WO2020195007A1 - Work control system - Google Patents

Work control system Download PDF

Info

Publication number
WO2020195007A1
WO2020195007A1 PCT/JP2020/000603 JP2020000603W WO2020195007A1 WO 2020195007 A1 WO2020195007 A1 WO 2020195007A1 JP 2020000603 W JP2020000603 W JP 2020000603W WO 2020195007 A1 WO2020195007 A1 WO 2020195007A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
information
server
mesh
map
Prior art date
Application number
PCT/JP2020/000603
Other languages
French (fr)
Japanese (ja)
Inventor
想介 村田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2020195007A1 publication Critical patent/WO2020195007A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining

Definitions

  • the present invention relates to a work control system.
  • Patent Document 1 remote sensing of the field is performed by a helicopter, soil at a plurality of points in the field is sampled and soil analysis is performed, and fertilization for each mesh of the entire field is performed based on the remote sensing result and the soil analysis result. It is disclosed to create a fertilization map consisting of quantities.
  • Patent Document 1 a fertilizer application map consisting of the amount of fertilizer applied for each mesh of the entire field is stored in the memory of the variable fertilizer application PC of the tractor type fertilizer application machine, and the variable fertilizer application PC corresponds to the current position of the tractor type fertilizer application machine. It is disclosed that the fertilizer application amount data to be applied is extracted, and the extracted fertilizer application amount data is converted into control data by a variable fertilizer application PC. Further, Patent Document 1 discloses that a fertilizer application amount control microcomputer drives a fertilizer application machine based on control data converted by a variable fertilizer application PC to perform fertilization.
  • An object of the present invention is work control that enables appropriate work control using work setting information without storing work setting information for each mesh included in the entire field and control information corresponding thereto in the work vehicle. To provide a system.
  • One embodiment of the present invention is a server that can communicate with the work vehicle and stores a work map composed of mesh-based work setting information included in at least a part of a work target field.
  • the work vehicle transmits positioning information representing the position of the work vehicle to the server, receives work control information transmitted from the server in response to the positioning information, and uses the received work control information as the received work control information.
  • the server is configured to control the work machine based on the above, and when the server receives the positioning information from the work vehicle, the server acquires the work setting information according to the received positioning information from the work map.
  • a work control system configured to transmit work control information including acquired work setting information or control information created from the work setting information to the work vehicle.
  • the work vehicle is equipped with a basic information detection unit that detects basic information for calculating work setting information for each mesh from the work target field. Is to send the basic information detected from a predetermined position in the work target field by the basic information detection unit and the detection position information indicating the position where the basic information is detected to the server in real time during the work.
  • the server is configured to transmit, and when the server receives the basic information and the detection position information from the work vehicle, the server sets work setting information for each mesh based on the received information. It is configured to be calculated and stored as part of the work map.
  • the work map is a fertilization map composed of a plurality of mesh-based target fertilizer application amounts included in at least a part of the work target area.
  • the work map is a fertilizer application map composed of a target fertilizer application amount in a plurality of mesh units included in at least a part of the work target area, and the basic information is the growth of a crop. It consists of growth status calculation information used for calculating status information, and when the server receives the growth status calculation information and the detection position information from the work vehicle, the server is based on the received information. Therefore, the growth status information of the mesh unit is calculated, and the target fertilizer application amount of the mesh unit is calculated based on the obtained growth status information of the mesh unit.
  • FIG. 1 is a schematic diagram showing a configuration of a work control system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of a traveling machine, a working machine, and a management server.
  • FIG. 3 is a schematic diagram showing an example of a map attribute table.
  • FIG. 4 is a sequence diagram for explaining the operation of the work control system when a specific user applies fertilizer.
  • FIG. 5 is a schematic diagram showing an example of a pre-work notification information input screen.
  • FIG. 6 is a schematic view for explaining a modified example, and is a schematic view showing a state in which a work vehicle (traveling machine) performs fertilization work in a field.
  • FIG. 7 is an enlarged schematic view schematically showing the side surface of the traveling machine shown in FIG.
  • FIG. 1 is a schematic diagram showing a configuration of a work control system 101 according to an embodiment of the present invention.
  • the work control system 101 is a system for controlling the work performed by the work vehicle 1.
  • the work control system 1 includes a work vehicle 1, a user terminal 4, and a management server 5.
  • the work vehicle 1 can communicate with the management server 5 via the network 6.
  • the work vehicle 1 includes a work vehicle including a traveling machine and a working machine towed by the traveling machine, and a working vehicle in which the traveling machine and the working machine are integrated.
  • the work vehicle 1 includes a traveling machine 2 and a working machine 3 towed by the traveling machine 2.
  • the traveling machine 2 is a tractor.
  • the types of working machines 3 include, for example, fertilizer sprayers, pesticide sprayers, roll balers, cultivators, plows, levelers, mowers, sowing machines, harvesters and the like.
  • Examples of the work vehicle in which the traveling machine and the working machine are integrated include a rice transplanter, a combine harvester, and the like.
  • the work vehicle 1 works on a field owned by a specific user.
  • the user terminal 4 is a computer used by a specific user.
  • a portable terminal such as a smartphone or a tablet PC is used as the user terminal 4.
  • the management server 5 is provided in the management center 7.
  • the management server 5 stores a work map used for one or more works performed on each field owned by a plurality of users. However, for convenience of explanation, it is assumed that the management server 5 stores only the work map used for one or more works performed on each field owned by the specific user.
  • the work map consists of work setting information for each mesh included in at least a part of the area in the field.
  • the work setting information includes the target fertilizer application amount (hereinafter, may be referred to as "target fertilizer application amount”), the target pesticide application amount, and the like.
  • the mesh means individual subregions when the field is divided into a plurality of rectangular (square in this embodiment) subregions.
  • FIG. 2 is a block diagram showing the electrical configurations of the traveling machine 2, the working machine 3, and the management server 5.
  • the traveling machine 2 includes a control unit (hereinafter, referred to as "traveling machine control unit 10").
  • the traveling machine control unit 10 includes a microcomputer provided with a CPU and a memory (volatile memory, non-volatile memory, etc.).
  • the traveling machine control unit 10 controls the operation of the traveling machine 2 (movements such as forward movement, reverse movement, stop, turning, etc.).
  • a plurality of controllers (controller group 11) for controlling each part of the traveling machine 2 are electrically connected to the traveling machine control unit 10.
  • the plurality of controllers control the engine controller that controls the engine speed and the like, the vehicle speed controller that controls the vehicle speed of the traveling machine 2, the steering controller that controls the steering angle of the front wheels of the traveling machine 2, and the rotation of the PTO axis. Includes PTO axis controller and the like.
  • the position information calculation unit 12, the communication unit 13, and the like are further connected to the traveling machine control unit 10.
  • the satellite signal receiving antenna 14 is electrically connected to the position information calculation unit 12.
  • the satellite signal receiving antenna 14 receives signals from the positioning satellites 8 (see FIG. 1) constituting the satellite positioning system.
  • the satellite positioning system is, for example, GNSS (Global Navigation Satellite System).
  • the position information calculation unit 12 calculates the position of the traveling machine 2 (strictly speaking, the satellite signal receiving antenna 14) based on the positioning signal received by the satellite signal receiving antenna 14. Specifically, the position information calculation unit 12 generates positioning information including time information and position information.
  • the position information includes, for example, latitude information and longitude information.
  • the communication unit 13 is a communication interface for the traveling machine control unit 10 to communicate with the management server 5 via the network 6.
  • the work machine 3 includes a control unit (hereinafter, referred to as "work machine control unit 20") that controls the operation of the work machine 3.
  • the work equipment control unit 20 includes a microcomputer provided with a CPU and a memory (volatile memory, non-volatile memory, etc.).
  • the work machine control unit 20 is connected to the traveling machine control unit 10 via a CAN (Controller Area Network).
  • a work actuator 21 or the like is connected to the work machine control unit 20.
  • the work actuator 21 is, for example, an actuator for driving an electronic shutter provided at the bottom of a fertilizer storage tank.
  • the work actuator 21 is, for example, an actuator for driving a pump for supplying a pesticide from a pesticide storage drug tank to a discharge nozzle.
  • the working actuator 21 is, for example, an actuator for driving a feeding device for feeding seeds from a seed storage tank.
  • the management server 5 includes a control unit (hereinafter, referred to as "server control unit 30") that controls the management server 5.
  • the control unit 30 includes a microcomputer provided with a CPU and a memory (volatile memory, non-volatile memory, etc.) 30A.
  • the communication unit 31, the operation display unit 32, the operation unit 33, and the storage unit 34 are electrically connected to the server control unit 30.
  • the communication unit 31 is a communication interface for the server control unit 30 to communicate with the traveling machine control unit 10 and the user terminal 4 via the network 6.
  • the operation display unit 32 includes, for example, a touch panel display.
  • the operation unit 33 includes, for example, a keyboard, a mouse, and the like.
  • the storage unit 34 is composed of a storage device such as a hard disk and a non-volatile memory.
  • a plurality of work map files (work map file group) 34A, map attribute table 34B, and the like are stored in the storage unit 34.
  • the work map file group 34A shall include only the work map file (hereinafter, simply referred to as "work map") used for the work performed in the field owned by the specific user.
  • the work map for a field includes position information for identifying the position of each mesh in the field and work setting information for each mesh.
  • the position information for specifying the position of the mesh includes, for example, the position information of the four vertices of the mesh or the position information of a pair of vertices out of the four vertices.
  • the position information for specifying the position of the mesh may include the position information of the center of the mesh.
  • the attribute information of each work map included in the work map file group 34A is stored for each work map.
  • the attribute information includes a field number, work identification information (work ID), a work name, and a file name.
  • the field number for a work map is the number of the field in which the work map should be used.
  • the work identification information (work ID) for a certain work map is information for identifying the work for which the work map should be used.
  • the work name for a work map is the name of the work for which the work map should be used.
  • the file name for a work map is the file name of the work map (work map file).
  • the fields owned by the specific user include a field having a field number of "001" and a field having a field number of "002".
  • the work performed using the work map includes a sowing work, a fertilizer spraying work (hereinafter, may be referred to as “fertilizer application work”), and a pesticide spraying work.
  • the work setting information for the sowing work (work setting information for each mesh) is the target sowing amount per predetermined area.
  • the work setting information for the fertilizer application work is the target fertilizer application amount per predetermined area.
  • the work setting information for the pesticide spraying work is the target pesticide spraying amount per predetermined area.
  • FIG. 4 is a sequence diagram for explaining the operation of the work control system when a specific user performs fertilization work.
  • the specific user When performing the fertilizer application work, the specific user first operates the user terminal 4 to obtain the field number of the field (work target field) where the fertilizer application work is to be performed and the work identification information (work ID) indicating the fertilizer application work. And the pre-work notification information including the vehicle identification information for identifying the work vehicle 1 used for the work is transmitted to the management server 5 (step S1).
  • the specific user operates the user terminal 4 to input the field number of the work target field, the work identification information, and the vehicle identification information from the management server 5, a web page for inputting pre-work notification information. (Web page dedicated to a specific user) is acquired. As a result, the pre-work notification information input screen 41 as shown in FIG. 5 is displayed on the user terminal 4.
  • the pre-work notification information input screen 41 includes a field / work selection screen 42, a vehicle information input screen 43, and a confirmation button 44.
  • the vehicle identification information consists of the model and machine number of the traveling machine 2.
  • the vehicle information input screen 43 includes a model input box 43A and a machine number input box 43B.
  • the specific user selects a combination suitable for the work to be performed from among the plurality of combinations of the field number and the work name displayed on the field / work selection screen 42. Further, the specific user inputs the model and the machine number of the work vehicle 1 (traveling machine 2 in this example) to be used for the work to be performed in the model input box 43A and the machine number input box 43B, respectively.
  • the management server 5 When the management server 5 receives the pre-work notification information, it stores the pre-work notification information in the memory (working memory) 30A (step S2).
  • the traveling machine control unit 10 receives the positioning information generated by the position information calculation unit 12 and the vehicle identification information of the work vehicle 1 (in this example, traveling).
  • the model and machine number of the machine 2) are transmitted to the management server 5 (step S3).
  • Positioning information and vehicle identification information are transmitted, for example, at 1-second intervals.
  • the server control unit 30 When the server control unit 30 receives the positioning information and the vehicle identification information, it acquires the work map corresponding to the vehicle identification information received from the work map file group) 34A and stores it in the memory 30A (step S4).
  • the server control unit 30 first starts with the pre-work notification information corresponding to the received vehicle identification information among the pre-work notification information stored in the memory 30A. , Get field number and work identification information. Next, the server control unit 30 acquires the file name corresponding to the combination of the acquired field number and the work identification information from the map attribute table 34B. Then, the server control unit 30 acquires the work map corresponding to the acquired file name from the work map file group 34A and stores it in the memory 30A.
  • the work map (fertilizer application map whose file name is F02.task) corresponding to the combination of the field No. "001" and the fertilizer application work (fertilizer application work) is acquired from the map attribute table 34B and has a memory of 30A. Is temporarily stored in.
  • the server control unit 30 acquires work setting information in mesh units according to the position information in the received positioning information from the work map stored in the memory 30A (step S5).
  • the server control unit 30 creates control information for controlling the work machine 3 (more specifically, the work actuator 21) from the work setting information acquired in step S5 (step S6).
  • the server control unit 30 transmits the created information as work control information to the traveling machine control unit 10 (step S7).
  • the traveling machine control unit 10 gives the received work control information to the work machine control unit 20 (step S8).
  • the work machine control unit 20 controls the work actuator 21 using the work control information given by the work vehicle control unit 10 (step S9). In this example, this controls the amount of fertilizer applied per unit area to the mesh to be worked so as to be the target amount of fertilizer applied to the mesh in the work map.
  • step S4 every time the traveling unit 10 transmits the positioning information and the vehicle identification information to the management server 5, the same processing as the processing from step S4 to step S9 is repeatedly executed.
  • the server control unit 30 creates control information for controlling the work vehicle 1 (work machine 3) from the work setting information acquired in step S5 of FIG. 4, and controls the created information. As information, it is transmitted to the traveling machine control unit 10 (see step S6). However, the server control unit 30 may transmit the work setting information acquired in step S5 of FIG. 4 to the traveling machine control unit 10 as it is. In this case, the traveling machine control unit 10 or the working machine control unit 20 generates control information from the work setting information, and the working actuator 21 is controlled based on the generated control information.
  • the server control unit 30 transmits the work control information to the traveling machine control unit 10 (see step S7).
  • the work machine control unit 20 is provided with a communication unit for communicating with the server control unit 30 via the network 6, and the server control unit 30 transmits work control information or work setting information to the work machine control unit 20. You may try to do it.
  • the work setting information for each mesh included in the entire field is created and stored in the management server 5 before the work is performed on the field.
  • the work vehicle 1 is performing the work on a certain field
  • the work setting information of the area in which the work by the work vehicle 1 is not yet performed is created, and the work setting created in this way is created.
  • the information may be used to continue the work.
  • an embodiment in which the work setting information is created and the work by the work vehicle 1 is performed at the same time is referred to as a modification.
  • FIG. 6 is a schematic view showing a state in which the work vehicle 1 (traveling machine 2) performs fertilization work in the field F.
  • the working machine 3 is omitted for convenience of explanation.
  • the traveling machine 2 may be traveled by manual operation or by automatic operation.
  • a plurality of elongated rectangular crop growing regions L for growing crops are formed in a striped shape.
  • the lower end of FIG. 6 is referred to as the front end, and the upper end of FIG. 6 is referred to as the back end.
  • the traveling machine 2 performs fertilization work while moving along the crop growing area L in a posture in which the left and right wheels on the front side and the left and right wheels on the rear side each sandwich the crop growing area L.
  • the traveling machine 2 travels from the front end to the back end with respect to the leftmost crop growing area L, for example. Then, when the vehicle reaches the inner end of the crop growing area L, the traveling machine 2 turns to the right in the traveling direction and moves to the inner end of the crop growing area L adjacent to the right.
  • the traveling machine 2 travels in the crop growing area L from the back end to the front end. Then, when the vehicle reaches the front end of the crop growing area L, the traveling machine 2 turns to the left in the traveling direction and moves to the front end of the crop growing area L adjacent to the right. Such a traveling operation is repeatedly performed. Therefore, the movement path of the traveling machine 2 is generally a zigzag shape as shown by a broken line in FIG.
  • the traveling machine 2 is equipped with multispectral cameras 51, 52, 53 for photographing crops in the front, left, and right regions, as shown in FIGS. 6 and 7, and as shown by the alternate long and short dash line in FIG. Has been done. More specifically, the multispectral cameras 51, 52, and 53 are attached to the tips of the support arms 54, 55, and 56 whose base ends are fixed to the traveling machine 2, respectively, in a downward or diagonally downward posture. There is.
  • the multispectral cameras 51, 52, and 53 are, for example, cameras capable of capturing images of visible red light and near infrared light.
  • the normalized difference vegetation index (NDVI: Normalized Difference Vegetation Index) in the imaging region can be calculated based on the images captured by the multispectral cameras 51, 52, and 53.
  • the NDVI represents the leaf color of the crop and can be used as the growth status information indicating the growth status of the crop. Therefore, the target fertilizer application amount (work setting information) for each mesh can be calculated based on the NDVI for each mesh. In this case, the target fertilizer application amount is calculated so that the higher the NDVI, the smaller the amount.
  • NDVI is an example of "basic information" used to calculate work setting information.
  • the traveling machine 2 is further provided with an orientation sensor (attitude sensor) 57 for detecting the orientation (posture) of the traveling machine 2 as shown by a chain line in FIG.
  • an orientation sensor (attitude sensor) 57 for detecting the orientation (posture) of the traveling machine 2 as shown by a chain line in FIG.
  • a gyro sensor for detecting the orientation (posture) of the traveling machine 2 as shown by a chain line in FIG.
  • a gyro sensor a geomagnetic sensor
  • IMU Inertial Measurement Unit
  • the position information of the traveling machine 2 calculated by the position information calculation unit 12, the direction (traveling direction) of the traveling machine 2 detected by the orientation sensor 57, and the multispectral cameras 51, 52, 53 with respect to the reference position of the traveling machine 2.
  • the work vehicle control unit 10 can specify the position of the imaging region captured by the multispectral cameras 51, 52, and 53.
  • the fertilizer application map for a certain field which is stored in advance in the storage unit 34, includes position information for specifying the position of each mesh in the field and an initial value of the target fertilizer application amount for each mesh. ..
  • the initial value of the target fertilizer application amount is set to zero or a predetermined value.
  • the work vehicle control unit 10 and the server control unit 30 perform the following operations in addition to the same operations as those in the above-described embodiment when the work vehicle 1 is performing fertilization work. ..
  • the traveling machine control unit 10 transmits the captured images taken by the multispectral cameras 51, 52, and 53 to the management server 5 together with the imaging position information indicating the position of the imaging region at predetermined time intervals.
  • the server control unit 30 calculates the NDVI corresponding to each captured image based on the captured images of the received cameras 51, 52, 53.
  • the server control unit 30 calculates the target fertilizer application amount (work setting information) of the mesh corresponding to the imaging position information based on the NDVI and the imaging position information corresponding to the NDVI for each calculated NDVI. ..
  • the server control unit 30 updates the target fertilizer application amount corresponding to the mesh in the work map stored in the memory 20A in step S4 by using the calculated target fertilizer application amount of the mesh.
  • the target fertilizer application amount (work setting information) for the mesh to be worked on is created in real time, and the fertilizer application map in the memory 20A is updated. .. Then, the work machine 3 is controlled based on the contents of the fertilizer application map updated during the work.
  • the target fertilizer application amount for the mesh to be worked on is created.
  • the image captured by the front multispectral camera 51 and the image captured by the left multispectral camera 52 are captured. Based on the image, the target fertilizer application amount for the mesh to be worked on is created.
  • the crop is imaged by the multispectral cameras 51, 52, 53 or other types of cameras during the pesticide spraying work, and the captured image obtained is obtained.
  • the amount of pests adhering to the crop can be calculated from, and the target amount of pesticide sprayed can be calculated based on the calculated amount of pests.
  • the target pesticide application amount is calculated so that the mesh with a larger amount of pests has a larger amount.

