WO2020194968A1 - Method for producing extracellular membrane vesicle-binding carrier - Google Patents

Method for producing extracellular membrane vesicle-binding carrier Download PDF

Info

Publication number
WO2020194968A1
WO2020194968A1 PCT/JP2019/051128 JP2019051128W WO2020194968A1 WO 2020194968 A1 WO2020194968 A1 WO 2020194968A1 JP 2019051128 W JP2019051128 W JP 2019051128W WO 2020194968 A1 WO2020194968 A1 WO 2020194968A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
phosphatidylserine
binding
carrier
cell membrane
Prior art date
Application number
PCT/JP2019/051128
Other languages
French (fr)
Japanese (ja)
Inventor
慶一 唐杉
正克 西八條
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2020194968A1 publication Critical patent/WO2020194968A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for efficiently producing an outer cell membrane vesicle-binding carrier.
  • Patent Document 1 a carrier on which a T cell immunoglobulin / mucin domain-containing molecule (Tim) protein is immobilized.
  • the cell membrane of the outer cell membrane vesicle contains phosphatidylserine, and the Tim protein adsorbs phosphatidylserine in the presence of calcium ions, so that the carrier can adsorb exosomes.
  • Patent Document 2 describes that Mastoparan-X, Hemolysin, and LL37 have exosome-binding activity, and these are immobilized on a carrier to purify exosomes.
  • an object of the present invention is to provide a method for efficiently producing an outer cell membrane vesicle-binding carrier.
  • the present inventors have conducted extensive research to solve the above problems.
  • peptides that have binding properties to phosphatidylserine present in the cell membrane of extracellular membrane vesicles and do not have disulfide bonds in the molecule are disrupted in the culture medium or in the cell even if they are produced by transformed cells.
  • the present invention has been completed by finding that it can be efficiently isolated without agglomeration in the liquid and that an extracellular membrane vesicle-binding carrier can be efficiently produced.
  • the present invention will be shown.
  • a method for producing an outer cell membrane vesicle-binding carrier A step of obtaining transformed cells by transforming a host cell with a nucleic acid containing a base sequence encoding a phosphatidylserine-binding peptide having no disulfide bond in the molecule. The step of culturing the transformed cells, A step of purifying the phosphatidylserine-binding peptide from the cultured transformed cells, and A production method comprising the step of immobilizing the purified phosphatidylserine-binding peptide on a water-insoluble carrier.
  • the phosphatidylserine-binding peptide is a C2 region of synaptotagmin, a C2 region of protein kinases ⁇ , ⁇ I, ⁇ II, and ⁇ , a C2 region of MFG-E8, and an I region, II region, and III region of annexin V.
  • the method according to [1] above which is one or more phosphatidylserine-binding peptides selected from the IV region.
  • [3] The method according to the above [1] or [2], wherein the phosphatidylserine-binding peptide is immobilized on the water-insoluble carrier via a linker.
  • a method for purifying outer cell membrane vesicles The step of producing the outer cell membrane vesicle-binding carrier by the method according to any one of the above [1] to [6], and It is characterized by including a step of contacting a liquid sample containing outer cell membrane vesicles with the outer cell membrane vesicle-binding carrier and adsorbing the outer cell membrane vesicles on the outer cell membrane vesicle-binding carrier. how to.
  • the method of the present invention can be used for detecting and purifying outer cell membrane vesicles because of a diagnostic method for detecting outer cell membrane vesicles and a treatment method using outer cell membrane vesicles themselves as an active ingredient.
  • a carrier that exhibits binding to outer cell membrane vesicles can be efficiently produced. Therefore, the present invention is extremely industrially excellent as it promotes the practical application of the technique for utilizing outer cell membrane vesicles.
  • FIG. 1 is a graph showing the response of a peptide-immobilized flow cell according to the present invention to a phosphatidylserine-containing liposome.
  • FIG. 2 is a graph showing the response of the peptide-immobilized flow cell according to the present invention to milk exosomes.
  • FIG. 3 is a graph showing the amount of milk exosomes recovered by magnetic beads on which the peptide according to the present invention is immobilized.
  • FIG. 4 is a polyacrylamide gel photograph showing the results of SDS-PAGE of the soluble fraction of homogenates of transformed cells and the precipitation suspension.
  • transformed cells are obtained by transforming a host cell with a nucleic acid containing a nucleotide sequence encoding a phosphatidylserine-binding peptide having no disulfide bond in the molecule.
  • the phosphatidylserine-binding peptide is not particularly limited as long as it has an affinity for phosphatidylserine and does not have a disulfide bond in the molecule.
  • a peptide having a disulfide bond in the molecule is produced by a transformation method for mass production, it aggregates without being correctly folded in a homogenate solution of transformed cells, which makes purification difficult and significantly reduces production efficiency. There is.
  • the present inventors have clarified that a peptide having no disulfide bond in the molecule, even if it contains a cysteine residue, can be produced with good efficiency by the transformation method.
  • phosphatidylserine-binding peptide examples include the C2 region of synaptotagmin, the C2 region of protein kinase ⁇ , the C2 region of protein kinase ⁇ I, the C2 region of protein kinase ⁇ II, the C2 region of protein kinase ⁇ , and the C2 region of MFG-E8. , One or more phosphatidylserine-binding peptides selected from the I region of annexin V, the II region of annexin V, the III region of annexin V, and the IV region of annexin V.
  • Synaptotagmin is a membrane protein that is abundantly abundant on synaptic vesicles, and is present in various species such as plants as well as animals, and the existence of 17 types of isoforms has been reported in humans and mice.
  • Common synaptotagmin commonly has a lumen region, a transmembrane region, a spacer region, and a cytoplasmic region from the N-terminal side, and has two C2 regions in the cytoplasmic region.
  • the C2 region includes a C2A region and a C2B region from the N-terminal side, both of which show binding properties to phospholipids such as phosphatidylserine in the presence of calcium ions, but the C2B region further exhibits inositol polyphosphoric acid in the absence of calcium ions. Shows binding to acid, adapter complex AP-2, and neurexin.
  • synaptotagmin 1, 2, 3, 5, 6, 7, 9, and 10 bind to calcium ions, and other synaptotagmin do not bind to calcium ions.
  • These synaptotagmins that bind to calcium ions function as calcium ion sensors that release neurotransmitters in a calcium ion concentration-dependent manner. From the viewpoint of maintaining the structure and activity of the outer cell membrane vesicles to be recovered and the activity of the ligand peptide, it is preferable to dissociate the outer cell membrane vesicles from the carrier under mild conditions as much as possible.
  • synaptotagmins 1, 2, 3, 5, 6, 7, 9, and 10 capable of binding phospholipids such as phosphatidylserine in the presence of calcium ions are particularly preferable.
  • the C2 region of the synaptotagmin used in the present invention may be only the C2A region or the C2B region, or may be both the C2A region and the C2B region.
  • the C2A region is preferable from the viewpoint of specificity for phosphatidylserine, and both the C2A region and the C2B region may be used.
  • the nucleic acid containing the base sequence encoding the C2 region of synaptotagmin used in this step is not particularly limited as long as it contains at least the base sequence encoding the C2A region and / or C2B region of synaptotagmin.
  • the base sequence is designed by back-translating the amino acid sequence of the desired C2 region.
  • Escherichia coli is used as a cell, it is preferable to use an Escherichia coli optimized codon.
  • amino acid sequences of the C2A region and C2B region of synaptotagmin 1 were added to SEQ ID NO: 1, and the recognition site of the restriction enzyme BamHI was added to the N-terminal side and the recognition site of the restriction enzyme EcoRI was added to the C-terminal side.
  • the base sequence in which the amino acid sequence is back-translated based on the E. coli optimized codon is shown in SEQ ID NO: 2.
  • Protein kinase C is a phospholipid-dependent serine / threonine kinase that is activated by extracellular stimuli such as growth factors, hormones, and neurotransmitters.
  • Mammalian protein kinase C is composed of at least 11 isozymes and consists of four conserved domains (C1-C4).
  • these isozymes are classified into the following three types from the viewpoint of structure and control factors. The first is the conventional type ( ⁇ , ⁇ I, ⁇ II, ⁇ ) activated by diacylglycerol (DAG), calcium ion, and phospholipid (particularly phosphatidylserine), and has two C1 regions (DAG binding domains) and C2 regions (DAG binding domain).
  • the second is composed of a new type ( ⁇ , ⁇ , ⁇ , ⁇ ) that is activated by DAG but does not require calcium ions and is continuous with C1 region, C2-like region, C3 region and C4 region, but C2.
  • the acyclic region does not bind calcium.
  • the third is atypical ( ⁇ , ⁇ , ⁇ ) that does not require DAG or calcium ions for activation and consists of one C1 region, C3 region and C4 region.
  • the amino acid sequence of the C2 region of the protein kinase C ⁇ (PDB: 3GPE_A) derived from Rattus norvegicus is added to SEQ ID NO: 5, the recognition site of the restriction enzyme BamHI on the N-terminal side, and the restriction enzyme EcoRI on the C-terminal side.
  • the base sequence in which the amino acid sequence to which the recognition site is added is back-translated based on the Escherichia coli optimized codon is shown in SEQ ID NO: 6.
  • MFG-E8 Milk fat globe EGF / factor VIII
  • MFG-E8 is a glycoprotein that is abundantly secreted from epithelial cells during the lactation period of mammals and is also called lactahedrin. From the N-terminus, it consists of a signal sequence, two EGF-equivalent domains, and a factor VIII-equivalent domain (C2 region), and the C2 region binds to the anionic phospholipid phosphatidylserine.
  • the RGD region present at the N-terminus binds to ⁇ v ⁇ 3 integrin.
  • MFG-E8 is also involved in phagocytosis of dead cells, and promotes phagocytosis by binding to phosphatidylserine, which is abundant on the surface of apoptotic cells, and to integrin, which is present on macrophages.
  • the amino acid sequence of the C2 region corresponding to the 269th to 426th positions of the amino acid sequence of the C2 region (GenBank: EDM1675.6.1) of the MFG-E8 (GenBank: BAA76386.1) derived from Mus musculus is set to SEQ ID NO: 7, and the relevant amino acid.
  • the amino acid sequence in which the restriction enzyme BamHI recognition site is added to the N-terminal side and the restriction enzyme EcoRI recognition site is added to the C-terminal side is back-translated based on the Escherichia coli optimized codon, and the nucleotide sequence is shown in SEQ ID NO: 8. ..
  • Anexin is present in various protists and higher eukaryotes including plants, and has the property of recognizing phosphatidylserine in a calcium ion-dependent manner and binding to the cell membrane.
  • Anexin consists of tetramers of homologous domains. It has been found in hominids, invertebrates, slime molds and fungi, plants, and protists, and is classified as annexins A, B, C, D, and E, respectively.
  • Annexin V refers to Annexin A5.
  • Anexin is composed of I region (domain I), II region (domain II), III region (domain III), and IV region (domain IV) from the N-terminal, and each region consists of four ⁇ -helices A, B, and D.
  • E bundled structure has a structure capped by one ⁇ -helix C.
  • There are three Ca 2+ binding sites in one region and one phosphatidylserine can be recognized in one region. That is, a maximum of 12 Ca 2+ and 4 phosphatidylserine are bound in 4 regions.
  • Anexin is involved in intracellular membrane transport, exocytosis, endocytosis, cell membrane-cytoskeleton interaction, regulation of membrane protein activity, and calcium ion channel activity.
  • It is normally expressed intracellularly, but it may also be expressed extracellularly, and it also functions as an anticoagulant and anti-inflammatory protein. It is used as an apoptosis detection probe, labeled with fluorescent dyes, radioactive substances, etc., and is used in cell molecular biology and immunology research.
  • the amino acid sequence of Anexin V domains I to IV (PDB: 1A8A_A) derived from Rattus norvegicus is added to SEQ ID NO: 9, and the restriction enzyme BamHI recognition site is on the N-terminal side and the restriction enzyme EcoRI is on the C-terminal side.
  • the base sequence in which the amino acid sequence to which the recognition site of is added is back-translated based on the Escherichia coli optimized codon is shown in SEQ ID NO: 10.
  • the nucleic acid used in this step may contain another base sequence as long as it contains the base sequence encoding the above phosphatidylserine-binding peptide.
  • Other base sequences include, for example, bases encoding glutathione-S-transferase (GST), maltose-binding protein (MBP), His tag, HA tag, myc tag, FLAG tag, etc., which facilitate the purification of the peptide.
  • GST glutathione-S-transferase
  • MBP maltose-binding protein
  • His tag His tag
  • HA tag HA tag
  • myc tag myc tag
  • FLAG tag etc.
  • a linker sequence may be introduced at the N-terminus and / or C-terminus to facilitate immobilization of the peptide on a carrier.
  • the linker sequence may be a spacer region or a part thereof contained in the peptide, the tag may be used as the linker sequence, or an artificial structure that does not interfere with the binding of the peptide to phosphatidylserine. It may be an array. In the present invention, it is not necessary to use a molecular chaperone for folding the peptide.
  • the nucleic acid containing the sequence is artificially synthesized.
  • the nucleic acid may be amplified by the PCR method.
  • cells are transformed by a conventional method. For example, first the nucleic acid is inserted into the vector.
  • the vector contains a base sequence encoding the phosphatidylserine-binding peptide and a promoter capable of functioning in a host operably linked to the base sequence.
  • the base sequence encoding the phosphatidylserine-binding peptide is linked or inserted into an appropriate vector.
  • the vector is not particularly limited as long as it can autonomously replicate in the host, and a plasmid vector or a phage vector can be used.
  • a plasmid vector or a phage vector can be used.
  • pQE-based vectors Qiagen
  • pET-based vectors Merck
  • pGEX-based vectors GE Healthcare Bioscience
  • fungi such as yeast
  • bacteria such as Escherichia coli and Bacillus subtilis
  • animal cells such as Chinese hamster ovary (CHO) cells, BHK cells, COS cells, and human-derived cells
  • insect cells such as Chinese hamster ovary (CHO) cells, BHK cells, COS cells, and human-derived cells
  • eubacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus, Staphylococcus, Streptomyces, Streptomyces, and Corynebacterium can be preferably used.
  • Transformed cells can be obtained by introducing a recombinant vector containing a nucleic acid containing a nucleotide sequence encoding the above phosphatidylserine-binding peptide into a host cell.
  • the method for introducing the vector into the host cell include a method using calcium ions, an electroporation method, a spheroplast method, a lithium acetate method, an Agrobacterium infection method, a particle gun method and a polyethylene glycol method. , Not limited to these.
  • a method for expressing the phosphatidylserine-binding peptide gene in a host a method for integrating the nucleic acid into the genome may be used.
  • Culturing of transformed cells is carried out according to the usual conditions used for culturing the host.
  • the medium used for culturing transformed cells is not particularly limited as long as it can produce the target peptide with high efficiency and high yield.
  • a medium containing a carbon source or a nitrogen source such as glucose, sucrose, glycerol, polypeptone, meat extract, yeast extract, and casamino acid can be used.
  • inorganic salts such as potassium salt, sodium salt, phosphate, magnesium salt, manganese salt, zinc salt and iron salt are added as needed.
  • a vegetative substance required for growth may be added.
  • antibiotics such as penicillin, erythromycin, chloramphenicol, and neomycin may be added.
  • 2 ⁇ YT medium tryptone 1.6%, yeast extract 1.0%, NaCl 0.5%) or LB medium (tryptone 1%) is used as a medium for culturing transformed cells obtained using Escherichia coli as a host.
  • the culture temperature is, for example, 15 ° C. or higher and 42 ° C. or lower, preferably 20 ° C. or higher and 40 ° C. or lower, and the target peptide is cultured in cultured cells aerobically for 10 hours or longer and 1 week or shorter under aeration and stirring conditions. Accumulate in.
  • the phosphatidylserine-binding peptide is purified from the transformed cells cultured in the above culture step.
  • the target peptide is considered to be accumulated in the cell. Therefore, after culturing, the cultured cells and the culture solution are separated by centrifugation, filtration, or the like. Then, the obtained bacterial cells are crushed by an ultrasonic crushing method, a French press method, or the like, and / or solubilized by adding a surfactant or the like to obtain a crude solution of the target peptide.
  • the target peptide may be purified from such a crude solution by a conventional method.
  • Chromatography or the like may be used as a method for purifying the target peptide. Further, when a tag for purification such as GST is introduced, a high-purity target peptide can be efficiently obtained by adopting a purification method according to the tag. The used tag may be removed after purification using a protease or the like.
