, when the reflected wave from the reflecting object in the orientation θ is incident on the virtual receiving antenna element, the incident of the virtual receiving antenna element A phase difference that is an integral multiple of the phase difference α occurs between the signals.
 入射信号の位相差を用いて、反射波を生成する反射物体の方位を検出できる。方位の検出は、例えば、フーリエ変換を利用したビームフォーマ法である。ビームフォーマ法は、各方位θにおける各仮想受信アンテナ素子の理想的な入射信号の位相差を算出し、実際の受信信号との相関を算出し、相関に基づいて方位推定を行う方法である。 The orientation of the reflecting object that generates the reflected wave can be detected by using the phase difference of the incident signal. The azimuth detection is, for example, a beamformer method using a Fourier transform. The beamformer method is a method of calculating the phase difference of the ideal incident signal of each virtual receiving antenna element in each direction θ, calculating the correlation with the actual received signal, and estimating the direction based on the correlation.
 図3Bは、仮想受信アンテナ素子の位置と入射信号の位相差との関係の一例を説明する図である。 FIG. 3B is a diagram illustrating an example of the relationship between the position of the virtual receiving antenna element and the phase difference of the incident signal.
 図3Bにおいて、仮想受信アンテナ素子は、直線上に配置され、横軸は、直線上のある位置を基準とする仮想受信アンテナ素子の相対位置を表し、縦軸は、入射信号の位相差を表す。理想的な入射信号の位相差は、仮想受信アンテナ素子間の間隔の長さに比例する。したがって、図3Bのグラフ302に示されるように、仮想受信アンテナ素子の相対位置に対する位相差を示す白丸の位置は、直線上に並ぶ。 In FIG. 3B, the virtual receiving antenna element is arranged on a straight line, the horizontal axis represents the relative position of the virtual receiving antenna element with respect to a certain position on the straight line, and the vertical axis represents the phase difference of the incident signal. .. The ideal phase difference of the incident signal is proportional to the length of the spacing between the virtual receiving antenna elements. Therefore, as shown in the graph 302 of FIG. 3B, the positions of the white circles indicating the phase difference with respect to the relative position of the virtual receiving antenna element are aligned on a straight line.
 しかし、実際には、例えば、レーダ送受信集積回路から送受信アンテナ素子までの間の給電ラインに設計面、製造面、または実装面で位相誤差が生じる場合がある。例えば、送信アンテナ素子At1と受信アンテナ素子Ar1との組み合わせに、位相誤差β1が生じる。また、送信アンテナ素子At2と受信アンテナ素子Ar1との組み合わせに、位相誤差β2が生じる。また、送信アンテナ素子At1と受信アンテナ素子Ar2との組み合わせに、位相誤差β3が生じる。また、送信アンテナ素子At2と受信アンテナ素子Ar2との組み合わせに、位相誤差β4が生じる。その結果、入射信号の位相差は、黒丸の位置で表されるように、直線上に並ばず、相関性が低くなる。位相誤差β1~β4は、例えば、キャリブレーションにより予め測定できる。 However, in reality, for example, a phase error may occur in the power supply line between the radar transmission / reception integrated circuit and the transmission / reception antenna element in terms of design, manufacturing, or mounting. For example, a phase error β1 occurs in the combination of the transmitting antenna element At1 and the receiving antenna element Ar1. Further, a phase error β2 occurs in the combination of the transmitting antenna element At2 and the receiving antenna element Ar1. Further, a phase error β3 occurs in the combination of the transmitting antenna element At1 and the receiving antenna element Ar2. Further, a phase error β4 occurs in the combination of the transmitting antenna element At2 and the receiving antenna element Ar2. As a result, the phase difference of the incident signal does not line up on a straight line as represented by the position of the black circle, and the correlation becomes low. The phase errors β1 to β4 can be measured in advance by, for example, calibration.
 位相誤差β1~β4を加味することによって、距離検出処理部108が入力する受信アンテナ素子Ariにおける受信信号(ビート信号)r’(t,nc;i)は、次の式:
Figure JPOXMLDOC01-appb-M000008
と、
Figure JPOXMLDOC01-appb-M000009
と、で表現できる。
By adding the phase errors β1 to β4, the received signal (beat signal) r'(t, nc; i) in the receiving antenna element Ari input by the distance detection processing unit 108 is expressed by the following equation:
Figure JPOXMLDOC01-appb-M000008
When,
Figure JPOXMLDOC01-appb-M000009
Can be expressed by.
 ここで、tは、時間を表し、ncは、チャープインデックスを表す。また、r(t,nc;i,j)は、受信アンテナ素子Ariの理想的な入射信号r(t,nc;i)のうち、送信アンテナ素子Atjの送信信号に対応する成分を表す。 Here, t represents time and nc represents the chirp index. Further, r (t, nc; i, j) represents a component of the ideal incident signal r (t, nc; i) of the receiving antenna element Ari that corresponds to the transmitting signal of the transmitting antenna element Atj.
 距離検出処理部108は、受信信号r’に対して、時間tに亘って、距離検出用FFT処理を施して、距離検出用FFT信号:
Figure JPOXMLDOC01-appb-M000010
と、
Figure JPOXMLDOC01-appb-M000011
と、を得る。ここで、距離インデックスnrは、距離rに対応するインデックスである。
The distance detection processing unit 108 performs the distance detection FFT process on the received signal r'for a time t, and the distance detection FFT signal:
Figure JPOXMLDOC01-appb-M000010
When,
Figure JPOXMLDOC01-appb-M000011
And get. Here, the distance index nr is an index corresponding to the distance r.
 位相逆回転部109は、距離検出用FFT信号Fr’を逆位相回転(第2の位相回転のうち第1の位相回転に相当する位相回転)して、信号:
Figure JPOXMLDOC01-appb-M000012
と、
Figure JPOXMLDOC01-appb-M000013
と、
Figure JPOXMLDOC01-appb-M000014
と、
Figure JPOXMLDOC01-appb-M000015
と、を得る。
The phase reverse rotation unit 109 rotates the distance detection FFT signal Fr'in a reverse phase (phase rotation corresponding to the first phase rotation of the second phase rotation) to obtain a signal:
Figure JPOXMLDOC01-appb-M000012
When,
Figure JPOXMLDOC01-appb-M000013
When,
Figure JPOXMLDOC01-appb-M000014
When,
Figure JPOXMLDOC01-appb-M000015
And get.