Abstract

A work vehicle 1 transmits, to a server 5, positioning information indicative of the position of the work vehicle 1, receives work control information that is transmitted from the server 5 in accordance with the positioning information, and controls a work machine 3 on the basis of the received work control information. Upon receipt of the positioning information from the work vehicle 1, the server 5 acquires, from a work map, work setting information corresponding to the received positioning information, and transmits, to the work vehicle 1, the work control information that comprises the acquired work setting information or control information prepared from said work setting information.

Description

作業制御システムWork control system
 本発明は、作業制御システムに関する。 The present invention relates to a work control system.
 特許文献1には、ヘリコプタによって圃場のリモートセンシングを行うとともに、圃場の複数地点の土壌をサンプリングして土壌分析を行い、リモートセンシング結果と土壌分析結果とに基づいて、圃場全体のメッシュ毎の施肥量からなる施肥マップを作成することが開示されている。 In Patent Document 1, remote sensing of the field is performed by a helicopter, soil at a plurality of points in the field is sampled and soil analysis is performed, and fertilization for each mesh of the entire field is performed based on the remote sensing result and the soil analysis result. It is disclosed to create a fertilization map consisting of quantities.
 また、特許文献1には、圃場全体のメッシュ毎の施肥量からなる施肥マップがトラクタ型施肥機の可変施肥用PCのメモリに記憶され、可変施肥用PCによってトラクタ型施肥機の現在位置に対応する施肥量データが抽出され、抽出された施肥量データが可変施肥用PCによって制御用データに変換されることが開示されている。さらに、特許文献1には施肥量制御用マイコンが、可変施肥用PCによって変換された制御用データに基づいて、施肥機を駆動することにより、施肥が行われることが開示されている。 Further, in Patent Document 1, a fertilizer application map consisting of the amount of fertilizer applied for each mesh of the entire field is stored in the memory of the variable fertilizer application PC of the tractor type fertilizer application machine, and the variable fertilizer application PC corresponds to the current position of the tractor type fertilizer application machine. It is disclosed that the fertilizer application amount data to be applied is extracted, and the extracted fertilizer application amount data is converted into control data by a variable fertilizer application PC. Further, Patent Document 1 discloses that a fertilizer application amount control microcomputer drives a fertilizer application machine based on control data converted by a variable fertilizer application PC to perform fertilization.
特開2011-254711号公報Japanese Unexamined Patent Publication No. 2011-254711
 特許文献1記載の発明では、トラクタ型施肥機に圃場全体のメッシュ毎の施肥量からなる施肥マップを記憶させておく必要がある。 In the invention described in Patent Document 1, it is necessary to store in the tractor type fertilizer application machine a fertilizer application map consisting of the amount of fertilizer applied for each mesh of the entire field.
 この発明の目的は、圃場全体に含まれるメッシュ毎の作業設定情報やそれに対応する制御情報を作業車両に記憶することなく、作業設定情報を使用した適切な作業制御を行えるようになる、作業制御システムを提供することである。 An object of the present invention is work control that enables appropriate work control using work setting information without storing work setting information for each mesh included in the entire field and control information corresponding thereto in the work vehicle. To provide a system.
 この発明の一実施形態は、作業車両と、前記作業車両と通信可能であり、かつ作業対象圃場内の少なくとも一部の領域に含まれるメッシュ単位の作業設定情報からなる作業マップが記憶されるサーバとを備え、前記作業車両は、前記作業車両の位置を表す測位情報を前記サーバに送信し、当該測位情報に応じて前記サーバから送信される作業制御情報を受信し、受信した作業制御情報に基づいて前記作業機を制御するように構成されており、前記サーバは、前記作業車両から測位情報を受信したときに、前記作業マップから、受信した測位情報に応じた作業設定情報を取得し、取得した作業設定情報または当該作業設定情報から作成される制御情報からなる作業制御情報を、前記作業車両に送信するように構成されている、作業制御システムを提供する。 One embodiment of the present invention is a server that can communicate with the work vehicle and stores a work map composed of mesh-based work setting information included in at least a part of a work target field. The work vehicle transmits positioning information representing the position of the work vehicle to the server, receives work control information transmitted from the server in response to the positioning information, and uses the received work control information as the received work control information. The server is configured to control the work machine based on the above, and when the server receives the positioning information from the work vehicle, the server acquires the work setting information according to the received positioning information from the work map. Provided is a work control system configured to transmit work control information including acquired work setting information or control information created from the work setting information to the work vehicle.
 この構成では、圃場全体に含まれるメッシュ毎の作業設定情報やそれに対応する制御情報を作業車両に記憶することなく、作業設定情報を使用した適切な作業制御を行えるようになる。 With this configuration, it becomes possible to perform appropriate work control using the work setting information without storing the work setting information for each mesh included in the entire field and the control information corresponding to the work setting information in the work vehicle.
 この発明の一実施形態では、前記作業車両には、前記メッシュ単位の作業設定情報を演算するための基礎情報を、前記作業対象圃場から検出する基礎情報検出部が搭載されており、前記作業車両は、作業中に、前記基礎情報検出部によって前記作業対象圃場内の所定位置から検出された前記基礎情報と、前記基礎情報が検出された位置を表す検出位置情報とを、前記サーバにリアルタイムで送信するように構成されており、前記サーバは、前記作業車両からの前記基礎情報と前記検出位置情報とを受信したときに、受信したこれらの情報に基づいて、前記メッシュ単位の作業設定情報を演算して、前記作業マップの一部として記憶するように構成されている。 In one embodiment of the present invention, the work vehicle is equipped with a basic information detection unit that detects basic information for calculating work setting information for each mesh from the work target field. Is to send the basic information detected from a predetermined position in the work target field by the basic information detection unit and the detection position information indicating the position where the basic information is detected to the server in real time during the work. The server is configured to transmit, and when the server receives the basic information and the detection position information from the work vehicle, the server sets work setting information for each mesh based on the received information. It is configured to be calculated and stored as part of the work map.
 この発明の一実施形態では、前記作業マップが、前記作業対象領域内の少なくとも一部の領域に含まれる複数のメッシュ単位の目標施肥量からなる施肥マップである。 In one embodiment of the present invention, the work map is a fertilization map composed of a plurality of mesh-based target fertilizer application amounts included in at least a part of the work target area.
 この発明の一実施形態では、前記作業マップが、前記作業対象領域内の少なくとも一部の領域に含まれる複数のメッシュ単位の目標施肥量からなる施肥マップであり、前記基礎情報が、作物の生育状況情報を演算するために用いられる生育状況演算用情報からなり、前記サーバは、前記作業車両から前記生育状況演算用情報と前記検出位置情報とを受信したときに、受信したこれらの情報に基づいて、前記メッシュ単位の生育状況情報を演算し、得られた前記メッシュ単位の生育状況情報に基づいて、前記メッシュ単位の目標施肥量を演算するように構成されている。 In one embodiment of the present invention, the work map is a fertilizer application map composed of a target fertilizer application amount in a plurality of mesh units included in at least a part of the work target area, and the basic information is the growth of a crop. It consists of growth status calculation information used for calculating status information, and when the server receives the growth status calculation information and the detection position information from the work vehicle, the server is based on the received information. Therefore, the growth status information of the mesh unit is calculated, and the target fertilizer application amount of the mesh unit is calculated based on the obtained growth status information of the mesh unit.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-mentioned or still other purposes, features and effects of the present invention will be clarified by the description of the embodiments described below with reference to the accompanying drawings.
図1は、本発明の一実施形態に係る作業制御システムの構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a work control system according to an embodiment of the present invention. 図2は、走行機、作業機および管理サーバの電気的構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of a traveling machine, a working machine, and a management server. 図3は、マップ属性テーブルの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a map attribute table. 図4は、特定ユーザが施肥を行う場合の作業制御システムの動作を説明するためのシーケンス図である。FIG. 4 is a sequence diagram for explaining the operation of the work control system when a specific user applies fertilizer. 図5は作業前通知情報入力画面の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a pre-work notification information input screen. 図6は、変形例を説明するための模式図であって、圃場内で作業車両(走行機)が施肥作業を行う様子を示す模式図である。FIG. 6 is a schematic view for explaining a modified example, and is a schematic view showing a state in which a work vehicle (traveling machine) performs fertilization work in a field. 図7は、図6に示される走行機の側面を模式的に示す拡大模式図である。FIG. 7 is an enlarged schematic view schematically showing the side surface of the traveling machine shown in FIG.
 図1は、本発明の一実施形態に係る作業制御システム101の構成を示す模式図である。作業制御システム101は、作業車両1によって行われる作業を制御するためのシステムである。 FIG. 1 is a schematic diagram showing a configuration of a work control system 101 according to an embodiment of the present invention. The work control system 101 is a system for controlling the work performed by the work vehicle 1.
 作業制御システム1は、作業車両1と、ユーザ端末4と、管理サーバ5とを含む。作業車両1は、ネットワーク6を介して管理サーバ5と通信可能である。 The work control system 1 includes a work vehicle 1, a user terminal 4, and a management server 5. The work vehicle 1 can communicate with the management server 5 via the network 6.
 この明細書において、作業車両1は、走行機と走行機に牽引される作業機とからなる作業車両や、走行機と作業機が一体となっている作業車両を含む。 In this specification, the work vehicle 1 includes a work vehicle including a traveling machine and a working machine towed by the traveling machine, and a working vehicle in which the traveling machine and the working machine are integrated.
 この実施形態では、作業車両1は、走行機2と、走行機2に牽引される作業機3とからなる。この実施形態では、走行機2は、トラクタである。作業機3の種類には、例えば、肥料散布機、農薬散布機、ロールベーラ、耕耘機、プラウ、レベラー、草刈機、播種機、収穫機等がある。なお、走行機と作業機が一体となっている作業車両としては、例えば、田植機、コンバイン等を挙げることができる。 In this embodiment, the work vehicle 1 includes a traveling machine 2 and a working machine 3 towed by the traveling machine 2. In this embodiment, the traveling machine 2 is a tractor. The types of working machines 3 include, for example, fertilizer sprayers, pesticide sprayers, roll balers, cultivators, plows, levelers, mowers, sowing machines, harvesters and the like. Examples of the work vehicle in which the traveling machine and the working machine are integrated include a rice transplanter, a combine harvester, and the like.
 作業車両1は、特定ユーザが所有する圃場に対して作業を行う。ユーザ端末4は、特定ユーザが使用するコンピュータである。この実施形態では、ユーザ端末4としては、スマートフォン、タブレット型PC等の携帯型端末が用いられる。 The work vehicle 1 works on a field owned by a specific user. The user terminal 4 is a computer used by a specific user. In this embodiment, as the user terminal 4, a portable terminal such as a smartphone or a tablet PC is used.