  • the purified target peptide is immobilized on a water-insoluble carrier.
  • affinity ligand is a term that refers to a substance or functional group that selectively binds and collects a target molecule from a set of certain molecules based on the specific intermolecular affinity. In the invention, it refers to a peptide that binds to an outer membrane vesicle.
  • extracellular vesicle is a general term for various membrane vesicles secreted from cells, and is classified into exosomes and shedding vesicles according to the difference in their synthetic pathways, but is once secreted extracellularly. And the distinction is not clear.
  • Outer membrane vesicles contain genetic substances such as miRNA and mRNA, alter the traits of received cells, and contribute to the control of various biological phenomena. For example, in recent years it has been shown that outer cell membrane vesicles released by cancer cells promote angiogenesis.
  • Examples of the water-insoluble carrier used in the present invention include an inorganic carrier, an organic carrier, and a composite carrier such as organic-organic and organic-inorganic.
  • Examples of the material of the inorganic water-insoluble carrier include glass and silica gel.
  • Examples of the material of the organic water-insoluble carrier include synthetic polymer carriers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide and crosslinked polystyrene, and polysaccharide carriers such as crosslinked cellulose, crosslinked cellulose, crosslinked agarose and crosslinked dextran. be able to.
  • GCL2000 which is a porous cellulose gel
  • Sephacryl (R) S-1000 which is a covalently crosslinked allyldextran and methylenebisacrylamide
  • Toyopearl (R) which is an acrylate-based carrier
  • an agarose-based crosslinked carrier examples thereof include a certain Sepharose (R) CL4B and Cellulfine (R) which is a cellulosic cross-linking carrier.
  • the water-insoluble carrier in the present invention is not limited to these exemplified carriers.
  • the water-insoluble carrier used in the present invention preferably has a large surface area for the purpose of adsorbing outer cell membrane vesicles, and is preferably porous with a large number of pores of an appropriate size.
  • adsorbing outer cell membrane vesicles preferably has a large surface area for the purpose of adsorbing outer cell membrane vesicles, and is preferably porous with a large number of pores of an appropriate size.
  • beads, monoliths, fibers, films (including hollow fibers) and the like can be used, and any form can be selected.
  • the method for immobilizing the peptide on a water-insoluble carrier for example, it may be bound to the carrier by a conventional coupling method using an amino group, a carboxy group or a thiol group present in the peptide.
  • the carrier is activated by reacting the carrier with cyanide bromide, epichlorohydrin, diglycidyl ether, tosilyl lolide, tresilk lolide, hydrazine, sodium periodate, etc., or the surface of the carrier.
  • An immobilization method by adding a reagent having a functional group, condensing and cross-linking can be mentioned.
  • a linker consisting of a plurality of atoms may be introduced between the peptide and the carrier, or the peptide may be directly immobilized on the carrier.
  • C 1 -6 A group to which 2 to 10 groups selected from the group consisting of an alkandiyl group, an amino group, an ether group, a carbonyl group, an ester group, an amide group and a urea group are linked; an amino group, an ether group and a carbonyl group. , C 1-6 alkandiyl group having a group selected from the group consisting of an ester group, an amide group and a urea group at one end or both ends.
  • the number of connections is preferably 8 or less or 6 or less, more preferably 5 or less, and even more preferably 4 or less.
  • the C 1-6 alkanediyl group may be substituted with a substituent such as a hydroxyl group.
  • the linker may be an amino acid residue useful for immobilization or a peptide.
  • amino acid residues useful for immobilization include amino acid residues having a functional group useful for the chemical reaction of immobilization in the side chain, for example, Lys containing an amino group in the side chain and the side chain. Examples include Cys containing a thiol group.
  • the number of amino acid residues of the peptide as a linker may be appropriately adjusted, and may be, for example, 2 or more and 20 or less.
  • the linker may be a complex of interacting molecules such as biotin and avidin or streptavidin.
  • the carrier on which the above-mentioned phosphatidylserine-binding peptide is immobilized can be used as a carrier that exhibits binding to the outer membrane vesicles.
  • the liquid sample is passed through an affinity column packed with the outer cell membrane vesicle-binding carrier of the present invention. Then, it is brought into contact with the outer cell membrane vesicle-binding carrier to adsorb the outer cell membrane vesicles.
  • the pH of the liquid sample is neutral or substantially neutral, specifically 6.5 or more and 7.5 or less.
  • the inside of the column is then washed by passing an appropriate amount of pure buffer through the affinity column.
  • the outer cell membrane vesicles are adsorbed on the outer cell membrane vesicle-binding carrier of the present invention in the column.
  • the outer cell membrane vesicles can then be purified to a high degree of purity by passing a buffer solution containing a protein denaturing agent or a calcium chelating agent through the column and eluting the outer cell membrane vesicles.
  • the protein denaturant may be any one generally used in the art, and for example, SDS (sodium dodecyl sulfate), urea, and guanidine are preferable, but the protein denaturing agent is not limited to those listed here.
  • the calcium chelating agent may be any compound capable of chelating calcium, for example, EDTA (ethylenediaminetetraacetic acid), EGTA (glycol ether diaminetetraacetic acid), NTA (nitrillotetraacetic acid), DTPA (diethylenetriaminetetraacetic acid), and the like.
  • GLDA L-glutamate diacetic acid
  • HEDTA hydroxyethylethylenediaminetetraacetic acid
  • the extracellular membrane vesicle-binding carrier of the present invention is passed through an appropriate strongly acidic or strongly alkaline pure buffer solution to the extent that the phosphatidylserine-binding peptide or the base material of the carrier does not completely impair its function. It can be reused by cleaning.
  • An appropriate denaturing agent or organic solvent may be added to the above-mentioned buffer solution for regeneration.
  • Example 1 (1) Breeding and culturing of GST-C2A-C2B domain-expressing Escherichia coli phosphatidylserine-binding C2A-C2B domain (SEQ ID NO: 1: 96 of the amino acid sequence of the synaptotagmin 1) of synaptotagmin 1 (GenBank: EDM1675.6.1) derived from Rattus novegicus Eurofin Genomics for artificial synthesis of a gene (SEQ ID NO: 2) in which a restriction enzyme BamHI recognition site is added to the N-terminal side of a gene encoding (1st to 421st) and a restriction enzyme EcoRI recognition site is added to the C-terminal side. Outsourced to the company. The gene was composed of E.
  • This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-C2A-C2B expression plasmid pGEX-.
  • GST-C2A-C2B was prepared.
  • Escherichia coli (“E. coli JM109” manufactured by Takara Bio Inc.) was transformed with the obtained plasmid. Then, the transformant in which the introduction of the GST-C2A-C2B gene was confirmed was cultured in a flask at 37 ° C. using 2 ⁇ YT medium. Then, IPTG was added and the mixture was cultured overnight at 25 ° C. to obtain a culture solution of GST-C2A-C2B-expressing Escherichia coli.
  • the obtained cell disruption supernatant was equilibrated with 20 mM Tris, 150 mM NaCl, 0.5% Triton X-100, 2 mM EDTA (pH 7.5), and a column for GST fusion protein purification (“GSTrap HP 5 mL” GE. After loading (manufactured by Healthcare Life Science Co., Ltd.), the column was washed with the buffer used for equilibration, and the target peptide was eluted with 50 mM Tris-HCl, 10 mM reduced glutathione, and 2 mM EDTA (pH 8.0). Then, it was concentrated by a centrifugal filter device (manufactured by "Macrosep 3K” Pall), and a buffer was replaced with PBS to prepare a GST-C2A-C2B solution.
  • the column was washed with the above buffer, and the washing liquid was mixed with the flow-through fraction. Furthermore, the target protein was eluted with 50 mM Tris-HCl, 10 mM reduced glutathione, and 2 mM EDTA (pH 8.0).
  • the C2A-C2B solution was prepared by concentrating the flow-through fraction with a centrifugal filter device (“Macrosep 3K” manufactured by Pall) and exchanging the buffer with PBS. Further, the eluted fraction was concentrated with a centrifugal filter device (“Macrosep 3K” manufactured by Pall), and the solution was exchanged for PBS to prepare a GST solution.
  • the 1M ethanolamine hydrochloride solution was flowed at a rate of 5 ⁇ L / min for 7 minutes to block the activating group on the surface of the sensor chip, and then washed with PBS.
  • Table 1 shows each peptide immobilized on the sensor chip as a ligand and its molar mass. Further, as a reference cell, a cell in which only ethanolamine was immobilized was prepared in the same manner.
  • Example 2 DNA encoding GST-C2A in which the C2B domain has been deleted by the PCR method using the gene of Example 1 (SEQ ID NO: 2) as a template and primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 4). Fragments were amplified. This DNA fragment was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-C2A expression plasmid pGEX-GST. -C2A was prepared.
  • pGEX-6p-1 manufactured by GE Healthcare Co., Ltd.
  • Example 1 Using the obtained plasmid, a transformant was prepared and cultured in the same manner as in Example 1 to obtain a culture solution of GST-C2A-expressing Escherichia coli. Then, a GST-C2A solution was prepared in the same manner as in Example 1 (2). Using the obtained GST-C2A solution, a cell in which these peptides were immobilized on a sensor chip was prepared in the same manner as in Example 1 (4). Table 1 shows each peptide immobilized on the sensor chip as a ligand and its molar mass.
  • Test Example 1 Confirmation test of binding ability of PS-binding protein to PS (1) Preparation of liposomes Chloroform was added to a chloroform solution (1 mL) of 10 mg / mL phosphatidylserine (PS) and diluted to 10 mL. Separately, 25 mg of phosphatidylcholine (PC) was dissolved in chloroform (25 mL). A PC chloroform solution (7.6 mL) was added to the eggplant flask to prepare PS0% liposomes containing no PS in the lipid bilayer membrane.
  • PS phosphatidylserine
  • PS chloroform solution 1.6 mL
  • PC chloroform solution 6.1 mL
  • chloroform was removed under reduced pressure with an evaporator, and each eggplant flask was placed in a desiccator and dried under reduced pressure for 12 hours.
  • 10 mL of 20 mM Tris-HCl, 0.15 M NaCl (pH 7.4) was added to an eggplant flask and mixed by shaking with a vortex mixer to obtain a suspension.
  • PS20% liposomes When preparing PS20% liposomes, 10 mL of 20 mM Tris-HCl, 0.5 M NaCl (pH 7.4) was added to an eggplant flask and mixed by shaking with a vortex mixer to obtain a suspension. Each of the above suspensions was transferred to a 15 mL centrifuge tube and sonicated to obtain a clear liposome dispersion. Then, PS0% liposome and PS20% liposome solution were prepared by filtering with a 0.2 ⁇ m filter. It was confirmed that liposomes having particle diameters of 49 nm and 39 nm were prepared by a dynamic light scattering particle size measuring device (“Zetasizer Nano ZS” manufactured by Malvern), respectively.
  • a dynamic light scattering particle size measuring device (“Zetasizer Nano ZS” manufactured by Malvern
  • the total amount was 500 ⁇ L. Then, the mixture was centrifuged at 15,000 g for 10 minutes, the filtrate was discarded, and 20 mM Tris-HCl, 0.15 M NaCl, and 2 mM CaCl 2 (pH 7.4) were added to bring the total volume to 0.5 mL. Then, it was centrifuged at 15,000 g for 10 minutes. The above operations of centrifugation, disposal of the filtrate, and addition of 20 mM Tris-HCl, 0.15 M NaCl, and 2 mM CaCl 2 (pH 7.4) were repeated three more times. Then, the solution was recovered from the centrifugal filter device, the total amount was adjusted to 200 ⁇ L, and then homogenized by pipetting to obtain an exosome solution.
  • Example 3 Biotinlation of PS-binding peptide A 4 mg / mL GST-C2A aqueous solution (1 mL) or a 0.4 mg / mL C2A aqueous solution (1 mL) was placed in a 1.5 mL tube, and the temperature of the solution was raised to 4 ° C. on ice. And said. Then, a 20 mM aqueous solution of biotin-PEG (manufactured by Thermo Fisher) was added to each peptide solution so as to have a molar amount 5 times that of the peptide, and the mixture was allowed to stand on ice for 2 hours.
  • biotin-PEG manufactured by Thermo Fisher
  • biotin-PEG was removed by purification on a desalting / buffer exchange column (manufactured by "Hitrap desalting” GE Healthcare) to prepare a biotinylated GST-C2A solution and a biotinylated C2A solution.
  • Test Example 2 Capturing exosomes with magnetic beads A 10 mM CaCl 2 aqueous solution (1.2 ⁇ L) was added to an exosome solution (600 ⁇ L) prepared in the same manner as in Test Example 1 (2). This solution (100 ⁇ L) was added to magnetic beads, the volume was adjusted to 500 ⁇ L with 20 mM Tris-HCl, 150 mM NaCl, 2 mM CaCl 2 (pH 7.3), and then the mixture was inverted and mixed at 4 ° C. for 3 hours. Then, the particles were centrifuged for a short time with a desktop centrifuge, left on a magnet stand for 1 minute, and then the supernatant was removed.
  • FIG. 3 shows the amount of exosomes recovered from each of the GST-C2A-immobilized magnetic beads and the C2A-immobilized magnetic beads. From this result, it was found that each magnetic bead was able to recover 1.1 ⁇ g and 0.5 ⁇ g of exosomes, respectively.
  • Example 4 A recognition site for the restriction enzyme BamHI was added to the N-terminal side of the gene encoding the C2 domain (SEQ ID NO: 5) of the protein kinase C ⁇ (PDB: 3GPE_A) derived from Rattus norvegicus, and a recognition site for the restriction enzyme EcoRI was added to the C-terminal side.
  • the artificial synthesis of the gene (SEQ ID NO: 6) was outsourced to Ginscript.
  • This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-PCK ⁇ C2 expression plasmid pGEX-GST-. PCK ⁇ C2 was prepared.
  • Example 5 A BamHI recognition site was added to the N-terminal side of a gene encoding domains I to IV of Anexin V (NCBI Reference Sequence: NP_307264.1, SEQ ID NO: 9) derived from Rattus norvegicus, and an EcoRI recognition site was added to the C-terminal side.
  • the artificial synthesis of the gene (SEQ ID NO: 10) was outsourced to Ginscript.
  • the gene was composed of E. coli optimized codons.
  • This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-A5 expression plasmid pGEX-GST-.
  • A5 was prepared.
  • This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-Tim4IgV expression plasmid pGEX-GST-. Tim4IgV was prepared.
  • Comparative Example 2 A gene in which a BamHI recognition site is added to the N-terminal side of a gene encoding the IgV domain (SEQ ID NO: 13) of CD300A (PDB: 2Q87_A) derived from Homo sapiens, and an EcoRI recognition site is added to the C-terminal side (SEQ ID NO: 14).
  • the artificial synthesis of was outsourced to Ginscript.
  • the gene was composed of E. coli optimized codons.
  • This artificially synthesized gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-CD300AIgV expression plasmid pGEX-.
  • GST-CD300AIgV was prepared.
  • Test Example 3 Evaluation of expression of phosphatidylserine-binding protein in Escherichia coli Escherichia coli (“E. coli”) using 6 types of phosphatidylserine-binding protein expression plasmids prepared in Examples 1, 2, 4, 5 and Comparative Examples 1 and 2. JM109 "manufactured by Takara Bio Co., Ltd.) was transformed. As a control, Escherichia coli (“E. coli JM109” manufactured by Takara Bio Co., Ltd.) was transformed with a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.). The obtained 7 types of transformants were cultured in a 2 ⁇ YT medium at 30 ° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The purpose of the present invention is to provide a method for efficiently producing an extracellular membrane vesicle-binding carrier. A method for producing an extracellular membrane vesicle-binding carrier according to the present invention is characterized by comprising a step of obtaining transformed cells by transforming host cells using a nucleic acid comprising a nucleotide sequence coding for a phosphatidylserine-binding peptide that does not have a disulfide bond in the molecule; a step of culturing the transformed cells; a step of purifying the phosphatidylserine-binding peptide from the cultured transformed cells; and a step of immobilizing the purified phosphatidylserine-binding peptide on a water-insoluble carrier.

Description

細胞外膜小胞結合性担体の製造方法Method for producing outer cell membrane vesicle-binding carrier
 本発明は、細胞外膜小胞結合性担体を効率的に製造するための方法に関するものである。 The present invention relates to a method for efficiently producing an outer cell membrane vesicle-binding carrier.