 速度検出処理部110は、上記信号Frot’に対して、チャープインデックスncに亘って速度検出用FFT処理を施して、速度検出用FFT演算結果:
Figure JPOXMLDOC01-appb-M000016
と、
Figure JPOXMLDOC01-appb-M000017
と、
Figure JPOXMLDOC01-appb-M000018
と、
Figure JPOXMLDOC01-appb-M000019
と、を得る。ここで、nvは、速度インデックスを表す。レーダ信号の送信前の位相回転と受信後の逆位相回転とに基づく位相回転が、FFT演算結果Fv1には含まれ、FFT演算結果Fv2には含まれない。
The speed detection processing unit 110 performs speed detection FFT processing over the chirp index nc on the signal Frot', and the speed detection FFT calculation result:
Figure JPOXMLDOC01-appb-M000016
When,
Figure JPOXMLDOC01-appb-M000017
When,
Figure JPOXMLDOC01-appb-M000018
When,
Figure JPOXMLDOC01-appb-M000019
And get. Here, nv represents a speed index. The phase rotation based on the phase rotation before transmission and the anti-phase rotation after reception of the radar signal is included in the FFT calculation result Fv1 and is not included in the FFT calculation result Fv2.
 ピーク検出処理部111は、速度検出用FFT演算結果Fv’から、ピーク信号を抽出する。図2に示される一例に照らし合わせて説明すると、信号Fv’(nr,nv;1,1)の第1項には、ドップラー周波数fdに対応する速度インデックスnvにおいて、ピーク(実像ピーク)信号が存在する。また、信号Fv’(nr,nv;1,1)の第2項には、ドップラー周波数fd+fs/2に対応する速度インデックスnv+Nv/2において、ピーク(虚像ピーク)信号が存在する。ここで、Nvは、速度検出用FFTのポイント数である。 The peak detection processing unit 111 extracts a peak signal from the speed detection FFT calculation result Fv'. Explaining in light of an example shown in FIG. 2, the first term of the signal Fv'(nr, nv; 1,1) includes a peak (real image peak) signal at the velocity index nv corresponding to the Doppler frequency fd. Exists. Further, in the second term of the signal Fv'(nr, nv; 1,1), there is a peak (virtual image peak) signal at the velocity index nv + Nv / 2 corresponding to the Doppler frequency fd + fs / 2. Here, Nv is the number of points of the speed detection FFT.
 図4は、実施の形態1に係る到来方向推定における残留誤差の影響を説明する図である。 FIG. 4 is a diagram for explaining the influence of the residual error in the arrival direction estimation according to the first embodiment.
 処理結果の一例405は、受信アンテナ素子Ar1で受信した受信信号を、送信アンテナ素子At1の位相回転を想定して位相逆回転した速度検出用FFT処理結果Fv’(nr,nv;1,1)の一例である。処理結果の一例406は、受信アンテナ素子Ar1で受信した受信信号を、送信アンテナ素子At2の位相回転を想定して位相逆回転した速度検出用FFT処理結果Fv’(nr,nv;1,2)の一例である。処理結果の一例407は、受信アンテナ素子Ar2で受信した受信信号を、送信アンテナ素子At1の位相回転を想定して位相逆回転した速度検出用FFT処理結果Fv’(nr,nv;2,1)の一例である。処理結果の一例408は、受信アンテナ素子Ar2で受信した受信信号を、送信アンテナ素子At2の位相回転を想定して位相逆回転した速度検出用FFT処理結果Fv’(nr,nv;2,2)の一例である。 An example of the processing result 405 is a speed detection FFT processing result Fv'(nr, nv; 1,1) in which the received signal received by the receiving antenna element Ar1 is rotated in the opposite phase assuming the phase rotation of the transmitting antenna element At1. This is an example. An example of the processing result 406 is a speed detection FFT processing result Fv'(nr, nv; 1, 2) in which the received signal received by the receiving antenna element Ar1 is rotated in the opposite phase assuming the phase rotation of the transmitting antenna element At2. This is an example. An example of the processing result 407 is a speed detection FFT processing result Fv'(nr, nv; 2, 1) in which the received signal received by the receiving antenna element Ar2 is rotated in the reverse phase assuming the phase rotation of the transmitting antenna element At1. This is an example. An example of the processing result 408 is a speed detection FFT processing result Fv'(nr, nv; 2, 2) in which the received signal received by the receiving antenna element Ar2 is rotated in the opposite phase assuming the phase rotation of the transmitting antenna element At2. This is an example.
 例えば、仮想受信アンテナ素子毎の速度検出用FFT処理結果Fv’には、反射物体までの距離に対応する距離インデックスnrにおいて、それぞれ、ピーク401,402が出現する。ピーク401は、位相逆回転部109における位相逆回転が正しい位相逆回転、即ち、位相回転部102における位相回転を相殺する位相逆回転を行うことにより生成されるピーク(実像ピーク)であり、反射物体のドップラー周波数、即ち、反射物体の速度に対応する。ピーク402は、位相逆回転部109における位相逆回転が誤った位相逆回転、即ち、位相回転部102における位相回転を相殺しない位相逆回転を行うことにより生成されるピークであり、虚像成分(虚像ピーク)である。 For example, in the speed detection FFT processing result Fv'for each virtual receiving antenna element, peaks 401 and 402 appear in the distance index nr corresponding to the distance to the reflecting object, respectively. The peak 401 is a peak (real image peak) generated by performing a phase reverse rotation in which the phase reverse rotation in the phase reverse rotation unit 109 is correct, that is, a phase reverse rotation that cancels the phase rotation in the phase rotation unit 102, and is reflected. It corresponds to the Doppler frequency of the object, that is, the velocity of the reflecting object. The peak 402 is a peak generated by performing a phase reverse rotation in which the phase reverse rotation in the phase reverse rotation unit 109 is erroneous, that is, a phase reverse rotation that does not cancel the phase rotation in the phase rotation unit 102, and is a virtual image component (virtual image). Peak).
 位相補正部1121は、処理結果の一例405,406,407,408に示される信号に対して、それぞれ、位相誤差(送信アンテナ素子に応じた位相差)β1,β2,β3,β4を補正(第2の位相回転のうち送信アンテナ素子に応じた位相差に相当する位相回転)する。例えば、処理結果の一例405,406,407,408の位相補正後の信号Fv1’’~Fv4’’は、それぞれ、次の式:
Figure JPOXMLDOC01-appb-M000020
と、
Figure JPOXMLDOC01-appb-M000021
と、
Figure JPOXMLDOC01-appb-M000022
と、
Figure JPOXMLDOC01-appb-M000023
と、で表される。
The phase correction unit 1121 corrects the phase error (phase difference according to the transmitting antenna element) β1, β2, β3, β4 for the signals shown in Examples 405, 406, 407, and 408 of the processing result (No. 1). Of the two phase rotations, the phase rotation corresponds to the phase difference according to the transmitting antenna element). For example, the phase-corrected signals Fv1'' to Fv4'' of the processing results example 405, 406, 407, and 408 have the following equations, respectively:
Figure JPOXMLDOC01-appb-M000020
When,
Figure JPOXMLDOC01-appb-M000021
When,
Figure JPOXMLDOC01-appb-M000022
When,
Figure JPOXMLDOC01-appb-M000023
Is represented by.
 この式より、例えば、Fv1’’の第2項で示される虚像ピークには、位相誤差(β2-β1)が残留することがわかる。また、例えば、Fv2’’の第1項で示される虚像ピークには、位相誤差(β1-β2)が残留することがわかる。また、例えば、Fv3’’の第2項で示される虚像ピークには、位相誤差(β4-β3)が残留することがわかる。また、例えば、Fv4’’の第1項で示される虚像ピークには、位相誤差(β3-β4)が残留することがわかる。 From this equation, it can be seen that, for example, the phase error (β2-β1) remains in the virtual image peak represented by the second term of Fv1 ″. Further, for example, it can be seen that a phase error (β1-β2) remains in the virtual image peak indicated by the first term of Fv2 ″. Further, for example, it can be seen that a phase error (β4-β3) remains in the virtual image peak indicated by the second term of Fv3 ″. Further, for example, it can be seen that a phase error (β3-β4) remains in the virtual image peak indicated by the first term of Fv4 ″.
 仮想受信アンテナ間の位相差の一例409は、ピーク401に対応する速度インデックスにおける、位相補正後の信号Fv1’’~Fv4’’の位相差の一例である。ピーク401においては、位相誤差が残留する成分の絶対値が小さくなるので、位相差の一例409の白丸で示される位相差は、反射波のうちピーク401に対応する成分の到来方向に対応する直線に漸近する。 Example 409 of the phase difference between the virtual receiving antennas is an example of the phase difference of the signals Fv1 ″ to Fv4 ″ after the phase correction in the speed index corresponding to the peak 401. At peak 401, the absolute value of the component for which the phase error remains becomes small, so the phase difference indicated by the white circle in Example 409 of the phase difference is a straight line corresponding to the arrival direction of the component corresponding to peak 401 in the reflected wave. Asymptote to.
 一方、仮想受信アンテナ間の位相差の一例410は、ピーク402に対応する速度インデックスにおける、位相補正後の信号Fv1’’~Fv4’’の位相差の一例である。ピーク402においては、位相誤差が残留する成分の絶対値が大きくなるので、位相差の一例410の白丸で示される位相差は、反射波のうちピーク402に対応する成分の到来方向に対応する直線から乖離する。 On the other hand, the example 410 of the phase difference between the virtual receiving antennas is an example of the phase difference of the signals Fv1 ″ to Fv4 ″ after the phase correction in the speed index corresponding to the peak 402. At peak 402, the absolute value of the component with residual phase error becomes large, so the phase difference indicated by the white circle in Example 410 of the phase difference is a straight line corresponding to the arrival direction of the component corresponding to peak 402 in the reflected wave. Deviation from.
 一例において、簡易到来方向推定部1122は、位相補正後の信号Fv1’’~Fv4’’を用いて、次の式で表される方位検出用FFT演算を介して、ピークセル(nr,nv)に対応する反射波成分(ドップラー周波数成分)の方向θ毎の電力:
Figure JPOXMLDOC01-appb-M000024
と、最大電力:
Figure JPOXMLDOC01-appb-M000025
と、を求める。ここで、λ(nr)は、距離インデックスnrに対応するビート信号の波長を表し、d(i-1)は、基準アンテナ位置からアンテナiの位置までの距離を表す。簡易到来方向推定部1122は、例えば、電力P(θ;nr,nv)が最大電力Pmax(nr,nv)をとる方向θを、ピークセル(nr,nv)に対応する反射波成分(ドップラー周波数成分)の到来方向(推定到来方向)であると推定(簡易到来方向推定)する。
In one example, the simple arrival direction estimation unit 1122 uses the phase-corrected signals Fv1'' to Fv4'' to reach the peak cell (nr, nv) via the FFT calculation for azimuth detection represented by the following equation. Power for each direction θ of the corresponding reflected wave component (Doppler frequency component):
Figure JPOXMLDOC01-appb-M000024
And maximum power:
Figure JPOXMLDOC01-appb-M000025
And ask. Here, λ (nr) represents the wavelength of the beat signal corresponding to the distance index nr, and d (i-1) represents the distance from the reference antenna position to the position of the antenna i. The simple arrival direction estimation unit 1122, for example, sets the direction θ in which the power P (θ; nr, nv) takes the maximum power Pmax (nr, nv) to the reflected wave component (Doppler frequency component) corresponding to the peak cell (nr, nv). ) Is the arrival direction (estimated arrival direction) (simple arrival direction estimation).
 簡易到来方向推定結果の一例403は、実像ピークであるピーク401に対応する速度インデックスにおいて、簡易到来方向推定を行った結果の一例である。簡易到来方向推定結果の一例404は、虚像ピークであるピーク402に対応する速度インデックスにおいて、簡易到来方向推定を行った結果の一例である。ピーク402に対応する簡易到来方向推定結果の一例404においては、残留位相誤差成分±(β2-β1),±(β4-β3)により、ピーク401に対応する簡易到来方向推定結果の一例403における最大電力P1よりも、最大電力P2が下がる。 Example 403 of the simple arrival direction estimation result is an example of the result of performing simple arrival direction estimation in the velocity index corresponding to the peak 401 which is the real image peak. Example 404 of the simple arrival direction estimation result is an example of the result of performing simple arrival direction estimation in the velocity index corresponding to the peak 402 which is the virtual image peak. In the example 404 of the simple arrival direction estimation result corresponding to the peak 402, the maximum in the simple arrival direction estimation result 403 corresponding to the peak 401 by the residual phase error components ± (β2-β1) and ± (β4-β3). The maximum power P2 is lower than the power P1.
 最大電力P1と最大電力P2との差は、残留位相誤差成分±(β2-β1),±(β4-β3)の大きさ(誤差量)に依存する。図4に示される一例においては、誤差量が45度のケースに電力差が最大になる。この誤差量を最適値(例えば、45度)に制御するように、基板上の給電ラインの設計を調整してもよいし、位相回転部102がレーダ信号の位相を調整してもよい。 The difference between the maximum power P1 and the maximum power P2 depends on the magnitude (error amount) of the residual phase error components ± (β2-β1) and ± (β4-β3). In the example shown in FIG. 4, the power difference becomes maximum in the case where the error amount is 45 degrees. The design of the feeding line on the substrate may be adjusted so that the amount of error is controlled to an optimum value (for example, 45 degrees), or the phase rotating unit 102 may adjust the phase of the radar signal.
 周波数軸電力比較部1123は、最大電力P1,P2の間に現れる相違に基づいて、最大電力P1に対応する実像ピークと、最大電力P2に対応する虚像ピークと、を検出する。周波数軸電力比較部1123は、2つの最大電力P1,P2のうち、低い最大電力P2に対応するピークを虚像ピークとして検出する。一例において、周波数軸電力比較部1123は、最大電力の差が予め定められた閾値より大きい場合に、より低い最大電力に対応するピークを虚像ピークとして検出する。これにより、両方のピーク位置に実際に反射物体が存在する場合に、片方のピークを誤って虚像ピークとして検出することを防止できる。 The frequency axis power comparison unit 1123 detects a real image peak corresponding to the maximum power P1 and a virtual image peak corresponding to the maximum power P2 based on the difference appearing between the maximum powers P1 and P2. Of the two maximum powers P1 and P2, the frequency axis power comparison unit 1123 detects the peak corresponding to the lower maximum power P2 as a virtual image peak. In one example, the frequency axis power comparison unit 1123 detects a peak corresponding to a lower maximum power as a virtual image peak when the difference in maximum power is larger than a predetermined threshold value. This makes it possible to prevent one peak from being mistakenly detected as a virtual image peak when a reflecting object actually exists at both peak positions.
 虚像ピークマスク処理部1124は、検出された虚像ピークをピーク検出処理部111の出力信号からマスクする。 The virtual image peak mask processing unit 1124 masks the detected virtual image peak from the output signal of the peak detection processing unit 111.
 図5は、実施の形態1に係る虚像除去処理部112の動作の一例を説明するフローチャートである。 FIG. 5 is a flowchart illustrating an example of the operation of the virtual image removal processing unit 112 according to the first embodiment.
 ステップS102において、虚像除去処理部112は、候補ピークリストを初期化する。候補ピークリストは、実像ピークまたは虚像ピークを特定するピーク情報および対応する最大電力を含むリストである。ピーク情報は、位相補正後の信号のピークを特定する情報であり、例えば、ピークに対応するピークセルを示す情報である。一例において、虚像除去処理部112は、ピーク検出処理部111が生成したピーク情報に含まれる全てのピークセルに対して、未処理ピークであることを示すフラグをセットする。 In step S102, the virtual image removal processing unit 112 initializes the candidate peak list. The candidate peak list is a list containing peak information that identifies a real or virtual peak and the corresponding maximum power. The peak information is information for specifying the peak of the signal after phase correction, and is, for example, information indicating a peak cell corresponding to the peak. In one example, the virtual image removal processing unit 112 sets a flag indicating that the peak is an unprocessed peak for all the peak cells included in the peak information generated by the peak detection processing unit 111.
 ステップS104において、虚像除去処理部112は、未処理ピークが存在するか否かを判定する。一例において、虚像除去処理部112は、未処理ピークであることを示すフラグがセットされているピークセルを探索する。 In step S104, the virtual image removal processing unit 112 determines whether or not an unprocessed peak exists. In one example, the virtual image removal processing unit 112 searches for a peak cell in which a flag indicating that it is an unprocessed peak is set.
 未処理ピークが存在する場合(ステップS104:Yes)、ステップS106において、虚像除去処理部112は、未処理ピークに対してピーク情報と対応する最大電力とを候補ピークリストに設定する。ステップS106の処理の詳細については、図6を参照して後述する。 When an unprocessed peak exists (step S104: Yes), in step S106, the virtual image removal processing unit 112 sets the peak information and the corresponding maximum power for the unprocessed peak in the candidate peak list. Details of the process in step S106 will be described later with reference to FIG.
 ステップS108において、虚像除去処理部112は、疑似ピーク発生位置にある未処理ピークが存在するか否かを判定する。ここで、擬似ピーク発生位置とは、ピーク発生位置のセルに対して、位相逆回転部109による誤った逆位相回転に応じて発生する周波数fs/2(fs=1/Td)の分に応じて速度インデックスをシフトしたセルにより特定される位置である。 In step S108, the virtual image removal processing unit 112 determines whether or not there is an unprocessed peak at the pseudo peak generation position. Here, the pseudo peak generation position corresponds to the frequency fs / 2 (fs = 1 / Td) generated in response to the erroneous reverse phase rotation by the phase reverse rotation unit 109 with respect to the cell at the peak generation position. This is the position specified by the cell whose velocity index is shifted.
 一例において、虚像除去処理部112は、ステップS106において探索されたピークセルに対して擬似ピーク発生位置にあり、未処理ピークであることを示すフラグがセットされているピークセルを探索する。例えば、ステップS106において探索されたピークセルの距離インデックスnrおよび速度インデックスnvに対して、ステップS108において探索されるセルは、距離インデックスnrおよび速度インデックスnv+Nv/2に対応する擬似ピーク発生位置のセルである。ここで、Nvは、速度検出用FFTのポイント数である。 In one example, the virtual image removal processing unit 112 searches for a peak cell that is at a pseudo-peak generation position with respect to the peak cell searched in step S106 and has a flag indicating that it is an unprocessed peak. For example, the cell searched in step S108 is a cell at a pseudo peak generation position corresponding to the distance index nr and the speed index nv + Nv / 2, with respect to the distance index nr and the speed index nv of the peak cell searched in step S106. .. Here, Nv is the number of points of the speed detection FFT.
 疑似ピーク発生位置にある未処理ピークが存在する場合(ステップS108:Yes)、ステップS110において、虚像除去処理部112は、擬似ピークについてピーク情報および対応する最大電力を候補ピークリストに追加する。ステップS110の処理の詳細については、図6を参照して後述する。虚像除去処理部112は、疑似ピーク発生位置にある未処理ピークが存在する間、ステップS108~ステップS110を繰り返し実行する。 When there is an unprocessed peak at the pseudo peak generation position (step S108: Yes), in step S110, the virtual image removal processing unit 112 adds peak information and the corresponding maximum power for the pseudo peak to the candidate peak list. The details of the process in step S110 will be described later with reference to FIG. The virtual image removal processing unit 112 repeatedly executes steps S108 to S110 while the unprocessed peak at the pseudo peak generation position exists.
 疑似ピーク発生位置にある未処理ピークが存在しない場合(ステップS108:No)、ステップS112において、周波数軸電力比較部1123は、候補ピークリストに基づいて、本ピークリストを設定する。本ピークリストは、虚像ピークマスク処理部1124が、ピーク検出処理部111の出力信号から虚像ピークをマスクする際に利用するリストである。ステップS112の処理の詳細については、図7を参照して後述する。その後、虚像除去処理部112は、処理をステップS104に戻す。 When there is no unprocessed peak at the pseudo peak generation position (step S108: No), in step S112, the frequency axis power comparison unit 1123 sets this peak list based on the candidate peak list. This peak list is a list used by the virtual image peak mask processing unit 1124 when masking a virtual image peak from the output signal of the peak detection processing unit 111. Details of the process in step S112 will be described later with reference to FIG. After that, the virtual image removal processing unit 112 returns the processing to step S104.
 一方、未処理ピークが存在しない場合(ステップS104:Yes)、ステップS114において、虚像ピークマスク処理部1124は、本ピークリストに基づいて、ピーク検出処理部111の出力信号から虚像ピークをマスクする。例えば、虚像ピークマスク処理部1124は、本ピークリストに含まれていないピーク情報で示されるピークセルにおける速度検出用FFT演算結果Fv’の値を0に設定する。その後、虚像除去処理部112は、処理を終了する。 On the other hand, when there is no unprocessed peak (step S104: Yes), in step S114, the virtual image peak mask processing unit 1124 masks the virtual image peak from the output signal of the peak detection processing unit 111 based on this peak list. For example, the virtual image peak mask processing unit 1124 sets the value of the speed detection FFT calculation result Fv'in the peak cell indicated by the peak information not included in the peak list to 0. After that, the virtual image removal processing unit 112 ends the processing.
 図6は、図5のステップS106およびステップS110における虚像除去処理部112の動作の一例を説明するフローチャートである。 FIG. 6 is a flowchart illustrating an example of the operation of the virtual image removal processing unit 112 in steps S106 and S110 of FIG.
 ステップS202において、虚像除去処理部112は、ピークを取得する。ピークは、例えば、ステップS106においては、未処理ピークであり、ステップS110においては、擬似ピーク候補である。一例において、虚像除去処理部112は、取得したピークに対応するピークセルの未処理フラグをリセットする。 In step S202, the virtual image removal processing unit 112 acquires a peak. The peak is, for example, an unprocessed peak in step S106 and a pseudo-peak candidate in step S110. In one example, the virtual image removal processing unit 112 resets the unprocessed flag of the peak cell corresponding to the acquired peak.
 ステップS204において、位相補正部1121は、取得したピークに対応するピークセルについて位相補正処理を行う。 In step S204, the phase correction unit 1121 performs phase correction processing on the peak cell corresponding to the acquired peak.
 ステップS206において、簡易到来方向推定部1122は、位相補正後のデータに対して簡易到来方向推定を行う。 In step S206, the simple arrival direction estimation unit 1122 estimates the simple arrival direction for the data after phase correction.
 ステップS208において、簡易到来方向推定部1122は、簡易到来方向推定結果において推定された方向に対応する最大電力を計算する。 In step S208, the simple arrival direction estimation unit 1122 calculates the maximum power corresponding to the direction estimated in the simple arrival direction estimation result.
 ステップS210において、虚像除去処理部112は、ステップS202において取得したピーク情報とステップS208で計算された最大電力とを対にして、候補ピークリストに格納する。その後、虚像除去処理部112は、ステップS106またはステップS110の処理を終了する。 In step S210, the virtual image removal processing unit 112 stores the peak information acquired in step S202 and the maximum power calculated in step S208 as a pair in the candidate peak list. After that, the virtual image removal processing unit 112 ends the processing of step S106 or step S110.
 図7は、図5のステップS112における周波数軸電力比較部1123の動作の一例を説明するフローチャートである。 FIG. 7 is a flowchart illustrating an example of the operation of the frequency axis power comparison unit 1123 in step S112 of FIG.
 ステップS302において周波数軸電力比較部1123は、候補ピークリストから上位2つの最大電力を探索する。 In step S302, the frequency axis power comparison unit 1123 searches for the top two maximum powers from the candidate peak list.
 ステップS304において、周波数軸電力比較部1123は、ステップS302において探索された2つの最大電力の差が、所定の閾値よりも大きいか否かを判定する。 In step S304, the frequency axis power comparison unit 1123 determines whether or not the difference between the two maximum powers searched in step S302 is larger than a predetermined threshold value.
 2つの最大電力の差が所定の閾値よりも大きい場合(ステップS304:Yes)、ステップS306において、周波数軸電力比較部1123は、2つの最大電力のうち、大きい方の最大電力に対応するピーク情報を、本ピークリストに追加する。その後、虚像ピークマスク処理部1124は、ステップS112の処理を終了する。 When the difference between the two maximum powers is larger than a predetermined threshold value (step S304: Yes), in step S306, the frequency axis power comparison unit 1123 has peak information corresponding to the larger maximum power of the two maximum powers. Is added to this peak list. After that, the virtual image peak mask processing unit 1124 ends the processing in step S112.
 一方、2つの最大電力の差が所定の閾値よりも大きくない場合(ステップS304:No)、ステップS308において、周波数軸電力比較部1123は、候補ピークリストに含まれる全てのピーク情報を、本ピークリストに追加する。その後、虚像除去処理部112は、ステップS112の処理を終了する。 On the other hand, when the difference between the two maximum powers is not larger than a predetermined threshold value (step S304: No), in step S308, the frequency axis power comparison unit 1123 sets all the peak information included in the candidate peak list as the current peak. Add to list. After that, the virtual image removal processing unit 112 ends the process of step S112.
 実施の形態1によれば、直交符号間の干渉により生じる虚像成分を検出し抑制することにより、速度検出性能の劣化を防止でき、また、反射物体の誤検出を低減できる。また、処理量の比較的多い方位検出処理前に虚像成分を除去することにより、反射物体の候補点を削減でき、方位検出処理の演算量と消費電力を低減できる。 According to the first embodiment, by detecting and suppressing the virtual image component caused by the interference between the orthogonal codes, it is possible to prevent the deterioration of the speed detection performance and reduce the false detection of the reflecting object. Further, by removing the virtual image component before the orientation detection processing having a relatively large amount of processing, the candidate points of the reflecting object can be reduced, and the calculation amount and power consumption of the orientation detection processing can be reduced.
(その他の実施の形態)
 上述の実施の形態1においては、位相逆回転部109は、距離検出用FFT信号を逆位相回転した。これに代えて、位相逆回転部109は、距離検出用FFT処理を施す前の信号に逆位相回転を施す実施の形態も考えられる。換言すると、距離検出処理部108と位相逆回転部109との順序が逆である実施の形態も考えられる。
(Other embodiments)
In the first embodiment described above, the anti-phase rotating unit 109 rotates the distance detection FFT signal in anti-phase rotation. Instead of this, an embodiment in which the phase reverse rotation unit 109 performs the reverse phase rotation on the signal before the distance detection FFT process is also conceivable. In other words, an embodiment in which the order of the distance detection processing unit 108 and the phase reverse rotation unit 109 is reversed can be considered.
 上述の実施の形態においては、各構成要素に用いる「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。 In the above-described embodiment, the notation "... part" used for each component is "... circuitry", "... device", "... unit", or "... unit". It may be replaced with another notation such as "... module".
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、開示の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present disclosure is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present disclosure. Understood. Moreover, each component in the said embodiment may be arbitrarily combined within the range which does not deviate from the purpose of disclosure.
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 This disclosure can be realized by software, hardware, or software linked with hardware. Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs. The LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks. The LSI may include data input and output. LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration. The method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used. The present disclosure may be realized as digital processing or analog processing. Furthermore, if an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology or another technology derived from it, it is natural that the functional blocks may be integrated using that technology. There is a possibility of applying biotechnology.
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。 This disclosure can be implemented in all types of devices, devices, and systems (collectively referred to as communication devices) having communication functions. Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (automobiles, airplanes, ships, etc.), and combinations of the above-mentioned various devices can be mentioned.
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。 Communication devices are not limited to those that are portable or mobile, but are not portable or fixed, any type of device, device, system, such as a smart home device (home appliances, lighting equipment, smart meters or It also includes measuring instruments, control panels, etc.), vending machines, and any other "Things" that can exist on the IoT (Internet of Things) network.
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサ等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサが含まれる。 Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc. Communication devices also include devices such as controllers and sensors that are connected or connected to communication devices that perform the communication functions described in the present disclosure. For example, it includes controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。 Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
 本開示に係るレーダ装置は、複数の送信アンテナ素子毎に周期的に第1の位相回転を施され、かつ、前記送信アンテナ素子に応じた位相差を有する複数のレーダ信号を、それぞれ、前記複数の送信アンテナ素子から送信する送信回路と、前記複数のレーダ信号が検出対象において反射した反射波信号を、複数の受信アンテナ素子によって受信する受信回路と、前記複数の受信アンテナ素子によって受信された前記反射波信号のそれぞれに前記送信アンテナ素子毎の前記第1の位相回転とは逆の位相回転であって前記第1の位相回転と前記位相差とに応じた回転量の第2の位相回転を与えた信号に残留するドップラー周波数成分のうち、前記ドップラー周波数成分の推定到来方向における電力が前記位相差に応じて相対的に低下した前記ドップラー周波数成分を除去する除去回路と、を備える。 In the radar device according to the present disclosure, a plurality of radar signals, each of which is periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and has a phase difference corresponding to the transmitting antenna element, are produced. The transmission circuit transmitted from the transmission antenna element of the above, the reception circuit for receiving the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of reception antenna elements, and the reception circuit received by the plurality of reception antenna elements. For each of the reflected wave signals, a second phase rotation of a rotation amount corresponding to the first phase rotation and the phase difference, which is a phase rotation opposite to the first phase rotation of each transmitting antenna element, is performed. Among the Doppler frequency components remaining in the given signal, the removal circuit for removing the Doppler frequency component whose power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is provided.
 本開示に係るレーダ装置において、前記除去回路が出力した信号に基づいて、前記検出対象の方位を検出する検出回路を備える。 The radar device according to the present disclosure includes a detection circuit that detects the direction of the detection target based on the signal output by the removal circuit.
 本開示に係るレーダ装置において、前記除去回路によって除去される前記ドップラー周波数成分に対応するドップラー周波数と、前記残留するドップラー周波数成分のいずれかに対応するドップラー周波数と、の差異は、所定の周波数である。 In the radar device according to the present disclosure, the difference between the Doppler frequency corresponding to the Doppler frequency component removed by the removal circuit and the Doppler frequency corresponding to any of the remaining Doppler frequency components is a predetermined frequency. is there.
 本開示に係るレーダ装置において、前記除去回路は、前記電力の差が予め定められた閾値より大きい場合、前記電力が相対的に小さい前記ドップラー周波数成分を除去する。 In the radar device according to the present disclosure, the removal circuit removes the Doppler frequency component whose power is relatively small when the difference in power is larger than a predetermined threshold value.
 本開示に係るレーダ装置において、前記複数の送信アンテナ素子および前記複数の受信アンテナ素子は、仮想受信アレイアンテナを構成する。 In the radar device according to the present disclosure, the plurality of transmitting antenna elements and the plurality of receiving antenna elements constitute a virtual receiving array antenna.
 本開示に係るレーダ装置において、前記第1の位相回転は、前記複数の送信アンテナ素子間で互いに異なるパターンに基づいて施される。 In the radar device according to the present disclosure, the first phase rotation is performed based on patterns different from each other among the plurality of transmitting antenna elements.
 本開示に係るレーダ装置において、前記異なるパターンは、直交符号を構成する。 In the radar device according to the present disclosure, the different patterns constitute an orthogonal code.
 本開示に係るレーダ装置において、前記直交符号に含まれるビット値が0の場合、前記第1の位相回転の回転位相量は、0ラジアンであり、前記直交符号に含まれるビット値が1の場合、前記第1の位相回転の回転位相量は、πラジアンである。 In the radar device according to the present disclosure, when the bit value included in the orthogonal code is 0, the rotational phase amount of the first phase rotation is 0 radians, and the bit value included in the orthogonal code is 1. The rotational phase amount of the first phase rotation is π radians.
 本開示に係るレーダ装置において、前記レーダ信号は、周期的なチャープ信号である。 In the radar device according to the present disclosure, the radar signal is a periodic chirp signal.
 本開示に係るレーダ信号の信号処理方法は、複数の送信アンテナ素子毎に周期的に第1の位相回転を施され、かつ、前記送信アンテナ素子に応じた位相差を有する複数のレーダ信号を、それぞれ、前記複数の送信アンテナ素子から送信する処理と、前記複数のレーダ信号が検出対象において反射した反射波信号を、複数の受信アンテナ素子によって受信する処理と、前記複数の受信アンテナ素子によって受信された前記反射波信号のそれぞれに前記送信アンテナ素子毎の前記第1の位相回転とは逆の位相回転であって前記第1の位相回転と前記位相差とに応じた回転量の第2の位相回転を与えた信号に残留するドップラー周波数成分のうち、前記ドップラー周波数成分の推定到来方向における電力が前記位相差に応じて相対的に低下した前記ドップラー周波数成分を除去する処理と、を含む。 In the signal processing method of the radar signal according to the present disclosure, a plurality of radar signals which are periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and have a phase difference according to the transmitting antenna element are processed. A process of transmitting from the plurality of transmitting antenna elements, a process of receiving the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of receiving antenna elements, and a process of receiving the reflected wave signals by the plurality of receiving antenna elements, respectively. Each of the reflected wave signals has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and a second phase of a rotation amount corresponding to the first phase rotation and the phase difference. Among the Doppler frequency components remaining in the rotated signal, the process of removing the Doppler frequency component in which the power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is included.
 2019年3月28日出願の特願2019-064928の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosures of the specifications, drawings and abstracts contained in the Japanese application of Japanese Patent Application No. 2019-064928 filed on March 28, 2019 are all incorporated herein by reference.
 本開示は、レーダシステムに有用である。 This disclosure is useful for radar systems.
 100 送信制御部
 101 送信信号生成部
 102 位相回転部
 103 送信用高周波部
 104 送信アレイアンテナ
 105 受信アレイアンテナ
 106 受信用高周波部
 107 ADC
 108 距離検出処理部
 109 位相逆回転部
 110 速度検出処理部
 111 ピーク検出処理部
 112 虚像除去処理部
 1121 位相補正部
 1122 簡易到来方向推定部
 1123 周波数軸電力比較部
 1124 虚像ピークマスク処理部
 113 方位検出処理部
 114 物体検出処理部
100 Transmission control unit 101 Transmission signal generation unit 102 Phase rotation unit 103 Transmission high frequency unit 104 Transmission array antenna 105 Reception array antenna 106 Reception high frequency unit 107 ADC
108 Distance detection processing unit 109 Phase reverse rotation unit 110 Speed detection processing unit 111 Peak detection processing unit 112 Phantom image removal processing unit 1121 Phase correction unit 1122 Simple arrival direction estimation unit 1123 Frequency axis power comparison unit 1124 Phantom image peak mask processing unit 113 Direction detection Processing unit 114 Object detection processing unit

Claims (10)

  1.  複数の送信アンテナ素子毎に周期的に第1の位相回転を施され、かつ、前記送信アンテナ素子に応じた位相差を有する複数のレーダ信号を、それぞれ、前記複数の送信アンテナ素子から送信する送信回路と、
     前記複数のレーダ信号が検出対象において反射した反射波信号を、複数の受信アンテナ素子によって受信する受信回路と、
     前記複数の受信アンテナ素子によって受信された前記反射波信号のそれぞれに前記送信アンテナ素子毎の前記第1の位相回転とは逆の位相回転であって前記第1の位相回転と前記位相差とに応じた回転量の第2の位相回転を与えた信号に残留するドップラー周波数成分のうち、前記ドップラー周波数成分の推定到来方向における電力が前記位相差に応じて相対的に低下した前記ドップラー周波数成分を除去する除去回路と、
     を備える、レーダ装置。
    Transmission in which a first phase rotation is periodically performed for each of the plurality of transmitting antenna elements, and a plurality of radar signals having a phase difference corresponding to the transmitting antenna element are transmitted from the plurality of transmitting antenna elements, respectively. Circuit and
    A receiving circuit that receives the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of receiving antenna elements, and
    Each of the reflected wave signals received by the plurality of receiving antenna elements has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and the first phase rotation and the phase difference are obtained. Of the Doppler frequency components remaining in the signal given the second phase rotation of the corresponding rotation amount, the Doppler frequency component in which the power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is used. The removal circuit to remove and
    A radar device equipped with.
  2.  前記除去回路が出力した信号に基づいて、前記検出対象の方位を検出する検出回路を備える、
     請求項1に記載のレーダ装置。
    A detection circuit for detecting the direction of the detection target based on the signal output by the removal circuit is provided.
    The radar device according to claim 1.
  3.  前記除去回路によって除去される前記ドップラー周波数成分に対応するドップラー周波数と、前記残留するドップラー周波数成分のいずれかに対応するドップラー周波数と、の差異は、所定の周波数である、
     請求項1または2に記載のレーダ装置。
    The difference between the Doppler frequency corresponding to the Doppler frequency component removed by the removal circuit and the Doppler frequency corresponding to any of the remaining Doppler frequency components is a predetermined frequency.
    The radar device according to claim 1 or 2.
  4.  前記除去回路は、前記電力の差が予め定められた閾値より大きい場合、前記電力が相対的に小さい前記ドップラー周波数成分を除去する、
     請求項1に記載のレーダ装置。
    The removal circuit removes the Doppler frequency component, which has a relatively small power, when the difference in power is greater than a predetermined threshold.
    The radar device according to claim 1.
  5.  前記複数の送信アンテナ素子および前記複数の受信アンテナ素子は、仮想受信アンテナアレイを構成する、
     請求項1から4のいずれか一項に記載のレーダ装置。
    The plurality of transmitting antenna elements and the plurality of receiving antenna elements constitute a virtual receiving antenna array.
    The radar device according to any one of claims 1 to 4.
  6.  前記第1の位相回転は、前記複数の送信アンテナ素子間で互いに異なるパターンに基づいて施される、
     請求項1から5の何れか一項に記載のレーダ装置。
    The first phase rotation is performed between the plurality of transmitting antenna elements based on patterns different from each other.
    The radar device according to any one of claims 1 to 5.
  7.  前記異なるパターンは、直交符号を構成する、
     請求項6に記載のレーダ装置。
    The different patterns constitute an orthogonal sign,
    The radar device according to claim 6.
  8.  前記直交符号に含まれるビット値が0の場合、前記第1の位相回転の回転位相量は、0ラジアンであり、前記直交符号に含まれるビット値が1の場合、前記第1の位相回転の回転位相量は、πラジアンである、
     請求項7に記載のレーダ装置。
    When the bit value included in the orthogonal code is 0, the rotation phase amount of the first phase rotation is 0 radians, and when the bit value included in the orthogonal code is 1, the rotation phase amount of the first phase rotation The amount of rotational phase is π radians,
    The radar device according to claim 7.
  9.  前記レーダ信号は、周期的なチャープ信号である、
     請求項1から8のいずれか一項に記載のレーダ装置。
    The radar signal is a periodic chirp signal.
    The radar device according to any one of claims 1 to 8.
  10.  複数の送信アンテナ素子毎に周期的に第1の位相回転を施され、かつ、前記送信アンテナ素子に応じた位相差を有する複数のレーダ信号を、それぞれ、前記複数の送信アンテナ素子から送信する処理と、
     前記複数のレーダ信号が検出対象において反射した反射波信号を、複数の受信アンテナ素子によって受信する処理と、
     前記複数の受信アンテナ素子によって受信された前記反射波信号のそれぞれに前記送信アンテナ素子毎の前記第1の位相回転とは逆の位相回転であって前記第1の位相回転と前記位相差とに応じた回転量の第2の位相回転を与えた信号に残留するドップラー周波数成分のうち、前記ドップラー周波数成分の推定到来方向における電力が前記位相差に応じて相対的に低下した前記ドップラー周波数成分を除去する処理と、
     を含む、レーダ信号の信号処理方法。 
    A process in which a plurality of radar signals that are periodically subjected to the first phase rotation for each of the plurality of transmitting antenna elements and have a phase difference corresponding to the transmitting antenna elements are transmitted from the plurality of transmitting antenna elements. When,
    The process of receiving the reflected wave signal reflected by the plurality of radar signals in the detection target by the plurality of receiving antenna elements, and
    Each of the reflected wave signals received by the plurality of receiving antenna elements has a phase rotation opposite to that of the first phase rotation of each transmitting antenna element, and the first phase rotation and the phase difference are obtained. Of the Doppler frequency components remaining in the signal given the second phase rotation of the corresponding rotation amount, the Doppler frequency component in which the power in the estimated arrival direction of the Doppler frequency component is relatively reduced according to the phase difference is used. The process to remove and
    Signal processing methods for radar signals, including.
PCT/JP2020/013206 2019-03-28 2020-03-25 Radar device and signal processing method for radar signal WO2020196580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064928A JP2020165725A (en) 2019-03-28 2019-03-28 Radar system and radar signal processing method
JP2019-064928 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196580A1 true WO2020196580A1 (en) 2020-10-01

Family

ID=72608505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013206 WO2020196580A1 (en) 2019-03-28 2020-03-25 Radar device and signal processing method for radar signal

Country Status (2)

Country Link
JP (1) JP2020165725A (en)
WO (1) WO2020196580A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023883A1 (en) * 2022-07-25 2024-02-01 三菱電機株式会社 Signal processing device, signal processing method, and signal processing program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267949A (en) * 2007-04-19 2008-11-06 Mitsubishi Electric Corp Radar device
WO2013024583A1 (en) * 2011-08-12 2013-02-21 パナソニック株式会社 Radar apparatus
JP2017167117A (en) * 2016-03-14 2017-09-21 パナソニック株式会社 Radar device and positioning method
CN108459307A (en) * 2018-02-05 2018-08-28 西安电子科技大学 MIMO radar based on clutter receives and dispatches array amplitude and phase error correction method
JP2018146443A (en) * 2017-03-07 2018-09-20 パナソニック株式会社 Radar apparatus and rader method
JP2018151313A (en) * 2017-03-14 2018-09-27 パナソニック株式会社 Radar device and rader method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267949A (en) * 2007-04-19 2008-11-06 Mitsubishi Electric Corp Radar device
WO2013024583A1 (en) * 2011-08-12 2013-02-21 パナソニック株式会社 Radar apparatus
JP2017167117A (en) * 2016-03-14 2017-09-21 パナソニック株式会社 Radar device and positioning method
JP2018146443A (en) * 2017-03-07 2018-09-20 パナソニック株式会社 Radar apparatus and rader method
JP2018151313A (en) * 2017-03-14 2018-09-27 パナソニック株式会社 Radar device and rader method
CN108459307A (en) * 2018-02-05 2018-08-28 西安电子科技大学 MIMO radar based on clutter receives and dispatches array amplitude and phase error correction method

Also Published As

Publication number Publication date
JP2020165725A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US10673149B2 (en) Radar device
USRE49920E1 (en) Radar apparatus and radar method
US11448725B2 (en) Radar apparatus
US9398412B2 (en) Indoor position location using docked mobile devices
US20200191940A1 (en) Extended doppler pmcw code division mimo radar
CN112930699A (en) Dynamic antenna array pattern switching in wireless systems
CN110351655B (en) Indoor positioning method and system based on signal multipath propagation measurement
EP4141468A1 (en) Techniques for improving new radio (nr) positioning performance
JP2014052187A (en) Rader apparatus, and target height calculation method
US10732272B2 (en) Radar apparatus and radar method
WO2020196575A1 (en) Radar device and method for determining range side lobe
US20220050176A1 (en) Radar device
Yang et al. Decimeter level indoor localization using WiFi channel state information
CN108646213A (en) Direct wave AOA determination methods under a kind of indoor multipath environment
WO2020196580A1 (en) Radar device and signal processing method for radar signal
Sun et al. An indoor environment sensing and localization system via mmWave phased array
US20220187440A1 (en) Radar apparatus
Yang et al. Phase Calibration Based Three-Dimensional Beamspace Matrix Pencil Algorithm for Indoor Passive Positioning and Tracking
Tian et al. Passive localization through channel estimation of on-the-air LTE signals
CN114679356A (en) Channel full-dimensional parameter extraction method independent of likelihood function
Mazher et al. Automotive radar using IEEE 802.11 p signals
Tomikowski et al. Acceleration of Radio Direction Finder Algorithm in FPGA Computing Platform
WO2019212408A1 (en) A radar based ranging system for positioning and vital sign detection
Berdanier et al. Phase based 2D passive source localisation using receiver networks
Tian et al. Passive localization via on-the-air LTE signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777632

Country of ref document: EP

Kind code of ref document: A1