 管理サーバ5は、管理センター7内に設けられている。管理サーバ5は、複数のユーザが所有する各圃場に対して行われる1または複数の作業に使用される作業マップを記憶している。しかし、説明の便宜上、管理サーバ5は、特定ユーザが所有する各圃場に対して行われる1または複数の作業に使用される作業マップのみを記憶しているものとする。作業マップは、圃場内の少なくとも一部の領域に含まれるメッシュ単位の作業設定情報からなる。 The management server 5 is provided in the management center 7. The management server 5 stores a work map used for one or more works performed on each field owned by a plurality of users. However, for convenience of explanation, it is assumed that the management server 5 stores only the work map used for one or more works performed on each field owned by the specific user. The work map consists of work setting information for each mesh included in at least a part of the area in the field.
 作業設定情報としては、目標肥料散布量(以下において、「目標施肥量」という場合がある。)、目標農薬散布量等が挙げられる。メッシュとは、圃場を複数の矩形状(この実施形態では正方形状)の小領域に分割した場合の個々の小領域を意味する。 The work setting information includes the target fertilizer application amount (hereinafter, may be referred to as "target fertilizer application amount"), the target pesticide application amount, and the like. The mesh means individual subregions when the field is divided into a plurality of rectangular (square in this embodiment) subregions.
 図2は、走行機2、作業機3および管理サーバ5の電気的構成を示すブロック図である。 FIG. 2 is a block diagram showing the electrical configurations of the traveling machine 2, the working machine 3, and the management server 5.
 走行機2は、制御部(以下、「走行機制御部10」という。)を含む。走行機制御部10は、CPUおよびメモリ(揮発性メモリ、不揮発性メモリ等)を備えたマイクロコンピュータを含む。走行機制御部10は、走行機2の動作(前進、後進、停止、旋回等の動作)を制御する。走行機制御部10には、走行機2の各部を制御するための複数のコントロ-ラ(コントローラ群11)が電気的に接続されている。複数のコントローラは、エンジンの回転数等を制御するエンジンコントローラ、走行機2の車速を制御する車速コントローラ、走行機2の前輪の転舵角を制御する操向コントローラ、PTO軸の回転を制御するPTO軸コントローラ等を含む。 The traveling machine 2 includes a control unit (hereinafter, referred to as "traveling machine control unit 10"). The traveling machine control unit 10 includes a microcomputer provided with a CPU and a memory (volatile memory, non-volatile memory, etc.). The traveling machine control unit 10 controls the operation of the traveling machine 2 (movements such as forward movement, reverse movement, stop, turning, etc.). A plurality of controllers (controller group 11) for controlling each part of the traveling machine 2 are electrically connected to the traveling machine control unit 10. The plurality of controllers control the engine controller that controls the engine speed and the like, the vehicle speed controller that controls the vehicle speed of the traveling machine 2, the steering controller that controls the steering angle of the front wheels of the traveling machine 2, and the rotation of the PTO axis. Includes PTO axis controller and the like.
 走行機制御部10には、さらに、位置情報算出部12、通信部13等が接続されている。 The position information calculation unit 12, the communication unit 13, and the like are further connected to the traveling machine control unit 10.
 位置情報算出部12には、衛星信号受信用アンテナ14が電気的に接続されている。衛星信号受信用アンテナ14は、衛星測位システムを構成する測位衛星8(図1参照)からの信号を受信するものである。衛星測位システムは、たとえば、GNSS(Global Navigation Satellite System)である。位置情報算出部12は、衛星信号受信用アンテナ14で受信された測位信号に基づいて、走行機2(厳密には、衛星信号受信用アンテナ14)の位置を算出する。具体的には、位置情報算出部12は、時刻情報と位置情報とを含む測位情報を生成する。位置情報は、例えば、緯度情報と経度情報とからなる。 The satellite signal receiving antenna 14 is electrically connected to the position information calculation unit 12. The satellite signal receiving antenna 14 receives signals from the positioning satellites 8 (see FIG. 1) constituting the satellite positioning system. The satellite positioning system is, for example, GNSS (Global Navigation Satellite System). The position information calculation unit 12 calculates the position of the traveling machine 2 (strictly speaking, the satellite signal receiving antenna 14) based on the positioning signal received by the satellite signal receiving antenna 14. Specifically, the position information calculation unit 12 generates positioning information including time information and position information. The position information includes, for example, latitude information and longitude information.
 通信部13は、走行業機制御部10が、ネットワーク6を介して管理サーバ5と通信するための通信インターフェースである。 The communication unit 13 is a communication interface for the traveling machine control unit 10 to communicate with the management server 5 via the network 6.
 作業機3は、作業機3の動作を制御する制御部(以下、「作業機制御部20」という。)を含む。作業機制御部20は、CPUおよびメモリ(揮発性メモリ、不揮発性メモリ等)を備えたマイクロコンピュータを含む。作業機制御部20は、CAN(Controller Area Network)を介して走行機制御部10に接続されている。 The work machine 3 includes a control unit (hereinafter, referred to as "work machine control unit 20") that controls the operation of the work machine 3. The work equipment control unit 20 includes a microcomputer provided with a CPU and a memory (volatile memory, non-volatile memory, etc.). The work machine control unit 20 is connected to the traveling machine control unit 10 via a CAN (Controller Area Network).
 作業機制御部20には、作業用アクチュエータ21等が接続されている。作業機3が肥料散布機である場合には、作業用アクチュエータ21は、例えば、肥料貯留タンクの底部に設けられた電子シャッタを駆動するためのアクチュエータである。作業機3が農薬散布機である場合には、作業用アクチュエータ21は、例えば、農薬貯留薬タンクから吐出ノズルに農薬を供給するためのポンプを駆動するためのアクチュエータである。作業機3が播種機である場合には、作業用アクチュエータ21は、例えば、種子収容タンクから種子を繰り出す繰出装置を駆動するためのアクチュエータである。 A work actuator 21 or the like is connected to the work machine control unit 20. When the work machine 3 is a fertilizer spreader, the work actuator 21 is, for example, an actuator for driving an electronic shutter provided at the bottom of a fertilizer storage tank. When the work machine 3 is a pesticide sprayer, the work actuator 21 is, for example, an actuator for driving a pump for supplying a pesticide from a pesticide storage drug tank to a discharge nozzle. When the working machine 3 is a seeding machine, the working actuator 21 is, for example, an actuator for driving a feeding device for feeding seeds from a seed storage tank.
 管理サーバ5は、管理サーバ5を制御する制御部(以下、「サーバ制御部30」という。)を含む。制御部30は、CPUおよびメモリ(揮発性メモリ、不揮発性メモリ等)30Aを備えたマイクロコンピュータを含む。サーバ制御部30には、通信部31、操作表示部32、操作部33および記憶部34が電気的に接続されている。 The management server 5 includes a control unit (hereinafter, referred to as "server control unit 30") that controls the management server 5. The control unit 30 includes a microcomputer provided with a CPU and a memory (volatile memory, non-volatile memory, etc.) 30A. The communication unit 31, the operation display unit 32, the operation unit 33, and the storage unit 34 are electrically connected to the server control unit 30.
 通信部31は、サーバ制御部30がネットワーク6を介して走行機制御部10やユーザ端末4と通信するための通信インターフェースである。操作表示部32は、例えば、タッチパネル式ディスプレイからなる。操作部33は、例えば、キーボード、マウス等を含む。 The communication unit 31 is a communication interface for the server control unit 30 to communicate with the traveling machine control unit 10 and the user terminal 4 via the network 6. The operation display unit 32 includes, for example, a touch panel display. The operation unit 33 includes, for example, a keyboard, a mouse, and the like.
 記憶部34は、ハードディスク、不揮発性メモリ等の記憶デバイスから構成されている。記憶部34には、複数の作業マップファイル(作業マップファイル群)34A、マップ属性テーブル34B等が格納されている。 The storage unit 34 is composed of a storage device such as a hard disk and a non-volatile memory. A plurality of work map files (work map file group) 34A, map attribute table 34B, and the like are stored in the storage unit 34.
 作業マップファイル群34Aは、説明の便宜上、特定ユーザが所有する圃場で行われる作業に使用される作業マップファイル(以下、単に「作業マップ」という)のみを含んでいるものとする。この実施形態では、ある圃場に対する作業マップは、圃場内の各メッシュの位置を特定するための位置情報と、各メッシュに対する作業設定情報とを含んでいる。メッシュの位置を特定するための位置情報は、例えば、当該メッシュの4頂点の位置情報または4頂点のうちの一組の対頂点の位置情報からなる。メッシュの位置を特定するための位置情報は、当該メッシュの中心の位置情報を含んでいてもよい。 For convenience of explanation, the work map file group 34A shall include only the work map file (hereinafter, simply referred to as "work map") used for the work performed in the field owned by the specific user. In this embodiment, the work map for a field includes position information for identifying the position of each mesh in the field and work setting information for each mesh. The position information for specifying the position of the mesh includes, for example, the position information of the four vertices of the mesh or the position information of a pair of vertices out of the four vertices. The position information for specifying the position of the mesh may include the position information of the center of the mesh.
 図3に示すように、マップ属性テーブル34Bには、作業マップファイル群34Aに含まれている各作業マップの属性情報が、作業マップ毎に記憶されている。属性情報は、圃場番号と、作業識別情報(作業ID)と、作業名と、ファイル名とを含む。 As shown in FIG. 3, in the map attribute table 34B, the attribute information of each work map included in the work map file group 34A is stored for each work map. The attribute information includes a field number, work identification information (work ID), a work name, and a file name.
 ある作業マップに対する圃場番号は、当該作業マップが使用されるべき圃場の番号である。ある作業マップに対する作業識別情報(作業ID)は、当該作業マップが使用されるべき作業を識別するための情報である。ある作業マップに対する作業名は、当該作業マップが使用されるべき作業の名称である。ある作業マップに対するファイル名は、当該作業マップ(作業マップファイル)のファイル名である。 The field number for a work map is the number of the field in which the work map should be used. The work identification information (work ID) for a certain work map is information for identifying the work for which the work map should be used. The work name for a work map is the name of the work for which the work map should be used. The file name for a work map is the file name of the work map (work map file).
 図3の例では、特定ユーザが所有している圃場としては、圃場番号が“001”である圃場と圃場番号が“002”である圃場とがある。また、作業マップを使用して行われる作業としては、播種作業と、肥料散布作業(以下、「施肥作業」という場合がある。)と、農薬散布作業とがある。 In the example of FIG. 3, the fields owned by the specific user include a field having a field number of "001" and a field having a field number of "002". In addition, the work performed using the work map includes a sowing work, a fertilizer spraying work (hereinafter, may be referred to as “fertilizer application work”), and a pesticide spraying work.
 この実施形態では、播種作業に対する作業設定情報(メッシュ単位の作業設定情報)は、所定面積当たりの目標播種量である。施肥作業に対する作業設定情報は、所定面積当たりの目標施肥量である。農薬散布作業に対する作業設定情報は、所定面積当たりの目標農薬散布量である。 In this embodiment, the work setting information for the sowing work (work setting information for each mesh) is the target sowing amount per predetermined area. The work setting information for the fertilizer application work is the target fertilizer application amount per predetermined area. The work setting information for the pesticide spraying work is the target pesticide spraying amount per predetermined area.
 以下、特定ユーザが施肥作業を行う場合を例にとって、作業制御システムの動作について説明する。 Hereinafter, the operation of the work control system will be described by taking the case where a specific user performs fertilization work as an example.
 図4は、特定ユーザが施肥作業を行う場合の作業制御システムの動作を説明するためのシーケンス図である。 FIG. 4 is a sequence diagram for explaining the operation of the work control system when a specific user performs fertilization work.
 施肥作業を行う場合には、特定ユーザは、まず、ユーザ端末4を操作して、施肥作業を行おうとする圃場(作業対象圃場)の圃場番号と、施肥作業を表す作業識別情報(作業ID)と、作業に使用する作業車両1を識別するための車両識別情報とを含む作業前通知情報を、管理サーバ5に送信する(ステップS1)。 When performing the fertilizer application work, the specific user first operates the user terminal 4 to obtain the field number of the field (work target field) where the fertilizer application work is to be performed and the work identification information (work ID) indicating the fertilizer application work. And the pre-work notification information including the vehicle identification information for identifying the work vehicle 1 used for the work is transmitted to the management server 5 (step S1).
 具体的には、特定ユーザは、ユーザ端末4を操作して、管理サーバ5から、作業対象圃場の圃場番号、作業識別情報および車両識別情報を入力するための作業前通知情報入力用のウェブページ(特定ユーザ専用のウェブページ)を取得する。これにより、図5に示すような、作業前通知情報入力画面41がユーザ端末4に表示される。 Specifically, the specific user operates the user terminal 4 to input the field number of the work target field, the work identification information, and the vehicle identification information from the management server 5, a web page for inputting pre-work notification information. (Web page dedicated to a specific user) is acquired. As a result, the pre-work notification information input screen 41 as shown in FIG. 5 is displayed on the user terminal 4.
 作業前通知情報入力画面41は、圃場・作業選択画面42と、車両情報入力画面43と、確定ボタン44を含む。この実施形態では、車両識別情報は、走行機2の型式および機番からなる。 The pre-work notification information input screen 41 includes a field / work selection screen 42, a vehicle information input screen 43, and a confirmation button 44. In this embodiment, the vehicle identification information consists of the model and machine number of the traveling machine 2.
 圃場・作業選択画面42には、前述のマップ属性テーブル34Bに記憶されているファイル名毎に、チェックボックスと、圃場番号と、作業名とが表示される。車両情報入力画面43は、型式入力ボックス43Aと、機番入力ボックス43Bとを含む。 On the field / work selection screen 42, a check box, a field number, and a work name are displayed for each file name stored in the map attribute table 34B described above. The vehicle information input screen 43 includes a model input box 43A and a machine number input box 43B.
 特定ユーザは、圃場・作業選択画面42に表示されている圃場番号および作業名の複数の組合せのうち、これから行おうとする作業に適合した組合せを選択する。また、特定ユーザは、これから行おうとする作業に使用される作業車両1(この例では走行機2)の型式および機番を、それぞれ、型式入力ボックス43Aおよび機番入力ボックス43Bに入力する。 The specific user selects a combination suitable for the work to be performed from among the plurality of combinations of the field number and the work name displayed on the field / work selection screen 42. Further, the specific user inputs the model and the machine number of the work vehicle 1 (traveling machine 2 in this example) to be used for the work to be performed in the model input box 43A and the machine number input box 43B, respectively.
 この例では、圃場・作業選択画面42上で、“001”番の圃場と肥料散布作業(施肥作業)との組合せが選択されたものとする。また、型式入力ボックス43Aおよび機番入力ボックス43Bに、走行機2の型式および機番が入力されたものとする。そして、特定ユーザは、確定ボタン44を押す。これにより、圃場番号、作業識別情報および車両識別情報を含む作業前通知情報が、管理サーバ5に送信される。 In this example, it is assumed that the combination of the field "001" and the fertilizer spraying work (fertilizer application work) is selected on the field / work selection screen 42. Further, it is assumed that the model and the machine number of the traveling machine 2 are input to the model input box 43A and the machine number input box 43B. Then, the specific user presses the confirmation button 44. As a result, pre-work notification information including the field number, work identification information, and vehicle identification information is transmitted to the management server 5.
 管理サーバ5は、作業前通知情報を受信すると、作業前通知情報をメモリ(作業メモリ)30Aに記憶する(ステップS2)。 When the management server 5 receives the pre-work notification information, it stores the pre-work notification information in the memory (working memory) 30A (step S2).
 この後、作業車両1を使用した施肥作業が開始されると、走行機制御部10は、位置情報算出部12によって生成された測位情報および当該作業車両1の車両識別情報(この例では、走行機2の型式および機番)を、管理サーバ5に送信する(ステップS3)。測位情報および車両識別情報は、例えば、1秒間隔で送信される。 After that, when the fertilizer application work using the work vehicle 1 is started, the traveling machine control unit 10 receives the positioning information generated by the position information calculation unit 12 and the vehicle identification information of the work vehicle 1 (in this example, traveling). The model and machine number of the machine 2) are transmitted to the management server 5 (step S3). Positioning information and vehicle identification information are transmitted, for example, at 1-second intervals.
 サーバ制御部30は、測位情報および車両識別情報を受信すると、作業マップファイル群)34Aから受信した車両識別情報に応じた作業マップを取得して、メモリ30Aに記憶する(ステップS4)。 When the server control unit 30 receives the positioning information and the vehicle identification information, it acquires the work map corresponding to the vehicle identification information received from the work map file group) 34A and stores it in the memory 30A (step S4).
 具体的には、測位情報および車両識別情報を受信すると、サーバ制御部30は、まず、メモリ30Aに記憶されている作業前通知情報のうち、受信した車両識別情報に対応する作業前通知情報から、圃場番号および作業識別情報を取得する。次に、サーバ制御部30は、取得した圃場番号および作業識別情報の組み合わせに応じたファイル名を、マップ属性テーブル34Bから取得する。そして、サーバ制御部30は、取得したファイル名に対応する作業マップを、作業マップファイル群34Aから取得して、メモリ30Aに記憶する。 Specifically, when the positioning information and the vehicle identification information are received, the server control unit 30 first starts with the pre-work notification information corresponding to the received vehicle identification information among the pre-work notification information stored in the memory 30A. , Get field number and work identification information. Next, the server control unit 30 acquires the file name corresponding to the combination of the acquired field number and the work identification information from the map attribute table 34B. Then, the server control unit 30 acquires the work map corresponding to the acquired file name from the work map file group 34A and stores it in the memory 30A.
 この例では、“001”番の圃場と肥料散布作業(施肥作業)との組合せに対応する作業マップ(ファイル名がF02.taskである施肥マップ)が、マップ属性テーブル34Bから取得されてメモリ30Aに一時的に記憶される。 In this example, the work map (fertilizer application map whose file name is F02.task) corresponding to the combination of the field No. "001" and the fertilizer application work (fertilizer application work) is acquired from the map attribute table 34B and has a memory of 30A. Is temporarily stored in.
 次に、サーバ制御部30は、メモリ30Aに記憶された作業マップから、受信した測位情報内の位置情報に応じたメッシュ単位の作業設定情報を取得する(ステップS5)。次に、サーバ制御部30は、ステップS5で取得された作業設定情報から作業機3(より詳しくは作業用アクチュエータ21)を制御するための制御情報を作成する(ステップS6)。そして、サーバ制御部30は、作成した情報を作業制御情報として、走行機制御部10に送信する(ステップS7)。 Next, the server control unit 30 acquires work setting information in mesh units according to the position information in the received positioning information from the work map stored in the memory 30A (step S5). Next, the server control unit 30 creates control information for controlling the work machine 3 (more specifically, the work actuator 21) from the work setting information acquired in step S5 (step S6). Then, the server control unit 30 transmits the created information as work control information to the traveling machine control unit 10 (step S7).
 走行機制御部10は、受信した作業制御情報を作業機制御部20に与える(ステップS8)。作業機制御部20は、作業車両制御部10から与えられた作業制御情報を用いて、作業用アクチュエータ21を制御する(ステップS9)。この例では、これにより、作業対象のメッシュに対する単位面積当たりの施肥量が、作業マップ内の当該メッシュに対応した目標施肥量となるように制御される。 The traveling machine control unit 10 gives the received work control information to the work machine control unit 20 (step S8). The work machine control unit 20 controls the work actuator 21 using the work control information given by the work vehicle control unit 10 (step S9). In this example, this controls the amount of fertilizer applied per unit area to the mesh to be worked so as to be the target amount of fertilizer applied to the mesh in the work map.
 以下、走行御部10から測位情報および車両識別情報が管理サーバ5に送信される毎に、ステップS4からステップS9までの処理と同様な処理が繰り返し実行される。 Hereinafter, every time the traveling unit 10 transmits the positioning information and the vehicle identification information to the management server 5, the same processing as the processing from step S4 to step S9 is repeatedly executed.
 前述の実施形態では、圃場全体に含まれるメッシュ毎の作業設定情報やそれに対応する制御情報を作業車両1に記憶することなく、作業設定情報を使用した適切な作業制御を行えるようになる。 In the above-described embodiment, it is possible to perform appropriate work control using the work setting information without storing the work setting information for each mesh included in the entire field and the control information corresponding thereto in the work vehicle 1.
 前述の実施形態では、サーバ制御部30は、図4のステップS5で取得された作業設定情報から作業車両1(作業機3)を制御するための制御情報を作成し、作成した情報を作業制御情報として、走行機制御部10に送信している(ステップS6参照)。しかし、サーバ制御部30は、図4のステップS5で取得された作業設定情報を、そのまま走行機制御部10に送信してもよい。この場合には、走行機制御部10または作業機制御部20によって、作業設定情報から制御情報が生成され、生成された制御情報に基づいて作業用アクチュエータ21が制御される。 In the above-described embodiment, the server control unit 30 creates control information for controlling the work vehicle 1 (work machine 3) from the work setting information acquired in step S5 of FIG. 4, and controls the created information. As information, it is transmitted to the traveling machine control unit 10 (see step S6). However, the server control unit 30 may transmit the work setting information acquired in step S5 of FIG. 4 to the traveling machine control unit 10 as it is. In this case, the traveling machine control unit 10 or the working machine control unit 20 generates control information from the work setting information, and the working actuator 21 is controlled based on the generated control information.
 また、前述の実施形態では、サーバ制御部30は、作業制御情報を走行機制御部10に送信している(ステップS7参照)。しかし、作業機制御部20にネットワーク6を介してサーバ制御部30と通信を行うための通信部を設けておき、サーバ制御部30から作業機制御部20に作業制御情報または作業設定情報を送信するようにしてもよい。 Further, in the above-described embodiment, the server control unit 30 transmits the work control information to the traveling machine control unit 10 (see step S7). However, the work machine control unit 20 is provided with a communication unit for communicating with the server control unit 30 via the network 6, and the server control unit 30 transmits work control information or work setting information to the work machine control unit 20. You may try to do it.
 また、前述の実施形態では、ある圃場に対して作業が行われる前に、当該圃場全体に含まれるメッシュ毎の作業設定情報が作成されて管理サーバ5に記憶されている場合について説明した。しかし、ある圃場に対して作業車両1による作業を行いながら、当該圃場内において作業車両1による作業がまだ行われていない領域の作業設定情報を作成していき、このようにして作成した作業設定情報を用いて作業を継続するようにしてもよい。このように、作業設定情報の作成と、作業車両1による作業とを同時に行うような実施形態を変形例ということにする。 Further, in the above-described embodiment, the case where the work setting information for each mesh included in the entire field is created and stored in the management server 5 before the work is performed on the field has been described. However, while the work vehicle 1 is performing the work on a certain field, the work setting information of the area in which the work by the work vehicle 1 is not yet performed is created, and the work setting created in this way is created. The information may be used to continue the work. In this way, an embodiment in which the work setting information is created and the work by the work vehicle 1 is performed at the same time is referred to as a modification.
 以下、施肥作業を行う場合を例にとって、変形例について説明する。図6は、圃場F内で作業車両1(走行機2)が施肥作業を行う様子を示す模式図である。図6では、説明の便宜上、作業機3は省略されている。走行機2は、手動運転によって走行されてもよいし、自動運転によって走行されてもよい。圃場F内には、作物を生育させるための複数の細長矩形状の作物生育領域Lが、ストライプ状に形成されている。作物生育領域Lの両端のうち、図6の下側の端部を手前側端といい、図6の上側の端部を奥側端ということにする。 Hereinafter, a modified example will be described by taking the case of performing fertilization work as an example. FIG. 6 is a schematic view showing a state in which the work vehicle 1 (traveling machine 2) performs fertilization work in the field F. In FIG. 6, the working machine 3 is omitted for convenience of explanation. The traveling machine 2 may be traveled by manual operation or by automatic operation. In the field F, a plurality of elongated rectangular crop growing regions L for growing crops are formed in a striped shape. Of both ends of the crop growing area L, the lower end of FIG. 6 is referred to as the front end, and the upper end of FIG. 6 is referred to as the back end.
 走行機2は、前側の左右の車輪および後側の左右の車輪がそれぞれ作物生育領域Lを挟むような姿勢で、作物生育領域Lに沿って移動しながら施肥作業を行う。走行機2は、例えば、最も左側の作物生育領域Lに対して手前側端から奥側端に向かって走行する。そして、当該作物生育領域Lの奥側端に到達すると、走行機2は、進行方向に向かって右方向に旋回して、右隣りの作物生育領域Lの奥側端に移動する。 The traveling machine 2 performs fertilization work while moving along the crop growing area L in a posture in which the left and right wheels on the front side and the left and right wheels on the rear side each sandwich the crop growing area L. The traveling machine 2 travels from the front end to the back end with respect to the leftmost crop growing area L, for example. Then, when the vehicle reaches the inner end of the crop growing area L, the traveling machine 2 turns to the right in the traveling direction and moves to the inner end of the crop growing area L adjacent to the right.
 次に、走行機2は、当該作物生育領域Lを奥側端から手前側端に向かって走行する。そして、当該作物生育領域Lの手前側端に到達すると、走行機2は、進行方向に向かって左向に旋回して、右隣りの作物生育領域Lの手前側端に移動する。このような走行動作が繰り返し行われる。したがって、走行機2の移動経路は、一般的には、図6に破線で示すように、つづら折り状となる。 Next, the traveling machine 2 travels in the crop growing area L from the back end to the front end. Then, when the vehicle reaches the front end of the crop growing area L, the traveling machine 2 turns to the left in the traveling direction and moves to the front end of the crop growing area L adjacent to the right. Such a traveling operation is repeatedly performed. Therefore, the movement path of the traveling machine 2 is generally a zigzag shape as shown by a broken line in FIG.
 走行機2には、図6および図7に示すとともに図2に一点鎖線で示すように、前方、左方および右方の領域の作物を撮影するためのマルチスペクトルカメラ51,52,53が取り付けられている。より具体的には、マルチスペクトルカメラ51,52,53は、それぞれ基端部が走行機2に固定された支持アーム54,55,56の先端部に下向きのまたは斜め下向きの姿勢で取り付けられている。 The traveling machine 2 is equipped with multispectral cameras 51, 52, 53 for photographing crops in the front, left, and right regions, as shown in FIGS. 6 and 7, and as shown by the alternate long and short dash line in FIG. Has been done. More specifically, the multispectral cameras 51, 52, and 53 are attached to the tips of the support arms 54, 55, and 56 whose base ends are fixed to the traveling machine 2, respectively, in a downward or diagonally downward posture. There is.
 マルチスペクトルカメラ51,52,53は、例えば、可視赤色光と近赤外光の画像を撮影できるカメラである。マルチスペクトルカメラ51,52,53によって撮影された画像に基づいて、撮影領域における正規化差植生指数(NDVI : Normalized Difference Vegetation Index)を演算することができる。NDVIは、作物の葉色を表しており、作物の生育状況を表す生育状況情報として用いることができる。したがって、メッシュ単位のNDVIに基づいて、メッシュ単位の目標施肥量(作業設定情報)を演算することができる。この場合、目標施肥量は、NDVIが高いほど少なくなるように演算される。NDVIは、作業設定情報を演算するために用いられる「基礎情報」の一例である。 The multispectral cameras 51, 52, and 53 are, for example, cameras capable of capturing images of visible red light and near infrared light. The normalized difference vegetation index (NDVI: Normalized Difference Vegetation Index) in the imaging region can be calculated based on the images captured by the multispectral cameras 51, 52, and 53. The NDVI represents the leaf color of the crop and can be used as the growth status information indicating the growth status of the crop. Therefore, the target fertilizer application amount (work setting information) for each mesh can be calculated based on the NDVI for each mesh. In this case, the target fertilizer application amount is calculated so that the higher the NDVI, the smaller the amount. NDVI is an example of "basic information" used to calculate work setting information.
 走行機2には、さらに、図2に一点鎖線で示すように、走行機2の方位(姿勢)を検出するための方位センサ(姿勢センサ)57が設けられている。方位センサ57としては、ジャイロセンサ、地磁気センサ、IMU(Inertial Measurement Unit)等を用いることができる。 The traveling machine 2 is further provided with an orientation sensor (attitude sensor) 57 for detecting the orientation (posture) of the traveling machine 2 as shown by a chain line in FIG. As the azimuth sensor 57, a gyro sensor, a geomagnetic sensor, an IMU (Inertial Measurement Unit), or the like can be used.
 位置情報算出部12によって算出される走行機2の位置情報と、方位センサ57によって検出される走行機2の向き(進行方向)と、走行機2の基準位置に対するマルチスペクトルカメラ51,52,53の位置および向きに基づいて、作業車両制御部10は、マルチスペクトルカメラ51,52,53が撮影している撮像領域の位置を特定することができる。 The position information of the traveling machine 2 calculated by the position information calculation unit 12, the direction (traveling direction) of the traveling machine 2 detected by the orientation sensor 57, and the multispectral cameras 51, 52, 53 with respect to the reference position of the traveling machine 2. Based on the position and orientation of, the work vehicle control unit 10 can specify the position of the imaging region captured by the multispectral cameras 51, 52, and 53.
 この変形例では、記憶部34に予め記憶される、ある圃場に対する施肥マップは、当該圃場内の各メッシュの位置を特定するための位置情報と、各メッシュに対する目標施肥量の初期値とからなる。目標施肥量の初期値は、零または所定値に設定される。 In this modification, the fertilizer application map for a certain field, which is stored in advance in the storage unit 34, includes position information for specifying the position of each mesh in the field and an initial value of the target fertilizer application amount for each mesh. .. The initial value of the target fertilizer application amount is set to zero or a predetermined value.
 この変形例では、作業車両制御部10およびサーバ制御部30は、作業車両1が施肥作業を行っている場合に、前述の実施形態と同様な動作を行う他に、次のような動作を行う。 In this modification, the work vehicle control unit 10 and the server control unit 30 perform the following operations in addition to the same operations as those in the above-described embodiment when the work vehicle 1 is performing fertilization work. ..
 すなわち、走行機制御部10は、所定時間毎に、各マルチスペクトルカメラ51,52,53によって撮影された撮像画像を、その撮像領域の位置を表す撮像位置情報とともに、管理サーバ5に送信する。サーバ制御部30は、カメラ51,52,53の撮像画像を受信する毎に、受信した各カメラ51,52,53の撮像画像に基づいて、各撮像画像に対応したNDVIを演算する。そして、サーバ制御部30は、演算されたNDVI毎に、当該NDVIと、それに対応する撮像位置情報とに基づいて、当該撮像位置情報に対応するメッシュの目標施肥量(作業設定情報)を演算する。そして、サーバ制御部30は、演算された当該メッシュの目標施肥量を用いて、ステップS4でメモリ20Aに記憶された作業マップ内の当該メッシュに対応する目標施肥量を更新する。 That is, the traveling machine control unit 10 transmits the captured images taken by the multispectral cameras 51, 52, and 53 to the management server 5 together with the imaging position information indicating the position of the imaging region at predetermined time intervals. Each time the server control unit 30 receives the captured images of the cameras 51, 52, 53, the server control unit 30 calculates the NDVI corresponding to each captured image based on the captured images of the received cameras 51, 52, 53. Then, the server control unit 30 calculates the target fertilizer application amount (work setting information) of the mesh corresponding to the imaging position information based on the NDVI and the imaging position information corresponding to the NDVI for each calculated NDVI. .. Then, the server control unit 30 updates the target fertilizer application amount corresponding to the mesh in the work map stored in the memory 20A in step S4 by using the calculated target fertilizer application amount of the mesh.
 したがって、この変形例では、作業車両1が作業を行っているときに、これから作業が行われるメッシュに対する目標施肥量(作業設定情報)がリアルタイムで作成され、メモリ20A内の施肥マップが更新される。そして、作業中に更新された施肥マップの内容に基づいて、作業機3が制御されることになる。 Therefore, in this modification, when the work vehicle 1 is performing the work, the target fertilizer application amount (work setting information) for the mesh to be worked on is created in real time, and the fertilizer application map in the memory 20A is updated. .. Then, the work machine 3 is controlled based on the contents of the fertilizer application map updated during the work.
 なお、図6の例では、作物生育領域Lを手前側端から奥側端に向かって作業車両2が走行している場合には、前側のマルチスペクトルカメラ51によって撮像された画像および右側のマルチスペクトルカメラ53によって撮像された画像に基づいて、これから作業が行われるメッシュに対する目標施肥量が作成される。一方、作物生育領域Lを奥側端から手前側端に向かって作業車両2が走行している場合には、前側のマルチスペクトルカメラ51によって撮像された画像および左側のマルチスペクトルカメラ52によって撮像された画像に基づいて、これから作業が行われるメッシュに対する目標施肥量が作成される。 In the example of FIG. 6, when the work vehicle 2 is traveling in the crop growing area L from the front end to the back end, the image captured by the front multispectral camera 51 and the right multi Based on the image captured by the spectrum camera 53, the target fertilizer application amount for the mesh to be worked on is created. On the other hand, when the work vehicle 2 is traveling in the crop growing area L from the back end to the front end, the image captured by the front multispectral camera 51 and the image captured by the left multispectral camera 52 are captured. Based on the image, the target fertilizer application amount for the mesh to be worked on is created.
 なお、変形例で実施される作業が農薬散布作業である場合には、農薬散布作業中に、マルチスペクトルカメラ51,52,53またはその他の種類のカメラによって作物を撮像し、得られた撮像画像から作物に付着している害虫の量を演算し、演算された害虫の量に基づいて、目標農薬散布量を演算すればよい。この場合、目標農薬散布量は、害虫量が多いメッシュほど多くなるように演算される。 When the work performed in the modified example is the pesticide spraying work, the crop is imaged by the multispectral cameras 51, 52, 53 or other types of cameras during the pesticide spraying work, and the captured image obtained is obtained. The amount of pests adhering to the crop can be calculated from, and the target amount of pesticide sprayed can be calculated based on the calculated amount of pests. In this case, the target pesticide application amount is calculated so that the mesh with a larger amount of pests has a larger amount.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used for clarifying the technical contents of the present invention, and the present invention is construed as being limited to these specific examples. Should not, the scope of the invention is limited only by the appended claims.
 この出願は、2019年3月26日に日本国特許庁に提出された特願2019-58823号に対応しており、その出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2019-58823 submitted to the Japan Patent Office on March 26, 2019, and the full disclosure of the application shall be incorporated herein by reference.
   1 作業車両
   2 走行機
   3 作業機
   4 ユーザ端末
   5 管理サーバ
   6 ネットワーク
   7 管理センター
   8 測位衛星(GNSS衛星)
  10 作業車両制御部
  11 コントローラ群
  12 位置情報算出部
  13 通信部
  14 衛星信号受信用アンテナ
  20 作業機制御部
  21 作業用アクチュエータ
  30 制御部
  30A メモリ
  31 通信部
  32 操作表示部
  33 操作部
  34 記憶部
  34A 作業マップファイル群
  34B マップ属性テーブル
  41 作業前通知情報入力画面
  51,52,53 マルチスペクトルカメラ
  57 方位センサ
 101 作業制御システム
1 Work vehicle 2 Traveling machine 3 Working machine 4 User terminal 5 Management server 6 Network 7 Management center 8 Positioning satellite (GNSS satellite)
10 Work vehicle control unit 11 Controller group 12 Position information calculation unit 13 Communication unit 14 Satellite signal reception antenna 20 Work equipment control unit 21 Work actuator 30 Control unit 30A Memory 31 Communication unit 32 Operation display unit 33 Operation unit 34 Storage unit 34A Work map file group 34B Map attribute table 41 Pre-work notification information input screen 51, 52, 53 Multispectral camera 57 Direction sensor 101 Work control system

Claims (4)

  1.  作業車両と、
     前記作業車両と通信可能であり、かつ作業対象圃場内の少なくとも一部の領域に含まれるメッシュ単位の作業設定情報からなる作業マップが記憶されるサーバとを備え、
     前記作業車両は、前記作業車両の位置を表す測位情報を前記サーバに送信し、当該測位情報に応じて前記サーバから送信される作業制御情報を受信し、受信した作業制御情報に基づいて前記作業機を制御するように構成されており、
     前記サーバは、前記作業車両から測位情報を受信したときに、前記作業マップから、受信した測位情報に応じた作業設定情報を取得し、取得した作業設定情報または当該作業設定情報から作成される制御情報からなる作業制御情報を、前記作業車両に送信するように構成されている、作業制御システム。
    With the work vehicle
    A server that can communicate with the work vehicle and stores a work map consisting of work setting information for each mesh included in at least a part of the work field is provided.
    The work vehicle transmits positioning information representing the position of the work vehicle to the server, receives work control information transmitted from the server in response to the positioning information, and performs the work based on the received work control information. It is configured to control the aircraft and
    When the server receives the positioning information from the work vehicle, the server acquires the work setting information corresponding to the received positioning information from the work map, and the acquired work setting information or the control created from the work setting information. A work control system configured to transmit work control information consisting of information to the work vehicle.
  2.  前記作業車両には、前記メッシュ単位の作業設定情報を演算するための基礎情報を、前記作業対象圃場から検出する基礎情報検出部が搭載されており、
     前記作業車両は、作業中に、前記基礎情報検出部によって前記作業対象圃場内の所定位置から検出された前記基礎情報と、前記基礎情報が検出された位置を表す検出位置情報とを、前記サーバにリアルタイムで送信するように構成されており、
     前記サーバは、前記作業車両からの前記基礎情報と前記検出位置情報とを受信したときに、受信したこれらの情報に基づいて、前記メッシュ単位の作業設定情報を演算して、前記作業マップの一部として記憶するように構成されている、請求項1に記載の作業制御システム。
    The work vehicle is equipped with a basic information detection unit that detects basic information for calculating work setting information for each mesh from the work target field.
    The work vehicle uses the server to obtain the basic information detected from a predetermined position in the work target field by the basic information detection unit and the detection position information indicating the position where the basic information is detected during the work. Is configured to send in real time to
    When the server receives the basic information and the detection position information from the work vehicle, the server calculates the work setting information for each mesh based on the received information, and one of the work maps. The work control system according to claim 1, which is configured to be stored as a unit.
  3.  前記作業マップが、前記作業対象領域内の少なくとも一部の領域に含まれる複数のメッシュ単位の目標施肥量からなる施肥マップである、請求項1または2に記載の作業制御システム。 The work control system according to claim 1 or 2, wherein the work map is a fertilizer application map composed of a plurality of mesh-based target fertilizer application amounts included in at least a part of the work target area.
  4.  前記作業マップが、前記作業対象領域内の少なくとも一部の領域に含まれる複数のメッシュ単位の目標施肥量からなる施肥マップであり、
     前記基礎情報が、作物の生育状況情報を演算するために用いられる生育状況演算用情報からなり、
     前記サーバは、前記作業車両から前記生育状況演算用情報と前記検出位置情報とを受信したときに、受信したこれらの情報に基づいて、前記メッシュ単位の生育状況情報を演算し、得られた前記メッシュ単位の生育状況情報に基づいて、前記メッシュ単位の目標施肥量を演算するように構成されている、請求項2に記載の作業制御システム。
    The work map is a fertilization map composed of a plurality of mesh-based target fertilizer application amounts included in at least a part of the work target area.
    The basic information consists of information for calculating the growth status used for calculating the growth status information of the crop.
    When the server receives the growth status calculation information and the detection position information from the work vehicle, the server calculates the growth status information for each mesh based on the received information, and obtains the above. The work control system according to claim 2, which is configured to calculate a target fertilizer application amount for each mesh based on growth status information for each mesh.
PCT/JP2020/000603 2019-03-26 2020-01-10 Work control system WO2020195007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-058823 2019-03-26
JP2019058823A JP7062610B2 (en) 2019-03-26 2019-03-26 Work control system

Publications (1)

Publication Number Publication Date
WO2020195007A1 true WO2020195007A1 (en) 2020-10-01

Family

ID=72611314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000603 WO2020195007A1 (en) 2019-03-26 2020-01-10 Work control system

Country Status (2)

Country Link
JP (1) JP7062610B2 (en)
WO (1) WO2020195007A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
CN114051810A (en) * 2021-11-10 2022-02-18 上海联适导航技术股份有限公司 Unmanned high-precision agricultural machine fertilization control method and system and intelligent agricultural machine
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429964B2 (en) 2020-04-27 2024-02-09 国立研究開発法人農業・食品産業技術総合研究機構 Base fertilizer amount calculation device, basal fertilizer amount calculation method, and basal fertilizer amount calculation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189791A1 (en) * 2013-05-20 2014-11-27 Elwha Llc Systems and methods for detecting soil characteristics
JP2018169826A (en) * 2017-03-30 2018-11-01 ヤンマー株式会社 Working vehicle for agricultural use
WO2019004305A1 (en) * 2017-06-28 2019-01-03 株式会社クボタ Agricultural support system, agricultural support device and agricultural support method
JP2019041729A (en) * 2017-09-06 2019-03-22 株式会社トプコン Farm machine controller, farm machine control method, and program for farm machine control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189791A1 (en) * 2013-05-20 2014-11-27 Elwha Llc Systems and methods for detecting soil characteristics
JP2018169826A (en) * 2017-03-30 2018-11-01 ヤンマー株式会社 Working vehicle for agricultural use
WO2019004305A1 (en) * 2017-06-28 2019-01-03 株式会社クボタ Agricultural support system, agricultural support device and agricultural support method
JP2019041729A (en) * 2017-09-06 2019-03-22 株式会社トプコン Farm machine controller, farm machine control method, and program for farm machine control

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
CN114051810A (en) * 2021-11-10 2022-02-18 上海联适导航技术股份有限公司 Unmanned high-precision agricultural machine fertilization control method and system and intelligent agricultural machine

Also Published As

Publication number Publication date
JP7062610B2 (en) 2022-05-06
JP2020156390A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020195007A1 (en) Work control system
JP6887323B2 (en) Combine and field farming map generation method
JP7086616B2 (en) Agricultural support equipment and agricultural support system
JP7375086B2 (en) Agricultural support system, agricultural support device, and agricultural support method
US5870689A (en) Scouting system for an agricultural field
JP6805928B2 (en) Work management system for work vehicles
EP3616487B1 (en) Agricultural machine with resonance vibration response detection
WO2021131978A1 (en) Agricultural work contract system and agricultural work contract server
DE102022207537A1 (en) MAP BASED CONTROL SYSTEM WITH POSITION ERROR CORRECTION FOR AGRICULTURAL MACHINERY
US10806074B2 (en) System for treatment of an agricultural field using an augmented reality visualization
US20200305338A1 (en) Agriculture support system
JP2024016273A (en) Work-related information management device and work-related information management system
JP7387347B2 (en) Farming support system
WO2020195008A1 (en) Work map provision server
CN113934232A (en) Virtual image control-based plant protection unmanned aerial vehicle air route planning system and method
JP7275348B2 (en) Work agent mediation system
JP7083082B2 (en) Work agent placement server
CN115136090A (en) Unmanned aerial vehicle system, operator and method for defining operation area
WO2023007835A1 (en) Management system, and method for managing access of agricultural machine to field
WO2023106158A1 (en) Route planning system for automatically operated farm machine
US20230292645A1 (en) Traveling assistance system for agricultural machine
US20230394893A1 (en) Management system
US20230389461A1 (en) Management system
JP7152212B2 (en) Growth information display system
JP2021015557A (en) Agricultural field monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776707

Country of ref document: EP

Kind code of ref document: A1