 近年、エクソソームなどの細胞外膜小胞が細胞間コミュニケーションを司っており、がん、中枢神経疾患、免疫などとの関わりが徐々に明らかになってきている。最近ではエクソソームと疾患との関わりから、エクソソームを標的とした診断法の開発や、エクソソーム自体を薬剤として投与するエクソソーム療法の臨床試験も実施されている。例えば、被験者の血液試料からエクソソームを単離し、エクソソームに含まれるmiRNAを解析し、がんを診断する方法が研究されている。従来、PETなどの画像解析や腫瘍マーカーを用いた診断法には、がんがかなり成長しなければ陽性にならないといった問題があったが、エクソソームを用いる方法であれば早期がんの発見も可能になり得る。 In recent years, outer cell membrane vesicles such as exosomes control cell-cell communication, and their relationship with cancer, central nervous system diseases, immunity, etc. is gradually becoming clear. Recently, due to the relationship between exosomes and diseases, development of diagnostic methods targeting exosomes and clinical trials of exosome therapy in which exosomes themselves are administered as drugs are being conducted. For example, a method of isolating exosomes from a blood sample of a subject, analyzing miRNA contained in the exosomes, and diagnosing cancer is being studied. In the past, image analysis such as PET and diagnostic methods using tumor markers had the problem that they would not become positive unless the cancer had grown considerably, but if the method uses exosomes, early cancer can be detected. Can be.
 しかし、エクソソームを高回収率かつ高純度に回収、精製できる方法は未だ開発されていない。最も広く用いられているエクソソーム精製法は超遠心法であるが、多段階におよぶ精製プロセスが必要であることや回収率および純度の観点から臨床応用への適用は難しい。また、これ以外にも、エクソソーム表面抗原を特異的に認識する抗体を磁性粒子表面に固定化した磁気ビーズを用いる方法や、ポリマーによる沈殿を用いる方法など、エクソソームを生体サンプルから回収精製するための種々の方法が開発されているが、回収率と精製度、スループット、コストの面から十分なものとはいえない。 However, a method capable of recovering and purifying exosomes with high recovery rate and high purity has not yet been developed. The most widely used exosome purification method is the ultracentrifugation method, but it is difficult to apply it to clinical applications because of the need for a multi-step purification process and the viewpoint of recovery rate and purity. In addition to this, for recovering and purifying exosomes from biological samples, such as a method using magnetic beads in which an antibody that specifically recognizes an exosome surface antigen is immobilized on the surface of magnetic particles and a method using precipitation with a polymer. Although various methods have been developed, they are not sufficient in terms of recovery rate, degree of purification, throughput, and cost.
 その他、エクソソームの回収手段として、T細胞免疫グロブリン・ムチンドメイン含有分子(Tim)タンパク質を固定化した担体が開発されている(特許文献1)。詳しくは、細胞外膜小胞の細胞膜はホスファチジルセリンを含み、Timタンパク質はカルシウムイオンの存在下でホスファチジルセリンを吸着するため、上記担体はエクソソームを吸着することができる。 In addition, as a means for recovering exosomes, a carrier on which a T cell immunoglobulin / mucin domain-containing molecule (Tim) protein is immobilized has been developed (Patent Document 1). Specifically, the cell membrane of the outer cell membrane vesicle contains phosphatidylserine, and the Tim protein adsorbs phosphatidylserine in the presence of calcium ions, so that the carrier can adsorb exosomes.
 また、特許文献2には、Mastoparan-X、Hemolysin、LL37がエクソソームへの結合活性を有し、これらを担体に固定化してエクソソームを精製することが記載されている。 Further, Patent Document 2 describes that Mastoparan-X, Hemolysin, and LL37 have exosome-binding activity, and these are immobilized on a carrier to purify exosomes.
国際公開第2016/088689号パンフレットInternational Publication No. 2016/088689 Pamphlet 特開2017-38566号公報Japanese Unexamined Patent Publication No. 2017-38566
 上述したように、細胞外膜小胞に結合性を示すタンパク質を担体に固定化して細胞外膜小胞の精製に利用する技術は検討されている。しかし、かかる担体を工業的に実施するには、製造効率が十分でない場合がある。
 即ち、タンパク質を大量生産する場合には、一般的に、標的タンパク質をコードする遺伝子を使って形質転換細胞を作製し、培養した後、標的タンパク質を培養液や細胞破砕液などから精製することが行われている。しかし、タンパク質は安定な高次構造を形成するが、形質転換細胞により製造されたタンパク質は高次構造を形成しないまま凝集し、製造効率が著しく低下する場合がある。例えば、本発明者らの実験的知見によれば、形質転換法により細胞外膜小胞結合性タンパク質であるCD300AとTim4を製造した場合、CD300Aの発現は認められず、Tim4は不溶性画分中にのみ認められ、形質転換細胞内で凝集しているものと考えられた。かかる凝集を防ぐために、分子シャペロンを共発現させて標的タンパク質のフォールディングを促進することも考えられるが、それでは製造コストが上がる上に、分子シャペロンからの標的タンパク質の精製のため製造効率が低下するという問題がある。
 そこで本発明は、細胞外膜小胞結合性担体を効率的に製造するための方法を提供することを目的とする。
As described above, a technique for immobilizing a protein exhibiting binding to outer cell membrane vesicles on a carrier and using it for purification of outer cell membrane vesicles has been studied. However, the production efficiency may not be sufficient to carry out such a carrier industrially.
That is, in the case of mass production of proteins, it is generally possible to prepare transformed cells using a gene encoding the target protein, cultivate the cells, and then purify the target protein from a culture medium or cell disruption solution. It is done. However, although the protein forms a stable higher-order structure, the protein produced by the transformed cells may aggregate without forming the higher-order structure, and the production efficiency may be significantly reduced. For example, according to the experimental findings of the present inventors, when the outer cell membrane vesicle-binding proteins CD300A and Tim4 were produced by the transformation method, no expression of CD300A was observed, and Tim4 was contained in the insoluble fraction. It was observed only in the cells, and was considered to be aggregated in the transformed cells. In order to prevent such aggregation, it is conceivable to co-express the molecular chaperone to promote the folding of the target protein, but this increases the production cost and lowers the production efficiency due to the purification of the target protein from the molecular chaperone. There's a problem.
Therefore, an object of the present invention is to provide a method for efficiently producing an outer cell membrane vesicle-binding carrier.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、細胞外膜小胞の細胞膜に存在するホスファチジルセリンに結合性を示すペプチドであって、分子内にジスルフィド結合を持たないものは、形質転換細胞に生産させても培養液中や細胞破砕液中で凝集せずに効率的に単離することができ、延いては細胞外膜小胞結合性担体を効率的に製造できることを見出して、本発明を完成した。
 以下、本発明を示す。
The present inventors have conducted extensive research to solve the above problems. As a result, peptides that have binding properties to phosphatidylserine present in the cell membrane of extracellular membrane vesicles and do not have disulfide bonds in the molecule are disrupted in the culture medium or in the cell even if they are produced by transformed cells. The present invention has been completed by finding that it can be efficiently isolated without agglomeration in the liquid and that an extracellular membrane vesicle-binding carrier can be efficiently produced.
Hereinafter, the present invention will be shown.
 [1] 細胞外膜小胞結合性担体を製造するための方法であって、
 分子内にジスルフィド結合を持たないホスファチジルセリン結合性ペプチドをコードする塩基配列を含む核酸を用いて宿主細胞を形質転換することにより、形質転換細胞を得る工程、
 上記形質転換細胞を培養する工程、
 培養した上記形質転換細胞から、上記ホスファチジルセリン結合性ペプチドを精製する工程、および、
 精製された上記ホスファチジルセリン結合性ペプチドを水不溶性担体に固定化する工程を含むことを特徴とする製造方法。
 [2] 上記ホスファチジルセリン結合性ペプチドが、シナプトタグミンのC2領域、プロテインキナーゼα、βI、βII、およびγのC2領域、MFG-E8のC2領域、並びにアネキシンVのI領域、II領域、III領域、およびIV領域から選択される1以上のホスファチジルセリン結合性ペプチドである上記[1]に記載の方法。
 [3] 上記ホスファチジルセリン結合性ペプチドを、リンカーを介して上記水不溶性担体に固定化する上記[1]または[2]に記載の方法。
 [4] 上記ホスファチジルセリン結合性ペプチドが、少なくともシナプトタグミンのC2A領域を含む上記[1]~[3]のいずれかに記載の方法。
 [5] 上記ホスファチジルセリン結合性ペプチドが、シナプトタグミンのC2A領域およびC2B領域を含む上記[1]~[4]のいずれかに記載の方法。
 [6] 上記ホスファチジルセリン結合性ペプチドがシナプトタグミンのC2領域であり、上記核酸が配列番号2の塩基配列を有する上記[1]~[5]のいずれかに記載の方法。
 [7] 細胞外膜小胞を精製するための方法であって、
 上記[1]~[6]のいずれかに記載の方法で細胞外膜小胞結合性担体を製造する工程、および、
 細胞外膜小胞を含む液体試料と上記細胞外膜小胞結合性担体とを接触させて、上記細胞外膜小胞結合性担体に細胞外膜小胞を吸着させる工程を含むことを特徴とする方法。
[1] A method for producing an outer cell membrane vesicle-binding carrier.
A step of obtaining transformed cells by transforming a host cell with a nucleic acid containing a base sequence encoding a phosphatidylserine-binding peptide having no disulfide bond in the molecule.
The step of culturing the transformed cells,
A step of purifying the phosphatidylserine-binding peptide from the cultured transformed cells, and
A production method comprising the step of immobilizing the purified phosphatidylserine-binding peptide on a water-insoluble carrier.
[2] The phosphatidylserine-binding peptide is a C2 region of synaptotagmin, a C2 region of protein kinases α, βI, βII, and γ, a C2 region of MFG-E8, and an I region, II region, and III region of annexin V. And the method according to [1] above, which is one or more phosphatidylserine-binding peptides selected from the IV region.
[3] The method according to the above [1] or [2], wherein the phosphatidylserine-binding peptide is immobilized on the water-insoluble carrier via a linker.
[4] The method according to any one of [1] to [3] above, wherein the phosphatidylserine-binding peptide contains at least the C2A region of synaptotagmin.
[5] The method according to any one of [1] to [4] above, wherein the phosphatidylserine-binding peptide contains a C2A region and a C2B region of synaptotagmin.
[6] The method according to any one of [1] to [5] above, wherein the phosphatidylserine-binding peptide is the C2 region of synaptotagmin, and the nucleic acid has the nucleotide sequence of SEQ ID NO: 2.
[7] A method for purifying outer cell membrane vesicles.
The step of producing the outer cell membrane vesicle-binding carrier by the method according to any one of the above [1] to [6], and
It is characterized by including a step of contacting a liquid sample containing outer cell membrane vesicles with the outer cell membrane vesicle-binding carrier and adsorbing the outer cell membrane vesicles on the outer cell membrane vesicle-binding carrier. how to.
 本発明方法によれば、細胞外膜小胞を検出対象とする診断方法や、細胞外膜小胞自体を有効成分とする治療方法などのため、細胞外膜小胞の検出や精製に使用可能な、細胞外膜小胞に結合性を示す担体を効率的に製造することができる。よって本発明は、細胞外膜小胞を利用する技術の実用化を促進するものとして、産業上極めて優れている。 According to the method of the present invention, it can be used for detecting and purifying outer cell membrane vesicles because of a diagnostic method for detecting outer cell membrane vesicles and a treatment method using outer cell membrane vesicles themselves as an active ingredient. In addition, a carrier that exhibits binding to outer cell membrane vesicles can be efficiently produced. Therefore, the present invention is extremely industrially excellent as it promotes the practical application of the technique for utilizing outer cell membrane vesicles.
図1は、本発明に係るペプチドを固定化したフローセルのホスファチジルセリン含有リポソームに対するレスポンスを示すグラフである。FIG. 1 is a graph showing the response of a peptide-immobilized flow cell according to the present invention to a phosphatidylserine-containing liposome. 図2は、本発明に係るペプチドを固定化したフローセルのミルクエクソソームに対するレスポンスを示すグラフである。FIG. 2 is a graph showing the response of the peptide-immobilized flow cell according to the present invention to milk exosomes. 図3は、本発明に係るペプチドを固定化した磁気ビーズによるミルクエクソソームの回収量を示すグラフである。FIG. 3 is a graph showing the amount of milk exosomes recovered by magnetic beads on which the peptide according to the present invention is immobilized. 図4は、形質転換細胞のホモジェネートの可溶性画分と沈殿懸濁液のSDS-PAGEの結果を示すポリアクリルアミドゲル写真である。FIG. 4 is a polyacrylamide gel photograph showing the results of SDS-PAGE of the soluble fraction of homogenates of transformed cells and the precipitation suspension.
 以下、本発明方法を工程毎に説明するが、本発明は以下に示す態様に限定されるものではない。 Hereinafter, the method of the present invention will be described for each step, but the present invention is not limited to the aspects shown below.
 1.形質転換工程
 本工程では、分子内にジスルフィド結合を持たないホスファチジルセリン結合性ペプチドをコードする塩基配列を含む核酸を用いて宿主細胞を形質転換することにより、形質転換細胞を得る。
1. 1. Transformation Step In this step, transformed cells are obtained by transforming a host cell with a nucleic acid containing a nucleotide sequence encoding a phosphatidylserine-binding peptide having no disulfide bond in the molecule.
 上記ホスファチジルセリン結合性ペプチドは、ホスファチジルセリンに対して親和性を有するものであり、且つ分子内にジスルフィド結合を持たないものであれば特に制限されない。分子内にジスルフィド結合を有するペプチドは、大量生産のため形質転換法で製造すると形質転換細胞のホモジェネート液中などで正しくフォールディングされずに凝集し、精製が困難になって製造効率が著しく低下することがある。一方、本発明者らは、たとえシステイン残基を含むものであっても、分子内にジスルフィド結合を持たないペプチドであれば、形質転換法により良好な効率で製造できることを明らかにした。 The phosphatidylserine-binding peptide is not particularly limited as long as it has an affinity for phosphatidylserine and does not have a disulfide bond in the molecule. When a peptide having a disulfide bond in the molecule is produced by a transformation method for mass production, it aggregates without being correctly folded in a homogenate solution of transformed cells, which makes purification difficult and significantly reduces production efficiency. There is. On the other hand, the present inventors have clarified that a peptide having no disulfide bond in the molecule, even if it contains a cysteine residue, can be produced with good efficiency by the transformation method.
 上記ホスファチジルセリン結合性ペプチドとしては、例えば、シナプトタグミンのC2領域、プロテインキナーゼαのC2領域、プロテインキナーゼβIのC2領域、プロテインキナーゼβIIのC2領域、プロテインキナーゼγのC2領域、MFG-E8のC2領域、アネキシンVのI領域、アネキシンVのII領域、アネキシンVのIII領域、およびアネキシンVのIV領域から選択される1以上のホスファチジルセリン結合性ペプチドを挙げることができる。 Examples of the phosphatidylserine-binding peptide include the C2 region of synaptotagmin, the C2 region of protein kinase α, the C2 region of protein kinase βI, the C2 region of protein kinase βII, the C2 region of protein kinase γ, and the C2 region of MFG-E8. , One or more phosphatidylserine-binding peptides selected from the I region of annexin V, the II region of annexin V, the III region of annexin V, and the IV region of annexin V.
 シナプトタグミンはシナプス小胞上に豊富に存在する膜タンパク質であり、動物以外にも植物など様々な生物種に存在しており、ヒトやマウスでは17種類のアイソフォームの存在が報告されている。一般的なシナプトタグミンは、共通してN末端側から内腔領域、膜貫通領域、スペーサー領域、および細胞質領域を有し、細胞質領域中に2つのC2領域を有する。C2領域としてはN末端側からC2A領域とC2B領域があり、共にカルシウムイオンの存在下、ホスファチジルセリンなどのリン脂質への結合性を示すが、C2B領域は更にカルシウムイオンの非存在下においてイノシトールポリリン酸、アダプター複合体AP-2、ニューレキシンに結合性を示す。 Synaptotagmin is a membrane protein that is abundantly abundant on synaptic vesicles, and is present in various species such as plants as well as animals, and the existence of 17 types of isoforms has been reported in humans and mice. Common synaptotagmin commonly has a lumen region, a transmembrane region, a spacer region, and a cytoplasmic region from the N-terminal side, and has two C2 regions in the cytoplasmic region. The C2 region includes a C2A region and a C2B region from the N-terminal side, both of which show binding properties to phospholipids such as phosphatidylserine in the presence of calcium ions, but the C2B region further exhibits inositol polyphosphoric acid in the absence of calcium ions. Shows binding to acid, adapter complex AP-2, and neurexin.
 シナプトタグミンファミリーの中でもカルシウムイオンに結合するのがシナプトタグミン1、2、3、5、6、7、9、10であり、他のシナプトタグミンはカルシウムイオンに結合しない。カルシウムイオンに結合するこれらのシナプトタグミンは、カルシウムイオン濃度依存的に神経伝達物質の放出などを行うカルシウムイオンセンサーとして機能している。回収されるべき細胞外膜小胞の構造や活性およびリガンドペプチドの活性を保つという観点から、担体からの細胞外膜小胞の解離はできるだけ中性条件で緩和な条件で行うことが好ましい。そのための方法としてカルシウムイオン存在下、リガンドペプチドを細胞外膜小胞表面のホスファチジルセリンに結合させた後、キレート剤を用いて解離を行うといった方法が考えられる。上記観点から、シナプトタグミンの中でも特に、カルシウムイオン存在下、ホスファチジルセリンなどのリン脂質を結合することのできるシナプトタグミン1、2、3、5、6、7、9、10が好ましい。 Among the synaptotagmin family, synaptotagmin 1, 2, 3, 5, 6, 7, 9, and 10 bind to calcium ions, and other synaptotagmin do not bind to calcium ions. These synaptotagmins that bind to calcium ions function as calcium ion sensors that release neurotransmitters in a calcium ion concentration-dependent manner. From the viewpoint of maintaining the structure and activity of the outer cell membrane vesicles to be recovered and the activity of the ligand peptide, it is preferable to dissociate the outer cell membrane vesicles from the carrier under mild conditions as much as possible. As a method for this, a method of binding the ligand peptide to phosphatidylserine on the surface of the outer cell membrane vesicle in the presence of calcium ions and then dissociating with a chelating agent can be considered. From the above viewpoint, among synaptotagmins, synaptotagmins 1, 2, 3, 5, 6, 7, 9, and 10 capable of binding phospholipids such as phosphatidylserine in the presence of calcium ions are particularly preferable.
 本発明で使用するシナプトタグミンのC2領域は、C2A領域またはC2B領域のみであってもよいし、C2A領域とC2B領域の両方であってもよい。C2A領域とC2B領域では、ホスファチジルセリンへの特異性の観点からC2A領域が好ましく、C2A領域とC2B領域の両方であってもよい。 The C2 region of the synaptotagmin used in the present invention may be only the C2A region or the C2B region, or may be both the C2A region and the C2B region. In the C2A region and the C2B region, the C2A region is preferable from the viewpoint of specificity for phosphatidylserine, and both the C2A region and the C2B region may be used.
 本工程で用いるシナプトタグミンのC2領域をコードする塩基配列を含む核酸は、少なくともシナプトタグミンのC2A領域および/またはC2B領域をコードする塩基配列を含むものであれば特に制限されない。例えば、所望のC2領域のアミノ酸配列を逆翻訳することにより塩基配列をデザインする。この際、使用する宿主細胞に適するコドンを用いることが好ましい。例えば細胞として大腸菌を用いる場合には、大腸菌最適化コドンを用いることが好ましい。 The nucleic acid containing the base sequence encoding the C2 region of synaptotagmin used in this step is not particularly limited as long as it contains at least the base sequence encoding the C2A region and / or C2B region of synaptotagmin. For example, the base sequence is designed by back-translating the amino acid sequence of the desired C2 region. At this time, it is preferable to use a codon suitable for the host cell to be used. For example, when Escherichia coli is used as a cell, it is preferable to use an Escherichia coli optimized codon.
 例えば、シナプトタグミン1のC2A領域およびC2B領域のアミノ酸配列を配列番号1に、当該アミノ酸配列に加え、N末端側に制限酵素BamHIの認識部位と、C末端側に制限酵素EcoRIの認識部位を付加したアミノ酸配列を大腸菌最適化コドンに基づいて逆翻訳した塩基配列を配列番号2に示す。 For example, the amino acid sequences of the C2A region and C2B region of synaptotagmin 1 were added to SEQ ID NO: 1, and the recognition site of the restriction enzyme BamHI was added to the N-terminal side and the recognition site of the restriction enzyme EcoRI was added to the C-terminal side. The base sequence in which the amino acid sequence is back-translated based on the E. coli optimized codon is shown in SEQ ID NO: 2.
 プロテインキナーゼCはリン脂質依存性のセリン/スレオニンキナーゼであり、成長因子、ホルモン、神経伝達物質などの細胞外刺激によって活性化される。哺乳動物のプロテインキナーゼCは少なくとも11のアイソザイムで構成され、保存された四つのドメイン(C1-C4)よりなる。またこれらアイソザイムは構造や制御因子の観点から次の三つに分類される。一つめはジアシルグリセロール(DAG)、カルシウムイオン、リン脂質(特にホスファチジルセリン)によって活性化される在来型(α、βI、βII、γ)で二つのC1領域(DAG結合ドメイン)、C2領域(カルシウム結合ドメイン)、C3領域(ATP結合ドメイン)、C4領域(キナーゼドメイン)によって構成され、C2領域によってカルシウムおよびホスファチジルセリンに結合する。以下、各領域の役割は同じである。二つ目はDAGによって活性化されるものの、カルシウムイオンを必要としない新型(δ、ε、η、θ)で連続したC1領域とC2様領域、C3領域およびC4領域から構成されるが、C2様領域はカルシウムを結合しない。三つ目は活性化にDAGもカルシウムイオンも必要のない非典型(ζ、λ、μ)であり、一つのC1領域、C3領域およびC4領域からなる。 Protein kinase C is a phospholipid-dependent serine / threonine kinase that is activated by extracellular stimuli such as growth factors, hormones, and neurotransmitters. Mammalian protein kinase C is composed of at least 11 isozymes and consists of four conserved domains (C1-C4). In addition, these isozymes are classified into the following three types from the viewpoint of structure and control factors. The first is the conventional type (α, βI, βII, γ) activated by diacylglycerol (DAG), calcium ion, and phospholipid (particularly phosphatidylserine), and has two C1 regions (DAG binding domains) and C2 regions (DAG binding domain). It is composed of a calcium-binding domain), a C3 region (ATP-binding domain), and a C4 region (kinase domain), and binds to calcium and phosphatidylserine by the C2 region. Hereinafter, the roles of each area are the same. The second is composed of a new type (δ, ε, η, θ) that is activated by DAG but does not require calcium ions and is continuous with C1 region, C2-like region, C3 region and C4 region, but C2. The acyclic region does not bind calcium. The third is atypical (ζ, λ, μ) that does not require DAG or calcium ions for activation and consists of one C1 region, C3 region and C4 region.
 Rattus norvegicus由来のプロテインキナーゼCα(PDB: 3GPE_A)のC2領域のアミノ酸配列を配列番号5に、当該アミノ酸配列に加え、N末端側に制限酵素BamHIの認識部位と、C末端側に制限酵素EcoRIの認識部位を付加したアミノ酸配列を大腸菌最適化コドンに基づいて逆翻訳した塩基配列を配列番号6に示す。 The amino acid sequence of the C2 region of the protein kinase Cα (PDB: 3GPE_A) derived from Rattus norvegicus is added to SEQ ID NO: 5, the recognition site of the restriction enzyme BamHI on the N-terminal side, and the restriction enzyme EcoRI on the C-terminal side. The base sequence in which the amino acid sequence to which the recognition site is added is back-translated based on the Escherichia coli optimized codon is shown in SEQ ID NO: 6.
 MFG-E8(Milk fat globule EGF/factor VIII)は、哺乳動物の授乳期に上皮細胞から豊富に分泌される糖タンパク質でラクタヘドリンとも呼ばれる。N末端から、シグナル配列、2個のEGF相当ドメイン、第8因子相当ドメイン(C2領域)からなり、C2領域がアニオン性のリン脂質であるホスファチジルセリンに結合する。N末端に存在するRGD領域は、αvβ3インテグリンに結合する。MFG-E8は死細胞の貪食にも関わっており、アポトーシス細胞表面に多く存在するホスファチジルセリンに結合し、マクロファージ上に存在するインテグリンに結合することで貪食を促進する。 MFG-E8 (Milk fat globe EGF / factor VIII) is a glycoprotein that is abundantly secreted from epithelial cells during the lactation period of mammals and is also called lactahedrin. From the N-terminus, it consists of a signal sequence, two EGF-equivalent domains, and a factor VIII-equivalent domain (C2 region), and the C2 region binds to the anionic phospholipid phosphatidylserine. The RGD region present at the N-terminus binds to αvβ3 integrin. MFG-E8 is also involved in phagocytosis of dead cells, and promotes phagocytosis by binding to phosphatidylserine, which is abundant on the surface of apoptotic cells, and to integrin, which is present on macrophages.
 Mus musculus由来のMFG-E8(GenBank: BAA76386.1)のC2領域(GenBank: EDM16756.1)のアミノ酸配列の269番目から426番目までに相当するC2領域のアミノ酸配列を配列番号7に、当該アミノ酸配列に加え、N末端側に制限酵素BamHIの認識部位と、C末端側に制限酵素EcoRIの認識部位を付加したアミノ酸配列を大腸菌最適化コドンに基づいて逆翻訳した塩基配列を配列番号8に示す。 The amino acid sequence of the C2 region corresponding to the 269th to 426th positions of the amino acid sequence of the C2 region (GenBank: EDM1675.6.1) of the MFG-E8 (GenBank: BAA76386.1) derived from Mus musculus is set to SEQ ID NO: 7, and the relevant amino acid. In addition to the sequence, the amino acid sequence in which the restriction enzyme BamHI recognition site is added to the N-terminal side and the restriction enzyme EcoRI recognition site is added to the C-terminal side is back-translated based on the Escherichia coli optimized codon, and the nucleotide sequence is shown in SEQ ID NO: 8. ..
 アネキシンは、様々な原生生物や、植物を含む高等真核生物に存在し、カルシウムイオン依存的にホスファチジルセリンを認識して細胞膜に結合する性質を有する。アネキシンは、相同性ドメインの4量体からなる。ヒト科、無脊椎動物、変形菌や菌類、植物、原生生物で見つかっており、それぞれアネキシンA、B、C、D、Eと分類されている。アネキシンVという場合は、アネキシンA5のことを指す。アネキシンは、N末端からI領域(ドメインI)、II領域(ドメインII)、III領域(ドメインIII)、IV領域(ドメインIV)によって構成され、各領域は4つのα-ヘリックスA、B、D、Eによるバンドル構造が、1つのα-ヘリックスCによってキャップされた構造を有する。Ca2+結合サイトは1領域に3つ存在し、1領域で1個のホスファチジルセリンを認識できる。即ち、4領域でCa2+が最大12個、ホスファチジルセリンは4個結合する。アネキシンは、細胞内膜輸送、エクソサイトーシス、エンドサイトーシス、細胞膜-細胞骨格相互作用、膜タンパク質活性の調節、カルシウムイオンチャネル活性に関わっている。通常は細胞内に発現しているが、細胞外に発現することもあり、抗凝固、抗炎症タンパクとしての働きもある。アポトーシス検出プローブとして利用されており、蛍光色素、放射性物質等で標識され、細胞分子生物学、免疫学研究に用いられている。 Anexin is present in various protists and higher eukaryotes including plants, and has the property of recognizing phosphatidylserine in a calcium ion-dependent manner and binding to the cell membrane. Anexin consists of tetramers of homologous domains. It has been found in hominids, invertebrates, slime molds and fungi, plants, and protists, and is classified as annexins A, B, C, D, and E, respectively. The term Annexin V refers to Annexin A5. Anexin is composed of I region (domain I), II region (domain II), III region (domain III), and IV region (domain IV) from the N-terminal, and each region consists of four α-helices A, B, and D. , E bundled structure has a structure capped by one α-helix C. There are three Ca 2+ binding sites in one region, and one phosphatidylserine can be recognized in one region. That is, a maximum of 12 Ca 2+ and 4 phosphatidylserine are bound in 4 regions. Anexin is involved in intracellular membrane transport, exocytosis, endocytosis, cell membrane-cytoskeleton interaction, regulation of membrane protein activity, and calcium ion channel activity. It is normally expressed intracellularly, but it may also be expressed extracellularly, and it also functions as an anticoagulant and anti-inflammatory protein. It is used as an apoptosis detection probe, labeled with fluorescent dyes, radioactive substances, etc., and is used in cell molecular biology and immunology research.
 Rattus norvegicus由来のアネキシンVのドメインI~IV(PDB: 1A8A_A)のアミノ酸配列を配列番号9に、当該アミノ酸配列に加え、N末端側に制限酵素BamHIの認識部位と、C末端側に制限酵素EcoRIの認識部位を付加したアミノ酸配列を大腸菌最適化コドンに基づいて逆翻訳した塩基配列を配列番号10に示す。 The amino acid sequence of Anexin V domains I to IV (PDB: 1A8A_A) derived from Rattus norvegicus is added to SEQ ID NO: 9, and the restriction enzyme BamHI recognition site is on the N-terminal side and the restriction enzyme EcoRI is on the C-terminal side. The base sequence in which the amino acid sequence to which the recognition site of is added is back-translated based on the Escherichia coli optimized codon is shown in SEQ ID NO: 10.
 本工程で用いる核酸は、上記ホスファチジルセリン結合性ペプチドをコードする塩基配列を含むものであれば、他の塩基配列を含んでいてもよい。他の塩基配列としては、例えば、上記ペプチドの精製を容易にするグルタチオン-S-トランスフェラーゼ(GST)、マルトース結合性タンパク質(MBP)、Hisタグ、HAタグ、mycタグ、FLAGタグ等をコードする塩基配列が挙げられる。また、これらタグと上記ペプチドとの間には、プロテアーゼの認識部位を挿入してもよい。更に、N末端および/またはC末端には、ペプチドの担体への固定化を容易にするためのリンカー配列を導入してもよい。かかるリンカー配列は、上記ペプチドに含まれるスペーサー領域またはその一部であってもよいし、上記タグをリンカー配列として用いてもよいし、或いは上記ペプチドとホスファチジルセリンとの結合を妨げない人工的な配列であってもよい。なお、本発明では、上記ペプチドのフォールディングのために分子シャペロンを用いる必要は無い。 The nucleic acid used in this step may contain another base sequence as long as it contains the base sequence encoding the above phosphatidylserine-binding peptide. Other base sequences include, for example, bases encoding glutathione-S-transferase (GST), maltose-binding protein (MBP), His tag, HA tag, myc tag, FLAG tag, etc., which facilitate the purification of the peptide. An array can be mentioned. In addition, a protease recognition site may be inserted between these tags and the peptide. In addition, a linker sequence may be introduced at the N-terminus and / or C-terminus to facilitate immobilization of the peptide on a carrier. The linker sequence may be a spacer region or a part thereof contained in the peptide, the tag may be used as the linker sequence, or an artificial structure that does not interfere with the binding of the peptide to phosphatidylserine. It may be an array. In the present invention, it is not necessary to use a molecular chaperone for folding the peptide.
 上記ホスファチジルセリン結合性ペプチドをコードする塩基配列をデザインした後、当該配列を含む核酸を人工合成する。当該核酸は、PCR法により増幅してもよい。この核酸を用い、常法により細胞を形質転換する。例えば、先ず核酸をベクターに挿入する。ベクターは、上記ホスファチジルセリン結合性ペプチドをコードする塩基配列、およびその塩基配列に作動可能に連結された宿主で機能しうるプロモーターを含む。通常は、上記ホスファチジルセリン結合性ペプチドをコードする塩基配列を、適当なベクターに連結もしくは挿入する。ベクターは、宿主中で自律複製可能なものであれば特に限定されず、プラスミドベクターやファージベクターを用いることができる。例えば、大腸菌を宿主として用いる場合には、pQE系ベクター(キアゲン社)、pET系ベクター(メルク社)、およびpGEX系ベクター(GEヘルスケアバイオサイエンス社)などが挙げられる。 After designing the base sequence encoding the above phosphatidylserine-binding peptide, the nucleic acid containing the sequence is artificially synthesized. The nucleic acid may be amplified by the PCR method. Using this nucleic acid, cells are transformed by a conventional method. For example, first the nucleic acid is inserted into the vector. The vector contains a base sequence encoding the phosphatidylserine-binding peptide and a promoter capable of functioning in a host operably linked to the base sequence. Usually, the base sequence encoding the phosphatidylserine-binding peptide is linked or inserted into an appropriate vector. The vector is not particularly limited as long as it can autonomously replicate in the host, and a plasmid vector or a phage vector can be used. For example, when Escherichia coli is used as a host, pQE-based vectors (Qiagen), pET-based vectors (Merck), and pGEX-based vectors (GE Healthcare Bioscience) can be mentioned.
 宿主としては、酵母などの真菌;大腸菌や枯草菌などの細菌;チャイニーズハムスター卵巣(CHO)細胞、BHK細胞、COS細胞、ヒト由来細胞などの動物細胞;昆虫細胞などを用いることができる。ペプチドを安価に大量生産する観点からは、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトマイセス属、コリネバクテリウム属などの真正細菌を好適に使用し得る。 As the host, fungi such as yeast; bacteria such as Escherichia coli and Bacillus subtilis; animal cells such as Chinese hamster ovary (CHO) cells, BHK cells, COS cells, and human-derived cells; and insect cells can be used. From the viewpoint of mass-producing peptides at low cost, eubacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus, Staphylococcus, Streptomyces, Streptomyces, and Corynebacterium can be preferably used.
 形質転換細胞は、上記ホスファチジルセリン結合性ペプチドをコードする塩基配列を含む核酸を含有する組換えベクターを宿主となる細胞へ導入することにより得ることができる。宿主細胞へのベクターの導入方法としては、例えばカルシウムイオンを用いる方法、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法、アグロバクテリウム感染法、パーティクルガン法およびポリエチレングリコール法などが挙げられるが、これらに限定されるものではない。また、上記ホスファチジルセリン結合性ペプチド遺伝子を宿主で発現する方法としては、上記核酸をゲノムに組み込む方法を用いてもよい。 Transformed cells can be obtained by introducing a recombinant vector containing a nucleic acid containing a nucleotide sequence encoding the above phosphatidylserine-binding peptide into a host cell. Examples of the method for introducing the vector into the host cell include a method using calcium ions, an electroporation method, a spheroplast method, a lithium acetate method, an Agrobacterium infection method, a particle gun method and a polyethylene glycol method. , Not limited to these. Further, as a method for expressing the phosphatidylserine-binding peptide gene in a host, a method for integrating the nucleic acid into the genome may be used.
 2.培養工程
 本工程では、上記形質転換工程で得られた形質転換細胞を培養する。その結果、目的の上記ホスファチジルセリン結合性ペプチドは、増殖した形質転換細胞の細胞内に蓄積すると考えられる。
2. 2. Culturing step In this step, the transformed cells obtained in the above transformation step are cultured. As a result, the target phosphatidylserine-binding peptide is considered to accumulate in the proliferated transformed cells.
 形質転換細胞の培養は、宿主の培養に用いられる通常の条件に従って行われる。例えば形質転換細胞の培養に用いる培地は、目的のペプチドを高効率、高収量で生産できるものであれば特に制限は無い。具体的には、グルコース、蔗糖、グリセロール、ポリペプトン、肉エキス、酵母エキス、カザミノ酸などの炭素源や窒素源を含む培地を使用することができる。その他、カリウム塩、ナトリウム塩、リン酸塩、マグネシウム塩、マンガン塩、亜鉛塩、鉄塩などの無機塩類が必要に応じて添加される。栄養要求性の宿主細胞を用いる場合は、生育に要求される栄養物質を添加すればよい。また、必要であればペニシリン、エリスロマイシン、クロラムフェニコール、ネオマイシンなどの抗生物質が添加されてもよい。例えば、大腸菌を宿主として得られた形質転換細胞を培養する培地としては、2×YT培地(トリプトン1.6%,酵母エキス1.0%,NaCl0.5%)や、LB培地(トリプトン1%,酵母エキス0.5%,NaCl1%)等が挙げられる。 Culturing of transformed cells is carried out according to the usual conditions used for culturing the host. For example, the medium used for culturing transformed cells is not particularly limited as long as it can produce the target peptide with high efficiency and high yield. Specifically, a medium containing a carbon source or a nitrogen source such as glucose, sucrose, glycerol, polypeptone, meat extract, yeast extract, and casamino acid can be used. In addition, inorganic salts such as potassium salt, sodium salt, phosphate, magnesium salt, manganese salt, zinc salt and iron salt are added as needed. When a auxotrophic host cell is used, a vegetative substance required for growth may be added. If necessary, antibiotics such as penicillin, erythromycin, chloramphenicol, and neomycin may be added. For example, 2 × YT medium (tryptone 1.6%, yeast extract 1.0%, NaCl 0.5%) or LB medium (tryptone 1%) is used as a medium for culturing transformed cells obtained using Escherichia coli as a host. , Yeast extract 0.5%, NaCl 1%) and the like.
 培養温度は、例えば15℃以上、42℃以下、好ましくは20℃以上、40℃以下で、通気攪拌条件で好気的に10時間以上、1週間以下培養することにより、目的ペプチドを培養細胞内に蓄積させる。 The culture temperature is, for example, 15 ° C. or higher and 42 ° C. or lower, preferably 20 ° C. or higher and 40 ° C. or lower, and the target peptide is cultured in cultured cells aerobically for 10 hours or longer and 1 week or shorter under aeration and stirring conditions. Accumulate in.
 3.精製工程
 本工程では、上記培養工程で培養した形質転換細胞から、上記ホスファチジルセリン結合性ペプチドを精製する。上記の通り、目的ペプチドは細胞内に蓄積していると考えられる。よって、培養後、遠心分離や濾過などにより培養細胞と培養液を分離する。次いで、得られた菌体を超音波破砕法やフレンチプレス法などにより破砕したり、および/または、界面活性剤などを添加して可溶化することにより、目的ペプチドの粗溶液を得る。かかる粗溶液より、常法により目的ペプチドを精製すればよい。
3. 3. Purification Step In this step, the phosphatidylserine-binding peptide is purified from the transformed cells cultured in the above culture step. As described above, the target peptide is considered to be accumulated in the cell. Therefore, after culturing, the cultured cells and the culture solution are separated by centrifugation, filtration, or the like. Then, the obtained bacterial cells are crushed by an ultrasonic crushing method, a French press method, or the like, and / or solubilized by adding a surfactant or the like to obtain a crude solution of the target peptide. The target peptide may be purified from such a crude solution by a conventional method.
 目的ペプチドの精製方法としては、クロマトグラフィ等を用いればよい。また、GSTなど精製のためのタグを導入している場合には、タグに応じた精製方法を採用することにより高純度の目的ペプチドが効率良く得られる。使用したタグは、プロテアーゼ等を使って精製後に除去してもよい。 Chromatography or the like may be used as a method for purifying the target peptide. Further, when a tag for purification such as GST is introduced, a high-purity target peptide can be efficiently obtained by adopting a purification method according to the tag. The used tag may be removed after purification using a protease or the like.
 4.固定化工程
 本工程では、精製された目的ペプチドを水不溶性担体に固定化する。上記ホスファチジルセリン結合性ペプチドは、水不溶性担体に固定化することにより、細胞外膜小胞に親和性を有するアフィニティーリガンドとして利用することが可能になる。本開示において「アフィニティーリガンド」とは、特異的な分子間の親和力に基づいて、ある分子の集合から目的の分子を選択的に結合して捕集する物質や官能基を指す用語であり、本発明においては、細胞外膜小胞に対して結合するペプチドを指す。また、「細胞外膜小胞」とは、細胞から分泌される様々な膜小胞の総称であり、その合成経路の違いによってエクソソームとshedding vesicleに分類されるが、いったん細胞外に分泌されるとその区別は明瞭ではない。細胞外膜小胞はmiRNAやmRNAなどの遺伝物質を含み、受け取った細胞の形質を変化させ、種々の生命現象の制御に寄与する。例えば、近年、がん細胞が放出する細胞外膜小胞が血管新生を促進することが明らかになっている。
4. Immobilization step In this step, the purified target peptide is immobilized on a water-insoluble carrier. By immobilizing the phosphatidylserine-binding peptide on a water-insoluble carrier, it can be used as an affinity ligand having an affinity for outer cell membrane vesicles. In the present disclosure, "affinity ligand" is a term that refers to a substance or functional group that selectively binds and collects a target molecule from a set of certain molecules based on the specific intermolecular affinity. In the invention, it refers to a peptide that binds to an outer membrane vesicle. In addition, "extracellular vesicle" is a general term for various membrane vesicles secreted from cells, and is classified into exosomes and shedding vesicles according to the difference in their synthetic pathways, but is once secreted extracellularly. And the distinction is not clear. Outer membrane vesicles contain genetic substances such as miRNA and mRNA, alter the traits of received cells, and contribute to the control of various biological phenomena. For example, in recent years it has been shown that outer cell membrane vesicles released by cancer cells promote angiogenesis.
 本発明で用いる水不溶性担体としては、無機担体、有機担体、有機-有機、有機-無機などの複合担体などが挙げられる。無機水不溶性担体の材質としては、ガラスやシリカゲルなどが挙げられる。有機水不溶性担体の材質としては、架橋ポリビニルアルコール、架橋ポリアクリレート、架橋ポリアクリルアミド、架橋ポリスチレンなどの合成高分子担体や、結晶性セルロース、架橋セルロース、架橋アガロース、架橋デキストランなどの多糖類担体を挙げることができる。市販品としては、多孔質セルロースゲルであるGCL2000、アリルデキストランとメチレンビスアクリルアミドを共有結合で架橋したSephacryl(R) S-1000、アクリレート系の担体であるToyopearl(R)、アガロース系の架橋担体であるSepharose(R) CL4B、および、セルロース系の架橋担体であるCellufine(R)などを例示することができる。但し、本発明における水不溶性担体は、例示したこれらの担体のみに限定されるものではない。 Examples of the water-insoluble carrier used in the present invention include an inorganic carrier, an organic carrier, and a composite carrier such as organic-organic and organic-inorganic. Examples of the material of the inorganic water-insoluble carrier include glass and silica gel. Examples of the material of the organic water-insoluble carrier include synthetic polymer carriers such as crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked polyacrylamide and crosslinked polystyrene, and polysaccharide carriers such as crosslinked cellulose, crosslinked cellulose, crosslinked agarose and crosslinked dextran. be able to. Commercially available products include GCL2000, which is a porous cellulose gel, Sephacryl (R) S-1000, which is a covalently crosslinked allyldextran and methylenebisacrylamide, Toyopearl (R) , which is an acrylate-based carrier, and an agarose-based crosslinked carrier. Examples thereof include a certain Sepharose (R) CL4B and Cellulfine (R) which is a cellulosic cross-linking carrier. However, the water-insoluble carrier in the present invention is not limited to these exemplified carriers.
 本発明に用いる水不溶性担体は、細胞外膜小胞を吸着するとの目的から、表面積が大きいことが望ましく、適当な大きさの細孔を多数有する多孔質であることが好ましい。担体の形態としては、ビーズ状、モノリス状、繊維状、膜状(中空糸を含む)などいずれも可能であり、任意の形態を選ぶことができる。 The water-insoluble carrier used in the present invention preferably has a large surface area for the purpose of adsorbing outer cell membrane vesicles, and is preferably porous with a large number of pores of an appropriate size. As the form of the carrier, beads, monoliths, fibers, films (including hollow fibers) and the like can be used, and any form can be selected.
 上記ペプチドの水不溶性担体への固定化方法については、例えば、ペプチドに存在するアミノ基、カルボキシ基またはチオール基を利用した従来のカップリング法で担体に結合してよい。カップリング法としては、臭化シアン、エピクロロヒドリン、ジグリシジルエーテル、トシルクロライド、トレシルクロライド、ヒドラジンまたは過ヨウ素酸ナトリウムなどと担体とを反応させて担体を活性化するか、或いは担体表面に反応性官能基を導入し、ペプチドとカップリング反応を行い固定化する方法、また、担体とペプチドが存在する系にカルボジイミドのような縮合試薬、または、グルタルアルデヒドのように分子中に複数の官能基を持つ試薬を加えて縮合、架橋することによる固定化方法が挙げられる。 Regarding the method for immobilizing the peptide on a water-insoluble carrier, for example, it may be bound to the carrier by a conventional coupling method using an amino group, a carboxy group or a thiol group present in the peptide. As a coupling method, the carrier is activated by reacting the carrier with cyanide bromide, epichlorohydrin, diglycidyl ether, tosilyl lolide, tresilk lolide, hydrazine, sodium periodate, etc., or the surface of the carrier. A method of introducing a reactive functional group into a peptide and performing a coupling reaction with a peptide to immobilize it, a condensation reagent such as carbodiimide in a system in which a carrier and a peptide are present, or a plurality of condensation reagents in a molecule such as glutaaldehyde. An immobilization method by adding a reagent having a functional group, condensing and cross-linking can be mentioned.
 ペプチドと担体の間に複数の原子からなるリンカーを導入してもよいし、担体にペプチドを直接固定化してもよい。リンカー基としては、例えば、C1-6アルカンジイル基、アミノ基(-NH-)、エーテル基(-O-)、カルボニル基(-C(=O)-)、エステル基(-C(=O)O-または-OC(=O)-)、アミド基(-C(=O)NH-または-NHC(=O)-)、ウレア基(-NHC(=O)NH-);C1-6アルカンジイル基、アミノ基、エーテル基、カルボニル基、エステル基、アミド基およびウレア基からなる群より選択される2以上10以下の基が連結された基;アミノ基、エーテル基、カルボニル基、エステル基、アミド基およびウレア基からなる群より選択される基を一端または両端に有するC1-6アルカンジイル基を挙げることができる。上記の連結数としては、8以下または6以下が好ましく、5以下がより好ましく、4以下がさらに好ましい。また、上記C1-6アルカンジイル基は、水酸基などの置換基などにより置換されていてもよい。また、リンカーとしては、固定化に有用なアミノ酸残基であってもよいし、ペプチドであってもよい。固定化に有用なアミノ酸残基としては、側鎖に固定化の化学反応に有用な官能基を有しているアミノ酸残基が挙げられ、例えば、側鎖にアミノ基を含むLysや、側鎖にチオール基を含むCysが挙げられる。リンカーとしてのペプチドのアミノ酸残基数は、適宜調整すればよいが、例えば、2以上、20以下とすることができる。その他、リンカーは、ビオチンとアビジンまたはストレプトアビジンなど、相互作用を示す分子の複合体であってもよい。 A linker consisting of a plurality of atoms may be introduced between the peptide and the carrier, or the peptide may be directly immobilized on the carrier. Examples of the linker group include a C 1-6 alkandyl group, an amino group (-NH-), an ether group (-O-), a carbonyl group (-C (= O)-), and an ester group (-C (=). O) O- or -OC (= O)-), amide group (-C (= O) NH- or -NHC (= O)-), urea group (-NHC (= O) NH-); C 1 -6 A group to which 2 to 10 groups selected from the group consisting of an alkandiyl group, an amino group, an ether group, a carbonyl group, an ester group, an amide group and a urea group are linked; an amino group, an ether group and a carbonyl group. , C 1-6 alkandiyl group having a group selected from the group consisting of an ester group, an amide group and a urea group at one end or both ends. The number of connections is preferably 8 or less or 6 or less, more preferably 5 or less, and even more preferably 4 or less. Further, the C 1-6 alkanediyl group may be substituted with a substituent such as a hydroxyl group. Further, the linker may be an amino acid residue useful for immobilization or a peptide. Examples of amino acid residues useful for immobilization include amino acid residues having a functional group useful for the chemical reaction of immobilization in the side chain, for example, Lys containing an amino group in the side chain and the side chain. Examples include Cys containing a thiol group. The number of amino acid residues of the peptide as a linker may be appropriately adjusted, and may be, for example, 2 or more and 20 or less. In addition, the linker may be a complex of interacting molecules such as biotin and avidin or streptavidin.
 5.細胞外膜小胞結合性担体の利用方法
 上記ホスファチジルセリン結合性ペプチドを固定化した担体は、細胞外膜小胞に結合性を示す担体として利用することができる。例えば、被験者の血液、血清、血漿など、細胞外膜小胞を含む液体試料を調製した後、当該液体試料を、本発明の細胞外膜小胞結合性担体を充填したアフィニティーカラムに通過させるなどして細胞外膜小胞結合性担体と接触させ、細胞外膜小胞を吸着させる。この際、液体試料のpHは中性または略中性、具体的には6.5以上、7.5以下に調整することが好ましい。次いで、アフィニティーカラムに純粋な緩衝液を適量通過させ、カラム内部を洗浄する。この時点では細胞外膜小胞は、カラム内の本発明に係る細胞外膜小胞結合性担体に吸着されている。次いで、タンパク質変性剤またはカルシウムキレート剤を含んだ緩衝液をカラムに通液し、細胞外膜小胞を溶出することにより、細胞外膜小胞を高純度に精製することができる。更に、精製された細胞外膜小胞を破砕し、含まれるmiRNAやmRNAの種類や分布を調べることにより、疾患またはその発症の可能性の診断に役立て得る。また、細胞外膜小胞自体を医薬の有効成分として用いることも考えられる。
5. Method of using the outer membrane vesicle-binding carrier The carrier on which the above-mentioned phosphatidylserine-binding peptide is immobilized can be used as a carrier that exhibits binding to the outer membrane vesicles. For example, after preparing a liquid sample containing outer cell membrane vesicles such as blood, serum, and plasma of a subject, the liquid sample is passed through an affinity column packed with the outer cell membrane vesicle-binding carrier of the present invention. Then, it is brought into contact with the outer cell membrane vesicle-binding carrier to adsorb the outer cell membrane vesicles. At this time, it is preferable to adjust the pH of the liquid sample to neutral or substantially neutral, specifically 6.5 or more and 7.5 or less. The inside of the column is then washed by passing an appropriate amount of pure buffer through the affinity column. At this point, the outer cell membrane vesicles are adsorbed on the outer cell membrane vesicle-binding carrier of the present invention in the column. The outer cell membrane vesicles can then be purified to a high degree of purity by passing a buffer solution containing a protein denaturing agent or a calcium chelating agent through the column and eluting the outer cell membrane vesicles. Furthermore, by disrupting the purified outer membrane vesicles and examining the type and distribution of miRNA and mRNA contained therein, it can be useful for diagnosing the disease or the possibility of its onset. It is also conceivable to use the outer cell membrane vesicle itself as the active ingredient of the drug.
 上記タンパク質変性剤としては当該分野において一般に用いられるものであればいずれでもよく、例えばSDS(ドデシル硫酸ナトリウム)、尿素、グアニジンが好ましいが、ここに挙げたものに限定されない。上記カルシウムキレート剤としてはカルシウムをキレートし得る化合物であればいずれでもよく、例えばEDTA(エチレンジアミン四酢酸)、EGTA(グリコールエーテルジアミン四酢酸)、NTA(ニトリロ四酢酸)、DTPA(ジエチレントリアミン五酢酸)、GLDA(L-グルタミン酸二酢酸)、HEDTA(ヒドロキシエチルエチレンジアミン三酢酸)等が挙げられ、EDTA、EGTAが好ましいが、ここに挙げたものに限定されない。 The protein denaturant may be any one generally used in the art, and for example, SDS (sodium dodecyl sulfate), urea, and guanidine are preferable, but the protein denaturing agent is not limited to those listed here. The calcium chelating agent may be any compound capable of chelating calcium, for example, EDTA (ethylenediaminetetraacetic acid), EGTA (glycol ether diaminetetraacetic acid), NTA (nitrillotetraacetic acid), DTPA (diethylenetriaminetetraacetic acid), and the like. GLDA (L-glutamate diacetic acid), HEDTA (hydroxyethylethylenediaminetetraacetic acid) and the like can be mentioned, with preference given to EDTA and EGTA, but not limited to those listed here.
 本発明の細胞外膜小胞結合性担体は、上記ホスファチジルセリン結合性ペプチドや担体の基材が完全に機能を損なわない程度の、適当な強酸性または強アルカリ性の純粋な緩衝液を通過させて洗浄することにより、再利用が可能である。上記の再生用緩衝液には、適当な変性剤や有機溶剤を配合してもよい。 The extracellular membrane vesicle-binding carrier of the present invention is passed through an appropriate strongly acidic or strongly alkaline pure buffer solution to the extent that the phosphatidylserine-binding peptide or the base material of the carrier does not completely impair its function. It can be reused by cleaning. An appropriate denaturing agent or organic solvent may be added to the above-mentioned buffer solution for regeneration.
 本願は、2019年3月26日に出願された日本国特許出願第2019-58141号に基づく優先権の利益を主張するものである。2019年3月26日に出願された日本国特許出願第2019-58141号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2019-58141 filed on March 26, 2019. The entire contents of the specification of Japanese Patent Application No. 2019-58141 filed on March 26, 2019 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the above and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
 実施例1
 (1)GST-C2A-C2Bドメイン発現大腸菌の育種と培養
 Rattus norvegicus由来のシナプトタグミン1(GenBank:EDM16756.1)のホスファチジルセリン結合性C2A-C2Bドメイン(配列番号1:同シナプトタグミン1のアミノ酸配列の96番目から421番目まで)をコードする遺伝子のN末端側に制限酵素BamHIの認識部位を、C末端側に制限酵素EcoRIの認識部位を付加した遺伝子(配列番号2)の人工合成を、ユーロフィンジェノミクス社に外注した。当該遺伝子は、大腸菌最適化コドンで構成されていた。この遺伝子をBamHIとEcoRIで切断し、同じ制限酵素で切断したGST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)に導入して、GST-C2A-C2B発現プラスミドpGEX-GST-C2A-C2Bを作製した。得られたプラスミドで大腸菌(「E.coli JM109」タカラバイオ社製)を形質転換した。その後、GST-C2A-C2B遺伝子の導入が確認できた形質転換体を、2×YT培地を用いて、37℃でフラスコ培養した。その後、IPTGを添加し、25℃で一晩培養することによりGST-C2A-C2B発現大腸菌の培養液を得た。
Example 1
(1) Breeding and culturing of GST-C2A-C2B domain-expressing Escherichia coli phosphatidylserine-binding C2A-C2B domain (SEQ ID NO: 1: 96 of the amino acid sequence of the synaptotagmin 1) of synaptotagmin 1 (GenBank: EDM1675.6.1) derived from Rattus novegicus Eurofin Genomics for artificial synthesis of a gene (SEQ ID NO: 2) in which a restriction enzyme BamHI recognition site is added to the N-terminal side of a gene encoding (1st to 421st) and a restriction enzyme EcoRI recognition site is added to the C-terminal side. Outsourced to the company. The gene was composed of E. coli optimized codons. This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-C2A-C2B expression plasmid pGEX-. GST-C2A-C2B was prepared. Escherichia coli (“E. coli JM109” manufactured by Takara Bio Inc.) was transformed with the obtained plasmid. Then, the transformant in which the introduction of the GST-C2A-C2B gene was confirmed was cultured in a flask at 37 ° C. using 2 × YT medium. Then, IPTG was added and the mixture was cultured overnight at 25 ° C. to obtain a culture solution of GST-C2A-C2B-expressing Escherichia coli.
 (2)GST-C2A-C2Bの精製
 上記(1)で得られた培養液を9,000rpmで10分間遠心分離に付し、上清を除去した。残った菌体を20mM Tris,150mM NaCl,0.5% Triton X-100,2mM EDTA(pH7.5)中に懸濁し、超音波破砕機で菌体を破砕し、再度15,000rpmで5分間遠心分離し、菌体破砕上清を得た。
 得られた菌体破砕上清を、20mM Tris,150mM NaCl,0.5% Triton X-100,2mM EDTA(pH7.5)にて平衡化したGST融合タンパク質精製用カラム(「GSTrap HP 5mL」GEヘルスケアライフサイエンス社製)に負荷後、平衡化に用いたバッファーにてカラムを洗浄し、50mM Tris-HCl,10mM還元型グルタチオン,2mM EDTA(pH8.0)にて目的ペプチドを溶出した。その後、遠心フィルターデバイス(「Macrosep 3K」Pall社製)により濃縮し、PBSへのバッファー置換を行うことでGST-C2A-C2B溶液を調製した。
(2) Purification of GST-C2A-C2B The culture solution obtained in (1) above was centrifuged at 9,000 rpm for 10 minutes to remove the supernatant. The remaining cells were suspended in 20 mM Tris, 150 mM NaCl, 0.5% Triton X-100, 2 mM EDTA (pH 7.5), the cells were crushed with an ultrasonic crusher, and again at 15,000 rpm for 5 minutes. Centrifugation was performed to obtain a crushed cell supernatant.
The obtained cell disruption supernatant was equilibrated with 20 mM Tris, 150 mM NaCl, 0.5% Triton X-100, 2 mM EDTA (pH 7.5), and a column for GST fusion protein purification (“GSTrap HP 5 mL” GE. After loading (manufactured by Healthcare Life Science Co., Ltd.), the column was washed with the buffer used for equilibration, and the target peptide was eluted with 50 mM Tris-HCl, 10 mM reduced glutathione, and 2 mM EDTA (pH 8.0). Then, it was concentrated by a centrifugal filter device (manufactured by "Macrosep 3K" Pall), and a buffer was replaced with PBS to prepare a GST-C2A-C2B solution.
 (3)C2A-C2BとGSTの調製
 上記(2)で調製したGST-C2A-C2B溶液(3mL)に、GST融合ヒトライノウイルス3Cプロテアーゼ(「Pressision protease」GE社製)(50μL)を加え、4℃で15時間反応させた。その後、反応液を20mM Tris,150mM NaCl,0.5% Triton X-100,2mM EDTA(pH7.5)で10倍希釈し、GST融合タンパク質精製用カラム(「GSTrap HP 5mL」GEヘルスケアライフサイエンス社製)に負荷し、フロースルー画分を回収した。その後、上記バッファーにてカラムを洗浄し、洗液をフロースルー画分と混合した。更に、50mM Tris-HCl,10mM還元型グルタチオン,2mM EDTA(pH8.0)にて目的タンパク質を溶出した。上記フロースルー画分を遠心フィルターデバイス(「Macrosep 3K」Pall社製)にて濃縮し、PBSでバッファー交換することで、C2A-C2B溶液を調製した。
 また、溶出画分を遠心フィルターデバイス(「Macrosep 3K」Pall社製)にて濃縮し、溶液をPBSに交換することで、GST溶液を調製した。
(3) Preparation of C2A-C2B and GST To the GST-C2A-C2B solution (3 mL) prepared in (2) above, GST-fused rhinovirus 3C protease ("Precision phase" manufactured by GE) (50 μL) was added. The reaction was carried out at 4 ° C. for 15 hours. Then, the reaction solution was diluted 10-fold with 20 mM Tris, 150 mM NaCl, 0.5% Triton X-100, 2 mM EDTA (pH 7.5), and a column for GST fusion protein purification (“GSTrap HP 5 mL” GE Healthcare Life Sciences). The flow-through fraction was collected by loading the product. Then, the column was washed with the above buffer, and the washing liquid was mixed with the flow-through fraction. Furthermore, the target protein was eluted with 50 mM Tris-HCl, 10 mM reduced glutathione, and 2 mM EDTA (pH 8.0). The C2A-C2B solution was prepared by concentrating the flow-through fraction with a centrifugal filter device (“Macrosep 3K” manufactured by Pall) and exchanging the buffer with PBS.
Further, the eluted fraction was concentrated with a centrifugal filter device (“Macrosep 3K” manufactured by Pall), and the solution was exchanged for PBS to prepare a GST solution.
 (4)リガンドのセンサーチップへの固定化
 センサーチップ(「CM5」GEヘルスケアライフサイエンス社製)を相互作用解析装置(「Biacore 3000」GEヘルスケアライフサイエンス社製)にセットし、PBSで平衡化後、EDC溶液(120μL)とNHS溶液(120μL)を5μL/minの速度で7分間流すことによりセンサーチップの表面を活性化した。その後、PBSでセンサーチップを洗浄し、GST-C2A-C2BまたはGSTの溶液を10μL/minの速度で7分間流し、各ペプチドを固定化した。その後、1Mエタノールアミン塩酸塩溶液を5μL/minの速度で7分間流すことによりセンサーチップ表面の活性化基をブロッキングした後、PBSで洗浄した。センサーチップにリガンドとして固定化した各ペプチドとそのモル質量を表1に示す。
 また、参照セルとして、エタノールアミンのみを固定化したセルを同様に作製した。
(4) Immobilization of ligand on sensor chip Set the sensor chip (“CM5” manufactured by GE Healthcare Life Science Co., Ltd.) in the interaction analyzer (“Biacore 3000” manufactured by GE Healthcare Life Science Co., Ltd.) and equilibrate with PBS. After conversion, the surface of the sensor chip was activated by flowing an EDC solution (120 μL) and an NHS solution (120 μL) at a rate of 5 μL / min for 7 minutes. The sensor chip was then washed with PBS and a solution of GST-C2A-C2B or GST was run at a rate of 10 μL / min for 7 minutes to immobilize each peptide. Then, the 1M ethanolamine hydrochloride solution was flowed at a rate of 5 μL / min for 7 minutes to block the activating group on the surface of the sensor chip, and then washed with PBS. Table 1 shows each peptide immobilized on the sensor chip as a ligand and its molar mass.
Further, as a reference cell, a cell in which only ethanolamine was immobilized was prepared in the same manner.
 実施例2
 実施例1の遺伝子(配列番号2)を鋳型として、プライマー1(配列番号3)とプライマー2(配列番号4)を用いて、PCR法にて、C2Bドメインを削除したGST-C2AをコードするDNA断片を増幅した。このDNA断片をBamHIとEcoRIで切断し、同じ制限酵素で切断したGST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)に導入して、GST-C2A発現プラスミドpGEX-GST-C2Aを作製した。得られたプラスミドを用いて実施例1と同様に形質転換体の作製と培養を実施し、GST-C2A発現大腸菌の培養液を得た。
 次いで、実施例1(2)に記載の方法と同様の方法でGST-C2A溶液を調製した。
 得られたGST-C2A溶液を使って、実施例1(4)と同様の方法にてこれらペプチドをセンサーチップに固定化したセルを作製した。センサーチップにリガンドとして固定化した各ペプチドとそのモル質量を表1に示す。
Example 2
DNA encoding GST-C2A in which the C2B domain has been deleted by the PCR method using the gene of Example 1 (SEQ ID NO: 2) as a template and primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 4). Fragments were amplified. This DNA fragment was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-C2A expression plasmid pGEX-GST. -C2A was prepared. Using the obtained plasmid, a transformant was prepared and cultured in the same manner as in Example 1 to obtain a culture solution of GST-C2A-expressing Escherichia coli.
Then, a GST-C2A solution was prepared in the same manner as in Example 1 (2).
Using the obtained GST-C2A solution, a cell in which these peptides were immobilized on a sensor chip was prepared in the same manner as in Example 1 (4). Table 1 shows each peptide immobilized on the sensor chip as a ligand and its molar mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例1: PS結合性タンパク質のPSへの結合能確認試験
 (1)リポソームの作製
 10mg/mLホスファチジルセリン(PS)のクロロホルム溶液(1mL)にクロロホルムを加え、10mLに希釈した。別途、25mgのホスファチジルコリン(PC)をクロロホルム(25mL)に溶解した。
 脂質二重膜にPSを含まないPS0%リポソームを調製するために、ナスフラスコにPCクロロホルム溶液(7.6mL)を加えた。また、脂質二重膜にPSを20%含むPS20%リポソームを調製するために、ナスフラスコにPSクロロホルム溶液(1.6mL)とPCクロロホルム溶液(6.1mL)を加えて均一化した。その後、エバポレーターでクロロホルムを減圧除去し、各ナスフラスコをデシケーターに入れ、12時間減圧乾燥した。
 PS0%リポソームを調製する場合、10mLの20mM Tris-HCl,0.15M NaCl(pH7.4)をナスフラスコに加え、ボルテックスミキサーにて振とう混和し、懸濁液を得た。PS20%リポソームを調製する場合、10mLの20mM Tris-HCl,0.5M NaCl(pH7.4)をナスフラスコに加え、ボルテックスミキサーにて振とう混和し、懸濁液を得た。
 上記懸濁液をそれぞれ15mL遠沈管に移し、超音波処理することで澄明なリポソームの分散液を得た。その後、0.2μmフィルターで濾過することによりPS0%リポソームおよびPS20%リポソーム溶液を調製した。動的光散乱法粒子径測定装置(「ゼータサイザーナノZS」Malvern社製)により、それぞれ粒子径49nmおよび39nmのリポソームが調製されていることを確認した。
Test Example 1: Confirmation test of binding ability of PS-binding protein to PS (1) Preparation of liposomes Chloroform was added to a chloroform solution (1 mL) of 10 mg / mL phosphatidylserine (PS) and diluted to 10 mL. Separately, 25 mg of phosphatidylcholine (PC) was dissolved in chloroform (25 mL).
A PC chloroform solution (7.6 mL) was added to the eggplant flask to prepare PS0% liposomes containing no PS in the lipid bilayer membrane. Further, in order to prepare PS20% liposomes containing 20% of PS in the lipid bilayer membrane, PS chloroform solution (1.6 mL) and PC chloroform solution (6.1 mL) were added to the eggplant flask and homogenized. Then, chloroform was removed under reduced pressure with an evaporator, and each eggplant flask was placed in a desiccator and dried under reduced pressure for 12 hours.
When preparing PS0% liposomes, 10 mL of 20 mM Tris-HCl, 0.15 M NaCl (pH 7.4) was added to an eggplant flask and mixed by shaking with a vortex mixer to obtain a suspension. When preparing PS20% liposomes, 10 mL of 20 mM Tris-HCl, 0.5 M NaCl (pH 7.4) was added to an eggplant flask and mixed by shaking with a vortex mixer to obtain a suspension.
Each of the above suspensions was transferred to a 15 mL centrifuge tube and sonicated to obtain a clear liposome dispersion. Then, PS0% liposome and PS20% liposome solution were prepared by filtering with a 0.2 μm filter. It was confirmed that liposomes having particle diameters of 49 nm and 39 nm were prepared by a dynamic light scattering particle size measuring device (“Zetasizer Nano ZS” manufactured by Malvern), respectively.
 (2)エクソソーム溶液の調製
 結合能評価にはコスモバイオ社の国産生乳由来ミルクエクソソームを使用し、以下の手順で溶媒を20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)に交換した。具体的には、-80℃にて保存していたミルクエクソソーム溶液(200μL)を25℃にて融解した。融解したミルクエクソソーム溶液を遠心フィルターデバイス(「Amicon ultra-0.5mL,10K」メルクミリポア社製)に移し、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)を加えて総量を500μLとした。その後、15000gで10分間遠心分離し、濾液を廃棄した後、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)を加えて総量を0.5mLとした。その後、15000gで10分間遠心分離した。上記の遠心分離、濾液の廃棄、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)の添加までの作業を更に3回繰り返した。その後、遠心フィルターデバイスから溶液を回収し、総量を200μLとした後、ピペッティングにより均一化することでエクソソーム溶液を得た。
(2) Preparation of exosome solution Cosmo Bio's domestically produced milk-derived milk exosome was used for evaluation of binding ability, and the solvent was 20 mM Tris-HCl, 0.15 M NaCl, 2 mM CaCl 2 (pH 7.4) according to the following procedure. Exchanged for. Specifically, a milk exosome solution (200 μL) stored at −80 ° C. was melted at 25 ° C. Transfer the thawed milk exosome solution to a centrifugal filter device (“Amicon ultra-0.5 mL, 10 K” manufactured by Merck Millipore) and add 20 mM Tris-HCl, 0.15 M NaCl, 2 mM CaCl 2 (pH 7.4). The total amount was 500 μL. Then, the mixture was centrifuged at 15,000 g for 10 minutes, the filtrate was discarded, and 20 mM Tris-HCl, 0.15 M NaCl, and 2 mM CaCl 2 (pH 7.4) were added to bring the total volume to 0.5 mL. Then, it was centrifuged at 15,000 g for 10 minutes. The above operations of centrifugation, disposal of the filtrate, and addition of 20 mM Tris-HCl, 0.15 M NaCl, and 2 mM CaCl 2 (pH 7.4) were repeated three more times. Then, the solution was recovered from the centrifugal filter device, the total amount was adjusted to 200 μL, and then homogenized by pipetting to obtain an exosome solution.
 (3)PS結合性ペプチドのPS含有リポソームおよびエクソソームへの結合性評価
 PS結合性タンパク質を固定化した各フローセルにリポソームおよびエクソソームを流し、各ペプチドとの結合性を評価した。結合評価は下記の手順にて行った。
 フローセルにPBSを20μL/minの速度で2分間流した後、PBSで100倍希釈したリポソーム溶液または調製したエクソソーム溶液を20μL/minの速度で3分間かけて添加し、結合レスポンスを測定した。次いで、PBSを20μL/minの速度で6分間かけて流すことで解離レスポンスを測定した。その後、10mM EDTAを20μL/minの速度で1分間流すことで、ペプチド表面に結合したリポソームおよびエクソソームを解離させた。PS20%リポソーム溶液を流した場合のレスポンス値を図1に、エクソソーム溶液を流した場合のレスポンス値を図2に示す。
 図1,2に示す結果の通り、GST固定化セル、およびペプチドを固定していない参照セルはリポソームおよびミルクエクソソームに一切反応しないが、GST-C2A-C2BおよびGST-C2Aは、PS含有リポソームおよびミルクエクソソームに結合することが分かる。GST-C2A-C2BおよびGST-C2AのPS含有リポソームに対するレスポンス値は、それぞれ3143および3540であり、ミルクエクソソームに対するレスポンス値は、それぞれ395および205であった。
 一方、PSを含まないPCリポソームには、いずれのペプチドを固定化したセルもレスポンスは認められなかった。
 以上の結果より、GST-C2A-C2BおよびGST-C2Aは、PSを含む小胞に特異的に結合することが示された。
(3) Evaluation of binding of PS-binding peptide to PS-containing liposomes and exosomes Liposomes and exosomes were flowed through each flow cell on which a PS-binding protein was immobilized, and the binding property to each peptide was evaluated. The binding evaluation was performed according to the following procedure.
After flowing PBS at a rate of 20 μL / min for 2 minutes to the flow cell, a liposome solution diluted 100-fold with PBS or a prepared exosome solution was added at a rate of 20 μL / min over 3 minutes, and the binding response was measured. The dissociation response was then measured by running PBS at a rate of 20 μL / min over 6 minutes. Then, 10 mM EDTA was flowed at a rate of 20 μL / min for 1 minute to dissociate the liposomes and exosomes bound to the peptide surface. The response value when the PS20% liposome solution was flowed is shown in FIG. 1, and the response value when the exosome solution was flowed is shown in FIG.
As shown in the results shown in FIGS. 1 and 2, GST-immobilized cells and reference cells in which peptides are not immobilized do not react with liposomes and milk exosomes at all, whereas GST-C2A-C2B and GST-C2A are PS-containing liposomes. And it can be seen that it binds to milk liposomes. The response values of GST-C2A-C2B and GST-C2A to PS-containing liposomes were 3143 and 3540, respectively, and the response values to milk exosomes were 395 and 205, respectively.
On the other hand, in the PC liposomes containing no PS, no response was observed in the cells on which any of the peptides was immobilized.
From the above results, it was shown that GST-C2A-C2B and GST-C2A specifically bind to vesicles containing PS.
 実施例3
 (1)PS結合性ペプチドのビオチン化
 4mg/mLのGST-C2A水溶液(1mL)、または0.4mg/mLのC2A水溶液(1mL)を1.5mLチューブに入れ、氷上で溶液の温度を4℃とした。その後、ビオチン-PEG(Thermo Fisher社製)の20mM水溶液を、各ペプチド溶液に対してペプチドの5倍モル量となるように添加し、氷上で2時間放置した。その後、脱塩・バッファー交換用カラム(「Hitrap desalting」GEヘルスケア社製)にて精製することで余分なビオチン-PEGを取り除き、ビオチン化GST-C2A溶液とビオチン化C2A溶液を調製した。
Example 3
(1) Biotinlation of PS-binding peptide A 4 mg / mL GST-C2A aqueous solution (1 mL) or a 0.4 mg / mL C2A aqueous solution (1 mL) was placed in a 1.5 mL tube, and the temperature of the solution was raised to 4 ° C. on ice. And said. Then, a 20 mM aqueous solution of biotin-PEG (manufactured by Thermo Fisher) was added to each peptide solution so as to have a molar amount 5 times that of the peptide, and the mixture was allowed to stand on ice for 2 hours. Then, excess biotin-PEG was removed by purification on a desalting / buffer exchange column (manufactured by "Hitrap desalting" GE Healthcare) to prepare a biotinylated GST-C2A solution and a biotinylated C2A solution.
 (2)ビオチン化PS結合性タンパク質の磁気ビーズへの固定化
 ストレプトアビジン(SA)固定化磁気ビーズ(「Dynabeads MyOne Streptavidin」ベリタス社製)のスラリーをボルテックスミキサーで均一化し、1.5mLチューブに60μL分注した。その後、マグネットスタンド上で1分間放置し、上清を廃棄した後、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)を500μL加え、ボルテックスミキサーで均一化した。この操作をもう一度繰り返した。次いで、上清を廃棄し、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)(500μL)とビオチン化GST-C2A溶液(500μL)またはビオチン化C2A溶液(500μL)を添加した後、4℃で10分間転倒混和した。その後、卓上遠心機で粒子を短時間遠心分離し、マグネットスタンドで1分間放置した。上清を廃棄し、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)を500μL添加後、ボルテックスミキサーで均一化した。この操作をさらに2回繰り返すことで、ビオチン化PS結合性タンパク質固定化磁気ビーズのスラリーを得た。
(2) Immobilization of biotinylated PS-binding protein on magnetic beads Streptavidin (SA) -immobilized magnetic beads (“Dynabeads MyOne Streptavidin” manufactured by Veritas) were homogenized with a vortex mixer, and 60 μL in a 1.5 mL tube. Dispensed. Then, the mixture was left on a magnet stand for 1 minute, the supernatant was discarded, 500 μL of 20 mM Tris-HCl, 0.15 M NaCl, and 2 mM CaCl 2 (pH 7.4) was added, and the mixture was homogenized with a vortex mixer. This operation was repeated once more. The supernatant was then discarded and 20 mM Tris-HCl, 0.15 M NaCl, 2 mM CaCl 2 (pH 7.4) (500 μL) and biotinylated GST-C2A solution (500 μL) or biotinylated C2A solution (500 μL) were added. Then, it was inverted and mixed at 4 ° C. for 10 minutes. Then, the particles were centrifuged for a short time with a desktop centrifuge and left on a magnet stand for 1 minute. The supernatant was discarded, 500 μL of 20 mM Tris-HCl, 0.15 M NaCl, 2 mM CaCl 2 (pH 7.4) was added, and the mixture was homogenized with a vortex mixer. By repeating this operation twice more, a slurry of biotinylated PS-binding protein-immobilized magnetic beads was obtained.
 試験例2: 磁気ビーズによるエクソソームの捕捉
 試験例1(2)と同様の方法にて調製したエクソソーム溶液(600μL)に、10mM CaCl2水溶液(1.2μL)を加えた。この溶液(100μL)を磁気ビーズに加え、20mM Tris-HCl,150mM NaCl,2mM CaCl2(pH7.3)で体積を500μLに調整した後、4℃で3時間転倒混和した。次いで、卓上遠心機にて粒子を短時間遠心分離し、マグネットスタンド上に1分間放置後、上清を取り除いた。ここに、20mM Tris-HCl,0.15M NaCl,2mM CaCl2(pH7.4)(1mL)を添加し、ボルテックスミキサーで均一化した。この操作を更に2回繰り返した。その後、卓上遠心機で粒子を短時間遠心分離し、上清を取り除いた。10mM EDTA(50μL)を加え、ボルテックスミキサーで均一化後、卓上遠心機で粒子を短時間遠心分離して上清をマイクロチューブに回収した。10mM EDTA(50μL)を再度加えてボルテックスミキサーで均一化後、卓上遠心機で粒子を短時間遠心分離し、上清を回収した。上記2回分の溶出液をまとめてボルテックスミキサーにて均一化した。
 ウシ由来ミルクエクソソームELISAキット(コスモバイオ社製)を用いて、溶出液中に含まれるエクソソーム量を定量した。操作はキットに添付の方法に従って行った。
 図3にGST-C2A固定化磁気ビーズおよびC2A固定化磁気ビーズそれぞれのエクソソーム回収量を示す。この結果より、各磁気ビーズはそれぞれ1.1μgおよび0.5μgのエクソソームを回収できていることが分かった。
Test Example 2: Capturing exosomes with magnetic beads A 10 mM CaCl 2 aqueous solution (1.2 μL) was added to an exosome solution (600 μL) prepared in the same manner as in Test Example 1 (2). This solution (100 μL) was added to magnetic beads, the volume was adjusted to 500 μL with 20 mM Tris-HCl, 150 mM NaCl, 2 mM CaCl 2 (pH 7.3), and then the mixture was inverted and mixed at 4 ° C. for 3 hours. Then, the particles were centrifuged for a short time with a desktop centrifuge, left on a magnet stand for 1 minute, and then the supernatant was removed. To this, 20 mM Tris-HCl, 0.15 M NaCl, 2 mM CaCl 2 (pH 7.4) (1 mL) was added and homogenized with a vortex mixer. This operation was repeated twice more. Then, the particles were centrifuged for a short time with a tabletop centrifuge to remove the supernatant. After adding 10 mM EDTA (50 μL) and homogenizing with a vortex mixer, the particles were centrifuged for a short time with a tabletop centrifuge, and the supernatant was collected in a microtube. After adding 10 mM EDTA (50 μL) again and homogenizing with a vortex mixer, the particles were centrifuged for a short time with a tabletop centrifuge, and the supernatant was collected. The above two eluates were combined and homogenized with a vortex mixer.
The amount of exosomes contained in the eluate was quantified using a bovine milk exosome ELISA kit (manufactured by Cosmo Bio Co., Ltd.). The operation was performed according to the method attached to the kit.
FIG. 3 shows the amount of exosomes recovered from each of the GST-C2A-immobilized magnetic beads and the C2A-immobilized magnetic beads. From this result, it was found that each magnetic bead was able to recover 1.1 μg and 0.5 μg of exosomes, respectively.
 実施例4
 Rattus norvegicus由来のプロテインキナーゼCα(PDB: 3GPE_A)のC2ドメイン(配列番号5)をコードする遺伝子のN末端側に制限酵素BamHIの認識部位を、C末端側に制限酵素EcoRIの認識部位を付加した遺伝子(配列番号6)の人工合成をジンスクリプト社に外注した。この遺伝子をBamHIとEcoRIで切断し、同じ制限酵素で切断したGST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)に導入して、GST-PCKαC2発現プラスミドpGEX-GST-PCKαC2を作製した。
Example 4
A recognition site for the restriction enzyme BamHI was added to the N-terminal side of the gene encoding the C2 domain (SEQ ID NO: 5) of the protein kinase Cα (PDB: 3GPE_A) derived from Rattus norvegicus, and a recognition site for the restriction enzyme EcoRI was added to the C-terminal side. The artificial synthesis of the gene (SEQ ID NO: 6) was outsourced to Ginscript. This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-PCKαC2 expression plasmid pGEX-GST-. PCKαC2 was prepared.
 実施例5
 Rattus norvegicus由来のアネキシンV(NCBI Reference Sequence: NP_037264.1,配列番号9)のドメインI~IVをコードする遺伝子のN末端側にBamHIの認識部位を、C末端側にEcoRIの認識部位を付加した遺伝子(配列番号10)の人工合成を、ジンスクリプト社に外注した。当該遺伝子は、大腸菌最適化コドンで構成されていた。この遺伝子をBamHIとEcoRIで切断し、同じ制限酵素で切断したGST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)に導入して、GST-A5発現プラスミドpGEX-GST-A5を作製した。
Example 5
A BamHI recognition site was added to the N-terminal side of a gene encoding domains I to IV of Anexin V (NCBI Reference Sequence: NP_307264.1, SEQ ID NO: 9) derived from Rattus norvegicus, and an EcoRI recognition site was added to the C-terminal side. The artificial synthesis of the gene (SEQ ID NO: 10) was outsourced to Ginscript. The gene was composed of E. coli optimized codons. This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-A5 expression plasmid pGEX-GST-. A5 was prepared.
 比較例1
 Homo sapiens由来のT細胞免疫グロブリン・ムチンドメイン含有分子(Tim)タンパク質4(NCBI Reference Sequence: XP_011532996.1)のIgVドメイン(NCBI Reference Sequence: XP_011532996.1のアミノ酸配列の22番目から134番目まで,配列番号11)をコードする遺伝子のN末端側にBamHIの認識部位を、C末端側にEcoRIの認識部位を付加した遺伝子(配列番号12)の人工合成を、ジンスクリプト社に外注した。当該遺伝子は、大腸菌最適化コドンで構成されていた。この遺伝子をBamHIとEcoRIで切断し、同じ制限酵素で切断したGST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)に導入して、GST-Tim4IgV発現プラスミドpGEX-GST-Tim4IgVを作製した。
Comparative Example 1
Homo sapiens-derived T-cell immunoglobulin / mucin domain-containing molecule (Tim) protein 4 (NCBI Reference Sequence: XP_01153296.1) IgV domain (NCBI Reference Sequence: sequence from position 103 to position 134, amino acid _0115322996. An artificial synthesis of a gene (SEQ ID NO: 12) having a BamHI recognition site added to the N-terminal side of the gene encoding No. 11) and an EcoRI recognition site added to the C-terminal side was outsourced to Ginscript. The gene was composed of E. coli optimized codons. This gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-Tim4IgV expression plasmid pGEX-GST-. Tim4IgV was prepared.
 比較例2
 Homo sapiens由来のCD300A(PDB: 2Q87_A)のIgVドメイン(配列番号13)をコードする遺伝子のN末端側にBamHIの認識部位を、C末端側にEcoRIの認識部位を付加した遺伝子(配列番号14)の人工合成を、ジンスクリプト社に外注した。当該遺伝子は、大腸菌最適化コドンで構成されていた。この人工合成遺伝子をBamHIとEcoRIで切断し、同じ制限酵素で切断したGST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)に導入して、GST-CD300AIgV発現プラスミドpGEX-GST-CD300AIgVを作製した。
Comparative Example 2
A gene in which a BamHI recognition site is added to the N-terminal side of a gene encoding the IgV domain (SEQ ID NO: 13) of CD300A (PDB: 2Q87_A) derived from Homo sapiens, and an EcoRI recognition site is added to the C-terminal side (SEQ ID NO: 14). The artificial synthesis of was outsourced to Ginscript. The gene was composed of E. coli optimized codons. This artificially synthesized gene was cleaved with BamHI and EcoRI and introduced into a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.) cleaved with the same restriction enzyme to introduce the GST-CD300AIgV expression plasmid pGEX-. GST-CD300AIgV was prepared.
 試験例3: ホスファチジルセリン結合性タンパク質の大腸菌での発現評価
 実施例1,2,4,5および比較例1,2で作製した6種類のホスファチジルセリン結合性タンパク質発現プラスミドで大腸菌(「E.coli JM109」タカラバイオ社製)を形質転換した。また、対照として、GST融合タンパク質発現用ベクター(「pGEX-6p-1」GEヘルスケア社製)で大腸菌(「E.coli JM109」タカラバイオ社製)を形質転換した。得られた7種類の形質転換体を2×YT培地中、30℃で一晩、試験管内で培養した後、TB培地に植え継ぎ、37℃でフラスコ培養した。その後、IPTGを添加し、25℃で一晩培養することによりホスファチジルセリン結合性タンパク質発現大腸菌の培養液を得た。各培養液の菌体濃度をOD600nmで測定した後、OD600nmが20になるように、菌体濃度を調整して、PBSに懸濁した。超音波破砕にて菌体破砕した後、遠心分離し、可溶性画分として上清を分取した。沈殿をPBSに懸濁し、可溶性画分と沈殿懸濁液をSDS-PAGEに供し、目的タンパク質の発現量を評価した。結果を図4と表2に示す。表2中、「〇」は目的ペプチドを確認できたことを示し、「×」は目的ペプチドを確認できなかったことを示す。
Test Example 3: Evaluation of expression of phosphatidylserine-binding protein in Escherichia coli Escherichia coli (“E. coli”) using 6 types of phosphatidylserine-binding protein expression plasmids prepared in Examples 1, 2, 4, 5 and Comparative Examples 1 and 2. JM109 "manufactured by Takara Bio Co., Ltd.) was transformed. As a control, Escherichia coli (“E. coli JM109” manufactured by Takara Bio Co., Ltd.) was transformed with a GST fusion protein expression vector (“pGEX-6p-1” manufactured by GE Healthcare Co., Ltd.). The obtained 7 types of transformants were cultured in a 2 × YT medium at 30 ° C. overnight in vitro, subcultured in TB medium, and cultured in flasks at 37 ° C. Then, IPTG was added and the mixture was cultured at 25 ° C. overnight to obtain a culture solution of phosphatidylserine-binding protein-expressing Escherichia coli. After measuring the cell concentration of each culture solution at OD600 nm, the cell concentration was adjusted so that the OD600 nm was 20, and the cells were suspended in PBS. After crushing the cells by ultrasonic crushing, the cells were centrifuged, and the supernatant was separated as a soluble fraction. The precipitate was suspended in PBS, the soluble fraction and the precipitate suspension were subjected to SDS-PAGE, and the expression level of the target protein was evaluated. The results are shown in FIG. 4 and Table 2. In Table 2, "○" indicates that the target peptide could be confirmed, and "x" indicates that the target peptide could not be confirmed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図4と表2に示された結果の通り、分子内ジスルフィド結合を有しないGST-PKCα-C2とGST-C2A-C2Bに関しては、その全てが可溶性画分に発現しており、沈殿懸濁液中には確認できなかった。同じく分子内ジスルフィド結合を有しないGST-アネキシンVとGST-C2Aは沈殿懸濁液中にも認められたものの、その半分以上は可溶性画分で認められた。なお、GST-アネキシンVとGST-C2Aが沈殿懸濁液中に確認されたのは、カルシウムイオンによりペプチド間が架橋されたためであり、おそらくキレート剤などによりこれらペプチドの沈殿は解消されると考えている。
 一方、分子内ジスルフィド結合を有するGST-Tim4IgVとGST-CD300AIgVについては、可溶性画分に目的ペプチドのバンドが認められなかった。また、不溶性画分中には、GST-Tim4IgVのみ目的物の分子量付近に目的物と推定されるペプチドの発現が認められた。この結果は、分子内ジスルフィド結合を有するGST-Tim4IgVが、形質転換細胞内において分子内ジスルフィド結合を有していないペプチドに比べて凝集し易いことを示し、また、GST-CD300AIgV遺伝子は形質転換法によっては発現そのものが難しいことを示している。
 以上の結果より、分子内ジスルフィド結合を有するホスファチジルセリン結合性ペプチドに比べて分子内ジスルフィド結合を有しないホスファチジルセリン結合性ペプチドは、形質転換法で効率的に生産可能なものであることが実証された。
As shown in the results shown in FIGS. 4 and 2, all of GST-PKCα-C2 and GST-C2A-C2B, which do not have an intramolecular disulfide bond, are expressed in the soluble fraction, and the precipitation suspension. I could not confirm it inside. Similarly, GST-annexin V and GST-C2A, which do not have an intramolecular disulfide bond, were also observed in the precipitation suspension, but more than half of them were observed in the soluble fraction. GST-annexin V and GST-C2A were confirmed in the precipitation suspension because the peptides were cross-linked by calcium ions, and it is considered that the precipitation of these peptides is probably eliminated by a chelating agent or the like. ing.
On the other hand, for GST-Tim4IgV and GST-CD300AIgV having an intramolecular disulfide bond, no band of the target peptide was observed in the soluble fraction. Further, in the insoluble fraction, expression of a peptide presumed to be the target substance was observed in the vicinity of the molecular weight of the target product only in GST-Tim4IgV. This result shows that GST-Tim4IgV having an intramolecular disulfide bond is more likely to aggregate in the transformed cell than a peptide having no intramolecular disulfide bond, and the GST-CD300AIgV gene is a transformation method. It shows that the expression itself is difficult in some cases.
From the above results, it is demonstrated that the phosphatidylserine-binding peptide having no intramolecular disulfide bond can be efficiently produced by the transformation method as compared with the phosphatidylserine-binding peptide having an intramolecular disulfide bond. It was.

Claims (7)

  1.  細胞外膜小胞結合性担体を製造するための方法であって、
     分子内にジスルフィド結合を持たないホスファチジルセリン結合性ペプチドをコードする塩基配列を含む核酸を用いて宿主細胞を形質転換することにより、形質転換細胞を得る工程、
     上記形質転換細胞を培養する工程、
     培養した上記形質転換細胞から、上記ホスファチジルセリン結合性ペプチドを精製する工程、および、
     精製された上記ホスファチジルセリン結合性ペプチドを水不溶性担体に固定化する工程を含むことを特徴とする製造方法。
    A method for producing an outer cell membrane vesicle-binding carrier.
    A step of obtaining transformed cells by transforming a host cell with a nucleic acid containing a base sequence encoding a phosphatidylserine-binding peptide having no disulfide bond in the molecule.
    The step of culturing the transformed cells,
    A step of purifying the phosphatidylserine-binding peptide from the cultured transformed cells, and
    A production method comprising the step of immobilizing the purified phosphatidylserine-binding peptide on a water-insoluble carrier.
  2.  上記ホスファチジルセリン結合性ペプチドが、シナプトタグミンのC2領域、プロテインキナーゼα、βI、βII、およびγのC2領域、MFG-E8のC2領域、並びにアネキシンVのI領域、II領域、III領域、およびIV領域から選択される1以上のホスファチジルセリン結合性ペプチドである請求項1に記載の方法。 The phosphatidylserine-binding peptide is a C2 region of synaptotagmin, a C2 region of protein kinases α, βI, βII, and γ, a C2 region of MFG-E8, and an I region, II region, III region, and IV region of annexin V. The method according to claim 1, which is one or more phosphatidylserine-binding peptides selected from.
  3.  上記ホスファチジルセリン結合性ペプチドを、リンカーを介して上記水不溶性担体に固定化する請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the phosphatidylserine-binding peptide is immobilized on the water-insoluble carrier via a linker.
  4.  上記ホスファチジルセリン結合性ペプチドが、少なくともシナプトタグミンのC2A領域を含む請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the phosphatidylserine-binding peptide contains at least the C2A region of synaptotagmin.
  5.  上記ホスファチジルセリン結合性ペプチドが、シナプトタグミンのC2A領域およびC2B領域を含む請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the phosphatidylserine-binding peptide contains a C2A region and a C2B region of synaptotagmin.
  6.  上記ホスファチジルセリン結合性ペプチドがシナプトタグミンのC2領域であり、上記核酸が配列番号2の塩基配列を有する請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the phosphatidylserine-binding peptide is the C2 region of synaptotagmin, and the nucleic acid has the nucleotide sequence of SEQ ID NO: 2.
  7.  細胞外膜小胞を精製するための方法であって、
     請求項1~6のいずれかに記載の方法で細胞外膜小胞結合性担体を製造する工程、および、
     細胞外膜小胞を含む液体試料と上記細胞外膜小胞結合性担体とを接触させて、上記細胞外膜小胞結合性担体に細胞外膜小胞を吸着させる工程を含むことを特徴とする方法。
    A method for purifying outer cell membrane vesicles,
    The step of producing the outer cell membrane vesicle-binding carrier by the method according to any one of claims 1 to 6, and
    It is characterized by including a step of contacting a liquid sample containing outer cell membrane vesicles with the outer cell membrane vesicle-binding carrier and adsorbing the outer cell membrane vesicles on the outer cell membrane vesicle-binding carrier. how to.
PCT/JP2019/051128 2019-03-26 2019-12-26 Method for producing extracellular membrane vesicle-binding carrier WO2020194968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058141 2019-03-26
JP2019-058141 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020194968A1 true WO2020194968A1 (en) 2020-10-01

Family

ID=72611260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051128 WO2020194968A1 (en) 2019-03-26 2019-12-26 Method for producing extracellular membrane vesicle-binding carrier

Country Status (1)

Country Link
WO (1) WO2020194968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088689A1 (en) * 2014-12-05 2016-06-09 和光純薬工業株式会社 Tim protein-bound carrier, methods for obtaining, removing and detecting extracellular membrane vesicles and viruses using said carrier, and kit including said carrier
US20160370265A1 (en) * 2013-12-03 2016-12-22 bioMérieux Method for isolating exosomes
CN108841788A (en) * 2018-07-17 2018-11-20 厦门艾赛生物科技有限公司 Protein-crosslinking nano-silicon and preparation method and excretion body isolation and purification method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370265A1 (en) * 2013-12-03 2016-12-22 bioMérieux Method for isolating exosomes
WO2016088689A1 (en) * 2014-12-05 2016-06-09 和光純薬工業株式会社 Tim protein-bound carrier, methods for obtaining, removing and detecting extracellular membrane vesicles and viruses using said carrier, and kit including said carrier
CN108841788A (en) * 2018-07-17 2018-11-20 厦门艾赛生物科技有限公司 Protein-crosslinking nano-silicon and preparation method and excretion body isolation and purification method and application

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAMER, C. K. ET AL.: "Synergistic membrane interactions of the two C2 domains of synaptotagmin", J. BIOL. CHEM., vol. 269, no. 49, 1994, pages 31115 - 31123, XP055745576 *
DISMUKE, W. M. ET AL.: "Mechanism of Fibronectin Binding to Human Trabecular Meshwork Exosomes and Its Modulation by Dexamethasone", PLOS ONE, vol. 11, no. 10, 2016, pages 1 - 18, XP055745584 *
LEVENTIS, P. A. ET AL.: "The distribution and function of phosphatidylserine in cellular membranes", ANNU. REV. BIOPHYS., vol. 39, 2010, pages 407 - 427, XP055745580 *
PARK, J. H. ET AL.: "Direct force measurement of the interaction between liposome and the C2A domain of synaptotagmin I using atomic force microscopy", BIOTECHNOL. LETT., vol. 28, no. 7, 2006, pages 505 - 509, XP019231240, DOI: 10.1007/s10529-006-0010-y *
SHIH, C.L. ET AL.: "Development of a magnetic bead-based method for the collection of circulating extracellular vesicles", N. BIOTECHNOL., vol. 33, no. 1, 2016, pages 116 - 122, XP055745573 *
W. KAING; T.S. SIM; S.P.L. TING; T. SUBRAMANIAM; L.S. CHI; S.C. FANG; L.S. KIANG: "Exosomal proteomic profiling of niacin-treated type 2 diabetes (T2D) patients by isobaric tags for relative and absolute quantitation (iTRAQ) labeling mass spectrometry", DIABETES RESEARCH AND CLINICAL PRACTICE, vol. 106, no. 1, 30 November 2014 (2014-11-30), pages S181, XP009523877, ISSN: 0168-8227, DOI: 10.1016/S0168-8227(14)70551-0 *

Similar Documents

Publication Publication Date Title
EP2690108B1 (en) Novel immunoglobulin-binding polypeptide
KR20140038517A (en) Methods of purification of native or mutant forms of diphtheria toxin
KR20180004851A (en) Filler for affinity chromatography and method for isolating immunoglobulin
US11186613B2 (en) Solid-phase support comprising IgG-binding peptide, and method for separating IgG
JP2023502335A (en) Protein purification using the split intein system
CN112789295B (en) Solid phase carrier containing IgG binding peptide and separation method of IgG
WO2008028218A1 (en) Affinity separation methods and systems
WO2020194968A1 (en) Method for producing extracellular membrane vesicle-binding carrier
EP2800757B1 (en) Affinity tag system
US20230391829A1 (en) Aav8 affinity agents
US20240174717A1 (en) Affinity agents
JP2023087936A (en) Extracellular vesicle adsorbent and method for detecting and separating extracellular vesicle using the same
US20200291080A1 (en) Recombinase Purification
WO2008024311A2 (en) Purification of low-abundant recombinant proteins from cell culture
WO2024071043A1 (en) Production method of heteromultimeric protein, protein, nucleic acid, expression vector, transformant, and production method of protein
CN118091112A (en) Binding system of cell outer membrane vesicle or enveloped virus, preparation method and application thereof
US20210261629A1 (en) Fucose-binding protein, method for producing same, and use of same
CN117355536A (en) Improved protein purification
WO2022178396A1 (en) Aav2 affinity agents
WO2017018437A1 (en) Affinity support and method for isolating immunoglobulin
US10604778B2 (en) BRCA2 mediated protein purification recombinase
US20220242975A1 (en) Immunoglobulin-binding protein and affinity support using same
WO2024118813A2 (en) Affinity agents
AU2020253470A1 (en) Functionalized Ubx protein materials for enhanced purification of antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP