WO2020196014A1 - Eddy current test probe and eddy current test system - Google Patents

Eddy current test probe and eddy current test system Download PDF

Info

Publication number
WO2020196014A1
WO2020196014A1 PCT/JP2020/011416 JP2020011416W WO2020196014A1 WO 2020196014 A1 WO2020196014 A1 WO 2020196014A1 JP 2020011416 W JP2020011416 W JP 2020011416W WO 2020196014 A1 WO2020196014 A1 WO 2020196014A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
eddy current
power
unit
signal
Prior art date
Application number
PCT/JP2020/011416
Other languages
French (fr)
Japanese (ja)
Inventor
宏一 稲垣
石田 修一
Original Assignee
株式会社Ihi
株式会社Ihi検査計測
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi検査計測 filed Critical 株式会社Ihi
Publication of WO2020196014A1 publication Critical patent/WO2020196014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Definitions

  • the present disclosure relates to eddy current testing probes and eddy current testing systems.
  • This application claims priority based on Japanese Patent Application No. 2019-055598 filed in Japan on March 22, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses an eddy current flaw detection device including a self-induction type flaw detection coil unit or a mutual induction type flaw detection coil unit.
  • a flaw detector coil unit provided on the surface of the object to be measured is connected to the eddy current flaw detector and the load device via a connection cable. That is, this eddy current flaw detector utilizes the fact that the eddy current generated on the surface of the object to be measured changes according to the damage of the object to be measured based on the magnetic field of the exciting coil, and the detection coil is affected by the eddy current. Damage to the object to be measured is evaluated by amplifying the generated minute electromotive force with an amplifier.
  • the present disclosure has been made in view of the above circumstances, and an object of the present invention is to make the probe movable in the multi-axis direction and to smoothly supply power to the probe.
  • a detection coil for detecting an eddy current and an output signal of the detection coil provided integrally with the detection coil are sampled.
  • a signal conversion unit that converts a digital detection signal into a digital detection signal and a power supply unit that supplies power to the signal conversion unit are provided.
  • the power supply unit includes a power receiving unit that can supply power from the outside and power supplied from the power receiving unit.
  • An eddy current flaw detection probe including a battery to be charged and a control unit for controlling the battery is adopted.
  • the power receiving unit may be a non-contact power receiving unit that receives power that is non-contactly fed from the outside.
  • the signal conversion unit may output an aging current to the detection coil while charging the battery. ..
  • the eddy current flaw detection probe according to any one of the first to third aspects and the eddy current flaw detection probe are housed in standby and with respect to the power receiving unit.
  • An eddy current flaw detection system is adopted, which is equipped with a charging station having a power supply unit that supplies electric power.
  • the eddy current flaw detection probe is installed at the charging station so that the power feeding unit and the power receiving unit face each other. Good.
  • the probe since the probe is equipped with a battery and the battery can be charged by an external device, the probe can be made independent of the power source, can be moved in the multi-axis direction, and the power supply to the probe is smooth. It is possible to carry out.
  • the eddy current flaw detection system is an inspection system that non-destructively inspects the presence or absence and size of damage inside the work W by detecting the eddy current generated on the surface of the work W (inspection target). .. As shown in FIG. 1, this eddy current flaw detection system includes a probe A, a machining center 1 (MC), a Wi-Fi station 2, a probe magazine 3, an inspection operation unit 4, and an inspection control unit 5. Is an eddy current flaw detection probe according to the present embodiment.
  • the probe A is an eddy current flaw detection probe that detects eddy current flaws in the work W based on a control signal (data acquisition control signal) input from the inspection control unit 5. That is, this probe A is an inspection device that generates an eddy current on the surface of the work W and detects the eddy current, and is damaged while moving on the surface of the work W by being mounted on the machining center 1 as shown in the figure. Is detected.
  • a plurality of probes A having different shapes are prepared according to the shape and size of the work W, and the most suitable probe A is detachably attached to the machining center 1.
  • the most suitable probe A is detachably attached to the machining center 1.
  • a probe A having a shape different from that for inspecting the surface (inner surface) of the hole and the probe A for inspecting the outer surface is used.
  • such a probe A includes a probe housing 6, an engaging portion 7, a flaw detection coil 8, a signal conversion unit 9, a power receiving coil 10 (non-contact power receiving unit), a power supply control unit 11, and a battery 12. , Communication unit 13 and Wi-Fi antenna 14 are provided as functional components. Further, the probe A is provided with a lamp (not shown) connected to the power supply control unit 11.
  • the probe housing 6 has a cylindrical shape as a whole, an engaging portion 7 is provided at the rear end portion, a flaw detection coil 8 is provided at the tip portion, and a power receiving coil 10 and a Wi-Fi antenna 14 are separated from each other at the outer peripheral portion. It is provided in a state of being.
  • a probe housing 6 is a metal housing made of a predetermined metal material such as stainless steel.
  • the engaging portion 7 is a columnar portion mounted on the spindle shaft of the machining center 1.
  • the engaging portion 7 is a reduced diameter portion provided at the rear end of the probe housing 6, and is detachably held by a holding mechanism inherently provided in the main shaft of the machining center 1. That is, the probe A is integrated with the machining center 1 by holding the engaging portion 7 by the holding mechanism.
  • the flaw detection coil 8 is a coil unit in which an exciting coil 8a and a detection coil 8b are incorporated, and has a shape corresponding to the shape and size of the work W.
  • the flaw detection coil 8 generates an exciting magnetic field by energizing the exciting coil 8a with an exciting current input from the signal conversion unit 9, and the detection coil 8b detects an eddy current generated on the surface of the work W by the exciting magnetic field. It is converted into (output signal) and output to the signal conversion unit 9.
  • the flaw detection coil 8 When inspecting a work W having a complicated shape or a work W having a different shape, the flaw detection coil 8 is excited to a shape specialized for the surface shape of the work W, that is, a shape capable of appropriately generating an eddy current on the surface of the work W. It is necessary to set the shape of the coil 8a, and it is also necessary to set the shape of the detection coil 8b to a shape capable of accurately detecting the eddy current.
  • the plurality of probes A described above have different shapes of the flaw detection coil 8.
  • the signal conversion unit 9 is an electronic circuit operated by DC power supplied from the power supply control unit 11, outputs the above-mentioned exciting current to the flaw detection coil 8, and converts the detection signal into a digital signal. More specifically, the signal conversion unit 9 generates a sine wave having a frequency corresponding to the work W and supplies it to the exciting coil 8a as an exciting current. Further, the signal conversion unit 9 performs a predetermined analog process (filter process or the like) on the detection signal (analog signal) input from the detection coil 8b, and then samples using the sampling signal having a predetermined cycle (sampling cycle). By doing so, it is converted into a digital detection signal (digital signal).
  • a predetermined analog process filter process or the like
  • the signal conversion unit 9 converts the digital detection signal into a serial transmission signal in a predetermined format (packet structure) and outputs it to the communication unit 13.
  • This serial transmission signal includes a digital detection signal as transmission data, and also includes defect confirmation information for confirming a defect of the digital detection signal, which is a time-series signal, on the receiving side (inspection control unit 5).
  • the power receiving coil 10 is a non-contact power receiving unit that receives power that is non-contactly fed from an external charging station 3a. That is, the power receiving coil 10 generates AC power by the action of the power transmission magnetic field generated by the charging station 3a, and outputs the AC power to the power supply control unit 11.
  • the power transmission magnetic field is an alternating magnetic field having a predetermined frequency generated by the charging station 3a provided in the probe magazine 3. That is, the power receiving coil 10 generates AC power in a state where the probe A is removed from the machining center 1 and housed in the probe magazine 3.
  • the power supply control unit 11 is a power converter that converts AC power into DC power, and outputs DC power to the battery 12 to charge the battery 12. Further, the power supply control unit 11 supplies the DC power input from the battery 12 to the signal conversion unit 9 and the communication unit 13. That is, the power supply control unit 11 switches charging / discharging of the battery 12 based on the remaining capacity of the battery 12.
  • the battery 12 is a rechargeable and dischargeable secondary battery, for example, a small lithium-ion battery having a relatively large capacity.
  • the battery 12 charges the DC power input from the power supply control unit 11, or discharges the DC power stored by itself and outputs the DC power to the power supply control unit 11.
  • the power receiving coil 10, the power supply control unit 11, and the battery 12 constitute a power supply unit.
  • the communication unit 13 converts the serial transmission signal input from the signal conversion unit 9 into a transmission signal conforming to the Wi-Fi standard and outputs it to the Wi-Fi antenna 14. Further, the communication unit 13 extracts a data acquisition control signal from a received signal (a signal conforming to the Wi-Fi standard) input from the Wi-Fi antenna 14, and outputs the data acquisition control signal to the signal conversion unit 9.
  • the Wi-Fi antenna 14 converts the transmission signal into radio waves and wirelessly transmits them to the Wi-Fi station 2, receives the radio waves radiated from the Wi-Fi station 2, and transmits the received signal to the signal conversion unit 9. Output to.
  • the communication unit 13 and the Wi-Fi antenna 14 constitute a probe communication unit.
  • the machining center 1 is a moving device that moves the probe A along the surface of the work W based on a control signal (movement control signal) input from the inspection control unit 5. That is, unlike a general machining center, this machining center 1 has a probe A mounted on a spindle (spindle shaft) instead of a tool, and functions as a moving device for moving the probe A three-dimensionally. As shown in the figure, such a machining center 1 includes a multi-axis moving mechanism 1a (moving mechanism) and an MC control unit 1b.
  • the multi-axis movement mechanism 1a includes a spindle (spindle shaft) that holds the probe A detachably, and moves the probe A three-dimensionally. That is, the multi-axis moving mechanism 1a holds and moves the probe A by engaging the main shaft (spindle shaft) with the engaging portion 7 of the probe A.
  • the multi-axis moving mechanism 1a is an actuator.
  • Such a multi-axis moving mechanism 1a is, for example, a combination of an XY stage and another movable axis, and has three to six axes of freedom as a whole.
  • the MC control unit 1b directly controls the multi-axis movement mechanism 1a based on the movement control signal. That is, the MC control unit 1b exclusively controls the multi-axis movement mechanism 1a, and moves the probe A mounted on the main shaft (spindle shaft) of the multi-axis movement mechanism 1a to the position indicated by the movement control signal.
  • the MC control unit 1b includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
  • the Wi-Fi station 2 is a communication device that performs wireless communication between the probe A and the Wi-Fi standard under the inspection control unit 5.
  • the Wi-Fi station 2 receives a transmission signal from the communication unit 13 of the probe A described above via the Wi-Fi antenna 14, and transmits synchronization data input from the inspection control unit 5 in accordance with the Wi-Fi standard. It is converted into a signal and transmitted to the communication unit 13. That is, the Wi-Fi station 2 receives the digital detection signal included in the transmission signal and transmits the synchronization data to the probe A.
  • the probe magazine 3 is a storage device for accommodating a plurality of probes A, and a charging station 3a is incidentally provided.
  • the charging station 3a includes a power supply control unit 3b and a power supply coil 3c.
  • the power supply control unit 3b is a device provided with a control circuit for controlling the power supply coil 3c, detects that the probe A is installed in the charging station 3a, and outputs a control signal to the power supply circuit.
  • the power supply control unit 3b includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc.
  • the power feeding coil 3c supplies power to the probe A in a non-contact manner by supplying AC power to the power receiving coil 10 to generate a magnetic field for power transmission. Further, the power feeding coil 3c is connected to a power feeding circuit (not shown), and AC power is input from the power feeding circuit.
  • a probe magazine 3 temporarily accommodates a plurality of probes A that are not used for inspection, and functions as a charger for charging the battery 12 of the accommodated probe A.
  • the inspection operation unit 4 is an operation device that receives an operation instruction of an operator and outputs it to the inspection control unit 5.
  • the inspection operation unit 4 designates, for example, an inspection area (three-dimensional area) in the work W as the operation instruction.
  • Such an inspection operation unit 4 is, for example, a touch panel or / and a keyboard.
  • the inspection control unit 5 is a control device that comprehensively controls the eddy current flaw detection system. That is, the inspection control unit 5 moves the probe A along a predetermined inspection path by outputting a movement control signal regarding the movement of the probe A to the machining center 1. Further, the inspection control unit 5 outputs a data acquisition control signal related to the acquisition of the digital detection signal to the probe A via the Wi-Fi station 2, so that the digital detection signal corresponding to each position of the probe A is sequentially acquired. ..
  • the inspection control unit 5 includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
  • the sampling cycle of the detection signal in the signal conversion unit 9 and the position acquisition of the probe A in the MC control unit 1b can be obtained. Synchronize with the sampling cycle.
  • the synchronization data is included in the data acquisition control signal output by the inspection control unit 5 to the probe A and the movement control signal output by the inspection control unit 5 to the machining center 1.
  • the inspection control unit 5 outputs a movement control signal to the machining center 1 and a data acquisition control signal to the probe A, so that digital detection signals at a plurality of positions along the inspection path of the work W are detected.
  • the MC control unit 1b controls the multi-axis movement mechanism 1a based on the movement control signal to move the probe A (fault detection coil 8) along the inspection path of the work W.
  • the machining center 1 sequentially outputs the position data of the probe A (fault detection coil 8) acquired in synchronization with the synchronization signal of the movement control signal to the inspection control unit 5.
  • the communication unit 13 receives the data acquisition control signal via the Wi-Fi station 2 and the Wi-Fi antenna 14 and outputs the data acquisition control signal to the signal conversion unit 9. Then, the signal conversion unit 9 sequentially acquires the digital detection signal in synchronization with the synchronization signal of the data acquisition control signal, and sequentially outputs the digital detection signal to the communication unit 13.
  • the signal conversion unit 9 exerts an exciting magnetic field on the work W by outputting an exciting signal to the exciting coil 8a of the flaw detection coil 8, thereby generating an eddy current in the work W. Then, the signal conversion unit 9 sequentially converts the detection signal continuously input from the detection coil 8b of the flaw detection coil 8 into a digital detection signal by sampling with a sampling signal synchronized with the synchronization signal.
  • the communication unit 13 sequentially transmits the digital detection signal input from the signal conversion unit 9 to the inspection control unit 5 via the Wi-Fi antenna 14 and the Wi-Fi station 2.
  • the inspection control unit 5 sequentially stores the inspection data of each position in the inspection path by associating the position data at the same time with the digital detection signal. That is, as the probe A moves from the start point to the end point of the inspection path, inspection data at a plurality of positions of the work W along the inspection path are acquired.
  • the probe A has a plurality of shapes according to the shape of the work W and the usage environment, and is housed and stored in the probe magazine 3.
  • the probe A is housed in the probe magazine 3 after the flaw detection is completed.
  • the power receiving coil 10 of the probe A is fixed in the closest contact state by facing the feeding coil 3c of the probe magazine 3.
  • the power supply control unit 3b of the probe magazine 3 detects that the probe A is fixed to the probe magazine 3, it transmits a power supply control signal to the power supply circuit.
  • electric power is supplied to the power receiving coil 10 from the magnetic field generated by the power feeding coil 3c by supplying electric power from the power feeding circuit to the power feeding coil 3c.
  • the power supply control unit 11 detects the charging status and instructs the signal conversion unit 9 to pass an aging current through the flaw detection coil 8. As a result, in the probe A, an aging current is passed in parallel with charging. Then, when the power supply control unit 11 detects the completion of charging of the battery 12, the power supply from the power receiving coil 10 is cut off. Then, when both the aging of the flaw detection coil 8 and the charging of the battery 12 are completed, the power supply control unit 11 notifies the operator of the completion of charging and aging by turning on the lamp (not shown) described above.
  • the probe magazine 3 is provided so that the probe A can be charged.
  • charging can be performed at the end of flaw detection of the probe A or when the probe A is accommodated in the probe magazine 3 when the probe A is switched. Therefore, the probe A does not need to supply electric power from the outside at the time of flaw detection, and it is easy to switch to another probe A and move in multiple axes, and it is possible to smoothly supply electric power by charging during standby. It is possible.
  • the probe A power is supplied to the probe A by non-contact.
  • the probe A can be fed even when the mounting posture with respect to the probe magazine 3 is not accurate. Therefore, it is easy to automatically move the probe A to the charging station 3a to charge the machine while the machining center 1 is in operation.
  • the probe A is fixed to the probe magazine 3 so that the power receiving coil 10 of the probe A and the feeding coil 3c of the probe magazine 3 face each other and are close to each other. As a result, the probe A can be charged efficiently.
  • an aging current is passed through the flaw detection coil 8 when the probe A is being charged.
  • the charging station 3a is incidentally provided to the probe magazine 3. As a result, the probe A can be charged without removing the probe A from the machining center 1.
  • the probe A is charged by non-contact power supply, but the present disclosure is not limited to this.
  • the probe A may have a charging terminal and may be charged by contacting with a power feeding terminal provided in the charging station 3a.
  • the Wi-Fi station 2 is adopted as the communication device, but the present disclosure is not limited to this.
  • a communication device based on a communication method other than Wi-Fi (registered trademark) may be adopted.
  • the probe communication unit that is, the communication unit 13 and the Wi-Fi antenna 14, which conform to the communication method of the communication device.
  • the probe magazine 3 is incidentally provided with the charging station 3a, but the present disclosure is not limited to this. That is, the charging station 3a may be provided as a separate body from the probe magazine 3.
  • the aging current is applied in parallel with the charging of the probe A, but the present disclosure is not limited to this.
  • the aging current may be applied after charging the probe A or before charging. Further, when the flaw detection coil 8 does not need to be aged, the aging process may not be performed.
  • the probe since the probe is equipped with a battery and the battery can be charged by an external device, the probe can be made independent of the power source, can be moved in the multi-axis direction, and the power supply to the probe is smooth. It is possible to carry out.
  • a probe (eddy current flaw detection probe) 1 Machining center 1a Multi-axis movement mechanism 1b MC control unit 2 Wi-Fi station 3 Probe magazine 3a Charging station 3b Power supply control unit (control unit) 3c power supply coil (power supply unit) 4 Inspection operation unit (operation device) 5 Inspection control unit (control device) 6 Probe housing 7 Engagement part 8 Fault detection coil 8a Excitation coil 8b Detection coil 9 Signal conversion part 10 Power receiving coil (non-contact power receiving part, power supply part) 11 Power supply control unit (power supply unit) 12 Battery (power supply) 13 Communication unit 14 Wi-Fi antenna

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The present invention relates to an eddy current test probe (A) provided with: a detection coil (8b) which detects an eddy current; a signal conversion unit (9) which is integrally provided with the detection coil (8b), samples an output signal from the detection coil (8b), and converts the sampled signal to a digital detection signal; and power supply units (10, 11, 12) which supply power to the signal conversion unit (9), wherein the power supply units (10, 11, 12) are provided with: a power receiving unit (10) which can be fed with power from the outside; a battery (12) which is charged with the power supplied from the power receiving unit (10); and a control unit (11) which controls the battery (12).

Description

渦流探傷プローブ及び渦流探傷システムEddy current testing probe and eddy current testing system
 本開示は、渦流探傷プローブ及び渦流探傷システムに関する。本願は、2019年3月22日に日本に出願された日本国特願2019-055598号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to eddy current testing probes and eddy current testing systems. This application claims priority based on Japanese Patent Application No. 2019-055598 filed in Japan on March 22, 2019, the contents of which are incorporated herein by reference.
 下記特許文献1には、自己誘導型の探傷コイルユニットあるいは相互誘導型の探傷コイルユニットを備える渦流探傷装置が開示されている。この渦流探傷装置は、特許文献1の第1図等に示されているように、被測定物の表面に設けられた探傷コイルユニットを接続ケーブルを介して渦流探傷器及び負荷装置に接続する。すなわち、この渦流探傷装置は、励磁コイルの磁界に基づいて被測定物の表面に発生する渦電流が被測定物の損傷に応じて変化することを利用するものであり、渦電流によって検知コイルに発生する微小な起電力をアンプで増幅することにより被測定物の損傷を評価するものである。 Patent Document 1 below discloses an eddy current flaw detection device including a self-induction type flaw detection coil unit or a mutual induction type flaw detection coil unit. In this eddy current flaw detector, as shown in FIG. 1 of Patent Document 1, a flaw detector coil unit provided on the surface of the object to be measured is connected to the eddy current flaw detector and the load device via a connection cable. That is, this eddy current flaw detector utilizes the fact that the eddy current generated on the surface of the object to be measured changes according to the damage of the object to be measured based on the magnetic field of the exciting coil, and the detection coil is affected by the eddy current. Damage to the object to be measured is evaluated by amplifying the generated minute electromotive force with an amplifier.
日本国特開昭64-41855号公報Japanese Patent Application Laid-Open No. 64-41855
 ところで、このような渦流探傷装置においては、探傷用のプローブに対して外部より直接電力を供給している。このため、複雑形状のワークを探傷する際に、形状によってプローブを切り替えたり、ワークの形状に沿ってプローブ本体を多軸方向に移動させることが困難である。 By the way, in such an eddy current flaw detector, electric power is directly supplied from the outside to the probe for flaw detection. For this reason, when detecting a workpiece having a complicated shape, it is difficult to switch the probe depending on the shape or to move the probe main body in the multiaxial direction along the shape of the workpiece.
 本開示は、上述した事情に鑑みてなされたものであり、プローブを多軸方向へと移動可能とすると共に、プローブへの電力供給を円滑に実施することを目的とするものである。 The present disclosure has been made in view of the above circumstances, and an object of the present invention is to make the probe movable in the multi-axis direction and to smoothly supply power to the probe.
 上記目的を達成するために、本開示では、渦流探傷プローブに係る第1の態様として、渦電流を検出する検出コイルと、該検出コイルと一体に設けられ、当該検出コイルの出力信号をサンプリングしてデジタル検出信号に変換する信号変換部と、前記信号変換部に電源を供給する電源部とを備え、前記電源部は、外部より給電可能な受電部と、前記受電部より供給された電力が充電される電池と、前記電池を制御する制御部とを備える、渦流探傷プローブを採用する。 In order to achieve the above object, in the present disclosure, as a first aspect of the eddy current flaw detection probe, a detection coil for detecting an eddy current and an output signal of the detection coil provided integrally with the detection coil are sampled. A signal conversion unit that converts a digital detection signal into a digital detection signal and a power supply unit that supplies power to the signal conversion unit are provided. The power supply unit includes a power receiving unit that can supply power from the outside and power supplied from the power receiving unit. An eddy current flaw detection probe including a battery to be charged and a control unit for controlling the battery is adopted.
 本開示では、渦流探傷プローブに係る第2の態様として、上記第1の態様において、前記受電部は、外部から非接触給電される電力を受電する非接触受電部でもよい。 In the present disclosure, as a second aspect of the eddy current flaw detection probe, in the first aspect, the power receiving unit may be a non-contact power receiving unit that receives power that is non-contactly fed from the outside.
 本開示では、渦流探傷プローブに係る第3の態様として、上記第1または第2の態様において、前記信号変換部は、前記電池の充電中において、前記検出コイルにエージング電流を出力してもよい。 In the present disclosure, as a third aspect of the eddy current flaw detection probe, in the first or second aspect, the signal conversion unit may output an aging current to the detection coil while charging the battery. ..
 本開示では、渦流探傷システムに係る第1の態様として、上記第1~3のいずれかの態様に係る渦流探傷プローブと、前記渦流探傷プローブが待機中において収容されると共に、前記受電部に対して電力を供給する給電部を有する充電ステーションとを備える、渦流探傷システムを採用する。 In the present disclosure, as the first aspect of the eddy current flaw detection system, the eddy current flaw detection probe according to any one of the first to third aspects and the eddy current flaw detection probe are housed in standby and with respect to the power receiving unit. An eddy current flaw detection system is adopted, which is equipped with a charging station having a power supply unit that supplies electric power.
 本開示では、渦流探傷システムに係る第2の態様として、上記第1の態様において、前記渦流探傷プローブは、前記充電ステーションにおいて、前記給電部と前記受電部とが正対するように設置されてもよい。 In the present disclosure, as a second aspect of the eddy current flaw detection system, in the first aspect, even if the eddy current flaw detection probe is installed at the charging station so that the power feeding unit and the power receiving unit face each other. Good.
 本開示によれば、プローブに電池を搭載し、さらに外部装置により電池を充電可能としているため、プローブを電力源から独立させ、多軸方向に移動可能とすると共に、プローブへの電力供給を円滑に実施することが可能である。 According to the present disclosure, since the probe is equipped with a battery and the battery can be charged by an external device, the probe can be made independent of the power source, can be moved in the multi-axis direction, and the power supply to the probe is smooth. It is possible to carry out.
本開示の一実施形態に係る渦流探傷プローブ及び渦流探傷システムの機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the eddy current flaw detection probe and the eddy current flaw detection system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る渦流探傷プローブ及び充電ステーションの詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the eddy current flaw detection probe and the charging station which concerns on one Embodiment of this disclosure.
 以下、図面を参照して、本開示の一実施形態について説明する。
 本実施形態に係る渦流探傷システムは、ワークW(検査対象)の表面に発生する渦電流を検出することにより、ワークWの内部における損傷の有無や大きさ等を非破壊検査する検査システムである。この渦流探傷システムは、図1に示すように、プローブA、マシニングセンタ1(MC)、Wi-Fiステーション2、プローブ・マガジン3、検査操作部4及び検査制御部5を備えており、上記プローブAは、本実施形態に係る渦流探傷プローブである。
Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.
The eddy current flaw detection system according to the present embodiment is an inspection system that non-destructively inspects the presence or absence and size of damage inside the work W by detecting the eddy current generated on the surface of the work W (inspection target). .. As shown in FIG. 1, this eddy current flaw detection system includes a probe A, a machining center 1 (MC), a Wi-Fi station 2, a probe magazine 3, an inspection operation unit 4, and an inspection control unit 5. Is an eddy current flaw detection probe according to the present embodiment.
 プローブAは、検査制御部5から入力される制御信号(データ取得制御信号)に基づいてワークWを渦流探傷する渦流探傷プローブである。すなわち、このプローブAは、ワークWの表面に渦電流を発生させると共に当該渦電流を検出する検査装置であり、図示するようにマシニングセンタ1に装着されることによりワークWの表面を移動しつつ損傷を検出する。 The probe A is an eddy current flaw detection probe that detects eddy current flaws in the work W based on a control signal (data acquisition control signal) input from the inspection control unit 5. That is, this probe A is an inspection device that generates an eddy current on the surface of the work W and detects the eddy current, and is damaged while moving on the surface of the work W by being mounted on the machining center 1 as shown in the figure. Is detected.
 このプローブAは、ワークWの形状や大きさ等に応じて異なる形状のものが複数用意されており、ワークWに最適なものがマシニングセンタ1に着脱自在に装着される。例えば穴が形成されたワークWの場合、プローブAとしては、穴の表面(内表面)を検査するものと外表面を検査するものとは異なる形状のものが用いられる。 A plurality of probes A having different shapes are prepared according to the shape and size of the work W, and the most suitable probe A is detachably attached to the machining center 1. For example, in the case of a work W in which a hole is formed, a probe A having a shape different from that for inspecting the surface (inner surface) of the hole and the probe A for inspecting the outer surface is used.
 このようなプローブAは、図2に示すように、プローブ筐体6、係合部7、探傷コイル8、信号変換部9、受電コイル10(非接触受電部)、電源制御部11、電池12、通信部13及びWi-Fiアンテナ14を機能構成要素として備えている。また、プローブAには、電源制御部11と接続された不図示のランプが設けられている。 As shown in FIG. 2, such a probe A includes a probe housing 6, an engaging portion 7, a flaw detection coil 8, a signal conversion unit 9, a power receiving coil 10 (non-contact power receiving unit), a power supply control unit 11, and a battery 12. , Communication unit 13 and Wi-Fi antenna 14 are provided as functional components. Further, the probe A is provided with a lamp (not shown) connected to the power supply control unit 11.
 プローブ筐体6は、全体として円筒状であり、後端部に係合部7が設けられ、先端部に探傷コイル8が設けられ、外周部には受電コイル10及びWi-Fiアンテナ14が離間した状態で設けられている。このようなプローブ筐体6は、所定の金属材料、例えばステンレス等から形成された金属筐体である。 The probe housing 6 has a cylindrical shape as a whole, an engaging portion 7 is provided at the rear end portion, a flaw detection coil 8 is provided at the tip portion, and a power receiving coil 10 and a Wi-Fi antenna 14 are separated from each other at the outer peripheral portion. It is provided in a state of being. Such a probe housing 6 is a metal housing made of a predetermined metal material such as stainless steel.
 係合部7は、マシニングセンタ1の主軸(スピンドル軸)に装着される円柱状部位である。この係合部7は、プローブ筐体6の後端に設けられた縮径部であり、マシニングセンタ1の主軸が本来的に備えている保持機構によって着脱自在に保持される。すなわち、係合部7が保持機構によって保持されることによって、プローブAはマシニングセンタ1と一体化する。 The engaging portion 7 is a columnar portion mounted on the spindle shaft of the machining center 1. The engaging portion 7 is a reduced diameter portion provided at the rear end of the probe housing 6, and is detachably held by a holding mechanism inherently provided in the main shaft of the machining center 1. That is, the probe A is integrated with the machining center 1 by holding the engaging portion 7 by the holding mechanism.
 探傷コイル8は、励磁コイル8aと検出コイル8bとが組み込まれたコイルユニットであり、ワークWの形状や大きさ等に応じた形状を有する。この探傷コイル8は、信号変換部9から入力される励磁電流を励磁コイル8aに通電することにより励磁磁界を発生させ、励磁磁界によってワークWの表面に発生する渦電流を検出コイル8bで検出信号(出力信号)に変換して信号変換部9に出力する。 The flaw detection coil 8 is a coil unit in which an exciting coil 8a and a detection coil 8b are incorporated, and has a shape corresponding to the shape and size of the work W. The flaw detection coil 8 generates an exciting magnetic field by energizing the exciting coil 8a with an exciting current input from the signal conversion unit 9, and the detection coil 8b detects an eddy current generated on the surface of the work W by the exciting magnetic field. It is converted into (output signal) and output to the signal conversion unit 9.
 複雑な形状のワークWあるいは異なる形状のワークWを検査する場合、探傷コイル8は、ワークWの表面形状に特化した形状、つまりワークWの表面に渦電流を適切に発生させ得る形状に励磁コイル8aを形状設定する必要があると共に、渦電流を的確に検出し得る形状に検出コイル8bを形状設定する必要がある。上述した複数のプローブAは、探傷コイル8の形状が異なるものである。 When inspecting a work W having a complicated shape or a work W having a different shape, the flaw detection coil 8 is excited to a shape specialized for the surface shape of the work W, that is, a shape capable of appropriately generating an eddy current on the surface of the work W. It is necessary to set the shape of the coil 8a, and it is also necessary to set the shape of the detection coil 8b to a shape capable of accurately detecting the eddy current. The plurality of probes A described above have different shapes of the flaw detection coil 8.
 信号変換部9は、電源制御部11から供給される直流電力によって作動する電子回路であり、上述した励磁電流を探傷コイル8に出力すると共に検出信号をデジタル信号に変換する。より詳細には、信号変換部9は、ワークWに応じた周波数の正弦波を生成し励磁電流として励磁コイル8aに供給する。また、信号変換部9は、検出コイル8bから入力される検出信号(アナログ信号)に所定のアナログ処理(フィルタ処理等)を施した後に、所定周期(サンプリング周期)のサンプリング信号を用いてサンプリングすることによりデジタル検出信号(デジタル信号)に変換する。 The signal conversion unit 9 is an electronic circuit operated by DC power supplied from the power supply control unit 11, outputs the above-mentioned exciting current to the flaw detection coil 8, and converts the detection signal into a digital signal. More specifically, the signal conversion unit 9 generates a sine wave having a frequency corresponding to the work W and supplies it to the exciting coil 8a as an exciting current. Further, the signal conversion unit 9 performs a predetermined analog process (filter process or the like) on the detection signal (analog signal) input from the detection coil 8b, and then samples using the sampling signal having a predetermined cycle (sampling cycle). By doing so, it is converted into a digital detection signal (digital signal).
 この信号変換部9は、上記デジタル検出信号を所定フォーマット(パケット構造)のシリアル伝送信号に変換して通信部13に出力する。このシリアル伝送信号は、デジタル検出信号を伝送データとして含むと共に、時系列信号であるデジタル検出信号の欠損を受信側(検査制御部5)で確認するための欠損確認情報を含んでいる。 The signal conversion unit 9 converts the digital detection signal into a serial transmission signal in a predetermined format (packet structure) and outputs it to the communication unit 13. This serial transmission signal includes a digital detection signal as transmission data, and also includes defect confirmation information for confirming a defect of the digital detection signal, which is a time-series signal, on the receiving side (inspection control unit 5).
 受電コイル10は、外部の充電ステーション3aから非接触給電される電力を受電する非接触受電部である。すなわち、この受電コイル10は、充電ステーション3aが発生させる電力伝送用磁界の作用によって交流電力を起電し、当該交流電力を電源制御部11に出力する。上記電力伝送用磁界は、プローブ・マガジン3に設けられた充電ステーション3aが発生する所定周波数の交流磁界である。すなわち、受電コイル10は、プローブAがマシニングセンタ1から取り外されてプローブ・マガジン3に収容された状態において交流電力を起電する。 The power receiving coil 10 is a non-contact power receiving unit that receives power that is non-contactly fed from an external charging station 3a. That is, the power receiving coil 10 generates AC power by the action of the power transmission magnetic field generated by the charging station 3a, and outputs the AC power to the power supply control unit 11. The power transmission magnetic field is an alternating magnetic field having a predetermined frequency generated by the charging station 3a provided in the probe magazine 3. That is, the power receiving coil 10 generates AC power in a state where the probe A is removed from the machining center 1 and housed in the probe magazine 3.
 電源制御部11は、交流電力を直流電力に変換する電力変換器であり、直流電力を電池12に出力して当該電池12を充電させる。また、この電源制御部11は、電池12から入力された直流電力を信号変換部9及び通信部13に供給する。すなわち、電源制御部11は、電池12の残容量に基づいて電池12の充電/放電を切り替える。 The power supply control unit 11 is a power converter that converts AC power into DC power, and outputs DC power to the battery 12 to charge the battery 12. Further, the power supply control unit 11 supplies the DC power input from the battery 12 to the signal conversion unit 9 and the communication unit 13. That is, the power supply control unit 11 switches charging / discharging of the battery 12 based on the remaining capacity of the battery 12.
 電池12は、充放電可能な二次電池であり、例えば小型かつ容量が比較的大きなリチウムイオン電池である。この電池12は、電源制御部11から入力される直流電力を充電し、あるいは自らが蓄電した直流電力を放電して電源制御部11に出力する。なお、受電コイル10、電源制御部11及び電池12は、電源部を構成している。 The battery 12 is a rechargeable and dischargeable secondary battery, for example, a small lithium-ion battery having a relatively large capacity. The battery 12 charges the DC power input from the power supply control unit 11, or discharges the DC power stored by itself and outputs the DC power to the power supply control unit 11. The power receiving coil 10, the power supply control unit 11, and the battery 12 constitute a power supply unit.
 通信部13は、信号変換部9から入力されるシリアル伝送信号をWi-Fi規格に準拠した送信信号に変換してWi-Fiアンテナ14に出力する。また、この通信部13は、Wi-Fiアンテナ14から入力される受信信号(Wi-Fi規格に準拠した信号)からデータ取得制御信号を抽出して信号変換部9に出力する。Wi-Fiアンテナ14は、上記送信信号を電波に変換してWi-Fiステーション2に向けて無線送信すると共に、Wi-Fiステーション2から放射された電波を受信して受信信号を信号変換部9に出力する。なお、通信部13及びWi-Fiアンテナ14は、プローブ通信部を構成している。 The communication unit 13 converts the serial transmission signal input from the signal conversion unit 9 into a transmission signal conforming to the Wi-Fi standard and outputs it to the Wi-Fi antenna 14. Further, the communication unit 13 extracts a data acquisition control signal from a received signal (a signal conforming to the Wi-Fi standard) input from the Wi-Fi antenna 14, and outputs the data acquisition control signal to the signal conversion unit 9. The Wi-Fi antenna 14 converts the transmission signal into radio waves and wirelessly transmits them to the Wi-Fi station 2, receives the radio waves radiated from the Wi-Fi station 2, and transmits the received signal to the signal conversion unit 9. Output to. The communication unit 13 and the Wi-Fi antenna 14 constitute a probe communication unit.
 マシニングセンタ1は、検査制御部5から入力される制御信号(移動制御信号)に基づいてプローブAをワークWの表面に沿って移動させる移動装置である。すなわち、このマシニングセンタ1は、一般的なマシニングセンタとは異なり、工具に代えてプローブAが主軸(スピンドル軸)に装着されるものであり、プローブAを三次元的に移動させる移動装置として機能する。このようなマシニングセンタ1は、図示するように多軸移動機構1a(移動機構)とMC制御部1bとを備える。 The machining center 1 is a moving device that moves the probe A along the surface of the work W based on a control signal (movement control signal) input from the inspection control unit 5. That is, unlike a general machining center, this machining center 1 has a probe A mounted on a spindle (spindle shaft) instead of a tool, and functions as a moving device for moving the probe A three-dimensionally. As shown in the figure, such a machining center 1 includes a multi-axis moving mechanism 1a (moving mechanism) and an MC control unit 1b.
 多軸移動機構1aは、プローブAを着脱自在に保持する主軸(スピンドル軸)を備え、プローブAを三次元的に移動させる。すなわち、多軸移動機構1aは、主軸(スピンドル軸)をプローブAの係合部7に係合させることによりプローブAを保持かつ移動させる。多軸移動機構1aは、アクチュエータである。このような多軸移動機構1aは、例えばX-Yステージに他の可動軸を組み合わせたものであり、全体として三軸~六軸の自由度を有する。 The multi-axis movement mechanism 1a includes a spindle (spindle shaft) that holds the probe A detachably, and moves the probe A three-dimensionally. That is, the multi-axis moving mechanism 1a holds and moves the probe A by engaging the main shaft (spindle shaft) with the engaging portion 7 of the probe A. The multi-axis moving mechanism 1a is an actuator. Such a multi-axis moving mechanism 1a is, for example, a combination of an XY stage and another movable axis, and has three to six axes of freedom as a whole.
 MC制御部1bは、上記移動制御信号に基づいて多軸移動機構1aを直接制御する。すなわち、MC制御部1bは、多軸移動機構1aを専ら制御対象とし、多軸移動機構1aの主軸(スピンドル軸)に装着されたプローブAを移動制御信号で指示された位置に移動させる。MC制御部1bは、CPU(Central Processing Unit)と、RAM(Random Access Memory)、ROM(Read Only Memory)、等の主記憶装置と、SSD(Solid State Drive)、HDD(Hard Disc Drive)、等の補助記憶装置と、等から構成された一種のコンピュータである。 The MC control unit 1b directly controls the multi-axis movement mechanism 1a based on the movement control signal. That is, the MC control unit 1b exclusively controls the multi-axis movement mechanism 1a, and moves the probe A mounted on the main shaft (spindle shaft) of the multi-axis movement mechanism 1a to the position indicated by the movement control signal. The MC control unit 1b includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
 Wi-Fiステーション2は、検査制御部5の下でプローブAとWi-Fi規格に準拠した無線通信を行う通信装置である。このWi-Fiステーション2は、上述したプローブAの通信部13からWi-Fiアンテナ14を介して送信信号を受信し、検査制御部5から入力された同期データをWi-Fi規格に準拠した送信信号に変換して通信部13宛に送信する。すなわち、Wi-Fiステーション2は、送信信号に含まれるデジタル検出信号を受信すると共に、同期データをプローブAに送信する。 The Wi-Fi station 2 is a communication device that performs wireless communication between the probe A and the Wi-Fi standard under the inspection control unit 5. The Wi-Fi station 2 receives a transmission signal from the communication unit 13 of the probe A described above via the Wi-Fi antenna 14, and transmits synchronization data input from the inspection control unit 5 in accordance with the Wi-Fi standard. It is converted into a signal and transmitted to the communication unit 13. That is, the Wi-Fi station 2 receives the digital detection signal included in the transmission signal and transmits the synchronization data to the probe A.
 プローブ・マガジン3は、図1に示すように、複数のプローブAを収容する収容装置であり、充電ステーション3aが付帯的に設けられている。充電ステーション3aは、図2に示すように、給電制御部3bと、給電コイル3cとを備えている。給電制御部3bは、給電コイル3cを制御する制御回路が設けられた装置であり、プローブAが充電ステーション3aに設置されたことを検出して給電回路に対して制御信号を出力する。給電制御部3bは、CPU(Central Processing Unit)と、RAM(Random Access Memory)、ROM(Read Only Memory)、等の主記憶装置と、SSD(Solid State Drive)、HDD(Hard Disc Drive)、等の補助記憶装置と、等から構成された一種のコンピュータである。給電コイル3cは、受電コイル10に交流電力を供給して電力伝送用磁界を発生させることによりプローブAに非接触で電力を給電する。また、給電コイル3cは、不図示の給電回路と接続されており、給電回路より交流電力が入力される。このようなプローブ・マガジン3は、検査に使用しない複数のプローブAを一時的に収容すると共に、当該収容されたプローブAの電池12を充電させる充電器として機能する。 As shown in FIG. 1, the probe magazine 3 is a storage device for accommodating a plurality of probes A, and a charging station 3a is incidentally provided. As shown in FIG. 2, the charging station 3a includes a power supply control unit 3b and a power supply coil 3c. The power supply control unit 3b is a device provided with a control circuit for controlling the power supply coil 3c, detects that the probe A is installed in the charging station 3a, and outputs a control signal to the power supply circuit. The power supply control unit 3b includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like. The power feeding coil 3c supplies power to the probe A in a non-contact manner by supplying AC power to the power receiving coil 10 to generate a magnetic field for power transmission. Further, the power feeding coil 3c is connected to a power feeding circuit (not shown), and AC power is input from the power feeding circuit. Such a probe magazine 3 temporarily accommodates a plurality of probes A that are not used for inspection, and functions as a charger for charging the battery 12 of the accommodated probe A.
 検査操作部4は、作業者の操作指示を受け付けて検査制御部5に出力する操作装置である。この検査操作部4は、上記操作指示として、例えばワークWにおける検査領域(三次元領域)を指定する。このような検査操作部4は、例えばタッチパネルあるいは/及びキーボードである。 The inspection operation unit 4 is an operation device that receives an operation instruction of an operator and outputs it to the inspection control unit 5. The inspection operation unit 4 designates, for example, an inspection area (three-dimensional area) in the work W as the operation instruction. Such an inspection operation unit 4 is, for example, a touch panel or / and a keyboard.
 検査制御部5は、渦流探傷システムを統括的に制御する制御装置である。すなわち、検査制御部5は、マシニングセンタ1に対してプローブAの移動に関する移動制御信号を出力することによりプローブAを所定の検査経路に沿って移動させる。また、検査制御部5は、Wi-Fiステーション2を介してプローブAにデジタル検出信号の取得に関するデータ取得制御信号を出力することにより、プローブAの各位置に応じたデジタル検出信号を順次取得させる。検査制御部5は、CPU(Central Processing Unit)と、RAM(Random Access Memory)、ROM(Read Only Memory)、等の主記憶装置と、SSD(Solid State Drive)、HDD(Hard Disc Drive)、等の補助記憶装置と、等から構成された一種のコンピュータである。 The inspection control unit 5 is a control device that comprehensively controls the eddy current flaw detection system. That is, the inspection control unit 5 moves the probe A along a predetermined inspection path by outputting a movement control signal regarding the movement of the probe A to the machining center 1. Further, the inspection control unit 5 outputs a data acquisition control signal related to the acquisition of the digital detection signal to the probe A via the Wi-Fi station 2, so that the digital detection signal corresponding to each position of the probe A is sequentially acquired. .. The inspection control unit 5 includes a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory), a ROM (Read Only Memory), an SSD (Solid State Drive), an HDD (Hard Disc Drive), etc. It is a kind of computer composed of the auxiliary storage device and the like.
 また、このようなプローブA及びマシニングセンタ1の制御に際して、同期データをプローブA及びマシニングセンタ1に出力することにより、信号変換部9における検出信号のサンプリング周期とMC制御部1bにおけるプローブAの位置取得のサンプリング周期とを同期させる。なお、上記同期データは、検査制御部5がプローブAに出力するデータ取得制御信号及び検査制御部5がマシニングセンタ1に出力する移動制御信号に含まれる。 Further, when controlling the probe A and the machining center 1, by outputting the synchronization data to the probe A and the machining center 1, the sampling cycle of the detection signal in the signal conversion unit 9 and the position acquisition of the probe A in the MC control unit 1b can be obtained. Synchronize with the sampling cycle. The synchronization data is included in the data acquisition control signal output by the inspection control unit 5 to the probe A and the movement control signal output by the inspection control unit 5 to the machining center 1.
 次に、本実施形態に係るプローブA(渦流探傷プローブ)及び渦流探傷システムの動作について詳しく説明する。 Next, the operations of the probe A (eddy current flaw detection probe) and the eddy current flaw detection system according to the present embodiment will be described in detail.
 この渦流探傷システムでは、検査制御部5がマシニングセンタ1に移動制御信号を出力し、かつ、プローブAにデータ取得制御信号を出力することにより、ワークWの検査経路に沿った複数位置のデジタル検出信号が順次取得される。すなわち、マシニングセンタ1は、MC制御部1bが移動制御信号に基づいて多軸移動機構1aを制御することによりプローブA(探傷コイル8)をワークWの検査経路に沿って移動させる。また、マシニングセンタ1は、移動制御信号の同期信号に同期して取得したプローブA(探傷コイル8)の位置データを検査制御部5に順次出力する。 In this eddy current flaw detection system, the inspection control unit 5 outputs a movement control signal to the machining center 1 and a data acquisition control signal to the probe A, so that digital detection signals at a plurality of positions along the inspection path of the work W are detected. Are sequentially acquired. That is, in the machining center 1, the MC control unit 1b controls the multi-axis movement mechanism 1a based on the movement control signal to move the probe A (fault detection coil 8) along the inspection path of the work W. Further, the machining center 1 sequentially outputs the position data of the probe A (fault detection coil 8) acquired in synchronization with the synchronization signal of the movement control signal to the inspection control unit 5.
 一方、プローブAでは、通信部13は、Wi-Fiステーション2及びWi-Fiアンテナ14を介してデータ取得制御信号を受信して信号変換部9に出力する。そして、信号変換部9は、データ取得制御信号の同期信号に同期してデジタル検出信号を順次取得して通信部13に順次出力する。 On the other hand, in the probe A, the communication unit 13 receives the data acquisition control signal via the Wi-Fi station 2 and the Wi-Fi antenna 14 and outputs the data acquisition control signal to the signal conversion unit 9. Then, the signal conversion unit 9 sequentially acquires the digital detection signal in synchronization with the synchronization signal of the data acquisition control signal, and sequentially outputs the digital detection signal to the communication unit 13.
 すなわち、信号変換部9は、励磁信号を探傷コイル8の励磁コイル8aに出力することによってワークWに励磁磁界を作用させ、以ってワークWに渦電流を発生させる。そして、信号変換部9は、探傷コイル8の検出コイル8bから連続的に入力される検出信号を同期信号に同期したサンプリング信号でサンプリングすることによりデジタル検出信号に順次変換する。 That is, the signal conversion unit 9 exerts an exciting magnetic field on the work W by outputting an exciting signal to the exciting coil 8a of the flaw detection coil 8, thereby generating an eddy current in the work W. Then, the signal conversion unit 9 sequentially converts the detection signal continuously input from the detection coil 8b of the flaw detection coil 8 into a digital detection signal by sampling with a sampling signal synchronized with the synchronization signal.
 そして、通信部13は、信号変換部9から入力されるデジタル検出信号をWi-Fiアンテナ14及びWi-Fiステーション2を介して検査制御部5に順次送信する。そして、検査制御部5は、同一時刻の位置データとデジタル検出信号とを各々関連付けることにより、検査経路における各位置の検査データとして順次記憶する。すなわち、プローブAが検査経路の始点から終点まで移動することによって、検査経路に沿ったワークWの複数位置の検査データが取得される。 Then, the communication unit 13 sequentially transmits the digital detection signal input from the signal conversion unit 9 to the inspection control unit 5 via the Wi-Fi antenna 14 and the Wi-Fi station 2. Then, the inspection control unit 5 sequentially stores the inspection data of each position in the inspection path by associating the position data at the same time with the digital detection signal. That is, as the probe A moves from the start point to the end point of the inspection path, inspection data at a plurality of positions of the work W along the inspection path are acquired.
 また、プローブAは、ワークWの形状や使用環境に合わせて複数の形状が存在しており、プローブ・マガジン3へと収容されて保管されている。プローブAは、探傷終了後に、プローブ・マガジン3へと収容される。プローブAの受電コイル10は、プローブ・マガジン3の給電コイル3cに対して正対することにより最近接した状態で固定されている。そして、プローブ・マガジン3の給電制御部3bは、プローブAがプローブ・マガジン3に固定されたことを検知すると、給電制御信号を給電回路へと発信する。これにより、給電回路から給電コイル3cへと電力が供給されることで給電コイル3cが発生させた磁界により、受電コイル10に電力が供給される。 Further, the probe A has a plurality of shapes according to the shape of the work W and the usage environment, and is housed and stored in the probe magazine 3. The probe A is housed in the probe magazine 3 after the flaw detection is completed. The power receiving coil 10 of the probe A is fixed in the closest contact state by facing the feeding coil 3c of the probe magazine 3. Then, when the power supply control unit 3b of the probe magazine 3 detects that the probe A is fixed to the probe magazine 3, it transmits a power supply control signal to the power supply circuit. As a result, electric power is supplied to the power receiving coil 10 from the magnetic field generated by the power feeding coil 3c by supplying electric power from the power feeding circuit to the power feeding coil 3c.
 さらに、プローブAの充電中において、電源制御部11は、充電状況を検出し、探傷コイル8に対してエージング電流を流すように信号変換部9に指示する。これにより、プローブAにおいては、充電と並行してエージング電流が流されることとなる。そして、電源制御部11は、電池12の充電の完了を検出すると、受電コイル10からの給電を遮断する。そして、電源制御部11は、探傷コイル8のエージングと、電池12の充電との両方が完了すると、上述した不図示のランプを点灯させることにより、充電及びエージングの完了を作業者に知らせる。 Further, while charging the probe A, the power supply control unit 11 detects the charging status and instructs the signal conversion unit 9 to pass an aging current through the flaw detection coil 8. As a result, in the probe A, an aging current is passed in parallel with charging. Then, when the power supply control unit 11 detects the completion of charging of the battery 12, the power supply from the power receiving coil 10 is cut off. Then, when both the aging of the flaw detection coil 8 and the charging of the battery 12 are completed, the power supply control unit 11 notifies the operator of the completion of charging and aging by turning on the lamp (not shown) described above.
 本実施形態によれば、プローブAに対して充電可能なプローブ・マガジン3を備えている。これにより、プローブAの探傷終了時、またはプローブAの切り替え時にプローブ・マガジン3に収容される際に、充電を行うことが可能である。したがって、プローブAは、探傷時に外部から電力を供給する必要がなく、他のプローブAとの切り替えや、多軸移動が容易となると共に、待機時に充電することで円滑に電力を供給することが可能である。 According to this embodiment, the probe magazine 3 is provided so that the probe A can be charged. As a result, charging can be performed at the end of flaw detection of the probe A or when the probe A is accommodated in the probe magazine 3 when the probe A is switched. Therefore, the probe A does not need to supply electric power from the outside at the time of flaw detection, and it is easy to switch to another probe A and move in multiple axes, and it is possible to smoothly supply electric power by charging during standby. It is possible.
 また、本実施形態によれば、非接触によりプローブAに対して給電する。これにより、プローブ・マガジン3に対する取付姿勢が正確でない場合にも、プローブAを給電することが可能である。したがって、マシニングセンタ1の稼働中に、自動でプローブAを充電ステーション3aへと移動させて充電することが容易である。 Further, according to the present embodiment, power is supplied to the probe A by non-contact. As a result, the probe A can be fed even when the mounting posture with respect to the probe magazine 3 is not accurate. Therefore, it is easy to automatically move the probe A to the charging station 3a to charge the machine while the machining center 1 is in operation.
 また、本実施形態によれば、プローブAの受電コイル10と、プローブ・マガジン3の給電コイル3cとが正対し、近接するように、プローブ・マガジン3に対してプローブAが固定される。これにより、プローブAを効率的に充電することが可能である。 Further, according to the present embodiment, the probe A is fixed to the probe magazine 3 so that the power receiving coil 10 of the probe A and the feeding coil 3c of the probe magazine 3 face each other and are close to each other. As a result, the probe A can be charged efficiently.
 また、本実施形態によれば、プローブAの充電時において、探傷コイル8に対してエージング電流を流している。これにより、プローブAの充電と併せて、探傷コイル8のエージングを完了させることが可能である。すなわち、プローブAの待機中において、プローブ・マガジン3に設置することにより、プローブAの充電と、エージング処理を同時に行うことで、プローブAのエージング処理を適切に管理することが可能である。 Further, according to the present embodiment, an aging current is passed through the flaw detection coil 8 when the probe A is being charged. As a result, it is possible to complete the aging of the flaw detection coil 8 together with the charging of the probe A. That is, while the probe A is on standby, by installing it in the probe magazine 3, it is possible to appropriately manage the aging process of the probe A by simultaneously charging the probe A and performing the aging process.
 また、本実施形態によれば、充電ステーション3aは、プローブ・マガジン3に付帯的に設けられている。これにより、マシニングセンタ1からプローブAを取り外すことなく、プローブAを充電することが可能である。 Further, according to the present embodiment, the charging station 3a is incidentally provided to the probe magazine 3. As a result, the probe A can be charged without removing the probe A from the machining center 1.
 なお、本開示は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、プローブAを非接触給電により充電するものとしたが、本開示はこれに限定されない。プローブAは、充電端子を有し、充電ステーション3aに設けられた給電端子と接触させることにより充電されるものとしてもよい。
The present disclosure is not limited to the above embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, the probe A is charged by non-contact power supply, but the present disclosure is not limited to this. The probe A may have a charging terminal and may be charged by contacting with a power feeding terminal provided in the charging station 3a.
(2)上記実施形態では、通信装置としてWi-Fiステーション2を採用したが、本開示はこれに限定されない。Wi-Fi(登録商標)以外の通信方式に基づく通信装置を採用してもよい。なお、この場合には、プローブ通信部つまり通信部13及びWi-Fiアンテナ14については、通信装置の通信方式に準拠したものを用いる必要がある。 (2) In the above embodiment, the Wi-Fi station 2 is adopted as the communication device, but the present disclosure is not limited to this. A communication device based on a communication method other than Wi-Fi (registered trademark) may be adopted. In this case, it is necessary to use the probe communication unit, that is, the communication unit 13 and the Wi-Fi antenna 14, which conform to the communication method of the communication device.
(3)上記実施形態では、プローブ・マガジン3に充電ステーション3aを付帯的に設けたが、本開示はこれに限定されない。すなわち、充電ステーション3aについては、プローブ・マガジン3とは別体として設けてもよい。 (3) In the above embodiment, the probe magazine 3 is incidentally provided with the charging station 3a, but the present disclosure is not limited to this. That is, the charging station 3a may be provided as a separate body from the probe magazine 3.
(4)上記実施形態では、プローブAの充電と並行してエージング電流を流すものとしたが、本開示はこれに限定されない。エージング電流は、プローブAの充電後または充電前に流すものとしてもよい。また、探傷コイル8について、エージングが不要な場合には、エージング処理を行わないものとしてもよい。 (4) In the above embodiment, the aging current is applied in parallel with the charging of the probe A, but the present disclosure is not limited to this. The aging current may be applied after charging the probe A or before charging. Further, when the flaw detection coil 8 does not need to be aged, the aging process may not be performed.
 本開示によれば、プローブに電池を搭載し、さらに外部装置により電池を充電可能としているため、プローブを電力源から独立させ、多軸方向に移動可能とすると共に、プローブへの電力供給を円滑に実施することが可能である。 According to the present disclosure, since the probe is equipped with a battery and the battery can be charged by an external device, the probe can be made independent of the power source, can be moved in the multi-axis direction, and the power supply to the probe is smooth. It is possible to carry out.
 A プローブ(渦流探傷プローブ)
 1 マシニングセンタ
 1a 多軸移動機構
 1b MC制御部
 2 Wi-Fiステーション
 3 プローブ・マガジン
 3a 充電ステーション
 3b 給電制御部(制御部)
 3c 給電コイル(給電部)
 4 検査操作部(操作装置)
 5 検査制御部(制御装置)
 6 プローブ筐体
 7 係合部
 8 探傷コイル
 8a 励磁コイル
 8b 検出コイル
 9 信号変換部
 10 受電コイル(非接触受電部、電源部)
 11 電源制御部(電源部)
 12 電池(電源部)
 13 通信部
 14 Wi-Fiアンテナ
A probe (eddy current flaw detection probe)
1 Machining center 1a Multi-axis movement mechanism 1b MC control unit 2 Wi-Fi station 3 Probe magazine 3a Charging station 3b Power supply control unit (control unit)
3c power supply coil (power supply unit)
4 Inspection operation unit (operation device)
5 Inspection control unit (control device)
6 Probe housing 7 Engagement part 8 Fault detection coil 8a Excitation coil 8b Detection coil 9 Signal conversion part 10 Power receiving coil (non-contact power receiving part, power supply part)
11 Power supply control unit (power supply unit)
12 Battery (power supply)
13 Communication unit 14 Wi-Fi antenna

Claims (5)

  1.  渦電流を検出する検出コイルと、
     前記検出コイルと一体に設けられ、前記検出コイルの出力信号をサンプリングしてデジタル検出信号に変換する信号変換部と、
     前記信号変換部に電源を供給する電源部と
     を備え、
     前記電源部は、
     外部より給電可能な受電部と、
     前記受電部より供給された電力が充電される電池と、
     前記電池を制御する制御部と、
    を備える渦流探傷プローブ。
    A detection coil that detects eddy currents and
    A signal conversion unit that is provided integrally with the detection coil and samples the output signal of the detection coil and converts it into a digital detection signal.
    A power supply unit that supplies power to the signal conversion unit is provided.
    The power supply unit
    A power receiving unit that can supply power from the outside
    A battery charged with the power supplied from the power receiving unit, and
    A control unit that controls the battery and
    Eddy current testing probe with.
  2.  前記受電部は、前記外部から非接触給電される電力を受電する非接触受電部である請求項1に記載の渦流探傷プローブ。 The eddy current flaw detection probe according to claim 1, wherein the power receiving unit is a non-contact power receiving unit that receives electric power that is non-contactly fed from the outside.
  3.  前記信号変換部は、前記電池の充電中において、前記検出コイルにエージング電流を出力する請求項1または2に記載の渦流探傷プローブ。 The eddy current flaw detection probe according to claim 1 or 2, wherein the signal conversion unit outputs an aging current to the detection coil during charging of the battery.
  4.  請求項1~3のいずれか一項に記載の渦流探傷プローブと、
     前記渦流探傷プローブが待機中において収容されると共に、前記受電部に対して電力を供給する給電部を有する充電ステーションと、
     を備える渦流探傷システム。
    The eddy current flaw detection probe according to any one of claims 1 to 3,
    An eddy current testing probe is housed in standby, and a charging station having a power feeding unit that supplies power to the power receiving unit, and a charging station.
    Eddy current testing system with.
  5.  前記渦流探傷プローブは、前記充電ステーションにおいて、前記給電部と前記受電部とが正対するように設置される請求項4に記載の渦流探傷システム。 The eddy current flaw detection system according to claim 4, wherein the eddy current flaw detection probe is installed at the charging station so that the power supply portion and the power receiving portion face each other.
PCT/JP2020/011416 2019-03-22 2020-03-16 Eddy current test probe and eddy current test system WO2020196014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-055598 2019-03-22
JP2019055598 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020196014A1 true WO2020196014A1 (en) 2020-10-01

Family

ID=72611460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011416 WO2020196014A1 (en) 2019-03-22 2020-03-16 Eddy current test probe and eddy current test system

Country Status (1)

Country Link
WO (1) WO2020196014A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020190682A1 (en) * 2001-03-07 2002-12-19 Hagen Schempf Gas main robotic inspection system
JP2006284417A (en) * 2005-04-01 2006-10-19 Olympus Corp Nondestructive inspection device
US20100097057A1 (en) * 2008-10-17 2010-04-22 Thomas Karpen Inspection apparatus for performing inspections
JP2015052784A (en) * 2013-08-26 2015-03-19 ゼネラル・エレクトリック・カンパニイ Modular inspection system
US20170059527A1 (en) * 2015-09-01 2017-03-02 Corestar International Corporation Hand-Held Eddy Current Test Instrument and Sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020190682A1 (en) * 2001-03-07 2002-12-19 Hagen Schempf Gas main robotic inspection system
JP2006284417A (en) * 2005-04-01 2006-10-19 Olympus Corp Nondestructive inspection device
US20100097057A1 (en) * 2008-10-17 2010-04-22 Thomas Karpen Inspection apparatus for performing inspections
JP2015052784A (en) * 2013-08-26 2015-03-19 ゼネラル・エレクトリック・カンパニイ Modular inspection system
US20170059527A1 (en) * 2015-09-01 2017-03-02 Corestar International Corporation Hand-Held Eddy Current Test Instrument and Sensor

Similar Documents

Publication Publication Date Title
CN108723849B (en) Clamping chuck
CN107462610B (en) Method and apparatus for evaluating ultrasonic weld joints
CN104889870B (en) Cutting apparatus
CN102187233B (en) Measuring system for determining scatter parameters
JP7085540B2 (en) Loading methods and tool transfer equipment for machine tools
WO2020196014A1 (en) Eddy current test probe and eddy current test system
JP4547026B2 (en) Primary part for contactless current supply, monitoring the operating state of the secondary part
WO2021070911A1 (en) Eddy current flaw detection system
WO2020196016A1 (en) Eddy current test probe and eddy current test system
WO2019230962A1 (en) Ae sensor, machining tool, and scroll compressor manufacturing method
WO2020196302A1 (en) Eddy-current flaw detection system and eddy-current flaw detection method
KR101322022B1 (en) Polling device for a moved machine component and power chuck
KR102555548B1 (en) Grinding and/or eroding machines and their measuring and datuming methods
JP6425645B2 (en) measuring device
CN102735751A (en) Multifunctional integrated non-destructive detection sensor based on wireless network
CN113290390B (en) Rotary ultrasonic machining amplitude control method and calibration platform
JP2018036881A (en) High-speed conversion device, measurement system, and high-speed conversion program
US20190097567A1 (en) Parameter determination supporting device
JP2006284417A (en) Nondestructive inspection device
CN110160474B (en) Ultrasonic thickness measuring device for machine tool on machine
JP3654439B2 (en) Internal diameter measuring device for workpiece
JP6118585B2 (en) Charge / discharge inspection system
WO2022080093A1 (en) Power supply control system and control system
JP7058030B1 (en) Drive circuit of wireless vibration device and piezoelectric element
JP6807002B2 (en) Measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP