WO2020195176A1 - Substrate treatment method - Google Patents

Substrate treatment method Download PDF

Info

Publication number
WO2020195176A1
WO2020195176A1 PCT/JP2020/004039 JP2020004039W WO2020195176A1 WO 2020195176 A1 WO2020195176 A1 WO 2020195176A1 JP 2020004039 W JP2020004039 W JP 2020004039W WO 2020195176 A1 WO2020195176 A1 WO 2020195176A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
containing aqueous
ozone
ammonia
substrate processing
Prior art date
Application number
PCT/JP2020/004039
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 山口
淳一 新庄
佑太 中野
尚樹 澤崎
誠士 阿野
晃久 岩崎
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020217028444A priority Critical patent/KR102564664B1/en
Priority to CN202080020066.0A priority patent/CN113632012A/en
Publication of WO2020195176A1 publication Critical patent/WO2020195176A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method, and more particularly to a substrate processing method for removing a resist film from a substrate.
  • the resist film is removed from the substrate after processing using the resist film on the substrate.
  • a method of supplying sulfuric acid, hydrogen peroxide solution, and a mixed solution (sulfuric acid / hydrogen peroxide mixture: SPM) as a cleaning solution onto the surface of the substrate has been widely used conventionally.
  • SPM sulfuric acid / hydrogen peroxide mixture
  • Patent Document 1 a substrate processing method for removing a resist film on a wafer is disclosed.
  • the resist film is removed by supplying a mixed solution of aqueous ammonia and ozone water to the wafer.
  • the resist can be removed at a high speed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-144006
  • ozone-dissolved water As a method shown as a preferable example, first, ammonia water as an ozone decomposition catalyst solution is discharged onto the wafer. Next, ozone-dissolved water is discharged onto the wafer. As a result, ozone-dissolved water is discharged onto the wafer surface in a state where the entire wafer surface is covered with the ozone decomposition catalyst solution.
  • this publication it is claimed that ozone can be instantly decomposed on the surface of the wafer, so that the etching time can be shortened.
  • Patent Document 3 a method for cleaning the surface of an article is disclosed. Specifically, the base aqueous solution and the ozone aqueous solution are simultaneously supplied to the surface of the article whose surface is contaminated with deposits. At that time, the surface is continuously brought into contact with the fresh base aqueous solution and the ozone aqueous solution. This causes ozone to decompose on the surface. As a result, the deposits are removed. According to this publication, it is claimed that excellent cleaning effects can be obtained without the use of special physical actions that may damage the surface of the article, such as high pressure jet injection.
  • Patent Document 4 a cleaning method is disclosed.
  • This publication describes that, as one aspect of the cleaning method, the object to be cleaned is immersed in a cleaning liquid containing ammonia or amines and hydrogen peroxide and / or ozone, and is irradiated with ultraviolet rays. According to this publication, it is claimed that the effect is that a heating facility for a chemical solution is not required.
  • Patent Document 5 a substrate processing method for removing organic substances has been proposed.
  • This organic substance is a reaction product formed on the surface of the substrate by dry etching using a resist as a mask.
  • the organic substance is swollen by supplying the removing liquid toward the surface of the substrate.
  • the removing liquid adhering to the substrate is removed by rotating the substrate.
  • the swelling organic residue is exfoliated as described above.
  • This peeling is performed by supplying a cleaning medium toward the surface of the substrate.
  • the removing liquid include a liquid containing an organic alkaline liquid and the like.
  • the cleaning medium hot water or the like is exemplified.
  • the reason for removing the removal liquid adhering to the substrate before supplying the cleaning medium is to avoid the phenomenon that a strong alkali is generated by mixing the two, thereby eliminating the time required for the process for removing the strong alkali. Things are explained.
  • Japanese Unexamined Patent Publication No. 2010-153442 Japanese Unexamined Patent Publication No. 2001-144006 Japanese Unexamined Patent Publication No. 2001-203182 Japanese Unexamined Patent Publication No. 4-179225 Japanese Unexamined Patent Publication No. 2003-234323
  • Patent Documents 1 to 3 are intended to accelerate the decomposition of the resist film by promoting the action of ozone. According to the studies by the present inventors, if the resist film is removed mainly by relying only on the decomposition action, the processing time becomes long.
  • Patent Document 4 is intended to remove a resist or the like by irradiation with ultraviolet rays in a mixed solution of several chemical solutions. Since the function of each drug solution is inactivated after mixing, the sufficient expression of the function of each drug solution is likely to be hindered in this technique. Therefore, the required processing time tends to be long.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a substrate treatment method capable of removing a resist film from a substrate in a short time while suppressing the burden of waste liquid treatment. That is.
  • the first aspect is a portion of the resist film that has already come into contact with the ozone-containing aqueous solution by the step of bringing the ozone-containing aqueous solution into contact with the resist film on the substrate and the step of contacting the ozone-containing aqueous solution.
  • This is a substrate treatment method comprising a step of bringing an aqueous ammonia-containing solution containing ammonia at a higher concentration than the ozone-containing aqueous solution into contact with the aqueous solution.
  • the second aspect is the substrate processing method of the first aspect, and the step of bringing the ozone-containing aqueous solution into contact is performed by discharging the ozone-containing aqueous solution toward the substrate.
  • the third aspect is the substrate processing method of the first or second aspect, and the step of bringing the ammonia-containing aqueous solution into contact is performed by discharging the ammonia-containing aqueous solution toward the substrate.
  • the fourth aspect is the substrate processing method of the third aspect, and the step of discharging the ammonia-containing aqueous solution includes a step of moving a nozzle for discharging the ammonia-containing aqueous solution.
  • the fifth aspect is the substrate processing method of the fourth aspect, and in the step of moving the nozzle, the ammonia-containing aqueous solution is discharged to the peripheral portion of the substrate for a longer time than the central portion of the substrate. It is done like this.
  • the sixth aspect is the substrate treatment method according to any one of the first to fifth aspects, wherein a portion of the resist film that has already come into contact with the ammonia-containing aqueous solution by the step of contacting the ammonia-containing aqueous solution is physically washed. A step of separating from the substrate is further provided.
  • the seventh aspect is the substrate processing method of the sixth aspect, and the physical cleaning includes a step of blowing gas onto the substrate.
  • the eighth aspect is the substrate processing method of the seventh aspect, and the step of spraying the gas onto the substrate includes the step of spraying the ammonia-containing aqueous solution onto the substrate with the gas.
  • the ninth aspect is the substrate processing method of the seventh or eighth aspect, and the gas is an inert gas.
  • the tenth aspect is the substrate processing method of any one of the first to fifth aspects, and the step of contacting the ozone-containing aqueous solution includes a step of forming cracks in the resist film with the ozone-containing aqueous solution.
  • the eleventh aspect is the substrate processing method of the tenth aspect, and the step of bringing the ammonia-containing aqueous solution into contact is that the substrate and the resist film are brought into contact with each other through the cracks formed by the step of forming cracks in the resist film.
  • the twelfth aspect is the substrate processing method according to any one of the first to eleventh aspects, and the ammonia-containing aqueous solution contains hydrogen peroxide.
  • the thirteenth aspect is the substrate processing method according to any one of the first to twelfth aspects, further comprising a step of irradiating the resist film with ultraviolet rays before the step of contacting the ozone-containing aqueous solution.
  • the fourteenth aspect is the substrate processing method according to any one of the first to thirteenth aspects, and in the step of contacting the ozone-containing aqueous solution, the ozone-containing aqueous solution is supplied to the substrate without supplying the ozone-containing aqueous solution to the substrate. Including the step of supplying.
  • the fifteenth aspect is the substrate processing method according to any one of the first to the fourteenth aspects, and the step of bringing the ozone-containing aqueous solution into contact includes a step of heating the ozone-containing aqueous solution in a pipe away from the substrate.
  • the 16th aspect is the substrate processing method according to any one of the 1st to 15th aspects, and the step of bringing the ozone-containing aqueous solution into contact includes a step of heating the ozone-containing aqueous solution on the substrate.
  • the ammonia-containing aqueous solution is brought into contact with the portion of the resist membrane that has already come into contact with the ozone-containing aqueous solution.
  • the portion that has already come into contact with the ozone-containing aqueous solution is susceptible to the swelling action of the ammonia-containing aqueous solution because it has been decomposed by ozone in advance. This promotes the progress of swelling of the resist film. Therefore, the resist film can be removed in a short time in the subsequent steps.
  • the ozone-containing aqueous solution and the ammonia-containing aqueous solution have a smaller burden of waste liquid treatment than SPM. From the above, the resist film can be removed from the substrate in a short time while suppressing the burden of waste liquid treatment.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to the first embodiment of the present invention from the viewpoint of processing in one part of a resist film.
  • FIG. 5 is a partial cross-sectional view schematically showing a first step of the substrate processing method according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view schematically showing a second step of the substrate processing method according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view schematically showing a third step of the substrate processing method according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view schematically showing a fourth step of the substrate processing method according to the first embodiment of the present invention.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to the first embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. It is a top view which shows typically the 1st operation of the substrate processing apparatus in Embodiment 1 of this invention. It is a top view which shows typically the 2nd operation of the substrate processing apparatus in Embodiment 1 of this invention. It is a top view which shows typically the 3rd operation of the substrate processing apparatus in Embodiment 1 of this invention.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to a second embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to the third embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to a fourth embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to a fifth embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. It is a partial cross-sectional view which shows roughly one step of the substrate processing method in Embodiment 5 of this invention.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to a sixth embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus.
  • FIG. 5 is a flow chart schematically showing a substrate processing method according to a sixth embodiment of the present invention from the viewpoint of processing in one part of a resist film. It is a partial cross-sectional view which shows roughly one step of the substrate processing method in Embodiment 6 of this invention.
  • FIG. 1 is a top view schematically showing the configuration of the substrate processing apparatus according to the first embodiment of the present invention.
  • 2 and 3 respectively, are schematic cross-sectional views taken along line II-II and line III-III of FIG.
  • the wafer 901 (board) processed by the substrate processing apparatus is also shown.
  • a resist film (not shown in FIGS. 1 to 3) is provided on the wafer 901 before processing. This resist film is removed by substrate processing by a substrate processing apparatus.
  • the substrate processing apparatus includes a support portion 10, a discharge portion 30, and a spray portion 40.
  • the support portion 10 has a rotating shaft 16, a spin base 13, a chuck 12, a back surface nozzle 11, a hot water supply source 101, a deionized water supply source 102, a valve 111, and a valve 112. .
  • the rotating shaft 16 is rotated by a motor (not shown).
  • the spin base 13 is attached to the rotating shaft 16.
  • the chuck 12 is attached near the outer edge of the spin base 13 and fixes the wafer 901. With these configurations, the wafer 901 is rotatably supported by the support portion 10 (see arrow SP).
  • the back surface nozzle 11 discharges a fluid, particularly a liquid, to the back surface of the wafer 901.
  • the spin base 13 is provided with an opening OP so as not to interfere with this discharge.
  • the hot water supply source 101 supplies hot water to the back surface nozzle 11 via the valve 111.
  • the deionized water supply source 102 supplies the deionized water to the back surface nozzle 11 via the valve 112.
  • the discharge unit 30 includes a discharge nozzle 31, an arm 32, a rotary shaft 33, an actuator 34, an ozone water supply unit 301, an additive supply unit 302, an SC1 supply unit 303, and a deionized water supply unit 304. It has a valve 311 and a valve 312, a valve 313, a valve 314, a liquid pipe 320, and a heater 331.
  • the discharge nozzle 31 is connected to the liquid pipe 320, and discharges the liquid supplied from the liquid pipe 320 onto the wafer 901.
  • the arm 32 connects the discharge nozzle 31 and the rotating shaft 33.
  • the rotation angle of the rotation shaft 33 is adjusted by the actuator 34. With these configurations, the discharge nozzle 31 can perform a scanning operation (see FIG. 1) substantially along the radial direction of the wafer 901.
  • the ozone water supply unit 301 supplies ozone water to the liquid pipe 320 via the valve 311.
  • the additive supply unit 302 supplies the additive to the liquid pipe 320 via the valve 312.
  • the additive may be liquid.
  • the SC1 supply unit 303 supplies the SC1 (Standard Clean 1) cleaning liquid to the liquid pipe 320 via the valve 313.
  • the SC1 cleaning solution is a mixed solution of aqueous ammonia, hydrogen peroxide solution and water.
  • the deionized water supply unit 304 supplies the deionized water to the liquid pipe 320 via the valve 314.
  • the heater 331 is for heating the ozone water from the ozone water supply unit 301.
  • the heater 331 is preferably mounted between the valve 311 and the liquid tube 320.
  • the valve 311 may be the closest to the liquid pipe 320 among at least one valve attached between the ozone water supply unit 301 and the liquid pipe 320.
  • the heater 331 is located upstream of the pipes between the ozone water supply unit 301 and the liquid pipe 320 where the pipes from the additive supply unit 302, the SC1 supply unit 303, and the deionized water supply unit 304 meet. It may be arranged in, or it may be arranged in the downstream side. In the former case, only ozone water can be selectively heated, and in the latter case, the mixed solution can be heated.
  • the heater 331 is, for example, a lamp heater or an LED heater.
  • the spray unit 40 includes a spray nozzle 41, an arm 42, a rotary shaft 43, an actuator 44, an ammonia water supply unit 401, a hydrogen peroxide solution supply unit 402, an SC1 cleaning liquid supply unit 403, and a gas supply unit 409. , A valve 411, a valve 412, a valve 413, and a valve 419.
  • the spray nozzle 41 is a nozzle that ejects two fluids, that is, a liquid supplied from the liquid pipe 420 and a gas supplied from the gas pipe 429, that is, a two-fluid nozzle. It is preferred that the two fluids mix with each other to create a flow of gas and droplets dispersed therein.
  • the arm 42 connects the spray nozzle 41 and the rotating shaft 43.
  • the rotation angle of the rotation shaft 43 is adjusted by the actuator 44.
  • the spray nozzle 41 can perform a scanning operation (see FIG. 1) substantially along the radial direction of the wafer 901.
  • the ammonia water supply unit 401 supplies ammonia water to the liquid pipe 420 via the valve 411.
  • the temperature of the supplied ammonia water is preferably room temperature or higher and 40 ° C. or lower.
  • the hydrogen peroxide solution supply unit 402 supplies the hydrogen peroxide solution to the liquid tube 420 via the valve 412.
  • the temperature of the supplied hydrogen peroxide solution is preferably room temperature or higher and 80 ° C. or lower.
  • the SC1 cleaning liquid supply unit 403 supplies the SC1 cleaning liquid to the liquid pipe 420 via the valve 413.
  • the gas supply unit 409 supplies gas to the gas pipe 429 via the valve 419.
  • the gas supplied from the gas supply unit 409 may be an inert gas, for example, nitrogen (N 2 ) gas.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the spray nozzle 41 (FIG. 3).
  • the spray nozzle 41 has a liquid nozzle portion 41L, a gas nozzle portion 41G, and a gas introduction port 41i in order to perform spraying from the spray port OS.
  • the liquid nozzle portion 41L has a through hole HL.
  • One end of the through hole HL is connected to the liquid tube 20, and the other end of the through hole HL reaches the spray port OS.
  • the gas nozzle portion 41G has an annular hole HG that surrounds the liquid nozzle portion 41L.
  • the annular hole HG is connected to the gas inlet 41i. It has reached the spray port OS.
  • the extension direction of the outlet portion of the annular hole HG (see the broken line arrow in the figure) and the extension direction of the outlet portion of the through hole HL (see the solid line arrow in the figure) are arranged so as to intersect below the spray nozzle 41. ing.
  • the discharge nozzle 31 and the spray nozzle A common scanning mechanism may be provided for both scanning operations of 41.
  • the discharge nozzle 31 and the spray nozzle 41 may be attached to one common arm capable of scanning.
  • FIG. 5 is a flow chart schematically showing the substrate processing method in the first embodiment from the viewpoint of processing in the portion P1 (FIG. 6) of the resist film 902.
  • FIGS. 6 to 9 are partial cross-sectional view schematically showing the first to fourth steps of the substrate processing method according to the first embodiment.
  • a wafer 901 provided with a resist film 902 including a portion P1 is prepared.
  • the resist film 902 may have a pattern shape (not shown) on the wafer 901. Further, the resist film 902 may be deteriorated by being used as, for example, an etching mask or an injection mask. Usually, this alteration makes the removal of the resist film more difficult.
  • step T21 the ozone-containing aqueous solution 920 is brought into contact with at least a portion P1 of the resist film 902.
  • the ozone-containing aqueous solution 920 is discharged toward the wafer 901.
  • the portion P1 of the resist film 902 in contact with the ozone-containing aqueous solution 920 is decomposed by ozone.
  • ozone radicals cleave the C (carbon) -C bond in the resist film 902. It is preferable that cracks are formed in the resist film 902 by this decomposition action of the ozone-containing aqueous solution 920.
  • the ozone-containing aqueous solution 920 preferably does not substantially contain aqueous ammonia, and preferably does not substantially contain hydrogen peroxide.
  • ozone is dissolved in deionized water. It may be simple ozone water produced by this.
  • the ammonia-containing aqueous solution is then brought into contact with the portion P1 of the resist film 902 in step T31 (FIG. 5).
  • the ammonia-containing aqueous solution is discharged toward the wafer 901.
  • the droplet 930S of the ammonia-containing aqueous solution is brought into contact with the portion P1.
  • the ammonia-containing aqueous solution contains ammonia at a higher concentration than the ozone-containing aqueous solution 920.
  • the ozone-containing aqueous solution 920 does not have to contain ammonia.
  • the resist membrane 902 in contact with the ammonia-containing aqueous solution undergoes a swelling action by NH 4 OH in the ammonia-containing aqueous solution.
  • This swelling action is preferably accompanied by the invasion of the ammonia-containing aqueous solution into the cracks of the resist film 902 formed in step T21.
  • the ammonia-containing aqueous solution comes into contact with the ozone-containing aqueous solution 920 (FIG. 7) provided in step T21, so that the decomposition action of ozone in the ozone-containing aqueous solution 920 is temporary. May be activated.
  • the ammonia-containing aqueous solution may contain a hydrogen peroxide solution, whereby the swelling action is enhanced and the decomposition action is temporarily activated.
  • step T21 and step T31 are performed. After that, the pair of steps T21 and T31 may be repeated any number of times.
  • step T32 the portion P1 of the resist film 902 is separated (peeled) from the wafer 901 by physical cleaning.
  • physical cleaning is cleaning mainly based on mechanical action.
  • This physical cleaning step preferably includes a step of spraying gas onto the wafer 901, and more preferably a step of spraying droplets 930S of an aqueous ammonia-containing solution onto the wafer 901 with gas.
  • the gas is preferably an inert gas, for example N 2 gas.
  • step T21, step T31 and step T32 does not have to be carried out simultaneously in the entire resist film 902, and may be carried out in each part of the resist film 902 at an arbitrary timing. This will be described below by taking as an example the substrate processing using the substrate processing apparatus (FIGS. 1 to 3) described above.
  • FIG. 10 is a flow diagram schematically showing the substrate processing method according to the first embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3).
  • FIGS. 11 to 18 is a top view schematically showing the first to eighth operations of the substrate processing apparatus according to the first embodiment. Note that in FIGS. 11 to 18, only the positions of the discharge nozzle 31 and the spray nozzle 41 of the substrate processing apparatus (FIGS. 1 to 3) are indicated by dots, and the illustration of other configurations is omitted. ..
  • a wafer 901 (FIG. 6) provided with a resist film 902 having a portion P1 is attached to a substrate processing apparatus (FIGS. 1 to 3). Wafer 901 is rotated (see arrow SP in the figure). Along with this, the position of the portion P1 rotates around the center of the wafer 901.
  • the number of revolutions per minute is, for example, about 800 rpm.
  • ozone water as the ozone-containing aqueous solution 920 begins to be discharged from the discharge nozzle 31.
  • the discharge nozzle 31 is preferably arranged near the center of the wafer 901.
  • the ozone-containing aqueous solution 920 spreads outward on the wafer 901 by centrifugal force.
  • the ozone concentration of ozone water should be sufficiently high from the viewpoint of shortening the time required for peeling the resist film 902 and suppressing unnecessary etching of the wafer 901 as a base of the resist film 902. Is preferable, for example, about 100 ppm.
  • the amount of ozone water discharged is preferably 3 liters / minute or less.
  • the ozone water as the ozone-containing aqueous solution 920 may be heated by the heater 331 (FIG. 2) in the pipe between the ozone water supply unit 301 (FIG. 2) and the discharge nozzle 31 away from the wafer 901. This heating may be continued while the ozone-containing aqueous solution 920 is discharged.
  • the ozone-containing aqueous solution 920 may be heated on the wafer 901 instead of or in combination with the heating in the piping described above.
  • the substrate processing apparatus may be provided with a heater that dissipates heat toward the upper surface of the wafer 901. This heater may be away from the piping.
  • the wafer 901 may be heated by hot water (or other heated liquid) from the backside nozzle 11 (FIG. 3), as described below. Thereby, the liquid on the wafer 901 is also heated.
  • the wafer 901 contains ozone from the discharge nozzle 31 without supplying the ammonia-containing aqueous solution from the spray nozzle 41 to the wafer 901. This is done by supplying an aqueous solution 920.
  • the ozone-containing aqueous solution 920 is brought into contact with the partial P1 (FIG. 5: step T21). Further, the ozone-containing aqueous solution 920 preferably covers the entire upper surface of the wafer 901 as shown in the figure.
  • step S30 the ammonia superwater (mixture of ammonia water and hydrogen peroxide solution) as the ammonia-containing aqueous solution uses N 2 as a gas to spray nozzles. Sprayed from 41.
  • droplets of ammonia peroxide 930S (FIG. 8) are sprayed.
  • the ammonia-containing aqueous solution 930 is locally provided on the wafer 901 in the vicinity of the spray nozzle 41.
  • the ozone-containing aqueous solution 920 may be continuously discharged from the discharge nozzle 31.
  • the amount of spray is preferably 20 ml / min or more and 300 ml / min or less.
  • the number of revolutions per minute of the wafer 901 in step S30 may be lower than the number of revolutions per minute in step S20 described above, for example, about 500 rpm.
  • the ozone-containing aqueous solution 920 is substantially removed from the region near the spray nozzle 41 (the region that directly receives the spray) on the upper surface of the wafer 901. Further, the ammonia-containing aqueous solution 930 spreading to the outside of this vicinity region is mixed with the ozone-containing aqueous solution 920. At the time shown in FIG. 14, the partial P1 has not yet come into contact with the ammonia-containing aqueous solution 930.
  • ozone water from the discharge nozzle 31 and ammonia excess water (ammonia water and hydrogen peroxide solution) from the spray nozzle 41 are supplied onto the wafer 901.
  • the ratio (volume ratio) of the aqueous ammonia and the aqueous hydrogen peroxide may be about the same.
  • the ratio (volume ratio) of ozone water: ammonia water: hydrogen peroxide water is, for example, about 2000:10:10 in the case of a condition where the ozone water is relatively large, and the condition where the ozone water is relatively small. In the case of, it is about 500: 125: 125.
  • ammonia water referred to here has a concentration of, for example, about 28% by weight, and the hydrogen peroxide solution has a concentration of, for example, about 30% by weight.
  • an ammonia-containing aqueous solution containing no hydrogen peroxide solution may be used, and for example, ammonia water may be used.
  • the portion P1 contains ammonia.
  • the spray of the aqueous solution is no longer provided. Instead, another portion P2 is sprayed with an aqueous ammonia-containing solution. As a result, the same processing as that in the partial P1 is performed in the partial P2.
  • the portion P1 is again sprayed with the ammonia-containing aqueous solution from the spray nozzle 41.
  • This spray causes the droplet 930S (FIG. 9) to collide with the resist film 902.
  • this spray acts as a physical cleaning on the resist film 902.
  • the portion P1 is separated (peeled) from the wafer 901.
  • the partial P2 (FIG. 17) is also separated in the same manner.
  • This scanning operation is preferably performed so that the ammonia-containing aqueous solution 930 is discharged to the peripheral portion of the wafer 901 for a longer time than the central portion of the wafer 901.
  • the spray nozzle 41 for discharging the ammonia-containing aqueous solution 930 is preferably located above the peripheral edge of the wafer 901 for a longer period of time than above the central portion of the wafer 901.
  • the placement of the spray nozzles shown in FIG. 18 is maintained for a longer period of time compared to the placement of the spray nozzles 41 shown in FIG. In the latter case, the spray nozzle 41 is arranged closer to the peripheral side in the radial direction than in the former case.
  • the discharge nozzle 31 may also perform the scanning operation, for example, as shown by arrows SN (FIGS. 14 to 18).
  • the relative positions of the spray nozzle 41 and the discharge nozzle 31 may be constant or may vary. In the former case, a common mechanism for scanning operation can be used, and in the latter case, the degree of freedom for optimizing scanning operation is increased.
  • the discharge nozzle 31 is located closer to the center of the wafer 901 than the spray nozzle 41 during at least a part of the period in which the liquid is supplied from both the discharge nozzle 31 and the spray nozzle 41. More preferably, the discharge nozzle 31 is located closer to the center of the wafer 901 than the spray nozzle 41 for more than half of the above period. During the above period, the discharge nozzle 31 may be located closer to the center of the wafer 901 than the spray nozzle 41 at all times. As a result, the range in which the ozone-containing aqueous solution 920 from the discharge nozzle 31 expands due to the centrifugal force tends to include the position of the spray nozzle 41 in the radial direction. Therefore, the probability that the region in contact with the ozone-containing aqueous solution 920 is sprayed from the spray nozzle 41 is increased.
  • the period during which the liquid is supplied from both the discharge nozzle 31 and the spray nozzle 41 described above may be a period during which the liquid is simultaneously discharged from the discharge nozzle 31 and the spray nozzle 41, and instead of or together with it.
  • the liquid may be alternately supplied from the discharge nozzle 31 and the spray nozzle 41 at short intervals so that the liquids from both nozzles sufficiently coexist on the wafer 901.
  • hot water may be supplied from the back surface nozzle 11 (FIGS. 2 and 3) onto the back surface of the wafer 901.
  • the temperature of the wafer 901 being processed can be raised.
  • hot water at about 80 ° C. is discharged at about 2 liters / minute.
  • step S80 the discharge nozzle 31 discharges deionized water.
  • the wafer 901 is washed with water.
  • deionized water may be supplied from the back surface nozzles 11 (FIGS. 2 and 3) onto the back surface of the wafer 901. Further, during this process, spraying from the spray nozzle 41 may be stopped.
  • the number of revolutions per minute of the wafer 901 in step S80 may be higher than the number of revolutions per minute in step S30 described above, for example, about 800 rpm.
  • step S90 the discharge of deionized water from the discharge nozzle 31 and the back surface nozzle 11 is stopped, and the wafer 901 is rotated at a high speed, for example, about 2500 rpm. As a result, the liquid on the wafer 901 is removed by centrifugal force. That is, the wafer 901 is dried.
  • this drying step may include a step of discharging a volatile liquid such as isopropyl alcohol from the discharge nozzle 31, which can suppress the generation of watermarks.
  • the ammonia-containing aqueous solution 930 (FIG. 14) is brought into contact with the portion P1 (FIG. 13) of the resist membrane 902 (FIG. 6) that has already come into contact with the ozone-containing aqueous solution 920 (FIG. 7). Since the portion P1 is previously decomposed by ozone, it is susceptible to the swelling action by the ammonia-containing aqueous solution 930. As a result, the progress of swelling of the resist film 902 is promoted. Therefore, the resist film 902 can be removed in a short time in the subsequent steps.
  • the ozone-containing aqueous solution 920 and the ammonia-containing aqueous solution 930 have a smaller burden of waste liquid treatment than SPM. From the above, the resist film 902 can be removed from the wafer 901 in a short time while suppressing the burden of the waste liquid treatment.
  • the treatment time will be very long if the thickness of the resist film is large to some extent. This is a particular problem in single-wafer substrate processing.
  • the entire resist film is not decomposed, but the residual of the swollen resist film 902 is peeled off (see FIG. 9). As a result, it is not necessary to proceed with the decomposition of the resist film until the entire resist film disappears. Therefore, as described above, the processing can be performed in a short time.
  • the step of bringing the ozone-containing aqueous solution 920 into contact is performed by ejecting the ozone-containing aqueous solution 920 toward the wafer 901 from the ejection nozzles 31 (FIGS. 1 and 2).
  • the ozone-containing aqueous solution 920 can be handled by a method suitable for single-wafer substrate treatment.
  • the step of bringing the ammonia-containing aqueous solution 930 into contact is performed by ejecting the ammonia-containing aqueous solution 930 toward the wafer 901 from the spray nozzle 41 (FIGS. 1 and 3).
  • the ammonia-containing aqueous solution 930 can be handled by a method suitable for single-wafer substrate treatment.
  • the step of discharging the ammonia-containing aqueous solution 930 includes a step of moving the spray nozzle 41 for discharging the ammonia-containing aqueous solution 930, specifically, a step of operating the scanning operation.
  • the ammonia-containing aqueous solution 930 can be locally and intensively supplied onto the wafer 901 at each time point, while the ammonia-containing aqueous solution 930 can be supplied over a wide range on the wafer 901 by moving the spray nozzle 41. Therefore, the peeling treatment can be performed in a wide range on the wafer 901 while locally enhancing the peeling action.
  • the step of moving the spray nozzle 41 is preferably performed so that the ammonia-containing aqueous solution 930 is discharged to the peripheral portion of the wafer 901 for a longer time than the central portion of the wafer 901. Thereby, the non-uniformity of the supply amount of the ammonia-containing aqueous solution 930 (FIGS. 17 and 18) on the wafer 901 can be suppressed. Therefore, the processing can proceed more evenly on the wafer 901.
  • the portion P1 of the resist film 902 that has already come into contact with the ammonia-containing aqueous solution 930 by the step of contacting the ammonia-containing aqueous solution 930 (FIG. 13) is separated from the wafer 901 by physical cleaning (FIG. 9). Since the resist film 902 has already been sufficiently swollen by the swelling step (FIG. 8), it is easily peeled off by physical cleaning. Therefore, the resist film 902 can be peeled off in a shorter time.
  • Physical cleaning includes a step of spraying gas onto the wafer 901 from the spray nozzle 41 (FIGS. 1 and 3). As a result, damage to the wafer 901 can be suppressed while ensuring sufficient detergency as compared with the case where a fluid consisting only of a liquid or a fluid containing a solid is sprayed.
  • the step of spraying the gas onto the wafer 901 includes a step of spraying the droplets 930S (FIGS. 8 and 9) of the ammonia-containing aqueous solution onto the wafer 901 by the gas.
  • the liquid drops 930S dispersed in the gas collide with the wafer 901.
  • the gas pressure pushes the ammonia-containing aqueous solution deeper into the resist membrane 902. Therefore, swelling is likely to proceed even in the deep part of the resist film 902.
  • the ozone-containing aqueous solution 920 is removed from the upper surface of the wafer 901 where the gas flow directly hits due to the pressure of the gas.
  • the gas is preferably an inert gas. This makes it possible to avoid unnecessary chemical reactions between the gas and the wafer 901.
  • the step of contacting the ozone-containing aqueous solution 920 preferably includes a step of forming cracks in the resist film 902 by the ozone-containing aqueous solution 920.
  • the ammonia-containing aqueous solution 930 (FIG. 15) can permeate through the cracks. Therefore, the swelling of the resist film 902 (see FIG. 8) by the ammonia-containing aqueous solution 930 can be promoted.
  • the ammonia-containing aqueous solution 930 preferably contains hydrogen peroxide. Thereby, the swelling of the resist film 902 (see FIG. 8) by the ammonia-containing aqueous solution 930 can be promoted. Further, the ammonia-containing aqueous solution 930 (FIG. 15) sprayed from the spray nozzle 41 is mixed in the ozone-containing aqueous solution 920 by spreading on the wafer 901. Thereby, the decomposition action of the resist film 902 by the ozone-containing aqueous solution 920 can be activated.
  • the step of bringing the ozone-containing aqueous solution 920 into contact includes a step of supplying the ozone-containing aqueous solution 920 to the wafer 901 without supplying the ammonia-containing aqueous solution 930 (FIG. 14) to the wafer 901 (FIG. 10: step S20). ..
  • a large amount of the ozone-containing aqueous solution 920 can be supplied to the wafer 901 before being affected by the ammonia-containing aqueous solution 930. Therefore, before step S30 (FIG. 10), a decomposition action by ozone can be sufficiently added to the resist film 902 (FIG. 7) in advance.
  • the step of bringing the ozone-containing aqueous solution 920 into contact may include a step of heating the ozone-containing aqueous solution 920 in a pipe away from the wafer 901.
  • the decomposition action of the resist film 902 (FIG. 7) by the ozone-containing aqueous solution 920 can be strengthened.
  • the step of bringing the ozone-containing aqueous solution into contact may include a step of heating the ozone-containing aqueous solution 920 on the wafer 901.
  • the decomposition action of the resist film 902 (FIG. 7) by the ozone-containing aqueous solution 920 is strengthened by heating, and the ozone-containing aqueous solution 920 is heated before being applied onto the wafer 901 (for example, heater 331 (FIG. 2). ), It is possible to suppress the deactivation of ozone due to the passage of time after heating.
  • FIG. 19 is a flow chart schematically showing the substrate processing method according to the second embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). This flow corresponds to the flow in the first embodiment in which step S20 (FIG. 10) is omitted. Therefore, in the following, only the differences related to this omission will be described, and the description of the same features as in the first embodiment will be omitted.
  • FIGS. 20 to 22 are top views schematically showing the first to third operations of the substrate processing apparatus according to the second embodiment.
  • FIGS. 20 to 22 only the positions of the discharge nozzle 31 and the spray nozzle 41 of the substrate processing apparatus (FIGS. 1 to 3) are indicated by dots, and the illustration of other configurations is omitted. ..
  • a wafer 901 (FIG. 6) provided with a resist film 902 having a portion P1a and a portion P1b is attached to a substrate processing apparatus (FIGS. 1 to 3). Wafer 901 is rotated (see arrow SP in the figure). Along with this, the positions of the portions P1a and P1b rotate around the center of the wafer 901.
  • step S30 (FIG. 19)
  • ozone water as the ozone-containing aqueous solution 920 (FIG. 7) begins to be discharged from the discharge nozzle 31.
  • ammonia excess water (a mixed solution of ammonia water and hydrogen peroxide solution) as the ammonia-containing aqueous solution 930 starts to be sprayed from the spray nozzle 41 using N 2 as a gas.
  • the portion P1a first contacts the ozone-containing aqueous solution 920 instead of the ammonia-containing aqueous solution 930. This is the same as in the case of partial P1 (FIG. 13). Therefore, the process for the partial P1a is almost the same as the process for the partial P1 in the first embodiment.
  • the partial P1b first contacts the ammonia-containing aqueous solution 930 instead of the ozone-containing aqueous solution 920.
  • the portion P1b then comes into contact with the ozone-containing aqueous solution 920 for the first time.
  • step T21 (FIG. 5) for partial P1b is performed.
  • the subsequent processing on the portion P1b is almost the same as the processing on the portion P1. That is, except that the portion P1b is first contacted with the ammonia-containing aqueous solution 930 instead of the ozone-containing aqueous solution 920, the treatment for the portion P1b is substantially the same as the treatment for the portion P1.
  • the wafer 901 contains ozone while supplying the ammonia-containing aqueous solution 930 to the wafer 901. This is done by supplying an aqueous solution 920.
  • step S20 FIG. 10: Embodiment 1
  • the embodiment is carried out by sufficiently supplying the ozone-containing aqueous solution 920 thereafter. The same effect as in 1 can be obtained.
  • FIG. 23 is a flow chart schematically showing the substrate processing method according to the third embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3).
  • the resist film 902 (FIG. 6) is irradiated with ultraviolet rays (UV) prior to step S20 (FIG. 10: embodiment 1).
  • the wavelength of ultraviolet rays is preferably 190 nm or less, for example, 172 nm. Irradiation of ultraviolet rays may be carried out using a device different from the substrate processing device (FIGS. 1 to 3).
  • step S10 may be performed prior to step S30 (FIG. 19: Embodiment 2).
  • the decomposition of the resist film 902 (see FIG. 7) can be made more advanced at the time when the ammonia-containing aqueous solution 930 (FIG. 15) is supplied by irradiation with ultraviolet rays. Specifically, it is possible to more reliably establish a state in which cracks are formed in the resist film 902. Therefore, the swelling of the resist film (see FIG. 8) due to the ammonia-containing aqueous solution 930 can be promoted. Therefore, the resist film 902 can be removed in a shorter time.
  • FIG. 24 is a flow chart schematically showing the substrate processing method according to the fourth embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3).
  • step S50 is performed between step S30 and step S80.
  • the spray nozzle 41 sprays the SC1 cleaning liquid while the discharge nozzle 31 discharges the SC1 cleaning liquid or the deionized water.
  • the flow rate of the discharge nozzle 31 is, for example, about 500 ml / min
  • the flow rate of the spray nozzle 41 is, for example, about 100 ml / min.
  • the number of revolutions per minute of the wafer 901 in step S80 may be about the same as the number of revolutions per minute in step S30 described above, for example, about 500 rpm.
  • SC1 cleaning liquid or deionized water may be supplied from the back surface nozzles 11 (FIGS. 2 and 3) onto the back surface of the wafer 901. Since the other configurations are substantially the same as those of any of the above-described embodiments 1 to 3, the same or corresponding elements are designated by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 25 is a flow chart schematically showing the substrate processing method according to the fifth embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3).
  • steps S10 and S20 are performed in the same manner as in the third embodiment (FIG. 23).
  • FIG. 26 is a partial cross-sectional view schematically showing one step of the substrate processing method according to the fifth embodiment.
  • step S25 (FIG. 25)
  • 930 L of the mixed solution of ozone water and the additive is discharged from the discharge nozzle 31 (FIG. 2).
  • valve 311 and valve 312 (FIG. 2) are opened.
  • Additives include aqueous ammonia and aqueous hydrogen peroxide.
  • This mixed solution contains ammonia at a higher concentration than the ozone-containing aqueous solution 920 (FIG. 7). As described above, the ozone-containing aqueous solution 920 does not have to contain ammonia.
  • both a decomposition action and a swelling action on the resist film 902 occur.
  • the decomposition action of ozone in the ozone-containing aqueous solution is temporarily further activated by mixing the aqueous ammonia solution and the aqueous hydrogen peroxide solution.
  • the temporarily increased activity decreases with the passage of time, but the effect of the decrease in activity is suppressed by sufficiently supplying a new mixed solution from the discharge nozzle 31.
  • step S35 (FIG. 25) ammonia peroxide is sprayed from the spray nozzle 41 as in the case of step S30 (FIG. 10: Embodiment 1).
  • the resist film 902 is separated from the wafer 901 by physical cleaning by this spraying (FIG. 9).
  • this spraying the discharge of the mixed liquid from the discharge nozzle 31 is continued.
  • the mixed solution is substantially removed from the region near the spray nozzle 41 on the upper surface of the wafer 901.
  • the ammonia-containing aqueous solution 930 spreading to the outside of the vicinity region is mixed with the mixed solution, whereby ozone in the mixed solution 930L is further activated.
  • steps S25 and S35 are performed instead of step S30 (FIG. 23).
  • step substitution may be made not only for the third embodiment but also for the other embodiments described above.
  • step S25 the liquid discharged from the discharge nozzle 31 contains ozone water, ammonia water, and hydrogen peroxide water.
  • FIG. 27 is a flow chart schematically showing the substrate processing method according to the sixth embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3).
  • the physical cleaning step (FIG. 9) in step S35 (FIG. 25: embodiment 5) described above is omitted.
  • the contact with the mixed solution in step S25 (FIG. 26) is performed for a longer period of time. Since this mixed solution contains aqueous ammonia, it is a kind of aqueous solution containing ammonia.
  • FIG. 28 is a flow chart schematically showing the substrate processing method in the sixth embodiment from the viewpoint of processing in one part of the resist film.
  • FIG. 29 is a partial cross-sectional view schematically showing one step of the substrate processing method according to the sixth embodiment.
  • step U10 (FIG. 28) cracks are formed in the resist film 902 (FIGS. 6 and 7).
  • This step U10 (FIG. 28) can be performed by steps S10 and S20 (FIG. 27) as the operation of the substrate processing apparatus.
  • step U11 the mixed solution 930 L, particularly the ammonia water contained therein, is permeated into the interface between the wafer 901 and the resist film 902 through the crack.
  • the resist film 902 is peeled from the wafer 901.
  • step S25 although the time required for step S25 is slightly longer than that of the fifth embodiment, the resist film 902 can be peeled off from the wafer 901 without using physical cleaning (see FIG. 29). Therefore, it is preferable to use the sixth embodiment when the omission of physical cleaning is prioritized, and to use the fifth embodiment when the shortening of the processing time is prioritized. According to the experimental example by the present inventors, the time required for peeling the resist film was about 4 minutes in the case of the fifth embodiment and about 6 minutes in the case of the sixth embodiment. As a modification, step S50 (FIG. 24: Embodiment 4) may be performed between step S25 and step S80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

When it is intended to remove a resist film relying only on the decomposition activity of ozone, there is a problem that the time of period required for the treatment is prolonged or a problem that, although the detachment of the resist film is promoted by swelling the resist film, the degree of progression of the swelling still has much room for improvement. The purpose of the present invention is to solve these problems and provide a substrate treatment method whereby it becomes possible to remove a resist film from a substrate within a short time while reducing the burden of the treatment of liquid waste. The substrate treatment method comprises the steps of: bringing a resist film on a substrate (901) into contact with an ozone-containing aqueous solution (920); and bringing a part (P1) of the resist film which has been already in contact with the ozone-containing aqueous solution (920) into contact with an ammonia-containing aqueous solution (930) that contains ammonia at a higher concentration compared with the ozone-containing aqueous solution (920).

Description

基板処理方法Substrate processing method
 本発明は、基板処理方法に関し、特に、基板からレジスト膜を除去するための基板処理方法に関するものである。 The present invention relates to a substrate processing method, and more particularly to a substrate processing method for removing a resist film from a substrate.
 基板上でレジスト膜を用いた加工が行われた後、多くの場合、基板からレジスト膜が除去される。この処理を行う目的で、基板表面上へ洗浄液として、硫酸・過酸化水素水・混合液(sulfuric acid/hydrogen peroxide mixture:SPM)を供給する方法が、従来から広く用いられている。しかしながら、廃液処理の負担が大きいことなどから、近年、SPMを用いない基板処理方法が求められている。 In many cases, the resist film is removed from the substrate after processing using the resist film on the substrate. For the purpose of performing this treatment, a method of supplying sulfuric acid, hydrogen peroxide solution, and a mixed solution (sulfuric acid / hydrogen peroxide mixture: SPM) as a cleaning solution onto the surface of the substrate has been widely used conventionally. However, since the burden of waste liquid treatment is heavy, a substrate treatment method that does not use SPM has been required in recent years.
 特開2010-153442号公報(特許文献1)によれば、ウエハ上のレジスト膜を除去する基板処理方法が開示されている。一例として、アンモニア水とオゾン水との混合液をウエハに供給することによってレジスト膜を除去することが記載されている。この公報によれば、高い速度でレジストを除去することができると主張されている。 According to Japanese Patent Application Laid-Open No. 2010-153442 (Patent Document 1), a substrate processing method for removing a resist film on a wafer is disclosed. As an example, it is described that the resist film is removed by supplying a mixed solution of aqueous ammonia and ozone water to the wafer. According to this publication, it is claimed that the resist can be removed at a high speed.
 特開2001-144006号公報(特許文献2)によれば、半導体ウエハ上に形成されたレジスト膜上にオゾン溶解水およびオゾン分解触媒液を供給することにより、レジスト膜をエッチングすることが提案されている。好適な例として示された方法としては、まずウエハ上へ、オゾン分解触媒液としてのアンモニア水が吐出される。次にウエハ上へオゾン溶解水が吐出される。これにより、ウエハ表面全体をオゾン分解触媒液で覆った状態にて、オゾン溶解水がウエハ表面上に吐出される。この公報によれば、オゾンをウエハ表面上にて瞬時に分解させることができるため、エッチング時間を短縮することができると主張されている。 According to Japanese Patent Application Laid-Open No. 2001-144006 (Patent Document 2), it is proposed to etch a resist film by supplying ozone-dissolved water and an ozone decomposition catalyst solution onto a resist film formed on a semiconductor wafer. ing. As a method shown as a preferable example, first, ammonia water as an ozone decomposition catalyst solution is discharged onto the wafer. Next, ozone-dissolved water is discharged onto the wafer. As a result, ozone-dissolved water is discharged onto the wafer surface in a state where the entire wafer surface is covered with the ozone decomposition catalyst solution. According to this publication, it is claimed that ozone can be instantly decomposed on the surface of the wafer, so that the etching time can be shortened.
 特開2001-203182号公報(特許文献3)によれば、物品表面の清浄化方法が開示されている。具体的には、表面が付着物で汚染された物品の表面に塩基水溶液とオゾン水溶液とが同時に供給される。その際に前記表面が継続して新鮮な塩基水溶液とオゾン水溶液とに接触するようにされる。これによりオゾンが該表面で分解させられる。これにより、前記付着物が除去される。この公報によれば、物品の表面に対してダメージを与える恐れのある特別な物理的作用、例えば高圧ジェット噴射、を使用することなく、優れた洗浄効果が得られると主張されている。 According to Japanese Patent Application Laid-Open No. 2001-203182 (Patent Document 3), a method for cleaning the surface of an article is disclosed. Specifically, the base aqueous solution and the ozone aqueous solution are simultaneously supplied to the surface of the article whose surface is contaminated with deposits. At that time, the surface is continuously brought into contact with the fresh base aqueous solution and the ozone aqueous solution. This causes ozone to decompose on the surface. As a result, the deposits are removed. According to this publication, it is claimed that excellent cleaning effects can be obtained without the use of special physical actions that may damage the surface of the article, such as high pressure jet injection.
 特開平4-179225号公報(特許文献4)によれば、洗浄方法が開示されている。この公報には洗浄方法の一態様として、被洗浄物が、アンモニアまたはアミン類と、過酸化水素および/またはオゾンとを含む洗浄液中に浸漬され、紫外線が照射される旨が記載されている。この公報によれば、効果として、薬液の加熱設備が不要であることなどが主張されている。 According to Japanese Patent Application Laid-Open No. 4-179225 (Patent Document 4), a cleaning method is disclosed. This publication describes that, as one aspect of the cleaning method, the object to be cleaned is immersed in a cleaning liquid containing ammonia or amines and hydrogen peroxide and / or ozone, and is irradiated with ultraviolet rays. According to this publication, it is claimed that the effect is that a heating facility for a chemical solution is not required.
 特開2003-234323号公報(特許文献5)によれば、有機物を除去する基板処理方法が提案されている。なおこの有機物は、マスクとしてレジストを用いたドライエッチングにより基板の表面に形成された反応生成物である。この基板処理方法によれば、基板の表面に向けて除去液を供給することにより、有機物が膨潤させられる。次に、基板を回転させることによって、基板に付着した除去液が除去される。次に、前述のように膨潤している有機物の残渣が剥離される。この剥離は、基板の表面へ向けて洗浄媒体を供給することによって行われる。上記除去液としては、有機アルカリ液を含む液体などが例示されている。また上記洗浄媒体としては、温水などが例示されている。基板に付着した除去液を洗浄媒体の供給前に除去する理由として、両者の混合により強アルカリが生成される現象を避けることによって、この強アルカリを除去するための処理に要する時間を不要とすることなどが説明されている。 According to Japanese Patent Application Laid-Open No. 2003-234323 (Patent Document 5), a substrate processing method for removing organic substances has been proposed. This organic substance is a reaction product formed on the surface of the substrate by dry etching using a resist as a mask. According to this substrate processing method, the organic substance is swollen by supplying the removing liquid toward the surface of the substrate. Next, the removing liquid adhering to the substrate is removed by rotating the substrate. Next, the swelling organic residue is exfoliated as described above. This peeling is performed by supplying a cleaning medium toward the surface of the substrate. Examples of the removing liquid include a liquid containing an organic alkaline liquid and the like. Further, as the cleaning medium, hot water or the like is exemplified. The reason for removing the removal liquid adhering to the substrate before supplying the cleaning medium is to avoid the phenomenon that a strong alkali is generated by mixing the two, thereby eliminating the time required for the process for removing the strong alkali. Things are explained.
特開2010-153442号公報Japanese Unexamined Patent Publication No. 2010-153442 特開2001-144006号公報Japanese Unexamined Patent Publication No. 2001-144006 特開2001-203182号公報Japanese Unexamined Patent Publication No. 2001-203182 特開平4-179225号公報Japanese Unexamined Patent Publication No. 4-179225 特開2003-234323号公報Japanese Unexamined Patent Publication No. 2003-234323
 上記特許文献1~3の技術は、オゾンの作用を促進することによってレジスト膜の分解を速めることを意図している。本発明者らの検討によれば、主に分解作用にのみ頼ってレジスト膜を除去しようとすると、処理時間が長くなってしまう。 The techniques of Patent Documents 1 to 3 are intended to accelerate the decomposition of the resist film by promoting the action of ozone. According to the studies by the present inventors, if the resist film is removed mainly by relying only on the decomposition action, the processing time becomes long.
 上記特許文献4の技術は、いくつかの薬液の混合液中での紫外線照射によってレジスト等を除去することを意図している。各薬液の機能は混合後に失活していくので、この技術においては、各薬液の機能の十分な発現が妨げられやすい。よって、必要な処理時間が長くなりやすい。 The technique of Patent Document 4 is intended to remove a resist or the like by irradiation with ultraviolet rays in a mixed solution of several chemical solutions. Since the function of each drug solution is inactivated after mixing, the sufficient expression of the function of each drug solution is likely to be hindered in this technique. Therefore, the required processing time tends to be long.
 上記特許文献5の技術によれば、レジスト膜を膨潤させることによって、剥離が促進される。しかしながら本発明者らの検討によれば、膨潤の進行の程度に、まだ大きな改善の余地がある。よって、処理時間の低減に、まだ大きな改善の余地がある。 According to the technique of Patent Document 5, peeling is promoted by swelling the resist film. However, according to the studies by the present inventors, there is still room for great improvement in the degree of progress of swelling. Therefore, there is still a lot of room for improvement in reducing the processing time.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、廃液処理の負担を抑えつつ、基板からレジスト膜を短時間で除去することができる基板処理方法を提供することである。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a substrate treatment method capable of removing a resist film from a substrate in a short time while suppressing the burden of waste liquid treatment. That is.
 上記課題を解決するため、第1態様は、基板上のレジスト膜にオゾン含有水溶液を接触させる工程と、前記レジスト膜のうち、前記オゾン含有水溶液を接触させる工程によってオゾン含有水溶液に既に接触した部分に、前記オゾン含有水溶液に比して高濃度でアンモニアを含有するアンモニア含有水溶液を接触させる工程と、を備える基板処理方法である。 In order to solve the above problems, the first aspect is a portion of the resist film that has already come into contact with the ozone-containing aqueous solution by the step of bringing the ozone-containing aqueous solution into contact with the resist film on the substrate and the step of contacting the ozone-containing aqueous solution. This is a substrate treatment method comprising a step of bringing an aqueous ammonia-containing solution containing ammonia at a higher concentration than the ozone-containing aqueous solution into contact with the aqueous solution.
 第2態様は、第1態様の基板処理方法であって、前記オゾン含有水溶液を接触させる工程は、前記基板へ向かってオゾン含有水溶液を吐出することによって行われる。 The second aspect is the substrate processing method of the first aspect, and the step of bringing the ozone-containing aqueous solution into contact is performed by discharging the ozone-containing aqueous solution toward the substrate.
 第3態様は、第1または第2態様の基板処理方法であって、前記アンモニア含有水溶液を接触させる工程は、前記基板へ向かってアンモニア含有水溶液を吐出することによって行われる。 The third aspect is the substrate processing method of the first or second aspect, and the step of bringing the ammonia-containing aqueous solution into contact is performed by discharging the ammonia-containing aqueous solution toward the substrate.
 第4態様は、第3態様の基板処理方法であって、前記アンモニア含有水溶液を吐出する工程は、アンモニア含有水溶液を吐出するノズルを移動させる工程を含む。 The fourth aspect is the substrate processing method of the third aspect, and the step of discharging the ammonia-containing aqueous solution includes a step of moving a nozzle for discharging the ammonia-containing aqueous solution.
 第5態様は、第4態様の基板処理方法であって、前記ノズルを移動させる工程は、アンモニア含有水溶液が前記基板の中央部に比して前記基板の周縁部へ、より長い時間吐出されるように行われる。 The fifth aspect is the substrate processing method of the fourth aspect, and in the step of moving the nozzle, the ammonia-containing aqueous solution is discharged to the peripheral portion of the substrate for a longer time than the central portion of the substrate. It is done like this.
 第6態様は、第1から第5態様のいずれかの基板処理方法であって、前記レジスト膜のうち、前記アンモニア含有水溶液を接触させる工程によってアンモニア含有水溶液に既に接触した部分を、物理洗浄によって前記基板から分離する工程をさらに備える。 The sixth aspect is the substrate treatment method according to any one of the first to fifth aspects, wherein a portion of the resist film that has already come into contact with the ammonia-containing aqueous solution by the step of contacting the ammonia-containing aqueous solution is physically washed. A step of separating from the substrate is further provided.
 第7態様は、第6態様の基板処理方法であって、前記物理洗浄は、前記基板へガスを吹き付ける工程を含む。 The seventh aspect is the substrate processing method of the sixth aspect, and the physical cleaning includes a step of blowing gas onto the substrate.
 第8態様は、第7態様の基板処理方法であって、前記基板へガスを吹き付ける工程は、前記ガスによって前記基板へアンモニア含有水溶液を噴霧する工程を含む。 The eighth aspect is the substrate processing method of the seventh aspect, and the step of spraying the gas onto the substrate includes the step of spraying the ammonia-containing aqueous solution onto the substrate with the gas.
 第9態様は、第7または第8態様の基板処理方法であって、前記ガスは不活性ガスである。 The ninth aspect is the substrate processing method of the seventh or eighth aspect, and the gas is an inert gas.
 第10態様は、第1から第5のいずれかの態様の基板処理方法であって、前記オゾン含有水溶液を接触させる工程は、前記オゾン含有水溶液によって前記レジスト膜に亀裂を形成する工程を含む。 The tenth aspect is the substrate processing method of any one of the first to fifth aspects, and the step of contacting the ozone-containing aqueous solution includes a step of forming cracks in the resist film with the ozone-containing aqueous solution.
 第11態様は、第10態様の基板処理方法であって、前記アンモニア含有水溶液を接触させる工程は、前記レジスト膜に亀裂を形成する工程によって形成された亀裂を介して前記基板と前記レジスト膜との界面へアンモニア含有水溶液を浸透させることによって前記基板から前記レジスト膜を剥離する工程を含む。 The eleventh aspect is the substrate processing method of the tenth aspect, and the step of bringing the ammonia-containing aqueous solution into contact is that the substrate and the resist film are brought into contact with each other through the cracks formed by the step of forming cracks in the resist film. The step of peeling the resist film from the substrate by infiltrating an ammonia-containing aqueous solution into the interface of
 第12態様は、第1から第11態様のいずれかの態様の基板処理方法であって、前記アンモニア含有水溶液は過酸化水素を含有している。 The twelfth aspect is the substrate processing method according to any one of the first to eleventh aspects, and the ammonia-containing aqueous solution contains hydrogen peroxide.
 第13態様は、第1から第12態様のいずれかの基板処理方法であって、前記オゾン含有水溶液を接触させる工程の前に、前記レジスト膜へ紫外線を照射する工程をさらに備える。 The thirteenth aspect is the substrate processing method according to any one of the first to twelfth aspects, further comprising a step of irradiating the resist film with ultraviolet rays before the step of contacting the ozone-containing aqueous solution.
 第14態様は、第1から第13態様のいずれかの基板処理方法であって、前記オゾン含有水溶液を接触させる工程は、前記基板へアンモニア含有水溶液を供給することなく前記基板へオゾン含有水溶液を供給する工程を含む。 The fourteenth aspect is the substrate processing method according to any one of the first to thirteenth aspects, and in the step of contacting the ozone-containing aqueous solution, the ozone-containing aqueous solution is supplied to the substrate without supplying the ozone-containing aqueous solution to the substrate. Including the step of supplying.
 第15態様は、第1から第14態様のいずれかの基板処理方法であって、前記オゾン含有水溶液を接触させる工程は、前記基板から離れた配管中でオゾン含有水溶液を加熱する工程を含む。 The fifteenth aspect is the substrate processing method according to any one of the first to the fourteenth aspects, and the step of bringing the ozone-containing aqueous solution into contact includes a step of heating the ozone-containing aqueous solution in a pipe away from the substrate.
 第16態様は、第1から第15態様のいずれかの基板処理方法であって、前記オゾン含有水溶液を接触させる工程は、前記基板上でオゾン含有水溶液を加熱する工程を含む。 The 16th aspect is the substrate processing method according to any one of the 1st to 15th aspects, and the step of bringing the ozone-containing aqueous solution into contact includes a step of heating the ozone-containing aqueous solution on the substrate.
 上記第1態様によれば、レジスト膜のうちオゾン含有水溶液に既に接触した部分にアンモニア含有水溶液が接触させられる。オゾン含有水溶液に既に接触した部分は、オゾンによる分解作用を予め受けているために、アンモニア含有水溶液による膨潤作用を受けやすい。これにより、レジスト膜の膨潤の進行が促進される。よって、その後の工程においてレジスト膜を短時間で除去することができる。またオゾン含有水溶液およびアンモニア含有水溶液はSPMに比して廃液処理の負担が小さい。以上から、廃液処理の負担を抑えつつ、基板からレジスト膜を短時間で除去することができる。 According to the first aspect, the ammonia-containing aqueous solution is brought into contact with the portion of the resist membrane that has already come into contact with the ozone-containing aqueous solution. The portion that has already come into contact with the ozone-containing aqueous solution is susceptible to the swelling action of the ammonia-containing aqueous solution because it has been decomposed by ozone in advance. This promotes the progress of swelling of the resist film. Therefore, the resist film can be removed in a short time in the subsequent steps. Further, the ozone-containing aqueous solution and the ammonia-containing aqueous solution have a smaller burden of waste liquid treatment than SPM. From the above, the resist film can be removed from the substrate in a short time while suppressing the burden of waste liquid treatment.
基板処理装置の構成を概略的に示す上面図である。It is a top view which shows the structure of the substrate processing apparatus schematicly. 図1の線II-IIに沿う概略断面図である。It is a schematic cross-sectional view along the line II-II of FIG. 図1の線III-IIIに沿う概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 図3の噴霧ノズルの構成の例を示す断面図である。It is sectional drawing which shows the example of the structure of the spray nozzle of FIG. 本発明の実施の形態1における基板処理方法をレジスト膜の一の部分での処理の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to the first embodiment of the present invention from the viewpoint of processing in one part of a resist film. 本発明の実施の形態1における基板処理方法の第1工程を概略的に示す部分断面図である。FIG. 5 is a partial cross-sectional view schematically showing a first step of the substrate processing method according to the first embodiment of the present invention. 本発明の実施の形態1における基板処理方法の第2工程を概略的に示す部分断面図である。FIG. 5 is a partial cross-sectional view schematically showing a second step of the substrate processing method according to the first embodiment of the present invention. 本発明の実施の形態1における基板処理方法の第3工程を概略的に示す部分断面図である。FIG. 5 is a partial cross-sectional view schematically showing a third step of the substrate processing method according to the first embodiment of the present invention. 本発明の実施の形態1における基板処理方法の第4工程を概略的に示す部分断面図である。FIG. 5 is a partial cross-sectional view schematically showing a fourth step of the substrate processing method according to the first embodiment of the present invention. 本発明の実施の形態1における基板処理方法を基板処理装置の動作の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to the first embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. 本発明の実施の形態1における基板処理装置の第1動作を模式的に示す上面図である。It is a top view which shows typically the 1st operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第2動作を模式的に示す上面図である。It is a top view which shows typically the 2nd operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第3動作を模式的に示す上面図である。It is a top view which shows typically the 3rd operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第4動作を模式的に示す上面図である。It is a top view which shows typically the 4th operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第5動作を模式的に示す上面図である。It is a top view which shows typically the 5th operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第6動作を模式的に示す上面図である。It is a top view which shows typically the sixth operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第7動作を模式的に示す上面図である。It is a top view which shows typically the 7th operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における基板処理装置の第8動作を模式的に示す上面図である。It is a top view which shows typically the 8th operation of the substrate processing apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における基板処理方法を基板処理装置の動作の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to a second embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. 本発明の実施の形態2における基板処理装置の第1動作を模式的に示す上面図である。It is a top view which shows typically the 1st operation of the substrate processing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理装置の第2動作を模式的に示す上面図である。It is a top view which shows typically the 2nd operation of the substrate processing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における基板処理装置の第3動作を模式的に示す上面図である。It is a top view which shows typically the 3rd operation of the substrate processing apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における基板処理方法を基板処理装置の動作の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to the third embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. 本発明の実施の形態4における基板処理方法を基板処理装置の動作の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to a fourth embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. 本発明の実施の形態5における基板処理方法を基板処理装置の動作の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to a fifth embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. 本発明の実施の形態5における基板処理方法の一工程を概略的に示す部分断面図である。It is a partial cross-sectional view which shows roughly one step of the substrate processing method in Embodiment 5 of this invention. 本発明の実施の形態6における基板処理方法を基板処理装置の動作の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to a sixth embodiment of the present invention from the viewpoint of operation of the substrate processing apparatus. 本発明の実施の形態6における基板処理方法をレジスト膜の一の部分での処理の観点から概略的に示すフロー図である。FIG. 5 is a flow chart schematically showing a substrate processing method according to a sixth embodiment of the present invention from the viewpoint of processing in one part of a resist film. 本発明の実施の形態6における基板処理方法の一工程を概略的に示す部分断面図である。It is a partial cross-sectional view which shows roughly one step of the substrate processing method in Embodiment 6 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings below, the same or corresponding parts are given the same reference number and the explanation is not repeated.
 <基板処理装置>
 はじめに、後述する実施の形態1~6へ適用可能な基板処理装置の例について、以下に説明する。なお各実施の形態においては、以下に説明する基板処理装置が有する機能のすべてが用いられる必要はない。よって各実施の形態において、基板処理装置が有する機構のうち不必要なものは省略されてよい。
<Board processing equipment>
First, an example of the substrate processing apparatus applicable to the first to sixth embodiments described later will be described below. In each embodiment, it is not necessary to use all the functions of the substrate processing apparatus described below. Therefore, in each embodiment, unnecessary mechanisms of the substrate processing apparatus may be omitted.
 図1は、本発明の実施の形態1における基板処理装置の構成を概略的に示す上面図である。図2および図3のそれぞれは、図1の線II-IIおよび線III-IIIに沿う概略断面図である。図中、基板処理装置によって処理されるウエハ901(基板)も図示されている。処理前のウエハ901上にはレジスト膜(図1~図3において図示せず)が設けられている。このレジスト膜が基板処理装置による基板処理によって除去される。基板処理装置は、支持部10と、吐出部30と、噴霧部40とを有している。 FIG. 1 is a top view schematically showing the configuration of the substrate processing apparatus according to the first embodiment of the present invention. 2 and 3, respectively, are schematic cross-sectional views taken along line II-II and line III-III of FIG. In the figure, the wafer 901 (board) processed by the substrate processing apparatus is also shown. A resist film (not shown in FIGS. 1 to 3) is provided on the wafer 901 before processing. This resist film is removed by substrate processing by a substrate processing apparatus. The substrate processing apparatus includes a support portion 10, a discharge portion 30, and a spray portion 40.
 支持部10は、回転軸16と、スピンベース13と、チャック12と、裏面ノズル11と、温水供給源101と、脱イオン水供給源102と、バルブ111と、バルブ112とを有している。回転軸16は、モータ(図示せず)によって回転される。スピンベース13は回転軸16に取り付けられている。チャック12は、スピンベース13の外縁近傍に取り付けられており、ウエハ901を固定する。これらの構成により、ウエハ901は、支持部10に回転可能に(矢印SP参照)支持される。裏面ノズル11はウエハ901の裏面へと、流体、特に液体、を吐出する。この吐出を妨げないよう、スピンベース13には開口OPが設けられている。温水供給源101は、バルブ111を介して裏面ノズル11へと温水を供給する。脱イオン水供給源102は、バルブ112を介して裏面ノズル11へ脱イオン水を供給する。 The support portion 10 has a rotating shaft 16, a spin base 13, a chuck 12, a back surface nozzle 11, a hot water supply source 101, a deionized water supply source 102, a valve 111, and a valve 112. .. The rotating shaft 16 is rotated by a motor (not shown). The spin base 13 is attached to the rotating shaft 16. The chuck 12 is attached near the outer edge of the spin base 13 and fixes the wafer 901. With these configurations, the wafer 901 is rotatably supported by the support portion 10 (see arrow SP). The back surface nozzle 11 discharges a fluid, particularly a liquid, to the back surface of the wafer 901. The spin base 13 is provided with an opening OP so as not to interfere with this discharge. The hot water supply source 101 supplies hot water to the back surface nozzle 11 via the valve 111. The deionized water supply source 102 supplies the deionized water to the back surface nozzle 11 via the valve 112.
 吐出部30は、吐出ノズル31と、アーム32と、回転軸33と、アクチュエータ34と、オゾン水供給部301と、添加剤供給部302と、SC1供給部303と、脱イオン水供給部304と、バルブ311と、バルブ312と、バルブ313と、バルブ314と、液体管320と、ヒータ331とを有している。吐出ノズル31は、液体管320につながれており、液体管320から供された液をウエハ901上へ吐出する。アーム32は、吐出ノズル31と回転軸33との間をつないでいる。回転軸33の回転角度はアクチュエータ34によって調整される。これらの構成により、吐出ノズル31は、ウエハ901の径方向におおよそ沿ってのスキャン動作(図1参照)を行うことができる。 The discharge unit 30 includes a discharge nozzle 31, an arm 32, a rotary shaft 33, an actuator 34, an ozone water supply unit 301, an additive supply unit 302, an SC1 supply unit 303, and a deionized water supply unit 304. It has a valve 311 and a valve 312, a valve 313, a valve 314, a liquid pipe 320, and a heater 331. The discharge nozzle 31 is connected to the liquid pipe 320, and discharges the liquid supplied from the liquid pipe 320 onto the wafer 901. The arm 32 connects the discharge nozzle 31 and the rotating shaft 33. The rotation angle of the rotation shaft 33 is adjusted by the actuator 34. With these configurations, the discharge nozzle 31 can perform a scanning operation (see FIG. 1) substantially along the radial direction of the wafer 901.
 オゾン水供給部301は、バルブ311を介して液体管320へオゾン水を供給する。添加剤供給部302は、バルブ312を介して液体管320へ添加剤を供給する。添加剤は液体であってよい。SC1供給部303は、バルブ313を介して液体管320へSC1(Standard Clean 1)洗浄液を供給する。SC1洗浄液は、アンモニア水、過酸化水素水および水の混合液である。脱イオン水供給部304は、バルブ314を介して液体管320へ脱イオン水を供給する。 The ozone water supply unit 301 supplies ozone water to the liquid pipe 320 via the valve 311. The additive supply unit 302 supplies the additive to the liquid pipe 320 via the valve 312. The additive may be liquid. The SC1 supply unit 303 supplies the SC1 (Standard Clean 1) cleaning liquid to the liquid pipe 320 via the valve 313. The SC1 cleaning solution is a mixed solution of aqueous ammonia, hydrogen peroxide solution and water. The deionized water supply unit 304 supplies the deionized water to the liquid pipe 320 via the valve 314.
 ヒータ331は、オゾン水供給部301からのオゾン水を加熱するためのものである。ヒータ331は、バルブ311と液体管320との間に取り付けられていることが好ましい。ここで、バルブ311は、オゾン水供給部301と液体管320との間に取り付けられた少なくとも1つのバルブのうち液体管320に最も近いものであってよい。ヒータ331は、オゾン水供給部301と液体管320との間の配管のうち、添加剤供給部302、SC1供給部303、および脱イオン水供給部304からの配管が合流する箇所よりも上流側に配置されていてもよく、あるいは下流側に配置されていてもよい。前者の場合、オゾン水のみを選択的に加熱することができ、後者の場合、混合液を加熱することができる。ヒータ331は、例えば、ランプヒータまたはLEDヒータである。 The heater 331 is for heating the ozone water from the ozone water supply unit 301. The heater 331 is preferably mounted between the valve 311 and the liquid tube 320. Here, the valve 311 may be the closest to the liquid pipe 320 among at least one valve attached between the ozone water supply unit 301 and the liquid pipe 320. The heater 331 is located upstream of the pipes between the ozone water supply unit 301 and the liquid pipe 320 where the pipes from the additive supply unit 302, the SC1 supply unit 303, and the deionized water supply unit 304 meet. It may be arranged in, or it may be arranged in the downstream side. In the former case, only ozone water can be selectively heated, and in the latter case, the mixed solution can be heated. The heater 331 is, for example, a lamp heater or an LED heater.
 噴霧部40は、噴霧ノズル41と、アーム42と、回転軸43と、アクチュエータ44と、アンモニア水供給部401と、過酸化水素水供給部402と、SC1洗浄液供給部403と、ガス供給部409と、バルブ411と、バルブ412と、バルブ413と、バルブ419とを有している。噴霧ノズル41は、液体管420から供された液体と、ガス管429から供されたガスとの二流体を噴出するノズル、すなわち二流体ノズルである。二流体が互いに混合することによって、ガスとそれに分散された液滴との流れが生成されることが好ましい。 The spray unit 40 includes a spray nozzle 41, an arm 42, a rotary shaft 43, an actuator 44, an ammonia water supply unit 401, a hydrogen peroxide solution supply unit 402, an SC1 cleaning liquid supply unit 403, and a gas supply unit 409. , A valve 411, a valve 412, a valve 413, and a valve 419. The spray nozzle 41 is a nozzle that ejects two fluids, that is, a liquid supplied from the liquid pipe 420 and a gas supplied from the gas pipe 429, that is, a two-fluid nozzle. It is preferred that the two fluids mix with each other to create a flow of gas and droplets dispersed therein.
 アーム42は、噴霧ノズル41と回転軸43との間をつないでいる。回転軸43の回転角度はアクチュエータ44によって調整される。これらの構成により、噴霧ノズル41は、ウエハ901の径方向におおよそ沿ってのスキャン動作(図1参照)を行うことができる。 The arm 42 connects the spray nozzle 41 and the rotating shaft 43. The rotation angle of the rotation shaft 43 is adjusted by the actuator 44. With these configurations, the spray nozzle 41 can perform a scanning operation (see FIG. 1) substantially along the radial direction of the wafer 901.
 アンモニア水供給部401は、バルブ411を介して液体管420へアンモニア水を供給する。供給されるアンモニア水の温度は、室温以上、40℃以下が好ましい。過酸化水素水供給部402は、バルブ412を介して液体管420へ過酸化水素水を供給する。供給される過酸化水素水の温度は、室温以上、80℃以下が好ましい。SC1洗浄液供給部403は、バルブ413を介して液体管420へSC1洗浄液を供給する。ガス供給部409は、バルブ419を介してガス管429へガスを供給する。ガス供給部409から供給されるガスは、不活性ガスであってよく、例えば窒素(N)ガスである。 The ammonia water supply unit 401 supplies ammonia water to the liquid pipe 420 via the valve 411. The temperature of the supplied ammonia water is preferably room temperature or higher and 40 ° C. or lower. The hydrogen peroxide solution supply unit 402 supplies the hydrogen peroxide solution to the liquid tube 420 via the valve 412. The temperature of the supplied hydrogen peroxide solution is preferably room temperature or higher and 80 ° C. or lower. The SC1 cleaning liquid supply unit 403 supplies the SC1 cleaning liquid to the liquid pipe 420 via the valve 413. The gas supply unit 409 supplies gas to the gas pipe 429 via the valve 419. The gas supplied from the gas supply unit 409 may be an inert gas, for example, nitrogen (N 2 ) gas.
 図4は、噴霧ノズル41(図3)の構成の例を示す断面図である。噴霧ノズル41は、噴霧口OSからの噴霧を行うために、液体ノズル部41Lと、ガスノズル部41Gと、ガス導入口41iとを有している。 FIG. 4 is a cross-sectional view showing an example of the configuration of the spray nozzle 41 (FIG. 3). The spray nozzle 41 has a liquid nozzle portion 41L, a gas nozzle portion 41G, and a gas introduction port 41i in order to perform spraying from the spray port OS.
 液体ノズル部41Lは貫通孔HLを有している。貫通孔HLの一方端は液体管20に接続されており、貫通孔HLの他方端は噴霧口OSに達している。 The liquid nozzle portion 41L has a through hole HL. One end of the through hole HL is connected to the liquid tube 20, and the other end of the through hole HL reaches the spray port OS.
 ガスノズル部41Gは、液体ノズル部41Lを囲む環状孔HGを有している。環状孔HGは、ガス導入口41iに接続されており。噴霧口OSに達している。環状孔HGの出口部分の延長方向(図中、破線矢印参照)と、貫通孔HLの出口部分の延長方向(図中、実線矢印参照)とは、噴霧ノズル41の下方において交わるように配置されている。この構成により、液体ノズル部41Lから吐出された液体へ、ガスノズル部41Gから吐出されたガスが衝突する。これにより、ガスとそれに分散された液滴との流れASが生成される。 The gas nozzle portion 41G has an annular hole HG that surrounds the liquid nozzle portion 41L. The annular hole HG is connected to the gas inlet 41i. It has reached the spray port OS. The extension direction of the outlet portion of the annular hole HG (see the broken line arrow in the figure) and the extension direction of the outlet portion of the through hole HL (see the solid line arrow in the figure) are arranged so as to intersect below the spray nozzle 41. ing. With this configuration, the gas discharged from the gas nozzle portion 41G collides with the liquid discharged from the liquid nozzle portion 41L. As a result, a flow AS of the gas and the droplets dispersed therein is generated.
 なお、上記においては、吐出ノズル31のスキャン動作のための機構と、噴霧ノズル41のスキャン動作のための機構とが別個に設けられる場合について説明したが、変形例として、吐出ノズル31および噴霧ノズル41の両方のスキャン動作のために、共通のスキャン機構が設けられてもよい。言い換えれば、吐出ノズル31および噴霧ノズル41が、スキャン動作可能な一の共通アームに取り付けられてもよい。この場合、吐出ノズル31からの吐出を直接受ける領域と噴霧ノズル41からの噴霧を直接受ける領域とが互いに離されるように、吐出ノズル31および噴霧ノズル41が取り付けられることが好ましい。これにより、吐出ノズル31からウエハ901へと至る流体と、噴霧ノズル41からウエハ901へと至る流体とが、経路途中で互いに不必要に干渉することが防止される。なお、図1に示されているように吐出ノズル31および噴霧ノズル41が独立してスキャン動作可能な場合においても、上記理由により、吐出ノズル31からの吐出を直接受ける領域と、噴霧ノズル41からの噴霧を直接受ける領域とが互いに離された状態が維持されるように両スキャン動作が制御されることが好ましい。 In the above, the case where the mechanism for the scanning operation of the discharge nozzle 31 and the mechanism for the scanning operation of the spray nozzle 41 are separately provided has been described, but as a modification, the discharge nozzle 31 and the spray nozzle A common scanning mechanism may be provided for both scanning operations of 41. In other words, the discharge nozzle 31 and the spray nozzle 41 may be attached to one common arm capable of scanning. In this case, it is preferable that the discharge nozzle 31 and the spray nozzle 41 are attached so that the region directly receiving the discharge from the discharge nozzle 31 and the region directly receiving the spray from the spray nozzle 41 are separated from each other. This prevents the fluid from the discharge nozzle 31 to the wafer 901 and the fluid from the spray nozzle 41 to the wafer 901 from unnecessarily interfering with each other in the middle of the path. Even when the discharge nozzle 31 and the spray nozzle 41 can independently scan as shown in FIG. 1, for the above reason, the region directly receiving the discharge from the discharge nozzle 31 and the spray nozzle 41 It is preferred that both scan operations be controlled so that the area directly receiving the spray is maintained away from each other.
 <実施の形態1>
 図5は、本実施の形態1における基板処理方法をレジスト膜902の部分P1(図6)での処理の観点から概略的に示すフロー図である。図6~図9のそれぞれは、本実施の形態1における基板処理方法の第1~第4工程を概略的に示す部分断面図である。
<Embodiment 1>
FIG. 5 is a flow chart schematically showing the substrate processing method in the first embodiment from the viewpoint of processing in the portion P1 (FIG. 6) of the resist film 902. Each of FIGS. 6 to 9 is a partial cross-sectional view schematically showing the first to fourth steps of the substrate processing method according to the first embodiment.
 図6を参照して、まず、部分P1を含むレジスト膜902が設けられたウエハ901が準備される。なおレジスト膜902は、ウエハ901上においてパターン形状(図示せず)を有していてよい。またレジスト膜902は、例えばエッチングマスクまたは注入マスクとして用いられたことによって変質してしまったものであってよい。通常、この変質によってレジスト膜の除去は、より困難なものとなる。 With reference to FIG. 6, first, a wafer 901 provided with a resist film 902 including a portion P1 is prepared. The resist film 902 may have a pattern shape (not shown) on the wafer 901. Further, the resist film 902 may be deteriorated by being used as, for example, an etching mask or an injection mask. Usually, this alteration makes the removal of the resist film more difficult.
 図7を参照して、ステップT21(図5)にて、レジスト膜902の少なくとも部分P1にオゾン含有水溶液920が接触させられる。この目的で、オゾン含有水溶液920がウエハ901へ向かって吐出される。オゾン含有水溶液920に接触したレジスト膜902の部分P1は、オゾンによる分解作用を受ける。具体的には、オゾンラジカルによってレジスト膜902中のC(炭素)-C結合が切断される。オゾン含有水溶液920が有するこの分解作用によって、レジスト膜902に亀裂が形成されることが好ましい。言い換えれば、レジスト膜902に亀裂が生じるまで、オゾン含有水溶液920による分解作用をレジスト膜902へ加えることが好ましい。ここでオゾン含有水溶液920は、アンモニア水を実質的に含有していないことが好ましく、また過酸化水素水を実質的に含有していないことが好ましく、例えば、脱イオン水にオゾンが溶解されることによって生成された単純なオゾン水であってよい。 With reference to FIG. 7, in step T21 (FIG. 5), the ozone-containing aqueous solution 920 is brought into contact with at least a portion P1 of the resist film 902. For this purpose, the ozone-containing aqueous solution 920 is discharged toward the wafer 901. The portion P1 of the resist film 902 in contact with the ozone-containing aqueous solution 920 is decomposed by ozone. Specifically, ozone radicals cleave the C (carbon) -C bond in the resist film 902. It is preferable that cracks are formed in the resist film 902 by this decomposition action of the ozone-containing aqueous solution 920. In other words, it is preferable to apply the decomposition action of the ozone-containing aqueous solution 920 to the resist film 902 until the resist film 902 is cracked. Here, the ozone-containing aqueous solution 920 preferably does not substantially contain aqueous ammonia, and preferably does not substantially contain hydrogen peroxide. For example, ozone is dissolved in deionized water. It may be simple ozone water produced by this.
 図8を参照して、次にステップT31(図5)にて、レジスト膜902の部分P1にアンモニア含有水溶液が接触させられる。この目的で、アンモニア含有水溶液がウエハ901へ向かって吐出される。具体的には、アンモニア含有水溶液の液滴930Sが部分P1に接触させられる。アンモニア含有水溶液はオゾン含有水溶液920に比して高濃度でアンモニアを含有している。なお、前述したように、オゾン含有水溶液920はアンモニアを含有していなくてよい。アンモニア含有水溶液に接触したレジスト膜902は、アンモニア含有水溶液中のNHOHによる膨潤作用を受ける。この膨潤作用は、上記ステップT21において形成されていた、レジスト膜902の亀裂への、アンモニア含有水溶液の侵入をともなうことが好ましい。 With reference to FIG. 8, the ammonia-containing aqueous solution is then brought into contact with the portion P1 of the resist film 902 in step T31 (FIG. 5). For this purpose, the ammonia-containing aqueous solution is discharged toward the wafer 901. Specifically, the droplet 930S of the ammonia-containing aqueous solution is brought into contact with the portion P1. The ammonia-containing aqueous solution contains ammonia at a higher concentration than the ozone-containing aqueous solution 920. As described above, the ozone-containing aqueous solution 920 does not have to contain ammonia. The resist membrane 902 in contact with the ammonia-containing aqueous solution undergoes a swelling action by NH 4 OH in the ammonia-containing aqueous solution. This swelling action is preferably accompanied by the invasion of the ammonia-containing aqueous solution into the cracks of the resist film 902 formed in step T21.
 なお、ウエハ901上の他の部分において、アンモニア含有水溶液が、ステップT21において供されていたオゾン含有水溶液920(図7)と接触することによって、オゾン含有水溶液920中のオゾンによる分解作用が一時的に活性化されてよい。また、アンモニア含有水溶液は過酸化水素水を含有していてもよく、これにより、上記膨潤作用が高められ、また上記分解作用が一時的により活性化される。 In the other portion on the wafer 901, the ammonia-containing aqueous solution comes into contact with the ozone-containing aqueous solution 920 (FIG. 7) provided in step T21, so that the decomposition action of ozone in the ozone-containing aqueous solution 920 is temporary. May be activated. Further, the ammonia-containing aqueous solution may contain a hydrogen peroxide solution, whereby the swelling action is enhanced and the decomposition action is temporarily activated.
 上記のように、ステップT21およびステップT31が行われる。その後、任意の回数、ステップT21およびステップT31の組が繰り返されてもよい。 As described above, step T21 and step T31 are performed. After that, the pair of steps T21 and T31 may be repeated any number of times.
 図9を参照して、次に、ステップT32(図5)にて、レジスト膜902の部分P1が、物理洗浄によってウエハ901から分離(剥離)される。ここで物理洗浄とは、主に機械的作用に基づく洗浄のことである。この物理洗浄の工程は、ウエハ901へガスを吹き付ける工程を含むことが好ましく、ガスによってウエハ901へアンモニア含有水溶液の液滴930Sを噴霧する工程であることがより好ましい。ガスは、不活性ガスであることが好ましく、例えばNガスである。 With reference to FIG. 9, next, in step T32 (FIG. 5), the portion P1 of the resist film 902 is separated (peeled) from the wafer 901 by physical cleaning. Here, physical cleaning is cleaning mainly based on mechanical action. This physical cleaning step preferably includes a step of spraying gas onto the wafer 901, and more preferably a step of spraying droplets 930S of an aqueous ammonia-containing solution onto the wafer 901 with gas. The gas is preferably an inert gas, for example N 2 gas.
 上記のステップT21、ステップT31およびステップT32(図5)が、レジスト膜902のうち剥離されるべき部分に施されることによって、レジスト膜902の所望の部分(典型的には全部)が剥離される。これによりレジスト膜902の剥離処理が完了する。 By applying the steps T21, T31 and T32 (FIG. 5) to the portion of the resist film 902 to be peeled off, the desired portion (typically all) of the resist film 902 is peeled off. To. This completes the peeling process of the resist film 902.
 ステップT21、ステップT31およびステップT32(図5)の各々は、レジスト膜902の全体において同時に実施される必要はなく、レジスト膜902の各部において任意のタイミングで実施されてよい。このことについて、前述した基板処理装置(図1~図3)を用いての基板処理を例に、以下に説明する。 Each of step T21, step T31 and step T32 (FIG. 5) does not have to be carried out simultaneously in the entire resist film 902, and may be carried out in each part of the resist film 902 at an arbitrary timing. This will be described below by taking as an example the substrate processing using the substrate processing apparatus (FIGS. 1 to 3) described above.
 図10は、本実施の形態1における基板処理方法を、基板処理装置(図1~図3)の動作の観点から概略的に示すフロー図である。図11~図18のそれぞれは、本実施の形態1における基板処理装置の第1~第8動作を模式的に示す上面図である。なお図11~図18においては、基板処理装置(図1~図3)について、その吐出ノズル31および噴霧ノズル41の位置のみが点で示されており、他の構成の図示は省略されている。 FIG. 10 is a flow diagram schematically showing the substrate processing method according to the first embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). Each of FIGS. 11 to 18 is a top view schematically showing the first to eighth operations of the substrate processing apparatus according to the first embodiment. Note that in FIGS. 11 to 18, only the positions of the discharge nozzle 31 and the spray nozzle 41 of the substrate processing apparatus (FIGS. 1 to 3) are indicated by dots, and the illustration of other configurations is omitted. ..
 図11を参照して、部分P1を有するレジスト膜902が設けられたウエハ901(図6)が基板処理装置(図1~図3)に取り付けられる。ウエハ901が回転される(図中、矢印SP参照)。これにともなって部分P1の位置はウエハ901の中心周りに回転する。毎分回転数は、例えば800rpm程度である。 With reference to FIG. 11, a wafer 901 (FIG. 6) provided with a resist film 902 having a portion P1 is attached to a substrate processing apparatus (FIGS. 1 to 3). Wafer 901 is rotated (see arrow SP in the figure). Along with this, the position of the portion P1 rotates around the center of the wafer 901. The number of revolutions per minute is, for example, about 800 rpm.
 図12を参照して、ステップS20(図10)にて、オゾン含有水溶液920(図7)としてのオゾン水が吐出ノズル31から吐出され始める。このとき吐出ノズル31は、ウエハ901の中心近傍に配置されていることが好ましい。オゾン含有水溶液920は遠心力によってウエハ901上において外側へ向かって広がっていく。オゾン水のオゾン濃度は、レジスト膜902の剥離に必要な時間の短縮と、レジスト膜902の下地としてのウエハ901への不必要なエッチングの抑制との観点から、十分に高濃度とされることが好ましく、例えば約100ppmである。オゾン水の吐出量は3リットル/分以下が好ましい。オゾン含有水溶液920としてのオゾン水は、オゾン水供給部301(図2)と吐出ノズル31との間の、ウエハ901から離れた配管中で、ヒータ331(図2)によって加熱されてよい。この加熱は、オゾン含有水溶液920が吐出される間、継続されてよい。なお、オゾン含有水溶液920は、上述した配管中での加熱に代わって、またはそれとともに、ウエハ901上で加熱されてもよい。この目的で、ウエハ901の上面に向かって放熱するヒータが基板処理装置に設けられてよい。このヒータは配管から離れていてよい。それに代わって、またはそれとともに、後述するように、裏面ノズル11(図3)からの温水(または、他の熱せられた液体)によってウエハ901が加熱されてもよい。それにより、ウエハ901上の液体も加熱される。このステップS20によってオゾン含有水溶液920を部分P1に接触させる工程は、本実施の形態1においては、ウエハ901へ噴霧ノズル41からアンモニア含有水溶液を供給することなく、ウエハ901へ吐出ノズル31からオゾン含有水溶液920を供給することによって行われる。 With reference to FIG. 12, in step S20 (FIG. 10), ozone water as the ozone-containing aqueous solution 920 (FIG. 7) begins to be discharged from the discharge nozzle 31. At this time, the discharge nozzle 31 is preferably arranged near the center of the wafer 901. The ozone-containing aqueous solution 920 spreads outward on the wafer 901 by centrifugal force. The ozone concentration of ozone water should be sufficiently high from the viewpoint of shortening the time required for peeling the resist film 902 and suppressing unnecessary etching of the wafer 901 as a base of the resist film 902. Is preferable, for example, about 100 ppm. The amount of ozone water discharged is preferably 3 liters / minute or less. The ozone water as the ozone-containing aqueous solution 920 may be heated by the heater 331 (FIG. 2) in the pipe between the ozone water supply unit 301 (FIG. 2) and the discharge nozzle 31 away from the wafer 901. This heating may be continued while the ozone-containing aqueous solution 920 is discharged. The ozone-containing aqueous solution 920 may be heated on the wafer 901 instead of or in combination with the heating in the piping described above. For this purpose, the substrate processing apparatus may be provided with a heater that dissipates heat toward the upper surface of the wafer 901. This heater may be away from the piping. Alternatively, or in conjunction with it, the wafer 901 may be heated by hot water (or other heated liquid) from the backside nozzle 11 (FIG. 3), as described below. Thereby, the liquid on the wafer 901 is also heated. In the step of bringing the ozone-containing aqueous solution 920 into contact with the partial P1 in step S20, in the first embodiment, the wafer 901 contains ozone from the discharge nozzle 31 without supplying the ammonia-containing aqueous solution from the spray nozzle 41 to the wafer 901. This is done by supplying an aqueous solution 920.
 図13を参照して、上記のようにオゾン含有水溶液920が広がった結果、部分P1にオゾン含有水溶液920が接触させられる(図5:ステップT21)。さらにオゾン含有水溶液920は、図示されているように、ウエハ901の上面全体を覆うことが好ましい。 With reference to FIG. 13, as a result of the ozone-containing aqueous solution 920 spreading as described above, the ozone-containing aqueous solution 920 is brought into contact with the partial P1 (FIG. 5: step T21). Further, the ozone-containing aqueous solution 920 preferably covers the entire upper surface of the wafer 901 as shown in the figure.
 図14を参照して、ステップS30(図10)にて、アンモニア含有水溶液としてのアンモニア過水(アンモニア水と過酸化水素水との混合液)が、ガスとしてのNを用いて、噴霧ノズル41から噴霧される。言い換えれば、アンモニア過水の液滴930S(図8)が噴霧される。これにより、噴霧ノズル41の近傍においてウエハ901上に局所的にアンモニア含有水溶液930が供される。この噴霧中、吐出ノズル31からのオゾン含有水溶液920の吐出が継続されていてよい。噴霧量は、20ミリリットル/分以上、300ミリリットル/分以下が好ましい。ステップS30におけるウエハ901の毎分回転数は、前述したステップS20における毎分回転数より低くてよく、例えば500rpm程度である。 With reference to FIG. 14, in step S30 (FIG. 10), the ammonia superwater (mixture of ammonia water and hydrogen peroxide solution) as the ammonia-containing aqueous solution uses N 2 as a gas to spray nozzles. Sprayed from 41. In other words, droplets of ammonia peroxide 930S (FIG. 8) are sprayed. As a result, the ammonia-containing aqueous solution 930 is locally provided on the wafer 901 in the vicinity of the spray nozzle 41. During this spraying, the ozone-containing aqueous solution 920 may be continuously discharged from the discharge nozzle 31. The amount of spray is preferably 20 ml / min or more and 300 ml / min or less. The number of revolutions per minute of the wafer 901 in step S30 may be lower than the number of revolutions per minute in step S20 described above, for example, about 500 rpm.
 噴霧を受けることによって、ウエハ901の上面上における噴霧ノズル41の近傍領域(噴霧を直接受ける領域)から、オゾン含有水溶液920が実質的に排除される。またこの近傍領域の外側へと広がったアンモニア含有水溶液930は、オゾン含有水溶液920に混ざり合う。なお、図14に示されている時点では、部分P1はアンモニア含有水溶液930に未だ接触していない。 By receiving the spray, the ozone-containing aqueous solution 920 is substantially removed from the region near the spray nozzle 41 (the region that directly receives the spray) on the upper surface of the wafer 901. Further, the ammonia-containing aqueous solution 930 spreading to the outside of this vicinity region is mixed with the ozone-containing aqueous solution 920. At the time shown in FIG. 14, the partial P1 has not yet come into contact with the ammonia-containing aqueous solution 930.
 上記工程においては、ウエハ901上に、吐出ノズル31からのオゾン水と、噴霧ノズル41からのアンモニア過水(アンモニア水および過酸化水素水)が供給される。アンモニア水と過酸化水素水との比率(体積比)は同程度であってよい。その場合において、オゾン水:アンモニア水:過酸化水素水の比率(体積比)は、例えば、オゾン水が比較的多い条件の場合は2000:10:10程度であり、オゾン水が比較的少ない条件の場合は500:125:125程度である。ここでいうアンモニア水は、例えば28重量%程度の濃度を有するものであり、過酸化水素水は、例えば30重量%程度の濃度を有するものである。なお、アンモニア過水に代わって、過酸化水素水を含有しないアンモニア含有水溶液が用いられてもよく、例えばアンモニア水が用いられてよい。 In the above step, ozone water from the discharge nozzle 31 and ammonia excess water (ammonia water and hydrogen peroxide solution) from the spray nozzle 41 are supplied onto the wafer 901. The ratio (volume ratio) of the aqueous ammonia and the aqueous hydrogen peroxide may be about the same. In that case, the ratio (volume ratio) of ozone water: ammonia water: hydrogen peroxide water is, for example, about 2000:10:10 in the case of a condition where the ozone water is relatively large, and the condition where the ozone water is relatively small. In the case of, it is about 500: 125: 125. The ammonia water referred to here has a concentration of, for example, about 28% by weight, and the hydrogen peroxide solution has a concentration of, for example, about 30% by weight. In addition, instead of the ammonia superwater, an ammonia-containing aqueous solution containing no hydrogen peroxide solution may be used, and for example, ammonia water may be used.
 図15を参照して、ウエハ901の回転に伴って、平面視(図15の視野)における部分P1の位置が、噴霧ノズル41の位置に十分に接近すると、部分P1がアンモニア含有水溶液930に接触する(図5:ステップT31)。 With reference to FIG. 15, when the position of the portion P1 in the plan view (field of view of FIG. 15) is sufficiently close to the position of the spray nozzle 41 as the wafer 901 rotates, the portion P1 comes into contact with the ammonia-containing aqueous solution 930. (Fig. 5: Step T31).
 図16を参照して、ウエハ901の回転に伴って、平面視(図16の視野)における部分P1の位置が、噴霧ノズル41の位置から十分に離れると、部分P1がオゾン含有水溶液920に再び接触する(図5:ステップT21)。この動作が繰り返されることによって、ステップT21およびステップT31(図5)に対応する図15および図16の工程が複数回繰り返されてよい。 With reference to FIG. 16, when the position of the portion P1 in the plan view (field of view of FIG. 16) is sufficiently separated from the position of the spray nozzle 41 with the rotation of the wafer 901, the portion P1 becomes the ozone-containing aqueous solution 920 again. Contact (Fig. 5: Step T21). By repeating this operation, the steps of FIGS. 15 and 16 corresponding to steps T21 and T31 (FIG. 5) may be repeated a plurality of times.
 図17を参照して、アンモニア含有水溶液を吐出する噴霧ノズル41の移動、すなわちスキャン動作、にともなって径方向において噴霧ノズル41の位置が部分P1の位置からある程度ずれると、部分P1にはアンモニア含有水溶液の噴霧が供されなくなる。代わって、別の部分P2へアンモニア含有水溶液の噴霧が供される。これにより、部分P1における処理と同様の処理が部分P2においても行われる。 With reference to FIG. 17, when the position of the spray nozzle 41 deviates to some extent in the radial direction due to the movement of the spray nozzle 41 for discharging the ammonia-containing aqueous solution, that is, the scanning operation, the portion P1 contains ammonia. The spray of the aqueous solution is no longer provided. Instead, another portion P2 is sprayed with an aqueous ammonia-containing solution. As a result, the same processing as that in the partial P1 is performed in the partial P2.
 図18を参照して、噴霧ノズル41の再度のスキャン動作にともなって、部分P1に噴霧ノズル41からのアンモニア含有水溶液の噴霧が再び供される。この噴霧は、レジスト膜902への液滴930S(図9)の衝突を発生させる。言い換えれば、レジスト膜902への液滴930Sのエアロゾル流の衝突を発生させる。よってこの噴霧は、レジスト膜902に対して物理洗浄として作用する。この物理洗浄によって、部分P1がウエハ901から分離(剥離)される。 With reference to FIG. 18, with the rescanning operation of the spray nozzle 41, the portion P1 is again sprayed with the ammonia-containing aqueous solution from the spray nozzle 41. This spray causes the droplet 930S (FIG. 9) to collide with the resist film 902. In other words, it causes the aerosol flow of the droplet 930S to collide with the resist film 902. Therefore, this spray acts as a physical cleaning on the resist film 902. By this physical cleaning, the portion P1 is separated (peeled) from the wafer 901.
 噴霧ノズル41のスキャン動作にともなって、部分P2(図17)も同様に分離される。このスキャン動作は、アンモニア含有水溶液930がウエハ901の中央部に比してウエハ901の周縁部へ、より長い時間吐出されるように行われることが好ましい。言い換えれば、アンモニア含有水溶液930を吐出する噴霧ノズル41は、ウエハ901の中央部の上方に比して、ウエハ901の周縁部の上方において、より長い時間位置することが好ましい。例えば、図17に示された噴霧ノズル41の配置に比して、図18に示された噴霧ノズルの配置が、より長い時間維持される。後者においては前者に比して、噴霧ノズル41が径方向において、より周縁側に配置されている。 Along with the scanning operation of the spray nozzle 41, the partial P2 (FIG. 17) is also separated in the same manner. This scanning operation is preferably performed so that the ammonia-containing aqueous solution 930 is discharged to the peripheral portion of the wafer 901 for a longer time than the central portion of the wafer 901. In other words, the spray nozzle 41 for discharging the ammonia-containing aqueous solution 930 is preferably located above the peripheral edge of the wafer 901 for a longer period of time than above the central portion of the wafer 901. For example, the placement of the spray nozzles shown in FIG. 18 is maintained for a longer period of time compared to the placement of the spray nozzles 41 shown in FIG. In the latter case, the spray nozzle 41 is arranged closer to the peripheral side in the radial direction than in the former case.
 以上により、レジスト膜902(図6)の全体を剥離する処理が完了する。 With the above, the process of peeling off the entire resist film 902 (FIG. 6) is completed.
 なお、上記説明においては噴霧ノズル41のスキャン動作について説明したが、例えば矢印SN(図14~図18)に示されているように、吐出ノズル31もスキャン動作を行ってよい。噴霧ノズル41および吐出ノズル31の両方がスキャン動作を行う場合、噴霧ノズル41および吐出ノズル31の相対位置は、一定であってもよく、変動してもよい。前者の場合、スキャン動作のための共通の機構を用いることができ、後者の場合、スキャン動作の最適化のための自由度が高められる。 Although the scanning operation of the spray nozzle 41 has been described in the above description, the discharge nozzle 31 may also perform the scanning operation, for example, as shown by arrows SN (FIGS. 14 to 18). When both the spray nozzle 41 and the discharge nozzle 31 perform the scanning operation, the relative positions of the spray nozzle 41 and the discharge nozzle 31 may be constant or may vary. In the former case, a common mechanism for scanning operation can be used, and in the latter case, the degree of freedom for optimizing scanning operation is increased.
 ここで、吐出ノズル31および噴霧ノズル41の両方から液体が供給されている期間の少なくとも一部において、噴霧ノズル41に比して吐出ノズル31がウエハ901の中央近くに位置することが好ましい。より好ましくは、上記期間の半分以上において、噴霧ノズル41に比して吐出ノズル31がウエハ901の中央近くに位置する。上記期間において常時、噴霧ノズル41に比して吐出ノズル31がウエハ901の中央近くに位置してもよい。これにより、吐出ノズル31からのオゾン含有水溶液920が遠心力によって広がる範囲は、径方向における噴霧ノズル41の位置を含みやすくなる。よって、オゾン含有水溶液920に接触した領域が噴霧ノズル41から噴霧を受ける確率が高められる。 Here, it is preferable that the discharge nozzle 31 is located closer to the center of the wafer 901 than the spray nozzle 41 during at least a part of the period in which the liquid is supplied from both the discharge nozzle 31 and the spray nozzle 41. More preferably, the discharge nozzle 31 is located closer to the center of the wafer 901 than the spray nozzle 41 for more than half of the above period. During the above period, the discharge nozzle 31 may be located closer to the center of the wafer 901 than the spray nozzle 41 at all times. As a result, the range in which the ozone-containing aqueous solution 920 from the discharge nozzle 31 expands due to the centrifugal force tends to include the position of the spray nozzle 41 in the radial direction. Therefore, the probability that the region in contact with the ozone-containing aqueous solution 920 is sprayed from the spray nozzle 41 is increased.
 上述した、吐出ノズル31および噴霧ノズル41の両方から液体が供給されている期間は、吐出ノズル31および噴霧ノズル41から液体が同時に吐出されている期間であってよく、それに代わってまたはそれとともに、ウエハ901上に両ノズルからの液体が十分に共存するように吐出ノズル31および噴霧ノズル41から液体が短い間隔で交互に供給される期間であってもよい。 The period during which the liquid is supplied from both the discharge nozzle 31 and the spray nozzle 41 described above may be a period during which the liquid is simultaneously discharged from the discharge nozzle 31 and the spray nozzle 41, and instead of or together with it. The liquid may be alternately supplied from the discharge nozzle 31 and the spray nozzle 41 at short intervals so that the liquids from both nozzles sufficiently coexist on the wafer 901.
 また、上記の処理の間、裏面ノズル11(図2および図3)からウエハ901の裏面上へ温水が供されていてよい。これにより、処理中のウエハ901の温度を上げることができる。例えば、約80℃の温水が約2リットル/分で吐出される。 Further, during the above processing, hot water may be supplied from the back surface nozzle 11 (FIGS. 2 and 3) onto the back surface of the wafer 901. As a result, the temperature of the wafer 901 being processed can be raised. For example, hot water at about 80 ° C. is discharged at about 2 liters / minute.
 次に、ステップS80にて、吐出ノズル31が脱イオン水を吐出する。これにより、ウエハ901の水洗が実施される。この処理の間、裏面ノズル11(図2および図3)からウエハ901の裏面上へ脱イオン水が供されてよい。またこの処理の間、噴霧ノズル41からの噴霧は停止されていてよい。ステップS80におけるウエハ901の毎分回転数は、前述したステップS30における毎分回転数より高くてよく、例えば800rpm程度である。 Next, in step S80, the discharge nozzle 31 discharges deionized water. As a result, the wafer 901 is washed with water. During this process, deionized water may be supplied from the back surface nozzles 11 (FIGS. 2 and 3) onto the back surface of the wafer 901. Further, during this process, spraying from the spray nozzle 41 may be stopped. The number of revolutions per minute of the wafer 901 in step S80 may be higher than the number of revolutions per minute in step S30 described above, for example, about 800 rpm.
 次に、ステップS90にて、吐出ノズル31および裏面ノズル11からの脱イオン水の吐出が停止され、ウエハ901が高速で、例えば2500rpm程度で、回転される。これによりウエハ901上の液体が遠心力によって除去される。すなわちウエハ901が乾燥される。なおこの乾燥工程は、吐出ノズル31からイソプロピルアルコールなどの揮発性液体を吐出する工程を含んでもよく、これによりウォーターマークの発生を抑制することができる。 Next, in step S90, the discharge of deionized water from the discharge nozzle 31 and the back surface nozzle 11 is stopped, and the wafer 901 is rotated at a high speed, for example, about 2500 rpm. As a result, the liquid on the wafer 901 is removed by centrifugal force. That is, the wafer 901 is dried. Note that this drying step may include a step of discharging a volatile liquid such as isopropyl alcohol from the discharge nozzle 31, which can suppress the generation of watermarks.
 以上により、基板処理装置(図1~図3)の動作(図10)が完了する。 With the above, the operation (FIG. 10) of the substrate processing apparatus (FIGS. 1 to 3) is completed.
 本実施の形態によれば、レジスト膜902(図6)のうちオゾン含有水溶液920(図7)に既に接触した部分P1(図13)にアンモニア含有水溶液930(図14)が接触させられる。部分P1は、オゾンによる分解作用を予め受けているために、アンモニア含有水溶液930による膨潤作用を受けやすい。これにより、レジスト膜902の膨潤の進行が促進される。よって、その後の工程においてレジスト膜902を短時間で除去することができる。またオゾン含有水溶液920およびアンモニア含有水溶液930は、SPMに比して廃液処理の負担が小さい。以上から、廃液処理の負担を抑えつつ、ウエハ901からレジスト膜902を短時間で除去することができる。 According to the present embodiment, the ammonia-containing aqueous solution 930 (FIG. 14) is brought into contact with the portion P1 (FIG. 13) of the resist membrane 902 (FIG. 6) that has already come into contact with the ozone-containing aqueous solution 920 (FIG. 7). Since the portion P1 is previously decomposed by ozone, it is susceptible to the swelling action by the ammonia-containing aqueous solution 930. As a result, the progress of swelling of the resist film 902 is promoted. Therefore, the resist film 902 can be removed in a short time in the subsequent steps. Further, the ozone-containing aqueous solution 920 and the ammonia-containing aqueous solution 930 have a smaller burden of waste liquid treatment than SPM. From the above, the resist film 902 can be removed from the wafer 901 in a short time while suppressing the burden of the waste liquid treatment.
 なお、オゾンの分解作用に頼ってレジスト膜全体を分解させようとすると、レジスト膜の厚みがある程度大きければ、処理時間が非常に長くなってしまう。このことは枚葉式の基板処理において特に問題となる。本実施の形態においては、レジスト膜全体が分解されるのではなく、膨潤したレジスト膜902の残差が剥離される(図9参照)。これにより、レジスト膜全体が消失するまでレジスト膜の分解を進行させる必要がない。よって、上述したように短時間での処理が可能となる。 If the entire resist film is to be decomposed by relying on the decomposition action of ozone, the treatment time will be very long if the thickness of the resist film is large to some extent. This is a particular problem in single-wafer substrate processing. In the present embodiment, the entire resist film is not decomposed, but the residual of the swollen resist film 902 is peeled off (see FIG. 9). As a result, it is not necessary to proceed with the decomposition of the resist film until the entire resist film disappears. Therefore, as described above, the processing can be performed in a short time.
 オゾン含有水溶液920を接触させる工程(図13)は、ウエハ901へ向かってオゾン含有水溶液920を吐出ノズル31(図1および図2)から吐出することによって行われる。これにより、オゾン含有水溶液920を、枚葉式の基板処理に適した方法で扱うことができる。 The step of bringing the ozone-containing aqueous solution 920 into contact (FIG. 13) is performed by ejecting the ozone-containing aqueous solution 920 toward the wafer 901 from the ejection nozzles 31 (FIGS. 1 and 2). As a result, the ozone-containing aqueous solution 920 can be handled by a method suitable for single-wafer substrate treatment.
 アンモニア含有水溶液930を接触させる工程(図15)は、ウエハ901へ向かってアンモニア含有水溶液930を噴霧ノズル41(図1および図3)から吐出することによって行われる。これにより、アンモニア含有水溶液930を、枚葉式の基板処理に適した方法で扱うことができる。 The step of bringing the ammonia-containing aqueous solution 930 into contact (FIG. 15) is performed by ejecting the ammonia-containing aqueous solution 930 toward the wafer 901 from the spray nozzle 41 (FIGS. 1 and 3). As a result, the ammonia-containing aqueous solution 930 can be handled by a method suitable for single-wafer substrate treatment.
 アンモニア含有水溶液930を吐出する工程(図17および図18)は、アンモニア含有水溶液930を吐出する噴霧ノズル41を移動させる工程、具体的にはスキャン動作させる工程、を含む。これにより、各時点ではウエハ901上へアンモニア含有水溶液930を局所的かつ集中的に供給しつつも、噴霧ノズル41の移動によってアンモニア含有水溶液930をウエハ901上の広範囲に供給することができる。よって、剥離作用を局所的に高めつつ、ウエハ901上の広い範囲で剥離処理を行うことができる。 The step of discharging the ammonia-containing aqueous solution 930 (FIGS. 17 and 18) includes a step of moving the spray nozzle 41 for discharging the ammonia-containing aqueous solution 930, specifically, a step of operating the scanning operation. As a result, the ammonia-containing aqueous solution 930 can be locally and intensively supplied onto the wafer 901 at each time point, while the ammonia-containing aqueous solution 930 can be supplied over a wide range on the wafer 901 by moving the spray nozzle 41. Therefore, the peeling treatment can be performed in a wide range on the wafer 901 while locally enhancing the peeling action.
 噴霧ノズル41を移動させる工程は、アンモニア含有水溶液930がウエハ901の中央部に比してウエハ901の周縁部へ、より長い時間吐出されるように行われることが好ましい。これにより、アンモニア含有水溶液930(図17および図18)の供給量の、ウエハ901上での不均一性を、抑制することができる。よって、ウエハ901上において、処理をより均等に進行させることができる。 The step of moving the spray nozzle 41 is preferably performed so that the ammonia-containing aqueous solution 930 is discharged to the peripheral portion of the wafer 901 for a longer time than the central portion of the wafer 901. Thereby, the non-uniformity of the supply amount of the ammonia-containing aqueous solution 930 (FIGS. 17 and 18) on the wafer 901 can be suppressed. Therefore, the processing can proceed more evenly on the wafer 901.
 レジスト膜902のうち、アンモニア含有水溶液930を接触させる工程(図13)によってアンモニア含有水溶液930に既に接触した部分P1が、物理洗浄(図9)によってウエハ901から分離される。レジスト膜902は膨潤工程(図8)によって既に十分に膨潤されているので、物理洗浄によって容易に剥離される。よって、レジスト膜902をより短時間で剥離することができる。 The portion P1 of the resist film 902 that has already come into contact with the ammonia-containing aqueous solution 930 by the step of contacting the ammonia-containing aqueous solution 930 (FIG. 13) is separated from the wafer 901 by physical cleaning (FIG. 9). Since the resist film 902 has already been sufficiently swollen by the swelling step (FIG. 8), it is easily peeled off by physical cleaning. Therefore, the resist film 902 can be peeled off in a shorter time.
 物理洗浄(図9)は、ウエハ901へ噴霧ノズル41(図1および図3)からガスを吹き付ける工程を含む。これにより、液体のみからなる流体、または、固体を含む流体が吹き付けられる場合に比して、十分な洗浄力を確保しつつウエハ901へのダメージを抑制することができる。 Physical cleaning (FIG. 9) includes a step of spraying gas onto the wafer 901 from the spray nozzle 41 (FIGS. 1 and 3). As a result, damage to the wafer 901 can be suppressed while ensuring sufficient detergency as compared with the case where a fluid consisting only of a liquid or a fluid containing a solid is sprayed.
 ウエハ901へガスを吹き付ける工程は、ガスによってウエハ901へアンモニア含有水溶液の液滴930S(図8および図9)を噴霧する工程を含む。これにより、ガス中に分散された液滴930Sがウエハ901へ衝突する。図8の工程においては、ガス圧によって、アンモニア含有水溶液がレジスト膜902へ、より深く押し込まれる。よって、レジスト膜902の深部においても膨潤を進行させやすい。さらに、ウエハ901の上面のうち、ガス流が直接当たる部分からは、ガスの圧力によってオゾン含有水溶液920が排除される。これにより、この部分においてアンモニア含有水溶液930の膨潤作用がオゾンの作用によって阻害されることが防止される。よって膨潤の進行を促進することができる。また図9の工程においては、ガス流に液滴930Sが含まれることによって、物理洗浄の効果を高めることができる。 The step of spraying the gas onto the wafer 901 includes a step of spraying the droplets 930S (FIGS. 8 and 9) of the ammonia-containing aqueous solution onto the wafer 901 by the gas. As a result, the liquid drops 930S dispersed in the gas collide with the wafer 901. In the step of FIG. 8, the gas pressure pushes the ammonia-containing aqueous solution deeper into the resist membrane 902. Therefore, swelling is likely to proceed even in the deep part of the resist film 902. Further, the ozone-containing aqueous solution 920 is removed from the upper surface of the wafer 901 where the gas flow directly hits due to the pressure of the gas. This prevents the swelling action of the ammonia-containing aqueous solution 930 from being inhibited by the action of ozone in this portion. Therefore, the progress of swelling can be promoted. Further, in the step of FIG. 9, the effect of physical cleaning can be enhanced by including the droplet 930S in the gas flow.
 ガスは不活性ガスであることが好ましい。これにより、ガスとウエハ901との間での不必要な化学反応を避けることができる。 The gas is preferably an inert gas. This makes it possible to avoid unnecessary chemical reactions between the gas and the wafer 901.
 オゾン含有水溶液920を接触させる工程(図7)は、オゾン含有水溶液920によってレジスト膜902に亀裂を形成する工程を含むことが好ましい。これにより、亀裂からアンモニア含有水溶液930(図15)を浸透させることができる。よって、アンモニア含有水溶液930によるレジスト膜902の膨潤(図8参照)を促進することができる。 The step of contacting the ozone-containing aqueous solution 920 (FIG. 7) preferably includes a step of forming cracks in the resist film 902 by the ozone-containing aqueous solution 920. As a result, the ammonia-containing aqueous solution 930 (FIG. 15) can permeate through the cracks. Therefore, the swelling of the resist film 902 (see FIG. 8) by the ammonia-containing aqueous solution 930 can be promoted.
 アンモニア含有水溶液930は過酸化水素を含有していることが好ましい。これにより、アンモニア含有水溶液930によるレジスト膜902の膨潤(図8参照)を促進することができる。また、噴霧ノズル41から噴霧されたアンモニア含有水溶液930(図15)は、ウエハ901上において広がることによって、オゾン含有水溶液920中に混合される。これにより、オゾン含有水溶液920によるレジスト膜902の分解作用を活性化することができる。 The ammonia-containing aqueous solution 930 preferably contains hydrogen peroxide. Thereby, the swelling of the resist film 902 (see FIG. 8) by the ammonia-containing aqueous solution 930 can be promoted. Further, the ammonia-containing aqueous solution 930 (FIG. 15) sprayed from the spray nozzle 41 is mixed in the ozone-containing aqueous solution 920 by spreading on the wafer 901. Thereby, the decomposition action of the resist film 902 by the ozone-containing aqueous solution 920 can be activated.
 オゾン含有水溶液920を接触させる工程(図12)は、ウエハ901へアンモニア含有水溶液930(図14)を供給することなくウエハ901へオゾン含有水溶液920を供給する工程を含む(図10:ステップS20)。これにより、アンモニア含有水溶液930の作用を受ける前に、ウエハ901へオゾン含有水溶液920を多量に供給することができる。よって、ステップS30(図10)の前に、レジスト膜902(図7)へオゾンによる分解作用を予め十分に加えることができる。 The step of bringing the ozone-containing aqueous solution 920 into contact (FIG. 12) includes a step of supplying the ozone-containing aqueous solution 920 to the wafer 901 without supplying the ammonia-containing aqueous solution 930 (FIG. 14) to the wafer 901 (FIG. 10: step S20). .. As a result, a large amount of the ozone-containing aqueous solution 920 can be supplied to the wafer 901 before being affected by the ammonia-containing aqueous solution 930. Therefore, before step S30 (FIG. 10), a decomposition action by ozone can be sufficiently added to the resist film 902 (FIG. 7) in advance.
 オゾン含有水溶液920を接触させる工程(図12~図18)は、ウエハ901から離れた配管中でオゾン含有水溶液920を加熱する工程を含んでよい。これにより、オゾン含有水溶液920によるレジスト膜902(図7)の分解作用を強めることができる。 The step of bringing the ozone-containing aqueous solution 920 into contact (FIGS. 12 to 18) may include a step of heating the ozone-containing aqueous solution 920 in a pipe away from the wafer 901. As a result, the decomposition action of the resist film 902 (FIG. 7) by the ozone-containing aqueous solution 920 can be strengthened.
 オゾン含有水溶液を接触させる工程(図12~図18)は、ウエハ901上でオゾン含有水溶液920を加熱する工程を含んでよい。これにより、オゾン含有水溶液920によるレジスト膜902(図7)の分解作用を加熱によって強めつつ、オゾン含有水溶液920がウエハ901上に供される前に加熱される場合(例えば、ヒータ331(図2)によって加熱される場合)に比して、加熱後の時間経過に起因してのオゾンの失活を抑えることができる。 The step of bringing the ozone-containing aqueous solution into contact (FIGS. 12 to 18) may include a step of heating the ozone-containing aqueous solution 920 on the wafer 901. As a result, the decomposition action of the resist film 902 (FIG. 7) by the ozone-containing aqueous solution 920 is strengthened by heating, and the ozone-containing aqueous solution 920 is heated before being applied onto the wafer 901 (for example, heater 331 (FIG. 2). ), It is possible to suppress the deactivation of ozone due to the passage of time after heating.
 <実施の形態2>
 図19は、本実施の形態2における基板処理方法を、基板処理装置(図1~図3)の動作の観点から概略的に示すフロー図である。このフローは、実施の形態1におけるフローからステップS20(図10)が省略されたものに対応している。よって以下においては、この省略に関連した相違点についてのみ説明し、実施の形態1と同様の特徴についてはその説明を省略する。
<Embodiment 2>
FIG. 19 is a flow chart schematically showing the substrate processing method according to the second embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). This flow corresponds to the flow in the first embodiment in which step S20 (FIG. 10) is omitted. Therefore, in the following, only the differences related to this omission will be described, and the description of the same features as in the first embodiment will be omitted.
 図20~図22のそれぞれは、本実施の形態2における基板処理装置の第1~第3動作を模式的に示す上面図である。なお図20~図22においては、基板処理装置(図1~図3)について、その吐出ノズル31および噴霧ノズル41の位置のみが点で示されており、他の構成の図示は省略されている。 20 to 22 are top views schematically showing the first to third operations of the substrate processing apparatus according to the second embodiment. In FIGS. 20 to 22, only the positions of the discharge nozzle 31 and the spray nozzle 41 of the substrate processing apparatus (FIGS. 1 to 3) are indicated by dots, and the illustration of other configurations is omitted. ..
 図20を参照して、まず、部分P1aおよび部分P1bを有するレジスト膜902が設けられたウエハ901(図6)が基板処理装置(図1~図3)に取り付けられる。ウエハ901が回転される(図中、矢印SP参照)。これにともなって部分P1aおよび部分P1bの位置はウエハ901の中心周りに回転する。ステップS30(図19)にて、オゾン含有水溶液920(図7)としてのオゾン水が吐出ノズル31から吐出され始める。ほぼ同時に、アンモニア含有水溶液930としてのアンモニア過水(アンモニア水と過酸化水素水との混合液)が、ガスとしてのNを用いて、噴霧ノズル41から噴霧され始める。 With reference to FIG. 20, first, a wafer 901 (FIG. 6) provided with a resist film 902 having a portion P1a and a portion P1b is attached to a substrate processing apparatus (FIGS. 1 to 3). Wafer 901 is rotated (see arrow SP in the figure). Along with this, the positions of the portions P1a and P1b rotate around the center of the wafer 901. In step S30 (FIG. 19), ozone water as the ozone-containing aqueous solution 920 (FIG. 7) begins to be discharged from the discharge nozzle 31. Almost at the same time, ammonia excess water (a mixed solution of ammonia water and hydrogen peroxide solution) as the ammonia-containing aqueous solution 930 starts to be sprayed from the spray nozzle 41 using N 2 as a gas.
 図21を参照して、部分P1aは最初に、アンモニア含有水溶液930ではなくオゾン含有水溶液920に接触する。このことは、部分P1の場合(図13)と同様である。よって、部分P1aへの処理は、実施の形態1における部分P1への処理とほぼ同様である。一方、部分P1bは最初に、オゾン含有水溶液920ではなくアンモニア含有水溶液930に接触する。 With reference to FIG. 21, the portion P1a first contacts the ozone-containing aqueous solution 920 instead of the ammonia-containing aqueous solution 930. This is the same as in the case of partial P1 (FIG. 13). Therefore, the process for the partial P1a is almost the same as the process for the partial P1 in the first embodiment. On the other hand, the partial P1b first contacts the ammonia-containing aqueous solution 930 instead of the ozone-containing aqueous solution 920.
 図22を参照して、次に、部分P1bが初めてオゾン含有水溶液920に接触する。言い換えれば、部分P1bにとってのステップT21(図5)が行われる。この後の部分P1bへの処理は、部分P1への処理とほぼ同様である。すなわち、最初にオゾン含有水溶液920ではなくアンモニア含有水溶液930に接触すること以外、部分P1bへも、部分P1への処理とほぼ同様の処理が行われる。 With reference to FIG. 22, the portion P1b then comes into contact with the ozone-containing aqueous solution 920 for the first time. In other words, step T21 (FIG. 5) for partial P1b is performed. The subsequent processing on the portion P1b is almost the same as the processing on the portion P1. That is, except that the portion P1b is first contacted with the ammonia-containing aqueous solution 930 instead of the ozone-containing aqueous solution 920, the treatment for the portion P1b is substantially the same as the treatment for the portion P1.
 本実施の形態によれば、実施の形態1の場合(図12)と異なり、オゾン含有水溶液を接触させる工程(図20)は、ウエハ901へアンモニア含有水溶液930を供給しながらウエハ901へオゾン含有水溶液920を供給することによって行われる。これにより、ステップS20(図10:実施の形態1)を省略することができる。本実施の形態においては、アンモニア含有水溶液930の作用を受ける前にウエハ901へオゾン含有水溶液920を多量には供給しにくいものの、その後にオゾン含有水溶液920を十分に供給することによって、実施の形態1とほぼ同様の効果が得られる。 According to the present embodiment, unlike the case of the first embodiment (FIG. 12), in the step of bringing the ozone-containing aqueous solution into contact (FIG. 20), the wafer 901 contains ozone while supplying the ammonia-containing aqueous solution 930 to the wafer 901. This is done by supplying an aqueous solution 920. As a result, step S20 (FIG. 10: Embodiment 1) can be omitted. In the present embodiment, although it is difficult to supply a large amount of the ozone-containing aqueous solution 920 to the wafer 901 before being affected by the ammonia-containing aqueous solution 930, the embodiment is carried out by sufficiently supplying the ozone-containing aqueous solution 920 thereafter. The same effect as in 1 can be obtained.
 <実施の形態3>
 図23は、本実施の形態3における基板処理方法を、基板処理装置(図1~図3)の動作の観点から概略的に示すフロー図である。本実施の形態においては、ステップS20(図10:実施の形態1)に先立って、レジスト膜902(図6)へ紫外線(UV)が照射される。紫外線の波長は、190nm以下が好ましく、例えば172nmである。紫外線の照射は、基板処理装置(図1~図3)とは異なる装置を用いて実施されてよい。なお、これ以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。変形例として、ステップS10(図23)は、ステップS30(図19:実施の形態2)に先立って行われてもよい。
<Embodiment 3>
FIG. 23 is a flow chart schematically showing the substrate processing method according to the third embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). In the present embodiment, the resist film 902 (FIG. 6) is irradiated with ultraviolet rays (UV) prior to step S20 (FIG. 10: embodiment 1). The wavelength of ultraviolet rays is preferably 190 nm or less, for example, 172 nm. Irradiation of ultraviolet rays may be carried out using a device different from the substrate processing device (FIGS. 1 to 3). Since the other configurations are almost the same as the configurations of the first embodiment described above, the same or corresponding elements are designated by the same reference numerals, and the description thereof will not be repeated. As a modification, step S10 (FIG. 23) may be performed prior to step S30 (FIG. 19: Embodiment 2).
 本実施の形態によれば、紫外線の照射によって、アンモニア含有水溶液930(図15)が供給される時点で、レジスト膜902の分解(図7参照)を、より進んだ状態とすることができ、具体的には、より確実にレジスト膜902に亀裂が形成された状態とすることができる。よって、アンモニア含有水溶液930によるレジスト膜の膨潤(図8参照)を促進することができる。よってレジスト膜902を、より短時間で除去することができる。 According to the present embodiment, the decomposition of the resist film 902 (see FIG. 7) can be made more advanced at the time when the ammonia-containing aqueous solution 930 (FIG. 15) is supplied by irradiation with ultraviolet rays. Specifically, it is possible to more reliably establish a state in which cracks are formed in the resist film 902. Therefore, the swelling of the resist film (see FIG. 8) due to the ammonia-containing aqueous solution 930 can be promoted. Therefore, the resist film 902 can be removed in a shorter time.
 <実施の形態4>
 図24は、本実施の形態4における基板処理方法を、基板処理装置(図1~図3)の動作の観点から概略的に示すフロー図である。本実施の形態においては、ステップS30とステップS80との間にステップS50が行われる。ステップS50においては、吐出ノズル31がSC1洗浄液または脱イオン水を吐出しつつ、噴霧ノズル41がSC1洗浄液を噴霧する。これにより、ウエハ901のクリーニングが実施される。吐出ノズル31の流量は、例えば500ミリリットル/分程度であり、噴霧ノズル41の流量は、例えば100ミリリットル/分程度である。ステップS80におけるウエハ901の毎分回転数は、前述したステップS30における毎分回転数と同程度であってよく、例えば500rpm程度である。この処理の間、裏面ノズル11(図2および図3)からウエハ901の裏面上へSC1洗浄液または脱イオン水が供されてよい。なお、これ以外の構成については、上述した実施の形態1~3のいずれかとほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
<Embodiment 4>
FIG. 24 is a flow chart schematically showing the substrate processing method according to the fourth embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). In this embodiment, step S50 is performed between step S30 and step S80. In step S50, the spray nozzle 41 sprays the SC1 cleaning liquid while the discharge nozzle 31 discharges the SC1 cleaning liquid or the deionized water. As a result, the wafer 901 is cleaned. The flow rate of the discharge nozzle 31 is, for example, about 500 ml / min, and the flow rate of the spray nozzle 41 is, for example, about 100 ml / min. The number of revolutions per minute of the wafer 901 in step S80 may be about the same as the number of revolutions per minute in step S30 described above, for example, about 500 rpm. During this process, SC1 cleaning liquid or deionized water may be supplied from the back surface nozzles 11 (FIGS. 2 and 3) onto the back surface of the wafer 901. Since the other configurations are substantially the same as those of any of the above-described embodiments 1 to 3, the same or corresponding elements are designated by the same reference numerals, and the description thereof will not be repeated.
 <実施の形態5>
 図25は、本実施の形態5における基板処理方法を、基板処理装置(図1~図3)の動作の観点から概略的に示すフロー図である。本実施の形態においては、まず、実施の形態3(図23)と同様に、ステップS10およびステップS20が行われる。
<Embodiment 5>
FIG. 25 is a flow chart schematically showing the substrate processing method according to the fifth embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). In the present embodiment, first, steps S10 and S20 are performed in the same manner as in the third embodiment (FIG. 23).
 図26は、本実施の形態5における基板処理方法の一工程を概略的に示す部分断面図である。上記ステップの後、ステップS25(図25)にて、オゾン水と添加剤との混合液930Lが吐出ノズル31(図2)から吐出される。言い換えれば、バルブ311およびバルブ312(図2)の両方が開かれる。添加剤はアンモニア水および過酸化水素水を含んでいる。この混合液は、オゾン含有水溶液920(図7)に比して高濃度でアンモニアを含有している。なお、前述したように、オゾン含有水溶液920はアンモニアを含有していなくてよい。ステップS25によって混合液930Lが供されることによって、レジスト膜902への分解作用と膨潤作用との両方が生じる。オゾン含有水溶液中のオゾンによる分解作用は、アンモニア水および過酸化水素水が混ぜられることによって、一時的に、より活性化される。一時的に高められた活性は時間の経過とともに低下するが、新たな混合液を吐出ノズル31から十分に供給することによって、活性の低下の影響は抑制される。 FIG. 26 is a partial cross-sectional view schematically showing one step of the substrate processing method according to the fifth embodiment. After the above steps, in step S25 (FIG. 25), 930 L of the mixed solution of ozone water and the additive is discharged from the discharge nozzle 31 (FIG. 2). In other words, both valve 311 and valve 312 (FIG. 2) are opened. Additives include aqueous ammonia and aqueous hydrogen peroxide. This mixed solution contains ammonia at a higher concentration than the ozone-containing aqueous solution 920 (FIG. 7). As described above, the ozone-containing aqueous solution 920 does not have to contain ammonia. By providing the mixed solution 930 L in step S25, both a decomposition action and a swelling action on the resist film 902 occur. The decomposition action of ozone in the ozone-containing aqueous solution is temporarily further activated by mixing the aqueous ammonia solution and the aqueous hydrogen peroxide solution. The temporarily increased activity decreases with the passage of time, but the effect of the decrease in activity is suppressed by sufficiently supplying a new mixed solution from the discharge nozzle 31.
 次に、ステップS35(図25)にて、ステップS30(図10:実施の形態1)の場合と同様に、噴霧ノズル41からアンモニア過水が噴霧される。この噴霧による物理洗浄(図9)によって、レジスト膜902がウエハ901から分離される。この噴霧中、吐出ノズル31からの上記混合液の吐出が継続される。噴霧を受けることによって、ウエハ901の上面上における噴霧ノズル41の近傍領域から、上記混合液が実質的に排除される。またこの近傍領域の外側へと広がったアンモニア含有水溶液930は上記混合液に混ざり合い、これにより混合液930L中のオゾンが、より活性化される。 Next, in step S35 (FIG. 25), ammonia peroxide is sprayed from the spray nozzle 41 as in the case of step S30 (FIG. 10: Embodiment 1). The resist film 902 is separated from the wafer 901 by physical cleaning by this spraying (FIG. 9). During this spraying, the discharge of the mixed liquid from the discharge nozzle 31 is continued. By receiving the spray, the mixed solution is substantially removed from the region near the spray nozzle 41 on the upper surface of the wafer 901. Further, the ammonia-containing aqueous solution 930 spreading to the outside of the vicinity region is mixed with the mixed solution, whereby ozone in the mixed solution 930L is further activated.
 これ以降の工程は、実施の形態3(図23)と同様であるため、その説明を省略する。本実施の形態においては、ステップS30(図23)に代わって、ステップS25およびステップS35が行われる。このようなステップの置換は、実施の形態3だけでなく、前述した他の実施の形態に対してなされてもよい。 Since the subsequent steps are the same as those in the third embodiment (FIG. 23), the description thereof will be omitted. In this embodiment, steps S25 and S35 are performed instead of step S30 (FIG. 23). Such step substitution may be made not only for the third embodiment but also for the other embodiments described above.
 本実施の形態においては、ステップS25(図25)において、吐出ノズル31から吐出される液が、オゾン水、アンモニア水および過酸化水素水を含む。これにより、アンモニア水および過酸化水素水によって活性化されたオゾンによる分解作用と、アンモニア水による膨潤作用との両方の作用が同時に得られる。これにより、ウエハ901からレジスト膜902を短時間で除去することができる。 In the present embodiment, in step S25 (FIG. 25), the liquid discharged from the discharge nozzle 31 contains ozone water, ammonia water, and hydrogen peroxide water. As a result, both the decomposition action by ozone activated by the aqueous ammonia and the hydrogen peroxide solution and the swelling action by the aqueous ammonia can be obtained at the same time. As a result, the resist film 902 can be removed from the wafer 901 in a short time.
 <実施の形態6>
 図27は、本実施の形態6における基板処理方法を、基板処理装置(図1~図3)の動作の観点から概略的に示すフロー図である。本実施の形態においては、前述したステップS35(図25:実施の形態5)における物理洗浄工程(図9)が省略される。物理洗浄の省略を補うために、ステップS25における混合液との接触(図26)が、より長時間行われる。なおこの混合液は、アンモニア水を含有しているので、アンモニア含有水溶液の一種である。
<Embodiment 6>
FIG. 27 is a flow chart schematically showing the substrate processing method according to the sixth embodiment from the viewpoint of the operation of the substrate processing apparatus (FIGS. 1 to 3). In the present embodiment, the physical cleaning step (FIG. 9) in step S35 (FIG. 25: embodiment 5) described above is omitted. In order to compensate for the omission of physical cleaning, the contact with the mixed solution in step S25 (FIG. 26) is performed for a longer period of time. Since this mixed solution contains aqueous ammonia, it is a kind of aqueous solution containing ammonia.
 図28は、本実施の形態6における基板処理方法をレジスト膜の一の部分での処理の観点から概略的に示すフロー図である。図29は、本実施の形態6における基板処理方法の一工程を概略的に示す部分断面図である。 FIG. 28 is a flow chart schematically showing the substrate processing method in the sixth embodiment from the viewpoint of processing in one part of the resist film. FIG. 29 is a partial cross-sectional view schematically showing one step of the substrate processing method according to the sixth embodiment.
 ステップU10(図28)にて、レジスト膜902(図6および図7)に亀裂が形成される。このステップU10(図28)は、基板処理装置の動作としてのステップS10およびステップS20(図27)によって実施し得る。 In step U10 (FIG. 28), cracks are formed in the resist film 902 (FIGS. 6 and 7). This step U10 (FIG. 28) can be performed by steps S10 and S20 (FIG. 27) as the operation of the substrate processing apparatus.
 図29を参照して、次にステップU11(図28)にて、上記亀裂を介してウエハ901とレジスト膜902との界面へ、混合液930L、特にそれに含まれるアンモニア水、が浸透させられる。これによってウエハ901からレジスト膜902が剥離される。 With reference to FIG. 29, then, in step U11 (FIG. 28), the mixed solution 930 L, particularly the ammonia water contained therein, is permeated into the interface between the wafer 901 and the resist film 902 through the crack. As a result, the resist film 902 is peeled from the wafer 901.
 本実施の形態によれば、ステップS25に要する時間が実施の形態5に比してやや長いものの、物理洗浄を用いることなく、ウエハ901からレジスト膜902を剥離することができる(図29参照)。よって、物理洗浄の省略を優先する場合は本実施の形態6を用い、処理時間の短縮を優先する場合は前述した実施の形態5を用いることが好ましい。本発明者らによる実験例によれば、レジスト膜の剥離に要する時間は、実施の形態5の場合に約4分、実施の形態6の場合に約6分であった。なお変形例として、ステップS25とステップS80との間に、ステップS50(図24:実施の形態4)が行われてもよい。 According to the present embodiment, although the time required for step S25 is slightly longer than that of the fifth embodiment, the resist film 902 can be peeled off from the wafer 901 without using physical cleaning (see FIG. 29). Therefore, it is preferable to use the sixth embodiment when the omission of physical cleaning is prioritized, and to use the fifth embodiment when the shortening of the processing time is prioritized. According to the experimental example by the present inventors, the time required for peeling the resist film was about 4 minutes in the case of the fifth embodiment and about 6 minutes in the case of the sixth embodiment. As a modification, step S50 (FIG. 24: Embodiment 4) may be performed between step S25 and step S80.
 この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態および各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 Although the present invention has been described in detail, the above description is exemplary in all aspects, and the invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention. The configurations described in the above embodiments and the modifications can be appropriately combined or omitted as long as they do not conflict with each other.
 11 裏面ノズル
 31 吐出ノズル
 41 噴霧ノズル
 901 ウエハ(基板)
 331 ヒータ
 902 レジスト膜
 920 オゾン含有水溶液
 930 アンモニア含有水溶液
 930L 混合液
 930S 液滴
11 Back side nozzle 31 Discharge nozzle 41 Spray nozzle 901 Wafer (board)
331 Heater 902 Resist Membrane 920 Ozone-Containing Aqueous Solution 930 Ammonia-Containing Aqueous Solution 930L Mixture Solution 930S Liquid Drop Model

Claims (16)

  1.  基板上のレジスト膜にオゾン含有水溶液を接触させる工程と、
     前記レジスト膜のうち、前記オゾン含有水溶液を接触させる工程によってオゾン含有水溶液に既に接触した部分に、前記オゾン含有水溶液に比して高濃度でアンモニアを含有するアンモニア含有水溶液を接触させる工程と、
    を備える基板処理方法。
    The process of bringing the ozone-containing aqueous solution into contact with the resist film on the substrate,
    A step of contacting a portion of the resist film that has already come into contact with the ozone-containing aqueous solution by the step of contacting the ozone-containing aqueous solution with an ammonia-containing aqueous solution containing ammonia at a higher concentration than that of the ozone-containing aqueous solution.
    Substrate processing method comprising.
  2.  前記オゾン含有水溶液を接触させる工程は、前記基板へ向かってオゾン含有水溶液を吐出することによって行われる、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the step of bringing the ozone-containing aqueous solution into contact is performed by discharging the ozone-containing aqueous solution toward the substrate.
  3.  前記アンモニア含有水溶液を接触させる工程は、前記基板へ向かってアンモニア含有水溶液を吐出することによって行われる、請求項1または2に記載の基板処理方法。 The substrate processing method according to claim 1 or 2, wherein the step of bringing the ammonia-containing aqueous solution into contact is performed by discharging the ammonia-containing aqueous solution toward the substrate.
  4.  前記アンモニア含有水溶液を吐出する工程は、アンモニア含有水溶液を吐出するノズルを移動させる工程を含む、請求項3に記載の基板処理方法。 The substrate processing method according to claim 3, wherein the step of discharging the ammonia-containing aqueous solution includes a step of moving a nozzle for discharging the ammonia-containing aqueous solution.
  5.  前記ノズルを移動させる工程は、アンモニア含有水溶液が前記基板の中央部に比して前記基板の周縁部へ、より長い時間吐出されるように行われる、請求項4に記載の基板処理方法。 The substrate processing method according to claim 4, wherein the step of moving the nozzle is performed so that the ammonia-containing aqueous solution is discharged to the peripheral portion of the substrate for a longer time than the central portion of the substrate.
  6.  前記レジスト膜のうち、前記アンモニア含有水溶液を接触させる工程によってアンモニア含有水溶液に既に接触した部分を、物理洗浄によって前記基板から分離する工程をさらに備える、請求項1から5のいずれか1項に記載の基板処理方法。 The invention according to any one of claims 1 to 5, further comprising a step of separating the portion of the resist film that has already come into contact with the ammonia-containing aqueous solution from the substrate by physical cleaning. Substrate processing method.
  7.  前記物理洗浄は、前記基板へガスを吹き付ける工程を含む、請求項6に記載の基板処理方法。 The substrate processing method according to claim 6, wherein the physical cleaning includes a step of blowing gas onto the substrate.
  8.  前記基板へガスを吹き付ける工程は、前記ガスによって前記基板へアンモニア含有水溶液を噴霧する工程を含む、請求項7に記載の基板処理方法。 The substrate processing method according to claim 7, wherein the step of spraying the gas onto the substrate includes a step of spraying an ammonia-containing aqueous solution onto the substrate with the gas.
  9.  前記ガスは不活性ガスである、請求項7または8に記載の基板処理方法。 The substrate processing method according to claim 7 or 8, wherein the gas is an inert gas.
  10.  前記オゾン含有水溶液を接触させる工程は、前記オゾン含有水溶液によって前記レジスト膜に亀裂を形成する工程を含む、請求項1から5のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 5, wherein the step of contacting the ozone-containing aqueous solution includes a step of forming cracks in the resist film by the ozone-containing aqueous solution.
  11.  前記アンモニア含有水溶液を接触させる工程は、前記レジスト膜に亀裂を形成する工程によって形成された亀裂を介して前記基板と前記レジスト膜との界面へアンモニア含有水溶液を浸透させることによって前記基板から前記レジスト膜を剥離する工程を含む、請求項10に記載の基板処理方法。 In the step of bringing the ammonia-containing aqueous solution into contact, the resist is formed by allowing the ammonia-containing aqueous solution to permeate the interface between the substrate and the resist film through the cracks formed by the step of forming cracks in the resist film. The substrate processing method according to claim 10, further comprising a step of peeling the film.
  12.  前記アンモニア含有水溶液は過酸化水素を含有している、請求項1から11のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 11, wherein the ammonia-containing aqueous solution contains hydrogen peroxide.
  13.  前記オゾン含有水溶液を接触させる工程の前に、前記レジスト膜へ紫外線を照射する工程をさらに備える、請求項1から12のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 12, further comprising a step of irradiating the resist film with ultraviolet rays before the step of contacting the ozone-containing aqueous solution.
  14.  前記オゾン含有水溶液を接触させる工程は、前記基板へアンモニア含有水溶液を供給することなく前記基板へオゾン含有水溶液を供給する工程を含む、請求項1から13のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 13, wherein the step of contacting the ozone-containing aqueous solution includes a step of supplying the ozone-containing aqueous solution to the substrate without supplying the ammonia-containing aqueous solution to the substrate. ..
  15.  前記オゾン含有水溶液を接触させる工程は、前記基板から離れた配管中でオゾン含有水溶液を加熱する工程を含む、請求項1から14のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 14, wherein the step of bringing the ozone-containing aqueous solution into contact includes a step of heating the ozone-containing aqueous solution in a pipe away from the substrate.
  16.  前記オゾン含有水溶液を接触させる工程は、前記基板上でオゾン含有水溶液を加熱する工程を含む、請求項1から15のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 15, wherein the step of contacting the ozone-containing aqueous solution includes a step of heating the ozone-containing aqueous solution on the substrate.
PCT/JP2020/004039 2019-03-22 2020-02-04 Substrate treatment method WO2020195176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217028444A KR102564664B1 (en) 2019-03-22 2020-02-04 Substrate processing method
CN202080020066.0A CN113632012A (en) 2019-03-22 2020-02-04 Substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-055144 2019-03-22
JP2019055144A JP2020155721A (en) 2019-03-22 2019-03-22 Substrate treatment method

Publications (1)

Publication Number Publication Date
WO2020195176A1 true WO2020195176A1 (en) 2020-10-01

Family

ID=72559850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004039 WO2020195176A1 (en) 2019-03-22 2020-02-04 Substrate treatment method

Country Status (5)

Country Link
JP (2) JP2020155721A (en)
KR (1) KR102564664B1 (en)
CN (1) CN113632012A (en)
TW (1) TWI783211B (en)
WO (1) WO2020195176A1 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368577A (en) * 1976-12-01 1978-06-19 Hitachi Ltd Removing method of positive type photo resist
JP2003526936A (en) * 2000-03-13 2003-09-09 シーエフエムテイ・インコーポレーテツド Method and apparatus for processing electronic components
JP2004342886A (en) * 2003-05-16 2004-12-02 Sharp Corp Equipment and method of processing substrate
JP2005039205A (en) * 2003-06-27 2005-02-10 Dainippon Screen Mfg Co Ltd Foreign substance removing device, substrate processing equipment and substrate processing method
JP2005191511A (en) * 2003-12-02 2005-07-14 Dainippon Screen Mfg Co Ltd Substrate processing equipment and substrate processing method
JP2005260088A (en) * 2004-03-12 2005-09-22 Dainippon Screen Mfg Co Ltd Apparatus and method for treating substrate
JP2005259743A (en) * 2004-03-09 2005-09-22 Matsushita Electric Ind Co Ltd Resist peeling device, resist peeling method using the same, and manufacturing method of semiconductor device
JP2007201070A (en) * 2006-01-25 2007-08-09 Sharp Manufacturing System Corp Method and device for removing residual organic substance on substrate
JP2007329328A (en) * 2006-06-08 2007-12-20 Tokyo Electron Ltd Device and method for processing substrate, and recording medium
US20080078424A1 (en) * 2006-09-28 2008-04-03 Applied Materials, Inc. Methods to accelerate photoimageable material stripping from a substrate
JP2008519295A (en) * 2004-10-29 2008-06-05 イーケイシー テクノロジー インコーポレーテッド Compositions and methods for photoresist stripping and residue removal in wafer level packaging
US20100104953A1 (en) * 2008-10-24 2010-04-29 Papanu James S Process and hardware for plasma treatments
JP2012119491A (en) * 2010-11-30 2012-06-21 Sharp Corp Photoresist removing method
JP2014036101A (en) * 2012-08-08 2014-02-24 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
WO2016088731A1 (en) * 2014-12-02 2016-06-09 シグマテクノロジー有限会社 Cleaning method and cleaning device using micro/nano-bubbles
JP2016152354A (en) * 2015-02-18 2016-08-22 株式会社Screenホールディングス Substrate processing apparatus
JP2017123402A (en) * 2016-01-07 2017-07-13 株式会社荏原製作所 Cleaning device
JP2018182271A (en) * 2017-04-21 2018-11-15 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114191B2 (en) 1990-11-14 1995-12-06 株式会社荏原総合研究所 Cleaning method
JP3344391B2 (en) 1999-11-17 2002-11-11 日本電気株式会社 Resist removal method
JP4519234B2 (en) 2000-01-19 2010-08-04 野村マイクロ・サイエンス株式会社 Article surface cleaning method and cleaning apparatus therefor
JP4221736B2 (en) * 2000-07-18 2009-02-12 株式会社ササクラ Photoresist film removal method and apparatus
JP4101609B2 (en) 2001-12-07 2008-06-18 大日本スクリーン製造株式会社 Substrate processing method
JP2004288858A (en) * 2003-03-20 2004-10-14 Dainippon Screen Mfg Co Ltd Method and apparatus for treating substrate
JP4259939B2 (en) * 2003-03-26 2009-04-30 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP2009267167A (en) * 2008-04-25 2009-11-12 Dainippon Screen Mfg Co Ltd Substrate-treating device
JP2010153442A (en) 2008-12-24 2010-07-08 Japan Organo Co Ltd Substrate processing method and apparatus
KR102185140B1 (en) * 2016-12-28 2020-12-01 시바우라 메카트로닉스 가부시키가이샤 Substrate processing apparatus and substrate processing method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368577A (en) * 1976-12-01 1978-06-19 Hitachi Ltd Removing method of positive type photo resist
JP2003526936A (en) * 2000-03-13 2003-09-09 シーエフエムテイ・インコーポレーテツド Method and apparatus for processing electronic components
JP2004342886A (en) * 2003-05-16 2004-12-02 Sharp Corp Equipment and method of processing substrate
JP2005039205A (en) * 2003-06-27 2005-02-10 Dainippon Screen Mfg Co Ltd Foreign substance removing device, substrate processing equipment and substrate processing method
JP2005191511A (en) * 2003-12-02 2005-07-14 Dainippon Screen Mfg Co Ltd Substrate processing equipment and substrate processing method
JP2005259743A (en) * 2004-03-09 2005-09-22 Matsushita Electric Ind Co Ltd Resist peeling device, resist peeling method using the same, and manufacturing method of semiconductor device
JP2005260088A (en) * 2004-03-12 2005-09-22 Dainippon Screen Mfg Co Ltd Apparatus and method for treating substrate
JP2008519295A (en) * 2004-10-29 2008-06-05 イーケイシー テクノロジー インコーポレーテッド Compositions and methods for photoresist stripping and residue removal in wafer level packaging
JP2007201070A (en) * 2006-01-25 2007-08-09 Sharp Manufacturing System Corp Method and device for removing residual organic substance on substrate
JP2007329328A (en) * 2006-06-08 2007-12-20 Tokyo Electron Ltd Device and method for processing substrate, and recording medium
US20080078424A1 (en) * 2006-09-28 2008-04-03 Applied Materials, Inc. Methods to accelerate photoimageable material stripping from a substrate
US20100104953A1 (en) * 2008-10-24 2010-04-29 Papanu James S Process and hardware for plasma treatments
JP2012119491A (en) * 2010-11-30 2012-06-21 Sharp Corp Photoresist removing method
JP2014036101A (en) * 2012-08-08 2014-02-24 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
WO2016088731A1 (en) * 2014-12-02 2016-06-09 シグマテクノロジー有限会社 Cleaning method and cleaning device using micro/nano-bubbles
JP2016152354A (en) * 2015-02-18 2016-08-22 株式会社Screenホールディングス Substrate processing apparatus
JP2017123402A (en) * 2016-01-07 2017-07-13 株式会社荏原製作所 Cleaning device
JP2018182271A (en) * 2017-04-21 2018-11-15 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
KR102564664B1 (en) 2023-08-08
JP2023181197A (en) 2023-12-21
CN113632012A (en) 2021-11-09
JP2020155721A (en) 2020-09-24
TW202036180A (en) 2020-10-01
TWI783211B (en) 2022-11-11
KR20210124391A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6066899B2 (en) Wet processing of microelectronic substrates by controlling fluid mixing near the substrate surface
KR20090035548A (en) Liquid aerosol particle removal method
KR100539294B1 (en) High-pressure treatment apparatus and high-pressure treatment method
KR20160084449A (en) System and method for enhanced removal of metal hardmask using ultra violet treatment
JP2003234323A (en) Substrate treatment apparatus
WO2020195176A1 (en) Substrate treatment method
JP2008028102A (en) Method and device for removing resist mask
TWI632438B (en) Substrate processing method and substrate processing device
JP2004096055A (en) Method and apparatus for treating substrate
JP4171642B2 (en) Substrate surface treatment equipment
JP4503426B2 (en) Cleaning device
TWI567847B (en) Wafer cleaning device and cleaning method
CN112768376B (en) Wafer cleaning device and wafer cleaning method
JP2009016464A (en) Substrate cleaning apparatus and substrate cleaning method
JP4617504B2 (en) Cleaning device
JP2002261068A (en) Device and method for substrate treatment
JP2001203182A (en) Cleaning method of object surface and cleaning equipment for method
KR102566723B1 (en) Spin cleaning method of semiconductor lithography photo mask using ozone water
KR101648946B1 (en) Improved Stripping Apparatus and Method of Photoresist
TWI839585B (en) Substrate processing device and substrate processing method
US20060134923A1 (en) Semiconductor substrate cleaning apparatus and method
TWI804897B (en) Substrate processing method and substrate processing apparatus
JP4759395B2 (en) Substrate processing apparatus and processing method
WO2014010589A1 (en) Lift-off apparatus and lift-off method
JP2003077824A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217028444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778535

Country of ref document: EP

Kind code of ref document: A1